blob: 38bed417104d267007780a1728dea889a70d803c [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
Hans Wennborg2cfcc012018-05-22 10:14:07 +000083 can be used on global values to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000327 floating-point types are supported.
Sean Silvab084af42012-12-07 10:36:55 +0000328 - On *X86-64* only supports up to 10 bit type parameters and 6
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000329 floating-point parameters.
Sean Silvab084af42012-12-07 10:36:55 +0000330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Sean Fertilec70d28b2017-10-26 15:00:26 +0000530.. _runtime_preemption_model:
531
532Runtime Preemption Specifiers
533-----------------------------
534
535Global variables, functions and aliases may have an optional runtime preemption
536specifier. If a preemption specifier isn't given explicitly, then a
537symbol is assumed to be ``dso_preemptable``.
538
539``dso_preemptable``
540 Indicates that the function or variable may be replaced by a symbol from
541 outside the linkage unit at runtime.
542
543``dso_local``
544 The compiler may assume that a function or variable marked as ``dso_local``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000545 will resolve to a symbol within the same linkage unit. Direct access will
Sean Fertilec70d28b2017-10-26 15:00:26 +0000546 be generated even if the definition is not within this compilation unit.
547
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000548.. _namedtypes:
549
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000550Structure Types
551---------------
Sean Silvab084af42012-12-07 10:36:55 +0000552
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000553LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000554types <t_struct>`. Literal types are uniqued structurally, but identified types
555are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000556to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000557
Sean Silva706fba52015-08-06 22:56:24 +0000558An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000559
560.. code-block:: llvm
561
562 %mytype = type { %mytype*, i32 }
563
Sean Silvaa1190322015-08-06 22:56:48 +0000564Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000565literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000566
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000567.. _nointptrtype:
568
569Non-Integral Pointer Type
570-------------------------
571
572Note: non-integral pointer types are a work in progress, and they should be
573considered experimental at this time.
574
575LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000576spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
577Non-integral pointer types represent pointers that have an *unspecified* bitwise
578representation; that is, the integral representation may be target dependent or
579unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000580
581``inttoptr`` instructions converting integers to non-integral pointer types are
582ill-typed, and so are ``ptrtoint`` instructions converting values of
583non-integral pointer types to integers. Vector versions of said instructions
584are ill-typed as well.
585
Sean Silvab084af42012-12-07 10:36:55 +0000586.. _globalvars:
587
588Global Variables
589----------------
590
591Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000592instead of run-time.
593
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000594Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000595
596Global variables in other translation units can also be declared, in which
597case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000598
Bob Wilson85b24f22014-06-12 20:40:33 +0000599Either global variable definitions or declarations may have an explicit section
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000600to be placed in and may have an optional explicit alignment specified. If there
601is a mismatch between the explicit or inferred section information for the
602variable declaration and its definition the resulting behavior is undefined.
Bob Wilson85b24f22014-06-12 20:40:33 +0000603
Michael Gottesman006039c2013-01-31 05:48:48 +0000604A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000605the contents of the variable will **never** be modified (enabling better
606optimization, allowing the global data to be placed in the read-only
607section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000608initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000609variable.
610
611LLVM explicitly allows *declarations* of global variables to be marked
612constant, even if the final definition of the global is not. This
613capability can be used to enable slightly better optimization of the
614program, but requires the language definition to guarantee that
615optimizations based on the 'constantness' are valid for the translation
616units that do not include the definition.
617
618As SSA values, global variables define pointer values that are in scope
619(i.e. they dominate) all basic blocks in the program. Global variables
620always define a pointer to their "content" type because they describe a
621region of memory, and all memory objects in LLVM are accessed through
622pointers.
623
624Global variables can be marked with ``unnamed_addr`` which indicates
625that the address is not significant, only the content. Constants marked
626like this can be merged with other constants if they have the same
627initializer. Note that a constant with significant address *can* be
628merged with a ``unnamed_addr`` constant, the result being a constant
629whose address is significant.
630
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000631If the ``local_unnamed_addr`` attribute is given, the address is known to
632not be significant within the module.
633
Sean Silvab084af42012-12-07 10:36:55 +0000634A global variable may be declared to reside in a target-specific
635numbered address space. For targets that support them, address spaces
636may affect how optimizations are performed and/or what target
637instructions are used to access the variable. The default address space
638is zero. The address space qualifier must precede any other attributes.
639
640LLVM allows an explicit section to be specified for globals. If the
641target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000642Additionally, the global can placed in a comdat if the target has the necessary
643support.
Sean Silvab084af42012-12-07 10:36:55 +0000644
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000645External declarations may have an explicit section specified. Section
646information is retained in LLVM IR for targets that make use of this
647information. Attaching section information to an external declaration is an
648assertion that its definition is located in the specified section. If the
649definition is located in a different section, the behavior is undefined.
Erich Keane0343ef82017-08-22 15:30:43 +0000650
Michael Gottesmane743a302013-02-04 03:22:00 +0000651By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000652variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000653initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000654true even for variables potentially accessible from outside the
655module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000656``@llvm.used`` or dllexported variables. This assumption may be suppressed
657by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659An explicit alignment may be specified for a global, which must be a
660power of 2. If not present, or if the alignment is set to zero, the
661alignment of the global is set by the target to whatever it feels
662convenient. If an explicit alignment is specified, the global is forced
663to have exactly that alignment. Targets and optimizers are not allowed
664to over-align the global if the global has an assigned section. In this
665case, the extra alignment could be observable: for example, code could
666assume that the globals are densely packed in their section and try to
667iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000668iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000669
Javed Absarf3d79042017-05-11 12:28:08 +0000670Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
Sean Fertilec70d28b2017-10-26 15:00:26 +0000671an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
Javed Absarf3d79042017-05-11 12:28:08 +0000672an optional :ref:`global attributes <glattrs>` and
673an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000674
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000675Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000676:ref:`Thread Local Storage Model <tls_model>`.
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678Syntax::
679
Sean Fertilec70d28b2017-10-26 15:00:26 +0000680 @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
681 [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
683 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000684 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000686 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000687
Sean Silvab084af42012-12-07 10:36:55 +0000688For example, the following defines a global in a numbered address space
689with an initializer, section, and alignment:
690
691.. code-block:: llvm
692
693 @G = addrspace(5) constant float 1.0, section "foo", align 4
694
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000695The following example just declares a global variable
696
697.. code-block:: llvm
698
699 @G = external global i32
700
Sean Silvab084af42012-12-07 10:36:55 +0000701The following example defines a thread-local global with the
702``initialexec`` TLS model:
703
704.. code-block:: llvm
705
706 @G = thread_local(initialexec) global i32 0, align 4
707
708.. _functionstructure:
709
710Functions
711---------
712
713LLVM function definitions consist of the "``define``" keyword, an
Sean Fertilec70d28b2017-10-26 15:00:26 +0000714optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
715specifier <runtime_preemption_model>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000716style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
717an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000718an optional ``unnamed_addr`` attribute, a return type, an optional
719:ref:`parameter attribute <paramattrs>` for the return type, a function
720name, a (possibly empty) argument list (each with optional :ref:`parameter
721attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000722an optional section, an optional alignment,
723an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000724an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000725an optional :ref:`prologue <prologuedata>`,
726an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000727an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000728an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000731optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
732<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
733optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
734or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
735attribute <paramattrs>` for the return type, a function name, a possibly
736empty list of arguments, an optional alignment, an optional :ref:`garbage
737collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
738:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000739
Bill Wendling6822ecb2013-10-27 05:09:12 +0000740A function definition contains a list of basic blocks, forming the CFG (Control
741Flow Graph) for the function. Each basic block may optionally start with a label
742(giving the basic block a symbol table entry), contains a list of instructions,
743and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
744function return). If an explicit label is not provided, a block is assigned an
745implicit numbered label, using the next value from the same counter as used for
746unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
747entry block does not have an explicit label, it will be assigned label "%0",
748then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000749
750The first basic block in a function is special in two ways: it is
751immediately executed on entrance to the function, and it is not allowed
752to have predecessor basic blocks (i.e. there can not be any branches to
753the entry block of a function). Because the block can have no
754predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
755
756LLVM allows an explicit section to be specified for functions. If the
757target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000758Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000759
760An explicit alignment may be specified for a function. If not present,
761or if the alignment is set to zero, the alignment of the function is set
762by the target to whatever it feels convenient. If an explicit alignment
763is specified, the function is forced to have at least that much
764alignment. All alignments must be a power of 2.
765
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000766If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000767be significant and two identical functions can be merged.
768
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000769If the ``local_unnamed_addr`` attribute is given, the address is known to
770not be significant within the module.
771
Sean Silvab084af42012-12-07 10:36:55 +0000772Syntax::
773
Sean Fertilec70d28b2017-10-26 15:00:26 +0000774 define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000775 [cconv] [ret attrs]
776 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000777 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
778 [comdat [($name)]] [align N] [gc] [prefix Constant]
779 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000780
Sean Silva706fba52015-08-06 22:56:24 +0000781The argument list is a comma separated sequence of arguments where each
782argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000783
784Syntax::
785
786 <type> [parameter Attrs] [name]
787
788
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000789.. _langref_aliases:
790
Sean Silvab084af42012-12-07 10:36:55 +0000791Aliases
792-------
793
Rafael Espindola64c1e182014-06-03 02:41:57 +0000794Aliases, unlike function or variables, don't create any new data. They
795are just a new symbol and metadata for an existing position.
796
797Aliases have a name and an aliasee that is either a global value or a
798constant expression.
799
Nico Rieck7157bb72014-01-14 15:22:47 +0000800Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Sean Fertilec70d28b2017-10-26 15:00:26 +0000801:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000802:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
803<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000804
805Syntax::
806
Sean Fertilec70d28b2017-10-26 15:00:26 +0000807 @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000808
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000809The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000810``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000811might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000812
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000813Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000814the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
815to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000816
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000817If the ``local_unnamed_addr`` attribute is given, the address is known to
818not be significant within the module.
819
Rafael Espindola64c1e182014-06-03 02:41:57 +0000820Since aliases are only a second name, some restrictions apply, of which
821some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000822
Rafael Espindola64c1e182014-06-03 02:41:57 +0000823* The expression defining the aliasee must be computable at assembly
824 time. Since it is just a name, no relocations can be used.
825
826* No alias in the expression can be weak as the possibility of the
827 intermediate alias being overridden cannot be represented in an
828 object file.
829
830* No global value in the expression can be a declaration, since that
831 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000832
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000833.. _langref_ifunc:
834
835IFuncs
836-------
837
838IFuncs, like as aliases, don't create any new data or func. They are just a new
839symbol that dynamic linker resolves at runtime by calling a resolver function.
840
841IFuncs have a name and a resolver that is a function called by dynamic linker
842that returns address of another function associated with the name.
843
844IFunc may have an optional :ref:`linkage type <linkage>` and an optional
845:ref:`visibility style <visibility>`.
846
847Syntax::
848
849 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
850
851
David Majnemerdad0a642014-06-27 18:19:56 +0000852.. _langref_comdats:
853
854Comdats
855-------
856
857Comdat IR provides access to COFF and ELF object file COMDAT functionality.
858
Sean Silvaa1190322015-08-06 22:56:48 +0000859Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000860specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000861that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000862aliasee computes to, if any.
863
864Comdats have a selection kind to provide input on how the linker should
865choose between keys in two different object files.
866
867Syntax::
868
869 $<Name> = comdat SelectionKind
870
871The selection kind must be one of the following:
872
873``any``
874 The linker may choose any COMDAT key, the choice is arbitrary.
875``exactmatch``
876 The linker may choose any COMDAT key but the sections must contain the
877 same data.
878``largest``
879 The linker will choose the section containing the largest COMDAT key.
880``noduplicates``
881 The linker requires that only section with this COMDAT key exist.
882``samesize``
883 The linker may choose any COMDAT key but the sections must contain the
884 same amount of data.
885
Sam Cleggea7cace2018-01-09 23:43:14 +0000886Note that the Mach-O platform doesn't support COMDATs, and ELF and WebAssembly
887only support ``any`` as a selection kind.
David Majnemerdad0a642014-06-27 18:19:56 +0000888
889Here is an example of a COMDAT group where a function will only be selected if
890the COMDAT key's section is the largest:
891
Renato Golin124f2592016-07-20 12:16:38 +0000892.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000893
894 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000895 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000896
Rafael Espindola83a362c2015-01-06 22:55:16 +0000897 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000898 ret void
899 }
900
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901As a syntactic sugar the ``$name`` can be omitted if the name is the same as
902the global name:
903
Renato Golin124f2592016-07-20 12:16:38 +0000904.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000905
906 $foo = comdat any
907 @foo = global i32 2, comdat
908
909
David Majnemerdad0a642014-06-27 18:19:56 +0000910In a COFF object file, this will create a COMDAT section with selection kind
911``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
912and another COMDAT section with selection kind
913``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000914section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000915
916There are some restrictions on the properties of the global object.
917It, or an alias to it, must have the same name as the COMDAT group when
918targeting COFF.
919The contents and size of this object may be used during link-time to determine
920which COMDAT groups get selected depending on the selection kind.
921Because the name of the object must match the name of the COMDAT group, the
922linkage of the global object must not be local; local symbols can get renamed
923if a collision occurs in the symbol table.
924
925The combined use of COMDATS and section attributes may yield surprising results.
926For example:
927
Renato Golin124f2592016-07-20 12:16:38 +0000928.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000929
930 $foo = comdat any
931 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000932 @g1 = global i32 42, section "sec", comdat($foo)
933 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000934
935From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000936with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000937COMDAT groups and COMDATs, at the object file level, are represented by
938sections.
939
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000940Note that certain IR constructs like global variables and functions may
941create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000942COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000943in individual sections (e.g. when `-data-sections` or `-function-sections`
944is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000945
Sean Silvab084af42012-12-07 10:36:55 +0000946.. _namedmetadatastructure:
947
948Named Metadata
949--------------
950
951Named metadata is a collection of metadata. :ref:`Metadata
952nodes <metadata>` (but not metadata strings) are the only valid
953operands for a named metadata.
954
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000955#. Named metadata are represented as a string of characters with the
956 metadata prefix. The rules for metadata names are the same as for
957 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
958 are still valid, which allows any character to be part of a name.
959
Sean Silvab084af42012-12-07 10:36:55 +0000960Syntax::
961
962 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000963 !0 = !{!"zero"}
964 !1 = !{!"one"}
965 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000966 ; A named metadata.
967 !name = !{!0, !1, !2}
968
969.. _paramattrs:
970
971Parameter Attributes
972--------------------
973
974The return type and each parameter of a function type may have a set of
975*parameter attributes* associated with them. Parameter attributes are
976used to communicate additional information about the result or
977parameters of a function. Parameter attributes are considered to be part
978of the function, not of the function type, so functions with different
979parameter attributes can have the same function type.
980
981Parameter attributes are simple keywords that follow the type specified.
982If multiple parameter attributes are needed, they are space separated.
983For example:
984
985.. code-block:: llvm
986
987 declare i32 @printf(i8* noalias nocapture, ...)
988 declare i32 @atoi(i8 zeroext)
989 declare signext i8 @returns_signed_char()
990
991Note that any attributes for the function result (``nounwind``,
992``readonly``) come immediately after the argument list.
993
994Currently, only the following parameter attributes are defined:
995
996``zeroext``
997 This indicates to the code generator that the parameter or return
998 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000999 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +00001000``signext``
1001 This indicates to the code generator that the parameter or return
1002 value should be sign-extended to the extent required by the target's
1003 ABI (which is usually 32-bits) by the caller (for a parameter) or
1004 the callee (for a return value).
1005``inreg``
1006 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +00001007 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +00001008 a function call or return (usually, by putting it in a register as
1009 opposed to memory, though some targets use it to distinguish between
1010 two different kinds of registers). Use of this attribute is
1011 target-specific.
1012``byval``
1013 This indicates that the pointer parameter should really be passed by
1014 value to the function. The attribute implies that a hidden copy of
1015 the pointee is made between the caller and the callee, so the callee
1016 is unable to modify the value in the caller. This attribute is only
1017 valid on LLVM pointer arguments. It is generally used to pass
1018 structs and arrays by value, but is also valid on pointers to
1019 scalars. The copy is considered to belong to the caller not the
1020 callee (for example, ``readonly`` functions should not write to
1021 ``byval`` parameters). This is not a valid attribute for return
1022 values.
1023
1024 The byval attribute also supports specifying an alignment with the
1025 align attribute. It indicates the alignment of the stack slot to
1026 form and the known alignment of the pointer specified to the call
1027 site. If the alignment is not specified, then the code generator
1028 makes a target-specific assumption.
1029
Reid Klecknera534a382013-12-19 02:14:12 +00001030.. _attr_inalloca:
1031
1032``inalloca``
1033
Reid Kleckner60d3a832014-01-16 22:59:24 +00001034 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001035 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001036 be a pointer to stack memory produced by an ``alloca`` instruction.
1037 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001038 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001039 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001040
Reid Kleckner436c42e2014-01-17 23:58:17 +00001041 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001042 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001043 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001044 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001045 ``inalloca`` attribute also disables LLVM's implicit lowering of
1046 large aggregate return values, which means that frontend authors
1047 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001048
Reid Kleckner60d3a832014-01-16 22:59:24 +00001049 When the call site is reached, the argument allocation must have
1050 been the most recent stack allocation that is still live, or the
Eli Friedman0f522bd2018-07-25 18:26:38 +00001051 behavior is undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001052 space after an argument allocation and before its call site, but it
1053 must be cleared off with :ref:`llvm.stackrestore
1054 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001055
1056 See :doc:`InAlloca` for more information on how to use this
1057 attribute.
1058
Sean Silvab084af42012-12-07 10:36:55 +00001059``sret``
1060 This indicates that the pointer parameter specifies the address of a
1061 structure that is the return value of the function in the source
1062 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001063 loads and stores to the structure may be assumed by the callee not
1064 to trap and to be properly aligned. This is not a valid attribute
1065 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001066
Daniel Neilson1e687242018-01-19 17:13:12 +00001067.. _attr_align:
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001068
Hal Finkelccc70902014-07-22 16:58:55 +00001069``align <n>``
1070 This indicates that the pointer value may be assumed by the optimizer to
1071 have the specified alignment.
1072
1073 Note that this attribute has additional semantics when combined with the
1074 ``byval`` attribute.
1075
Sean Silva1703e702014-04-08 21:06:22 +00001076.. _noalias:
1077
Sean Silvab084af42012-12-07 10:36:55 +00001078``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001079 This indicates that objects accessed via pointer values
1080 :ref:`based <pointeraliasing>` on the argument or return value are not also
1081 accessed, during the execution of the function, via pointer values not
1082 *based* on the argument or return value. The attribute on a return value
1083 also has additional semantics described below. The caller shares the
1084 responsibility with the callee for ensuring that these requirements are met.
1085 For further details, please see the discussion of the NoAlias response in
1086 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001087
1088 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001089 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001090
1091 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001092 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1093 attribute on return values are stronger than the semantics of the attribute
1094 when used on function arguments. On function return values, the ``noalias``
1095 attribute indicates that the function acts like a system memory allocation
1096 function, returning a pointer to allocated storage disjoint from the
1097 storage for any other object accessible to the caller.
1098
Sean Silvab084af42012-12-07 10:36:55 +00001099``nocapture``
1100 This indicates that the callee does not make any copies of the
1101 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001102 attribute for return values. Addresses used in volatile operations
1103 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001104
1105.. _nest:
1106
1107``nest``
1108 This indicates that the pointer parameter can be excised using the
1109 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001110 attribute for return values and can only be applied to one parameter.
1111
1112``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001113 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001114 value. This is a hint to the optimizer and code generator used when
1115 generating the caller, allowing value propagation, tail call optimization,
1116 and omission of register saves and restores in some cases; it is not
1117 checked or enforced when generating the callee. The parameter and the
1118 function return type must be valid operands for the
1119 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1120 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001121
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001122``nonnull``
1123 This indicates that the parameter or return pointer is not null. This
1124 attribute may only be applied to pointer typed parameters. This is not
Eli Friedman0f522bd2018-07-25 18:26:38 +00001125 checked or enforced by LLVM; if the parameter or return pointer is null,
1126 the behavior is undefined.
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001127
Hal Finkelb0407ba2014-07-18 15:51:28 +00001128``dereferenceable(<n>)``
1129 This indicates that the parameter or return pointer is dereferenceable. This
1130 attribute may only be applied to pointer typed parameters. A pointer that
1131 is dereferenceable can be loaded from speculatively without a risk of
1132 trapping. The number of bytes known to be dereferenceable must be provided
1133 in parentheses. It is legal for the number of bytes to be less than the
1134 size of the pointee type. The ``nonnull`` attribute does not imply
1135 dereferenceability (consider a pointer to one element past the end of an
1136 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1137 ``addrspace(0)`` (which is the default address space).
1138
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001139``dereferenceable_or_null(<n>)``
1140 This indicates that the parameter or return value isn't both
1141 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001142 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001143 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1144 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1145 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1146 and in other address spaces ``dereferenceable_or_null(<n>)``
1147 implies that a pointer is at least one of ``dereferenceable(<n>)``
1148 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001149 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001150 pointer typed parameters.
1151
Manman Renf46262e2016-03-29 17:37:21 +00001152``swiftself``
1153 This indicates that the parameter is the self/context parameter. This is not
1154 a valid attribute for return values and can only be applied to one
1155 parameter.
1156
Manman Ren9bfd0d02016-04-01 21:41:15 +00001157``swifterror``
1158 This attribute is motivated to model and optimize Swift error handling. It
1159 can be applied to a parameter with pointer to pointer type or a
1160 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001161 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1162 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1163 the parameter or the alloca) can only be loaded and stored from, or used as
1164 a ``swifterror`` argument. This is not a valid attribute for return values
1165 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001166
1167 These constraints allow the calling convention to optimize access to
1168 ``swifterror`` variables by associating them with a specific register at
1169 call boundaries rather than placing them in memory. Since this does change
1170 the calling convention, a function which uses the ``swifterror`` attribute
1171 on a parameter is not ABI-compatible with one which does not.
1172
1173 These constraints also allow LLVM to assume that a ``swifterror`` argument
1174 does not alias any other memory visible within a function and that a
1175 ``swifterror`` alloca passed as an argument does not escape.
1176
Sean Silvab084af42012-12-07 10:36:55 +00001177.. _gc:
1178
Philip Reamesf80bbff2015-02-25 23:45:20 +00001179Garbage Collector Strategy Names
1180--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001181
Philip Reamesf80bbff2015-02-25 23:45:20 +00001182Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001183string:
1184
1185.. code-block:: llvm
1186
1187 define void @f() gc "name" { ... }
1188
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001189The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001190<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001191strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001192named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001193garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001194which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001195
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001196.. _prefixdata:
1197
1198Prefix Data
1199-----------
1200
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001201Prefix data is data associated with a function which the code
1202generator will emit immediately before the function's entrypoint.
1203The purpose of this feature is to allow frontends to associate
1204language-specific runtime metadata with specific functions and make it
1205available through the function pointer while still allowing the
1206function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001207
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001208To access the data for a given function, a program may bitcast the
1209function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001210index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001211the prefix data. For instance, take the example of a function annotated
1212with a single ``i32``,
1213
1214.. code-block:: llvm
1215
1216 define void @f() prefix i32 123 { ... }
1217
1218The prefix data can be referenced as,
1219
1220.. code-block:: llvm
1221
David Blaikie16a97eb2015-03-04 22:02:58 +00001222 %0 = bitcast void* () @f to i32*
1223 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001224 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001225
1226Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001227of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001228beginning of the prefix data is aligned. This means that if the size
1229of the prefix data is not a multiple of the alignment size, the
1230function's entrypoint will not be aligned. If alignment of the
1231function's entrypoint is desired, padding must be added to the prefix
1232data.
1233
Sean Silvaa1190322015-08-06 22:56:48 +00001234A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001235to the ``available_externally`` linkage in that the data may be used by the
1236optimizers but will not be emitted in the object file.
1237
1238.. _prologuedata:
1239
1240Prologue Data
1241-------------
1242
1243The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1244be inserted prior to the function body. This can be used for enabling
1245function hot-patching and instrumentation.
1246
1247To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001248have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001249bytes which decode to a sequence of machine instructions, valid for the
1250module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001251the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001252the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001253definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001254makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001255
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001256A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001257which encodes the ``nop`` instruction:
1258
Renato Golin124f2592016-07-20 12:16:38 +00001259.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001260
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001261 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001262
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001263Generally prologue data can be formed by encoding a relative branch instruction
1264which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001265x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1266
Renato Golin124f2592016-07-20 12:16:38 +00001267.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001268
1269 %0 = type <{ i8, i8, i8* }>
1270
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001271 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001272
Sean Silvaa1190322015-08-06 22:56:48 +00001273A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001274to the ``available_externally`` linkage in that the data may be used by the
1275optimizers but will not be emitted in the object file.
1276
David Majnemer7fddecc2015-06-17 20:52:32 +00001277.. _personalityfn:
1278
1279Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001280--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001281
1282The ``personality`` attribute permits functions to specify what function
1283to use for exception handling.
1284
Bill Wendling63b88192013-02-06 06:52:58 +00001285.. _attrgrp:
1286
1287Attribute Groups
1288----------------
1289
1290Attribute groups are groups of attributes that are referenced by objects within
1291the IR. They are important for keeping ``.ll`` files readable, because a lot of
1292functions will use the same set of attributes. In the degenerative case of a
1293``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1294group will capture the important command line flags used to build that file.
1295
1296An attribute group is a module-level object. To use an attribute group, an
1297object references the attribute group's ID (e.g. ``#37``). An object may refer
1298to more than one attribute group. In that situation, the attributes from the
1299different groups are merged.
1300
1301Here is an example of attribute groups for a function that should always be
1302inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1303
1304.. code-block:: llvm
1305
1306 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001307 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001308
1309 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001310 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001311
1312 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1313 define void @f() #0 #1 { ... }
1314
Sean Silvab084af42012-12-07 10:36:55 +00001315.. _fnattrs:
1316
1317Function Attributes
1318-------------------
1319
1320Function attributes are set to communicate additional information about
1321a function. Function attributes are considered to be part of the
1322function, not of the function type, so functions with different function
1323attributes can have the same function type.
1324
1325Function attributes are simple keywords that follow the type specified.
1326If multiple attributes are needed, they are space separated. For
1327example:
1328
1329.. code-block:: llvm
1330
1331 define void @f() noinline { ... }
1332 define void @f() alwaysinline { ... }
1333 define void @f() alwaysinline optsize { ... }
1334 define void @f() optsize { ... }
1335
Sean Silvab084af42012-12-07 10:36:55 +00001336``alignstack(<n>)``
1337 This attribute indicates that, when emitting the prologue and
1338 epilogue, the backend should forcibly align the stack pointer.
1339 Specify the desired alignment, which must be a power of two, in
1340 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001341``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1342 This attribute indicates that the annotated function will always return at
1343 least a given number of bytes (or null). Its arguments are zero-indexed
1344 parameter numbers; if one argument is provided, then it's assumed that at
1345 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1346 returned pointer. If two are provided, then it's assumed that
1347 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1348 available. The referenced parameters must be integer types. No assumptions
1349 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001350``alwaysinline``
1351 This attribute indicates that the inliner should attempt to inline
1352 this function into callers whenever possible, ignoring any active
1353 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001354``builtin``
1355 This indicates that the callee function at a call site should be
1356 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001357 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001358 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001359 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001360``cold``
1361 This attribute indicates that this function is rarely called. When
1362 computing edge weights, basic blocks post-dominated by a cold
1363 function call are also considered to be cold; and, thus, given low
1364 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001365``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001366 In some parallel execution models, there exist operations that cannot be
1367 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001368 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001369
Justin Lebar58535b12016-02-17 17:46:41 +00001370 The ``convergent`` attribute may appear on functions or call/invoke
1371 instructions. When it appears on a function, it indicates that calls to
1372 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001373 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001374 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001375 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001376
Justin Lebar58535b12016-02-17 17:46:41 +00001377 When it appears on a call/invoke, the ``convergent`` attribute indicates
1378 that we should treat the call as though we're calling a convergent
1379 function. This is particularly useful on indirect calls; without this we
1380 may treat such calls as though the target is non-convergent.
1381
1382 The optimizer may remove the ``convergent`` attribute on functions when it
1383 can prove that the function does not execute any convergent operations.
1384 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1385 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001386``inaccessiblememonly``
1387 This attribute indicates that the function may only access memory that
1388 is not accessible by the module being compiled. This is a weaker form
Eli Friedman0f522bd2018-07-25 18:26:38 +00001389 of ``readnone``. If the function reads or writes other memory, the
1390 behavior is undefined.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001391``inaccessiblemem_or_argmemonly``
1392 This attribute indicates that the function may only access memory that is
1393 either not accessible by the module being compiled, or is pointed to
Eli Friedman0f522bd2018-07-25 18:26:38 +00001394 by its pointer arguments. This is a weaker form of ``argmemonly``. If the
1395 function reads or writes other memory, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001396``inlinehint``
1397 This attribute indicates that the source code contained a hint that
1398 inlining this function is desirable (such as the "inline" keyword in
1399 C/C++). It is just a hint; it imposes no requirements on the
1400 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001401``jumptable``
1402 This attribute indicates that the function should be added to a
1403 jump-instruction table at code-generation time, and that all address-taken
1404 references to this function should be replaced with a reference to the
1405 appropriate jump-instruction-table function pointer. Note that this creates
1406 a new pointer for the original function, which means that code that depends
1407 on function-pointer identity can break. So, any function annotated with
1408 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001409``minsize``
1410 This attribute suggests that optimization passes and code generator
1411 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001412 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001413 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001414``naked``
1415 This attribute disables prologue / epilogue emission for the
1416 function. This can have very system-specific consequences.
Sumanth Gundapaneni6af104e2017-07-28 22:26:22 +00001417``no-jump-tables``
1418 When this attribute is set to true, the jump tables and lookup tables that
1419 can be generated from a switch case lowering are disabled.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001420``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001421 This indicates that the callee function at a call site is not recognized as
1422 a built-in function. LLVM will retain the original call and not replace it
1423 with equivalent code based on the semantics of the built-in function, unless
1424 the call site uses the ``builtin`` attribute. This is valid at call sites
1425 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001426``noduplicate``
1427 This attribute indicates that calls to the function cannot be
1428 duplicated. A call to a ``noduplicate`` function may be moved
1429 within its parent function, but may not be duplicated within
1430 its parent function.
1431
1432 A function containing a ``noduplicate`` call may still
1433 be an inlining candidate, provided that the call is not
1434 duplicated by inlining. That implies that the function has
1435 internal linkage and only has one call site, so the original
1436 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001437``noimplicitfloat``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001438 This attributes disables implicit floating-point instructions.
Sean Silvab084af42012-12-07 10:36:55 +00001439``noinline``
1440 This attribute indicates that the inliner should never inline this
1441 function in any situation. This attribute may not be used together
1442 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001443``nonlazybind``
1444 This attribute suppresses lazy symbol binding for the function. This
1445 may make calls to the function faster, at the cost of extra program
1446 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001447``noredzone``
1448 This attribute indicates that the code generator should not use a
1449 red zone, even if the target-specific ABI normally permits it.
1450``noreturn``
1451 This function attribute indicates that the function never returns
1452 normally. This produces undefined behavior at runtime if the
1453 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001454``norecurse``
1455 This function attribute indicates that the function does not call itself
1456 either directly or indirectly down any possible call path. This produces
1457 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001458``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001459 This function attribute indicates that the function never raises an
1460 exception. If the function does raise an exception, its runtime
1461 behavior is undefined. However, functions marked nounwind may still
1462 trap or generate asynchronous exceptions. Exception handling schemes
1463 that are recognized by LLVM to handle asynchronous exceptions, such
1464 as SEH, will still provide their implementation defined semantics.
Manoj Gupta77eeac32018-07-09 22:27:23 +00001465``"null-pointer-is-valid"``
1466 If ``"null-pointer-is-valid"`` is set to ``"true"``, then ``null`` address
1467 in address-space 0 is considered to be a valid address for memory loads and
1468 stores. Any analysis or optimization should not treat dereferencing a
1469 pointer to ``null`` as undefined behavior in this function.
1470 Note: Comparing address of a global variable to ``null`` may still
1471 evaluate to false because of a limitation in querying this attribute inside
1472 constant expressions.
Matt Morehouse31819412018-03-22 19:50:10 +00001473``optforfuzzing``
1474 This attribute indicates that this function should be optimized
1475 for maximum fuzzing signal.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001476``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001477 This function attribute indicates that most optimization passes will skip
1478 this function, with the exception of interprocedural optimization passes.
1479 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001480 This attribute cannot be used together with the ``alwaysinline``
1481 attribute; this attribute is also incompatible
1482 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001483
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001484 This attribute requires the ``noinline`` attribute to be specified on
1485 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001486 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001487 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001488``optsize``
1489 This attribute suggests that optimization passes and code generator
1490 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001491 and otherwise do optimizations specifically to reduce code size as
1492 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001493``"patchable-function"``
1494 This attribute tells the code generator that the code
1495 generated for this function needs to follow certain conventions that
1496 make it possible for a runtime function to patch over it later.
1497 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001498 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001499
1500 * ``"prologue-short-redirect"`` - This style of patchable
1501 function is intended to support patching a function prologue to
1502 redirect control away from the function in a thread safe
1503 manner. It guarantees that the first instruction of the
1504 function will be large enough to accommodate a short jump
1505 instruction, and will be sufficiently aligned to allow being
1506 fully changed via an atomic compare-and-swap instruction.
1507 While the first requirement can be satisfied by inserting large
1508 enough NOP, LLVM can and will try to re-purpose an existing
1509 instruction (i.e. one that would have to be emitted anyway) as
1510 the patchable instruction larger than a short jump.
1511
1512 ``"prologue-short-redirect"`` is currently only supported on
1513 x86-64.
1514
1515 This attribute by itself does not imply restrictions on
1516 inter-procedural optimizations. All of the semantic effects the
1517 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001518``"probe-stack"``
1519 This attribute indicates that the function will trigger a guard region
1520 in the end of the stack. It ensures that accesses to the stack must be
1521 no further apart than the size of the guard region to a previous
1522 access of the stack. It takes one required string value, the name of
1523 the stack probing function that will be called.
1524
1525 If a function that has a ``"probe-stack"`` attribute is inlined into
1526 a function with another ``"probe-stack"`` attribute, the resulting
1527 function has the ``"probe-stack"`` attribute of the caller. If a
1528 function that has a ``"probe-stack"`` attribute is inlined into a
1529 function that has no ``"probe-stack"`` attribute at all, the resulting
1530 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001531``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001532 On a function, this attribute indicates that the function computes its
1533 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001534 without dereferencing any pointer arguments or otherwise accessing
1535 any mutable state (e.g. memory, control registers, etc) visible to
1536 caller functions. It does not write through any pointer arguments
1537 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001538 to callers. This means while it cannot unwind exceptions by calling
1539 the ``C++`` exception throwing methods (since they write to memory), there may
1540 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1541 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001542
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001543 On an argument, this attribute indicates that the function does not
1544 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001545 memory that the pointer points to if accessed through other pointers.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001546
1547 If a readnone function reads or writes memory visible to the program, or
1548 has other side-effects, the behavior is undefined. If a function reads from
1549 or writes to a readnone pointer argument, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001550``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001551 On a function, this attribute indicates that the function does not write
1552 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001553 modify any state (e.g. memory, control registers, etc) visible to
1554 caller functions. It may dereference pointer arguments and read
1555 state that may be set in the caller. A readonly function always
1556 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001557 called with the same set of arguments and global state. This means while it
1558 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1559 (since they write to memory), there may be non-``C++`` mechanisms that throw
1560 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001561
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001562 On an argument, this attribute indicates that the function does not write
1563 through this pointer argument, even though it may write to the memory that
1564 the pointer points to.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001565
1566 If a readonly function writes memory visible to the program, or
1567 has other side-effects, the behavior is undefined. If a function writes to
1568 a readonly pointer argument, the behavior is undefined.
whitequark08b20352017-06-22 23:22:36 +00001569``"stack-probe-size"``
1570 This attribute controls the behavior of stack probes: either
1571 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1572 It defines the size of the guard region. It ensures that if the function
1573 may use more stack space than the size of the guard region, stack probing
1574 sequence will be emitted. It takes one required integer value, which
1575 is 4096 by default.
1576
1577 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1578 a function with another ``"stack-probe-size"`` attribute, the resulting
1579 function has the ``"stack-probe-size"`` attribute that has the lower
1580 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1581 inlined into a function that has no ``"stack-probe-size"`` attribute
1582 at all, the resulting function has the ``"stack-probe-size"`` attribute
1583 of the callee.
Hans Wennborg89c35fc2018-02-23 13:46:25 +00001584``"no-stack-arg-probe"``
1585 This attribute disables ABI-required stack probes, if any.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001586``writeonly``
1587 On a function, this attribute indicates that the function may write to but
1588 does not read from memory.
1589
1590 On an argument, this attribute indicates that the function may write to but
1591 does not read through this pointer argument (even though it may read from
1592 the memory that the pointer points to).
Eli Friedman0f522bd2018-07-25 18:26:38 +00001593
1594 If a writeonly function reads memory visible to the program, or
1595 has other side-effects, the behavior is undefined. If a function reads
1596 from a writeonly pointer argument, the behavior is undefined.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001597``argmemonly``
1598 This attribute indicates that the only memory accesses inside function are
1599 loads and stores from objects pointed to by its pointer-typed arguments,
1600 with arbitrary offsets. Or in other words, all memory operations in the
1601 function can refer to memory only using pointers based on its function
1602 arguments.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001603
Igor Laevsky39d662f2015-07-11 10:30:36 +00001604 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1605 in order to specify that function reads only from its arguments.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001606
1607 If an argmemonly function reads or writes memory other than the pointer
1608 arguments, or has other side-effects, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001609``returns_twice``
1610 This attribute indicates that this function can return twice. The C
1611 ``setjmp`` is an example of such a function. The compiler disables
1612 some optimizations (like tail calls) in the caller of these
1613 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001614``safestack``
1615 This attribute indicates that
1616 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1617 protection is enabled for this function.
1618
1619 If a function that has a ``safestack`` attribute is inlined into a
1620 function that doesn't have a ``safestack`` attribute or which has an
1621 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1622 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001623``sanitize_address``
1624 This attribute indicates that AddressSanitizer checks
1625 (dynamic address safety analysis) are enabled for this function.
1626``sanitize_memory``
1627 This attribute indicates that MemorySanitizer checks (dynamic detection
1628 of accesses to uninitialized memory) are enabled for this function.
1629``sanitize_thread``
1630 This attribute indicates that ThreadSanitizer checks
1631 (dynamic thread safety analysis) are enabled for this function.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00001632``sanitize_hwaddress``
1633 This attribute indicates that HWAddressSanitizer checks
1634 (dynamic address safety analysis based on tagged pointers) are enabled for
1635 this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001636``speculatable``
1637 This function attribute indicates that the function does not have any
1638 effects besides calculating its result and does not have undefined behavior.
1639 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001640 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001641 externally observable. This attribute is only valid on functions
1642 and declarations, not on individual call sites. If a function is
1643 incorrectly marked as speculatable and really does exhibit
1644 undefined behavior, the undefined behavior may be observed even
1645 if the call site is dead code.
1646
Sean Silvab084af42012-12-07 10:36:55 +00001647``ssp``
1648 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001649 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001650 placed on the stack before the local variables that's checked upon
1651 return from the function to see if it has been overwritten. A
1652 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001653 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001654
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001655 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1656 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1657 - Calls to alloca() with variable sizes or constant sizes greater than
1658 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001659
Josh Magee24c7f062014-02-01 01:36:16 +00001660 Variables that are identified as requiring a protector will be arranged
1661 on the stack such that they are adjacent to the stack protector guard.
1662
Sean Silvab084af42012-12-07 10:36:55 +00001663 If a function that has an ``ssp`` attribute is inlined into a
1664 function that doesn't have an ``ssp`` attribute, then the resulting
1665 function will have an ``ssp`` attribute.
1666``sspreq``
1667 This attribute indicates that the function should *always* emit a
1668 stack smashing protector. This overrides the ``ssp`` function
1669 attribute.
1670
Josh Magee24c7f062014-02-01 01:36:16 +00001671 Variables that are identified as requiring a protector will be arranged
1672 on the stack such that they are adjacent to the stack protector guard.
1673 The specific layout rules are:
1674
1675 #. Large arrays and structures containing large arrays
1676 (``>= ssp-buffer-size``) are closest to the stack protector.
1677 #. Small arrays and structures containing small arrays
1678 (``< ssp-buffer-size``) are 2nd closest to the protector.
1679 #. Variables that have had their address taken are 3rd closest to the
1680 protector.
1681
Sean Silvab084af42012-12-07 10:36:55 +00001682 If a function that has an ``sspreq`` attribute is inlined into a
1683 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001684 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1685 an ``sspreq`` attribute.
1686``sspstrong``
1687 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001688 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001689 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001690 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001691
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001692 - Arrays of any size and type
1693 - Aggregates containing an array of any size and type.
1694 - Calls to alloca().
1695 - Local variables that have had their address taken.
1696
Josh Magee24c7f062014-02-01 01:36:16 +00001697 Variables that are identified as requiring a protector will be arranged
1698 on the stack such that they are adjacent to the stack protector guard.
1699 The specific layout rules are:
1700
1701 #. Large arrays and structures containing large arrays
1702 (``>= ssp-buffer-size``) are closest to the stack protector.
1703 #. Small arrays and structures containing small arrays
1704 (``< ssp-buffer-size``) are 2nd closest to the protector.
1705 #. Variables that have had their address taken are 3rd closest to the
1706 protector.
1707
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001708 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001709
1710 If a function that has an ``sspstrong`` attribute is inlined into a
1711 function that doesn't have an ``sspstrong`` attribute, then the
1712 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001713``strictfp``
1714 This attribute indicates that the function was called from a scope that
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001715 requires strict floating-point semantics. LLVM will not attempt any
1716 optimizations that require assumptions about the floating-point rounding
1717 mode or that might alter the state of floating-point status flags that
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001718 might otherwise be set or cleared by calling this function.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001719``"thunk"``
1720 This attribute indicates that the function will delegate to some other
1721 function with a tail call. The prototype of a thunk should not be used for
1722 optimization purposes. The caller is expected to cast the thunk prototype to
1723 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001724``uwtable``
1725 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001726 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001727 show that no exceptions passes by it. This is normally the case for
1728 the ELF x86-64 abi, but it can be disabled for some compilation
1729 units.
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001730``nocf_check``
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001731 This attribute indicates that no control-flow check will be performed on
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001732 the attributed entity. It disables -fcf-protection=<> for a specific
1733 entity to fine grain the HW control flow protection mechanism. The flag
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001734 is target independent and currently appertains to a function or function
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001735 pointer.
Vlad Tsyrklevichd17f61e2018-04-03 20:10:40 +00001736``shadowcallstack``
1737 This attribute indicates that the ShadowCallStack checks are enabled for
1738 the function. The instrumentation checks that the return address for the
1739 function has not changed between the function prolog and eiplog. It is
1740 currently x86_64-specific.
Sean Silvab084af42012-12-07 10:36:55 +00001741
Javed Absarf3d79042017-05-11 12:28:08 +00001742.. _glattrs:
1743
1744Global Attributes
1745-----------------
1746
1747Attributes may be set to communicate additional information about a global variable.
1748Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1749are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001750
1751.. _opbundles:
1752
1753Operand Bundles
1754---------------
1755
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001756Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001757with certain LLVM instructions (currently only ``call`` s and
1758``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001759incorrect and will change program semantics.
1760
1761Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001762
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001763 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001764 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1765 bundle operand ::= SSA value
1766 tag ::= string constant
1767
1768Operand bundles are **not** part of a function's signature, and a
1769given function may be called from multiple places with different kinds
1770of operand bundles. This reflects the fact that the operand bundles
1771are conceptually a part of the ``call`` (or ``invoke``), not the
1772callee being dispatched to.
1773
1774Operand bundles are a generic mechanism intended to support
1775runtime-introspection-like functionality for managed languages. While
1776the exact semantics of an operand bundle depend on the bundle tag,
1777there are certain limitations to how much the presence of an operand
1778bundle can influence the semantics of a program. These restrictions
1779are described as the semantics of an "unknown" operand bundle. As
1780long as the behavior of an operand bundle is describable within these
1781restrictions, LLVM does not need to have special knowledge of the
1782operand bundle to not miscompile programs containing it.
1783
David Majnemer34cacb42015-10-22 01:46:38 +00001784- The bundle operands for an unknown operand bundle escape in unknown
1785 ways before control is transferred to the callee or invokee.
1786- Calls and invokes with operand bundles have unknown read / write
1787 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001788 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001789 callsite specific attributes.
1790- An operand bundle at a call site cannot change the implementation
1791 of the called function. Inter-procedural optimizations work as
1792 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001793
Sanjoy Dascdafd842015-11-11 21:38:02 +00001794More specific types of operand bundles are described below.
1795
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001796.. _deopt_opbundles:
1797
Sanjoy Dascdafd842015-11-11 21:38:02 +00001798Deoptimization Operand Bundles
1799^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1800
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001801Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001802operand bundle tag. These operand bundles represent an alternate
1803"safe" continuation for the call site they're attached to, and can be
1804used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001805specified call site. There can be at most one ``"deopt"`` operand
1806bundle attached to a call site. Exact details of deoptimization is
1807out of scope for the language reference, but it usually involves
1808rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001809
1810From the compiler's perspective, deoptimization operand bundles make
1811the call sites they're attached to at least ``readonly``. They read
1812through all of their pointer typed operands (even if they're not
1813otherwise escaped) and the entire visible heap. Deoptimization
1814operand bundles do not capture their operands except during
1815deoptimization, in which case control will not be returned to the
1816compiled frame.
1817
Sanjoy Das2d161452015-11-18 06:23:38 +00001818The inliner knows how to inline through calls that have deoptimization
1819operand bundles. Just like inlining through a normal call site
1820involves composing the normal and exceptional continuations, inlining
1821through a call site with a deoptimization operand bundle needs to
1822appropriately compose the "safe" deoptimization continuation. The
1823inliner does this by prepending the parent's deoptimization
1824continuation to every deoptimization continuation in the inlined body.
1825E.g. inlining ``@f`` into ``@g`` in the following example
1826
1827.. code-block:: llvm
1828
1829 define void @f() {
1830 call void @x() ;; no deopt state
1831 call void @y() [ "deopt"(i32 10) ]
1832 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1833 ret void
1834 }
1835
1836 define void @g() {
1837 call void @f() [ "deopt"(i32 20) ]
1838 ret void
1839 }
1840
1841will result in
1842
1843.. code-block:: llvm
1844
1845 define void @g() {
1846 call void @x() ;; still no deopt state
1847 call void @y() [ "deopt"(i32 20, i32 10) ]
1848 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1849 ret void
1850 }
1851
1852It is the frontend's responsibility to structure or encode the
1853deoptimization state in a way that syntactically prepending the
1854caller's deoptimization state to the callee's deoptimization state is
1855semantically equivalent to composing the caller's deoptimization
1856continuation after the callee's deoptimization continuation.
1857
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001858.. _ob_funclet:
1859
David Majnemer3bb88c02015-12-15 21:27:27 +00001860Funclet Operand Bundles
1861^^^^^^^^^^^^^^^^^^^^^^^
1862
1863Funclet operand bundles are characterized by the ``"funclet"``
1864operand bundle tag. These operand bundles indicate that a call site
1865is within a particular funclet. There can be at most one
1866``"funclet"`` operand bundle attached to a call site and it must have
1867exactly one bundle operand.
1868
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001869If any funclet EH pads have been "entered" but not "exited" (per the
1870`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1871it is undefined behavior to execute a ``call`` or ``invoke`` which:
1872
1873* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1874 intrinsic, or
1875* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1876 not-yet-exited funclet EH pad.
1877
1878Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1879executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1880
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001881GC Transition Operand Bundles
1882^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1883
1884GC transition operand bundles are characterized by the
1885``"gc-transition"`` operand bundle tag. These operand bundles mark a
1886call as a transition between a function with one GC strategy to a
1887function with a different GC strategy. If coordinating the transition
1888between GC strategies requires additional code generation at the call
1889site, these bundles may contain any values that are needed by the
1890generated code. For more details, see :ref:`GC Transitions
1891<gc_transition_args>`.
1892
Sean Silvab084af42012-12-07 10:36:55 +00001893.. _moduleasm:
1894
1895Module-Level Inline Assembly
1896----------------------------
1897
1898Modules may contain "module-level inline asm" blocks, which corresponds
1899to the GCC "file scope inline asm" blocks. These blocks are internally
1900concatenated by LLVM and treated as a single unit, but may be separated
1901in the ``.ll`` file if desired. The syntax is very simple:
1902
1903.. code-block:: llvm
1904
1905 module asm "inline asm code goes here"
1906 module asm "more can go here"
1907
1908The strings can contain any character by escaping non-printable
1909characters. The escape sequence used is simply "\\xx" where "xx" is the
1910two digit hex code for the number.
1911
James Y Knightbc832ed2015-07-08 18:08:36 +00001912Note that the assembly string *must* be parseable by LLVM's integrated assembler
1913(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001914
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001915.. _langref_datalayout:
1916
Sean Silvab084af42012-12-07 10:36:55 +00001917Data Layout
1918-----------
1919
1920A module may specify a target specific data layout string that specifies
1921how data is to be laid out in memory. The syntax for the data layout is
1922simply:
1923
1924.. code-block:: llvm
1925
1926 target datalayout = "layout specification"
1927
1928The *layout specification* consists of a list of specifications
1929separated by the minus sign character ('-'). Each specification starts
1930with a letter and may include other information after the letter to
1931define some aspect of the data layout. The specifications accepted are
1932as follows:
1933
1934``E``
1935 Specifies that the target lays out data in big-endian form. That is,
1936 the bits with the most significance have the lowest address
1937 location.
1938``e``
1939 Specifies that the target lays out data in little-endian form. That
1940 is, the bits with the least significance have the lowest address
1941 location.
1942``S<size>``
1943 Specifies the natural alignment of the stack in bits. Alignment
1944 promotion of stack variables is limited to the natural stack
1945 alignment to avoid dynamic stack realignment. The stack alignment
1946 must be a multiple of 8-bits. If omitted, the natural stack
1947 alignment defaults to "unspecified", which does not prevent any
1948 alignment promotions.
Dylan McKayced2fe62018-02-19 09:56:22 +00001949``P<address space>``
1950 Specifies the address space that corresponds to program memory.
1951 Harvard architectures can use this to specify what space LLVM
1952 should place things such as functions into. If omitted, the
1953 program memory space defaults to the default address space of 0,
1954 which corresponds to a Von Neumann architecture that has code
1955 and data in the same space.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001956``A<address space>``
Dylan McKayced2fe62018-02-19 09:56:22 +00001957 Specifies the address space of objects created by '``alloca``'.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001958 Defaults to the default address space of 0.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001959``p[n]:<size>:<abi>:<pref>:<idx>``
Sean Silvab084af42012-12-07 10:36:55 +00001960 This specifies the *size* of a pointer and its ``<abi>`` and
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001961 ``<pref>``\erred alignments for address space ``n``. The fourth parameter
1962 ``<idx>`` is a size of index that used for address calculation. If not
1963 specified, the default index size is equal to the pointer size. All sizes
1964 are in bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001965 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001966 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001967``i<size>:<abi>:<pref>``
1968 This specifies the alignment for an integer type of a given bit
1969 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1970``v<size>:<abi>:<pref>``
1971 This specifies the alignment for a vector type of a given bit
1972 ``<size>``.
1973``f<size>:<abi>:<pref>``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001974 This specifies the alignment for a floating-point type of a given bit
Sean Silvab084af42012-12-07 10:36:55 +00001975 ``<size>``. Only values of ``<size>`` that are supported by the target
1976 will work. 32 (float) and 64 (double) are supported on all targets; 80
1977 or 128 (different flavors of long double) are also supported on some
1978 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001979``a:<abi>:<pref>``
1980 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001981``m:<mangling>``
Reid Klecknerf8b51c52018-03-16 20:13:32 +00001982 If present, specifies that llvm names are mangled in the output. Symbols
1983 prefixed with the mangling escape character ``\01`` are passed through
1984 directly to the assembler without the escape character. The mangling style
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001985 options are
1986
1987 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1988 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1989 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1990 symbols get a ``_`` prefix.
Reid Klecknerf8b51c52018-03-16 20:13:32 +00001991 * ``x``: Windows x86 COFF mangling: Private symbols get the usual prefix.
1992 Regular C symbols get a ``_`` prefix. Functions with ``__stdcall``,
1993 ``__fastcall``, and ``__vectorcall`` have custom mangling that appends
1994 ``@N`` where N is the number of bytes used to pass parameters. C++ symbols
1995 starting with ``?`` are not mangled in any way.
1996 * ``w``: Windows COFF mangling: Similar to ``x``, except that normal C
1997 symbols do not receive a ``_`` prefix.
Sean Silvab084af42012-12-07 10:36:55 +00001998``n<size1>:<size2>:<size3>...``
1999 This specifies a set of native integer widths for the target CPU in
2000 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
2001 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
2002 this set are considered to support most general arithmetic operations
2003 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00002004``ni:<address space0>:<address space1>:<address space2>...``
2005 This specifies pointer types with the specified address spaces
2006 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
2007 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00002008
Rafael Espindolaabdd7262014-01-06 21:40:24 +00002009On every specification that takes a ``<abi>:<pref>``, specifying the
2010``<pref>`` alignment is optional. If omitted, the preceding ``:``
2011should be omitted too and ``<pref>`` will be equal to ``<abi>``.
2012
Sean Silvab084af42012-12-07 10:36:55 +00002013When constructing the data layout for a given target, LLVM starts with a
2014default set of specifications which are then (possibly) overridden by
2015the specifications in the ``datalayout`` keyword. The default
2016specifications are given in this list:
2017
2018- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00002019- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
2020- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
2021 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002022- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00002023- ``i1:8:8`` - i1 is 8-bit (byte) aligned
2024- ``i8:8:8`` - i8 is 8-bit (byte) aligned
2025- ``i16:16:16`` - i16 is 16-bit aligned
2026- ``i32:32:32`` - i32 is 32-bit aligned
2027- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
2028 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002029- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002030- ``f32:32:32`` - float is 32-bit aligned
2031- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002032- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002033- ``v64:64:64`` - 64-bit vector is 64-bit aligned
2034- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00002035- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002036
2037When LLVM is determining the alignment for a given type, it uses the
2038following rules:
2039
2040#. If the type sought is an exact match for one of the specifications,
2041 that specification is used.
2042#. If no match is found, and the type sought is an integer type, then
2043 the smallest integer type that is larger than the bitwidth of the
2044 sought type is used. If none of the specifications are larger than
2045 the bitwidth then the largest integer type is used. For example,
2046 given the default specifications above, the i7 type will use the
2047 alignment of i8 (next largest) while both i65 and i256 will use the
2048 alignment of i64 (largest specified).
2049#. If no match is found, and the type sought is a vector type, then the
2050 largest vector type that is smaller than the sought vector type will
2051 be used as a fall back. This happens because <128 x double> can be
2052 implemented in terms of 64 <2 x double>, for example.
2053
2054The function of the data layout string may not be what you expect.
2055Notably, this is not a specification from the frontend of what alignment
2056the code generator should use.
2057
2058Instead, if specified, the target data layout is required to match what
2059the ultimate *code generator* expects. This string is used by the
2060mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00002061what the ultimate code generator uses. There is no way to generate IR
2062that does not embed this target-specific detail into the IR. If you
2063don't specify the string, the default specifications will be used to
2064generate a Data Layout and the optimization phases will operate
2065accordingly and introduce target specificity into the IR with respect to
2066these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00002067
Bill Wendling5cc90842013-10-18 23:41:25 +00002068.. _langref_triple:
2069
2070Target Triple
2071-------------
2072
2073A module may specify a target triple string that describes the target
2074host. The syntax for the target triple is simply:
2075
2076.. code-block:: llvm
2077
2078 target triple = "x86_64-apple-macosx10.7.0"
2079
2080The *target triple* string consists of a series of identifiers delimited
2081by the minus sign character ('-'). The canonical forms are:
2082
2083::
2084
2085 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2086 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2087
2088This information is passed along to the backend so that it generates
2089code for the proper architecture. It's possible to override this on the
2090command line with the ``-mtriple`` command line option.
2091
Sean Silvab084af42012-12-07 10:36:55 +00002092.. _pointeraliasing:
2093
2094Pointer Aliasing Rules
2095----------------------
2096
2097Any memory access must be done through a pointer value associated with
2098an address range of the memory access, otherwise the behavior is
2099undefined. Pointer values are associated with address ranges according
2100to the following rules:
2101
2102- A pointer value is associated with the addresses associated with any
2103 value it is *based* on.
2104- An address of a global variable is associated with the address range
2105 of the variable's storage.
2106- The result value of an allocation instruction is associated with the
2107 address range of the allocated storage.
2108- A null pointer in the default address-space is associated with no
2109 address.
2110- An integer constant other than zero or a pointer value returned from
2111 a function not defined within LLVM may be associated with address
2112 ranges allocated through mechanisms other than those provided by
2113 LLVM. Such ranges shall not overlap with any ranges of addresses
2114 allocated by mechanisms provided by LLVM.
2115
2116A pointer value is *based* on another pointer value according to the
2117following rules:
2118
Sanjoy Das6d489492017-09-13 18:49:22 +00002119- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2120 the pointer-typed operand of the ``getelementptr``.
2121- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2122 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2123 of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002124- The result value of a ``bitcast`` is *based* on the operand of the
2125 ``bitcast``.
2126- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2127 values that contribute (directly or indirectly) to the computation of
2128 the pointer's value.
2129- The "*based* on" relationship is transitive.
2130
2131Note that this definition of *"based"* is intentionally similar to the
2132definition of *"based"* in C99, though it is slightly weaker.
2133
2134LLVM IR does not associate types with memory. The result type of a
2135``load`` merely indicates the size and alignment of the memory from
2136which to load, as well as the interpretation of the value. The first
2137operand type of a ``store`` similarly only indicates the size and
2138alignment of the store.
2139
2140Consequently, type-based alias analysis, aka TBAA, aka
2141``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2142:ref:`Metadata <metadata>` may be used to encode additional information
2143which specialized optimization passes may use to implement type-based
2144alias analysis.
2145
2146.. _volatile:
2147
2148Volatile Memory Accesses
2149------------------------
2150
2151Certain memory accesses, such as :ref:`load <i_load>`'s,
2152:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2153marked ``volatile``. The optimizers must not change the number of
2154volatile operations or change their order of execution relative to other
2155volatile operations. The optimizers *may* change the order of volatile
2156operations relative to non-volatile operations. This is not Java's
2157"volatile" and has no cross-thread synchronization behavior.
2158
Andrew Trick89fc5a62013-01-30 21:19:35 +00002159IR-level volatile loads and stores cannot safely be optimized into
2160llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2161flagged volatile. Likewise, the backend should never split or merge
2162target-legal volatile load/store instructions.
2163
Andrew Trick7e6f9282013-01-31 00:49:39 +00002164.. admonition:: Rationale
2165
2166 Platforms may rely on volatile loads and stores of natively supported
2167 data width to be executed as single instruction. For example, in C
2168 this holds for an l-value of volatile primitive type with native
2169 hardware support, but not necessarily for aggregate types. The
2170 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002171 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002172 do not violate the frontend's contract with the language.
2173
Sean Silvab084af42012-12-07 10:36:55 +00002174.. _memmodel:
2175
2176Memory Model for Concurrent Operations
2177--------------------------------------
2178
2179The LLVM IR does not define any way to start parallel threads of
2180execution or to register signal handlers. Nonetheless, there are
2181platform-specific ways to create them, and we define LLVM IR's behavior
2182in their presence. This model is inspired by the C++0x memory model.
2183
2184For a more informal introduction to this model, see the :doc:`Atomics`.
2185
2186We define a *happens-before* partial order as the least partial order
2187that
2188
2189- Is a superset of single-thread program order, and
2190- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2191 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2192 techniques, like pthread locks, thread creation, thread joining,
2193 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2194 Constraints <ordering>`).
2195
2196Note that program order does not introduce *happens-before* edges
2197between a thread and signals executing inside that thread.
2198
2199Every (defined) read operation (load instructions, memcpy, atomic
2200loads/read-modify-writes, etc.) R reads a series of bytes written by
2201(defined) write operations (store instructions, atomic
2202stores/read-modify-writes, memcpy, etc.). For the purposes of this
2203section, initialized globals are considered to have a write of the
2204initializer which is atomic and happens before any other read or write
2205of the memory in question. For each byte of a read R, R\ :sub:`byte`
2206may see any write to the same byte, except:
2207
2208- If write\ :sub:`1` happens before write\ :sub:`2`, and
2209 write\ :sub:`2` happens before R\ :sub:`byte`, then
2210 R\ :sub:`byte` does not see write\ :sub:`1`.
2211- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2212 R\ :sub:`byte` does not see write\ :sub:`3`.
2213
2214Given that definition, R\ :sub:`byte` is defined as follows:
2215
2216- If R is volatile, the result is target-dependent. (Volatile is
2217 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002218 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002219 like normal memory. It does not generally provide cross-thread
2220 synchronization.)
2221- Otherwise, if there is no write to the same byte that happens before
2222 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2223- Otherwise, if R\ :sub:`byte` may see exactly one write,
2224 R\ :sub:`byte` returns the value written by that write.
2225- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2226 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2227 Memory Ordering Constraints <ordering>` section for additional
2228 constraints on how the choice is made.
2229- Otherwise R\ :sub:`byte` returns ``undef``.
2230
2231R returns the value composed of the series of bytes it read. This
2232implies that some bytes within the value may be ``undef`` **without**
2233the entire value being ``undef``. Note that this only defines the
2234semantics of the operation; it doesn't mean that targets will emit more
2235than one instruction to read the series of bytes.
2236
2237Note that in cases where none of the atomic intrinsics are used, this
2238model places only one restriction on IR transformations on top of what
2239is required for single-threaded execution: introducing a store to a byte
2240which might not otherwise be stored is not allowed in general.
2241(Specifically, in the case where another thread might write to and read
2242from an address, introducing a store can change a load that may see
2243exactly one write into a load that may see multiple writes.)
2244
2245.. _ordering:
2246
2247Atomic Memory Ordering Constraints
2248----------------------------------
2249
2250Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2251:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2252:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002253ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002254the same address they *synchronize with*. These semantics are borrowed
2255from Java and C++0x, but are somewhat more colloquial. If these
2256descriptions aren't precise enough, check those specs (see spec
2257references in the :doc:`atomics guide <Atomics>`).
2258:ref:`fence <i_fence>` instructions treat these orderings somewhat
2259differently since they don't take an address. See that instruction's
2260documentation for details.
2261
2262For a simpler introduction to the ordering constraints, see the
2263:doc:`Atomics`.
2264
2265``unordered``
2266 The set of values that can be read is governed by the happens-before
2267 partial order. A value cannot be read unless some operation wrote
2268 it. This is intended to provide a guarantee strong enough to model
2269 Java's non-volatile shared variables. This ordering cannot be
2270 specified for read-modify-write operations; it is not strong enough
2271 to make them atomic in any interesting way.
2272``monotonic``
2273 In addition to the guarantees of ``unordered``, there is a single
2274 total order for modifications by ``monotonic`` operations on each
2275 address. All modification orders must be compatible with the
2276 happens-before order. There is no guarantee that the modification
2277 orders can be combined to a global total order for the whole program
2278 (and this often will not be possible). The read in an atomic
2279 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2280 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2281 order immediately before the value it writes. If one atomic read
2282 happens before another atomic read of the same address, the later
2283 read must see the same value or a later value in the address's
2284 modification order. This disallows reordering of ``monotonic`` (or
2285 stronger) operations on the same address. If an address is written
2286 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2287 read that address repeatedly, the other threads must eventually see
2288 the write. This corresponds to the C++0x/C1x
2289 ``memory_order_relaxed``.
2290``acquire``
2291 In addition to the guarantees of ``monotonic``, a
2292 *synchronizes-with* edge may be formed with a ``release`` operation.
2293 This is intended to model C++'s ``memory_order_acquire``.
2294``release``
2295 In addition to the guarantees of ``monotonic``, if this operation
2296 writes a value which is subsequently read by an ``acquire``
2297 operation, it *synchronizes-with* that operation. (This isn't a
2298 complete description; see the C++0x definition of a release
2299 sequence.) This corresponds to the C++0x/C1x
2300 ``memory_order_release``.
2301``acq_rel`` (acquire+release)
2302 Acts as both an ``acquire`` and ``release`` operation on its
2303 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2304``seq_cst`` (sequentially consistent)
2305 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002306 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002307 writes), there is a global total order on all
2308 sequentially-consistent operations on all addresses, which is
2309 consistent with the *happens-before* partial order and with the
2310 modification orders of all the affected addresses. Each
2311 sequentially-consistent read sees the last preceding write to the
2312 same address in this global order. This corresponds to the C++0x/C1x
2313 ``memory_order_seq_cst`` and Java volatile.
2314
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002315.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002316
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002317If an atomic operation is marked ``syncscope("singlethread")``, it only
2318*synchronizes with* and only participates in the seq\_cst total orderings of
2319other operations running in the same thread (for example, in signal handlers).
2320
2321If an atomic operation is marked ``syncscope("<target-scope>")``, where
2322``<target-scope>`` is a target specific synchronization scope, then it is target
2323dependent if it *synchronizes with* and participates in the seq\_cst total
2324orderings of other operations.
2325
2326Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2327or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2328seq\_cst total orderings of other operations that are not marked
2329``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002330
Sanjay Patel54b161e2018-03-20 16:38:22 +00002331.. _floatenv:
2332
2333Floating-Point Environment
2334--------------------------
2335
2336The default LLVM floating-point environment assumes that floating-point
2337instructions do not have side effects. Results assume the round-to-nearest
2338rounding mode. No floating-point exception state is maintained in this
2339environment. Therefore, there is no attempt to create or preserve invalid
2340operation (SNaN) or division-by-zero exceptions in these examples:
2341
2342.. code-block:: llvm
2343
2344 %A = fdiv 0x7ff0000000000001, %X ; 64-bit SNaN hex value
2345 %B = fdiv %X, 0.0
2346 Safe:
2347 %A = NaN
2348 %B = NaN
2349
2350The benefit of this exception-free assumption is that floating-point
2351operations may be speculated freely without any other fast-math relaxations
2352to the floating-point model.
2353
2354Code that requires different behavior than this should use the
Sanjay Patelec95e0e2018-03-20 17:05:19 +00002355:ref:`Constrained Floating-Point Intrinsics <constrainedfp>`.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002356
Sean Silvab084af42012-12-07 10:36:55 +00002357.. _fastmath:
2358
2359Fast-Math Flags
2360---------------
2361
Sanjay Patel629c4112017-11-06 16:27:15 +00002362LLVM IR floating-point operations (:ref:`fadd <i_fadd>`,
Sean Silvab084af42012-12-07 10:36:55 +00002363:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002364:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002365may use the following flags to enable otherwise unsafe
Sanjay Patel629c4112017-11-06 16:27:15 +00002366floating-point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002367
2368``nnan``
2369 No NaNs - Allow optimizations to assume the arguments and result are not
Eli Friedmand3a30872018-07-17 20:31:42 +00002370 NaN. If an argument is a nan, or the result would be a nan, it produces
2371 a :ref:`poison value <poisonvalues>` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002372
2373``ninf``
2374 No Infs - Allow optimizations to assume the arguments and result are not
Eli Friedmand3a30872018-07-17 20:31:42 +00002375 +/-Inf. If an argument is +/-Inf, or the result would be +/-Inf, it
2376 produces a :ref:`poison value <poisonvalues>` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002377
2378``nsz``
2379 No Signed Zeros - Allow optimizations to treat the sign of a zero
2380 argument or result as insignificant.
2381
2382``arcp``
2383 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2384 argument rather than perform division.
2385
Adam Nemetcd847a82017-03-28 20:11:52 +00002386``contract``
2387 Allow floating-point contraction (e.g. fusing a multiply followed by an
2388 addition into a fused multiply-and-add).
2389
Sanjay Patel629c4112017-11-06 16:27:15 +00002390``afn``
2391 Approximate functions - Allow substitution of approximate calculations for
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002392 functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2393 for places where this can apply to LLVM's intrinsic math functions.
Sanjay Patel629c4112017-11-06 16:27:15 +00002394
2395``reassoc``
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002396 Allow reassociation transformations for floating-point instructions.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002397 This may dramatically change results in floating-point.
Sanjay Patel629c4112017-11-06 16:27:15 +00002398
Sean Silvab084af42012-12-07 10:36:55 +00002399``fast``
Sanjay Patel629c4112017-11-06 16:27:15 +00002400 This flag implies all of the others.
Sean Silvab084af42012-12-07 10:36:55 +00002401
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002402.. _uselistorder:
2403
2404Use-list Order Directives
2405-------------------------
2406
2407Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002408order to be recreated. ``<order-indexes>`` is a comma-separated list of
2409indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002410value's use-list is immediately sorted by these indexes.
2411
Sean Silvaa1190322015-08-06 22:56:48 +00002412Use-list directives may appear at function scope or global scope. They are not
2413instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002414function scope, they must appear after the terminator of the final basic block.
2415
2416If basic blocks have their address taken via ``blockaddress()`` expressions,
2417``uselistorder_bb`` can be used to reorder their use-lists from outside their
2418function's scope.
2419
2420:Syntax:
2421
2422::
2423
2424 uselistorder <ty> <value>, { <order-indexes> }
2425 uselistorder_bb @function, %block { <order-indexes> }
2426
2427:Examples:
2428
2429::
2430
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002431 define void @foo(i32 %arg1, i32 %arg2) {
2432 entry:
2433 ; ... instructions ...
2434 bb:
2435 ; ... instructions ...
2436
2437 ; At function scope.
2438 uselistorder i32 %arg1, { 1, 0, 2 }
2439 uselistorder label %bb, { 1, 0 }
2440 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002441
2442 ; At global scope.
2443 uselistorder i32* @global, { 1, 2, 0 }
2444 uselistorder i32 7, { 1, 0 }
2445 uselistorder i32 (i32) @bar, { 1, 0 }
2446 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2447
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002448.. _source_filename:
2449
2450Source Filename
2451---------------
2452
2453The *source filename* string is set to the original module identifier,
2454which will be the name of the compiled source file when compiling from
2455source through the clang front end, for example. It is then preserved through
2456the IR and bitcode.
2457
2458This is currently necessary to generate a consistent unique global
2459identifier for local functions used in profile data, which prepends the
2460source file name to the local function name.
2461
2462The syntax for the source file name is simply:
2463
Renato Golin124f2592016-07-20 12:16:38 +00002464.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002465
2466 source_filename = "/path/to/source.c"
2467
Sean Silvab084af42012-12-07 10:36:55 +00002468.. _typesystem:
2469
2470Type System
2471===========
2472
2473The LLVM type system is one of the most important features of the
2474intermediate representation. Being typed enables a number of
2475optimizations to be performed on the intermediate representation
2476directly, without having to do extra analyses on the side before the
2477transformation. A strong type system makes it easier to read the
2478generated code and enables novel analyses and transformations that are
2479not feasible to perform on normal three address code representations.
2480
Rafael Espindola08013342013-12-07 19:34:20 +00002481.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002482
Rafael Espindola08013342013-12-07 19:34:20 +00002483Void Type
2484---------
Sean Silvab084af42012-12-07 10:36:55 +00002485
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002486:Overview:
2487
Rafael Espindola08013342013-12-07 19:34:20 +00002488
2489The void type does not represent any value and has no size.
2490
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002491:Syntax:
2492
Rafael Espindola08013342013-12-07 19:34:20 +00002493
2494::
2495
2496 void
Sean Silvab084af42012-12-07 10:36:55 +00002497
2498
Rafael Espindola08013342013-12-07 19:34:20 +00002499.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002500
Rafael Espindola08013342013-12-07 19:34:20 +00002501Function Type
2502-------------
Sean Silvab084af42012-12-07 10:36:55 +00002503
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002504:Overview:
2505
Sean Silvab084af42012-12-07 10:36:55 +00002506
Rafael Espindola08013342013-12-07 19:34:20 +00002507The function type can be thought of as a function signature. It consists of a
2508return type and a list of formal parameter types. The return type of a function
2509type is a void type or first class type --- except for :ref:`label <t_label>`
2510and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002511
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002512:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002513
Rafael Espindola08013342013-12-07 19:34:20 +00002514::
Sean Silvab084af42012-12-07 10:36:55 +00002515
Rafael Espindola08013342013-12-07 19:34:20 +00002516 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002517
Rafael Espindola08013342013-12-07 19:34:20 +00002518...where '``<parameter list>``' is a comma-separated list of type
2519specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002520indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002521argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002522handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002523except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002524
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002525:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002526
Rafael Espindola08013342013-12-07 19:34:20 +00002527+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2528| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2529+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2530| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2531+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2532| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2533+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2534| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2535+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2536
2537.. _t_firstclass:
2538
2539First Class Types
2540-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002541
2542The :ref:`first class <t_firstclass>` types are perhaps the most important.
2543Values of these types are the only ones which can be produced by
2544instructions.
2545
Rafael Espindola08013342013-12-07 19:34:20 +00002546.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002547
Rafael Espindola08013342013-12-07 19:34:20 +00002548Single Value Types
2549^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002550
Rafael Espindola08013342013-12-07 19:34:20 +00002551These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002552
2553.. _t_integer:
2554
2555Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002556""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002557
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002558:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002559
2560The integer type is a very simple type that simply specifies an
2561arbitrary bit width for the integer type desired. Any bit width from 1
2562bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2563
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002564:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002565
2566::
2567
2568 iN
2569
2570The number of bits the integer will occupy is specified by the ``N``
2571value.
2572
2573Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002574*********
Sean Silvab084af42012-12-07 10:36:55 +00002575
2576+----------------+------------------------------------------------+
2577| ``i1`` | a single-bit integer. |
2578+----------------+------------------------------------------------+
2579| ``i32`` | a 32-bit integer. |
2580+----------------+------------------------------------------------+
2581| ``i1942652`` | a really big integer of over 1 million bits. |
2582+----------------+------------------------------------------------+
2583
2584.. _t_floating:
2585
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002586Floating-Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002587""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002588
2589.. list-table::
2590 :header-rows: 1
2591
2592 * - Type
2593 - Description
2594
2595 * - ``half``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002596 - 16-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002597
2598 * - ``float``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002599 - 32-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002600
2601 * - ``double``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002602 - 64-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002603
2604 * - ``fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002605 - 128-bit floating-point value (112-bit mantissa)
Sean Silvab084af42012-12-07 10:36:55 +00002606
2607 * - ``x86_fp80``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002608 - 80-bit floating-point value (X87)
Sean Silvab084af42012-12-07 10:36:55 +00002609
2610 * - ``ppc_fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002611 - 128-bit floating-point value (two 64-bits)
Sean Silvab084af42012-12-07 10:36:55 +00002612
Sanjay Patelbab6ce02018-03-21 15:22:09 +00002613The binary format of half, float, double, and fp128 correspond to the
2614IEEE-754-2008 specifications for binary16, binary32, binary64, and binary128
2615respectively.
2616
Reid Kleckner9a16d082014-03-05 02:41:37 +00002617X86_mmx Type
2618""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002619
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002620:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002621
Reid Kleckner9a16d082014-03-05 02:41:37 +00002622The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002623machine. The operations allowed on it are quite limited: parameters and
2624return values, load and store, and bitcast. User-specified MMX
2625instructions are represented as intrinsic or asm calls with arguments
2626and/or results of this type. There are no arrays, vectors or constants
2627of this type.
2628
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002629:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002630
2631::
2632
Reid Kleckner9a16d082014-03-05 02:41:37 +00002633 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002634
Sean Silvab084af42012-12-07 10:36:55 +00002635
Rafael Espindola08013342013-12-07 19:34:20 +00002636.. _t_pointer:
2637
2638Pointer Type
2639""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002640
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002641:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002642
Rafael Espindola08013342013-12-07 19:34:20 +00002643The pointer type is used to specify memory locations. Pointers are
2644commonly used to reference objects in memory.
2645
2646Pointer types may have an optional address space attribute defining the
2647numbered address space where the pointed-to object resides. The default
2648address space is number zero. The semantics of non-zero address spaces
2649are target-specific.
2650
2651Note that LLVM does not permit pointers to void (``void*``) nor does it
2652permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002653
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002654:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002655
2656::
2657
Rafael Espindola08013342013-12-07 19:34:20 +00002658 <type> *
2659
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002660:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002661
2662+-------------------------+--------------------------------------------------------------------------------------------------------------+
2663| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2664+-------------------------+--------------------------------------------------------------------------------------------------------------+
2665| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2666+-------------------------+--------------------------------------------------------------------------------------------------------------+
2667| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2668+-------------------------+--------------------------------------------------------------------------------------------------------------+
2669
2670.. _t_vector:
2671
2672Vector Type
2673"""""""""""
2674
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002675:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002676
2677A vector type is a simple derived type that represents a vector of
2678elements. Vector types are used when multiple primitive data are
2679operated in parallel using a single instruction (SIMD). A vector type
2680requires a size (number of elements) and an underlying primitive data
2681type. Vector types are considered :ref:`first class <t_firstclass>`.
2682
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002683:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002684
2685::
2686
2687 < <# elements> x <elementtype> >
2688
2689The number of elements is a constant integer value larger than 0;
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002690elementtype may be any integer, floating-point or pointer type. Vectors
Manuel Jacob961f7872014-07-30 12:30:06 +00002691of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002692
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002693:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002694
2695+-------------------+--------------------------------------------------+
2696| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2697+-------------------+--------------------------------------------------+
2698| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2699+-------------------+--------------------------------------------------+
2700| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2701+-------------------+--------------------------------------------------+
2702| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2703+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002704
2705.. _t_label:
2706
2707Label Type
2708^^^^^^^^^^
2709
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002710:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002711
2712The label type represents code labels.
2713
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002714:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002715
2716::
2717
2718 label
2719
David Majnemerb611e3f2015-08-14 05:09:07 +00002720.. _t_token:
2721
2722Token Type
2723^^^^^^^^^^
2724
2725:Overview:
2726
2727The token type is used when a value is associated with an instruction
2728but all uses of the value must not attempt to introspect or obscure it.
2729As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2730:ref:`select <i_select>` of type token.
2731
2732:Syntax:
2733
2734::
2735
2736 token
2737
2738
2739
Sean Silvab084af42012-12-07 10:36:55 +00002740.. _t_metadata:
2741
2742Metadata Type
2743^^^^^^^^^^^^^
2744
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002745:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002746
2747The metadata type represents embedded metadata. No derived types may be
2748created from metadata except for :ref:`function <t_function>` arguments.
2749
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002750:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002751
2752::
2753
2754 metadata
2755
Sean Silvab084af42012-12-07 10:36:55 +00002756.. _t_aggregate:
2757
2758Aggregate Types
2759^^^^^^^^^^^^^^^
2760
2761Aggregate Types are a subset of derived types that can contain multiple
2762member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2763aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2764aggregate types.
2765
2766.. _t_array:
2767
2768Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002769""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002770
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002771:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002772
2773The array type is a very simple derived type that arranges elements
2774sequentially in memory. The array type requires a size (number of
2775elements) and an underlying data type.
2776
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002777:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002778
2779::
2780
2781 [<# elements> x <elementtype>]
2782
2783The number of elements is a constant integer value; ``elementtype`` may
2784be any type with a size.
2785
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002786:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002787
2788+------------------+--------------------------------------+
2789| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2790+------------------+--------------------------------------+
2791| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2792+------------------+--------------------------------------+
2793| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2794+------------------+--------------------------------------+
2795
2796Here are some examples of multidimensional arrays:
2797
2798+-----------------------------+----------------------------------------------------------+
2799| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2800+-----------------------------+----------------------------------------------------------+
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002801| ``[12 x [10 x float]]`` | 12x10 array of single precision floating-point values. |
Sean Silvab084af42012-12-07 10:36:55 +00002802+-----------------------------+----------------------------------------------------------+
2803| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2804+-----------------------------+----------------------------------------------------------+
2805
2806There is no restriction on indexing beyond the end of the array implied
2807by a static type (though there are restrictions on indexing beyond the
2808bounds of an allocated object in some cases). This means that
2809single-dimension 'variable sized array' addressing can be implemented in
2810LLVM with a zero length array type. An implementation of 'pascal style
2811arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2812example.
2813
Sean Silvab084af42012-12-07 10:36:55 +00002814.. _t_struct:
2815
2816Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002817""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002818
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002819:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002820
2821The structure type is used to represent a collection of data members
2822together in memory. The elements of a structure may be any type that has
2823a size.
2824
2825Structures in memory are accessed using '``load``' and '``store``' by
2826getting a pointer to a field with the '``getelementptr``' instruction.
2827Structures in registers are accessed using the '``extractvalue``' and
2828'``insertvalue``' instructions.
2829
2830Structures may optionally be "packed" structures, which indicate that
2831the alignment of the struct is one byte, and that there is no padding
2832between the elements. In non-packed structs, padding between field types
2833is inserted as defined by the DataLayout string in the module, which is
2834required to match what the underlying code generator expects.
2835
2836Structures can either be "literal" or "identified". A literal structure
2837is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2838identified types are always defined at the top level with a name.
2839Literal types are uniqued by their contents and can never be recursive
2840or opaque since there is no way to write one. Identified types can be
2841recursive, can be opaqued, and are never uniqued.
2842
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002843:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002844
2845::
2846
2847 %T1 = type { <type list> } ; Identified normal struct type
2848 %T2 = type <{ <type list> }> ; Identified packed struct type
2849
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002850:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002851
2852+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2853| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2854+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002855| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002856+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2857| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2858+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2859
2860.. _t_opaque:
2861
2862Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002863""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002864
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002865:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002866
2867Opaque structure types are used to represent named structure types that
2868do not have a body specified. This corresponds (for example) to the C
2869notion of a forward declared structure.
2870
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002871:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002872
2873::
2874
2875 %X = type opaque
2876 %52 = type opaque
2877
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002878:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002879
2880+--------------+-------------------+
2881| ``opaque`` | An opaque type. |
2882+--------------+-------------------+
2883
Sean Silva1703e702014-04-08 21:06:22 +00002884.. _constants:
2885
Sean Silvab084af42012-12-07 10:36:55 +00002886Constants
2887=========
2888
2889LLVM has several different basic types of constants. This section
2890describes them all and their syntax.
2891
2892Simple Constants
2893----------------
2894
2895**Boolean constants**
2896 The two strings '``true``' and '``false``' are both valid constants
2897 of the ``i1`` type.
2898**Integer constants**
2899 Standard integers (such as '4') are constants of the
2900 :ref:`integer <t_integer>` type. Negative numbers may be used with
2901 integer types.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002902**Floating-point constants**
2903 Floating-point constants use standard decimal notation (e.g.
Sean Silvab084af42012-12-07 10:36:55 +00002904 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2905 hexadecimal notation (see below). The assembler requires the exact
2906 decimal value of a floating-point constant. For example, the
2907 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002908 decimal in binary. Floating-point constants must have a
2909 :ref:`floating-point <t_floating>` type.
Sean Silvab084af42012-12-07 10:36:55 +00002910**Null pointer constants**
2911 The identifier '``null``' is recognized as a null pointer constant
2912 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002913**Token constants**
2914 The identifier '``none``' is recognized as an empty token constant
2915 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002916
2917The one non-intuitive notation for constants is the hexadecimal form of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002918floating-point constants. For example, the form
Sean Silvab084af42012-12-07 10:36:55 +00002919'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002920than) '``double 4.5e+15``'. The only time hexadecimal floating-point
Sean Silvab084af42012-12-07 10:36:55 +00002921constants are required (and the only time that they are generated by the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002922disassembler) is when a floating-point constant must be emitted but it
2923cannot be represented as a decimal floating-point number in a reasonable
Sean Silvab084af42012-12-07 10:36:55 +00002924number of digits. For example, NaN's, infinities, and other special
2925values are represented in their IEEE hexadecimal format so that assembly
2926and disassembly do not cause any bits to change in the constants.
2927
2928When using the hexadecimal form, constants of types half, float, and
2929double are represented using the 16-digit form shown above (which
2930matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002931must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002932precision, respectively. Hexadecimal format is always used for long
2933double, and there are three forms of long double. The 80-bit format used
2934by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2935128-bit format used by PowerPC (two adjacent doubles) is represented by
2936``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002937represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2938will only work if they match the long double format on your target.
2939The IEEE 16-bit format (half precision) is represented by ``0xH``
2940followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2941(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002942
Reid Kleckner9a16d082014-03-05 02:41:37 +00002943There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002944
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002945.. _complexconstants:
2946
Sean Silvab084af42012-12-07 10:36:55 +00002947Complex Constants
2948-----------------
2949
2950Complex constants are a (potentially recursive) combination of simple
2951constants and smaller complex constants.
2952
2953**Structure constants**
2954 Structure constants are represented with notation similar to
2955 structure type definitions (a comma separated list of elements,
2956 surrounded by braces (``{}``)). For example:
2957 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2958 "``@G = external global i32``". Structure constants must have
2959 :ref:`structure type <t_struct>`, and the number and types of elements
2960 must match those specified by the type.
2961**Array constants**
2962 Array constants are represented with notation similar to array type
2963 definitions (a comma separated list of elements, surrounded by
2964 square brackets (``[]``)). For example:
2965 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2966 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002967 match those specified by the type. As a special case, character array
2968 constants may also be represented as a double-quoted string using the ``c``
2969 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002970**Vector constants**
2971 Vector constants are represented with notation similar to vector
2972 type definitions (a comma separated list of elements, surrounded by
2973 less-than/greater-than's (``<>``)). For example:
2974 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2975 must have :ref:`vector type <t_vector>`, and the number and types of
2976 elements must match those specified by the type.
2977**Zero initialization**
2978 The string '``zeroinitializer``' can be used to zero initialize a
2979 value to zero of *any* type, including scalar and
2980 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2981 having to print large zero initializers (e.g. for large arrays) and
2982 is always exactly equivalent to using explicit zero initializers.
2983**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002984 A metadata node is a constant tuple without types. For example:
2985 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002986 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2987 Unlike other typed constants that are meant to be interpreted as part of
2988 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002989 information such as debug info.
2990
2991Global Variable and Function Addresses
2992--------------------------------------
2993
2994The addresses of :ref:`global variables <globalvars>` and
2995:ref:`functions <functionstructure>` are always implicitly valid
2996(link-time) constants. These constants are explicitly referenced when
2997the :ref:`identifier for the global <identifiers>` is used and always have
2998:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2999file:
3000
3001.. code-block:: llvm
3002
3003 @X = global i32 17
3004 @Y = global i32 42
3005 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
3006
3007.. _undefvalues:
3008
3009Undefined Values
3010----------------
3011
3012The string '``undef``' can be used anywhere a constant is expected, and
3013indicates that the user of the value may receive an unspecified
3014bit-pattern. Undefined values may be of any type (other than '``label``'
3015or '``void``') and be used anywhere a constant is permitted.
3016
3017Undefined values are useful because they indicate to the compiler that
3018the program is well defined no matter what value is used. This gives the
3019compiler more freedom to optimize. Here are some examples of
3020(potentially surprising) transformations that are valid (in pseudo IR):
3021
3022.. code-block:: llvm
3023
3024 %A = add %X, undef
3025 %B = sub %X, undef
3026 %C = xor %X, undef
3027 Safe:
3028 %A = undef
3029 %B = undef
3030 %C = undef
3031
3032This is safe because all of the output bits are affected by the undef
3033bits. Any output bit can have a zero or one depending on the input bits.
3034
3035.. code-block:: llvm
3036
3037 %A = or %X, undef
3038 %B = and %X, undef
3039 Safe:
3040 %A = -1
3041 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00003042 Safe:
3043 %A = %X ;; By choosing undef as 0
3044 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00003045 Unsafe:
3046 %A = undef
3047 %B = undef
3048
3049These logical operations have bits that are not always affected by the
3050input. For example, if ``%X`` has a zero bit, then the output of the
3051'``and``' operation will always be a zero for that bit, no matter what
3052the corresponding bit from the '``undef``' is. As such, it is unsafe to
3053optimize or assume that the result of the '``and``' is '``undef``'.
3054However, it is safe to assume that all bits of the '``undef``' could be
30550, and optimize the '``and``' to 0. Likewise, it is safe to assume that
3056all the bits of the '``undef``' operand to the '``or``' could be set,
3057allowing the '``or``' to be folded to -1.
3058
3059.. code-block:: llvm
3060
3061 %A = select undef, %X, %Y
3062 %B = select undef, 42, %Y
3063 %C = select %X, %Y, undef
3064 Safe:
3065 %A = %X (or %Y)
3066 %B = 42 (or %Y)
3067 %C = %Y
3068 Unsafe:
3069 %A = undef
3070 %B = undef
3071 %C = undef
3072
3073This set of examples shows that undefined '``select``' (and conditional
3074branch) conditions can go *either way*, but they have to come from one
3075of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
3076both known to have a clear low bit, then ``%A`` would have to have a
3077cleared low bit. However, in the ``%C`` example, the optimizer is
3078allowed to assume that the '``undef``' operand could be the same as
3079``%Y``, allowing the whole '``select``' to be eliminated.
3080
Renato Golin124f2592016-07-20 12:16:38 +00003081.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003082
3083 %A = xor undef, undef
3084
3085 %B = undef
3086 %C = xor %B, %B
3087
3088 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00003089 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00003090 %F = icmp gte %D, 4
3091
3092 Safe:
3093 %A = undef
3094 %B = undef
3095 %C = undef
3096 %D = undef
3097 %E = undef
3098 %F = undef
3099
3100This example points out that two '``undef``' operands are not
3101necessarily the same. This can be surprising to people (and also matches
3102C semantics) where they assume that "``X^X``" is always zero, even if
3103``X`` is undefined. This isn't true for a number of reasons, but the
3104short answer is that an '``undef``' "variable" can arbitrarily change
3105its value over its "live range". This is true because the variable
3106doesn't actually *have a live range*. Instead, the value is logically
3107read from arbitrary registers that happen to be around when needed, so
3108the value is not necessarily consistent over time. In fact, ``%A`` and
3109``%C`` need to have the same semantics or the core LLVM "replace all
3110uses with" concept would not hold.
3111
3112.. code-block:: llvm
3113
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003114 %A = sdiv undef, %X
3115 %B = sdiv %X, undef
Sean Silvab084af42012-12-07 10:36:55 +00003116 Safe:
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003117 %A = 0
Sean Silvab084af42012-12-07 10:36:55 +00003118 b: unreachable
3119
3120These examples show the crucial difference between an *undefined value*
3121and *undefined behavior*. An undefined value (like '``undef``') is
3122allowed to have an arbitrary bit-pattern. This means that the ``%A``
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003123operation can be constant folded to '``0``', because the '``undef``'
3124could be zero, and zero divided by any value is zero.
Sean Silvab084af42012-12-07 10:36:55 +00003125However, in the second example, we can make a more aggressive
3126assumption: because the ``undef`` is allowed to be an arbitrary value,
3127we are allowed to assume that it could be zero. Since a divide by zero
3128has *undefined behavior*, we are allowed to assume that the operation
3129does not execute at all. This allows us to delete the divide and all
3130code after it. Because the undefined operation "can't happen", the
3131optimizer can assume that it occurs in dead code.
3132
Renato Golin124f2592016-07-20 12:16:38 +00003133.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003134
3135 a: store undef -> %X
3136 b: store %X -> undef
3137 Safe:
3138 a: <deleted>
3139 b: unreachable
3140
Sanjay Patel7b722402018-03-07 17:18:22 +00003141A store *of* an undefined value can be assumed to not have any effect;
3142we can assume that the value is overwritten with bits that happen to
3143match what was already there. However, a store *to* an undefined
3144location could clobber arbitrary memory, therefore, it has undefined
3145behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003146
3147.. _poisonvalues:
3148
3149Poison Values
3150-------------
3151
3152Poison values are similar to :ref:`undef values <undefvalues>`, however
3153they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003154that cannot evoke side effects has nevertheless detected a condition
3155that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003156
3157There is currently no way of representing a poison value in the IR; they
3158only exist when produced by operations such as :ref:`add <i_add>` with
3159the ``nsw`` flag.
3160
3161Poison value behavior is defined in terms of value *dependence*:
3162
3163- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3164- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3165 their dynamic predecessor basic block.
3166- Function arguments depend on the corresponding actual argument values
3167 in the dynamic callers of their functions.
3168- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3169 instructions that dynamically transfer control back to them.
3170- :ref:`Invoke <i_invoke>` instructions depend on the
3171 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3172 call instructions that dynamically transfer control back to them.
3173- Non-volatile loads and stores depend on the most recent stores to all
3174 of the referenced memory addresses, following the order in the IR
3175 (including loads and stores implied by intrinsics such as
3176 :ref:`@llvm.memcpy <int_memcpy>`.)
3177- An instruction with externally visible side effects depends on the
3178 most recent preceding instruction with externally visible side
3179 effects, following the order in the IR. (This includes :ref:`volatile
3180 operations <volatile>`.)
3181- An instruction *control-depends* on a :ref:`terminator
3182 instruction <terminators>` if the terminator instruction has
3183 multiple successors and the instruction is always executed when
3184 control transfers to one of the successors, and may not be executed
3185 when control is transferred to another.
3186- Additionally, an instruction also *control-depends* on a terminator
3187 instruction if the set of instructions it otherwise depends on would
3188 be different if the terminator had transferred control to a different
3189 successor.
3190- Dependence is transitive.
3191
Richard Smith32dbdf62014-07-31 04:25:36 +00003192Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3193with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003194on a poison value has undefined behavior.
3195
3196Here are some examples:
3197
3198.. code-block:: llvm
3199
3200 entry:
3201 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3202 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003203 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003204 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3205
3206 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003207 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003208
3209 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3210
3211 %narrowaddr = bitcast i32* @g to i16*
3212 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003213 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3214 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003215
3216 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3217 br i1 %cmp, label %true, label %end ; Branch to either destination.
3218
3219 true:
3220 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3221 ; it has undefined behavior.
3222 br label %end
3223
3224 end:
3225 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3226 ; Both edges into this PHI are
3227 ; control-dependent on %cmp, so this
3228 ; always results in a poison value.
3229
3230 store volatile i32 0, i32* @g ; This would depend on the store in %true
3231 ; if %cmp is true, or the store in %entry
3232 ; otherwise, so this is undefined behavior.
3233
3234 br i1 %cmp, label %second_true, label %second_end
3235 ; The same branch again, but this time the
3236 ; true block doesn't have side effects.
3237
3238 second_true:
3239 ; No side effects!
3240 ret void
3241
3242 second_end:
3243 store volatile i32 0, i32* @g ; This time, the instruction always depends
3244 ; on the store in %end. Also, it is
3245 ; control-equivalent to %end, so this is
3246 ; well-defined (ignoring earlier undefined
3247 ; behavior in this example).
3248
3249.. _blockaddress:
3250
3251Addresses of Basic Blocks
3252-------------------------
3253
3254``blockaddress(@function, %block)``
3255
3256The '``blockaddress``' constant computes the address of the specified
3257basic block in the specified function, and always has an ``i8*`` type.
3258Taking the address of the entry block is illegal.
3259
3260This value only has defined behavior when used as an operand to the
3261':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3262against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003263undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003264no label is equal to the null pointer. This may be passed around as an
3265opaque pointer sized value as long as the bits are not inspected. This
3266allows ``ptrtoint`` and arithmetic to be performed on these values so
3267long as the original value is reconstituted before the ``indirectbr``
3268instruction.
3269
3270Finally, some targets may provide defined semantics when using the value
3271as the operand to an inline assembly, but that is target specific.
3272
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003273.. _constantexprs:
3274
Sean Silvab084af42012-12-07 10:36:55 +00003275Constant Expressions
3276--------------------
3277
3278Constant expressions are used to allow expressions involving other
3279constants to be used as constants. Constant expressions may be of any
3280:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3281that does not have side effects (e.g. load and call are not supported).
3282The following is the syntax for constant expressions:
3283
3284``trunc (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003285 Perform the :ref:`trunc operation <i_trunc>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003286``zext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003287 Perform the :ref:`zext operation <i_zext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003288``sext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003289 Perform the :ref:`sext operation <i_sext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003290``fptrunc (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003291 Truncate a floating-point constant to another floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003292 The size of CST must be larger than the size of TYPE. Both types
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003293 must be floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003294``fpext (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003295 Floating-point extend a constant to another type. The size of CST
Sean Silvab084af42012-12-07 10:36:55 +00003296 must be smaller or equal to the size of TYPE. Both types must be
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003297 floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003298``fptoui (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003299 Convert a floating-point constant to the corresponding unsigned
Sean Silvab084af42012-12-07 10:36:55 +00003300 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003301 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003302 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003303 value won't fit in the integer type, the result is a
3304 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003305``fptosi (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003306 Convert a floating-point constant to the corresponding signed
Sean Silvab084af42012-12-07 10:36:55 +00003307 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003308 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003309 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003310 value won't fit in the integer type, the result is a
3311 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003312``uitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003313 Convert an unsigned integer constant to the corresponding
3314 floating-point constant. TYPE must be a scalar or vector floating-point
3315 type. CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003316 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003317``sitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003318 Convert a signed integer constant to the corresponding floating-point
3319 constant. TYPE must be a scalar or vector floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003320 CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003321 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003322``ptrtoint (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003323 Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003324``inttoptr (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003325 Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003326 This one is *really* dangerous!
3327``bitcast (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003328 Convert a constant, CST, to another TYPE.
3329 The constraints of the operands are the same as those for the
3330 :ref:`bitcast instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003331``addrspacecast (CST to TYPE)``
3332 Convert a constant pointer or constant vector of pointer, CST, to another
3333 TYPE in a different address space. The constraints of the operands are the
3334 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003335``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003336 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3337 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003338 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003339 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003340``select (COND, VAL1, VAL2)``
3341 Perform the :ref:`select operation <i_select>` on constants.
3342``icmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003343 Perform the :ref:`icmp operation <i_icmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003344``fcmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003345 Perform the :ref:`fcmp operation <i_fcmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003346``extractelement (VAL, IDX)``
3347 Perform the :ref:`extractelement operation <i_extractelement>` on
3348 constants.
3349``insertelement (VAL, ELT, IDX)``
3350 Perform the :ref:`insertelement operation <i_insertelement>` on
3351 constants.
3352``shufflevector (VEC1, VEC2, IDXMASK)``
3353 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3354 constants.
3355``extractvalue (VAL, IDX0, IDX1, ...)``
3356 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3357 constants. The index list is interpreted in a similar manner as
3358 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3359 least one index value must be specified.
3360``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3361 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3362 The index list is interpreted in a similar manner as indices in a
3363 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3364 value must be specified.
3365``OPCODE (LHS, RHS)``
3366 Perform the specified operation of the LHS and RHS constants. OPCODE
3367 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3368 binary <bitwiseops>` operations. The constraints on operands are
3369 the same as those for the corresponding instruction (e.g. no bitwise
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003370 operations on floating-point values are allowed).
Sean Silvab084af42012-12-07 10:36:55 +00003371
3372Other Values
3373============
3374
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003375.. _inlineasmexprs:
3376
Sean Silvab084af42012-12-07 10:36:55 +00003377Inline Assembler Expressions
3378----------------------------
3379
3380LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003381Inline Assembly <moduleasm>`) through the use of a special value. This value
3382represents the inline assembler as a template string (containing the
3383instructions to emit), a list of operand constraints (stored as a string), a
3384flag that indicates whether or not the inline asm expression has side effects,
3385and a flag indicating whether the function containing the asm needs to align its
3386stack conservatively.
3387
3388The template string supports argument substitution of the operands using "``$``"
3389followed by a number, to indicate substitution of the given register/memory
3390location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3391be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3392operand (See :ref:`inline-asm-modifiers`).
3393
3394A literal "``$``" may be included by using "``$$``" in the template. To include
3395other special characters into the output, the usual "``\XX``" escapes may be
3396used, just as in other strings. Note that after template substitution, the
3397resulting assembly string is parsed by LLVM's integrated assembler unless it is
3398disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3399syntax known to LLVM.
3400
Reid Kleckner71cb1642017-02-06 18:08:45 +00003401LLVM also supports a few more substitions useful for writing inline assembly:
3402
3403- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3404 This substitution is useful when declaring a local label. Many standard
3405 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3406 Adding a blob-unique identifier ensures that the two labels will not conflict
3407 during assembly. This is used to implement `GCC's %= special format
3408 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3409- ``${:comment}``: Expands to the comment character of the current target's
3410 assembly dialect. This is usually ``#``, but many targets use other strings,
3411 such as ``;``, ``//``, or ``!``.
3412- ``${:private}``: Expands to the assembler private label prefix. Labels with
3413 this prefix will not appear in the symbol table of the assembled object.
3414 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3415 relatively popular.
3416
James Y Knightbc832ed2015-07-08 18:08:36 +00003417LLVM's support for inline asm is modeled closely on the requirements of Clang's
3418GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3419modifier codes listed here are similar or identical to those in GCC's inline asm
3420support. However, to be clear, the syntax of the template and constraint strings
3421described here is *not* the same as the syntax accepted by GCC and Clang, and,
3422while most constraint letters are passed through as-is by Clang, some get
3423translated to other codes when converting from the C source to the LLVM
3424assembly.
3425
3426An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003427
3428.. code-block:: llvm
3429
3430 i32 (i32) asm "bswap $0", "=r,r"
3431
3432Inline assembler expressions may **only** be used as the callee operand
3433of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3434Thus, typically we have:
3435
3436.. code-block:: llvm
3437
3438 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3439
3440Inline asms with side effects not visible in the constraint list must be
3441marked as having side effects. This is done through the use of the
3442'``sideeffect``' keyword, like so:
3443
3444.. code-block:: llvm
3445
3446 call void asm sideeffect "eieio", ""()
3447
3448In some cases inline asms will contain code that will not work unless
3449the stack is aligned in some way, such as calls or SSE instructions on
3450x86, yet will not contain code that does that alignment within the asm.
3451The compiler should make conservative assumptions about what the asm
3452might contain and should generate its usual stack alignment code in the
3453prologue if the '``alignstack``' keyword is present:
3454
3455.. code-block:: llvm
3456
3457 call void asm alignstack "eieio", ""()
3458
3459Inline asms also support using non-standard assembly dialects. The
3460assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3461the inline asm is using the Intel dialect. Currently, ATT and Intel are
3462the only supported dialects. An example is:
3463
3464.. code-block:: llvm
3465
3466 call void asm inteldialect "eieio", ""()
3467
3468If multiple keywords appear the '``sideeffect``' keyword must come
3469first, the '``alignstack``' keyword second and the '``inteldialect``'
3470keyword last.
3471
James Y Knightbc832ed2015-07-08 18:08:36 +00003472Inline Asm Constraint String
3473^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3474
3475The constraint list is a comma-separated string, each element containing one or
3476more constraint codes.
3477
3478For each element in the constraint list an appropriate register or memory
3479operand will be chosen, and it will be made available to assembly template
3480string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3481second, etc.
3482
3483There are three different types of constraints, which are distinguished by a
3484prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3485constraints must always be given in that order: outputs first, then inputs, then
3486clobbers. They cannot be intermingled.
3487
3488There are also three different categories of constraint codes:
3489
3490- Register constraint. This is either a register class, or a fixed physical
3491 register. This kind of constraint will allocate a register, and if necessary,
3492 bitcast the argument or result to the appropriate type.
3493- Memory constraint. This kind of constraint is for use with an instruction
3494 taking a memory operand. Different constraints allow for different addressing
3495 modes used by the target.
3496- Immediate value constraint. This kind of constraint is for an integer or other
3497 immediate value which can be rendered directly into an instruction. The
3498 various target-specific constraints allow the selection of a value in the
3499 proper range for the instruction you wish to use it with.
3500
3501Output constraints
3502""""""""""""""""""
3503
3504Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3505indicates that the assembly will write to this operand, and the operand will
3506then be made available as a return value of the ``asm`` expression. Output
3507constraints do not consume an argument from the call instruction. (Except, see
3508below about indirect outputs).
3509
3510Normally, it is expected that no output locations are written to by the assembly
3511expression until *all* of the inputs have been read. As such, LLVM may assign
3512the same register to an output and an input. If this is not safe (e.g. if the
3513assembly contains two instructions, where the first writes to one output, and
3514the second reads an input and writes to a second output), then the "``&``"
3515modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003516"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003517will not use the same register for any inputs (other than an input tied to this
3518output).
3519
3520Input constraints
3521"""""""""""""""""
3522
3523Input constraints do not have a prefix -- just the constraint codes. Each input
3524constraint will consume one argument from the call instruction. It is not
3525permitted for the asm to write to any input register or memory location (unless
3526that input is tied to an output). Note also that multiple inputs may all be
3527assigned to the same register, if LLVM can determine that they necessarily all
3528contain the same value.
3529
3530Instead of providing a Constraint Code, input constraints may also "tie"
3531themselves to an output constraint, by providing an integer as the constraint
3532string. Tied inputs still consume an argument from the call instruction, and
3533take up a position in the asm template numbering as is usual -- they will simply
3534be constrained to always use the same register as the output they've been tied
3535to. For example, a constraint string of "``=r,0``" says to assign a register for
3536output, and use that register as an input as well (it being the 0'th
3537constraint).
3538
3539It is permitted to tie an input to an "early-clobber" output. In that case, no
3540*other* input may share the same register as the input tied to the early-clobber
3541(even when the other input has the same value).
3542
3543You may only tie an input to an output which has a register constraint, not a
3544memory constraint. Only a single input may be tied to an output.
3545
3546There is also an "interesting" feature which deserves a bit of explanation: if a
3547register class constraint allocates a register which is too small for the value
3548type operand provided as input, the input value will be split into multiple
3549registers, and all of them passed to the inline asm.
3550
3551However, this feature is often not as useful as you might think.
3552
3553Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3554architectures that have instructions which operate on multiple consecutive
3555instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3556SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3557hardware then loads into both the named register, and the next register. This
3558feature of inline asm would not be useful to support that.)
3559
3560A few of the targets provide a template string modifier allowing explicit access
3561to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3562``D``). On such an architecture, you can actually access the second allocated
3563register (yet, still, not any subsequent ones). But, in that case, you're still
3564probably better off simply splitting the value into two separate operands, for
3565clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3566despite existing only for use with this feature, is not really a good idea to
3567use)
3568
3569Indirect inputs and outputs
3570"""""""""""""""""""""""""""
3571
3572Indirect output or input constraints can be specified by the "``*``" modifier
3573(which goes after the "``=``" in case of an output). This indicates that the asm
3574will write to or read from the contents of an *address* provided as an input
3575argument. (Note that in this way, indirect outputs act more like an *input* than
3576an output: just like an input, they consume an argument of the call expression,
3577rather than producing a return value. An indirect output constraint is an
3578"output" only in that the asm is expected to write to the contents of the input
3579memory location, instead of just read from it).
3580
3581This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3582address of a variable as a value.
3583
3584It is also possible to use an indirect *register* constraint, but only on output
3585(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3586value normally, and then, separately emit a store to the address provided as
3587input, after the provided inline asm. (It's not clear what value this
3588functionality provides, compared to writing the store explicitly after the asm
3589statement, and it can only produce worse code, since it bypasses many
3590optimization passes. I would recommend not using it.)
3591
3592
3593Clobber constraints
3594"""""""""""""""""""
3595
3596A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3597consume an input operand, nor generate an output. Clobbers cannot use any of the
3598general constraint code letters -- they may use only explicit register
3599constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3600"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3601memory locations -- not only the memory pointed to by a declared indirect
3602output.
3603
Peter Zotov00257232016-08-30 10:48:31 +00003604Note that clobbering named registers that are also present in output
3605constraints is not legal.
3606
James Y Knightbc832ed2015-07-08 18:08:36 +00003607
3608Constraint Codes
3609""""""""""""""""
3610After a potential prefix comes constraint code, or codes.
3611
3612A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3613followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3614(e.g. "``{eax}``").
3615
3616The one and two letter constraint codes are typically chosen to be the same as
3617GCC's constraint codes.
3618
3619A single constraint may include one or more than constraint code in it, leaving
3620it up to LLVM to choose which one to use. This is included mainly for
3621compatibility with the translation of GCC inline asm coming from clang.
3622
3623There are two ways to specify alternatives, and either or both may be used in an
3624inline asm constraint list:
3625
36261) Append the codes to each other, making a constraint code set. E.g. "``im``"
3627 or "``{eax}m``". This means "choose any of the options in the set". The
3628 choice of constraint is made independently for each constraint in the
3629 constraint list.
3630
36312) Use "``|``" between constraint code sets, creating alternatives. Every
3632 constraint in the constraint list must have the same number of alternative
3633 sets. With this syntax, the same alternative in *all* of the items in the
3634 constraint list will be chosen together.
3635
3636Putting those together, you might have a two operand constraint string like
3637``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3638operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3639may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3640
3641However, the use of either of the alternatives features is *NOT* recommended, as
3642LLVM is not able to make an intelligent choice about which one to use. (At the
3643point it currently needs to choose, not enough information is available to do so
3644in a smart way.) Thus, it simply tries to make a choice that's most likely to
3645compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3646always choose to use memory, not registers). And, if given multiple registers,
3647or multiple register classes, it will simply choose the first one. (In fact, it
3648doesn't currently even ensure explicitly specified physical registers are
3649unique, so specifying multiple physical registers as alternatives, like
3650``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3651intended.)
3652
3653Supported Constraint Code List
3654""""""""""""""""""""""""""""""
3655
3656The constraint codes are, in general, expected to behave the same way they do in
3657GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3658inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3659and GCC likely indicates a bug in LLVM.
3660
3661Some constraint codes are typically supported by all targets:
3662
3663- ``r``: A register in the target's general purpose register class.
3664- ``m``: A memory address operand. It is target-specific what addressing modes
3665 are supported, typical examples are register, or register + register offset,
3666 or register + immediate offset (of some target-specific size).
3667- ``i``: An integer constant (of target-specific width). Allows either a simple
3668 immediate, or a relocatable value.
3669- ``n``: An integer constant -- *not* including relocatable values.
3670- ``s``: An integer constant, but allowing *only* relocatable values.
3671- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3672 useful to pass a label for an asm branch or call.
3673
3674 .. FIXME: but that surely isn't actually okay to jump out of an asm
3675 block without telling llvm about the control transfer???)
3676
3677- ``{register-name}``: Requires exactly the named physical register.
3678
3679Other constraints are target-specific:
3680
3681AArch64:
3682
3683- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3684- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3685 i.e. 0 to 4095 with optional shift by 12.
3686- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3687 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3688- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3689 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3690- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3691 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3692- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3693 32-bit register. This is a superset of ``K``: in addition to the bitmask
3694 immediate, also allows immediate integers which can be loaded with a single
3695 ``MOVZ`` or ``MOVL`` instruction.
3696- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3697 64-bit register. This is a superset of ``L``.
3698- ``Q``: Memory address operand must be in a single register (no
3699 offsets). (However, LLVM currently does this for the ``m`` constraint as
3700 well.)
3701- ``r``: A 32 or 64-bit integer register (W* or X*).
3702- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3703- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3704
3705AMDGPU:
3706
3707- ``r``: A 32 or 64-bit integer register.
3708- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3709- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3710
3711
3712All ARM modes:
3713
3714- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3715 operand. Treated the same as operand ``m``, at the moment.
3716
3717ARM and ARM's Thumb2 mode:
3718
3719- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3720- ``I``: An immediate integer valid for a data-processing instruction.
3721- ``J``: An immediate integer between -4095 and 4095.
3722- ``K``: An immediate integer whose bitwise inverse is valid for a
3723 data-processing instruction. (Can be used with template modifier "``B``" to
3724 print the inverted value).
3725- ``L``: An immediate integer whose negation is valid for a data-processing
3726 instruction. (Can be used with template modifier "``n``" to print the negated
3727 value).
3728- ``M``: A power of two or a integer between 0 and 32.
3729- ``N``: Invalid immediate constraint.
3730- ``O``: Invalid immediate constraint.
3731- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3732- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3733 as ``r``.
3734- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3735 invalid.
3736- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3737 ``d0-d31``, or ``q0-q15``.
3738- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3739 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003740- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3741 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003742
3743ARM's Thumb1 mode:
3744
3745- ``I``: An immediate integer between 0 and 255.
3746- ``J``: An immediate integer between -255 and -1.
3747- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3748 some amount.
3749- ``L``: An immediate integer between -7 and 7.
3750- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3751- ``N``: An immediate integer between 0 and 31.
3752- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3753- ``r``: A low 32-bit GPR register (``r0-r7``).
3754- ``l``: A low 32-bit GPR register (``r0-r7``).
3755- ``h``: A high GPR register (``r0-r7``).
3756- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3757 ``d0-d31``, or ``q0-q15``.
3758- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3759 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003760- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3761 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003762
3763
3764Hexagon:
3765
3766- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3767 at the moment.
3768- ``r``: A 32 or 64-bit register.
3769
3770MSP430:
3771
3772- ``r``: An 8 or 16-bit register.
3773
3774MIPS:
3775
3776- ``I``: An immediate signed 16-bit integer.
3777- ``J``: An immediate integer zero.
3778- ``K``: An immediate unsigned 16-bit integer.
3779- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3780- ``N``: An immediate integer between -65535 and -1.
3781- ``O``: An immediate signed 15-bit integer.
3782- ``P``: An immediate integer between 1 and 65535.
3783- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3784 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3785- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3786 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3787 ``m``.
3788- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3789 ``sc`` instruction on the given subtarget (details vary).
3790- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3791- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003792 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3793 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003794- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3795 ``25``).
3796- ``l``: The ``lo`` register, 32 or 64-bit.
3797- ``x``: Invalid.
3798
3799NVPTX:
3800
3801- ``b``: A 1-bit integer register.
3802- ``c`` or ``h``: A 16-bit integer register.
3803- ``r``: A 32-bit integer register.
3804- ``l`` or ``N``: A 64-bit integer register.
3805- ``f``: A 32-bit float register.
3806- ``d``: A 64-bit float register.
3807
3808
3809PowerPC:
3810
3811- ``I``: An immediate signed 16-bit integer.
3812- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3813- ``K``: An immediate unsigned 16-bit integer.
3814- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3815- ``M``: An immediate integer greater than 31.
3816- ``N``: An immediate integer that is an exact power of 2.
3817- ``O``: The immediate integer constant 0.
3818- ``P``: An immediate integer constant whose negation is a signed 16-bit
3819 constant.
3820- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3821 treated the same as ``m``.
3822- ``r``: A 32 or 64-bit integer register.
3823- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3824 ``R1-R31``).
3825- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3826 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3827- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3828 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3829 altivec vector register (``V0-V31``).
3830
3831 .. FIXME: is this a bug that v accepts QPX registers? I think this
3832 is supposed to only use the altivec vector registers?
3833
3834- ``y``: Condition register (``CR0-CR7``).
3835- ``wc``: An individual CR bit in a CR register.
3836- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3837 register set (overlapping both the floating-point and vector register files).
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003838- ``ws``: A 32 or 64-bit floating-point register, from the full VSX register
James Y Knightbc832ed2015-07-08 18:08:36 +00003839 set.
3840
3841Sparc:
3842
3843- ``I``: An immediate 13-bit signed integer.
3844- ``r``: A 32-bit integer register.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003845- ``f``: Any floating-point register on SparcV8, or a floating-point
James Y Knightd4e1b002017-05-12 15:59:10 +00003846 register in the "low" half of the registers on SparcV9.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003847- ``e``: Any floating-point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003848
3849SystemZ:
3850
3851- ``I``: An immediate unsigned 8-bit integer.
3852- ``J``: An immediate unsigned 12-bit integer.
3853- ``K``: An immediate signed 16-bit integer.
3854- ``L``: An immediate signed 20-bit integer.
3855- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003856- ``Q``: A memory address operand with a base address and a 12-bit immediate
3857 unsigned displacement.
3858- ``R``: A memory address operand with a base address, a 12-bit immediate
3859 unsigned displacement, and an index register.
3860- ``S``: A memory address operand with a base address and a 20-bit immediate
3861 signed displacement.
3862- ``T``: A memory address operand with a base address, a 20-bit immediate
3863 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003864- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3865- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3866 address context evaluates as zero).
3867- ``h``: A 32-bit value in the high part of a 64bit data register
3868 (LLVM-specific)
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003869- ``f``: A 32, 64, or 128-bit floating-point register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003870
3871X86:
3872
3873- ``I``: An immediate integer between 0 and 31.
3874- ``J``: An immediate integer between 0 and 64.
3875- ``K``: An immediate signed 8-bit integer.
3876- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3877 0xffffffff.
3878- ``M``: An immediate integer between 0 and 3.
3879- ``N``: An immediate unsigned 8-bit integer.
3880- ``O``: An immediate integer between 0 and 127.
3881- ``e``: An immediate 32-bit signed integer.
3882- ``Z``: An immediate 32-bit unsigned integer.
3883- ``o``, ``v``: Treated the same as ``m``, at the moment.
3884- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3885 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3886 registers, and on X86-64, it is all of the integer registers.
3887- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3888 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3889- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3890- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3891 existed since i386, and can be accessed without the REX prefix.
3892- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3893- ``y``: A 64-bit MMX register, if MMX is enabled.
3894- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3895 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3896 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3897 512-bit vector operand in an AVX512 register, Otherwise, an error.
3898- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3899- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3900 32-bit mode, a 64-bit integer operand will get split into two registers). It
3901 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3902 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3903 you're better off splitting it yourself, before passing it to the asm
3904 statement.
3905
3906XCore:
3907
3908- ``r``: A 32-bit integer register.
3909
3910
3911.. _inline-asm-modifiers:
3912
3913Asm template argument modifiers
3914^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3915
3916In the asm template string, modifiers can be used on the operand reference, like
3917"``${0:n}``".
3918
3919The modifiers are, in general, expected to behave the same way they do in
3920GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3921inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3922and GCC likely indicates a bug in LLVM.
3923
3924Target-independent:
3925
Sean Silvaa1190322015-08-06 22:56:48 +00003926- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003927 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3928- ``n``: Negate and print immediate integer constant unadorned, without the
3929 target-specific immediate punctuation (e.g. no ``$`` prefix).
3930- ``l``: Print as an unadorned label, without the target-specific label
3931 punctuation (e.g. no ``$`` prefix).
3932
3933AArch64:
3934
3935- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3936 instead of ``x30``, print ``w30``.
3937- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3938- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3939 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3940 ``v*``.
3941
3942AMDGPU:
3943
3944- ``r``: No effect.
3945
3946ARM:
3947
3948- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3949 register).
3950- ``P``: No effect.
3951- ``q``: No effect.
3952- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3953 as ``d4[1]`` instead of ``s9``)
3954- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3955 prefix.
3956- ``L``: Print the low 16-bits of an immediate integer constant.
3957- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3958 register operands subsequent to the specified one (!), so use carefully.
3959- ``Q``: Print the low-order register of a register-pair, or the low-order
3960 register of a two-register operand.
3961- ``R``: Print the high-order register of a register-pair, or the high-order
3962 register of a two-register operand.
3963- ``H``: Print the second register of a register-pair. (On a big-endian system,
3964 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3965 to ``R``.)
3966
3967 .. FIXME: H doesn't currently support printing the second register
3968 of a two-register operand.
3969
3970- ``e``: Print the low doubleword register of a NEON quad register.
3971- ``f``: Print the high doubleword register of a NEON quad register.
3972- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3973 adornment.
3974
3975Hexagon:
3976
3977- ``L``: Print the second register of a two-register operand. Requires that it
3978 has been allocated consecutively to the first.
3979
3980 .. FIXME: why is it restricted to consecutive ones? And there's
3981 nothing that ensures that happens, is there?
3982
3983- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3984 nothing. Used to print 'addi' vs 'add' instructions.
3985
3986MSP430:
3987
3988No additional modifiers.
3989
3990MIPS:
3991
3992- ``X``: Print an immediate integer as hexadecimal
3993- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3994- ``d``: Print an immediate integer as decimal.
3995- ``m``: Subtract one and print an immediate integer as decimal.
3996- ``z``: Print $0 if an immediate zero, otherwise print normally.
3997- ``L``: Print the low-order register of a two-register operand, or prints the
3998 address of the low-order word of a double-word memory operand.
3999
4000 .. FIXME: L seems to be missing memory operand support.
4001
4002- ``M``: Print the high-order register of a two-register operand, or prints the
4003 address of the high-order word of a double-word memory operand.
4004
4005 .. FIXME: M seems to be missing memory operand support.
4006
4007- ``D``: Print the second register of a two-register operand, or prints the
4008 second word of a double-word memory operand. (On a big-endian system, ``D`` is
4009 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
4010 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00004011- ``w``: No effect. Provided for compatibility with GCC which requires this
4012 modifier in order to print MSA registers (``W0-W31``) with the ``f``
4013 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00004014
4015NVPTX:
4016
4017- ``r``: No effect.
4018
4019PowerPC:
4020
4021- ``L``: Print the second register of a two-register operand. Requires that it
4022 has been allocated consecutively to the first.
4023
4024 .. FIXME: why is it restricted to consecutive ones? And there's
4025 nothing that ensures that happens, is there?
4026
4027- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4028 nothing. Used to print 'addi' vs 'add' instructions.
4029- ``y``: For a memory operand, prints formatter for a two-register X-form
4030 instruction. (Currently always prints ``r0,OPERAND``).
4031- ``U``: Prints 'u' if the memory operand is an update form, and nothing
4032 otherwise. (NOTE: LLVM does not support update form, so this will currently
4033 always print nothing)
4034- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
4035 not support indexed form, so this will currently always print nothing)
4036
4037Sparc:
4038
4039- ``r``: No effect.
4040
4041SystemZ:
4042
4043SystemZ implements only ``n``, and does *not* support any of the other
4044target-independent modifiers.
4045
4046X86:
4047
4048- ``c``: Print an unadorned integer or symbol name. (The latter is
4049 target-specific behavior for this typically target-independent modifier).
4050- ``A``: Print a register name with a '``*``' before it.
4051- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
4052 operand.
4053- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
4054 memory operand.
4055- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
4056 operand.
4057- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
4058 operand.
4059- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
4060 available, otherwise the 32-bit register name; do nothing on a memory operand.
4061- ``n``: Negate and print an unadorned integer, or, for operands other than an
4062 immediate integer (e.g. a relocatable symbol expression), print a '-' before
4063 the operand. (The behavior for relocatable symbol expressions is a
4064 target-specific behavior for this typically target-independent modifier)
4065- ``H``: Print a memory reference with additional offset +8.
4066- ``P``: Print a memory reference or operand for use as the argument of a call
4067 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
4068
4069XCore:
4070
4071No additional modifiers.
4072
4073
Sean Silvab084af42012-12-07 10:36:55 +00004074Inline Asm Metadata
4075^^^^^^^^^^^^^^^^^^^
4076
4077The call instructions that wrap inline asm nodes may have a
4078"``!srcloc``" MDNode attached to it that contains a list of constant
4079integers. If present, the code generator will use the integer as the
4080location cookie value when report errors through the ``LLVMContext``
4081error reporting mechanisms. This allows a front-end to correlate backend
4082errors that occur with inline asm back to the source code that produced
4083it. For example:
4084
4085.. code-block:: llvm
4086
4087 call void asm sideeffect "something bad", ""(), !srcloc !42
4088 ...
4089 !42 = !{ i32 1234567 }
4090
4091It is up to the front-end to make sense of the magic numbers it places
4092in the IR. If the MDNode contains multiple constants, the code generator
4093will use the one that corresponds to the line of the asm that the error
4094occurs on.
4095
4096.. _metadata:
4097
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004098Metadata
4099========
Sean Silvab084af42012-12-07 10:36:55 +00004100
4101LLVM IR allows metadata to be attached to instructions in the program
4102that can convey extra information about the code to the optimizers and
4103code generator. One example application of metadata is source-level
4104debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004105
Sean Silvaa1190322015-08-06 22:56:48 +00004106Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004107``call`` instruction, it uses the ``metadata`` type.
4108
4109All metadata are identified in syntax by a exclamation point ('``!``').
4110
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004111.. _metadata-string:
4112
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004113Metadata Nodes and Metadata Strings
4114-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00004115
4116A metadata string is a string surrounded by double quotes. It can
4117contain any character by escaping non-printable characters with
4118"``\xx``" where "``xx``" is the two digit hex code. For example:
4119"``!"test\00"``".
4120
4121Metadata nodes are represented with notation similar to structure
4122constants (a comma separated list of elements, surrounded by braces and
4123preceded by an exclamation point). Metadata nodes can have any values as
4124their operand. For example:
4125
4126.. code-block:: llvm
4127
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004128 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00004129
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004130Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4131
Renato Golin124f2592016-07-20 12:16:38 +00004132.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004133
4134 !0 = distinct !{!"test\00", i32 10}
4135
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004136``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004137content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004138when metadata operands change.
4139
Sean Silvab084af42012-12-07 10:36:55 +00004140A :ref:`named metadata <namedmetadatastructure>` is a collection of
4141metadata nodes, which can be looked up in the module symbol table. For
4142example:
4143
4144.. code-block:: llvm
4145
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004146 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004147
Adrian Prantl1b842da2017-07-28 20:44:29 +00004148Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4149intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004150
4151.. code-block:: llvm
4152
Adrian Prantlabe04752017-07-28 20:21:02 +00004153 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004154
Peter Collingbourne50108682015-11-06 02:41:02 +00004155Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4156to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004157
4158.. code-block:: llvm
4159
4160 %indvar.next = add i64 %indvar, 1, !dbg !21
4161
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004162Metadata can also be attached to a function or a global variable. Here metadata
4163``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4164and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004165
4166.. code-block:: llvm
4167
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004168 declare !dbg !22 void @f1()
4169 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004170 ret void
4171 }
4172
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004173 @g1 = global i32 0, !dbg !22
4174 @g2 = external global i32, !dbg !22
4175
4176A transformation is required to drop any metadata attachment that it does not
4177know or know it can't preserve. Currently there is an exception for metadata
4178attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4179unconditionally dropped unless the global is itself deleted.
4180
4181Metadata attached to a module using named metadata may not be dropped, with
4182the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4183
Sean Silvab084af42012-12-07 10:36:55 +00004184More information about specific metadata nodes recognized by the
4185optimizers and code generator is found below.
4186
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004187.. _specialized-metadata:
4188
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004189Specialized Metadata Nodes
4190^^^^^^^^^^^^^^^^^^^^^^^^^^
4191
4192Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004193to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004194order.
4195
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004196These aren't inherently debug info centric, but currently all the specialized
4197metadata nodes are related to debug info.
4198
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004199.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004200
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004201DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004202"""""""""""""
4203
Sean Silvaa1190322015-08-06 22:56:48 +00004204``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004205``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4206containing the debug info to be emitted along with the compile unit, regardless
4207of code optimizations (some nodes are only emitted if there are references to
4208them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4209indicating whether or not line-table discriminators are updated to provide
4210more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004211
Renato Golin124f2592016-07-20 12:16:38 +00004212.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004213
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004214 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004215 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004216 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004217 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4218 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004219
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004220Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004221specific compilation unit. File descriptors are defined using this scope. These
4222descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4223track of global variables, type information, and imported entities (declarations
4224and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004225
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004226.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004227
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004228DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004229""""""
4230
Sean Silvaa1190322015-08-06 22:56:48 +00004231``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004232
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004233.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004234
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004235 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4236 checksumkind: CSK_MD5,
4237 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004238
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004239Files are sometimes used in ``scope:`` fields, and are the only valid target
4240for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004241Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004242
Michael Kuperstein605308a2015-05-14 10:58:59 +00004243.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004244
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004245DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004246"""""""""""
4247
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004248``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004249``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004250
Renato Golin124f2592016-07-20 12:16:38 +00004251.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004252
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004253 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004254 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004255 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004256
Sean Silvaa1190322015-08-06 22:56:48 +00004257The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004258following:
4259
Renato Golin124f2592016-07-20 12:16:38 +00004260.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004261
4262 DW_ATE_address = 1
4263 DW_ATE_boolean = 2
4264 DW_ATE_float = 4
4265 DW_ATE_signed = 5
4266 DW_ATE_signed_char = 6
4267 DW_ATE_unsigned = 7
4268 DW_ATE_unsigned_char = 8
4269
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004270.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004271
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004272DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004273""""""""""""""""
4274
Sean Silvaa1190322015-08-06 22:56:48 +00004275``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004276refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004277types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004278represents a function with no return value (such as ``void foo() {}`` in C++).
4279
Renato Golin124f2592016-07-20 12:16:38 +00004280.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004281
4282 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4283 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004284 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004285
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004286.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004287
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004288DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004289"""""""""""""
4290
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004291``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004292qualified types.
4293
Renato Golin124f2592016-07-20 12:16:38 +00004294.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004295
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004296 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004297 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004298 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004299 align: 32)
4300
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004301The following ``tag:`` values are valid:
4302
Renato Golin124f2592016-07-20 12:16:38 +00004303.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004304
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004305 DW_TAG_member = 13
4306 DW_TAG_pointer_type = 15
4307 DW_TAG_reference_type = 16
4308 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004309 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004310 DW_TAG_ptr_to_member_type = 31
4311 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004312 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004313 DW_TAG_volatile_type = 53
4314 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004315 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004316
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004317.. _DIDerivedTypeMember:
4318
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004319``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004320<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004321``offset:`` is the member's bit offset. If the composite type has an ODR
4322``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4323uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004324
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004325``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4326field of :ref:`composite types <DICompositeType>` to describe parents and
4327friends.
4328
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004329``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4330
4331``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004332``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4333are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004334
4335Note that the ``void *`` type is expressed as a type derived from NULL.
4336
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004337.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004338
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004339DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004340"""""""""""""""
4341
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004342``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004343structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004344
4345If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004346identifier used for type merging between modules. When specified,
4347:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4348derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4349``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004350
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004351For a given ``identifier:``, there should only be a single composite type that
4352does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4353together will unique such definitions at parse time via the ``identifier:``
4354field, even if the nodes are ``distinct``.
4355
Renato Golin124f2592016-07-20 12:16:38 +00004356.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004357
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004358 !0 = !DIEnumerator(name: "SixKind", value: 7)
4359 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4360 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4361 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004362 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4363 elements: !{!0, !1, !2})
4364
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004365The following ``tag:`` values are valid:
4366
Renato Golin124f2592016-07-20 12:16:38 +00004367.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004368
4369 DW_TAG_array_type = 1
4370 DW_TAG_class_type = 2
4371 DW_TAG_enumeration_type = 4
4372 DW_TAG_structure_type = 19
4373 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004374
4375For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004376descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004377level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004378array type is a native packed vector.
4379
4380For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004381descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004382value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004383``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004384
4385For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4386``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004387<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4388``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4389``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004390
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004391.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004392
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004393DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004394""""""""""
4395
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004396``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sander de Smalen1cb94312018-01-24 10:30:23 +00004397:ref:`DICompositeType`.
4398
4399- ``count: -1`` indicates an empty array.
4400- ``count: !9`` describes the count with a :ref:`DILocalVariable`.
4401- ``count: !11`` describes the count with a :ref:`DIGlobalVariable`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004402
4403.. code-block:: llvm
4404
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004405 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4406 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4407 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004408
Sander de Smalenfdf40912018-01-24 09:56:07 +00004409 ; Scopes used in rest of example
4410 !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
4411 !7 = distinct !DICompileUnit(language: DW_LANG_C99, ...
4412 !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5, ...
4413
4414 ; Use of local variable as count value
4415 !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
4416 !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
4417 !11 = !DISubrange(count !10, lowerBound: 0)
4418
4419 ; Use of global variable as count value
4420 !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
4421 !13 = !DISubrange(count !12, lowerBound: 0)
4422
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004423.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004424
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004425DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004426""""""""""""
4427
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004428``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4429variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004430
4431.. code-block:: llvm
4432
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004433 !0 = !DIEnumerator(name: "SixKind", value: 7)
4434 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4435 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004436
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004437DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004438"""""""""""""""""""""""
4439
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004440``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004441language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004442:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004443
4444.. code-block:: llvm
4445
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004446 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004447
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004448DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004449""""""""""""""""""""""""
4450
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004451``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004452language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004453but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004454``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004455:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004456
4457.. code-block:: llvm
4458
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004459 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004460
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004461DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004462"""""""""""
4463
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004464``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004465
4466.. code-block:: llvm
4467
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004468 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004469
Sander de Smalen1cb94312018-01-24 10:30:23 +00004470.. _DIGlobalVariable:
4471
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004472DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004473""""""""""""""""
4474
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004475``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004476
4477.. code-block:: llvm
4478
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004479 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004480 file: !2, line: 7, type: !3, isLocal: true,
4481 isDefinition: false, variable: i32* @foo,
4482 declaration: !4)
4483
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004484All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004485:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004486
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004487.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004488
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004489DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004490""""""""""""
4491
Peter Collingbourne50108682015-11-06 02:41:02 +00004492``DISubprogram`` nodes represent functions from the source language. A
4493``DISubprogram`` may be attached to a function definition using ``!dbg``
4494metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4495that must be retained, even if their IR counterparts are optimized out of
4496the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004497
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004498.. _DISubprogramDeclaration:
4499
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004500When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004501tree as opposed to a definition of a function. If the scope is a composite
4502type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4503then the subprogram declaration is uniqued based only on its ``linkageName:``
4504and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004505
Renato Golin124f2592016-07-20 12:16:38 +00004506.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004507
Peter Collingbourne50108682015-11-06 02:41:02 +00004508 define void @_Z3foov() !dbg !0 {
4509 ...
4510 }
4511
4512 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4513 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004514 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004515 containingType: !4,
4516 virtuality: DW_VIRTUALITY_pure_virtual,
4517 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004518 isOptimized: true, unit: !5, templateParams: !6,
4519 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004520
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004521.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004522
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004523DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004524""""""""""""""
4525
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004526``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004527<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004528two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004529fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004530
Renato Golin124f2592016-07-20 12:16:38 +00004531.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004532
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004533 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004534
4535Usually lexical blocks are ``distinct`` to prevent node merging based on
4536operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004537
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004538.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004539
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004540DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004541""""""""""""""""""
4542
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004543``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004544:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004545indicate textual inclusion, or the ``discriminator:`` field can be used to
4546discriminate between control flow within a single block in the source language.
4547
4548.. code-block:: llvm
4549
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004550 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4551 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4552 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004553
Michael Kuperstein605308a2015-05-14 10:58:59 +00004554.. _DILocation:
4555
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004556DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004557""""""""""
4558
Sean Silvaa1190322015-08-06 22:56:48 +00004559``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004560mandatory, and points at an :ref:`DILexicalBlockFile`, an
4561:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004562
4563.. code-block:: llvm
4564
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004565 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004566
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004567.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004568
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004569DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004570"""""""""""""""
4571
Sean Silvaa1190322015-08-06 22:56:48 +00004572``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004573the ``arg:`` field is set to non-zero, then this variable is a subprogram
4574parameter, and it will be included in the ``variables:`` field of its
4575:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004576
Renato Golin124f2592016-07-20 12:16:38 +00004577.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004578
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004579 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4580 type: !3, flags: DIFlagArtificial)
4581 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4582 type: !3)
4583 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004584
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004585DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004586""""""""""""
4587
Adrian Prantlb44c7762017-03-22 18:01:01 +00004588``DIExpression`` nodes represent expressions that are inspired by the DWARF
4589expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4590(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
4591referenced LLVM variable relates to the source language variable.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004592
4593The current supported vocabulary is limited:
4594
Adrian Prantl6825fb62017-04-18 01:21:53 +00004595- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004596- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4597 them together and appends the result to the expression stack.
4598- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4599 the last entry from the second last entry and appends the result to the
4600 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004601- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004602- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4603 here, respectively) of the variable fragment from the working expression. Note
Hiroshi Inoue760c0c92018-01-16 13:19:48 +00004604 that contrary to DW_OP_bit_piece, the offset is describing the location
Adrian Prantlb44c7762017-03-22 18:01:01 +00004605 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004606- ``DW_OP_swap`` swaps top two stack entries.
4607- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4608 of the stack is treated as an address. The second stack entry is treated as an
4609 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004610- ``DW_OP_stack_value`` marks a constant value.
4611
Adrian Prantl6825fb62017-04-18 01:21:53 +00004612DWARF specifies three kinds of simple location descriptions: Register, memory,
4613and implicit location descriptions. Register and memory location descriptions
4614describe the *location* of a source variable (in the sense that a debugger might
4615modify its value), whereas implicit locations describe merely the *value* of a
4616source variable. DIExpressions also follow this model: A DIExpression that
4617doesn't have a trailing ``DW_OP_stack_value`` will describe an *address* when
4618combined with a concrete location.
4619
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004620.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004621
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004622 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004623 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004624 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004625 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004626 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004627 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004628 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004629
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004630DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004631""""""""""""""
4632
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004633``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004634
4635.. code-block:: llvm
4636
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004637 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004638 getter: "getFoo", attributes: 7, type: !2)
4639
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004640DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004641""""""""""""""""
4642
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004643``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004644compile unit.
4645
Renato Golin124f2592016-07-20 12:16:38 +00004646.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004647
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004648 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004649 entity: !1, line: 7)
4650
Amjad Abouda9bcf162015-12-10 12:56:35 +00004651DIMacro
4652"""""""
4653
4654``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4655The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004656defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004657used to expand the macro identifier.
4658
Renato Golin124f2592016-07-20 12:16:38 +00004659.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004660
4661 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4662 value: "((x) + 1)")
4663 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4664
4665DIMacroFile
4666"""""""""""
4667
4668``DIMacroFile`` nodes represent inclusion of source files.
4669The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4670appear in the included source file.
4671
Renato Golin124f2592016-07-20 12:16:38 +00004672.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004673
4674 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4675 nodes: !3)
4676
Sean Silvab084af42012-12-07 10:36:55 +00004677'``tbaa``' Metadata
4678^^^^^^^^^^^^^^^^^^^
4679
4680In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004681suitable for doing type based alias analysis (TBAA). Instead, metadata is
4682added to the IR to describe a type system of a higher level language. This
4683can be used to implement C/C++ strict type aliasing rules, but it can also
4684be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004685
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004686This description of LLVM's TBAA system is broken into two parts:
4687:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4688:ref:`Representation<tbaa_node_representation>` talks about the metadata
4689encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004690
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004691It is always possible to trace any TBAA node to a "root" TBAA node (details
4692in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4693nodes with different roots have an unknown aliasing relationship, and LLVM
4694conservatively infers ``MayAlias`` between them. The rules mentioned in
4695this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004696
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004697.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004698
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004699Semantics
4700"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004701
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004702The TBAA metadata system, referred to as "struct path TBAA" (not to be
4703confused with ``tbaa.struct``), consists of the following high level
4704concepts: *Type Descriptors*, further subdivided into scalar type
4705descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004706
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004707**Type descriptors** describe the type system of the higher level language
4708being compiled. **Scalar type descriptors** describe types that do not
4709contain other types. Each scalar type has a parent type, which must also
4710be a scalar type or the TBAA root. Via this parent relation, scalar types
4711within a TBAA root form a tree. **Struct type descriptors** denote types
4712that contain a sequence of other type descriptors, at known offsets. These
4713contained type descriptors can either be struct type descriptors themselves
4714or scalar type descriptors.
4715
4716**Access tags** are metadata nodes attached to load and store instructions.
4717Access tags use type descriptors to describe the *location* being accessed
4718in terms of the type system of the higher level language. Access tags are
4719tuples consisting of a base type, an access type and an offset. The base
4720type is a scalar type descriptor or a struct type descriptor, the access
4721type is a scalar type descriptor, and the offset is a constant integer.
4722
4723The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4724things:
4725
4726 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4727 or store) of a value of type ``AccessTy`` contained in the struct type
4728 ``BaseTy`` at offset ``Offset``.
4729
4730 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4731 ``AccessTy`` must be the same; and the access tag describes a scalar
4732 access with scalar type ``AccessTy``.
4733
4734We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4735tuples this way:
4736
4737 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4738 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4739 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4740 undefined if ``Offset`` is non-zero.
4741
4742 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4743 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4744 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4745 to be relative within that inner type.
4746
4747A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4748aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4749Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4750Offset2)`` via the ``Parent`` relation or vice versa.
4751
4752As a concrete example, the type descriptor graph for the following program
4753
4754.. code-block:: c
4755
4756 struct Inner {
4757 int i; // offset 0
4758 float f; // offset 4
4759 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004760
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004761 struct Outer {
4762 float f; // offset 0
4763 double d; // offset 4
4764 struct Inner inner_a; // offset 12
4765 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004766
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004767 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4768 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4769 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
Fangrui Song74d6a742018-05-29 05:38:05 +00004770 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, FloatScalarTy, 16)
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004771 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4772 }
4773
4774is (note that in C and C++, ``char`` can be used to access any arbitrary
4775type):
4776
4777.. code-block:: text
4778
4779 Root = "TBAA Root"
4780 CharScalarTy = ("char", Root, 0)
4781 FloatScalarTy = ("float", CharScalarTy, 0)
4782 DoubleScalarTy = ("double", CharScalarTy, 0)
4783 IntScalarTy = ("int", CharScalarTy, 0)
4784 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4785 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4786 (InnerStructTy, 12)}
4787
4788
4789with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
47900)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4791``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4792
4793.. _tbaa_node_representation:
4794
4795Representation
4796""""""""""""""
4797
4798The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4799with exactly one ``MDString`` operand.
4800
4801Scalar type descriptors are represented as an ``MDNode`` s with two
4802operands. The first operand is an ``MDString`` denoting the name of the
4803struct type. LLVM does not assign meaning to the value of this operand, it
4804only cares about it being an ``MDString``. The second operand is an
4805``MDNode`` which points to the parent for said scalar type descriptor,
4806which is either another scalar type descriptor or the TBAA root. Scalar
4807type descriptors can have an optional third argument, but that must be the
4808constant integer zero.
4809
4810Struct type descriptors are represented as ``MDNode`` s with an odd number
4811of operands greater than 1. The first operand is an ``MDString`` denoting
4812the name of the struct type. Like in scalar type descriptors the actual
4813value of this name operand is irrelevant to LLVM. After the name operand,
4814the struct type descriptors have a sequence of alternating ``MDNode`` and
4815``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4816an ``MDNode``, denotes a contained field, and the 2N th operand, a
4817``ConstantInt``, is the offset of the said contained field. The offsets
4818must be in non-decreasing order.
4819
4820Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4821The first operand is an ``MDNode`` pointing to the node representing the
4822base type. The second operand is an ``MDNode`` pointing to the node
4823representing the access type. The third operand is a ``ConstantInt`` that
4824states the offset of the access. If a fourth field is present, it must be
4825a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4826that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004827``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004828AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4829the access type and the base type of an access tag must be the same, and
4830that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004831
4832'``tbaa.struct``' Metadata
4833^^^^^^^^^^^^^^^^^^^^^^^^^^
4834
4835The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4836aggregate assignment operations in C and similar languages, however it
4837is defined to copy a contiguous region of memory, which is more than
4838strictly necessary for aggregate types which contain holes due to
4839padding. Also, it doesn't contain any TBAA information about the fields
4840of the aggregate.
4841
4842``!tbaa.struct`` metadata can describe which memory subregions in a
4843memcpy are padding and what the TBAA tags of the struct are.
4844
4845The current metadata format is very simple. ``!tbaa.struct`` metadata
4846nodes are a list of operands which are in conceptual groups of three.
4847For each group of three, the first operand gives the byte offset of a
4848field in bytes, the second gives its size in bytes, and the third gives
4849its tbaa tag. e.g.:
4850
4851.. code-block:: llvm
4852
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004853 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004854
4855This describes a struct with two fields. The first is at offset 0 bytes
4856with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4857and has size 4 bytes and has tbaa tag !2.
4858
4859Note that the fields need not be contiguous. In this example, there is a
48604 byte gap between the two fields. This gap represents padding which
4861does not carry useful data and need not be preserved.
4862
Hal Finkel94146652014-07-24 14:25:39 +00004863'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004864^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004865
4866``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4867noalias memory-access sets. This means that some collection of memory access
4868instructions (loads, stores, memory-accessing calls, etc.) that carry
4869``noalias`` metadata can specifically be specified not to alias with some other
4870collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004871Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004872a domain.
4873
4874When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004875of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004876subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004877instruction's ``noalias`` list, then the two memory accesses are assumed not to
4878alias.
Hal Finkel94146652014-07-24 14:25:39 +00004879
Adam Nemet569a5b32016-04-27 00:52:48 +00004880Because scopes in one domain don't affect scopes in other domains, separate
4881domains can be used to compose multiple independent noalias sets. This is
4882used for example during inlining. As the noalias function parameters are
4883turned into noalias scope metadata, a new domain is used every time the
4884function is inlined.
4885
Hal Finkel029cde62014-07-25 15:50:02 +00004886The metadata identifying each domain is itself a list containing one or two
4887entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004888string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004889self-reference can be used to create globally unique domain names. A
4890descriptive string may optionally be provided as a second list entry.
4891
4892The metadata identifying each scope is also itself a list containing two or
4893three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004894is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004895self-reference can be used to create globally unique scope names. A metadata
4896reference to the scope's domain is the second entry. A descriptive string may
4897optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004898
4899For example,
4900
4901.. code-block:: llvm
4902
Hal Finkel029cde62014-07-25 15:50:02 +00004903 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004904 !0 = !{!0}
4905 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004906
Hal Finkel029cde62014-07-25 15:50:02 +00004907 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004908 !2 = !{!2, !0}
4909 !3 = !{!3, !0}
4910 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004911
Hal Finkel029cde62014-07-25 15:50:02 +00004912 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004913 !5 = !{!4} ; A list containing only scope !4
4914 !6 = !{!4, !3, !2}
4915 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004916
4917 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004918 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004919 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004920
Hal Finkel029cde62014-07-25 15:50:02 +00004921 ; These two instructions also don't alias (for domain !1, the set of scopes
4922 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004923 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004924 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004925
Adam Nemet0a8416f2015-05-11 08:30:28 +00004926 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004927 ; the !noalias list is not a superset of, or equal to, the scopes in the
4928 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004929 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004930 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004931
Sean Silvab084af42012-12-07 10:36:55 +00004932'``fpmath``' Metadata
4933^^^^^^^^^^^^^^^^^^^^^
4934
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00004935``fpmath`` metadata may be attached to any instruction of floating-point
Sean Silvab084af42012-12-07 10:36:55 +00004936type. It can be used to express the maximum acceptable error in the
4937result of that instruction, in ULPs, thus potentially allowing the
4938compiler to use a more efficient but less accurate method of computing
4939it. ULP is defined as follows:
4940
4941 If ``x`` is a real number that lies between two finite consecutive
4942 floating-point numbers ``a`` and ``b``, without being equal to one
4943 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4944 distance between the two non-equal finite floating-point numbers
4945 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4946
Matt Arsenault82f41512016-06-27 19:43:15 +00004947The metadata node shall consist of a single positive float type number
4948representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004949
4950.. code-block:: llvm
4951
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004952 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004953
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004954.. _range-metadata:
4955
Sean Silvab084af42012-12-07 10:36:55 +00004956'``range``' Metadata
4957^^^^^^^^^^^^^^^^^^^^
4958
Jingyue Wu37fcb592014-06-19 16:50:16 +00004959``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4960integer types. It expresses the possible ranges the loaded value or the value
Eli Friedmane15a1112018-07-17 20:38:11 +00004961returned by the called function at this call site is in. If the loaded or
4962returned value is not in the specified range, the behavior is undefined. The
4963ranges are represented with a flattened list of integers. The loaded value or
4964the value returned is known to be in the union of the ranges defined by each
4965consecutive pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004966
4967- The type must match the type loaded by the instruction.
4968- The pair ``a,b`` represents the range ``[a,b)``.
4969- Both ``a`` and ``b`` are constants.
4970- The range is allowed to wrap.
4971- The range should not represent the full or empty set. That is,
4972 ``a!=b``.
4973
4974In addition, the pairs must be in signed order of the lower bound and
4975they must be non-contiguous.
4976
4977Examples:
4978
4979.. code-block:: llvm
4980
David Blaikiec7aabbb2015-03-04 22:06:14 +00004981 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4982 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004983 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4984 %d = invoke i8 @bar() to label %cont
4985 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004986 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004987 !0 = !{ i8 0, i8 2 }
4988 !1 = !{ i8 255, i8 2 }
4989 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4990 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004991
Peter Collingbourne235c2752016-12-08 19:01:00 +00004992'``absolute_symbol``' Metadata
4993^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4994
4995``absolute_symbol`` metadata may be attached to a global variable
4996declaration. It marks the declaration as a reference to an absolute symbol,
4997which causes the backend to use absolute relocations for the symbol even
4998in position independent code, and expresses the possible ranges that the
4999global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00005000``range`` metadata, with the extension that the pair ``all-ones,all-ones``
5001may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00005002
Peter Collingbourned88f9282017-01-20 21:56:37 +00005003Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00005004
5005.. code-block:: llvm
5006
5007 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00005008 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00005009
5010 ...
5011 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00005012 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00005013
Matthew Simpson36bbc8c2017-10-16 22:22:11 +00005014'``callees``' Metadata
5015^^^^^^^^^^^^^^^^^^^^^^
5016
5017``callees`` metadata may be attached to indirect call sites. If ``callees``
5018metadata is attached to a call site, and any callee is not among the set of
5019functions provided by the metadata, the behavior is undefined. The intent of
5020this metadata is to facilitate optimizations such as indirect-call promotion.
5021For example, in the code below, the call instruction may only target the
5022``add`` or ``sub`` functions:
5023
5024.. code-block:: llvm
5025
5026 %result = call i64 %binop(i64 %x, i64 %y), !callees !0
5027
5028 ...
5029 !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
5030
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005031'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00005032^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005033
5034``unpredictable`` metadata may be attached to any branch or switch
5035instruction. It can be used to express the unpredictability of control
5036flow. Similar to the llvm.expect intrinsic, it may be used to alter
5037optimizations related to compare and branch instructions. The metadata
5038is treated as a boolean value; if it exists, it signals that the branch
5039or switch that it is attached to is completely unpredictable.
5040
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005041'``llvm.loop``'
5042^^^^^^^^^^^^^^^
5043
5044It is sometimes useful to attach information to loop constructs. Currently,
5045loop metadata is implemented as metadata attached to the branch instruction
5046in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00005047guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00005048specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005049
5050The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00005051itself to avoid merging it with any other identifier metadata, e.g.,
5052during module linkage or function inlining. That is, each loop should refer
5053to their own identification metadata even if they reside in separate functions.
5054The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005055constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005056
5057.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00005058
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005059 !0 = !{!0}
5060 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005061
Mark Heffernan893752a2014-07-18 19:24:51 +00005062The loop identifier metadata can be used to specify additional
5063per-loop metadata. Any operands after the first operand can be treated
5064as user-defined metadata. For example the ``llvm.loop.unroll.count``
5065suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005066
Paul Redmond5fdf8362013-05-28 20:00:34 +00005067.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005068
Paul Redmond5fdf8362013-05-28 20:00:34 +00005069 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
5070 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005071 !0 = !{!0, !1}
5072 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005073
Mark Heffernan9d20e422014-07-21 23:11:03 +00005074'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
5075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00005076
Mark Heffernan9d20e422014-07-21 23:11:03 +00005077Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
5078used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00005079vectorization width and interleave count. These metadata should be used in
5080conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00005081``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
5082optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00005083it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00005084which contains information about loop-carried memory dependencies can be helpful
5085in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00005086
Mark Heffernan9d20e422014-07-21 23:11:03 +00005087'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00005088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5089
Mark Heffernan9d20e422014-07-21 23:11:03 +00005090This metadata suggests an interleave count to the loop interleaver.
5091The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00005092second operand is an integer specifying the interleave count. For
5093example:
5094
5095.. code-block:: llvm
5096
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005097 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005098
Mark Heffernan9d20e422014-07-21 23:11:03 +00005099Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00005100multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00005101then the interleave count will be determined automatically.
5102
5103'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00005104^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00005105
5106This metadata selectively enables or disables vectorization for the loop. The
5107first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00005108is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000051090 disables vectorization:
5110
5111.. code-block:: llvm
5112
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005113 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5114 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00005115
5116'``llvm.loop.vectorize.width``' Metadata
5117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5118
5119This metadata sets the target width of the vectorizer. The first
5120operand is the string ``llvm.loop.vectorize.width`` and the second
5121operand is an integer specifying the width. For example:
5122
5123.. code-block:: llvm
5124
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005125 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005126
5127Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00005128vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000051290 or if the loop does not have this metadata the width will be
5130determined automatically.
5131
5132'``llvm.loop.unroll``'
5133^^^^^^^^^^^^^^^^^^^^^^
5134
5135Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5136optimization hints such as the unroll factor. ``llvm.loop.unroll``
5137metadata should be used in conjunction with ``llvm.loop`` loop
5138identification metadata. The ``llvm.loop.unroll`` metadata are only
5139optimization hints and the unrolling will only be performed if the
5140optimizer believes it is safe to do so.
5141
Mark Heffernan893752a2014-07-18 19:24:51 +00005142'``llvm.loop.unroll.count``' Metadata
5143^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5144
5145This metadata suggests an unroll factor to the loop unroller. The
5146first operand is the string ``llvm.loop.unroll.count`` and the second
5147operand is a positive integer specifying the unroll factor. For
5148example:
5149
5150.. code-block:: llvm
5151
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005152 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005153
5154If the trip count of the loop is less than the unroll count the loop
5155will be partially unrolled.
5156
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005157'``llvm.loop.unroll.disable``' Metadata
5158^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5159
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005160This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00005161which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005162
5163.. code-block:: llvm
5164
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005165 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005166
Kevin Qin715b01e2015-03-09 06:14:18 +00005167'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00005168^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00005169
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005170This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005171operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005172
5173.. code-block:: llvm
5174
5175 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5176
Mark Heffernan89391542015-08-10 17:28:08 +00005177'``llvm.loop.unroll.enable``' Metadata
5178^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5179
5180This metadata suggests that the loop should be fully unrolled if the trip count
5181is known at compile time and partially unrolled if the trip count is not known
5182at compile time. The metadata has a single operand which is the string
5183``llvm.loop.unroll.enable``. For example:
5184
5185.. code-block:: llvm
5186
5187 !0 = !{!"llvm.loop.unroll.enable"}
5188
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005189'``llvm.loop.unroll.full``' Metadata
5190^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5191
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005192This metadata suggests that the loop should be unrolled fully. The
5193metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005194For example:
5195
5196.. code-block:: llvm
5197
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005198 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005199
David Green7fbf06c2018-07-19 12:37:00 +00005200'``llvm.loop.unroll_and_jam``'
5201^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5202
5203This metadata is treated very similarly to the ``llvm.loop.unroll`` metadata
5204above, but affect the unroll and jam pass. In addition any loop with
5205``llvm.loop.unroll`` metadata but no ``llvm.loop.unroll_and_jam`` metadata will
5206disable unroll and jam (so ``llvm.loop.unroll`` metadata will be left to the
5207unroller, plus ``llvm.loop.unroll.disable`` metadata will disable unroll and jam
5208too.)
5209
5210The metadata for unroll and jam otherwise is the same as for ``unroll``.
5211``llvm.loop.unroll_and_jam.enable``, ``llvm.loop.unroll_and_jam.disable`` and
5212``llvm.loop.unroll_and_jam.count`` do the same as for unroll.
5213``llvm.loop.unroll_and_jam.full`` is not supported. Again these are only hints
5214and the normal safety checks will still be performed.
5215
5216'``llvm.loop.unroll_and_jam.count``' Metadata
5217^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5218
5219This metadata suggests an unroll and jam factor to use, similarly to
5220``llvm.loop.unroll.count``. The first operand is the string
5221``llvm.loop.unroll_and_jam.count`` and the second operand is a positive integer
5222specifying the unroll factor. For example:
5223
5224.. code-block:: llvm
5225
5226 !0 = !{!"llvm.loop.unroll_and_jam.count", i32 4}
5227
5228If the trip count of the loop is less than the unroll count the loop
5229will be partially unroll and jammed.
5230
5231'``llvm.loop.unroll_and_jam.disable``' Metadata
5232^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5233
5234This metadata disables loop unroll and jamming. The metadata has a single
5235operand which is the string ``llvm.loop.unroll_and_jam.disable``. For example:
5236
5237.. code-block:: llvm
5238
5239 !0 = !{!"llvm.loop.unroll_and_jam.disable"}
5240
5241'``llvm.loop.unroll_and_jam.enable``' Metadata
5242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5243
5244This metadata suggests that the loop should be fully unroll and jammed if the
5245trip count is known at compile time and partially unrolled if the trip count is
5246not known at compile time. The metadata has a single operand which is the
5247string ``llvm.loop.unroll_and_jam.enable``. For example:
5248
5249.. code-block:: llvm
5250
5251 !0 = !{!"llvm.loop.unroll_and_jam.enable"}
5252
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005253'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005255
5256This metadata indicates that the loop should not be versioned for the purpose
5257of enabling loop-invariant code motion (LICM). The metadata has a single operand
5258which is the string ``llvm.loop.licm_versioning.disable``. For example:
5259
5260.. code-block:: llvm
5261
5262 !0 = !{!"llvm.loop.licm_versioning.disable"}
5263
Adam Nemetd2fa4142016-04-27 05:28:18 +00005264'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005265^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005266
5267Loop distribution allows splitting a loop into multiple loops. Currently,
5268this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005269memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005270dependencies into their own loop.
5271
5272This metadata can be used to selectively enable or disable distribution of the
5273loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5274second operand is a bit. If the bit operand value is 1 distribution is
5275enabled. A value of 0 disables distribution:
5276
5277.. code-block:: llvm
5278
5279 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5280 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5281
5282This metadata should be used in conjunction with ``llvm.loop`` loop
5283identification metadata.
5284
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005285'``llvm.mem``'
5286^^^^^^^^^^^^^^^
5287
5288Metadata types used to annotate memory accesses with information helpful
5289for optimizations are prefixed with ``llvm.mem``.
5290
5291'``llvm.mem.parallel_loop_access``' Metadata
5292^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5293
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005294The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5295or metadata containing a list of loop identifiers for nested loops.
5296The metadata is attached to memory accessing instructions and denotes that
5297no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005298with the same loop identifier. The metadata on memory reads also implies that
5299if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005300
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005301Precisely, given two instructions ``m1`` and ``m2`` that both have the
5302``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5303set of loops associated with that metadata, respectively, then there is no loop
5304carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005305``L2``.
5306
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005307As a special case, if all memory accessing instructions in a loop have
5308``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5309loop has no loop carried memory dependences and is considered to be a parallel
5310loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005311
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005312Note that if not all memory access instructions have such metadata referring to
5313the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005314memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005315safe mechanism, this causes loops that were originally parallel to be considered
5316sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005317insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005318
5319Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005320both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005321metadata types that refer to the same loop identifier metadata.
5322
5323.. code-block:: llvm
5324
5325 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005326 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005327 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005328 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005329 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005330 ...
5331 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005332
5333 for.end:
5334 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005335 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005336
5337It is also possible to have nested parallel loops. In that case the
5338memory accesses refer to a list of loop identifier metadata nodes instead of
5339the loop identifier metadata node directly:
5340
5341.. code-block:: llvm
5342
5343 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005344 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005345 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005346 ...
5347 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005348
5349 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005350 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005351 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005352 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005353 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005354 ...
5355 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005356
5357 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005358 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005359 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005360 ...
5361 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005362
5363 outer.for.end: ; preds = %for.body
5364 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005365 !0 = !{!1, !2} ; a list of loop identifiers
5366 !1 = !{!1} ; an identifier for the inner loop
5367 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005368
Hiroshi Yamauchidce9def2017-11-02 22:26:51 +00005369'``irr_loop``' Metadata
5370^^^^^^^^^^^^^^^^^^^^^^^
5371
5372``irr_loop`` metadata may be attached to the terminator instruction of a basic
5373block that's an irreducible loop header (note that an irreducible loop has more
5374than once header basic blocks.) If ``irr_loop`` metadata is attached to the
5375terminator instruction of a basic block that is not really an irreducible loop
5376header, the behavior is undefined. The intent of this metadata is to improve the
5377accuracy of the block frequency propagation. For example, in the code below, the
5378block ``header0`` may have a loop header weight (relative to the other headers of
5379the irreducible loop) of 100:
5380
5381.. code-block:: llvm
5382
5383 header0:
5384 ...
5385 br i1 %cmp, label %t1, label %t2, !irr_loop !0
5386
5387 ...
5388 !0 = !{"loop_header_weight", i64 100}
5389
5390Irreducible loop header weights are typically based on profile data.
5391
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005392'``invariant.group``' Metadata
5393^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5394
Piotr Padlewski74b155f2018-04-08 13:53:04 +00005395The experimental ``invariant.group`` metadata may be attached to
Piotr Padlewskice358262018-05-18 23:53:46 +00005396``load``/``store`` instructions referencing a single metadata with no entries.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005397The existence of the ``invariant.group`` metadata on the instruction tells
5398the optimizer that every ``load`` and ``store`` to the same pointer operand
Piotr Padlewskice358262018-05-18 23:53:46 +00005399can be assumed to load or store the same
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005400value (but see the ``llvm.launder.invariant.group`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005401when two pointers are considered the same). Pointers returned by bitcast or
5402getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005403
5404Examples:
5405
5406.. code-block:: llvm
5407
5408 @unknownPtr = external global i8
5409 ...
5410 %ptr = alloca i8
5411 store i8 42, i8* %ptr, !invariant.group !0
5412 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005413
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005414 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5415 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005416
5417 %newPtr = call i8* @getPointer(i8* %ptr)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005418 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005419
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005420 %unknownValue = load i8, i8* @unknownPtr
5421 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005422
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005423 call void @foo(i8* %ptr)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005424 %newPtr2 = call i8* @llvm.launder.invariant.group(i8* %ptr)
5425 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through launder.invariant.group to get value of %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005426
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005427 ...
5428 declare void @foo(i8*)
5429 declare i8* @getPointer(i8*)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005430 declare i8* @llvm.launder.invariant.group(i8*)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005431
Piotr Padlewskice358262018-05-18 23:53:46 +00005432 !0 = !{}
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005433
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005434The invariant.group metadata must be dropped when replacing one pointer by
5435another based on aliasing information. This is because invariant.group is tied
5436to the SSA value of the pointer operand.
5437
5438.. code-block:: llvm
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005439
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005440 %v = load i8, i8* %x, !invariant.group !0
5441 ; if %x mustalias %y then we can replace the above instruction with
5442 %v = load i8, i8* %y
5443
Piotr Padlewski74b155f2018-04-08 13:53:04 +00005444Note that this is an experimental feature, which means that its semantics might
5445change in the future.
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005446
Peter Collingbournea333db82016-07-26 22:31:30 +00005447'``type``' Metadata
5448^^^^^^^^^^^^^^^^^^^
5449
5450See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005451
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005452'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005453^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005454
5455The ``associated`` metadata may be attached to a global object
5456declaration with a single argument that references another global object.
5457
5458This metadata prevents discarding of the global object in linker GC
5459unless the referenced object is also discarded. The linker support for
5460this feature is spotty. For best compatibility, globals carrying this
5461metadata may also:
5462
5463- Be in a comdat with the referenced global.
5464- Be in @llvm.compiler.used.
5465- Have an explicit section with a name which is a valid C identifier.
5466
5467It does not have any effect on non-ELF targets.
5468
5469Example:
5470
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005471.. code-block:: text
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005472
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005473 $a = comdat any
5474 @a = global i32 1, comdat $a
5475 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5476 !0 = !{i32* @a}
5477
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005478
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005479'``prof``' Metadata
5480^^^^^^^^^^^^^^^^^^^
5481
5482The ``prof`` metadata is used to record profile data in the IR.
5483The first operand of the metadata node indicates the profile metadata
5484type. There are currently 3 types:
5485:ref:`branch_weights<prof_node_branch_weights>`,
5486:ref:`function_entry_count<prof_node_function_entry_count>`, and
5487:ref:`VP<prof_node_VP>`.
5488
5489.. _prof_node_branch_weights:
5490
5491branch_weights
5492""""""""""""""
5493
5494Branch weight metadata attached to a branch, select, switch or call instruction
5495represents the likeliness of the associated branch being taken.
5496For more information, see :doc:`BranchWeightMetadata`.
5497
5498.. _prof_node_function_entry_count:
5499
5500function_entry_count
5501""""""""""""""""""""
5502
5503Function entry count metadata can be attached to function definitions
5504to record the number of times the function is called. Used with BFI
5505information, it is also used to derive the basic block profile count.
5506For more information, see :doc:`BranchWeightMetadata`.
5507
5508.. _prof_node_VP:
5509
5510VP
5511""
5512
5513VP (value profile) metadata can be attached to instructions that have
5514value profile information. Currently this is indirect calls (where it
5515records the hottest callees) and calls to memory intrinsics such as memcpy,
5516memmove, and memset (where it records the hottest byte lengths).
5517
5518Each VP metadata node contains "VP" string, then a uint32_t value for the value
5519profiling kind, a uint64_t value for the total number of times the instruction
5520is executed, followed by uint64_t value and execution count pairs.
5521The value profiling kind is 0 for indirect call targets and 1 for memory
5522operations. For indirect call targets, each profile value is a hash
5523of the callee function name, and for memory operations each value is the
5524byte length.
5525
5526Note that the value counts do not need to add up to the total count
5527listed in the third operand (in practice only the top hottest values
5528are tracked and reported).
5529
5530Indirect call example:
5531
5532.. code-block:: llvm
5533
5534 call void %f(), !prof !1
5535 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5536
5537Note that the VP type is 0 (the second operand), which indicates this is
5538an indirect call value profile data. The third operand indicates that the
5539indirect call executed 1600 times. The 4th and 6th operands give the
5540hashes of the 2 hottest target functions' names (this is the same hash used
5541to represent function names in the profile database), and the 5th and 7th
5542operands give the execution count that each of the respective prior target
5543functions was called.
5544
Sean Silvab084af42012-12-07 10:36:55 +00005545Module Flags Metadata
5546=====================
5547
5548Information about the module as a whole is difficult to convey to LLVM's
5549subsystems. The LLVM IR isn't sufficient to transmit this information.
5550The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005551this. These flags are in the form of key / value pairs --- much like a
5552dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005553look it up.
5554
5555The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5556Each triplet has the following form:
5557
5558- The first element is a *behavior* flag, which specifies the behavior
5559 when two (or more) modules are merged together, and it encounters two
5560 (or more) metadata with the same ID. The supported behaviors are
5561 described below.
5562- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005563 metadata. Each module may only have one flag entry for each unique ID (not
5564 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005565- The third element is the value of the flag.
5566
5567When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005568``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5569each unique metadata ID string, there will be exactly one entry in the merged
5570modules ``llvm.module.flags`` metadata table, and the value for that entry will
5571be determined by the merge behavior flag, as described below. The only exception
5572is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005573
5574The following behaviors are supported:
5575
5576.. list-table::
5577 :header-rows: 1
5578 :widths: 10 90
5579
5580 * - Value
5581 - Behavior
5582
5583 * - 1
5584 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005585 Emits an error if two values disagree, otherwise the resulting value
5586 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005587
5588 * - 2
5589 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005590 Emits a warning if two values disagree. The result value will be the
5591 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005592
5593 * - 3
5594 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005595 Adds a requirement that another module flag be present and have a
5596 specified value after linking is performed. The value must be a
5597 metadata pair, where the first element of the pair is the ID of the
5598 module flag to be restricted, and the second element of the pair is
5599 the value the module flag should be restricted to. This behavior can
5600 be used to restrict the allowable results (via triggering of an
5601 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005602
5603 * - 4
5604 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005605 Uses the specified value, regardless of the behavior or value of the
5606 other module. If both modules specify **Override**, but the values
5607 differ, an error will be emitted.
5608
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005609 * - 5
5610 - **Append**
5611 Appends the two values, which are required to be metadata nodes.
5612
5613 * - 6
5614 - **AppendUnique**
5615 Appends the two values, which are required to be metadata
5616 nodes. However, duplicate entries in the second list are dropped
5617 during the append operation.
5618
Steven Wu86a511e2017-08-15 16:16:33 +00005619 * - 7
5620 - **Max**
5621 Takes the max of the two values, which are required to be integers.
5622
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005623It is an error for a particular unique flag ID to have multiple behaviors,
5624except in the case of **Require** (which adds restrictions on another metadata
5625value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005626
5627An example of module flags:
5628
5629.. code-block:: llvm
5630
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005631 !0 = !{ i32 1, !"foo", i32 1 }
5632 !1 = !{ i32 4, !"bar", i32 37 }
5633 !2 = !{ i32 2, !"qux", i32 42 }
5634 !3 = !{ i32 3, !"qux",
5635 !{
5636 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005637 }
5638 }
5639 !llvm.module.flags = !{ !0, !1, !2, !3 }
5640
5641- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5642 if two or more ``!"foo"`` flags are seen is to emit an error if their
5643 values are not equal.
5644
5645- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5646 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005647 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005648
5649- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5650 behavior if two or more ``!"qux"`` flags are seen is to emit a
5651 warning if their values are not equal.
5652
5653- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5654
5655 ::
5656
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005657 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005658
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005659 The behavior is to emit an error if the ``llvm.module.flags`` does not
5660 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5661 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005662
5663Objective-C Garbage Collection Module Flags Metadata
5664----------------------------------------------------
5665
5666On the Mach-O platform, Objective-C stores metadata about garbage
5667collection in a special section called "image info". The metadata
5668consists of a version number and a bitmask specifying what types of
5669garbage collection are supported (if any) by the file. If two or more
5670modules are linked together their garbage collection metadata needs to
5671be merged rather than appended together.
5672
5673The Objective-C garbage collection module flags metadata consists of the
5674following key-value pairs:
5675
5676.. list-table::
5677 :header-rows: 1
5678 :widths: 30 70
5679
5680 * - Key
5681 - Value
5682
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005683 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005684 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005685
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005686 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005687 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005688 always 0.
5689
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005690 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005691 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005692 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5693 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5694 Objective-C ABI version 2.
5695
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005696 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005697 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005698 not. Valid values are 0, for no garbage collection, and 2, for garbage
5699 collection supported.
5700
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005701 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005702 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005703 If present, its value must be 6. This flag requires that the
5704 ``Objective-C Garbage Collection`` flag have the value 2.
5705
5706Some important flag interactions:
5707
5708- If a module with ``Objective-C Garbage Collection`` set to 0 is
5709 merged with a module with ``Objective-C Garbage Collection`` set to
5710 2, then the resulting module has the
5711 ``Objective-C Garbage Collection`` flag set to 0.
5712- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5713 merged with a module with ``Objective-C GC Only`` set to 6.
5714
Oliver Stannard5dc29342014-06-20 10:08:11 +00005715C type width Module Flags Metadata
5716----------------------------------
5717
5718The ARM backend emits a section into each generated object file describing the
5719options that it was compiled with (in a compiler-independent way) to prevent
5720linking incompatible objects, and to allow automatic library selection. Some
5721of these options are not visible at the IR level, namely wchar_t width and enum
5722width.
5723
5724To pass this information to the backend, these options are encoded in module
5725flags metadata, using the following key-value pairs:
5726
5727.. list-table::
5728 :header-rows: 1
5729 :widths: 30 70
5730
5731 * - Key
5732 - Value
5733
5734 * - short_wchar
5735 - * 0 --- sizeof(wchar_t) == 4
5736 * 1 --- sizeof(wchar_t) == 2
5737
5738 * - short_enum
5739 - * 0 --- Enums are at least as large as an ``int``.
5740 * 1 --- Enums are stored in the smallest integer type which can
5741 represent all of its values.
5742
5743For example, the following metadata section specifies that the module was
5744compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5745enum is the smallest type which can represent all of its values::
5746
5747 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005748 !0 = !{i32 1, !"short_wchar", i32 1}
5749 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005750
Peter Collingbourne89061b22017-06-12 20:10:48 +00005751Automatic Linker Flags Named Metadata
5752=====================================
5753
5754Some targets support embedding flags to the linker inside individual object
5755files. Typically this is used in conjunction with language extensions which
5756allow source files to explicitly declare the libraries they depend on, and have
5757these automatically be transmitted to the linker via object files.
5758
5759These flags are encoded in the IR using named metadata with the name
5760``!llvm.linker.options``. Each operand is expected to be a metadata node
5761which should be a list of other metadata nodes, each of which should be a
5762list of metadata strings defining linker options.
5763
5764For example, the following metadata section specifies two separate sets of
5765linker options, presumably to link against ``libz`` and the ``Cocoa``
5766framework::
5767
5768 !0 = !{ !"-lz" },
5769 !1 = !{ !"-framework", !"Cocoa" } } }
5770 !llvm.linker.options = !{ !0, !1 }
5771
5772The metadata encoding as lists of lists of options, as opposed to a collapsed
5773list of options, is chosen so that the IR encoding can use multiple option
5774strings to specify e.g., a single library, while still having that specifier be
5775preserved as an atomic element that can be recognized by a target specific
5776assembly writer or object file emitter.
5777
5778Each individual option is required to be either a valid option for the target's
5779linker, or an option that is reserved by the target specific assembly writer or
5780object file emitter. No other aspect of these options is defined by the IR.
5781
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005782.. _summary:
5783
5784ThinLTO Summary
5785===============
5786
5787Compiling with `ThinLTO <https://clang.llvm.org/docs/ThinLTO.html>`_
5788causes the building of a compact summary of the module that is emitted into
5789the bitcode. The summary is emitted into the LLVM assembly and identified
5790in syntax by a caret ('``^``').
5791
5792*Note that temporarily the summary entries are skipped when parsing the
5793assembly, although the parsing support is actively being implemented. The
5794following describes when the summary entries will be parsed once implemented.*
5795The summary will be parsed into a ModuleSummaryIndex object under the
5796same conditions where summary index is currently built from bitcode.
5797Specifically, tools that test the Thin Link portion of a ThinLTO compile
5798(i.e. llvm-lto and llvm-lto2), or when parsing a combined index
5799for a distributed ThinLTO backend via clang's "``-fthinlto-index=<>``" flag.
5800Additionally, it will be parsed into a bitcode output, along with the Module
5801IR, via the "``llvm-as``" tool. Tools that parse the Module IR for the purposes
5802of optimization (e.g. "``clang -x ir``" and "``opt``"), will ignore the
5803summary entries (just as they currently ignore summary entries in a bitcode
5804input file).
5805
5806There are currently 3 types of summary entries in the LLVM assembly:
5807:ref:`module paths<module_path_summary>`,
5808:ref:`global values<gv_summary>`, and
5809:ref:`type identifiers<typeid_summary>`.
5810
5811.. _module_path_summary:
5812
5813Module Path Summary Entry
5814-------------------------
5815
5816Each module path summary entry lists a module containing global values included
5817in the summary. For a single IR module there will be one such entry, but
5818in a combined summary index produced during the thin link, there will be
5819one module path entry per linked module with summary.
5820
5821Example:
5822
5823.. code-block:: llvm
5824
5825 ^0 = module: (path: "/path/to/file.o", hash: (2468601609, 1329373163, 1565878005, 638838075, 3148790418))
5826
5827The ``path`` field is a string path to the bitcode file, and the ``hash``
5828field is the 160-bit SHA-1 hash of the IR bitcode contents, used for
5829incremental builds and caching.
5830
5831.. _gv_summary:
5832
5833Global Value Summary Entry
5834--------------------------
5835
5836Each global value summary entry corresponds to a global value defined or
5837referenced by a summarized module.
5838
5839Example:
5840
5841.. code-block:: llvm
5842
5843 ^4 = gv: (name: "f"[, summaries: (Summary)[, (Summary)]*]?) ; guid = 14740650423002898831
5844
5845For declarations, there will not be a summary list. For definitions, a
5846global value will contain a list of summaries, one per module containing
5847a definition. There can be multiple entries in a combined summary index
5848for symbols with weak linkage.
5849
5850Each ``Summary`` format will depend on whether the global value is a
5851:ref:`function<function_summary>`, :ref:`variable<variable_summary>`, or
5852:ref:`alias<alias_summary>`.
5853
5854.. _function_summary:
5855
5856Function Summary
5857^^^^^^^^^^^^^^^^
5858
5859If the global value is a function, the ``Summary`` entry will look like:
5860
5861.. code-block:: llvm
5862
5863 function: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), insts: 2[, FuncFlags]?[, Calls]?[, TypeIdInfo]?[, Refs]?
5864
5865The ``module`` field includes the summary entry id for the module containing
5866this definition, and the ``flags`` field contains information such as
5867the linkage type, a flag indicating whether it is legal to import the
5868definition, whether it is globally live and whether the linker resolved it
5869to a local definition (the latter two are populated during the thin link).
5870The ``insts`` field contains the number of IR instructions in the function.
5871Finally, there are several optional fields: :ref:`FuncFlags<funcflags_summary>`,
5872:ref:`Calls<calls_summary>`, :ref:`TypeIdInfo<typeidinfo_summary>`,
5873:ref:`Refs<refs_summary>`.
5874
5875.. _variable_summary:
5876
5877Global Variable Summary
5878^^^^^^^^^^^^^^^^^^^^^^^
5879
5880If the global value is a variable, the ``Summary`` entry will look like:
5881
5882.. code-block:: llvm
5883
5884 variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0)[, Refs]?
5885
5886The variable entry contains a subset of the fields in a
5887:ref:`function summary <function_summary>`, see the descriptions there.
5888
5889.. _alias_summary:
5890
5891Alias Summary
5892^^^^^^^^^^^^^
5893
5894If the global value is an alias, the ``Summary`` entry will look like:
5895
5896.. code-block:: llvm
5897
5898 alias: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), aliasee: ^2)
5899
5900The ``module`` and ``flags`` fields are as described for a
5901:ref:`function summary <function_summary>`. The ``aliasee`` field
5902contains a reference to the global value summary entry of the aliasee.
5903
5904.. _funcflags_summary:
5905
5906Function Flags
5907^^^^^^^^^^^^^^
5908
5909The optional ``FuncFlags`` field looks like:
5910
5911.. code-block:: llvm
5912
5913 funcFlags: (readNone: 0, readOnly: 0, noRecurse: 0, returnDoesNotAlias: 0)
5914
5915If unspecified, flags are assumed to hold the conservative ``false`` value of
5916``0``.
5917
5918.. _calls_summary:
5919
5920Calls
5921^^^^^
5922
5923The optional ``Calls`` field looks like:
5924
5925.. code-block:: llvm
5926
5927 calls: ((Callee)[, (Callee)]*)
5928
5929where each ``Callee`` looks like:
5930
5931.. code-block:: llvm
5932
5933 callee: ^1[, hotness: None]?[, relbf: 0]?
5934
5935The ``callee`` refers to the summary entry id of the callee. At most one
5936of ``hotness`` (which can take the values ``Unknown``, ``Cold``, ``None``,
5937``Hot``, and ``Critical``), and ``relbf`` (which holds the integer
5938branch frequency relative to the entry frequency, scaled down by 2^8)
5939may be specified. The defaults are ``Unknown`` and ``0``, respectively.
5940
5941.. _refs_summary:
5942
5943Refs
5944^^^^
5945
5946The optional ``Refs`` field looks like:
5947
5948.. code-block:: llvm
5949
5950 refs: ((Ref)[, (Ref)]*)
5951
5952where each ``Ref`` contains a reference to the summary id of the referenced
5953value (e.g. ``^1``).
5954
5955.. _typeidinfo_summary:
5956
5957TypeIdInfo
5958^^^^^^^^^^
5959
5960The optional ``TypeIdInfo`` field, used for
5961`Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
5962looks like:
5963
5964.. code-block:: llvm
5965
5966 typeIdInfo: [(TypeTests)]?[, (TypeTestAssumeVCalls)]?[, (TypeCheckedLoadVCalls)]?[, (TypeTestAssumeConstVCalls)]?[, (TypeCheckedLoadConstVCalls)]?
5967
5968These optional fields have the following forms:
5969
5970TypeTests
5971"""""""""
5972
5973.. code-block:: llvm
5974
5975 typeTests: (TypeIdRef[, TypeIdRef]*)
5976
5977Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
5978by summary id or ``GUID``.
5979
5980TypeTestAssumeVCalls
5981""""""""""""""""""""
5982
5983.. code-block:: llvm
5984
5985 typeTestAssumeVCalls: (VFuncId[, VFuncId]*)
5986
5987Where each VFuncId has the format:
5988
5989.. code-block:: llvm
5990
5991 vFuncId: (TypeIdRef, offset: 16)
5992
5993Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
5994by summary id or ``GUID`` preceeded by a ``guid:`` tag.
5995
5996TypeCheckedLoadVCalls
5997"""""""""""""""""""""
5998
5999.. code-block:: llvm
6000
6001 typeCheckedLoadVCalls: (VFuncId[, VFuncId]*)
6002
6003Where each VFuncId has the format described for ``TypeTestAssumeVCalls``.
6004
6005TypeTestAssumeConstVCalls
6006"""""""""""""""""""""""""
6007
6008.. code-block:: llvm
6009
6010 typeTestAssumeConstVCalls: (ConstVCall[, ConstVCall]*)
6011
6012Where each ConstVCall has the format:
6013
6014.. code-block:: llvm
6015
6016 VFuncId, args: (Arg[, Arg]*)
6017
6018and where each VFuncId has the format described for ``TypeTestAssumeVCalls``,
6019and each Arg is an integer argument number.
6020
6021TypeCheckedLoadConstVCalls
6022""""""""""""""""""""""""""
6023
6024.. code-block:: llvm
6025
6026 typeCheckedLoadConstVCalls: (ConstVCall[, ConstVCall]*)
6027
6028Where each ConstVCall has the format described for
6029``TypeTestAssumeConstVCalls``.
6030
6031.. _typeid_summary:
6032
6033Type ID Summary Entry
6034---------------------
6035
6036Each type id summary entry corresponds to a type identifier resolution
6037which is generated during the LTO link portion of the compile when building
6038with `Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
6039so these are only present in a combined summary index.
6040
6041Example:
6042
6043.. code-block:: llvm
6044
6045 ^4 = typeid: (name: "_ZTS1A", summary: (typeTestRes: (kind: allOnes, sizeM1BitWidth: 7[, alignLog2: 0]?[, sizeM1: 0]?[, bitMask: 0]?[, inlineBits: 0]?)[, WpdResolutions]?)) ; guid = 7004155349499253778
6046
6047The ``typeTestRes`` gives the type test resolution ``kind`` (which may
6048be ``unsat``, ``byteArray``, ``inline``, ``single``, or ``allOnes``), and
6049the ``size-1`` bit width. It is followed by optional flags, which default to 0,
6050and an optional WpdResolutions (whole program devirtualization resolution)
6051field that looks like:
6052
6053.. code-block:: llvm
6054
6055 wpdResolutions: ((offset: 0, WpdRes)[, (offset: 1, WpdRes)]*
6056
6057where each entry is a mapping from the given byte offset to the whole-program
6058devirtualization resolution WpdRes, that has one of the following formats:
6059
6060.. code-block:: llvm
6061
6062 wpdRes: (kind: branchFunnel)
6063 wpdRes: (kind: singleImpl, singleImplName: "_ZN1A1nEi")
6064 wpdRes: (kind: indir)
6065
6066Additionally, each wpdRes has an optional ``resByArg`` field, which
6067describes the resolutions for calls with all constant integer arguments:
6068
6069.. code-block:: llvm
6070
6071 resByArg: (ResByArg[, ResByArg]*)
6072
6073where ResByArg is:
6074
6075.. code-block:: llvm
6076
6077 args: (Arg[, Arg]*), byArg: (kind: UniformRetVal[, info: 0][, byte: 0][, bit: 0])
6078
6079Where the ``kind`` can be ``Indir``, ``UniformRetVal``, ``UniqueRetVal``
6080or ``VirtualConstProp``. The ``info`` field is only used if the kind
6081is ``UniformRetVal`` (indicates the uniform return value), or
6082``UniqueRetVal`` (holds the return value associated with the unique vtable
6083(0 or 1)). The ``byte`` and ``bit`` fields are only used if the target does
6084not support the use of absolute symbols to store constants.
6085
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006086.. _intrinsicglobalvariables:
6087
Sean Silvab084af42012-12-07 10:36:55 +00006088Intrinsic Global Variables
6089==========================
6090
6091LLVM has a number of "magic" global variables that contain data that
6092affect code generation or other IR semantics. These are documented here.
6093All globals of this sort should have a section specified as
6094"``llvm.metadata``". This section and all globals that start with
6095"``llvm.``" are reserved for use by LLVM.
6096
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006097.. _gv_llvmused:
6098
Sean Silvab084af42012-12-07 10:36:55 +00006099The '``llvm.used``' Global Variable
6100-----------------------------------
6101
Rafael Espindola74f2e462013-04-22 14:58:02 +00006102The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00006103:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00006104pointers to named global variables, functions and aliases which may optionally
6105have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00006106use of it is:
6107
6108.. code-block:: llvm
6109
6110 @X = global i8 4
6111 @Y = global i32 123
6112
6113 @llvm.used = appending global [2 x i8*] [
6114 i8* @X,
6115 i8* bitcast (i32* @Y to i8*)
6116 ], section "llvm.metadata"
6117
Rafael Espindola74f2e462013-04-22 14:58:02 +00006118If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
6119and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00006120symbol that it cannot see (which is why they have to be named). For example, if
6121a variable has internal linkage and no references other than that from the
6122``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
6123references from inline asms and other things the compiler cannot "see", and
6124corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00006125
6126On some targets, the code generator must emit a directive to the
6127assembler or object file to prevent the assembler and linker from
6128molesting the symbol.
6129
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006130.. _gv_llvmcompilerused:
6131
Sean Silvab084af42012-12-07 10:36:55 +00006132The '``llvm.compiler.used``' Global Variable
6133--------------------------------------------
6134
6135The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
6136directive, except that it only prevents the compiler from touching the
6137symbol. On targets that support it, this allows an intelligent linker to
6138optimize references to the symbol without being impeded as it would be
6139by ``@llvm.used``.
6140
6141This is a rare construct that should only be used in rare circumstances,
6142and should not be exposed to source languages.
6143
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006144.. _gv_llvmglobalctors:
6145
Sean Silvab084af42012-12-07 10:36:55 +00006146The '``llvm.global_ctors``' Global Variable
6147-------------------------------------------
6148
6149.. code-block:: llvm
6150
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006151 %0 = type { i32, void ()*, i8* }
6152 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006153
6154The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006155functions, priorities, and an optional associated global or function.
6156The functions referenced by this array will be called in ascending order
6157of priority (i.e. lowest first) when the module is loaded. The order of
6158functions with the same priority is not defined.
6159
6160If the third field is present, non-null, and points to a global variable
6161or function, the initializer function will only run if the associated
6162data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006163
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006164.. _llvmglobaldtors:
6165
Sean Silvab084af42012-12-07 10:36:55 +00006166The '``llvm.global_dtors``' Global Variable
6167-------------------------------------------
6168
6169.. code-block:: llvm
6170
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006171 %0 = type { i32, void ()*, i8* }
6172 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006173
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006174The ``@llvm.global_dtors`` array contains a list of destructor
6175functions, priorities, and an optional associated global or function.
6176The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00006177order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006178order of functions with the same priority is not defined.
6179
6180If the third field is present, non-null, and points to a global variable
6181or function, the destructor function will only run if the associated
6182data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006183
6184Instruction Reference
6185=====================
6186
6187The LLVM instruction set consists of several different classifications
6188of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
6189instructions <binaryops>`, :ref:`bitwise binary
6190instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
6191:ref:`other instructions <otherops>`.
6192
6193.. _terminators:
6194
6195Terminator Instructions
6196-----------------------
6197
6198As mentioned :ref:`previously <functionstructure>`, every basic block in a
6199program ends with a "Terminator" instruction, which indicates which
6200block should be executed after the current block is finished. These
6201terminator instructions typically yield a '``void``' value: they produce
6202control flow, not values (the one exception being the
6203':ref:`invoke <i_invoke>`' instruction).
6204
6205The terminator instructions are: ':ref:`ret <i_ret>`',
6206':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
6207':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00006208':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00006209':ref:`catchret <i_catchret>`',
6210':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00006211and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00006212
6213.. _i_ret:
6214
6215'``ret``' Instruction
6216^^^^^^^^^^^^^^^^^^^^^
6217
6218Syntax:
6219"""""""
6220
6221::
6222
6223 ret <type> <value> ; Return a value from a non-void function
6224 ret void ; Return from void function
6225
6226Overview:
6227"""""""""
6228
6229The '``ret``' instruction is used to return control flow (and optionally
6230a value) from a function back to the caller.
6231
6232There are two forms of the '``ret``' instruction: one that returns a
6233value and then causes control flow, and one that just causes control
6234flow to occur.
6235
6236Arguments:
6237""""""""""
6238
6239The '``ret``' instruction optionally accepts a single argument, the
6240return value. The type of the return value must be a ':ref:`first
6241class <t_firstclass>`' type.
6242
6243A function is not :ref:`well formed <wellformed>` if it it has a non-void
6244return type and contains a '``ret``' instruction with no return value or
6245a return value with a type that does not match its type, or if it has a
6246void return type and contains a '``ret``' instruction with a return
6247value.
6248
6249Semantics:
6250""""""""""
6251
6252When the '``ret``' instruction is executed, control flow returns back to
6253the calling function's context. If the caller is a
6254":ref:`call <i_call>`" instruction, execution continues at the
6255instruction after the call. If the caller was an
6256":ref:`invoke <i_invoke>`" instruction, execution continues at the
6257beginning of the "normal" destination block. If the instruction returns
6258a value, that value shall set the call or invoke instruction's return
6259value.
6260
6261Example:
6262""""""""
6263
6264.. code-block:: llvm
6265
6266 ret i32 5 ; Return an integer value of 5
6267 ret void ; Return from a void function
6268 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
6269
6270.. _i_br:
6271
6272'``br``' Instruction
6273^^^^^^^^^^^^^^^^^^^^
6274
6275Syntax:
6276"""""""
6277
6278::
6279
6280 br i1 <cond>, label <iftrue>, label <iffalse>
6281 br label <dest> ; Unconditional branch
6282
6283Overview:
6284"""""""""
6285
6286The '``br``' instruction is used to cause control flow to transfer to a
6287different basic block in the current function. There are two forms of
6288this instruction, corresponding to a conditional branch and an
6289unconditional branch.
6290
6291Arguments:
6292""""""""""
6293
6294The conditional branch form of the '``br``' instruction takes a single
6295'``i1``' value and two '``label``' values. The unconditional form of the
6296'``br``' instruction takes a single '``label``' value as a target.
6297
6298Semantics:
6299""""""""""
6300
6301Upon execution of a conditional '``br``' instruction, the '``i1``'
6302argument is evaluated. If the value is ``true``, control flows to the
6303'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
6304to the '``iffalse``' ``label`` argument.
6305
6306Example:
6307""""""""
6308
6309.. code-block:: llvm
6310
6311 Test:
6312 %cond = icmp eq i32 %a, %b
6313 br i1 %cond, label %IfEqual, label %IfUnequal
6314 IfEqual:
6315 ret i32 1
6316 IfUnequal:
6317 ret i32 0
6318
6319.. _i_switch:
6320
6321'``switch``' Instruction
6322^^^^^^^^^^^^^^^^^^^^^^^^
6323
6324Syntax:
6325"""""""
6326
6327::
6328
6329 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
6330
6331Overview:
6332"""""""""
6333
6334The '``switch``' instruction is used to transfer control flow to one of
6335several different places. It is a generalization of the '``br``'
6336instruction, allowing a branch to occur to one of many possible
6337destinations.
6338
6339Arguments:
6340""""""""""
6341
6342The '``switch``' instruction uses three parameters: an integer
6343comparison value '``value``', a default '``label``' destination, and an
6344array of pairs of comparison value constants and '``label``'s. The table
6345is not allowed to contain duplicate constant entries.
6346
6347Semantics:
6348""""""""""
6349
6350The ``switch`` instruction specifies a table of values and destinations.
6351When the '``switch``' instruction is executed, this table is searched
6352for the given value. If the value is found, control flow is transferred
6353to the corresponding destination; otherwise, control flow is transferred
6354to the default destination.
6355
6356Implementation:
6357"""""""""""""""
6358
6359Depending on properties of the target machine and the particular
6360``switch`` instruction, this instruction may be code generated in
6361different ways. For example, it could be generated as a series of
6362chained conditional branches or with a lookup table.
6363
6364Example:
6365""""""""
6366
6367.. code-block:: llvm
6368
6369 ; Emulate a conditional br instruction
6370 %Val = zext i1 %value to i32
6371 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
6372
6373 ; Emulate an unconditional br instruction
6374 switch i32 0, label %dest [ ]
6375
6376 ; Implement a jump table:
6377 switch i32 %val, label %otherwise [ i32 0, label %onzero
6378 i32 1, label %onone
6379 i32 2, label %ontwo ]
6380
6381.. _i_indirectbr:
6382
6383'``indirectbr``' Instruction
6384^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6385
6386Syntax:
6387"""""""
6388
6389::
6390
6391 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
6392
6393Overview:
6394"""""""""
6395
6396The '``indirectbr``' instruction implements an indirect branch to a
6397label within the current function, whose address is specified by
6398"``address``". Address must be derived from a
6399:ref:`blockaddress <blockaddress>` constant.
6400
6401Arguments:
6402""""""""""
6403
6404The '``address``' argument is the address of the label to jump to. The
6405rest of the arguments indicate the full set of possible destinations
6406that the address may point to. Blocks are allowed to occur multiple
6407times in the destination list, though this isn't particularly useful.
6408
6409This destination list is required so that dataflow analysis has an
6410accurate understanding of the CFG.
6411
6412Semantics:
6413""""""""""
6414
6415Control transfers to the block specified in the address argument. All
6416possible destination blocks must be listed in the label list, otherwise
6417this instruction has undefined behavior. This implies that jumps to
6418labels defined in other functions have undefined behavior as well.
6419
6420Implementation:
6421"""""""""""""""
6422
6423This is typically implemented with a jump through a register.
6424
6425Example:
6426""""""""
6427
6428.. code-block:: llvm
6429
6430 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
6431
6432.. _i_invoke:
6433
6434'``invoke``' Instruction
6435^^^^^^^^^^^^^^^^^^^^^^^^
6436
6437Syntax:
6438"""""""
6439
6440::
6441
David Blaikieb83cf102016-07-13 17:21:34 +00006442 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006443 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00006444
6445Overview:
6446"""""""""
6447
6448The '``invoke``' instruction causes control to transfer to a specified
6449function, with the possibility of control flow transfer to either the
6450'``normal``' label or the '``exception``' label. If the callee function
6451returns with the "``ret``" instruction, control flow will return to the
6452"normal" label. If the callee (or any indirect callees) returns via the
6453":ref:`resume <i_resume>`" instruction or other exception handling
6454mechanism, control is interrupted and continued at the dynamically
6455nearest "exception" label.
6456
6457The '``exception``' label is a `landing
6458pad <ExceptionHandling.html#overview>`_ for the exception. As such,
6459'``exception``' label is required to have the
6460":ref:`landingpad <i_landingpad>`" instruction, which contains the
6461information about the behavior of the program after unwinding happens,
6462as its first non-PHI instruction. The restrictions on the
6463"``landingpad``" instruction's tightly couples it to the "``invoke``"
6464instruction, so that the important information contained within the
6465"``landingpad``" instruction can't be lost through normal code motion.
6466
6467Arguments:
6468""""""""""
6469
6470This instruction requires several arguments:
6471
6472#. The optional "cconv" marker indicates which :ref:`calling
6473 convention <callingconv>` the call should use. If none is
6474 specified, the call defaults to using C calling conventions.
6475#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6476 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6477 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00006478#. '``ty``': the type of the call instruction itself which is also the
6479 type of the return value. Functions that return no value are marked
6480 ``void``.
6481#. '``fnty``': shall be the signature of the function being invoked. The
6482 argument types must match the types implied by this signature. This
6483 type can be omitted if the function is not varargs.
6484#. '``fnptrval``': An LLVM value containing a pointer to a function to
6485 be invoked. In most cases, this is a direct function invocation, but
6486 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
6487 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00006488#. '``function args``': argument list whose types match the function
6489 signature argument types and parameter attributes. All arguments must
6490 be of :ref:`first class <t_firstclass>` type. If the function signature
6491 indicates the function accepts a variable number of arguments, the
6492 extra arguments can be specified.
6493#. '``normal label``': the label reached when the called function
6494 executes a '``ret``' instruction.
6495#. '``exception label``': the label reached when a callee returns via
6496 the :ref:`resume <i_resume>` instruction or other exception handling
6497 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00006498#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006499#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00006500
6501Semantics:
6502""""""""""
6503
6504This instruction is designed to operate as a standard '``call``'
6505instruction in most regards. The primary difference is that it
6506establishes an association with a label, which is used by the runtime
6507library to unwind the stack.
6508
6509This instruction is used in languages with destructors to ensure that
6510proper cleanup is performed in the case of either a ``longjmp`` or a
6511thrown exception. Additionally, this is important for implementation of
6512'``catch``' clauses in high-level languages that support them.
6513
6514For the purposes of the SSA form, the definition of the value returned
6515by the '``invoke``' instruction is deemed to occur on the edge from the
6516current block to the "normal" label. If the callee unwinds then no
6517return value is available.
6518
6519Example:
6520""""""""
6521
6522.. code-block:: llvm
6523
6524 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006525 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006526 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006527 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006528
6529.. _i_resume:
6530
6531'``resume``' Instruction
6532^^^^^^^^^^^^^^^^^^^^^^^^
6533
6534Syntax:
6535"""""""
6536
6537::
6538
6539 resume <type> <value>
6540
6541Overview:
6542"""""""""
6543
6544The '``resume``' instruction is a terminator instruction that has no
6545successors.
6546
6547Arguments:
6548""""""""""
6549
6550The '``resume``' instruction requires one argument, which must have the
6551same type as the result of any '``landingpad``' instruction in the same
6552function.
6553
6554Semantics:
6555""""""""""
6556
6557The '``resume``' instruction resumes propagation of an existing
6558(in-flight) exception whose unwinding was interrupted with a
6559:ref:`landingpad <i_landingpad>` instruction.
6560
6561Example:
6562""""""""
6563
6564.. code-block:: llvm
6565
6566 resume { i8*, i32 } %exn
6567
David Majnemer8a1c45d2015-12-12 05:38:55 +00006568.. _i_catchswitch:
6569
6570'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00006571^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00006572
6573Syntax:
6574"""""""
6575
6576::
6577
6578 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6579 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6580
6581Overview:
6582"""""""""
6583
6584The '``catchswitch``' instruction is used by `LLVM's exception handling system
6585<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6586that may be executed by the :ref:`EH personality routine <personalityfn>`.
6587
6588Arguments:
6589""""""""""
6590
6591The ``parent`` argument is the token of the funclet that contains the
6592``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6593this operand may be the token ``none``.
6594
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006595The ``default`` argument is the label of another basic block beginning with
6596either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6597must be a legal target with respect to the ``parent`` links, as described in
6598the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006599
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006600The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006601:ref:`catchpad <i_catchpad>` instruction.
6602
6603Semantics:
6604""""""""""
6605
6606Executing this instruction transfers control to one of the successors in
6607``handlers``, if appropriate, or continues to unwind via the unwind label if
6608present.
6609
6610The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6611it must be both the first non-phi instruction and last instruction in the basic
6612block. Therefore, it must be the only non-phi instruction in the block.
6613
6614Example:
6615""""""""
6616
Renato Golin124f2592016-07-20 12:16:38 +00006617.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00006618
6619 dispatch1:
6620 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6621 dispatch2:
6622 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6623
David Majnemer654e1302015-07-31 17:58:14 +00006624.. _i_catchret:
6625
6626'``catchret``' Instruction
6627^^^^^^^^^^^^^^^^^^^^^^^^^^
6628
6629Syntax:
6630"""""""
6631
6632::
6633
David Majnemer8a1c45d2015-12-12 05:38:55 +00006634 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00006635
6636Overview:
6637"""""""""
6638
6639The '``catchret``' instruction is a terminator instruction that has a
6640single successor.
6641
6642
6643Arguments:
6644""""""""""
6645
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006646The first argument to a '``catchret``' indicates which ``catchpad`` it
6647exits. It must be a :ref:`catchpad <i_catchpad>`.
6648The second argument to a '``catchret``' specifies where control will
6649transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00006650
6651Semantics:
6652""""""""""
6653
David Majnemer8a1c45d2015-12-12 05:38:55 +00006654The '``catchret``' instruction ends an existing (in-flight) exception whose
6655unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6656:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6657code to, for example, destroy the active exception. Control then transfers to
6658``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006659
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006660The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6661If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6662funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6663the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006664
6665Example:
6666""""""""
6667
Renato Golin124f2592016-07-20 12:16:38 +00006668.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006669
David Majnemer8a1c45d2015-12-12 05:38:55 +00006670 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006671
David Majnemer654e1302015-07-31 17:58:14 +00006672.. _i_cleanupret:
6673
6674'``cleanupret``' Instruction
6675^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6676
6677Syntax:
6678"""""""
6679
6680::
6681
David Majnemer8a1c45d2015-12-12 05:38:55 +00006682 cleanupret from <value> unwind label <continue>
6683 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006684
6685Overview:
6686"""""""""
6687
6688The '``cleanupret``' instruction is a terminator instruction that has
6689an optional successor.
6690
6691
6692Arguments:
6693""""""""""
6694
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006695The '``cleanupret``' instruction requires one argument, which indicates
6696which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006697If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6698funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6699the ``cleanupret``'s behavior is undefined.
6700
6701The '``cleanupret``' instruction also has an optional successor, ``continue``,
6702which must be the label of another basic block beginning with either a
6703``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6704be a legal target with respect to the ``parent`` links, as described in the
6705`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006706
6707Semantics:
6708""""""""""
6709
6710The '``cleanupret``' instruction indicates to the
6711:ref:`personality function <personalityfn>` that one
6712:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6713It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006714
David Majnemer654e1302015-07-31 17:58:14 +00006715Example:
6716""""""""
6717
Renato Golin124f2592016-07-20 12:16:38 +00006718.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006719
David Majnemer8a1c45d2015-12-12 05:38:55 +00006720 cleanupret from %cleanup unwind to caller
6721 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006722
Sean Silvab084af42012-12-07 10:36:55 +00006723.. _i_unreachable:
6724
6725'``unreachable``' Instruction
6726^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6727
6728Syntax:
6729"""""""
6730
6731::
6732
6733 unreachable
6734
6735Overview:
6736"""""""""
6737
6738The '``unreachable``' instruction has no defined semantics. This
6739instruction is used to inform the optimizer that a particular portion of
6740the code is not reachable. This can be used to indicate that the code
6741after a no-return function cannot be reached, and other facts.
6742
6743Semantics:
6744""""""""""
6745
6746The '``unreachable``' instruction has no defined semantics.
6747
6748.. _binaryops:
6749
6750Binary Operations
6751-----------------
6752
6753Binary operators are used to do most of the computation in a program.
6754They require two operands of the same type, execute an operation on
6755them, and produce a single value. The operands might represent multiple
6756data, as is the case with the :ref:`vector <t_vector>` data type. The
6757result value has the same type as its operands.
6758
6759There are several different binary operators:
6760
6761.. _i_add:
6762
6763'``add``' Instruction
6764^^^^^^^^^^^^^^^^^^^^^
6765
6766Syntax:
6767"""""""
6768
6769::
6770
Tim Northover675a0962014-06-13 14:24:23 +00006771 <result> = add <ty> <op1>, <op2> ; yields ty:result
6772 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6773 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6774 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006775
6776Overview:
6777"""""""""
6778
6779The '``add``' instruction returns the sum of its two operands.
6780
6781Arguments:
6782""""""""""
6783
6784The two arguments to the '``add``' instruction must be
6785:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6786arguments must have identical types.
6787
6788Semantics:
6789""""""""""
6790
6791The value produced is the integer sum of the two operands.
6792
6793If the sum has unsigned overflow, the result returned is the
6794mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6795the result.
6796
6797Because LLVM integers use a two's complement representation, this
6798instruction is appropriate for both signed and unsigned integers.
6799
6800``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6801respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6802result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6803unsigned and/or signed overflow, respectively, occurs.
6804
6805Example:
6806""""""""
6807
Renato Golin124f2592016-07-20 12:16:38 +00006808.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006809
Tim Northover675a0962014-06-13 14:24:23 +00006810 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006811
6812.. _i_fadd:
6813
6814'``fadd``' Instruction
6815^^^^^^^^^^^^^^^^^^^^^^
6816
6817Syntax:
6818"""""""
6819
6820::
6821
Tim Northover675a0962014-06-13 14:24:23 +00006822 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006823
6824Overview:
6825"""""""""
6826
6827The '``fadd``' instruction returns the sum of its two operands.
6828
6829Arguments:
6830""""""""""
6831
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006832The two arguments to the '``fadd``' instruction must be
6833:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6834floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006835
6836Semantics:
6837""""""""""
6838
Sanjay Patel7b722402018-03-07 17:18:22 +00006839The value produced is the floating-point sum of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006840This instruction is assumed to execute in the default :ref:`floating-point
6841environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00006842This instruction can also take any number of :ref:`fast-math
6843flags <fastmath>`, which are optimization hints to enable otherwise
6844unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006845
6846Example:
6847""""""""
6848
Renato Golin124f2592016-07-20 12:16:38 +00006849.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006850
Tim Northover675a0962014-06-13 14:24:23 +00006851 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006852
6853'``sub``' Instruction
6854^^^^^^^^^^^^^^^^^^^^^
6855
6856Syntax:
6857"""""""
6858
6859::
6860
Tim Northover675a0962014-06-13 14:24:23 +00006861 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6862 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6863 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6864 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006865
6866Overview:
6867"""""""""
6868
6869The '``sub``' instruction returns the difference of its two operands.
6870
6871Note that the '``sub``' instruction is used to represent the '``neg``'
6872instruction present in most other intermediate representations.
6873
6874Arguments:
6875""""""""""
6876
6877The two arguments to the '``sub``' instruction must be
6878:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6879arguments must have identical types.
6880
6881Semantics:
6882""""""""""
6883
6884The value produced is the integer difference of the two operands.
6885
6886If the difference has unsigned overflow, the result returned is the
6887mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6888the result.
6889
6890Because LLVM integers use a two's complement representation, this
6891instruction is appropriate for both signed and unsigned integers.
6892
6893``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6894respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6895result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6896unsigned and/or signed overflow, respectively, occurs.
6897
6898Example:
6899""""""""
6900
Renato Golin124f2592016-07-20 12:16:38 +00006901.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006902
Tim Northover675a0962014-06-13 14:24:23 +00006903 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6904 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006905
6906.. _i_fsub:
6907
6908'``fsub``' Instruction
6909^^^^^^^^^^^^^^^^^^^^^^
6910
6911Syntax:
6912"""""""
6913
6914::
6915
Tim Northover675a0962014-06-13 14:24:23 +00006916 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006917
6918Overview:
6919"""""""""
6920
6921The '``fsub``' instruction returns the difference of its two operands.
6922
6923Note that the '``fsub``' instruction is used to represent the '``fneg``'
6924instruction present in most other intermediate representations.
6925
6926Arguments:
6927""""""""""
6928
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006929The two arguments to the '``fsub``' instruction must be
6930:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6931floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006932
6933Semantics:
6934""""""""""
6935
Sanjay Patel7b722402018-03-07 17:18:22 +00006936The value produced is the floating-point difference of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006937This instruction is assumed to execute in the default :ref:`floating-point
6938environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00006939This instruction can also take any number of :ref:`fast-math
6940flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006941unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006942
6943Example:
6944""""""""
6945
Renato Golin124f2592016-07-20 12:16:38 +00006946.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006947
Tim Northover675a0962014-06-13 14:24:23 +00006948 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6949 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006950
6951'``mul``' Instruction
6952^^^^^^^^^^^^^^^^^^^^^
6953
6954Syntax:
6955"""""""
6956
6957::
6958
Tim Northover675a0962014-06-13 14:24:23 +00006959 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6960 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6961 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6962 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006963
6964Overview:
6965"""""""""
6966
6967The '``mul``' instruction returns the product of its two operands.
6968
6969Arguments:
6970""""""""""
6971
6972The two arguments to the '``mul``' instruction must be
6973:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6974arguments must have identical types.
6975
6976Semantics:
6977""""""""""
6978
6979The value produced is the integer product of the two operands.
6980
6981If the result of the multiplication has unsigned overflow, the result
6982returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6983bit width of the result.
6984
6985Because LLVM integers use a two's complement representation, and the
6986result is the same width as the operands, this instruction returns the
6987correct result for both signed and unsigned integers. If a full product
6988(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6989sign-extended or zero-extended as appropriate to the width of the full
6990product.
6991
6992``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6993respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6994result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6995unsigned and/or signed overflow, respectively, occurs.
6996
6997Example:
6998""""""""
6999
Renato Golin124f2592016-07-20 12:16:38 +00007000.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007001
Tim Northover675a0962014-06-13 14:24:23 +00007002 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00007003
7004.. _i_fmul:
7005
7006'``fmul``' Instruction
7007^^^^^^^^^^^^^^^^^^^^^^
7008
7009Syntax:
7010"""""""
7011
7012::
7013
Tim Northover675a0962014-06-13 14:24:23 +00007014 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007015
7016Overview:
7017"""""""""
7018
7019The '``fmul``' instruction returns the product of its two operands.
7020
7021Arguments:
7022""""""""""
7023
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007024The two arguments to the '``fmul``' instruction must be
7025:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
7026floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007027
7028Semantics:
7029""""""""""
7030
Sanjay Patel7b722402018-03-07 17:18:22 +00007031The value produced is the floating-point product of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007032This instruction is assumed to execute in the default :ref:`floating-point
7033environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007034This instruction can also take any number of :ref:`fast-math
7035flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007036unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007037
7038Example:
7039""""""""
7040
Renato Golin124f2592016-07-20 12:16:38 +00007041.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007042
Tim Northover675a0962014-06-13 14:24:23 +00007043 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00007044
7045'``udiv``' Instruction
7046^^^^^^^^^^^^^^^^^^^^^^
7047
7048Syntax:
7049"""""""
7050
7051::
7052
Tim Northover675a0962014-06-13 14:24:23 +00007053 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
7054 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007055
7056Overview:
7057"""""""""
7058
7059The '``udiv``' instruction returns the quotient of its two operands.
7060
7061Arguments:
7062""""""""""
7063
7064The two arguments to the '``udiv``' instruction must be
7065:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7066arguments must have identical types.
7067
7068Semantics:
7069""""""""""
7070
7071The value produced is the unsigned integer quotient of the two operands.
7072
7073Note that unsigned integer division and signed integer division are
7074distinct operations; for signed integer division, use '``sdiv``'.
7075
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007076Division by zero is undefined behavior. For vectors, if any element
7077of the divisor is zero, the operation has undefined behavior.
7078
Sean Silvab084af42012-12-07 10:36:55 +00007079
7080If the ``exact`` keyword is present, the result value of the ``udiv`` is
7081a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
7082such, "((a udiv exact b) mul b) == a").
7083
7084Example:
7085""""""""
7086
Renato Golin124f2592016-07-20 12:16:38 +00007087.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007088
Tim Northover675a0962014-06-13 14:24:23 +00007089 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007090
7091'``sdiv``' Instruction
7092^^^^^^^^^^^^^^^^^^^^^^
7093
7094Syntax:
7095"""""""
7096
7097::
7098
Tim Northover675a0962014-06-13 14:24:23 +00007099 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
7100 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007101
7102Overview:
7103"""""""""
7104
7105The '``sdiv``' instruction returns the quotient of its two operands.
7106
7107Arguments:
7108""""""""""
7109
7110The two arguments to the '``sdiv``' instruction must be
7111:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7112arguments must have identical types.
7113
7114Semantics:
7115""""""""""
7116
7117The value produced is the signed integer quotient of the two operands
7118rounded towards zero.
7119
7120Note that signed integer division and unsigned integer division are
7121distinct operations; for unsigned integer division, use '``udiv``'.
7122
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007123Division by zero is undefined behavior. For vectors, if any element
7124of the divisor is zero, the operation has undefined behavior.
7125Overflow also leads to undefined behavior; this is a rare case, but can
7126occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00007127
7128If the ``exact`` keyword is present, the result value of the ``sdiv`` is
7129a :ref:`poison value <poisonvalues>` if the result would be rounded.
7130
7131Example:
7132""""""""
7133
Renato Golin124f2592016-07-20 12:16:38 +00007134.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007135
Tim Northover675a0962014-06-13 14:24:23 +00007136 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007137
7138.. _i_fdiv:
7139
7140'``fdiv``' Instruction
7141^^^^^^^^^^^^^^^^^^^^^^
7142
7143Syntax:
7144"""""""
7145
7146::
7147
Tim Northover675a0962014-06-13 14:24:23 +00007148 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007149
7150Overview:
7151"""""""""
7152
7153The '``fdiv``' instruction returns the quotient of its two operands.
7154
7155Arguments:
7156""""""""""
7157
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007158The two arguments to the '``fdiv``' instruction must be
7159:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
7160floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007161
7162Semantics:
7163""""""""""
7164
Sanjay Patel7b722402018-03-07 17:18:22 +00007165The value produced is the floating-point quotient of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007166This instruction is assumed to execute in the default :ref:`floating-point
7167environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007168This instruction can also take any number of :ref:`fast-math
7169flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007170unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007171
7172Example:
7173""""""""
7174
Renato Golin124f2592016-07-20 12:16:38 +00007175.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007176
Tim Northover675a0962014-06-13 14:24:23 +00007177 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007178
7179'``urem``' Instruction
7180^^^^^^^^^^^^^^^^^^^^^^
7181
7182Syntax:
7183"""""""
7184
7185::
7186
Tim Northover675a0962014-06-13 14:24:23 +00007187 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007188
7189Overview:
7190"""""""""
7191
7192The '``urem``' instruction returns the remainder from the unsigned
7193division of its two arguments.
7194
7195Arguments:
7196""""""""""
7197
7198The two arguments to the '``urem``' instruction must be
7199:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7200arguments must have identical types.
7201
7202Semantics:
7203""""""""""
7204
7205This instruction returns the unsigned integer *remainder* of a division.
7206This instruction always performs an unsigned division to get the
7207remainder.
7208
7209Note that unsigned integer remainder and signed integer remainder are
7210distinct operations; for signed integer remainder, use '``srem``'.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007211
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007212Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007213For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007214undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007215
7216Example:
7217""""""""
7218
Renato Golin124f2592016-07-20 12:16:38 +00007219.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007220
Tim Northover675a0962014-06-13 14:24:23 +00007221 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007222
7223'``srem``' Instruction
7224^^^^^^^^^^^^^^^^^^^^^^
7225
7226Syntax:
7227"""""""
7228
7229::
7230
Tim Northover675a0962014-06-13 14:24:23 +00007231 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007232
7233Overview:
7234"""""""""
7235
7236The '``srem``' instruction returns the remainder from the signed
7237division of its two operands. This instruction can also take
7238:ref:`vector <t_vector>` versions of the values in which case the elements
7239must be integers.
7240
7241Arguments:
7242""""""""""
7243
7244The two arguments to the '``srem``' instruction must be
7245:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7246arguments must have identical types.
7247
7248Semantics:
7249""""""""""
7250
7251This instruction returns the *remainder* of a division (where the result
7252is either zero or has the same sign as the dividend, ``op1``), not the
7253*modulo* operator (where the result is either zero or has the same sign
7254as the divisor, ``op2``) of a value. For more information about the
7255difference, see `The Math
7256Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
7257table of how this is implemented in various languages, please see
7258`Wikipedia: modulo
7259operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
7260
7261Note that signed integer remainder and unsigned integer remainder are
7262distinct operations; for unsigned integer remainder, use '``urem``'.
7263
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007264Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007265For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007266undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007267Overflow also leads to undefined behavior; this is a rare case, but can
7268occur, for example, by taking the remainder of a 32-bit division of
7269-2147483648 by -1. (The remainder doesn't actually overflow, but this
7270rule lets srem be implemented using instructions that return both the
7271result of the division and the remainder.)
7272
7273Example:
7274""""""""
7275
Renato Golin124f2592016-07-20 12:16:38 +00007276.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007277
Tim Northover675a0962014-06-13 14:24:23 +00007278 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007279
7280.. _i_frem:
7281
7282'``frem``' Instruction
7283^^^^^^^^^^^^^^^^^^^^^^
7284
7285Syntax:
7286"""""""
7287
7288::
7289
Tim Northover675a0962014-06-13 14:24:23 +00007290 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007291
7292Overview:
7293"""""""""
7294
7295The '``frem``' instruction returns the remainder from the division of
7296its two operands.
7297
7298Arguments:
7299""""""""""
7300
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007301The two arguments to the '``frem``' instruction must be
7302:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
7303floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007304
7305Semantics:
7306""""""""""
7307
Sanjay Patel7b722402018-03-07 17:18:22 +00007308The value produced is the floating-point remainder of the two operands.
7309This is the same output as a libm '``fmod``' function, but without any
7310possibility of setting ``errno``. The remainder has the same sign as the
7311dividend.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007312This instruction is assumed to execute in the default :ref:`floating-point
7313environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00007314This instruction can also take any number of :ref:`fast-math
7315flags <fastmath>`, which are optimization hints to enable otherwise
7316unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007317
7318Example:
7319""""""""
7320
Renato Golin124f2592016-07-20 12:16:38 +00007321.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007322
Tim Northover675a0962014-06-13 14:24:23 +00007323 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007324
7325.. _bitwiseops:
7326
7327Bitwise Binary Operations
7328-------------------------
7329
7330Bitwise binary operators are used to do various forms of bit-twiddling
7331in a program. They are generally very efficient instructions and can
7332commonly be strength reduced from other instructions. They require two
7333operands of the same type, execute an operation on them, and produce a
7334single value. The resulting value is the same type as its operands.
7335
7336'``shl``' Instruction
7337^^^^^^^^^^^^^^^^^^^^^
7338
7339Syntax:
7340"""""""
7341
7342::
7343
Tim Northover675a0962014-06-13 14:24:23 +00007344 <result> = shl <ty> <op1>, <op2> ; yields ty:result
7345 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
7346 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
7347 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007348
7349Overview:
7350"""""""""
7351
7352The '``shl``' instruction returns the first operand shifted to the left
7353a specified number of bits.
7354
7355Arguments:
7356""""""""""
7357
7358Both arguments to the '``shl``' instruction must be the same
7359:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7360'``op2``' is treated as an unsigned value.
7361
7362Semantics:
7363""""""""""
7364
7365The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
7366where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00007367dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007368``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
7369If the arguments are vectors, each vector element of ``op1`` is shifted
7370by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007371
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007372If the ``nuw`` keyword is present, then the shift produces a poison
7373value if it shifts out any non-zero bits.
7374If the ``nsw`` keyword is present, then the shift produces a poison
Sanjay Patel2896c772018-06-01 15:21:14 +00007375value if it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00007376
7377Example:
7378""""""""
7379
Renato Golin124f2592016-07-20 12:16:38 +00007380.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007381
Tim Northover675a0962014-06-13 14:24:23 +00007382 <result> = shl i32 4, %var ; yields i32: 4 << %var
7383 <result> = shl i32 4, 2 ; yields i32: 16
7384 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00007385 <result> = shl i32 1, 32 ; undefined
7386 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
7387
7388'``lshr``' Instruction
7389^^^^^^^^^^^^^^^^^^^^^^
7390
7391Syntax:
7392"""""""
7393
7394::
7395
Tim Northover675a0962014-06-13 14:24:23 +00007396 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
7397 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007398
7399Overview:
7400"""""""""
7401
7402The '``lshr``' instruction (logical shift right) returns the first
7403operand shifted to the right a specified number of bits with zero fill.
7404
7405Arguments:
7406""""""""""
7407
7408Both arguments to the '``lshr``' instruction must be the same
7409:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7410'``op2``' is treated as an unsigned value.
7411
7412Semantics:
7413""""""""""
7414
7415This instruction always performs a logical shift right operation. The
7416most significant bits of the result will be filled with zero bits after
7417the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007418than the number of bits in ``op1``, this instruction returns a :ref:`poison
7419value <poisonvalues>`. If the arguments are vectors, each vector element
7420of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007421
7422If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007423a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007424
7425Example:
7426""""""""
7427
Renato Golin124f2592016-07-20 12:16:38 +00007428.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007429
Tim Northover675a0962014-06-13 14:24:23 +00007430 <result> = lshr i32 4, 1 ; yields i32:result = 2
7431 <result> = lshr i32 4, 2 ; yields i32:result = 1
7432 <result> = lshr i8 4, 3 ; yields i8:result = 0
7433 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00007434 <result> = lshr i32 1, 32 ; undefined
7435 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
7436
7437'``ashr``' Instruction
7438^^^^^^^^^^^^^^^^^^^^^^
7439
7440Syntax:
7441"""""""
7442
7443::
7444
Tim Northover675a0962014-06-13 14:24:23 +00007445 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
7446 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007447
7448Overview:
7449"""""""""
7450
7451The '``ashr``' instruction (arithmetic shift right) returns the first
7452operand shifted to the right a specified number of bits with sign
7453extension.
7454
7455Arguments:
7456""""""""""
7457
7458Both arguments to the '``ashr``' instruction must be the same
7459:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7460'``op2``' is treated as an unsigned value.
7461
7462Semantics:
7463""""""""""
7464
7465This instruction always performs an arithmetic shift right operation,
7466The most significant bits of the result will be filled with the sign bit
7467of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007468than the number of bits in ``op1``, this instruction returns a :ref:`poison
7469value <poisonvalues>`. If the arguments are vectors, each vector element
7470of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007471
7472If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007473a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007474
7475Example:
7476""""""""
7477
Renato Golin124f2592016-07-20 12:16:38 +00007478.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007479
Tim Northover675a0962014-06-13 14:24:23 +00007480 <result> = ashr i32 4, 1 ; yields i32:result = 2
7481 <result> = ashr i32 4, 2 ; yields i32:result = 1
7482 <result> = ashr i8 4, 3 ; yields i8:result = 0
7483 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00007484 <result> = ashr i32 1, 32 ; undefined
7485 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
7486
7487'``and``' Instruction
7488^^^^^^^^^^^^^^^^^^^^^
7489
7490Syntax:
7491"""""""
7492
7493::
7494
Tim Northover675a0962014-06-13 14:24:23 +00007495 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007496
7497Overview:
7498"""""""""
7499
7500The '``and``' instruction returns the bitwise logical and of its two
7501operands.
7502
7503Arguments:
7504""""""""""
7505
7506The two arguments to the '``and``' instruction must be
7507:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7508arguments must have identical types.
7509
7510Semantics:
7511""""""""""
7512
7513The truth table used for the '``and``' instruction is:
7514
7515+-----+-----+-----+
7516| In0 | In1 | Out |
7517+-----+-----+-----+
7518| 0 | 0 | 0 |
7519+-----+-----+-----+
7520| 0 | 1 | 0 |
7521+-----+-----+-----+
7522| 1 | 0 | 0 |
7523+-----+-----+-----+
7524| 1 | 1 | 1 |
7525+-----+-----+-----+
7526
7527Example:
7528""""""""
7529
Renato Golin124f2592016-07-20 12:16:38 +00007530.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007531
Tim Northover675a0962014-06-13 14:24:23 +00007532 <result> = and i32 4, %var ; yields i32:result = 4 & %var
7533 <result> = and i32 15, 40 ; yields i32:result = 8
7534 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00007535
7536'``or``' Instruction
7537^^^^^^^^^^^^^^^^^^^^
7538
7539Syntax:
7540"""""""
7541
7542::
7543
Tim Northover675a0962014-06-13 14:24:23 +00007544 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007545
7546Overview:
7547"""""""""
7548
7549The '``or``' instruction returns the bitwise logical inclusive or of its
7550two operands.
7551
7552Arguments:
7553""""""""""
7554
7555The two arguments to the '``or``' instruction must be
7556:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7557arguments must have identical types.
7558
7559Semantics:
7560""""""""""
7561
7562The truth table used for the '``or``' instruction is:
7563
7564+-----+-----+-----+
7565| In0 | In1 | Out |
7566+-----+-----+-----+
7567| 0 | 0 | 0 |
7568+-----+-----+-----+
7569| 0 | 1 | 1 |
7570+-----+-----+-----+
7571| 1 | 0 | 1 |
7572+-----+-----+-----+
7573| 1 | 1 | 1 |
7574+-----+-----+-----+
7575
7576Example:
7577""""""""
7578
7579::
7580
Tim Northover675a0962014-06-13 14:24:23 +00007581 <result> = or i32 4, %var ; yields i32:result = 4 | %var
7582 <result> = or i32 15, 40 ; yields i32:result = 47
7583 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00007584
7585'``xor``' Instruction
7586^^^^^^^^^^^^^^^^^^^^^
7587
7588Syntax:
7589"""""""
7590
7591::
7592
Tim Northover675a0962014-06-13 14:24:23 +00007593 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007594
7595Overview:
7596"""""""""
7597
7598The '``xor``' instruction returns the bitwise logical exclusive or of
7599its two operands. The ``xor`` is used to implement the "one's
7600complement" operation, which is the "~" operator in C.
7601
7602Arguments:
7603""""""""""
7604
7605The two arguments to the '``xor``' instruction must be
7606:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7607arguments must have identical types.
7608
7609Semantics:
7610""""""""""
7611
7612The truth table used for the '``xor``' instruction is:
7613
7614+-----+-----+-----+
7615| In0 | In1 | Out |
7616+-----+-----+-----+
7617| 0 | 0 | 0 |
7618+-----+-----+-----+
7619| 0 | 1 | 1 |
7620+-----+-----+-----+
7621| 1 | 0 | 1 |
7622+-----+-----+-----+
7623| 1 | 1 | 0 |
7624+-----+-----+-----+
7625
7626Example:
7627""""""""
7628
Renato Golin124f2592016-07-20 12:16:38 +00007629.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007630
Tim Northover675a0962014-06-13 14:24:23 +00007631 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7632 <result> = xor i32 15, 40 ; yields i32:result = 39
7633 <result> = xor i32 4, 8 ; yields i32:result = 12
7634 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00007635
7636Vector Operations
7637-----------------
7638
7639LLVM supports several instructions to represent vector operations in a
7640target-independent manner. These instructions cover the element-access
7641and vector-specific operations needed to process vectors effectively.
7642While LLVM does directly support these vector operations, many
7643sophisticated algorithms will want to use target-specific intrinsics to
7644take full advantage of a specific target.
7645
7646.. _i_extractelement:
7647
7648'``extractelement``' Instruction
7649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7650
7651Syntax:
7652"""""""
7653
7654::
7655
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007656 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00007657
7658Overview:
7659"""""""""
7660
7661The '``extractelement``' instruction extracts a single scalar element
7662from a vector at a specified index.
7663
7664Arguments:
7665""""""""""
7666
7667The first operand of an '``extractelement``' instruction is a value of
7668:ref:`vector <t_vector>` type. The second operand is an index indicating
7669the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007670variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007671
7672Semantics:
7673""""""""""
7674
7675The result is a scalar of the same type as the element type of ``val``.
7676Its value is the value at position ``idx`` of ``val``. If ``idx``
Eli Friedman2c7a81b2018-06-08 21:23:09 +00007677exceeds the length of ``val``, the result is a
7678:ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00007679
7680Example:
7681""""""""
7682
Renato Golin124f2592016-07-20 12:16:38 +00007683.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007684
7685 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7686
7687.. _i_insertelement:
7688
7689'``insertelement``' Instruction
7690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7691
7692Syntax:
7693"""""""
7694
7695::
7696
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007697 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007698
7699Overview:
7700"""""""""
7701
7702The '``insertelement``' instruction inserts a scalar element into a
7703vector at a specified index.
7704
7705Arguments:
7706""""""""""
7707
7708The first operand of an '``insertelement``' instruction is a value of
7709:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7710type must equal the element type of the first operand. The third operand
7711is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007712index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007713
7714Semantics:
7715""""""""""
7716
7717The result is a vector of the same type as ``val``. Its element values
7718are those of ``val`` except at position ``idx``, where it gets the value
Eli Friedman2c7a81b2018-06-08 21:23:09 +00007719``elt``. If ``idx`` exceeds the length of ``val``, the result
7720is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00007721
7722Example:
7723""""""""
7724
Renato Golin124f2592016-07-20 12:16:38 +00007725.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007726
7727 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7728
7729.. _i_shufflevector:
7730
7731'``shufflevector``' Instruction
7732^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7733
7734Syntax:
7735"""""""
7736
7737::
7738
7739 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7740
7741Overview:
7742"""""""""
7743
7744The '``shufflevector``' instruction constructs a permutation of elements
7745from two input vectors, returning a vector with the same element type as
7746the input and length that is the same as the shuffle mask.
7747
7748Arguments:
7749""""""""""
7750
7751The first two operands of a '``shufflevector``' instruction are vectors
7752with the same type. The third argument is a shuffle mask whose element
7753type is always 'i32'. The result of the instruction is a vector whose
7754length is the same as the shuffle mask and whose element type is the
7755same as the element type of the first two operands.
7756
7757The shuffle mask operand is required to be a constant vector with either
7758constant integer or undef values.
7759
7760Semantics:
7761""""""""""
7762
7763The elements of the two input vectors are numbered from left to right
7764across both of the vectors. The shuffle mask operand specifies, for each
7765element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007766result element gets. If the shuffle mask is undef, the result vector is
7767undef. If any element of the mask operand is undef, that element of the
7768result is undef. If the shuffle mask selects an undef element from one
7769of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007770
7771Example:
7772""""""""
7773
Renato Golin124f2592016-07-20 12:16:38 +00007774.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007775
7776 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7777 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7778 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7779 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7780 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7781 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7782 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7783 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7784
7785Aggregate Operations
7786--------------------
7787
7788LLVM supports several instructions for working with
7789:ref:`aggregate <t_aggregate>` values.
7790
7791.. _i_extractvalue:
7792
7793'``extractvalue``' Instruction
7794^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7795
7796Syntax:
7797"""""""
7798
7799::
7800
7801 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7802
7803Overview:
7804"""""""""
7805
7806The '``extractvalue``' instruction extracts the value of a member field
7807from an :ref:`aggregate <t_aggregate>` value.
7808
7809Arguments:
7810""""""""""
7811
7812The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007813:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007814constant indices to specify which value to extract in a similar manner
7815as indices in a '``getelementptr``' instruction.
7816
7817The major differences to ``getelementptr`` indexing are:
7818
7819- Since the value being indexed is not a pointer, the first index is
7820 omitted and assumed to be zero.
7821- At least one index must be specified.
7822- Not only struct indices but also array indices must be in bounds.
7823
7824Semantics:
7825""""""""""
7826
7827The result is the value at the position in the aggregate specified by
7828the index operands.
7829
7830Example:
7831""""""""
7832
Renato Golin124f2592016-07-20 12:16:38 +00007833.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007834
7835 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7836
7837.. _i_insertvalue:
7838
7839'``insertvalue``' Instruction
7840^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7841
7842Syntax:
7843"""""""
7844
7845::
7846
7847 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7848
7849Overview:
7850"""""""""
7851
7852The '``insertvalue``' instruction inserts a value into a member field in
7853an :ref:`aggregate <t_aggregate>` value.
7854
7855Arguments:
7856""""""""""
7857
7858The first operand of an '``insertvalue``' instruction is a value of
7859:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7860a first-class value to insert. The following operands are constant
7861indices indicating the position at which to insert the value in a
7862similar manner as indices in a '``extractvalue``' instruction. The value
7863to insert must have the same type as the value identified by the
7864indices.
7865
7866Semantics:
7867""""""""""
7868
7869The result is an aggregate of the same type as ``val``. Its value is
7870that of ``val`` except that the value at the position specified by the
7871indices is that of ``elt``.
7872
7873Example:
7874""""""""
7875
7876.. code-block:: llvm
7877
7878 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7879 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007880 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007881
7882.. _memoryops:
7883
7884Memory Access and Addressing Operations
7885---------------------------------------
7886
7887A key design point of an SSA-based representation is how it represents
7888memory. In LLVM, no memory locations are in SSA form, which makes things
7889very simple. This section describes how to read, write, and allocate
7890memory in LLVM.
7891
7892.. _i_alloca:
7893
7894'``alloca``' Instruction
7895^^^^^^^^^^^^^^^^^^^^^^^^
7896
7897Syntax:
7898"""""""
7899
7900::
7901
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007902 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007903
7904Overview:
7905"""""""""
7906
7907The '``alloca``' instruction allocates memory on the stack frame of the
7908currently executing function, to be automatically released when this
7909function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007910address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007911
7912Arguments:
7913""""""""""
7914
7915The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7916bytes of memory on the runtime stack, returning a pointer of the
7917appropriate type to the program. If "NumElements" is specified, it is
7918the number of elements allocated, otherwise "NumElements" is defaulted
7919to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007920allocation is guaranteed to be aligned to at least that boundary. The
7921alignment may not be greater than ``1 << 29``. If not specified, or if
7922zero, the target can choose to align the allocation on any convenient
7923boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007924
7925'``type``' may be any sized type.
7926
7927Semantics:
7928""""""""""
7929
7930Memory is allocated; a pointer is returned. The operation is undefined
7931if there is insufficient stack space for the allocation. '``alloca``'d
7932memory is automatically released when the function returns. The
7933'``alloca``' instruction is commonly used to represent automatic
7934variables that must have an address available. When the function returns
7935(either with the ``ret`` or ``resume`` instructions), the memory is
Eli Friedman18f882c2018-07-11 00:02:01 +00007936reclaimed. Allocating zero bytes is legal, but the returned pointer may not
7937be unique. The order in which memory is allocated (ie., which way the stack
7938grows) is not specified.
Sean Silvab084af42012-12-07 10:36:55 +00007939
7940Example:
7941""""""""
7942
7943.. code-block:: llvm
7944
Tim Northover675a0962014-06-13 14:24:23 +00007945 %ptr = alloca i32 ; yields i32*:ptr
7946 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7947 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7948 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007949
7950.. _i_load:
7951
7952'``load``' Instruction
7953^^^^^^^^^^^^^^^^^^^^^^
7954
7955Syntax:
7956"""""""
7957
7958::
7959
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007960 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007961 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007962 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007963 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007964 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007965
7966Overview:
7967"""""""""
7968
7969The '``load``' instruction is used to read from memory.
7970
7971Arguments:
7972""""""""""
7973
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007974The argument to the ``load`` instruction specifies the memory address from which
7975to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7976known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7977the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7978modify the number or order of execution of this ``load`` with other
7979:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007980
JF Bastiend1fb5852015-12-17 22:09:19 +00007981If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007982<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7983``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
7984Atomic loads produce :ref:`defined <memmodel>` results when they may see
7985multiple atomic stores. The type of the pointee must be an integer, pointer, or
7986floating-point type whose bit width is a power of two greater than or equal to
7987eight and less than or equal to a target-specific size limit. ``align`` must be
7988explicitly specified on atomic loads, and the load has undefined behavior if the
7989alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00007990pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007991
7992The optional constant ``align`` argument specifies the alignment of the
7993operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007994or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007995alignment for the target. It is the responsibility of the code emitter
7996to ensure that the alignment information is correct. Overestimating the
7997alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007998may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007999maximum possible alignment is ``1 << 29``. An alignment value higher
8000than the size of the loaded type implies memory up to the alignment
8001value bytes can be safely loaded without trapping in the default
8002address space. Access of the high bytes can interfere with debugging
8003tools, so should not be accessed if the function has the
8004``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00008005
8006The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008007metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00008008``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008009metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00008010that this load is not expected to be reused in the cache. The code
8011generator may select special instructions to save cache bandwidth, such
8012as the ``MOVNT`` instruction on x86.
8013
8014The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008015metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00008016entries. If a load instruction tagged with the ``!invariant.load``
8017metadata is executed, the optimizer may assume the memory location
8018referenced by the load contains the same value at all points in the
Eli Friedmane15a1112018-07-17 20:38:11 +00008019program where the memory location is known to be dereferenceable;
8020otherwise, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008021
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008022The optional ``!invariant.group`` metadata must reference a single metadata name
Piotr Padlewskice358262018-05-18 23:53:46 +00008023 ``<index>`` corresponding to a metadata node with no entries.
8024 See ``invariant.group`` metadata.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008025
Philip Reamescdb72f32014-10-20 22:40:55 +00008026The optional ``!nonnull`` metadata must reference a single
8027metadata name ``<index>`` corresponding to a metadata node with no
8028entries. The existence of the ``!nonnull`` metadata on the
8029instruction tells the optimizer that the value loaded is known to
Eli Friedmane15a1112018-07-17 20:38:11 +00008030never be null. If the value is null at runtime, the behavior is undefined.
8031This is analogous to the ``nonnull`` attribute on parameters and return
8032values. This metadata can only be applied to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00008033
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008034The optional ``!dereferenceable`` metadata must reference a single metadata
8035name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00008036entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00008037tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00008038The number of bytes known to be dereferenceable is specified by the integer
8039value in the metadata node. This is analogous to the ''dereferenceable''
8040attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00008041to loads of a pointer type.
8042
8043The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008044metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
8045``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00008046instruction tells the optimizer that the value loaded is known to be either
8047dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00008048The number of bytes known to be dereferenceable is specified by the integer
8049value in the metadata node. This is analogous to the ''dereferenceable_or_null''
8050attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00008051to loads of a pointer type.
8052
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008053The optional ``!align`` metadata must reference a single metadata name
8054``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
8055The existence of the ``!align`` metadata on the instruction tells the
8056optimizer that the value loaded is known to be aligned to a boundary specified
8057by the integer value in the metadata node. The alignment must be a power of 2.
8058This is analogous to the ''align'' attribute on parameters and return values.
Eli Friedmane15a1112018-07-17 20:38:11 +00008059This metadata can only be applied to loads of a pointer type. If the returned
8060value is not appropriately aligned at runtime, the behavior is undefined.
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008061
Sean Silvab084af42012-12-07 10:36:55 +00008062Semantics:
8063""""""""""
8064
8065The location of memory pointed to is loaded. If the value being loaded
8066is of scalar type then the number of bytes read does not exceed the
8067minimum number of bytes needed to hold all bits of the type. For
8068example, loading an ``i24`` reads at most three bytes. When loading a
8069value of a type like ``i20`` with a size that is not an integral number
8070of bytes, the result is undefined if the value was not originally
8071written using a store of the same type.
8072
8073Examples:
8074"""""""""
8075
8076.. code-block:: llvm
8077
Tim Northover675a0962014-06-13 14:24:23 +00008078 %ptr = alloca i32 ; yields i32*:ptr
8079 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00008080 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008081
8082.. _i_store:
8083
8084'``store``' Instruction
8085^^^^^^^^^^^^^^^^^^^^^^^
8086
8087Syntax:
8088"""""""
8089
8090::
8091
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008092 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008093 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008094
8095Overview:
8096"""""""""
8097
8098The '``store``' instruction is used to write to memory.
8099
8100Arguments:
8101""""""""""
8102
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00008103There are two arguments to the ``store`` instruction: a value to store and an
8104address at which to store it. The type of the ``<pointer>`` operand must be a
8105pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
8106operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
8107allowed to modify the number or order of execution of this ``store`` with other
8108:ref:`volatile operations <volatile>`. Only values of :ref:`first class
8109<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
8110structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00008111
JF Bastiend1fb5852015-12-17 22:09:19 +00008112If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008113<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8114``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
8115Atomic loads produce :ref:`defined <memmodel>` results when they may see
8116multiple atomic stores. The type of the pointee must be an integer, pointer, or
8117floating-point type whose bit width is a power of two greater than or equal to
8118eight and less than or equal to a target-specific size limit. ``align`` must be
8119explicitly specified on atomic stores, and the store has undefined behavior if
8120the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00008121pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00008122
Eli Benderskyca380842013-04-17 17:17:20 +00008123The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00008124operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00008125or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00008126alignment for the target. It is the responsibility of the code emitter
8127to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00008128alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00008129alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00008130safe. The maximum possible alignment is ``1 << 29``. An alignment
8131value higher than the size of the stored type implies memory up to the
8132alignment value bytes can be stored to without trapping in the default
8133address space. Storing to the higher bytes however may result in data
8134races if another thread can access the same address. Introducing a
8135data race is not allowed. Storing to the extra bytes is not allowed
8136even in situations where a data race is known to not exist if the
8137function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00008138
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008139The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00008140name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008141value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00008142tells the optimizer and code generator that this load is not expected to
8143be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00008144instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00008145x86.
8146
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008147The optional ``!invariant.group`` metadata must reference a
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008148single metadata name ``<index>``. See ``invariant.group`` metadata.
8149
Sean Silvab084af42012-12-07 10:36:55 +00008150Semantics:
8151""""""""""
8152
Eli Benderskyca380842013-04-17 17:17:20 +00008153The contents of memory are updated to contain ``<value>`` at the
8154location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00008155of scalar type then the number of bytes written does not exceed the
8156minimum number of bytes needed to hold all bits of the type. For
8157example, storing an ``i24`` writes at most three bytes. When writing a
8158value of a type like ``i20`` with a size that is not an integral number
8159of bytes, it is unspecified what happens to the extra bits that do not
8160belong to the type, but they will typically be overwritten.
8161
8162Example:
8163""""""""
8164
8165.. code-block:: llvm
8166
Tim Northover675a0962014-06-13 14:24:23 +00008167 %ptr = alloca i32 ; yields i32*:ptr
8168 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00008169 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008170
8171.. _i_fence:
8172
8173'``fence``' Instruction
8174^^^^^^^^^^^^^^^^^^^^^^^
8175
8176Syntax:
8177"""""""
8178
8179::
8180
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008181 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008182
8183Overview:
8184"""""""""
8185
8186The '``fence``' instruction is used to introduce happens-before edges
8187between operations.
8188
8189Arguments:
8190""""""""""
8191
8192'``fence``' instructions take an :ref:`ordering <ordering>` argument which
8193defines what *synchronizes-with* edges they add. They can only be given
8194``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
8195
8196Semantics:
8197""""""""""
8198
8199A fence A which has (at least) ``release`` ordering semantics
8200*synchronizes with* a fence B with (at least) ``acquire`` ordering
8201semantics if and only if there exist atomic operations X and Y, both
8202operating on some atomic object M, such that A is sequenced before X, X
8203modifies M (either directly or through some side effect of a sequence
8204headed by X), Y is sequenced before B, and Y observes M. This provides a
8205*happens-before* dependency between A and B. Rather than an explicit
8206``fence``, one (but not both) of the atomic operations X or Y might
8207provide a ``release`` or ``acquire`` (resp.) ordering constraint and
8208still *synchronize-with* the explicit ``fence`` and establish the
8209*happens-before* edge.
8210
8211A ``fence`` which has ``seq_cst`` ordering, in addition to having both
8212``acquire`` and ``release`` semantics specified above, participates in
8213the global program order of other ``seq_cst`` operations and/or fences.
8214
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008215A ``fence`` instruction can also take an optional
8216":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008217
8218Example:
8219""""""""
8220
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008221.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008222
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008223 fence acquire ; yields void
8224 fence syncscope("singlethread") seq_cst ; yields void
8225 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008226
8227.. _i_cmpxchg:
8228
8229'``cmpxchg``' Instruction
8230^^^^^^^^^^^^^^^^^^^^^^^^^
8231
8232Syntax:
8233"""""""
8234
8235::
8236
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008237 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00008238
8239Overview:
8240"""""""""
8241
8242The '``cmpxchg``' instruction is used to atomically modify memory. It
8243loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00008244equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00008245
8246Arguments:
8247""""""""""
8248
8249There are three arguments to the '``cmpxchg``' instruction: an address
8250to operate on, a value to compare to the value currently be at that
8251address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00008252are equal. The type of '<cmp>' must be an integer or pointer type whose
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008253bit width is a power of two greater than or equal to eight and less
Philip Reames1960cfd2016-02-19 00:06:41 +00008254than or equal to a target-specific size limit. '<cmp>' and '<new>' must
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008255have the same type, and the type of '<pointer>' must be a pointer to
8256that type. If the ``cmpxchg`` is marked as ``volatile``, then the
Philip Reames1960cfd2016-02-19 00:06:41 +00008257optimizer is not allowed to modify the number or order of execution of
8258this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008259
Tim Northovere94a5182014-03-11 10:48:52 +00008260The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00008261``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
8262must be at least ``monotonic``, the ordering constraint on failure must be no
8263stronger than that on success, and the failure ordering cannot be either
8264``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00008265
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008266A ``cmpxchg`` instruction can also take an optional
8267":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008268
8269The pointer passed into cmpxchg must have alignment greater than or
8270equal to the size in memory of the operand.
8271
8272Semantics:
8273""""""""""
8274
Tim Northover420a2162014-06-13 14:24:07 +00008275The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun93f2b4b2017-08-09 22:22:04 +00008276is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
8277written to the location. The original value at the location is returned,
8278together with a flag indicating success (true) or failure (false).
Tim Northover420a2162014-06-13 14:24:07 +00008279
8280If the cmpxchg operation is marked as ``weak`` then a spurious failure is
8281permitted: the operation may not write ``<new>`` even if the comparison
8282matched.
8283
8284If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
8285if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00008286
Tim Northovere94a5182014-03-11 10:48:52 +00008287A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
8288identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
8289load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00008290
8291Example:
8292""""""""
8293
8294.. code-block:: llvm
8295
8296 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008297 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008298 br label %loop
8299
8300 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008301 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00008302 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00008303 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00008304 %value_loaded = extractvalue { i32, i1 } %val_success, 0
8305 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00008306 br i1 %success, label %done, label %loop
8307
8308 done:
8309 ...
8310
8311.. _i_atomicrmw:
8312
8313'``atomicrmw``' Instruction
8314^^^^^^^^^^^^^^^^^^^^^^^^^^^
8315
8316Syntax:
8317"""""""
8318
8319::
8320
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008321 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00008322
8323Overview:
8324"""""""""
8325
8326The '``atomicrmw``' instruction is used to atomically modify memory.
8327
8328Arguments:
8329""""""""""
8330
8331There are three arguments to the '``atomicrmw``' instruction: an
8332operation to apply, an address whose value to modify, an argument to the
8333operation. The operation must be one of the following keywords:
8334
8335- xchg
8336- add
8337- sub
8338- and
8339- nand
8340- or
8341- xor
8342- max
8343- min
8344- umax
8345- umin
8346
8347The type of '<value>' must be an integer type whose bit width is a power
8348of two greater than or equal to eight and less than or equal to a
8349target-specific size limit. The type of the '``<pointer>``' operand must
8350be a pointer to that type. If the ``atomicrmw`` is marked as
8351``volatile``, then the optimizer is not allowed to modify the number or
8352order of execution of this ``atomicrmw`` with other :ref:`volatile
8353operations <volatile>`.
8354
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008355A ``atomicrmw`` instruction can also take an optional
8356":ref:`syncscope <syncscope>`" argument.
8357
Sean Silvab084af42012-12-07 10:36:55 +00008358Semantics:
8359""""""""""
8360
8361The contents of memory at the location specified by the '``<pointer>``'
8362operand are atomically read, modified, and written back. The original
8363value at the location is returned. The modification is specified by the
8364operation argument:
8365
8366- xchg: ``*ptr = val``
8367- add: ``*ptr = *ptr + val``
8368- sub: ``*ptr = *ptr - val``
8369- and: ``*ptr = *ptr & val``
8370- nand: ``*ptr = ~(*ptr & val)``
8371- or: ``*ptr = *ptr | val``
8372- xor: ``*ptr = *ptr ^ val``
8373- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
8374- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
8375- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
8376 comparison)
8377- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
8378 comparison)
8379
8380Example:
8381""""""""
8382
8383.. code-block:: llvm
8384
Tim Northover675a0962014-06-13 14:24:23 +00008385 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008386
8387.. _i_getelementptr:
8388
8389'``getelementptr``' Instruction
8390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8391
8392Syntax:
8393"""""""
8394
8395::
8396
Peter Collingbourned93620b2016-11-10 22:34:55 +00008397 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8398 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8399 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00008400
8401Overview:
8402"""""""""
8403
8404The '``getelementptr``' instruction is used to get the address of a
8405subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008406address calculation only and does not access memory. The instruction can also
8407be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00008408
8409Arguments:
8410""""""""""
8411
David Blaikie16a97eb2015-03-04 22:02:58 +00008412The first argument is always a type used as the basis for the calculations.
8413The second argument is always a pointer or a vector of pointers, and is the
8414base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00008415that indicate which of the elements of the aggregate object are indexed.
8416The interpretation of each index is dependent on the type being indexed
8417into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00008418second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00008419(not necessarily the value directly pointed to, since the first index
8420can be non-zero), etc. The first type indexed into must be a pointer
8421value, subsequent types can be arrays, vectors, and structs. Note that
8422subsequent types being indexed into can never be pointers, since that
8423would require loading the pointer before continuing calculation.
8424
8425The type of each index argument depends on the type it is indexing into.
8426When indexing into a (optionally packed) structure, only ``i32`` integer
8427**constants** are allowed (when using a vector of indices they must all
8428be the **same** ``i32`` integer constant). When indexing into an array,
8429pointer or vector, integers of any width are allowed, and they are not
8430required to be constant. These integers are treated as signed values
8431where relevant.
8432
8433For example, let's consider a C code fragment and how it gets compiled
8434to LLVM:
8435
8436.. code-block:: c
8437
8438 struct RT {
8439 char A;
8440 int B[10][20];
8441 char C;
8442 };
8443 struct ST {
8444 int X;
8445 double Y;
8446 struct RT Z;
8447 };
8448
8449 int *foo(struct ST *s) {
8450 return &s[1].Z.B[5][13];
8451 }
8452
8453The LLVM code generated by Clang is:
8454
8455.. code-block:: llvm
8456
8457 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
8458 %struct.ST = type { i32, double, %struct.RT }
8459
8460 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
8461 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00008462 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00008463 ret i32* %arrayidx
8464 }
8465
8466Semantics:
8467""""""""""
8468
8469In the example above, the first index is indexing into the
8470'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
8471= '``{ i32, double, %struct.RT }``' type, a structure. The second index
8472indexes into the third element of the structure, yielding a
8473'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
8474structure. The third index indexes into the second element of the
8475structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
8476dimensions of the array are subscripted into, yielding an '``i32``'
8477type. The '``getelementptr``' instruction returns a pointer to this
8478element, thus computing a value of '``i32*``' type.
8479
8480Note that it is perfectly legal to index partially through a structure,
8481returning a pointer to an inner element. Because of this, the LLVM code
8482for the given testcase is equivalent to:
8483
8484.. code-block:: llvm
8485
8486 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00008487 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
8488 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
8489 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
8490 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
8491 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00008492 ret i32* %t5
8493 }
8494
8495If the ``inbounds`` keyword is present, the result value of the
8496``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
8497pointer is not an *in bounds* address of an allocated object, or if any
8498of the addresses that would be formed by successive addition of the
8499offsets implied by the indices to the base address with infinitely
8500precise signed arithmetic are not an *in bounds* address of that
8501allocated object. The *in bounds* addresses for an allocated object are
8502all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00008503past the end. The only *in bounds* address for a null pointer in the
8504default address-space is the null pointer itself. In cases where the
8505base is a vector of pointers the ``inbounds`` keyword applies to each
8506of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00008507
8508If the ``inbounds`` keyword is not present, the offsets are added to the
8509base address with silently-wrapping two's complement arithmetic. If the
8510offsets have a different width from the pointer, they are sign-extended
8511or truncated to the width of the pointer. The result value of the
8512``getelementptr`` may be outside the object pointed to by the base
8513pointer. The result value may not necessarily be used to access memory
8514though, even if it happens to point into allocated storage. See the
8515:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
8516information.
8517
Peter Collingbourned93620b2016-11-10 22:34:55 +00008518If the ``inrange`` keyword is present before any index, loading from or
8519storing to any pointer derived from the ``getelementptr`` has undefined
8520behavior if the load or store would access memory outside of the bounds of
8521the element selected by the index marked as ``inrange``. The result of a
8522pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
8523involving memory) involving a pointer derived from a ``getelementptr`` with
8524the ``inrange`` keyword is undefined, with the exception of comparisons
8525in the case where both operands are in the range of the element selected
8526by the ``inrange`` keyword, inclusive of the address one past the end of
8527that element. Note that the ``inrange`` keyword is currently only allowed
8528in constant ``getelementptr`` expressions.
8529
Sean Silvab084af42012-12-07 10:36:55 +00008530The getelementptr instruction is often confusing. For some more insight
8531into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
8532
8533Example:
8534""""""""
8535
8536.. code-block:: llvm
8537
8538 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008539 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008540 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008541 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008542 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008543 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008544 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008545 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00008546
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008547Vector of pointers:
8548"""""""""""""""""""
8549
8550The ``getelementptr`` returns a vector of pointers, instead of a single address,
8551when one or more of its arguments is a vector. In such cases, all vector
8552arguments should have the same number of elements, and every scalar argument
8553will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00008554
8555.. code-block:: llvm
8556
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008557 ; All arguments are vectors:
8558 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
8559 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008560
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008561 ; Add the same scalar offset to each pointer of a vector:
8562 ; A[i] = ptrs[i] + offset*sizeof(i8)
8563 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00008564
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008565 ; Add distinct offsets to the same pointer:
8566 ; A[i] = ptr + offsets[i]*sizeof(i8)
8567 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008568
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008569 ; In all cases described above the type of the result is <4 x i8*>
8570
8571The two following instructions are equivalent:
8572
8573.. code-block:: llvm
8574
8575 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8576 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
8577 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
8578 <4 x i32> %ind4,
8579 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00008580
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008581 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8582 i32 2, i32 1, <4 x i32> %ind4, i64 13
8583
8584Let's look at the C code, where the vector version of ``getelementptr``
8585makes sense:
8586
8587.. code-block:: c
8588
8589 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00008590 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008591 for (int i = 0; i < size; ++i) {
8592 A[i] = B[C[i]];
8593 }
8594
8595.. code-block:: llvm
8596
8597 ; get pointers for 8 elements from array B
8598 %ptrs = getelementptr double, double* %B, <8 x i32> %C
8599 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00008600 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008601 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00008602
8603Conversion Operations
8604---------------------
8605
8606The instructions in this category are the conversion instructions
8607(casting) which all take a single operand and a type. They perform
8608various bit conversions on the operand.
8609
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008610.. _i_trunc:
8611
Sean Silvab084af42012-12-07 10:36:55 +00008612'``trunc .. to``' Instruction
8613^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8614
8615Syntax:
8616"""""""
8617
8618::
8619
8620 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8621
8622Overview:
8623"""""""""
8624
8625The '``trunc``' instruction truncates its operand to the type ``ty2``.
8626
8627Arguments:
8628""""""""""
8629
8630The '``trunc``' instruction takes a value to trunc, and a type to trunc
8631it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8632of the same number of integers. The bit size of the ``value`` must be
8633larger than the bit size of the destination type, ``ty2``. Equal sized
8634types are not allowed.
8635
8636Semantics:
8637""""""""""
8638
8639The '``trunc``' instruction truncates the high order bits in ``value``
8640and converts the remaining bits to ``ty2``. Since the source size must
8641be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8642It will always truncate bits.
8643
8644Example:
8645""""""""
8646
8647.. code-block:: llvm
8648
8649 %X = trunc i32 257 to i8 ; yields i8:1
8650 %Y = trunc i32 123 to i1 ; yields i1:true
8651 %Z = trunc i32 122 to i1 ; yields i1:false
8652 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
8653
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008654.. _i_zext:
8655
Sean Silvab084af42012-12-07 10:36:55 +00008656'``zext .. to``' Instruction
8657^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8658
8659Syntax:
8660"""""""
8661
8662::
8663
8664 <result> = zext <ty> <value> to <ty2> ; yields ty2
8665
8666Overview:
8667"""""""""
8668
8669The '``zext``' instruction zero extends its operand to type ``ty2``.
8670
8671Arguments:
8672""""""""""
8673
8674The '``zext``' instruction takes a value to cast, and a type to cast it
8675to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8676the same number of integers. The bit size of the ``value`` must be
8677smaller than the bit size of the destination type, ``ty2``.
8678
8679Semantics:
8680""""""""""
8681
8682The ``zext`` fills the high order bits of the ``value`` with zero bits
8683until it reaches the size of the destination type, ``ty2``.
8684
8685When zero extending from i1, the result will always be either 0 or 1.
8686
8687Example:
8688""""""""
8689
8690.. code-block:: llvm
8691
8692 %X = zext i32 257 to i64 ; yields i64:257
8693 %Y = zext i1 true to i32 ; yields i32:1
8694 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8695
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008696.. _i_sext:
8697
Sean Silvab084af42012-12-07 10:36:55 +00008698'``sext .. to``' Instruction
8699^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8700
8701Syntax:
8702"""""""
8703
8704::
8705
8706 <result> = sext <ty> <value> to <ty2> ; yields ty2
8707
8708Overview:
8709"""""""""
8710
8711The '``sext``' sign extends ``value`` to the type ``ty2``.
8712
8713Arguments:
8714""""""""""
8715
8716The '``sext``' instruction takes a value to cast, and a type to cast it
8717to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8718the same number of integers. The bit size of the ``value`` must be
8719smaller than the bit size of the destination type, ``ty2``.
8720
8721Semantics:
8722""""""""""
8723
8724The '``sext``' instruction performs a sign extension by copying the sign
8725bit (highest order bit) of the ``value`` until it reaches the bit size
8726of the type ``ty2``.
8727
8728When sign extending from i1, the extension always results in -1 or 0.
8729
8730Example:
8731""""""""
8732
8733.. code-block:: llvm
8734
8735 %X = sext i8 -1 to i16 ; yields i16 :65535
8736 %Y = sext i1 true to i32 ; yields i32:-1
8737 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8738
8739'``fptrunc .. to``' Instruction
8740^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8741
8742Syntax:
8743"""""""
8744
8745::
8746
8747 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8748
8749Overview:
8750"""""""""
8751
8752The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8753
8754Arguments:
8755""""""""""
8756
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008757The '``fptrunc``' instruction takes a :ref:`floating-point <t_floating>`
8758value to cast and a :ref:`floating-point <t_floating>` type to cast it to.
Sean Silvab084af42012-12-07 10:36:55 +00008759The size of ``value`` must be larger than the size of ``ty2``. This
8760implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8761
8762Semantics:
8763""""""""""
8764
Dan Liew50456fb2015-09-03 18:43:56 +00008765The '``fptrunc``' instruction casts a ``value`` from a larger
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008766:ref:`floating-point <t_floating>` type to a smaller :ref:`floating-point
Sanjay Pateld96a3632018-04-03 13:05:20 +00008767<t_floating>` type.
8768This instruction is assumed to execute in the default :ref:`floating-point
8769environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00008770
8771Example:
8772""""""""
8773
8774.. code-block:: llvm
8775
Sanjay Pateld96a3632018-04-03 13:05:20 +00008776 %X = fptrunc double 16777217.0 to float ; yields float:16777216.0
8777 %Y = fptrunc double 1.0E+300 to half ; yields half:+infinity
Sean Silvab084af42012-12-07 10:36:55 +00008778
8779'``fpext .. to``' Instruction
8780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8781
8782Syntax:
8783"""""""
8784
8785::
8786
8787 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8788
8789Overview:
8790"""""""""
8791
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008792The '``fpext``' extends a floating-point ``value`` to a larger floating-point
8793value.
Sean Silvab084af42012-12-07 10:36:55 +00008794
8795Arguments:
8796""""""""""
8797
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008798The '``fpext``' instruction takes a :ref:`floating-point <t_floating>`
8799``value`` to cast, and a :ref:`floating-point <t_floating>` type to cast it
Sean Silvab084af42012-12-07 10:36:55 +00008800to. The source type must be smaller than the destination type.
8801
8802Semantics:
8803""""""""""
8804
8805The '``fpext``' instruction extends the ``value`` from a smaller
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008806:ref:`floating-point <t_floating>` type to a larger :ref:`floating-point
8807<t_floating>` type. The ``fpext`` cannot be used to make a
Sean Silvab084af42012-12-07 10:36:55 +00008808*no-op cast* because it always changes bits. Use ``bitcast`` to make a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008809*no-op cast* for a floating-point cast.
Sean Silvab084af42012-12-07 10:36:55 +00008810
8811Example:
8812""""""""
8813
8814.. code-block:: llvm
8815
8816 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8817 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8818
8819'``fptoui .. to``' Instruction
8820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8821
8822Syntax:
8823"""""""
8824
8825::
8826
8827 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8828
8829Overview:
8830"""""""""
8831
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008832The '``fptoui``' converts a floating-point ``value`` to its unsigned
Sean Silvab084af42012-12-07 10:36:55 +00008833integer equivalent of type ``ty2``.
8834
8835Arguments:
8836""""""""""
8837
8838The '``fptoui``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008839scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00008840cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008841``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00008842type with the same number of elements as ``ty``
8843
8844Semantics:
8845""""""""""
8846
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008847The '``fptoui``' instruction converts its :ref:`floating-point
8848<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00008849unsigned integer value. If the value cannot fit in ``ty2``, the result
8850is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008851
8852Example:
8853""""""""
8854
8855.. code-block:: llvm
8856
8857 %X = fptoui double 123.0 to i32 ; yields i32:123
8858 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8859 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8860
8861'``fptosi .. to``' Instruction
8862^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8863
8864Syntax:
8865"""""""
8866
8867::
8868
8869 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8870
8871Overview:
8872"""""""""
8873
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008874The '``fptosi``' instruction converts :ref:`floating-point <t_floating>`
Sean Silvab084af42012-12-07 10:36:55 +00008875``value`` to type ``ty2``.
8876
8877Arguments:
8878""""""""""
8879
8880The '``fptosi``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008881scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00008882cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008883``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00008884type with the same number of elements as ``ty``
8885
8886Semantics:
8887""""""""""
8888
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008889The '``fptosi``' instruction converts its :ref:`floating-point
8890<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00008891signed integer value. If the value cannot fit in ``ty2``, the result
8892is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008893
8894Example:
8895""""""""
8896
8897.. code-block:: llvm
8898
8899 %X = fptosi double -123.0 to i32 ; yields i32:-123
8900 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8901 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8902
8903'``uitofp .. to``' Instruction
8904^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8905
8906Syntax:
8907"""""""
8908
8909::
8910
8911 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8912
8913Overview:
8914"""""""""
8915
8916The '``uitofp``' instruction regards ``value`` as an unsigned integer
8917and converts that value to the ``ty2`` type.
8918
8919Arguments:
8920""""""""""
8921
8922The '``uitofp``' instruction takes a value to cast, which must be a
8923scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008924``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
8925``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00008926type with the same number of elements as ``ty``
8927
8928Semantics:
8929""""""""""
8930
8931The '``uitofp``' instruction interprets its operand as an unsigned
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008932integer quantity and converts it to the corresponding floating-point
Eli Friedman3f1ce092018-06-14 22:58:48 +00008933value. If the value cannot be exactly represented, it is rounded using
8934the default rounding mode.
8935
Sean Silvab084af42012-12-07 10:36:55 +00008936
8937Example:
8938""""""""
8939
8940.. code-block:: llvm
8941
8942 %X = uitofp i32 257 to float ; yields float:257.0
8943 %Y = uitofp i8 -1 to double ; yields double:255.0
8944
8945'``sitofp .. to``' Instruction
8946^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8947
8948Syntax:
8949"""""""
8950
8951::
8952
8953 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8954
8955Overview:
8956"""""""""
8957
8958The '``sitofp``' instruction regards ``value`` as a signed integer and
8959converts that value to the ``ty2`` type.
8960
8961Arguments:
8962""""""""""
8963
8964The '``sitofp``' instruction takes a value to cast, which must be a
8965scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008966``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
8967``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00008968type with the same number of elements as ``ty``
8969
8970Semantics:
8971""""""""""
8972
8973The '``sitofp``' instruction interprets its operand as a signed integer
Eli Friedman3f1ce092018-06-14 22:58:48 +00008974quantity and converts it to the corresponding floating-point value. If the
8975value cannot be exactly represented, it is rounded using the default rounding
8976mode.
Sean Silvab084af42012-12-07 10:36:55 +00008977
8978Example:
8979""""""""
8980
8981.. code-block:: llvm
8982
8983 %X = sitofp i32 257 to float ; yields float:257.0
8984 %Y = sitofp i8 -1 to double ; yields double:-1.0
8985
8986.. _i_ptrtoint:
8987
8988'``ptrtoint .. to``' Instruction
8989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8990
8991Syntax:
8992"""""""
8993
8994::
8995
8996 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8997
8998Overview:
8999"""""""""
9000
9001The '``ptrtoint``' instruction converts the pointer or a vector of
9002pointers ``value`` to the integer (or vector of integers) type ``ty2``.
9003
9004Arguments:
9005""""""""""
9006
9007The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00009008a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00009009type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
9010a vector of integers type.
9011
9012Semantics:
9013""""""""""
9014
9015The '``ptrtoint``' instruction converts ``value`` to integer type
9016``ty2`` by interpreting the pointer value as an integer and either
9017truncating or zero extending that value to the size of the integer type.
9018If ``value`` is smaller than ``ty2`` then a zero extension is done. If
9019``value`` is larger than ``ty2`` then a truncation is done. If they are
9020the same size, then nothing is done (*no-op cast*) other than a type
9021change.
9022
9023Example:
9024""""""""
9025
9026.. code-block:: llvm
9027
9028 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
9029 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
9030 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
9031
9032.. _i_inttoptr:
9033
9034'``inttoptr .. to``' Instruction
9035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9036
9037Syntax:
9038"""""""
9039
9040::
9041
9042 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
9043
9044Overview:
9045"""""""""
9046
9047The '``inttoptr``' instruction converts an integer ``value`` to a
9048pointer type, ``ty2``.
9049
9050Arguments:
9051""""""""""
9052
9053The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
9054cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
9055type.
9056
9057Semantics:
9058""""""""""
9059
9060The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
9061applying either a zero extension or a truncation depending on the size
9062of the integer ``value``. If ``value`` is larger than the size of a
9063pointer then a truncation is done. If ``value`` is smaller than the size
9064of a pointer then a zero extension is done. If they are the same size,
9065nothing is done (*no-op cast*).
9066
9067Example:
9068""""""""
9069
9070.. code-block:: llvm
9071
9072 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
9073 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
9074 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
9075 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
9076
9077.. _i_bitcast:
9078
9079'``bitcast .. to``' Instruction
9080^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9081
9082Syntax:
9083"""""""
9084
9085::
9086
9087 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
9088
9089Overview:
9090"""""""""
9091
9092The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
9093changing any bits.
9094
9095Arguments:
9096""""""""""
9097
9098The '``bitcast``' instruction takes a value to cast, which must be a
9099non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009100also be a non-aggregate :ref:`first class <t_firstclass>` type. The
9101bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00009102identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009103also be a pointer of the same size. This instruction supports bitwise
9104conversion of vectors to integers and to vectors of other types (as
9105long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00009106
9107Semantics:
9108""""""""""
9109
Matt Arsenault24b49c42013-07-31 17:49:08 +00009110The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
9111is always a *no-op cast* because no bits change with this
9112conversion. The conversion is done as if the ``value`` had been stored
9113to memory and read back as type ``ty2``. Pointer (or vector of
9114pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009115pointers) types with the same address space through this instruction.
9116To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
9117or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00009118
9119Example:
9120""""""""
9121
Renato Golin124f2592016-07-20 12:16:38 +00009122.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009123
9124 %X = bitcast i8 255 to i8 ; yields i8 :-1
9125 %Y = bitcast i32* %x to sint* ; yields sint*:%x
9126 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
9127 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
9128
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009129.. _i_addrspacecast:
9130
9131'``addrspacecast .. to``' Instruction
9132^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9133
9134Syntax:
9135"""""""
9136
9137::
9138
9139 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
9140
9141Overview:
9142"""""""""
9143
9144The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
9145address space ``n`` to type ``pty2`` in address space ``m``.
9146
9147Arguments:
9148""""""""""
9149
9150The '``addrspacecast``' instruction takes a pointer or vector of pointer value
9151to cast and a pointer type to cast it to, which must have a different
9152address space.
9153
9154Semantics:
9155""""""""""
9156
9157The '``addrspacecast``' instruction converts the pointer value
9158``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00009159value modification, depending on the target and the address space
9160pair. Pointer conversions within the same address space must be
9161performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009162conversion is legal then both result and operand refer to the same memory
9163location.
9164
9165Example:
9166""""""""
9167
9168.. code-block:: llvm
9169
Matt Arsenault9c13dd02013-11-15 22:43:50 +00009170 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
9171 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
9172 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009173
Sean Silvab084af42012-12-07 10:36:55 +00009174.. _otherops:
9175
9176Other Operations
9177----------------
9178
9179The instructions in this category are the "miscellaneous" instructions,
9180which defy better classification.
9181
9182.. _i_icmp:
9183
9184'``icmp``' Instruction
9185^^^^^^^^^^^^^^^^^^^^^^
9186
9187Syntax:
9188"""""""
9189
9190::
9191
Tim Northover675a0962014-06-13 14:24:23 +00009192 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009193
9194Overview:
9195"""""""""
9196
9197The '``icmp``' instruction returns a boolean value or a vector of
9198boolean values based on comparison of its two integer, integer vector,
9199pointer, or pointer vector operands.
9200
9201Arguments:
9202""""""""""
9203
9204The '``icmp``' instruction takes three operands. The first operand is
9205the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009206not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009207
9208#. ``eq``: equal
9209#. ``ne``: not equal
9210#. ``ugt``: unsigned greater than
9211#. ``uge``: unsigned greater or equal
9212#. ``ult``: unsigned less than
9213#. ``ule``: unsigned less or equal
9214#. ``sgt``: signed greater than
9215#. ``sge``: signed greater or equal
9216#. ``slt``: signed less than
9217#. ``sle``: signed less or equal
9218
9219The remaining two arguments must be :ref:`integer <t_integer>` or
9220:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
9221must also be identical types.
9222
9223Semantics:
9224""""""""""
9225
9226The '``icmp``' compares ``op1`` and ``op2`` according to the condition
9227code given as ``cond``. The comparison performed always yields either an
9228:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
9229
9230#. ``eq``: yields ``true`` if the operands are equal, ``false``
9231 otherwise. No sign interpretation is necessary or performed.
9232#. ``ne``: yields ``true`` if the operands are unequal, ``false``
9233 otherwise. No sign interpretation is necessary or performed.
9234#. ``ugt``: interprets the operands as unsigned values and yields
9235 ``true`` if ``op1`` is greater than ``op2``.
9236#. ``uge``: interprets the operands as unsigned values and yields
9237 ``true`` if ``op1`` is greater than or equal to ``op2``.
9238#. ``ult``: interprets the operands as unsigned values and yields
9239 ``true`` if ``op1`` is less than ``op2``.
9240#. ``ule``: interprets the operands as unsigned values and yields
9241 ``true`` if ``op1`` is less than or equal to ``op2``.
9242#. ``sgt``: interprets the operands as signed values and yields ``true``
9243 if ``op1`` is greater than ``op2``.
9244#. ``sge``: interprets the operands as signed values and yields ``true``
9245 if ``op1`` is greater than or equal to ``op2``.
9246#. ``slt``: interprets the operands as signed values and yields ``true``
9247 if ``op1`` is less than ``op2``.
9248#. ``sle``: interprets the operands as signed values and yields ``true``
9249 if ``op1`` is less than or equal to ``op2``.
9250
9251If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
9252are compared as if they were integers.
9253
9254If the operands are integer vectors, then they are compared element by
9255element. The result is an ``i1`` vector with the same number of elements
9256as the values being compared. Otherwise, the result is an ``i1``.
9257
9258Example:
9259""""""""
9260
Renato Golin124f2592016-07-20 12:16:38 +00009261.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009262
9263 <result> = icmp eq i32 4, 5 ; yields: result=false
9264 <result> = icmp ne float* %X, %X ; yields: result=false
9265 <result> = icmp ult i16 4, 5 ; yields: result=true
9266 <result> = icmp sgt i16 4, 5 ; yields: result=false
9267 <result> = icmp ule i16 -4, 5 ; yields: result=false
9268 <result> = icmp sge i16 4, 5 ; yields: result=false
9269
Sean Silvab084af42012-12-07 10:36:55 +00009270.. _i_fcmp:
9271
9272'``fcmp``' Instruction
9273^^^^^^^^^^^^^^^^^^^^^^
9274
9275Syntax:
9276"""""""
9277
9278::
9279
James Molloy88eb5352015-07-10 12:52:00 +00009280 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009281
9282Overview:
9283"""""""""
9284
9285The '``fcmp``' instruction returns a boolean value or vector of boolean
9286values based on comparison of its operands.
9287
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009288If the operands are floating-point scalars, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009289boolean (:ref:`i1 <t_integer>`).
9290
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009291If the operands are floating-point vectors, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009292vector of boolean with the same number of elements as the operands being
9293compared.
9294
9295Arguments:
9296""""""""""
9297
9298The '``fcmp``' instruction takes three operands. The first operand is
9299the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009300not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009301
9302#. ``false``: no comparison, always returns false
9303#. ``oeq``: ordered and equal
9304#. ``ogt``: ordered and greater than
9305#. ``oge``: ordered and greater than or equal
9306#. ``olt``: ordered and less than
9307#. ``ole``: ordered and less than or equal
9308#. ``one``: ordered and not equal
9309#. ``ord``: ordered (no nans)
9310#. ``ueq``: unordered or equal
9311#. ``ugt``: unordered or greater than
9312#. ``uge``: unordered or greater than or equal
9313#. ``ult``: unordered or less than
9314#. ``ule``: unordered or less than or equal
9315#. ``une``: unordered or not equal
9316#. ``uno``: unordered (either nans)
9317#. ``true``: no comparison, always returns true
9318
9319*Ordered* means that neither operand is a QNAN while *unordered* means
9320that either operand may be a QNAN.
9321
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009322Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating-point
9323<t_floating>` type or a :ref:`vector <t_vector>` of floating-point type.
9324They must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00009325
9326Semantics:
9327""""""""""
9328
9329The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
9330condition code given as ``cond``. If the operands are vectors, then the
9331vectors are compared element by element. Each comparison performed
9332always yields an :ref:`i1 <t_integer>` result, as follows:
9333
9334#. ``false``: always yields ``false``, regardless of operands.
9335#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
9336 is equal to ``op2``.
9337#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
9338 is greater than ``op2``.
9339#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
9340 is greater than or equal to ``op2``.
9341#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
9342 is less than ``op2``.
9343#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
9344 is less than or equal to ``op2``.
9345#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
9346 is not equal to ``op2``.
9347#. ``ord``: yields ``true`` if both operands are not a QNAN.
9348#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
9349 equal to ``op2``.
9350#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
9351 greater than ``op2``.
9352#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
9353 greater than or equal to ``op2``.
9354#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
9355 less than ``op2``.
9356#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
9357 less than or equal to ``op2``.
9358#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
9359 not equal to ``op2``.
9360#. ``uno``: yields ``true`` if either operand is a QNAN.
9361#. ``true``: always yields ``true``, regardless of operands.
9362
James Molloy88eb5352015-07-10 12:52:00 +00009363The ``fcmp`` instruction can also optionally take any number of
9364:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009365otherwise unsafe floating-point optimizations.
James Molloy88eb5352015-07-10 12:52:00 +00009366
9367Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
9368only flags that have any effect on its semantics are those that allow
9369assumptions to be made about the values of input arguments; namely
Eli Friedman8bb43262018-07-17 20:28:31 +00009370``nnan``, ``ninf``, and ``reassoc``. See :ref:`fastmath` for more information.
James Molloy88eb5352015-07-10 12:52:00 +00009371
Sean Silvab084af42012-12-07 10:36:55 +00009372Example:
9373""""""""
9374
Renato Golin124f2592016-07-20 12:16:38 +00009375.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009376
9377 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
9378 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
9379 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
9380 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
9381
Sean Silvab084af42012-12-07 10:36:55 +00009382.. _i_phi:
9383
9384'``phi``' Instruction
9385^^^^^^^^^^^^^^^^^^^^^
9386
9387Syntax:
9388"""""""
9389
9390::
9391
9392 <result> = phi <ty> [ <val0>, <label0>], ...
9393
9394Overview:
9395"""""""""
9396
9397The '``phi``' instruction is used to implement the φ node in the SSA
9398graph representing the function.
9399
9400Arguments:
9401""""""""""
9402
9403The type of the incoming values is specified with the first type field.
9404After this, the '``phi``' instruction takes a list of pairs as
9405arguments, with one pair for each predecessor basic block of the current
9406block. Only values of :ref:`first class <t_firstclass>` type may be used as
9407the value arguments to the PHI node. Only labels may be used as the
9408label arguments.
9409
9410There must be no non-phi instructions between the start of a basic block
9411and the PHI instructions: i.e. PHI instructions must be first in a basic
9412block.
9413
9414For the purposes of the SSA form, the use of each incoming value is
9415deemed to occur on the edge from the corresponding predecessor block to
9416the current block (but after any definition of an '``invoke``'
9417instruction's return value on the same edge).
9418
9419Semantics:
9420""""""""""
9421
9422At runtime, the '``phi``' instruction logically takes on the value
9423specified by the pair corresponding to the predecessor basic block that
9424executed just prior to the current block.
9425
9426Example:
9427""""""""
9428
9429.. code-block:: llvm
9430
9431 Loop: ; Infinite loop that counts from 0 on up...
9432 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
9433 %nextindvar = add i32 %indvar, 1
9434 br label %Loop
9435
9436.. _i_select:
9437
9438'``select``' Instruction
9439^^^^^^^^^^^^^^^^^^^^^^^^
9440
9441Syntax:
9442"""""""
9443
9444::
9445
9446 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
9447
9448 selty is either i1 or {<N x i1>}
9449
9450Overview:
9451"""""""""
9452
9453The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00009454condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00009455
9456Arguments:
9457""""""""""
9458
9459The '``select``' instruction requires an 'i1' value or a vector of 'i1'
9460values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00009461class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00009462
9463Semantics:
9464""""""""""
9465
9466If the condition is an i1 and it evaluates to 1, the instruction returns
9467the first value argument; otherwise, it returns the second value
9468argument.
9469
9470If the condition is a vector of i1, then the value arguments must be
9471vectors of the same size, and the selection is done element by element.
9472
David Majnemer40a0b592015-03-03 22:45:47 +00009473If the condition is an i1 and the value arguments are vectors of the
9474same size, then an entire vector is selected.
9475
Sean Silvab084af42012-12-07 10:36:55 +00009476Example:
9477""""""""
9478
9479.. code-block:: llvm
9480
9481 %X = select i1 true, i8 17, i8 42 ; yields i8:17
9482
9483.. _i_call:
9484
9485'``call``' Instruction
9486^^^^^^^^^^^^^^^^^^^^^^
9487
9488Syntax:
9489"""""""
9490
9491::
9492
David Blaikieb83cf102016-07-13 17:21:34 +00009493 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009494 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00009495
9496Overview:
9497"""""""""
9498
9499The '``call``' instruction represents a simple function call.
9500
9501Arguments:
9502""""""""""
9503
9504This instruction requires several arguments:
9505
Reid Kleckner5772b772014-04-24 20:14:34 +00009506#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00009507 should perform tail call optimization. The ``tail`` marker is a hint that
9508 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00009509 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00009510 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00009511
9512 #. The call will not cause unbounded stack growth if it is part of a
9513 recursive cycle in the call graph.
9514 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
9515 forwarded in place.
9516
Florian Hahnedae5a62018-01-17 23:29:25 +00009517 Both markers imply that the callee does not access allocas from the caller.
9518 The ``tail`` marker additionally implies that the callee does not access
9519 varargs from the caller, while ``musttail`` implies that varargs from the
9520 caller are passed to the callee. Calls marked ``musttail`` must obey the
9521 following additional rules:
Reid Kleckner5772b772014-04-24 20:14:34 +00009522
9523 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
9524 or a pointer bitcast followed by a ret instruction.
9525 - The ret instruction must return the (possibly bitcasted) value
9526 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00009527 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00009528 parameters or return types may differ in pointee type, but not
9529 in address space.
9530 - The calling conventions of the caller and callee must match.
9531 - All ABI-impacting function attributes, such as sret, byval, inreg,
9532 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00009533 - The callee must be varargs iff the caller is varargs. Bitcasting a
9534 non-varargs function to the appropriate varargs type is legal so
9535 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00009536
9537 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
9538 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00009539
9540 - Caller and callee both have the calling convention ``fastcc``.
9541 - The call is in tail position (ret immediately follows call and ret
9542 uses value of call or is void).
9543 - Option ``-tailcallopt`` is enabled, or
9544 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00009545 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00009546 met. <CodeGenerator.html#tailcallopt>`_
9547
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00009548#. The optional ``notail`` marker indicates that the optimizers should not add
9549 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
9550 call optimization from being performed on the call.
9551
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00009552#. The optional ``fast-math flags`` marker indicates that the call has one or more
Sanjay Patelfa54ace2015-12-14 21:59:03 +00009553 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
9554 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
9555 for calls that return a floating-point scalar or vector type.
9556
Sean Silvab084af42012-12-07 10:36:55 +00009557#. The optional "cconv" marker indicates which :ref:`calling
9558 convention <callingconv>` the call should use. If none is
9559 specified, the call defaults to using C calling conventions. The
9560 calling convention of the call must match the calling convention of
9561 the target function, or else the behavior is undefined.
9562#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
9563 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
9564 are valid here.
9565#. '``ty``': the type of the call instruction itself which is also the
9566 type of the return value. Functions that return no value are marked
9567 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00009568#. '``fnty``': shall be the signature of the function being called. The
9569 argument types must match the types implied by this signature. This
9570 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00009571#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00009572 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00009573 indirect ``call``'s are just as possible, calling an arbitrary pointer
9574 to function value.
9575#. '``function args``': argument list whose types match the function
9576 signature argument types and parameter attributes. All arguments must
9577 be of :ref:`first class <t_firstclass>` type. If the function signature
9578 indicates the function accepts a variable number of arguments, the
9579 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00009580#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009581#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00009582
9583Semantics:
9584""""""""""
9585
9586The '``call``' instruction is used to cause control flow to transfer to
9587a specified function, with its incoming arguments bound to the specified
9588values. Upon a '``ret``' instruction in the called function, control
9589flow continues with the instruction after the function call, and the
9590return value of the function is bound to the result argument.
9591
9592Example:
9593""""""""
9594
9595.. code-block:: llvm
9596
9597 %retval = call i32 @test(i32 %argc)
9598 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
9599 %X = tail call i32 @foo() ; yields i32
9600 %Y = tail call fastcc i32 @foo() ; yields i32
9601 call void %foo(i8 97 signext)
9602
9603 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00009604 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00009605 %gr = extractvalue %struct.A %r, 0 ; yields i32
9606 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
9607 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
9608 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
9609
9610llvm treats calls to some functions with names and arguments that match
9611the standard C99 library as being the C99 library functions, and may
9612perform optimizations or generate code for them under that assumption.
9613This is something we'd like to change in the future to provide better
9614support for freestanding environments and non-C-based languages.
9615
9616.. _i_va_arg:
9617
9618'``va_arg``' Instruction
9619^^^^^^^^^^^^^^^^^^^^^^^^
9620
9621Syntax:
9622"""""""
9623
9624::
9625
9626 <resultval> = va_arg <va_list*> <arglist>, <argty>
9627
9628Overview:
9629"""""""""
9630
9631The '``va_arg``' instruction is used to access arguments passed through
9632the "variable argument" area of a function call. It is used to implement
9633the ``va_arg`` macro in C.
9634
9635Arguments:
9636""""""""""
9637
9638This instruction takes a ``va_list*`` value and the type of the
9639argument. It returns a value of the specified argument type and
9640increments the ``va_list`` to point to the next argument. The actual
9641type of ``va_list`` is target specific.
9642
9643Semantics:
9644""""""""""
9645
9646The '``va_arg``' instruction loads an argument of the specified type
9647from the specified ``va_list`` and causes the ``va_list`` to point to
9648the next argument. For more information, see the variable argument
9649handling :ref:`Intrinsic Functions <int_varargs>`.
9650
9651It is legal for this instruction to be called in a function which does
9652not take a variable number of arguments, for example, the ``vfprintf``
9653function.
9654
9655``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
9656function <intrinsics>` because it takes a type as an argument.
9657
9658Example:
9659""""""""
9660
9661See the :ref:`variable argument processing <int_varargs>` section.
9662
9663Note that the code generator does not yet fully support va\_arg on many
9664targets. Also, it does not currently support va\_arg with aggregate
9665types on any target.
9666
9667.. _i_landingpad:
9668
9669'``landingpad``' Instruction
9670^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9671
9672Syntax:
9673"""""""
9674
9675::
9676
David Majnemer7fddecc2015-06-17 20:52:32 +00009677 <resultval> = landingpad <resultty> <clause>+
9678 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00009679
9680 <clause> := catch <type> <value>
9681 <clause> := filter <array constant type> <array constant>
9682
9683Overview:
9684"""""""""
9685
9686The '``landingpad``' instruction is used by `LLVM's exception handling
9687system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009688is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009689code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009690defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009691re-entry to the function. The ``resultval`` has the type ``resultty``.
9692
9693Arguments:
9694""""""""""
9695
David Majnemer7fddecc2015-06-17 20:52:32 +00009696The optional
Sean Silvab084af42012-12-07 10:36:55 +00009697``cleanup`` flag indicates that the landing pad block is a cleanup.
9698
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009699A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009700contains the global variable representing the "type" that may be caught
9701or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9702clause takes an array constant as its argument. Use
9703"``[0 x i8**] undef``" for a filter which cannot throw. The
9704'``landingpad``' instruction must contain *at least* one ``clause`` or
9705the ``cleanup`` flag.
9706
9707Semantics:
9708""""""""""
9709
9710The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009711:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009712therefore the "result type" of the ``landingpad`` instruction. As with
9713calling conventions, how the personality function results are
9714represented in LLVM IR is target specific.
9715
9716The clauses are applied in order from top to bottom. If two
9717``landingpad`` instructions are merged together through inlining, the
9718clauses from the calling function are appended to the list of clauses.
9719When the call stack is being unwound due to an exception being thrown,
9720the exception is compared against each ``clause`` in turn. If it doesn't
9721match any of the clauses, and the ``cleanup`` flag is not set, then
9722unwinding continues further up the call stack.
9723
9724The ``landingpad`` instruction has several restrictions:
9725
9726- A landing pad block is a basic block which is the unwind destination
9727 of an '``invoke``' instruction.
9728- A landing pad block must have a '``landingpad``' instruction as its
9729 first non-PHI instruction.
9730- There can be only one '``landingpad``' instruction within the landing
9731 pad block.
9732- A basic block that is not a landing pad block may not include a
9733 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009734
9735Example:
9736""""""""
9737
9738.. code-block:: llvm
9739
9740 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009741 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009742 catch i8** @_ZTIi
9743 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009744 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009745 cleanup
9746 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009747 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009748 catch i8** @_ZTIi
9749 filter [1 x i8**] [@_ZTId]
9750
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009751.. _i_catchpad:
9752
9753'``catchpad``' Instruction
9754^^^^^^^^^^^^^^^^^^^^^^^^^^
9755
9756Syntax:
9757"""""""
9758
9759::
9760
9761 <resultval> = catchpad within <catchswitch> [<args>*]
9762
9763Overview:
9764"""""""""
9765
9766The '``catchpad``' instruction is used by `LLVM's exception handling
9767system <ExceptionHandling.html#overview>`_ to specify that a basic block
9768begins a catch handler --- one where a personality routine attempts to transfer
9769control to catch an exception.
9770
9771Arguments:
9772""""""""""
9773
9774The ``catchswitch`` operand must always be a token produced by a
9775:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9776ensures that each ``catchpad`` has exactly one predecessor block, and it always
9777terminates in a ``catchswitch``.
9778
9779The ``args`` correspond to whatever information the personality routine
9780requires to know if this is an appropriate handler for the exception. Control
9781will transfer to the ``catchpad`` if this is the first appropriate handler for
9782the exception.
9783
9784The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9785``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9786pads.
9787
9788Semantics:
9789""""""""""
9790
9791When the call stack is being unwound due to an exception being thrown, the
9792exception is compared against the ``args``. If it doesn't match, control will
9793not reach the ``catchpad`` instruction. The representation of ``args`` is
9794entirely target and personality function-specific.
9795
9796Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9797instruction must be the first non-phi of its parent basic block.
9798
9799The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9800instructions is described in the
9801`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9802
9803When a ``catchpad`` has been "entered" but not yet "exited" (as
9804described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9805it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9806that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9807
9808Example:
9809""""""""
9810
Renato Golin124f2592016-07-20 12:16:38 +00009811.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009812
9813 dispatch:
9814 %cs = catchswitch within none [label %handler0] unwind to caller
9815 ;; A catch block which can catch an integer.
9816 handler0:
9817 %tok = catchpad within %cs [i8** @_ZTIi]
9818
David Majnemer654e1302015-07-31 17:58:14 +00009819.. _i_cleanuppad:
9820
9821'``cleanuppad``' Instruction
9822^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9823
9824Syntax:
9825"""""""
9826
9827::
9828
David Majnemer8a1c45d2015-12-12 05:38:55 +00009829 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009830
9831Overview:
9832"""""""""
9833
9834The '``cleanuppad``' instruction is used by `LLVM's exception handling
9835system <ExceptionHandling.html#overview>`_ to specify that a basic block
9836is a cleanup block --- one where a personality routine attempts to
9837transfer control to run cleanup actions.
9838The ``args`` correspond to whatever additional
9839information the :ref:`personality function <personalityfn>` requires to
9840execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009841The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009842match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9843The ``parent`` argument is the token of the funclet that contains the
9844``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9845this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009846
9847Arguments:
9848""""""""""
9849
9850The instruction takes a list of arbitrary values which are interpreted
9851by the :ref:`personality function <personalityfn>`.
9852
9853Semantics:
9854""""""""""
9855
David Majnemer654e1302015-07-31 17:58:14 +00009856When the call stack is being unwound due to an exception being thrown,
9857the :ref:`personality function <personalityfn>` transfers control to the
9858``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009859As with calling conventions, how the personality function results are
9860represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009861
9862The ``cleanuppad`` instruction has several restrictions:
9863
9864- A cleanup block is a basic block which is the unwind destination of
9865 an exceptional instruction.
9866- A cleanup block must have a '``cleanuppad``' instruction as its
9867 first non-PHI instruction.
9868- There can be only one '``cleanuppad``' instruction within the
9869 cleanup block.
9870- A basic block that is not a cleanup block may not include a
9871 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009872
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009873When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9874described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9875it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9876that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009877
David Majnemer654e1302015-07-31 17:58:14 +00009878Example:
9879""""""""
9880
Renato Golin124f2592016-07-20 12:16:38 +00009881.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009882
David Majnemer8a1c45d2015-12-12 05:38:55 +00009883 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009884
Sean Silvab084af42012-12-07 10:36:55 +00009885.. _intrinsics:
9886
9887Intrinsic Functions
9888===================
9889
9890LLVM supports the notion of an "intrinsic function". These functions
9891have well known names and semantics and are required to follow certain
9892restrictions. Overall, these intrinsics represent an extension mechanism
9893for the LLVM language that does not require changing all of the
9894transformations in LLVM when adding to the language (or the bitcode
9895reader/writer, the parser, etc...).
9896
9897Intrinsic function names must all start with an "``llvm.``" prefix. This
9898prefix is reserved in LLVM for intrinsic names; thus, function names may
9899not begin with this prefix. Intrinsic functions must always be external
9900functions: you cannot define the body of intrinsic functions. Intrinsic
9901functions may only be used in call or invoke instructions: it is illegal
9902to take the address of an intrinsic function. Additionally, because
9903intrinsic functions are part of the LLVM language, it is required if any
9904are added that they be documented here.
9905
9906Some intrinsic functions can be overloaded, i.e., the intrinsic
9907represents a family of functions that perform the same operation but on
9908different data types. Because LLVM can represent over 8 million
9909different integer types, overloading is used commonly to allow an
9910intrinsic function to operate on any integer type. One or more of the
9911argument types or the result type can be overloaded to accept any
9912integer type. Argument types may also be defined as exactly matching a
9913previous argument's type or the result type. This allows an intrinsic
9914function which accepts multiple arguments, but needs all of them to be
9915of the same type, to only be overloaded with respect to a single
9916argument or the result.
9917
9918Overloaded intrinsics will have the names of its overloaded argument
9919types encoded into its function name, each preceded by a period. Only
9920those types which are overloaded result in a name suffix. Arguments
9921whose type is matched against another type do not. For example, the
9922``llvm.ctpop`` function can take an integer of any width and returns an
9923integer of exactly the same integer width. This leads to a family of
9924functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9925``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9926overloaded, and only one type suffix is required. Because the argument's
9927type is matched against the return type, it does not require its own
9928name suffix.
9929
9930To learn how to add an intrinsic function, please see the `Extending
9931LLVM Guide <ExtendingLLVM.html>`_.
9932
9933.. _int_varargs:
9934
9935Variable Argument Handling Intrinsics
9936-------------------------------------
9937
9938Variable argument support is defined in LLVM with the
9939:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9940functions. These functions are related to the similarly named macros
9941defined in the ``<stdarg.h>`` header file.
9942
9943All of these functions operate on arguments that use a target-specific
9944value type "``va_list``". The LLVM assembly language reference manual
9945does not define what this type is, so all transformations should be
9946prepared to handle these functions regardless of the type used.
9947
9948This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9949variable argument handling intrinsic functions are used.
9950
9951.. code-block:: llvm
9952
Tim Northoverab60bb92014-11-02 01:21:51 +00009953 ; This struct is different for every platform. For most platforms,
9954 ; it is merely an i8*.
9955 %struct.va_list = type { i8* }
9956
9957 ; For Unix x86_64 platforms, va_list is the following struct:
9958 ; %struct.va_list = type { i32, i32, i8*, i8* }
9959
Sean Silvab084af42012-12-07 10:36:55 +00009960 define i32 @test(i32 %X, ...) {
9961 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009962 %ap = alloca %struct.va_list
9963 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009964 call void @llvm.va_start(i8* %ap2)
9965
9966 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009967 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009968
9969 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9970 %aq = alloca i8*
9971 %aq2 = bitcast i8** %aq to i8*
9972 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9973 call void @llvm.va_end(i8* %aq2)
9974
9975 ; Stop processing of arguments.
9976 call void @llvm.va_end(i8* %ap2)
9977 ret i32 %tmp
9978 }
9979
9980 declare void @llvm.va_start(i8*)
9981 declare void @llvm.va_copy(i8*, i8*)
9982 declare void @llvm.va_end(i8*)
9983
9984.. _int_va_start:
9985
9986'``llvm.va_start``' Intrinsic
9987^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9988
9989Syntax:
9990"""""""
9991
9992::
9993
Nick Lewycky04f6de02013-09-11 22:04:52 +00009994 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009995
9996Overview:
9997"""""""""
9998
9999The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
10000subsequent use by ``va_arg``.
10001
10002Arguments:
10003""""""""""
10004
10005The argument is a pointer to a ``va_list`` element to initialize.
10006
10007Semantics:
10008""""""""""
10009
10010The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
10011available in C. In a target-dependent way, it initializes the
10012``va_list`` element to which the argument points, so that the next call
10013to ``va_arg`` will produce the first variable argument passed to the
10014function. Unlike the C ``va_start`` macro, this intrinsic does not need
10015to know the last argument of the function as the compiler can figure
10016that out.
10017
10018'``llvm.va_end``' Intrinsic
10019^^^^^^^^^^^^^^^^^^^^^^^^^^^
10020
10021Syntax:
10022"""""""
10023
10024::
10025
10026 declare void @llvm.va_end(i8* <arglist>)
10027
10028Overview:
10029"""""""""
10030
10031The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
10032initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
10033
10034Arguments:
10035""""""""""
10036
10037The argument is a pointer to a ``va_list`` to destroy.
10038
10039Semantics:
10040""""""""""
10041
10042The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
10043available in C. In a target-dependent way, it destroys the ``va_list``
10044element to which the argument points. Calls to
10045:ref:`llvm.va_start <int_va_start>` and
10046:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
10047``llvm.va_end``.
10048
10049.. _int_va_copy:
10050
10051'``llvm.va_copy``' Intrinsic
10052^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10053
10054Syntax:
10055"""""""
10056
10057::
10058
10059 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
10060
10061Overview:
10062"""""""""
10063
10064The '``llvm.va_copy``' intrinsic copies the current argument position
10065from the source argument list to the destination argument list.
10066
10067Arguments:
10068""""""""""
10069
10070The first argument is a pointer to a ``va_list`` element to initialize.
10071The second argument is a pointer to a ``va_list`` element to copy from.
10072
10073Semantics:
10074""""""""""
10075
10076The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
10077available in C. In a target-dependent way, it copies the source
10078``va_list`` element into the destination ``va_list`` element. This
10079intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
10080arbitrarily complex and require, for example, memory allocation.
10081
10082Accurate Garbage Collection Intrinsics
10083--------------------------------------
10084
Philip Reamesc5b0f562015-02-25 23:52:06 +000010085LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010086(GC) requires the frontend to generate code containing appropriate intrinsic
10087calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +000010088intrinsics in a manner which is appropriate for the target collector.
10089
Sean Silvab084af42012-12-07 10:36:55 +000010090These intrinsics allow identification of :ref:`GC roots on the
10091stack <int_gcroot>`, as well as garbage collector implementations that
10092require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +000010093Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +000010094these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +000010095details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +000010096
Philip Reamesf80bbff2015-02-25 23:45:20 +000010097Experimental Statepoint Intrinsics
10098^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10099
10100LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +000010101collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010102to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +000010103:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010104differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +000010105<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +000010106described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +000010107
10108.. _int_gcroot:
10109
10110'``llvm.gcroot``' Intrinsic
10111^^^^^^^^^^^^^^^^^^^^^^^^^^^
10112
10113Syntax:
10114"""""""
10115
10116::
10117
10118 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
10119
10120Overview:
10121"""""""""
10122
10123The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
10124the code generator, and allows some metadata to be associated with it.
10125
10126Arguments:
10127""""""""""
10128
10129The first argument specifies the address of a stack object that contains
10130the root pointer. The second pointer (which must be either a constant or
10131a global value address) contains the meta-data to be associated with the
10132root.
10133
10134Semantics:
10135""""""""""
10136
10137At runtime, a call to this intrinsic stores a null pointer into the
10138"ptrloc" location. At compile-time, the code generator generates
10139information to allow the runtime to find the pointer at GC safe points.
10140The '``llvm.gcroot``' intrinsic may only be used in a function which
10141:ref:`specifies a GC algorithm <gc>`.
10142
10143.. _int_gcread:
10144
10145'``llvm.gcread``' Intrinsic
10146^^^^^^^^^^^^^^^^^^^^^^^^^^^
10147
10148Syntax:
10149"""""""
10150
10151::
10152
10153 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
10154
10155Overview:
10156"""""""""
10157
10158The '``llvm.gcread``' intrinsic identifies reads of references from heap
10159locations, allowing garbage collector implementations that require read
10160barriers.
10161
10162Arguments:
10163""""""""""
10164
10165The second argument is the address to read from, which should be an
10166address allocated from the garbage collector. The first object is a
10167pointer to the start of the referenced object, if needed by the language
10168runtime (otherwise null).
10169
10170Semantics:
10171""""""""""
10172
10173The '``llvm.gcread``' intrinsic has the same semantics as a load
10174instruction, but may be replaced with substantially more complex code by
10175the garbage collector runtime, as needed. The '``llvm.gcread``'
10176intrinsic may only be used in a function which :ref:`specifies a GC
10177algorithm <gc>`.
10178
10179.. _int_gcwrite:
10180
10181'``llvm.gcwrite``' Intrinsic
10182^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10183
10184Syntax:
10185"""""""
10186
10187::
10188
10189 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
10190
10191Overview:
10192"""""""""
10193
10194The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
10195locations, allowing garbage collector implementations that require write
10196barriers (such as generational or reference counting collectors).
10197
10198Arguments:
10199""""""""""
10200
10201The first argument is the reference to store, the second is the start of
10202the object to store it to, and the third is the address of the field of
10203Obj to store to. If the runtime does not require a pointer to the
10204object, Obj may be null.
10205
10206Semantics:
10207""""""""""
10208
10209The '``llvm.gcwrite``' intrinsic has the same semantics as a store
10210instruction, but may be replaced with substantially more complex code by
10211the garbage collector runtime, as needed. The '``llvm.gcwrite``'
10212intrinsic may only be used in a function which :ref:`specifies a GC
10213algorithm <gc>`.
10214
10215Code Generator Intrinsics
10216-------------------------
10217
10218These intrinsics are provided by LLVM to expose special features that
10219may only be implemented with code generator support.
10220
10221'``llvm.returnaddress``' Intrinsic
10222^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10223
10224Syntax:
10225"""""""
10226
10227::
10228
George Burgess IVfbc34982017-05-20 04:52:29 +000010229 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +000010230
10231Overview:
10232"""""""""
10233
10234The '``llvm.returnaddress``' intrinsic attempts to compute a
10235target-specific value indicating the return address of the current
10236function or one of its callers.
10237
10238Arguments:
10239""""""""""
10240
10241The argument to this intrinsic indicates which function to return the
10242address for. Zero indicates the calling function, one indicates its
10243caller, etc. The argument is **required** to be a constant integer
10244value.
10245
10246Semantics:
10247""""""""""
10248
10249The '``llvm.returnaddress``' intrinsic either returns a pointer
10250indicating the return address of the specified call frame, or zero if it
10251cannot be identified. The value returned by this intrinsic is likely to
10252be incorrect or 0 for arguments other than zero, so it should only be
10253used for debugging purposes.
10254
10255Note that calling this intrinsic does not prevent function inlining or
10256other aggressive transformations, so the value returned may not be that
10257of the obvious source-language caller.
10258
Albert Gutowski795d7d62016-10-12 22:13:19 +000010259'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +000010260^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +000010261
10262Syntax:
10263"""""""
10264
10265::
10266
George Burgess IVfbc34982017-05-20 04:52:29 +000010267 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +000010268
10269Overview:
10270"""""""""
10271
10272The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
10273pointer to the place in the stack frame where the return address of the
10274current function is stored.
10275
10276Semantics:
10277""""""""""
10278
10279Note that calling this intrinsic does not prevent function inlining or
10280other aggressive transformations, so the value returned may not be that
10281of the obvious source-language caller.
10282
10283This intrinsic is only implemented for x86.
10284
Sean Silvab084af42012-12-07 10:36:55 +000010285'``llvm.frameaddress``' Intrinsic
10286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10287
10288Syntax:
10289"""""""
10290
10291::
10292
10293 declare i8* @llvm.frameaddress(i32 <level>)
10294
10295Overview:
10296"""""""""
10297
10298The '``llvm.frameaddress``' intrinsic attempts to return the
10299target-specific frame pointer value for the specified stack frame.
10300
10301Arguments:
10302""""""""""
10303
10304The argument to this intrinsic indicates which function to return the
10305frame pointer for. Zero indicates the calling function, one indicates
10306its caller, etc. The argument is **required** to be a constant integer
10307value.
10308
10309Semantics:
10310""""""""""
10311
10312The '``llvm.frameaddress``' intrinsic either returns a pointer
10313indicating the frame address of the specified call frame, or zero if it
10314cannot be identified. The value returned by this intrinsic is likely to
10315be incorrect or 0 for arguments other than zero, so it should only be
10316used for debugging purposes.
10317
10318Note that calling this intrinsic does not prevent function inlining or
10319other aggressive transformations, so the value returned may not be that
10320of the obvious source-language caller.
10321
Reid Kleckner60381792015-07-07 22:25:32 +000010322'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +000010323^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10324
10325Syntax:
10326"""""""
10327
10328::
10329
Reid Kleckner60381792015-07-07 22:25:32 +000010330 declare void @llvm.localescape(...)
10331 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +000010332
10333Overview:
10334"""""""""
10335
Reid Kleckner60381792015-07-07 22:25:32 +000010336The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
10337allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010338live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +000010339computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +000010340
10341Arguments:
10342""""""""""
10343
Reid Kleckner60381792015-07-07 22:25:32 +000010344All arguments to '``llvm.localescape``' must be pointers to static allocas or
10345casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010346once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +000010347
Reid Kleckner60381792015-07-07 22:25:32 +000010348The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +000010349bitcasted pointer to a function defined in the current module. The code
10350generator cannot determine the frame allocation offset of functions defined in
10351other modules.
10352
Reid Klecknerd5afc62f2015-07-07 23:23:03 +000010353The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
10354call frame that is currently live. The return value of '``llvm.localaddress``'
10355is one way to produce such a value, but various runtimes also expose a suitable
10356pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +000010357
Reid Kleckner60381792015-07-07 22:25:32 +000010358The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
10359'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010360
Reid Klecknere9b89312015-01-13 00:48:10 +000010361Semantics:
10362""""""""""
10363
Reid Kleckner60381792015-07-07 22:25:32 +000010364These intrinsics allow a group of functions to share access to a set of local
10365stack allocations of a one parent function. The parent function may call the
10366'``llvm.localescape``' intrinsic once from the function entry block, and the
10367child functions can use '``llvm.localrecover``' to access the escaped allocas.
10368The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
10369the escaped allocas are allocated, which would break attempts to use
10370'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +000010371
Renato Golinc7aea402014-05-06 16:51:25 +000010372.. _int_read_register:
10373.. _int_write_register:
10374
10375'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
10376^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10377
10378Syntax:
10379"""""""
10380
10381::
10382
10383 declare i32 @llvm.read_register.i32(metadata)
10384 declare i64 @llvm.read_register.i64(metadata)
10385 declare void @llvm.write_register.i32(metadata, i32 @value)
10386 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +000010387 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +000010388
10389Overview:
10390"""""""""
10391
10392The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
10393provides access to the named register. The register must be valid on
10394the architecture being compiled to. The type needs to be compatible
10395with the register being read.
10396
10397Semantics:
10398""""""""""
10399
10400The '``llvm.read_register``' intrinsic returns the current value of the
10401register, where possible. The '``llvm.write_register``' intrinsic sets
10402the current value of the register, where possible.
10403
10404This is useful to implement named register global variables that need
10405to always be mapped to a specific register, as is common practice on
10406bare-metal programs including OS kernels.
10407
10408The compiler doesn't check for register availability or use of the used
10409register in surrounding code, including inline assembly. Because of that,
10410allocatable registers are not supported.
10411
10412Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +000010413architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +000010414work is needed to support other registers and even more so, allocatable
10415registers.
10416
Sean Silvab084af42012-12-07 10:36:55 +000010417.. _int_stacksave:
10418
10419'``llvm.stacksave``' Intrinsic
10420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10421
10422Syntax:
10423"""""""
10424
10425::
10426
10427 declare i8* @llvm.stacksave()
10428
10429Overview:
10430"""""""""
10431
10432The '``llvm.stacksave``' intrinsic is used to remember the current state
10433of the function stack, for use with
10434:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
10435implementing language features like scoped automatic variable sized
10436arrays in C99.
10437
10438Semantics:
10439""""""""""
10440
10441This intrinsic returns a opaque pointer value that can be passed to
10442:ref:`llvm.stackrestore <int_stackrestore>`. When an
10443``llvm.stackrestore`` intrinsic is executed with a value saved from
10444``llvm.stacksave``, it effectively restores the state of the stack to
10445the state it was in when the ``llvm.stacksave`` intrinsic executed. In
10446practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
10447were allocated after the ``llvm.stacksave`` was executed.
10448
10449.. _int_stackrestore:
10450
10451'``llvm.stackrestore``' Intrinsic
10452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10453
10454Syntax:
10455"""""""
10456
10457::
10458
10459 declare void @llvm.stackrestore(i8* %ptr)
10460
10461Overview:
10462"""""""""
10463
10464The '``llvm.stackrestore``' intrinsic is used to restore the state of
10465the function stack to the state it was in when the corresponding
10466:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
10467useful for implementing language features like scoped automatic variable
10468sized arrays in C99.
10469
10470Semantics:
10471""""""""""
10472
10473See the description for :ref:`llvm.stacksave <int_stacksave>`.
10474
Yury Gribovd7dbb662015-12-01 11:40:55 +000010475.. _int_get_dynamic_area_offset:
10476
10477'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +000010478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +000010479
10480Syntax:
10481"""""""
10482
10483::
10484
10485 declare i32 @llvm.get.dynamic.area.offset.i32()
10486 declare i64 @llvm.get.dynamic.area.offset.i64()
10487
Lang Hames10239932016-10-08 00:20:42 +000010488Overview:
10489"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +000010490
10491 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
10492 get the offset from native stack pointer to the address of the most
10493 recent dynamic alloca on the caller's stack. These intrinsics are
10494 intendend for use in combination with
10495 :ref:`llvm.stacksave <int_stacksave>` to get a
10496 pointer to the most recent dynamic alloca. This is useful, for example,
10497 for AddressSanitizer's stack unpoisoning routines.
10498
10499Semantics:
10500""""""""""
10501
10502 These intrinsics return a non-negative integer value that can be used to
10503 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
10504 on the caller's stack. In particular, for targets where stack grows downwards,
10505 adding this offset to the native stack pointer would get the address of the most
10506 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +000010507 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +000010508 one past the end of the most recent dynamic alloca.
10509
10510 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
10511 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
10512 compile-time-known constant value.
10513
10514 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +000010515 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +000010516
Sean Silvab084af42012-12-07 10:36:55 +000010517'``llvm.prefetch``' Intrinsic
10518^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10519
10520Syntax:
10521"""""""
10522
10523::
10524
10525 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
10526
10527Overview:
10528"""""""""
10529
10530The '``llvm.prefetch``' intrinsic is a hint to the code generator to
10531insert a prefetch instruction if supported; otherwise, it is a noop.
10532Prefetches have no effect on the behavior of the program but can change
10533its performance characteristics.
10534
10535Arguments:
10536""""""""""
10537
10538``address`` is the address to be prefetched, ``rw`` is the specifier
10539determining if the fetch should be for a read (0) or write (1), and
10540``locality`` is a temporal locality specifier ranging from (0) - no
10541locality, to (3) - extremely local keep in cache. The ``cache type``
10542specifies whether the prefetch is performed on the data (1) or
10543instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
10544arguments must be constant integers.
10545
10546Semantics:
10547""""""""""
10548
10549This intrinsic does not modify the behavior of the program. In
10550particular, prefetches cannot trap and do not produce a value. On
10551targets that support this intrinsic, the prefetch can provide hints to
10552the processor cache for better performance.
10553
10554'``llvm.pcmarker``' Intrinsic
10555^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10556
10557Syntax:
10558"""""""
10559
10560::
10561
10562 declare void @llvm.pcmarker(i32 <id>)
10563
10564Overview:
10565"""""""""
10566
10567The '``llvm.pcmarker``' intrinsic is a method to export a Program
10568Counter (PC) in a region of code to simulators and other tools. The
10569method is target specific, but it is expected that the marker will use
10570exported symbols to transmit the PC of the marker. The marker makes no
10571guarantees that it will remain with any specific instruction after
10572optimizations. It is possible that the presence of a marker will inhibit
10573optimizations. The intended use is to be inserted after optimizations to
10574allow correlations of simulation runs.
10575
10576Arguments:
10577""""""""""
10578
10579``id`` is a numerical id identifying the marker.
10580
10581Semantics:
10582""""""""""
10583
10584This intrinsic does not modify the behavior of the program. Backends
10585that do not support this intrinsic may ignore it.
10586
10587'``llvm.readcyclecounter``' Intrinsic
10588^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10589
10590Syntax:
10591"""""""
10592
10593::
10594
10595 declare i64 @llvm.readcyclecounter()
10596
10597Overview:
10598"""""""""
10599
10600The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
10601counter register (or similar low latency, high accuracy clocks) on those
10602targets that support it. On X86, it should map to RDTSC. On Alpha, it
10603should map to RPCC. As the backing counters overflow quickly (on the
10604order of 9 seconds on alpha), this should only be used for small
10605timings.
10606
10607Semantics:
10608""""""""""
10609
10610When directly supported, reading the cycle counter should not modify any
10611memory. Implementations are allowed to either return a application
10612specific value or a system wide value. On backends without support, this
10613is lowered to a constant 0.
10614
Tim Northoverbc933082013-05-23 19:11:20 +000010615Note that runtime support may be conditional on the privilege-level code is
10616running at and the host platform.
10617
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010618'``llvm.clear_cache``' Intrinsic
10619^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10620
10621Syntax:
10622"""""""
10623
10624::
10625
10626 declare void @llvm.clear_cache(i8*, i8*)
10627
10628Overview:
10629"""""""""
10630
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010631The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
10632in the specified range to the execution unit of the processor. On
10633targets with non-unified instruction and data cache, the implementation
10634flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010635
10636Semantics:
10637""""""""""
10638
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010639On platforms with coherent instruction and data caches (e.g. x86), this
10640intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000010641cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010642instructions or a system call, if cache flushing requires special
10643privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010644
Sean Silvad02bf3e2014-04-07 22:29:53 +000010645The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010646time library.
Renato Golin93010e62014-03-26 14:01:32 +000010647
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010648This instrinsic does *not* empty the instruction pipeline. Modifications
10649of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010650
Vedant Kumar51ce6682018-01-26 23:54:25 +000010651'``llvm.instrprof.increment``' Intrinsic
Justin Bogner61ba2e32014-12-08 18:02:35 +000010652^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10653
10654Syntax:
10655"""""""
10656
10657::
10658
Vedant Kumar51ce6682018-01-26 23:54:25 +000010659 declare void @llvm.instrprof.increment(i8* <name>, i64 <hash>,
Justin Bogner61ba2e32014-12-08 18:02:35 +000010660 i32 <num-counters>, i32 <index>)
10661
10662Overview:
10663"""""""""
10664
Vedant Kumar51ce6682018-01-26 23:54:25 +000010665The '``llvm.instrprof.increment``' intrinsic can be emitted by a
Justin Bogner61ba2e32014-12-08 18:02:35 +000010666frontend for use with instrumentation based profiling. These will be
10667lowered by the ``-instrprof`` pass to generate execution counts of a
10668program at runtime.
10669
10670Arguments:
10671""""""""""
10672
10673The first argument is a pointer to a global variable containing the
10674name of the entity being instrumented. This should generally be the
10675(mangled) function name for a set of counters.
10676
10677The second argument is a hash value that can be used by the consumer
10678of the profile data to detect changes to the instrumented source, and
10679the third is the number of counters associated with ``name``. It is an
10680error if ``hash`` or ``num-counters`` differ between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010681``instrprof.increment`` that refer to the same name.
Justin Bogner61ba2e32014-12-08 18:02:35 +000010682
10683The last argument refers to which of the counters for ``name`` should
10684be incremented. It should be a value between 0 and ``num-counters``.
10685
10686Semantics:
10687""""""""""
10688
10689This intrinsic represents an increment of a profiling counter. It will
10690cause the ``-instrprof`` pass to generate the appropriate data
10691structures and the code to increment the appropriate value, in a
10692format that can be written out by a compiler runtime and consumed via
10693the ``llvm-profdata`` tool.
10694
Vedant Kumar51ce6682018-01-26 23:54:25 +000010695'``llvm.instrprof.increment.step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010697
10698Syntax:
10699"""""""
10700
10701::
10702
Vedant Kumar51ce6682018-01-26 23:54:25 +000010703 declare void @llvm.instrprof.increment.step(i8* <name>, i64 <hash>,
Xinliang David Li4ca17332016-09-18 18:34:07 +000010704 i32 <num-counters>,
10705 i32 <index>, i64 <step>)
10706
10707Overview:
10708"""""""""
10709
Vedant Kumar51ce6682018-01-26 23:54:25 +000010710The '``llvm.instrprof.increment.step``' intrinsic is an extension to
10711the '``llvm.instrprof.increment``' intrinsic with an additional fifth
Xinliang David Li4ca17332016-09-18 18:34:07 +000010712argument to specify the step of the increment.
10713
10714Arguments:
10715""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010716The first four arguments are the same as '``llvm.instrprof.increment``'
Pete Couperused9569d2017-08-23 20:58:22 +000010717intrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010718
10719The last argument specifies the value of the increment of the counter variable.
10720
10721Semantics:
10722""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010723See description of '``llvm.instrprof.increment``' instrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010724
10725
Vedant Kumar51ce6682018-01-26 23:54:25 +000010726'``llvm.instrprof.value.profile``' Intrinsic
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010727^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10728
10729Syntax:
10730"""""""
10731
10732::
10733
Vedant Kumar51ce6682018-01-26 23:54:25 +000010734 declare void @llvm.instrprof.value.profile(i8* <name>, i64 <hash>,
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010735 i64 <value>, i32 <value_kind>,
10736 i32 <index>)
10737
10738Overview:
10739"""""""""
10740
Vedant Kumar51ce6682018-01-26 23:54:25 +000010741The '``llvm.instrprof.value.profile``' intrinsic can be emitted by a
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010742frontend for use with instrumentation based profiling. This will be
10743lowered by the ``-instrprof`` pass to find out the target values,
10744instrumented expressions take in a program at runtime.
10745
10746Arguments:
10747""""""""""
10748
10749The first argument is a pointer to a global variable containing the
10750name of the entity being instrumented. ``name`` should generally be the
10751(mangled) function name for a set of counters.
10752
10753The second argument is a hash value that can be used by the consumer
10754of the profile data to detect changes to the instrumented source. It
10755is an error if ``hash`` differs between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010756``llvm.instrprof.*`` that refer to the same name.
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010757
10758The third argument is the value of the expression being profiled. The profiled
10759expression's value should be representable as an unsigned 64-bit value. The
10760fourth argument represents the kind of value profiling that is being done. The
10761supported value profiling kinds are enumerated through the
10762``InstrProfValueKind`` type declared in the
10763``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10764index of the instrumented expression within ``name``. It should be >= 0.
10765
10766Semantics:
10767""""""""""
10768
10769This intrinsic represents the point where a call to a runtime routine
10770should be inserted for value profiling of target expressions. ``-instrprof``
10771pass will generate the appropriate data structures and replace the
Vedant Kumar51ce6682018-01-26 23:54:25 +000010772``llvm.instrprof.value.profile`` intrinsic with the call to the profile
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010773runtime library with proper arguments.
10774
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010775'``llvm.thread.pointer``' Intrinsic
10776^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10777
10778Syntax:
10779"""""""
10780
10781::
10782
10783 declare i8* @llvm.thread.pointer()
10784
10785Overview:
10786"""""""""
10787
10788The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10789pointer.
10790
10791Semantics:
10792""""""""""
10793
10794The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10795for the current thread. The exact semantics of this value are target
10796specific: it may point to the start of TLS area, to the end, or somewhere
10797in the middle. Depending on the target, this intrinsic may read a register,
10798call a helper function, read from an alternate memory space, or perform
10799other operations necessary to locate the TLS area. Not all targets support
10800this intrinsic.
10801
Sean Silvab084af42012-12-07 10:36:55 +000010802Standard C Library Intrinsics
10803-----------------------------
10804
10805LLVM provides intrinsics for a few important standard C library
10806functions. These intrinsics allow source-language front-ends to pass
10807information about the alignment of the pointer arguments to the code
10808generator, providing opportunity for more efficient code generation.
10809
10810.. _int_memcpy:
10811
10812'``llvm.memcpy``' Intrinsic
10813^^^^^^^^^^^^^^^^^^^^^^^^^^^
10814
10815Syntax:
10816"""""""
10817
10818This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10819integer bit width and for different address spaces. Not all targets
10820support all bit widths however.
10821
10822::
10823
10824 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010825 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010826 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010827 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010828
10829Overview:
10830"""""""""
10831
10832The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10833source location to the destination location.
10834
10835Note that, unlike the standard libc function, the ``llvm.memcpy.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010836intrinsics do not return a value, takes extra isvolatile
Sean Silvab084af42012-12-07 10:36:55 +000010837arguments and the pointers can be in specified address spaces.
10838
10839Arguments:
10840""""""""""
10841
10842The first argument is a pointer to the destination, the second is a
10843pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010844specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010845boolean indicating a volatile access.
10846
Daniel Neilson39eb6a52018-01-19 17:24:21 +000010847The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010848for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010849
10850If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10851a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10852very cleanly specified and it is unwise to depend on it.
10853
10854Semantics:
10855""""""""""
10856
10857The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10858source location to the destination location, which are not allowed to
10859overlap. It copies "len" bytes of memory over. If the argument is known
10860to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010861argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010862
Daniel Neilson57226ef2017-07-12 15:25:26 +000010863.. _int_memmove:
10864
Sean Silvab084af42012-12-07 10:36:55 +000010865'``llvm.memmove``' Intrinsic
10866^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10867
10868Syntax:
10869"""""""
10870
10871This is an overloaded intrinsic. You can use llvm.memmove on any integer
10872bit width and for different address space. Not all targets support all
10873bit widths however.
10874
10875::
10876
10877 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010878 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010879 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010880 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010881
10882Overview:
10883"""""""""
10884
10885The '``llvm.memmove.*``' intrinsics move a block of memory from the
10886source location to the destination location. It is similar to the
10887'``llvm.memcpy``' intrinsic but allows the two memory locations to
10888overlap.
10889
10890Note that, unlike the standard libc function, the ``llvm.memmove.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010891intrinsics do not return a value, takes an extra isvolatile
10892argument and the pointers can be in specified address spaces.
Sean Silvab084af42012-12-07 10:36:55 +000010893
10894Arguments:
10895""""""""""
10896
10897The first argument is a pointer to the destination, the second is a
10898pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010899specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010900boolean indicating a volatile access.
10901
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010902The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010903for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010904
10905If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10906is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10907not very cleanly specified and it is unwise to depend on it.
10908
10909Semantics:
10910""""""""""
10911
10912The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10913source location to the destination location, which may overlap. It
10914copies "len" bytes of memory over. If the argument is known to be
10915aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010916otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010917
Daniel Neilson965613e2017-07-12 21:57:23 +000010918.. _int_memset:
10919
Sean Silvab084af42012-12-07 10:36:55 +000010920'``llvm.memset.*``' Intrinsics
10921^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10922
10923Syntax:
10924"""""""
10925
10926This is an overloaded intrinsic. You can use llvm.memset on any integer
10927bit width and for different address spaces. However, not all targets
10928support all bit widths.
10929
10930::
10931
10932 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010933 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010934 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010935 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010936
10937Overview:
10938"""""""""
10939
10940The '``llvm.memset.*``' intrinsics fill a block of memory with a
10941particular byte value.
10942
10943Note that, unlike the standard libc function, the ``llvm.memset``
Daniel Neilson1e687242018-01-19 17:13:12 +000010944intrinsic does not return a value and takes an extra volatile
10945argument. Also, the destination can be in an arbitrary address space.
Sean Silvab084af42012-12-07 10:36:55 +000010946
10947Arguments:
10948""""""""""
10949
10950The first argument is a pointer to the destination to fill, the second
10951is the byte value with which to fill it, the third argument is an
10952integer argument specifying the number of bytes to fill, and the fourth
Daniel Neilson1e687242018-01-19 17:13:12 +000010953is a boolean indicating a volatile access.
Sean Silvab084af42012-12-07 10:36:55 +000010954
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010955The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010956for the first arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010957
10958If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10959a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10960very cleanly specified and it is unwise to depend on it.
10961
10962Semantics:
10963""""""""""
10964
10965The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010966at the destination location.
Sean Silvab084af42012-12-07 10:36:55 +000010967
10968'``llvm.sqrt.*``' Intrinsic
10969^^^^^^^^^^^^^^^^^^^^^^^^^^^
10970
10971Syntax:
10972"""""""
10973
10974This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010975floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010976all types however.
10977
10978::
10979
10980 declare float @llvm.sqrt.f32(float %Val)
10981 declare double @llvm.sqrt.f64(double %Val)
10982 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10983 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10984 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10985
10986Overview:
10987"""""""""
10988
Sanjay Patel629c4112017-11-06 16:27:15 +000010989The '``llvm.sqrt``' intrinsics return the square root of the specified value.
Sean Silvab084af42012-12-07 10:36:55 +000010990
10991Arguments:
10992""""""""""
10993
Sanjay Patel629c4112017-11-06 16:27:15 +000010994The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000010995
10996Semantics:
10997""""""""""
10998
Sanjay Patel629c4112017-11-06 16:27:15 +000010999Return the same value as a corresponding libm '``sqrt``' function but without
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011000trapping or setting ``errno``. For types specified by IEEE-754, the result
Sanjay Patel629c4112017-11-06 16:27:15 +000011001matches a conforming libm implementation.
11002
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011003When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011004using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011005
11006'``llvm.powi.*``' Intrinsic
11007^^^^^^^^^^^^^^^^^^^^^^^^^^^
11008
11009Syntax:
11010"""""""
11011
11012This is an overloaded intrinsic. You can use ``llvm.powi`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011013floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011014all types however.
11015
11016::
11017
11018 declare float @llvm.powi.f32(float %Val, i32 %power)
11019 declare double @llvm.powi.f64(double %Val, i32 %power)
11020 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
11021 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
11022 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
11023
11024Overview:
11025"""""""""
11026
11027The '``llvm.powi.*``' intrinsics return the first operand raised to the
11028specified (positive or negative) power. The order of evaluation of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011029multiplications is not defined. When a vector of floating-point type is
Sean Silvab084af42012-12-07 10:36:55 +000011030used, the second argument remains a scalar integer value.
11031
11032Arguments:
11033""""""""""
11034
11035The second argument is an integer power, and the first is a value to
11036raise to that power.
11037
11038Semantics:
11039""""""""""
11040
11041This function returns the first value raised to the second power with an
11042unspecified sequence of rounding operations.
11043
11044'``llvm.sin.*``' Intrinsic
11045^^^^^^^^^^^^^^^^^^^^^^^^^^
11046
11047Syntax:
11048"""""""
11049
11050This is an overloaded intrinsic. You can use ``llvm.sin`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011051floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011052all types however.
11053
11054::
11055
11056 declare float @llvm.sin.f32(float %Val)
11057 declare double @llvm.sin.f64(double %Val)
11058 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
11059 declare fp128 @llvm.sin.f128(fp128 %Val)
11060 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
11061
11062Overview:
11063"""""""""
11064
11065The '``llvm.sin.*``' intrinsics return the sine of the operand.
11066
11067Arguments:
11068""""""""""
11069
Sanjay Patel629c4112017-11-06 16:27:15 +000011070The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011071
11072Semantics:
11073""""""""""
11074
Sanjay Patel629c4112017-11-06 16:27:15 +000011075Return the same value as a corresponding libm '``sin``' function but without
11076trapping or setting ``errno``.
11077
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011078When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011079using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011080
11081'``llvm.cos.*``' Intrinsic
11082^^^^^^^^^^^^^^^^^^^^^^^^^^
11083
11084Syntax:
11085"""""""
11086
11087This is an overloaded intrinsic. You can use ``llvm.cos`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011088floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011089all types however.
11090
11091::
11092
11093 declare float @llvm.cos.f32(float %Val)
11094 declare double @llvm.cos.f64(double %Val)
11095 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
11096 declare fp128 @llvm.cos.f128(fp128 %Val)
11097 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
11098
11099Overview:
11100"""""""""
11101
11102The '``llvm.cos.*``' intrinsics return the cosine of the operand.
11103
11104Arguments:
11105""""""""""
11106
Sanjay Patel629c4112017-11-06 16:27:15 +000011107The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011108
11109Semantics:
11110""""""""""
11111
Sanjay Patel629c4112017-11-06 16:27:15 +000011112Return the same value as a corresponding libm '``cos``' function but without
11113trapping or setting ``errno``.
11114
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011115When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011116using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011117
11118'``llvm.pow.*``' Intrinsic
11119^^^^^^^^^^^^^^^^^^^^^^^^^^
11120
11121Syntax:
11122"""""""
11123
11124This is an overloaded intrinsic. You can use ``llvm.pow`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011125floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011126all types however.
11127
11128::
11129
11130 declare float @llvm.pow.f32(float %Val, float %Power)
11131 declare double @llvm.pow.f64(double %Val, double %Power)
11132 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
11133 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
11134 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
11135
11136Overview:
11137"""""""""
11138
11139The '``llvm.pow.*``' intrinsics return the first operand raised to the
11140specified (positive or negative) power.
11141
11142Arguments:
11143""""""""""
11144
Sanjay Patel629c4112017-11-06 16:27:15 +000011145The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011146
11147Semantics:
11148""""""""""
11149
Sanjay Patel629c4112017-11-06 16:27:15 +000011150Return the same value as a corresponding libm '``pow``' function but without
11151trapping or setting ``errno``.
11152
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011153When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011154using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011155
11156'``llvm.exp.*``' Intrinsic
11157^^^^^^^^^^^^^^^^^^^^^^^^^^
11158
11159Syntax:
11160"""""""
11161
11162This is an overloaded intrinsic. You can use ``llvm.exp`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011163floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011164all types however.
11165
11166::
11167
11168 declare float @llvm.exp.f32(float %Val)
11169 declare double @llvm.exp.f64(double %Val)
11170 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
11171 declare fp128 @llvm.exp.f128(fp128 %Val)
11172 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
11173
11174Overview:
11175"""""""""
11176
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011177The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
11178value.
Sean Silvab084af42012-12-07 10:36:55 +000011179
11180Arguments:
11181""""""""""
11182
Sanjay Patel629c4112017-11-06 16:27:15 +000011183The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011184
11185Semantics:
11186""""""""""
11187
Sanjay Patel629c4112017-11-06 16:27:15 +000011188Return the same value as a corresponding libm '``exp``' function but without
11189trapping or setting ``errno``.
11190
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011191When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011192using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011193
11194'``llvm.exp2.*``' Intrinsic
11195^^^^^^^^^^^^^^^^^^^^^^^^^^^
11196
11197Syntax:
11198"""""""
11199
11200This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011201floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011202all types however.
11203
11204::
11205
11206 declare float @llvm.exp2.f32(float %Val)
11207 declare double @llvm.exp2.f64(double %Val)
11208 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
11209 declare fp128 @llvm.exp2.f128(fp128 %Val)
11210 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
11211
11212Overview:
11213"""""""""
11214
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011215The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
11216specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011217
11218Arguments:
11219""""""""""
11220
Sanjay Patel629c4112017-11-06 16:27:15 +000011221The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011222
11223Semantics:
11224""""""""""
11225
Sanjay Patel629c4112017-11-06 16:27:15 +000011226Return the same value as a corresponding libm '``exp2``' function but without
11227trapping or setting ``errno``.
11228
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011229When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011230using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011231
11232'``llvm.log.*``' Intrinsic
11233^^^^^^^^^^^^^^^^^^^^^^^^^^
11234
11235Syntax:
11236"""""""
11237
11238This is an overloaded intrinsic. You can use ``llvm.log`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011239floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011240all types however.
11241
11242::
11243
11244 declare float @llvm.log.f32(float %Val)
11245 declare double @llvm.log.f64(double %Val)
11246 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
11247 declare fp128 @llvm.log.f128(fp128 %Val)
11248 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
11249
11250Overview:
11251"""""""""
11252
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011253The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
11254value.
Sean Silvab084af42012-12-07 10:36:55 +000011255
11256Arguments:
11257""""""""""
11258
Sanjay Patel629c4112017-11-06 16:27:15 +000011259The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011260
11261Semantics:
11262""""""""""
11263
Sanjay Patel629c4112017-11-06 16:27:15 +000011264Return the same value as a corresponding libm '``log``' function but without
11265trapping or setting ``errno``.
11266
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011267When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011268using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011269
11270'``llvm.log10.*``' Intrinsic
11271^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11272
11273Syntax:
11274"""""""
11275
11276This is an overloaded intrinsic. You can use ``llvm.log10`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011277floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011278all types however.
11279
11280::
11281
11282 declare float @llvm.log10.f32(float %Val)
11283 declare double @llvm.log10.f64(double %Val)
11284 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
11285 declare fp128 @llvm.log10.f128(fp128 %Val)
11286 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
11287
11288Overview:
11289"""""""""
11290
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011291The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
11292specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011293
11294Arguments:
11295""""""""""
11296
Sanjay Patel629c4112017-11-06 16:27:15 +000011297The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011298
11299Semantics:
11300""""""""""
11301
Sanjay Patel629c4112017-11-06 16:27:15 +000011302Return the same value as a corresponding libm '``log10``' function but without
11303trapping or setting ``errno``.
11304
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011305When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011306using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011307
11308'``llvm.log2.*``' Intrinsic
11309^^^^^^^^^^^^^^^^^^^^^^^^^^^
11310
11311Syntax:
11312"""""""
11313
11314This is an overloaded intrinsic. You can use ``llvm.log2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011315floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011316all types however.
11317
11318::
11319
11320 declare float @llvm.log2.f32(float %Val)
11321 declare double @llvm.log2.f64(double %Val)
11322 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
11323 declare fp128 @llvm.log2.f128(fp128 %Val)
11324 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
11325
11326Overview:
11327"""""""""
11328
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011329The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
11330value.
Sean Silvab084af42012-12-07 10:36:55 +000011331
11332Arguments:
11333""""""""""
11334
Sanjay Patel629c4112017-11-06 16:27:15 +000011335The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011336
11337Semantics:
11338""""""""""
11339
Sanjay Patel629c4112017-11-06 16:27:15 +000011340Return the same value as a corresponding libm '``log2``' function but without
11341trapping or setting ``errno``.
11342
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011343When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011344using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011345
11346'``llvm.fma.*``' Intrinsic
11347^^^^^^^^^^^^^^^^^^^^^^^^^^
11348
11349Syntax:
11350"""""""
11351
11352This is an overloaded intrinsic. You can use ``llvm.fma`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011353floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011354all types however.
11355
11356::
11357
11358 declare float @llvm.fma.f32(float %a, float %b, float %c)
11359 declare double @llvm.fma.f64(double %a, double %b, double %c)
11360 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
11361 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
11362 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
11363
11364Overview:
11365"""""""""
11366
Sanjay Patel629c4112017-11-06 16:27:15 +000011367The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
Sean Silvab084af42012-12-07 10:36:55 +000011368
11369Arguments:
11370""""""""""
11371
Sanjay Patel629c4112017-11-06 16:27:15 +000011372The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011373
11374Semantics:
11375""""""""""
11376
Sanjay Patel629c4112017-11-06 16:27:15 +000011377Return the same value as a corresponding libm '``fma``' function but without
11378trapping or setting ``errno``.
11379
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011380When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011381using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011382
11383'``llvm.fabs.*``' Intrinsic
11384^^^^^^^^^^^^^^^^^^^^^^^^^^^
11385
11386Syntax:
11387"""""""
11388
11389This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011390floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011391all types however.
11392
11393::
11394
11395 declare float @llvm.fabs.f32(float %Val)
11396 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011397 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011398 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011399 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011400
11401Overview:
11402"""""""""
11403
11404The '``llvm.fabs.*``' intrinsics return the absolute value of the
11405operand.
11406
11407Arguments:
11408""""""""""
11409
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011410The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011411type.
11412
11413Semantics:
11414""""""""""
11415
11416This function returns the same values as the libm ``fabs`` functions
11417would, and handles error conditions in the same way.
11418
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011419'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011421
11422Syntax:
11423"""""""
11424
11425This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011426floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011427all types however.
11428
11429::
11430
Matt Arsenault64313c92014-10-22 18:25:02 +000011431 declare float @llvm.minnum.f32(float %Val0, float %Val1)
11432 declare double @llvm.minnum.f64(double %Val0, double %Val1)
11433 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11434 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
11435 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011436
11437Overview:
11438"""""""""
11439
11440The '``llvm.minnum.*``' intrinsics return the minimum of the two
11441arguments.
11442
11443
11444Arguments:
11445""""""""""
11446
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011447The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011448type.
11449
11450Semantics:
11451""""""""""
11452
11453Follows the IEEE-754 semantics for minNum, which also match for libm's
11454fmin.
11455
11456If either operand is a NaN, returns the other non-NaN operand. Returns
11457NaN only if both operands are NaN. If the operands compare equal,
11458returns a value that compares equal to both operands. This means that
11459fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11460
11461'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011463
11464Syntax:
11465"""""""
11466
11467This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011468floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011469all types however.
11470
11471::
11472
Matt Arsenault64313c92014-10-22 18:25:02 +000011473 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
11474 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
11475 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11476 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
11477 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011478
11479Overview:
11480"""""""""
11481
11482The '``llvm.maxnum.*``' intrinsics return the maximum of the two
11483arguments.
11484
11485
11486Arguments:
11487""""""""""
11488
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011489The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011490type.
11491
11492Semantics:
11493""""""""""
11494Follows the IEEE-754 semantics for maxNum, which also match for libm's
11495fmax.
11496
11497If either operand is a NaN, returns the other non-NaN operand. Returns
11498NaN only if both operands are NaN. If the operands compare equal,
11499returns a value that compares equal to both operands. This means that
11500fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11501
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011502'``llvm.copysign.*``' Intrinsic
11503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11504
11505Syntax:
11506"""""""
11507
11508This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011509floating-point or vector of floating-point type. Not all targets support
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011510all types however.
11511
11512::
11513
11514 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
11515 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
11516 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
11517 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
11518 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
11519
11520Overview:
11521"""""""""
11522
11523The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
11524first operand and the sign of the second operand.
11525
11526Arguments:
11527""""""""""
11528
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011529The arguments and return value are floating-point numbers of the same
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011530type.
11531
11532Semantics:
11533""""""""""
11534
11535This function returns the same values as the libm ``copysign``
11536functions would, and handles error conditions in the same way.
11537
Sean Silvab084af42012-12-07 10:36:55 +000011538'``llvm.floor.*``' Intrinsic
11539^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11540
11541Syntax:
11542"""""""
11543
11544This is an overloaded intrinsic. You can use ``llvm.floor`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011545floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011546all types however.
11547
11548::
11549
11550 declare float @llvm.floor.f32(float %Val)
11551 declare double @llvm.floor.f64(double %Val)
11552 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
11553 declare fp128 @llvm.floor.f128(fp128 %Val)
11554 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
11555
11556Overview:
11557"""""""""
11558
11559The '``llvm.floor.*``' intrinsics return the floor of the operand.
11560
11561Arguments:
11562""""""""""
11563
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011564The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011565type.
11566
11567Semantics:
11568""""""""""
11569
11570This function returns the same values as the libm ``floor`` functions
11571would, and handles error conditions in the same way.
11572
11573'``llvm.ceil.*``' Intrinsic
11574^^^^^^^^^^^^^^^^^^^^^^^^^^^
11575
11576Syntax:
11577"""""""
11578
11579This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011580floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011581all types however.
11582
11583::
11584
11585 declare float @llvm.ceil.f32(float %Val)
11586 declare double @llvm.ceil.f64(double %Val)
11587 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
11588 declare fp128 @llvm.ceil.f128(fp128 %Val)
11589 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
11590
11591Overview:
11592"""""""""
11593
11594The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
11595
11596Arguments:
11597""""""""""
11598
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011599The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011600type.
11601
11602Semantics:
11603""""""""""
11604
11605This function returns the same values as the libm ``ceil`` functions
11606would, and handles error conditions in the same way.
11607
11608'``llvm.trunc.*``' Intrinsic
11609^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11610
11611Syntax:
11612"""""""
11613
11614This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011615floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011616all types however.
11617
11618::
11619
11620 declare float @llvm.trunc.f32(float %Val)
11621 declare double @llvm.trunc.f64(double %Val)
11622 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
11623 declare fp128 @llvm.trunc.f128(fp128 %Val)
11624 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
11625
11626Overview:
11627"""""""""
11628
11629The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
11630nearest integer not larger in magnitude than the operand.
11631
11632Arguments:
11633""""""""""
11634
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011635The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011636type.
11637
11638Semantics:
11639""""""""""
11640
11641This function returns the same values as the libm ``trunc`` functions
11642would, and handles error conditions in the same way.
11643
11644'``llvm.rint.*``' Intrinsic
11645^^^^^^^^^^^^^^^^^^^^^^^^^^^
11646
11647Syntax:
11648"""""""
11649
11650This is an overloaded intrinsic. You can use ``llvm.rint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011651floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011652all types however.
11653
11654::
11655
11656 declare float @llvm.rint.f32(float %Val)
11657 declare double @llvm.rint.f64(double %Val)
11658 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
11659 declare fp128 @llvm.rint.f128(fp128 %Val)
11660 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
11661
11662Overview:
11663"""""""""
11664
11665The '``llvm.rint.*``' intrinsics returns the operand rounded to the
11666nearest integer. It may raise an inexact floating-point exception if the
11667operand isn't an integer.
11668
11669Arguments:
11670""""""""""
11671
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011672The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011673type.
11674
11675Semantics:
11676""""""""""
11677
11678This function returns the same values as the libm ``rint`` functions
11679would, and handles error conditions in the same way.
11680
11681'``llvm.nearbyint.*``' Intrinsic
11682^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11683
11684Syntax:
11685"""""""
11686
11687This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011688floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011689all types however.
11690
11691::
11692
11693 declare float @llvm.nearbyint.f32(float %Val)
11694 declare double @llvm.nearbyint.f64(double %Val)
11695 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
11696 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
11697 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
11698
11699Overview:
11700"""""""""
11701
11702The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
11703nearest integer.
11704
11705Arguments:
11706""""""""""
11707
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011708The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011709type.
11710
11711Semantics:
11712""""""""""
11713
11714This function returns the same values as the libm ``nearbyint``
11715functions would, and handles error conditions in the same way.
11716
Hal Finkel171817e2013-08-07 22:49:12 +000011717'``llvm.round.*``' Intrinsic
11718^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11719
11720Syntax:
11721"""""""
11722
11723This is an overloaded intrinsic. You can use ``llvm.round`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011724floating-point or vector of floating-point type. Not all targets support
Hal Finkel171817e2013-08-07 22:49:12 +000011725all types however.
11726
11727::
11728
11729 declare float @llvm.round.f32(float %Val)
11730 declare double @llvm.round.f64(double %Val)
11731 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11732 declare fp128 @llvm.round.f128(fp128 %Val)
11733 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11734
11735Overview:
11736"""""""""
11737
11738The '``llvm.round.*``' intrinsics returns the operand rounded to the
11739nearest integer.
11740
11741Arguments:
11742""""""""""
11743
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011744The argument and return value are floating-point numbers of the same
Hal Finkel171817e2013-08-07 22:49:12 +000011745type.
11746
11747Semantics:
11748""""""""""
11749
11750This function returns the same values as the libm ``round``
11751functions would, and handles error conditions in the same way.
11752
Sean Silvab084af42012-12-07 10:36:55 +000011753Bit Manipulation Intrinsics
11754---------------------------
11755
11756LLVM provides intrinsics for a few important bit manipulation
11757operations. These allow efficient code generation for some algorithms.
11758
James Molloy90111f72015-11-12 12:29:09 +000011759'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011760^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011761
11762Syntax:
11763"""""""
11764
11765This is an overloaded intrinsic function. You can use bitreverse on any
11766integer type.
11767
11768::
11769
11770 declare i16 @llvm.bitreverse.i16(i16 <id>)
11771 declare i32 @llvm.bitreverse.i32(i32 <id>)
11772 declare i64 @llvm.bitreverse.i64(i64 <id>)
11773
11774Overview:
11775"""""""""
11776
11777The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011778bitpattern of an integer value; for example ``0b10110110`` becomes
11779``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011780
11781Semantics:
11782""""""""""
11783
Yichao Yu5abf14b2016-11-23 16:25:31 +000011784The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011785``M`` in the input moved to bit ``N-M`` in the output.
11786
Sean Silvab084af42012-12-07 10:36:55 +000011787'``llvm.bswap.*``' Intrinsics
11788^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11789
11790Syntax:
11791"""""""
11792
11793This is an overloaded intrinsic function. You can use bswap on any
11794integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11795
11796::
11797
11798 declare i16 @llvm.bswap.i16(i16 <id>)
11799 declare i32 @llvm.bswap.i32(i32 <id>)
11800 declare i64 @llvm.bswap.i64(i64 <id>)
11801
11802Overview:
11803"""""""""
11804
11805The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11806values with an even number of bytes (positive multiple of 16 bits).
11807These are useful for performing operations on data that is not in the
11808target's native byte order.
11809
11810Semantics:
11811""""""""""
11812
11813The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11814and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11815intrinsic returns an i32 value that has the four bytes of the input i32
11816swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11817returned i32 will have its bytes in 3, 2, 1, 0 order. The
11818``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11819concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11820respectively).
11821
11822'``llvm.ctpop.*``' Intrinsic
11823^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11824
11825Syntax:
11826"""""""
11827
11828This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11829bit width, or on any vector with integer elements. Not all targets
11830support all bit widths or vector types, however.
11831
11832::
11833
11834 declare i8 @llvm.ctpop.i8(i8 <src>)
11835 declare i16 @llvm.ctpop.i16(i16 <src>)
11836 declare i32 @llvm.ctpop.i32(i32 <src>)
11837 declare i64 @llvm.ctpop.i64(i64 <src>)
11838 declare i256 @llvm.ctpop.i256(i256 <src>)
11839 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11840
11841Overview:
11842"""""""""
11843
11844The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11845in a value.
11846
11847Arguments:
11848""""""""""
11849
11850The only argument is the value to be counted. The argument may be of any
11851integer type, or a vector with integer elements. The return type must
11852match the argument type.
11853
11854Semantics:
11855""""""""""
11856
11857The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11858each element of a vector.
11859
11860'``llvm.ctlz.*``' Intrinsic
11861^^^^^^^^^^^^^^^^^^^^^^^^^^^
11862
11863Syntax:
11864"""""""
11865
11866This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11867integer bit width, or any vector whose elements are integers. Not all
11868targets support all bit widths or vector types, however.
11869
11870::
11871
11872 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11873 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11874 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11875 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11876 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011877 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011878
11879Overview:
11880"""""""""
11881
11882The '``llvm.ctlz``' family of intrinsic functions counts the number of
11883leading zeros in a variable.
11884
11885Arguments:
11886""""""""""
11887
11888The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011889any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011890type must match the first argument type.
11891
11892The second argument must be a constant and is a flag to indicate whether
11893the intrinsic should ensure that a zero as the first argument produces a
11894defined result. Historically some architectures did not provide a
11895defined result for zero values as efficiently, and many algorithms are
11896now predicated on avoiding zero-value inputs.
11897
11898Semantics:
11899""""""""""
11900
11901The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11902zeros in a variable, or within each element of the vector. If
11903``src == 0`` then the result is the size in bits of the type of ``src``
11904if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11905``llvm.ctlz(i32 2) = 30``.
11906
11907'``llvm.cttz.*``' Intrinsic
11908^^^^^^^^^^^^^^^^^^^^^^^^^^^
11909
11910Syntax:
11911"""""""
11912
11913This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11914integer bit width, or any vector of integer elements. Not all targets
11915support all bit widths or vector types, however.
11916
11917::
11918
11919 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11920 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11921 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11922 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11923 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011924 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011925
11926Overview:
11927"""""""""
11928
11929The '``llvm.cttz``' family of intrinsic functions counts the number of
11930trailing zeros.
11931
11932Arguments:
11933""""""""""
11934
11935The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011936any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011937type must match the first argument type.
11938
11939The second argument must be a constant and is a flag to indicate whether
11940the intrinsic should ensure that a zero as the first argument produces a
11941defined result. Historically some architectures did not provide a
11942defined result for zero values as efficiently, and many algorithms are
11943now predicated on avoiding zero-value inputs.
11944
11945Semantics:
11946""""""""""
11947
11948The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11949zeros in a variable, or within each element of a vector. If ``src == 0``
11950then the result is the size in bits of the type of ``src`` if
11951``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11952``llvm.cttz(2) = 1``.
11953
Philip Reames34843ae2015-03-05 05:55:55 +000011954.. _int_overflow:
11955
Sanjay Patelc71adc82018-07-16 22:59:31 +000011956'``llvm.fshl.*``' Intrinsic
11957^^^^^^^^^^^^^^^^^^^^^^^^^^^
11958
11959Syntax:
11960"""""""
11961
11962This is an overloaded intrinsic. You can use ``llvm.fshl`` on any
11963integer bit width or any vector of integer elements. Not all targets
11964support all bit widths or vector types, however.
11965
11966::
11967
11968 declare i8 @llvm.fshl.i8 (i8 %a, i8 %b, i8 %c)
11969 declare i67 @llvm.fshl.i67(i67 %a, i67 %b, i67 %c)
11970 declare <2 x i32> @llvm.fshl.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
11971
11972Overview:
11973"""""""""
11974
11975The '``llvm.fshl``' family of intrinsic functions performs a funnel shift left:
11976the first two values are concatenated as { %a : %b } (%a is the most significant
11977bits of the wide value), the combined value is shifted left, and the most
11978significant bits are extracted to produce a result that is the same size as the
11979original arguments. If the first 2 arguments are identical, this is equivalent
11980to a rotate left operation. For vector types, the operation occurs for each
11981element of the vector. The shift argument is treated as an unsigned amount
11982modulo the element size of the arguments.
11983
11984Arguments:
11985""""""""""
11986
11987The first two arguments are the values to be concatenated. The third
11988argument is the shift amount. The arguments may be any integer type or a
11989vector with integer element type. All arguments and the return value must
11990have the same type.
11991
11992Example:
11993""""""""
11994
11995.. code-block:: text
11996
11997 %r = call i8 @llvm.fshl.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: msb_extract((concat(x, y) << (z % 8)), 8)
11998 %r = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 15) ; %r = i8: 128 (0b10000000)
11999 %r = call i8 @llvm.fshl.i8(i8 15, i8 15, i8 11) ; %r = i8: 120 (0b01111000)
12000 %r = call i8 @llvm.fshl.i8(i8 0, i8 255, i8 8) ; %r = i8: 0 (0b00000000)
12001
12002'``llvm.fshr.*``' Intrinsic
12003^^^^^^^^^^^^^^^^^^^^^^^^^^^
12004
12005Syntax:
12006"""""""
12007
12008This is an overloaded intrinsic. You can use ``llvm.fshr`` on any
12009integer bit width or any vector of integer elements. Not all targets
12010support all bit widths or vector types, however.
12011
12012::
12013
12014 declare i8 @llvm.fshr.i8 (i8 %a, i8 %b, i8 %c)
12015 declare i67 @llvm.fshr.i67(i67 %a, i67 %b, i67 %c)
12016 declare <2 x i32> @llvm.fshr.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
12017
12018Overview:
12019"""""""""
12020
12021The '``llvm.fshr``' family of intrinsic functions performs a funnel shift right:
12022the first two values are concatenated as { %a : %b } (%a is the most significant
12023bits of the wide value), the combined value is shifted right, and the least
12024significant bits are extracted to produce a result that is the same size as the
12025original arguments. If the first 2 arguments are identical, this is equivalent
12026to a rotate right operation. For vector types, the operation occurs for each
12027element of the vector. The shift argument is treated as an unsigned amount
12028modulo the element size of the arguments.
12029
12030Arguments:
12031""""""""""
12032
12033The first two arguments are the values to be concatenated. The third
12034argument is the shift amount. The arguments may be any integer type or a
12035vector with integer element type. All arguments and the return value must
12036have the same type.
12037
12038Example:
12039""""""""
12040
12041.. code-block:: text
12042
12043 %r = call i8 @llvm.fshr.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: lsb_extract((concat(x, y) >> (z % 8)), 8)
12044 %r = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 15) ; %r = i8: 254 (0b11111110)
12045 %r = call i8 @llvm.fshr.i8(i8 15, i8 15, i8 11) ; %r = i8: 225 (0b11100001)
12046 %r = call i8 @llvm.fshr.i8(i8 0, i8 255, i8 8) ; %r = i8: 255 (0b11111111)
12047
Sean Silvab084af42012-12-07 10:36:55 +000012048Arithmetic with Overflow Intrinsics
12049-----------------------------------
12050
John Regehr6a493f22016-05-12 20:55:09 +000012051LLVM provides intrinsics for fast arithmetic overflow checking.
12052
12053Each of these intrinsics returns a two-element struct. The first
12054element of this struct contains the result of the corresponding
12055arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
12056the result. Therefore, for example, the first element of the struct
12057returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
12058result of a 32-bit ``add`` instruction with the same operands, where
12059the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
12060
12061The second element of the result is an ``i1`` that is 1 if the
12062arithmetic operation overflowed and 0 otherwise. An operation
12063overflows if, for any values of its operands ``A`` and ``B`` and for
12064any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
12065not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
12066``sext`` for signed overflow and ``zext`` for unsigned overflow, and
12067``op`` is the underlying arithmetic operation.
12068
12069The behavior of these intrinsics is well-defined for all argument
12070values.
Sean Silvab084af42012-12-07 10:36:55 +000012071
12072'``llvm.sadd.with.overflow.*``' Intrinsics
12073^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12074
12075Syntax:
12076"""""""
12077
12078This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
12079on any integer bit width.
12080
12081::
12082
12083 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
12084 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12085 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
12086
12087Overview:
12088"""""""""
12089
12090The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
12091a signed addition of the two arguments, and indicate whether an overflow
12092occurred during the signed summation.
12093
12094Arguments:
12095""""""""""
12096
12097The arguments (%a and %b) and the first element of the result structure
12098may be of integer types of any bit width, but they must have the same
12099bit width. The second element of the result structure must be of type
12100``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12101addition.
12102
12103Semantics:
12104""""""""""
12105
12106The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012107a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012108first element of which is the signed summation, and the second element
12109of which is a bit specifying if the signed summation resulted in an
12110overflow.
12111
12112Examples:
12113"""""""""
12114
12115.. code-block:: llvm
12116
12117 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12118 %sum = extractvalue {i32, i1} %res, 0
12119 %obit = extractvalue {i32, i1} %res, 1
12120 br i1 %obit, label %overflow, label %normal
12121
12122'``llvm.uadd.with.overflow.*``' Intrinsics
12123^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12124
12125Syntax:
12126"""""""
12127
12128This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
12129on any integer bit width.
12130
12131::
12132
12133 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
12134 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12135 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
12136
12137Overview:
12138"""""""""
12139
12140The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
12141an unsigned addition of the two arguments, and indicate whether a carry
12142occurred during the unsigned summation.
12143
12144Arguments:
12145""""""""""
12146
12147The arguments (%a and %b) and the first element of the result structure
12148may be of integer types of any bit width, but they must have the same
12149bit width. The second element of the result structure must be of type
12150``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12151addition.
12152
12153Semantics:
12154""""""""""
12155
12156The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012157an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012158first element of which is the sum, and the second element of which is a
12159bit specifying if the unsigned summation resulted in a carry.
12160
12161Examples:
12162"""""""""
12163
12164.. code-block:: llvm
12165
12166 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12167 %sum = extractvalue {i32, i1} %res, 0
12168 %obit = extractvalue {i32, i1} %res, 1
12169 br i1 %obit, label %carry, label %normal
12170
12171'``llvm.ssub.with.overflow.*``' Intrinsics
12172^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12173
12174Syntax:
12175"""""""
12176
12177This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
12178on any integer bit width.
12179
12180::
12181
12182 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
12183 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12184 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
12185
12186Overview:
12187"""""""""
12188
12189The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
12190a signed subtraction of the two arguments, and indicate whether an
12191overflow occurred during the signed subtraction.
12192
12193Arguments:
12194""""""""""
12195
12196The arguments (%a and %b) and the first element of the result structure
12197may be of integer types of any bit width, but they must have the same
12198bit width. The second element of the result structure must be of type
12199``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12200subtraction.
12201
12202Semantics:
12203""""""""""
12204
12205The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012206a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012207first element of which is the subtraction, and the second element of
12208which is a bit specifying if the signed subtraction resulted in an
12209overflow.
12210
12211Examples:
12212"""""""""
12213
12214.. code-block:: llvm
12215
12216 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12217 %sum = extractvalue {i32, i1} %res, 0
12218 %obit = extractvalue {i32, i1} %res, 1
12219 br i1 %obit, label %overflow, label %normal
12220
12221'``llvm.usub.with.overflow.*``' Intrinsics
12222^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12223
12224Syntax:
12225"""""""
12226
12227This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
12228on any integer bit width.
12229
12230::
12231
12232 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
12233 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12234 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
12235
12236Overview:
12237"""""""""
12238
12239The '``llvm.usub.with.overflow``' family of intrinsic functions perform
12240an unsigned subtraction of the two arguments, and indicate whether an
12241overflow occurred during the unsigned subtraction.
12242
12243Arguments:
12244""""""""""
12245
12246The arguments (%a and %b) and the first element of the result structure
12247may be of integer types of any bit width, but they must have the same
12248bit width. The second element of the result structure must be of type
12249``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12250subtraction.
12251
12252Semantics:
12253""""""""""
12254
12255The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012256an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012257the first element of which is the subtraction, and the second element of
12258which is a bit specifying if the unsigned subtraction resulted in an
12259overflow.
12260
12261Examples:
12262"""""""""
12263
12264.. code-block:: llvm
12265
12266 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12267 %sum = extractvalue {i32, i1} %res, 0
12268 %obit = extractvalue {i32, i1} %res, 1
12269 br i1 %obit, label %overflow, label %normal
12270
12271'``llvm.smul.with.overflow.*``' Intrinsics
12272^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12273
12274Syntax:
12275"""""""
12276
12277This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
12278on any integer bit width.
12279
12280::
12281
12282 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
12283 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12284 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
12285
12286Overview:
12287"""""""""
12288
12289The '``llvm.smul.with.overflow``' family of intrinsic functions perform
12290a signed multiplication of the two arguments, and indicate whether an
12291overflow occurred during the signed multiplication.
12292
12293Arguments:
12294""""""""""
12295
12296The arguments (%a and %b) and the first element of the result structure
12297may be of integer types of any bit width, but they must have the same
12298bit width. The second element of the result structure must be of type
12299``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12300multiplication.
12301
12302Semantics:
12303""""""""""
12304
12305The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012306a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012307the first element of which is the multiplication, and the second element
12308of which is a bit specifying if the signed multiplication resulted in an
12309overflow.
12310
12311Examples:
12312"""""""""
12313
12314.. code-block:: llvm
12315
12316 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12317 %sum = extractvalue {i32, i1} %res, 0
12318 %obit = extractvalue {i32, i1} %res, 1
12319 br i1 %obit, label %overflow, label %normal
12320
12321'``llvm.umul.with.overflow.*``' Intrinsics
12322^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12323
12324Syntax:
12325"""""""
12326
12327This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
12328on any integer bit width.
12329
12330::
12331
12332 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
12333 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12334 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
12335
12336Overview:
12337"""""""""
12338
12339The '``llvm.umul.with.overflow``' family of intrinsic functions perform
12340a unsigned multiplication of the two arguments, and indicate whether an
12341overflow occurred during the unsigned multiplication.
12342
12343Arguments:
12344""""""""""
12345
12346The arguments (%a and %b) and the first element of the result structure
12347may be of integer types of any bit width, but they must have the same
12348bit width. The second element of the result structure must be of type
12349``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12350multiplication.
12351
12352Semantics:
12353""""""""""
12354
12355The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012356an unsigned multiplication of the two arguments. They return a structure ---
12357the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000012358element of which is a bit specifying if the unsigned multiplication
12359resulted in an overflow.
12360
12361Examples:
12362"""""""""
12363
12364.. code-block:: llvm
12365
12366 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12367 %sum = extractvalue {i32, i1} %res, 0
12368 %obit = extractvalue {i32, i1} %res, 1
12369 br i1 %obit, label %overflow, label %normal
12370
12371Specialised Arithmetic Intrinsics
12372---------------------------------
12373
Owen Anderson1056a922015-07-11 07:01:27 +000012374'``llvm.canonicalize.*``' Intrinsic
12375^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12376
12377Syntax:
12378"""""""
12379
12380::
12381
12382 declare float @llvm.canonicalize.f32(float %a)
12383 declare double @llvm.canonicalize.f64(double %b)
12384
12385Overview:
12386"""""""""
12387
12388The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012389encoding of a floating-point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000012390implementing certain numeric primitives such as frexp. The canonical encoding is
12391defined by IEEE-754-2008 to be:
12392
12393::
12394
12395 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000012396 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000012397 numbers, infinities, and NaNs, especially in decimal formats.
12398
12399This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000012400conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000012401according to section 6.2.
12402
12403Examples of non-canonical encodings:
12404
Sean Silvaa1190322015-08-06 22:56:48 +000012405- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000012406 converted to a canonical representation per hardware-specific protocol.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012407- Many normal decimal floating-point numbers have non-canonical alternative
Owen Anderson1056a922015-07-11 07:01:27 +000012408 encodings.
12409- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000012410 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000012411 a zero of the same sign by this operation.
12412
12413Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
12414default exception handling must signal an invalid exception, and produce a
12415quiet NaN result.
12416
12417This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000012418that the compiler does not constant fold the operation. Likewise, division by
124191.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000012420-0.0 is also sufficient provided that the rounding mode is not -Infinity.
12421
Sean Silvaa1190322015-08-06 22:56:48 +000012422``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000012423
12424- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
12425- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
12426 to ``(x == y)``
12427
12428Additionally, the sign of zero must be conserved:
12429``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
12430
12431The payload bits of a NaN must be conserved, with two exceptions.
12432First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000012433must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000012434usual methods.
12435
12436The canonicalization operation may be optimized away if:
12437
Sean Silvaa1190322015-08-06 22:56:48 +000012438- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000012439 floating-point operation that is required by the standard to be canonical.
12440- The result is consumed only by (or fused with) other floating-point
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012441 operations. That is, the bits of the floating-point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000012442
Sean Silvab084af42012-12-07 10:36:55 +000012443'``llvm.fmuladd.*``' Intrinsic
12444^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12445
12446Syntax:
12447"""""""
12448
12449::
12450
12451 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
12452 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
12453
12454Overview:
12455"""""""""
12456
12457The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000012458expressions that can be fused if the code generator determines that (a) the
12459target instruction set has support for a fused operation, and (b) that the
12460fused operation is more efficient than the equivalent, separate pair of mul
12461and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000012462
12463Arguments:
12464""""""""""
12465
12466The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
12467multiplicands, a and b, and an addend c.
12468
12469Semantics:
12470""""""""""
12471
12472The expression:
12473
12474::
12475
12476 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
12477
12478is equivalent to the expression a \* b + c, except that rounding will
12479not be performed between the multiplication and addition steps if the
12480code generator fuses the operations. Fusion is not guaranteed, even if
12481the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000012482corresponding llvm.fma.\* intrinsic function should be used
12483instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000012484
12485Examples:
12486"""""""""
12487
12488.. code-block:: llvm
12489
Tim Northover675a0962014-06-13 14:24:23 +000012490 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000012491
Amara Emersoncf9daa32017-05-09 10:43:25 +000012492
12493Experimental Vector Reduction Intrinsics
12494----------------------------------------
12495
12496Horizontal reductions of vectors can be expressed using the following
12497intrinsics. Each one takes a vector operand as an input and applies its
12498respective operation across all elements of the vector, returning a single
12499scalar result of the same element type.
12500
12501
12502'``llvm.experimental.vector.reduce.add.*``' Intrinsic
12503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12504
12505Syntax:
12506"""""""
12507
12508::
12509
12510 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
12511 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
12512
12513Overview:
12514"""""""""
12515
12516The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
12517reduction of a vector, returning the result as a scalar. The return type matches
12518the element-type of the vector input.
12519
12520Arguments:
12521""""""""""
12522The argument to this intrinsic must be a vector of integer values.
12523
12524'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
12525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12526
12527Syntax:
12528"""""""
12529
12530::
12531
12532 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
12533 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
12534
12535Overview:
12536"""""""""
12537
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012538The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012539``ADD`` reduction of a vector, returning the result as a scalar. The return type
12540matches the element-type of the vector input.
12541
12542If the intrinsic call has fast-math flags, then the reduction will not preserve
12543the associativity of an equivalent scalarized counterpart. If it does not have
12544fast-math flags, then the reduction will be *ordered*, implying that the
12545operation respects the associativity of a scalarized reduction.
12546
12547
12548Arguments:
12549""""""""""
12550The first argument to this intrinsic is a scalar accumulator value, which is
12551only used when there are no fast-math flags attached. This argument may be undef
12552when fast-math flags are used.
12553
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012554The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012555
12556Examples:
12557"""""""""
12558
12559.. code-block:: llvm
12560
12561 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12562 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12563
12564
12565'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
12566^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12567
12568Syntax:
12569"""""""
12570
12571::
12572
12573 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
12574 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
12575
12576Overview:
12577"""""""""
12578
12579The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
12580reduction of a vector, returning the result as a scalar. The return type matches
12581the element-type of the vector input.
12582
12583Arguments:
12584""""""""""
12585The argument to this intrinsic must be a vector of integer values.
12586
12587'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
12588^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12589
12590Syntax:
12591"""""""
12592
12593::
12594
12595 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
12596 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
12597
12598Overview:
12599"""""""""
12600
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012601The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012602``MUL`` reduction of a vector, returning the result as a scalar. The return type
12603matches the element-type of the vector input.
12604
12605If the intrinsic call has fast-math flags, then the reduction will not preserve
12606the associativity of an equivalent scalarized counterpart. If it does not have
12607fast-math flags, then the reduction will be *ordered*, implying that the
12608operation respects the associativity of a scalarized reduction.
12609
12610
12611Arguments:
12612""""""""""
12613The first argument to this intrinsic is a scalar accumulator value, which is
12614only used when there are no fast-math flags attached. This argument may be undef
12615when fast-math flags are used.
12616
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012617The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012618
12619Examples:
12620"""""""""
12621
12622.. code-block:: llvm
12623
12624 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12625 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12626
12627'``llvm.experimental.vector.reduce.and.*``' Intrinsic
12628^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12629
12630Syntax:
12631"""""""
12632
12633::
12634
12635 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
12636
12637Overview:
12638"""""""""
12639
12640The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
12641reduction of a vector, returning the result as a scalar. The return type matches
12642the element-type of the vector input.
12643
12644Arguments:
12645""""""""""
12646The argument to this intrinsic must be a vector of integer values.
12647
12648'``llvm.experimental.vector.reduce.or.*``' Intrinsic
12649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12650
12651Syntax:
12652"""""""
12653
12654::
12655
12656 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
12657
12658Overview:
12659"""""""""
12660
12661The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
12662of a vector, returning the result as a scalar. The return type matches the
12663element-type of the vector input.
12664
12665Arguments:
12666""""""""""
12667The argument to this intrinsic must be a vector of integer values.
12668
12669'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
12670^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12671
12672Syntax:
12673"""""""
12674
12675::
12676
12677 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
12678
12679Overview:
12680"""""""""
12681
12682The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
12683reduction of a vector, returning the result as a scalar. The return type matches
12684the element-type of the vector input.
12685
12686Arguments:
12687""""""""""
12688The argument to this intrinsic must be a vector of integer values.
12689
12690'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
12691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12692
12693Syntax:
12694"""""""
12695
12696::
12697
12698 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
12699
12700Overview:
12701"""""""""
12702
12703The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
12704``MAX`` reduction of a vector, returning the result as a scalar. The return type
12705matches the element-type of the vector input.
12706
12707Arguments:
12708""""""""""
12709The argument to this intrinsic must be a vector of integer values.
12710
12711'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
12712^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12713
12714Syntax:
12715"""""""
12716
12717::
12718
12719 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
12720
12721Overview:
12722"""""""""
12723
12724The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
12725``MIN`` reduction of a vector, returning the result as a scalar. The return type
12726matches the element-type of the vector input.
12727
12728Arguments:
12729""""""""""
12730The argument to this intrinsic must be a vector of integer values.
12731
12732'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
12733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12734
12735Syntax:
12736"""""""
12737
12738::
12739
12740 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
12741
12742Overview:
12743"""""""""
12744
12745The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
12746integer ``MAX`` reduction of a vector, returning the result as a scalar. The
12747return type matches the element-type of the vector input.
12748
12749Arguments:
12750""""""""""
12751The argument to this intrinsic must be a vector of integer values.
12752
12753'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
12754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12755
12756Syntax:
12757"""""""
12758
12759::
12760
12761 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
12762
12763Overview:
12764"""""""""
12765
12766The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
12767integer ``MIN`` reduction of a vector, returning the result as a scalar. The
12768return type matches the element-type of the vector input.
12769
12770Arguments:
12771""""""""""
12772The argument to this intrinsic must be a vector of integer values.
12773
12774'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
12775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12776
12777Syntax:
12778"""""""
12779
12780::
12781
12782 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
12783 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
12784
12785Overview:
12786"""""""""
12787
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012788The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012789``MAX`` reduction of a vector, returning the result as a scalar. The return type
12790matches the element-type of the vector input.
12791
12792If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12793assume that NaNs are not present in the input vector.
12794
12795Arguments:
12796""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012797The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012798
12799'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12800^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12801
12802Syntax:
12803"""""""
12804
12805::
12806
12807 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12808 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12809
12810Overview:
12811"""""""""
12812
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012813The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012814``MIN`` reduction of a vector, returning the result as a scalar. The return type
12815matches the element-type of the vector input.
12816
12817If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12818assume that NaNs are not present in the input vector.
12819
12820Arguments:
12821""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012822The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012823
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012824Half Precision Floating-Point Intrinsics
Sean Silvab084af42012-12-07 10:36:55 +000012825----------------------------------------
12826
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012827For most target platforms, half precision floating-point is a
Sean Silvab084af42012-12-07 10:36:55 +000012828storage-only format. This means that it is a dense encoding (in memory)
12829but does not support computation in the format.
12830
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012831This means that code must first load the half-precision floating-point
Sean Silvab084af42012-12-07 10:36:55 +000012832value as an i16, then convert it to float with
12833:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12834then be performed on the float value (including extending to double
12835etc). To store the value back to memory, it is first converted to float
12836if needed, then converted to i16 with
12837:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12838i16 value.
12839
12840.. _int_convert_to_fp16:
12841
12842'``llvm.convert.to.fp16``' Intrinsic
12843^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12844
12845Syntax:
12846"""""""
12847
12848::
12849
Tim Northoverfd7e4242014-07-17 10:51:23 +000012850 declare i16 @llvm.convert.to.fp16.f32(float %a)
12851 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012852
12853Overview:
12854"""""""""
12855
Tim Northoverfd7e4242014-07-17 10:51:23 +000012856The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012857conventional floating-point type to half precision floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000012858
12859Arguments:
12860""""""""""
12861
12862The intrinsic function contains single argument - the value to be
12863converted.
12864
12865Semantics:
12866""""""""""
12867
Tim Northoverfd7e4242014-07-17 10:51:23 +000012868The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012869conventional floating-point format to half precision floating-point format. The
Tim Northoverfd7e4242014-07-17 10:51:23 +000012870return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012871
12872Examples:
12873"""""""""
12874
12875.. code-block:: llvm
12876
Tim Northoverfd7e4242014-07-17 10:51:23 +000012877 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012878 store i16 %res, i16* @x, align 2
12879
12880.. _int_convert_from_fp16:
12881
12882'``llvm.convert.from.fp16``' Intrinsic
12883^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12884
12885Syntax:
12886"""""""
12887
12888::
12889
Tim Northoverfd7e4242014-07-17 10:51:23 +000012890 declare float @llvm.convert.from.fp16.f32(i16 %a)
12891 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012892
12893Overview:
12894"""""""""
12895
12896The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012897conversion from half precision floating-point format to single precision
12898floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000012899
12900Arguments:
12901""""""""""
12902
12903The intrinsic function contains single argument - the value to be
12904converted.
12905
12906Semantics:
12907""""""""""
12908
12909The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012910conversion from half single precision floating-point format to single
12911precision floating-point format. The input half-float value is
Sean Silvab084af42012-12-07 10:36:55 +000012912represented by an ``i16`` value.
12913
12914Examples:
12915"""""""""
12916
12917.. code-block:: llvm
12918
David Blaikiec7aabbb2015-03-04 22:06:14 +000012919 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012920 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012921
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012922.. _dbg_intrinsics:
12923
Sean Silvab084af42012-12-07 10:36:55 +000012924Debugger Intrinsics
12925-------------------
12926
12927The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12928prefix), are described in the `LLVM Source Level
Hans Wennborg65195622017-09-28 15:16:37 +000012929Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
Sean Silvab084af42012-12-07 10:36:55 +000012930document.
12931
12932Exception Handling Intrinsics
12933-----------------------------
12934
12935The LLVM exception handling intrinsics (which all start with
12936``llvm.eh.`` prefix), are described in the `LLVM Exception
Hans Wennborg65195622017-09-28 15:16:37 +000012937Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
Sean Silvab084af42012-12-07 10:36:55 +000012938
12939.. _int_trampoline:
12940
12941Trampoline Intrinsics
12942---------------------
12943
12944These intrinsics make it possible to excise one parameter, marked with
12945the :ref:`nest <nest>` attribute, from a function. The result is a
12946callable function pointer lacking the nest parameter - the caller does
12947not need to provide a value for it. Instead, the value to use is stored
12948in advance in a "trampoline", a block of memory usually allocated on the
12949stack, which also contains code to splice the nest value into the
12950argument list. This is used to implement the GCC nested function address
12951extension.
12952
12953For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
12954then the resulting function pointer has signature ``i32 (i32, i32)*``.
12955It can be created as follows:
12956
12957.. code-block:: llvm
12958
12959 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000012960 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000012961 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
12962 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
12963 %fp = bitcast i8* %p to i32 (i32, i32)*
12964
12965The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
12966``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
12967
12968.. _int_it:
12969
12970'``llvm.init.trampoline``' Intrinsic
12971^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12972
12973Syntax:
12974"""""""
12975
12976::
12977
12978 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
12979
12980Overview:
12981"""""""""
12982
12983This fills the memory pointed to by ``tramp`` with executable code,
12984turning it into a trampoline.
12985
12986Arguments:
12987""""""""""
12988
12989The ``llvm.init.trampoline`` intrinsic takes three arguments, all
12990pointers. The ``tramp`` argument must point to a sufficiently large and
12991sufficiently aligned block of memory; this memory is written to by the
12992intrinsic. Note that the size and the alignment are target-specific -
12993LLVM currently provides no portable way of determining them, so a
12994front-end that generates this intrinsic needs to have some
12995target-specific knowledge. The ``func`` argument must hold a function
12996bitcast to an ``i8*``.
12997
12998Semantics:
12999""""""""""
13000
13001The block of memory pointed to by ``tramp`` is filled with target
13002dependent code, turning it into a function. Then ``tramp`` needs to be
13003passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
13004be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
13005function's signature is the same as that of ``func`` with any arguments
13006marked with the ``nest`` attribute removed. At most one such ``nest``
13007argument is allowed, and it must be of pointer type. Calling the new
13008function is equivalent to calling ``func`` with the same argument list,
13009but with ``nval`` used for the missing ``nest`` argument. If, after
13010calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
13011modified, then the effect of any later call to the returned function
13012pointer is undefined.
13013
13014.. _int_at:
13015
13016'``llvm.adjust.trampoline``' Intrinsic
13017^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13018
13019Syntax:
13020"""""""
13021
13022::
13023
13024 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
13025
13026Overview:
13027"""""""""
13028
13029This performs any required machine-specific adjustment to the address of
13030a trampoline (passed as ``tramp``).
13031
13032Arguments:
13033""""""""""
13034
13035``tramp`` must point to a block of memory which already has trampoline
13036code filled in by a previous call to
13037:ref:`llvm.init.trampoline <int_it>`.
13038
13039Semantics:
13040""""""""""
13041
13042On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000013043different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000013044intrinsic returns the executable address corresponding to ``tramp``
13045after performing the required machine specific adjustments. The pointer
13046returned can then be :ref:`bitcast and executed <int_trampoline>`.
13047
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013048.. _int_mload_mstore:
13049
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013050Masked Vector Load and Store Intrinsics
13051---------------------------------------
13052
13053LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
13054
13055.. _int_mload:
13056
13057'``llvm.masked.load.*``' Intrinsics
13058^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13059
13060Syntax:
13061"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013062This is an overloaded intrinsic. The loaded data is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013063
13064::
13065
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013066 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
13067 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013068 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013069 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013070 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013071 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013072
13073Overview:
13074"""""""""
13075
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013076Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013077
13078
13079Arguments:
13080""""""""""
13081
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013082The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013083
13084
13085Semantics:
13086""""""""""
13087
13088The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
13089The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
13090
13091
13092::
13093
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013094 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000013095
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013096 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000013097 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000013098 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013099
13100.. _int_mstore:
13101
13102'``llvm.masked.store.*``' Intrinsics
13103^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13104
13105Syntax:
13106"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013107This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013108
13109::
13110
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013111 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
13112 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013113 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013114 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013115 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013116 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013117
13118Overview:
13119"""""""""
13120
13121Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
13122
13123Arguments:
13124""""""""""
13125
13126The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
13127
13128
13129Semantics:
13130""""""""""
13131
13132The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
13133The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
13134
13135::
13136
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013137 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000013138
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000013139 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000013140 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013141 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
13142 store <16 x float> %res, <16 x float>* %ptr, align 4
13143
13144
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013145Masked Vector Gather and Scatter Intrinsics
13146-------------------------------------------
13147
13148LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
13149
13150.. _int_mgather:
13151
13152'``llvm.masked.gather.*``' Intrinsics
13153^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13154
13155Syntax:
13156"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013157This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating-point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013158
13159::
13160
Elad Cohenef5798a2017-05-03 12:28:54 +000013161 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
13162 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
13163 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013164
13165Overview:
13166"""""""""
13167
13168Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
13169
13170
13171Arguments:
13172""""""""""
13173
13174The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
13175
13176
13177Semantics:
13178""""""""""
13179
13180The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
13181The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
13182
13183
13184::
13185
Elad Cohenef5798a2017-05-03 12:28:54 +000013186 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013187
13188 ;; The gather with all-true mask is equivalent to the following instruction sequence
13189 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
13190 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
13191 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
13192 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
13193
13194 %val0 = load double, double* %ptr0, align 8
13195 %val1 = load double, double* %ptr1, align 8
13196 %val2 = load double, double* %ptr2, align 8
13197 %val3 = load double, double* %ptr3, align 8
13198
13199 %vec0 = insertelement <4 x double>undef, %val0, 0
13200 %vec01 = insertelement <4 x double>%vec0, %val1, 1
13201 %vec012 = insertelement <4 x double>%vec01, %val2, 2
13202 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
13203
13204.. _int_mscatter:
13205
13206'``llvm.masked.scatter.*``' Intrinsics
13207^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13208
13209Syntax:
13210"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013211This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013212
13213::
13214
Elad Cohenef5798a2017-05-03 12:28:54 +000013215 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
13216 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
13217 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013218
13219Overview:
13220"""""""""
13221
13222Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
13223
13224Arguments:
13225""""""""""
13226
13227The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
13228
13229
13230Semantics:
13231""""""""""
13232
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000013233The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013234
13235::
13236
Sylvestre Ledru84666a12016-02-14 20:16:22 +000013237 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000013238 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013239
13240 ;; It is equivalent to a list of scalar stores
13241 %val0 = extractelement <8 x i32> %value, i32 0
13242 %val1 = extractelement <8 x i32> %value, i32 1
13243 ..
13244 %val7 = extractelement <8 x i32> %value, i32 7
13245 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
13246 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
13247 ..
13248 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
13249 ;; Note: the order of the following stores is important when they overlap:
13250 store i32 %val0, i32* %ptr0, align 4
13251 store i32 %val1, i32* %ptr1, align 4
13252 ..
13253 store i32 %val7, i32* %ptr7, align 4
13254
13255
Elena Demikhovsky0ef2ce32018-06-06 09:11:46 +000013256Masked Vector Expanding Load and Compressing Store Intrinsics
13257-------------------------------------------------------------
13258
13259LLVM provides intrinsics for expanding load and compressing store operations. Data selected from a vector according to a mask is stored in consecutive memory addresses (compressed store), and vice-versa (expanding load). These operations effective map to "if (cond.i) a[j++] = v.i" and "if (cond.i) v.i = a[j++]" patterns, respectively. Note that when the mask starts with '1' bits followed by '0' bits, these operations are identical to :ref:`llvm.masked.store <int_mstore>` and :ref:`llvm.masked.load <int_mload>`.
13260
13261.. _int_expandload:
13262
13263'``llvm.masked.expandload.*``' Intrinsics
13264^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13265
13266Syntax:
13267"""""""
13268This is an overloaded intrinsic. Several values of integer, floating point or pointer data type are loaded from consecutive memory addresses and stored into the elements of a vector according to the mask.
13269
13270::
13271
13272 declare <16 x float> @llvm.masked.expandload.v16f32 (float* <ptr>, <16 x i1> <mask>, <16 x float> <passthru>)
13273 declare <2 x i64> @llvm.masked.expandload.v2i64 (i64* <ptr>, <2 x i1> <mask>, <2 x i64> <passthru>)
13274
13275Overview:
13276"""""""""
13277
13278Reads a number of scalar values sequentially from memory location provided in '``ptr``' and spreads them in a vector. The '``mask``' holds a bit for each vector lane. The number of elements read from memory is equal to the number of '1' bits in the mask. The loaded elements are positioned in the destination vector according to the sequence of '1' and '0' bits in the mask. E.g., if the mask vector is '10010001', "explandload" reads 3 values from memory addresses ptr, ptr+1, ptr+2 and places them in lanes 0, 3 and 7 accordingly. The masked-off lanes are filled by elements from the corresponding lanes of the '``passthru``' operand.
13279
13280
13281Arguments:
13282""""""""""
13283
13284The first operand is the base pointer for the load. It has the same underlying type as the element of the returned vector. The second operand, mask, is a vector of boolean values with the same number of elements as the return type. The third is a pass-through value that is used to fill the masked-off lanes of the result. The return type and the type of the '``passthru``' operand have the same vector type.
13285
13286Semantics:
13287""""""""""
13288
13289The '``llvm.masked.expandload``' intrinsic is designed for reading multiple scalar values from adjacent memory addresses into possibly non-adjacent vector lanes. It is useful for targets that support vector expanding loads and allows vectorizing loop with cross-iteration dependency like in the following example:
13290
13291.. code-block:: c
13292
13293 // In this loop we load from B and spread the elements into array A.
13294 double *A, B; int *C;
13295 for (int i = 0; i < size; ++i) {
13296 if (C[i] != 0)
13297 A[i] = B[j++];
13298 }
13299
13300
13301.. code-block:: llvm
13302
13303 ; Load several elements from array B and expand them in a vector.
13304 ; The number of loaded elements is equal to the number of '1' elements in the Mask.
13305 %Tmp = call <8 x double> @llvm.masked.expandload.v8f64(double* %Bptr, <8 x i1> %Mask, <8 x double> undef)
13306 ; Store the result in A
13307 call void @llvm.masked.store.v8f64.p0v8f64(<8 x double> %Tmp, <8 x double>* %Aptr, i32 8, <8 x i1> %Mask)
13308
13309 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
13310 %MaskI = bitcast <8 x i1> %Mask to i8
13311 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
13312 %MaskI64 = zext i8 %MaskIPopcnt to i64
13313 %BNextInd = add i64 %BInd, %MaskI64
13314
13315
13316Other targets may support this intrinsic differently, for example, by lowering it into a sequence of conditional scalar load operations and shuffles.
13317If all mask elements are '1', the intrinsic behavior is equivalent to the regular unmasked vector load.
13318
13319.. _int_compressstore:
13320
13321'``llvm.masked.compressstore.*``' Intrinsics
13322^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13323
13324Syntax:
13325"""""""
13326This is an overloaded intrinsic. A number of scalar values of integer, floating point or pointer data type are collected from an input vector and stored into adjacent memory addresses. A mask defines which elements to collect from the vector.
13327
13328::
13329
13330 declare void @llvm.masked.compressstore.v8i32 (<8 x i32> <value>, i32* <ptr>, <8 x i1> <mask>)
13331 declare void @llvm.masked.compressstore.v16f32 (<16 x float> <value>, float* <ptr>, <16 x i1> <mask>)
13332
13333Overview:
13334"""""""""
13335
13336Selects elements from input vector '``value``' according to the '``mask``'. All selected elements are written into adjacent memory addresses starting at address '`ptr`', from lower to higher. The mask holds a bit for each vector lane, and is used to select elements to be stored. The number of elements to be stored is equal to the number of active bits in the mask.
13337
13338Arguments:
13339""""""""""
13340
13341The first operand is the input vector, from which elements are collected and written to memory. The second operand is the base pointer for the store, it has the same underlying type as the element of the input vector operand. The third operand is the mask, a vector of boolean values. The mask and the input vector must have the same number of vector elements.
13342
13343
13344Semantics:
13345""""""""""
13346
13347The '``llvm.masked.compressstore``' intrinsic is designed for compressing data in memory. It allows to collect elements from possibly non-adjacent lanes of a vector and store them contiguously in memory in one IR operation. It is useful for targets that support compressing store operations and allows vectorizing loops with cross-iteration dependences like in the following example:
13348
13349.. code-block:: c
13350
13351 // In this loop we load elements from A and store them consecutively in B
13352 double *A, B; int *C;
13353 for (int i = 0; i < size; ++i) {
13354 if (C[i] != 0)
13355 B[j++] = A[i]
13356 }
13357
13358
13359.. code-block:: llvm
13360
13361 ; Load elements from A.
13362 %Tmp = call <8 x double> @llvm.masked.load.v8f64.p0v8f64(<8 x double>* %Aptr, i32 8, <8 x i1> %Mask, <8 x double> undef)
13363 ; Store all selected elements consecutively in array B
13364 call <void> @llvm.masked.compressstore.v8f64(<8 x double> %Tmp, double* %Bptr, <8 x i1> %Mask)
13365
13366 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
13367 %MaskI = bitcast <8 x i1> %Mask to i8
13368 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
13369 %MaskI64 = zext i8 %MaskIPopcnt to i64
13370 %BNextInd = add i64 %BInd, %MaskI64
13371
13372
13373Other targets may support this intrinsic differently, for example, by lowering it into a sequence of branches that guard scalar store operations.
13374
13375
Sean Silvab084af42012-12-07 10:36:55 +000013376Memory Use Markers
13377------------------
13378
Sanjay Patel69bf48e2014-07-04 19:40:43 +000013379This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000013380memory objects and ranges where variables are immutable.
13381
Reid Klecknera534a382013-12-19 02:14:12 +000013382.. _int_lifestart:
13383
Sean Silvab084af42012-12-07 10:36:55 +000013384'``llvm.lifetime.start``' Intrinsic
13385^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13386
13387Syntax:
13388"""""""
13389
13390::
13391
13392 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
13393
13394Overview:
13395"""""""""
13396
13397The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
13398object's lifetime.
13399
13400Arguments:
13401""""""""""
13402
13403The first argument is a constant integer representing the size of the
13404object, or -1 if it is variable sized. The second argument is a pointer
13405to the object.
13406
13407Semantics:
13408""""""""""
13409
13410This intrinsic indicates that before this point in the code, the value
13411of the memory pointed to by ``ptr`` is dead. This means that it is known
13412to never be used and has an undefined value. A load from the pointer
13413that precedes this intrinsic can be replaced with ``'undef'``.
13414
Reid Klecknera534a382013-12-19 02:14:12 +000013415.. _int_lifeend:
13416
Sean Silvab084af42012-12-07 10:36:55 +000013417'``llvm.lifetime.end``' Intrinsic
13418^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13419
13420Syntax:
13421"""""""
13422
13423::
13424
13425 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
13426
13427Overview:
13428"""""""""
13429
13430The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
13431object's lifetime.
13432
13433Arguments:
13434""""""""""
13435
13436The first argument is a constant integer representing the size of the
13437object, or -1 if it is variable sized. The second argument is a pointer
13438to the object.
13439
13440Semantics:
13441""""""""""
13442
13443This intrinsic indicates that after this point in the code, the value of
13444the memory pointed to by ``ptr`` is dead. This means that it is known to
13445never be used and has an undefined value. Any stores into the memory
13446object following this intrinsic may be removed as dead.
13447
13448'``llvm.invariant.start``' Intrinsic
13449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13450
13451Syntax:
13452"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013453This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000013454
13455::
13456
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013457 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000013458
13459Overview:
13460"""""""""
13461
13462The '``llvm.invariant.start``' intrinsic specifies that the contents of
13463a memory object will not change.
13464
13465Arguments:
13466""""""""""
13467
13468The first argument is a constant integer representing the size of the
13469object, or -1 if it is variable sized. The second argument is a pointer
13470to the object.
13471
13472Semantics:
13473""""""""""
13474
13475This intrinsic indicates that until an ``llvm.invariant.end`` that uses
13476the return value, the referenced memory location is constant and
13477unchanging.
13478
13479'``llvm.invariant.end``' Intrinsic
13480^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13481
13482Syntax:
13483"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013484This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000013485
13486::
13487
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013488 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000013489
13490Overview:
13491"""""""""
13492
13493The '``llvm.invariant.end``' intrinsic specifies that the contents of a
13494memory object are mutable.
13495
13496Arguments:
13497""""""""""
13498
13499The first argument is the matching ``llvm.invariant.start`` intrinsic.
13500The second argument is a constant integer representing the size of the
13501object, or -1 if it is variable sized and the third argument is a
13502pointer to the object.
13503
13504Semantics:
13505""""""""""
13506
13507This intrinsic indicates that the memory is mutable again.
13508
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013509'``llvm.launder.invariant.group``' Intrinsic
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13511
13512Syntax:
13513"""""""
Yaxun Liu407ca362017-11-16 16:32:16 +000013514This is an overloaded intrinsic. The memory object can belong to any address
13515space. The returned pointer must belong to the same address space as the
13516argument.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013517
13518::
13519
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013520 declare i8* @llvm.launder.invariant.group.p0i8(i8* <ptr>)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013521
13522Overview:
13523"""""""""
13524
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013525The '``llvm.launder.invariant.group``' intrinsic can be used when an invariant
Piotr Padlewski5b3db452018-07-02 04:49:30 +000013526established by ``invariant.group`` metadata no longer holds, to obtain a new
13527pointer value that carries fresh invariant group information. It is an
13528experimental intrinsic, which means that its semantics might change in the
13529future.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013530
13531
13532Arguments:
13533""""""""""
13534
Piotr Padlewski5b3db452018-07-02 04:49:30 +000013535The ``llvm.launder.invariant.group`` takes only one argument, which is a pointer
13536to the memory.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013537
13538Semantics:
13539""""""""""
13540
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013541Returns another pointer that aliases its argument but which is considered different
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013542for the purposes of ``load``/``store`` ``invariant.group`` metadata.
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013543It does not read any accessible memory and the execution can be speculated.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013544
Piotr Padlewski5b3db452018-07-02 04:49:30 +000013545'``llvm.strip.invariant.group``' Intrinsic
13546^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13547
13548Syntax:
13549"""""""
13550This is an overloaded intrinsic. The memory object can belong to any address
13551space. The returned pointer must belong to the same address space as the
13552argument.
13553
13554::
13555
13556 declare i8* @llvm.strip.invariant.group.p0i8(i8* <ptr>)
13557
13558Overview:
13559"""""""""
13560
13561The '``llvm.strip.invariant.group``' intrinsic can be used when an invariant
13562established by ``invariant.group`` metadata no longer holds, to obtain a new pointer
13563value that does not carry the invariant information. It is an experimental
13564intrinsic, which means that its semantics might change in the future.
13565
13566
13567Arguments:
13568""""""""""
13569
13570The ``llvm.strip.invariant.group`` takes only one argument, which is a pointer
13571to the memory.
13572
13573Semantics:
13574""""""""""
13575
13576Returns another pointer that aliases its argument but which has no associated
13577``invariant.group`` metadata.
13578It does not read any memory and can be speculated.
13579
13580
13581
Sanjay Patel54b161e2018-03-20 16:38:22 +000013582.. _constrainedfp:
13583
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013584Constrained Floating-Point Intrinsics
Andrew Kaylora0a11642017-01-26 23:27:59 +000013585-------------------------------------
13586
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013587These intrinsics are used to provide special handling of floating-point
13588operations when specific rounding mode or floating-point exception behavior is
Andrew Kaylora0a11642017-01-26 23:27:59 +000013589required. By default, LLVM optimization passes assume that the rounding mode is
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013590round-to-nearest and that floating-point exceptions will not be monitored.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013591Constrained FP intrinsics are used to support non-default rounding modes and
13592accurately preserve exception behavior without compromising LLVM's ability to
13593optimize FP code when the default behavior is used.
13594
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013595Each of these intrinsics corresponds to a normal floating-point operation. The
Andrew Kaylora0a11642017-01-26 23:27:59 +000013596first two arguments and the return value are the same as the corresponding FP
13597operation.
13598
13599The third argument is a metadata argument specifying the rounding mode to be
13600assumed. This argument must be one of the following strings:
13601
13602::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000013603
Andrew Kaylora0a11642017-01-26 23:27:59 +000013604 "round.dynamic"
13605 "round.tonearest"
13606 "round.downward"
13607 "round.upward"
13608 "round.towardzero"
13609
13610If this argument is "round.dynamic" optimization passes must assume that the
13611rounding mode is unknown and may change at runtime. No transformations that
13612depend on rounding mode may be performed in this case.
13613
13614The other possible values for the rounding mode argument correspond to the
13615similarly named IEEE rounding modes. If the argument is any of these values
13616optimization passes may perform transformations as long as they are consistent
13617with the specified rounding mode.
13618
13619For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
13620"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
13621'x-0' should evaluate to '-0' when rounding downward. However, this
13622transformation is legal for all other rounding modes.
13623
13624For values other than "round.dynamic" optimization passes may assume that the
13625actual runtime rounding mode (as defined in a target-specific manner) matches
13626the specified rounding mode, but this is not guaranteed. Using a specific
13627non-dynamic rounding mode which does not match the actual rounding mode at
13628runtime results in undefined behavior.
13629
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013630The fourth argument to the constrained floating-point intrinsics specifies the
Andrew Kaylora0a11642017-01-26 23:27:59 +000013631required exception behavior. This argument must be one of the following
13632strings:
13633
13634::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000013635
Andrew Kaylora0a11642017-01-26 23:27:59 +000013636 "fpexcept.ignore"
13637 "fpexcept.maytrap"
13638 "fpexcept.strict"
13639
13640If this argument is "fpexcept.ignore" optimization passes may assume that the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013641exception status flags will not be read and that floating-point exceptions will
Andrew Kaylora0a11642017-01-26 23:27:59 +000013642be masked. This allows transformations to be performed that may change the
13643exception semantics of the original code. For example, FP operations may be
13644speculatively executed in this case whereas they must not be for either of the
13645other possible values of this argument.
13646
13647If the exception behavior argument is "fpexcept.maytrap" optimization passes
13648must avoid transformations that may raise exceptions that would not have been
13649raised by the original code (such as speculatively executing FP operations), but
13650passes are not required to preserve all exceptions that are implied by the
13651original code. For example, exceptions may be potentially hidden by constant
13652folding.
13653
13654If the exception behavior argument is "fpexcept.strict" all transformations must
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013655strictly preserve the floating-point exception semantics of the original code.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013656Any FP exception that would have been raised by the original code must be raised
13657by the transformed code, and the transformed code must not raise any FP
13658exceptions that would not have been raised by the original code. This is the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013659exception behavior argument that will be used if the code being compiled reads
Andrew Kaylora0a11642017-01-26 23:27:59 +000013660the FP exception status flags, but this mode can also be used with code that
13661unmasks FP exceptions.
13662
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013663The number and order of floating-point exceptions is NOT guaranteed. For
Andrew Kaylora0a11642017-01-26 23:27:59 +000013664example, a series of FP operations that each may raise exceptions may be
13665vectorized into a single instruction that raises each unique exception a single
13666time.
13667
13668
13669'``llvm.experimental.constrained.fadd``' Intrinsic
13670^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13671
13672Syntax:
13673"""""""
13674
13675::
13676
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013677 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013678 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
13679 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013680 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013681
13682Overview:
13683"""""""""
13684
13685The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
13686two operands.
13687
13688
13689Arguments:
13690""""""""""
13691
13692The first two arguments to the '``llvm.experimental.constrained.fadd``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013693intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13694of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013695
13696The third and fourth arguments specify the rounding mode and exception
13697behavior as described above.
13698
13699Semantics:
13700""""""""""
13701
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013702The value produced is the floating-point sum of the two value operands and has
Andrew Kaylora0a11642017-01-26 23:27:59 +000013703the same type as the operands.
13704
13705
13706'``llvm.experimental.constrained.fsub``' Intrinsic
13707^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13708
13709Syntax:
13710"""""""
13711
13712::
13713
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013714 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013715 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
13716 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013717 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013718
13719Overview:
13720"""""""""
13721
13722The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
13723of its two operands.
13724
13725
13726Arguments:
13727""""""""""
13728
13729The first two arguments to the '``llvm.experimental.constrained.fsub``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013730intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13731of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013732
13733The third and fourth arguments specify the rounding mode and exception
13734behavior as described above.
13735
13736Semantics:
13737""""""""""
13738
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013739The value produced is the floating-point difference of the two value operands
Andrew Kaylora0a11642017-01-26 23:27:59 +000013740and has the same type as the operands.
13741
13742
13743'``llvm.experimental.constrained.fmul``' Intrinsic
13744^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13745
13746Syntax:
13747"""""""
13748
13749::
13750
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013751 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013752 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
13753 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013754 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013755
13756Overview:
13757"""""""""
13758
13759The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
13760its two operands.
13761
13762
13763Arguments:
13764""""""""""
13765
13766The first two arguments to the '``llvm.experimental.constrained.fmul``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013767intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13768of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013769
13770The third and fourth arguments specify the rounding mode and exception
13771behavior as described above.
13772
13773Semantics:
13774""""""""""
13775
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013776The value produced is the floating-point product of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000013777has the same type as the operands.
13778
13779
13780'``llvm.experimental.constrained.fdiv``' Intrinsic
13781^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13782
13783Syntax:
13784"""""""
13785
13786::
13787
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013788 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013789 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
13790 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013791 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013792
13793Overview:
13794"""""""""
13795
13796The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
13797its two operands.
13798
13799
13800Arguments:
13801""""""""""
13802
13803The first two arguments to the '``llvm.experimental.constrained.fdiv``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013804intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13805of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013806
13807The third and fourth arguments specify the rounding mode and exception
13808behavior as described above.
13809
13810Semantics:
13811""""""""""
13812
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013813The value produced is the floating-point quotient of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000013814has the same type as the operands.
13815
13816
13817'``llvm.experimental.constrained.frem``' Intrinsic
13818^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13819
13820Syntax:
13821"""""""
13822
13823::
13824
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013825 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013826 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
13827 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013828 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013829
13830Overview:
13831"""""""""
13832
13833The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
13834from the division of its two operands.
13835
13836
13837Arguments:
13838""""""""""
13839
13840The first two arguments to the '``llvm.experimental.constrained.frem``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013841intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13842of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013843
13844The third and fourth arguments specify the rounding mode and exception
13845behavior as described above. The rounding mode argument has no effect, since
13846the result of frem is never rounded, but the argument is included for
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013847consistency with the other constrained floating-point intrinsics.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013848
13849Semantics:
13850""""""""""
13851
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013852The value produced is the floating-point remainder from the division of the two
Andrew Kaylora0a11642017-01-26 23:27:59 +000013853value operands and has the same type as the operands. The remainder has the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013854same sign as the dividend.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013855
Wei Dinga131d3f2017-08-24 04:18:24 +000013856'``llvm.experimental.constrained.fma``' Intrinsic
13857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13858
13859Syntax:
13860"""""""
13861
13862::
13863
13864 declare <type>
13865 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
13866 metadata <rounding mode>,
13867 metadata <exception behavior>)
13868
13869Overview:
13870"""""""""
13871
13872The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
13873fused-multiply-add operation on its operands.
13874
13875Arguments:
13876""""""""""
13877
13878The first three arguments to the '``llvm.experimental.constrained.fma``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013879intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector
13880<t_vector>` of floating-point values. All arguments must have identical types.
Wei Dinga131d3f2017-08-24 04:18:24 +000013881
13882The fourth and fifth arguments specify the rounding mode and exception behavior
13883as described above.
13884
13885Semantics:
13886""""""""""
13887
13888The result produced is the product of the first two operands added to the third
13889operand computed with infinite precision, and then rounded to the target
13890precision.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013891
Andrew Kaylorf4660012017-05-25 21:31:00 +000013892Constrained libm-equivalent Intrinsics
13893--------------------------------------
13894
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013895In addition to the basic floating-point operations for which constrained
Andrew Kaylorf4660012017-05-25 21:31:00 +000013896intrinsics are described above, there are constrained versions of various
13897operations which provide equivalent behavior to a corresponding libm function.
13898These intrinsics allow the precise behavior of these operations with respect to
13899rounding mode and exception behavior to be controlled.
13900
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013901As with the basic constrained floating-point intrinsics, the rounding mode
Andrew Kaylorf4660012017-05-25 21:31:00 +000013902and exception behavior arguments only control the behavior of the optimizer.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013903They do not change the runtime floating-point environment.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013904
13905
13906'``llvm.experimental.constrained.sqrt``' Intrinsic
13907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13908
13909Syntax:
13910"""""""
13911
13912::
13913
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013914 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013915 @llvm.experimental.constrained.sqrt(<type> <op1>,
13916 metadata <rounding mode>,
13917 metadata <exception behavior>)
13918
13919Overview:
13920"""""""""
13921
13922The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
13923of the specified value, returning the same value as the libm '``sqrt``'
13924functions would, but without setting ``errno``.
13925
13926Arguments:
13927""""""""""
13928
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013929The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013930type.
13931
13932The second and third arguments specify the rounding mode and exception
13933behavior as described above.
13934
13935Semantics:
13936""""""""""
13937
13938This function returns the nonnegative square root of the specified value.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013939If the value is less than negative zero, a floating-point exception occurs
Hiroshi Inoue760c0c92018-01-16 13:19:48 +000013940and the return value is architecture specific.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013941
13942
13943'``llvm.experimental.constrained.pow``' Intrinsic
13944^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13945
13946Syntax:
13947"""""""
13948
13949::
13950
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013951 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013952 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
13953 metadata <rounding mode>,
13954 metadata <exception behavior>)
13955
13956Overview:
13957"""""""""
13958
13959The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
13960raised to the (positive or negative) power specified by the second operand.
13961
13962Arguments:
13963""""""""""
13964
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013965The first two arguments and the return value are floating-point numbers of the
Andrew Kaylorf4660012017-05-25 21:31:00 +000013966same type. The second argument specifies the power to which the first argument
13967should be raised.
13968
13969The third and fourth arguments specify the rounding mode and exception
13970behavior as described above.
13971
13972Semantics:
13973""""""""""
13974
13975This function returns the first value raised to the second power,
13976returning the same values as the libm ``pow`` functions would, and
13977handles error conditions in the same way.
13978
13979
13980'``llvm.experimental.constrained.powi``' Intrinsic
13981^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13982
13983Syntax:
13984"""""""
13985
13986::
13987
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013988 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013989 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
13990 metadata <rounding mode>,
13991 metadata <exception behavior>)
13992
13993Overview:
13994"""""""""
13995
13996The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
13997raised to the (positive or negative) power specified by the second operand. The
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013998order of evaluation of multiplications is not defined. When a vector of
13999floating-point type is used, the second argument remains a scalar integer value.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014000
14001
14002Arguments:
14003""""""""""
14004
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014005The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014006type. The second argument is a 32-bit signed integer specifying the power to
14007which the first argument should be raised.
14008
14009The third and fourth arguments specify the rounding mode and exception
14010behavior as described above.
14011
14012Semantics:
14013""""""""""
14014
14015This function returns the first value raised to the second power with an
14016unspecified sequence of rounding operations.
14017
14018
14019'``llvm.experimental.constrained.sin``' Intrinsic
14020^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14021
14022Syntax:
14023"""""""
14024
14025::
14026
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014027 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014028 @llvm.experimental.constrained.sin(<type> <op1>,
14029 metadata <rounding mode>,
14030 metadata <exception behavior>)
14031
14032Overview:
14033"""""""""
14034
14035The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
14036first operand.
14037
14038Arguments:
14039""""""""""
14040
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014041The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014042type.
14043
14044The second and third arguments specify the rounding mode and exception
14045behavior as described above.
14046
14047Semantics:
14048""""""""""
14049
14050This function returns the sine of the specified operand, returning the
14051same values as the libm ``sin`` functions would, and handles error
14052conditions in the same way.
14053
14054
14055'``llvm.experimental.constrained.cos``' Intrinsic
14056^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14057
14058Syntax:
14059"""""""
14060
14061::
14062
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014063 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014064 @llvm.experimental.constrained.cos(<type> <op1>,
14065 metadata <rounding mode>,
14066 metadata <exception behavior>)
14067
14068Overview:
14069"""""""""
14070
14071The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
14072first operand.
14073
14074Arguments:
14075""""""""""
14076
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014077The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014078type.
14079
14080The second and third arguments specify the rounding mode and exception
14081behavior as described above.
14082
14083Semantics:
14084""""""""""
14085
14086This function returns the cosine of the specified operand, returning the
14087same values as the libm ``cos`` functions would, and handles error
14088conditions in the same way.
14089
14090
14091'``llvm.experimental.constrained.exp``' Intrinsic
14092^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14093
14094Syntax:
14095"""""""
14096
14097::
14098
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014099 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014100 @llvm.experimental.constrained.exp(<type> <op1>,
14101 metadata <rounding mode>,
14102 metadata <exception behavior>)
14103
14104Overview:
14105"""""""""
14106
14107The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
14108exponential of the specified value.
14109
14110Arguments:
14111""""""""""
14112
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014113The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014114type.
14115
14116The second and third arguments specify the rounding mode and exception
14117behavior as described above.
14118
14119Semantics:
14120""""""""""
14121
14122This function returns the same values as the libm ``exp`` functions
14123would, and handles error conditions in the same way.
14124
14125
14126'``llvm.experimental.constrained.exp2``' Intrinsic
14127^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14128
14129Syntax:
14130"""""""
14131
14132::
14133
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014134 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014135 @llvm.experimental.constrained.exp2(<type> <op1>,
14136 metadata <rounding mode>,
14137 metadata <exception behavior>)
14138
14139Overview:
14140"""""""""
14141
14142The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
14143exponential of the specified value.
14144
14145
14146Arguments:
14147""""""""""
14148
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014149The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014150type.
14151
14152The second and third arguments specify the rounding mode and exception
14153behavior as described above.
14154
14155Semantics:
14156""""""""""
14157
14158This function returns the same values as the libm ``exp2`` functions
14159would, and handles error conditions in the same way.
14160
14161
14162'``llvm.experimental.constrained.log``' Intrinsic
14163^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14164
14165Syntax:
14166"""""""
14167
14168::
14169
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014170 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014171 @llvm.experimental.constrained.log(<type> <op1>,
14172 metadata <rounding mode>,
14173 metadata <exception behavior>)
14174
14175Overview:
14176"""""""""
14177
14178The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
14179logarithm of the specified value.
14180
14181Arguments:
14182""""""""""
14183
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014184The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014185type.
14186
14187The second and third arguments specify the rounding mode and exception
14188behavior as described above.
14189
14190
14191Semantics:
14192""""""""""
14193
14194This function returns the same values as the libm ``log`` functions
14195would, and handles error conditions in the same way.
14196
14197
14198'``llvm.experimental.constrained.log10``' Intrinsic
14199^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14200
14201Syntax:
14202"""""""
14203
14204::
14205
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014206 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014207 @llvm.experimental.constrained.log10(<type> <op1>,
14208 metadata <rounding mode>,
14209 metadata <exception behavior>)
14210
14211Overview:
14212"""""""""
14213
14214The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
14215logarithm of the specified value.
14216
14217Arguments:
14218""""""""""
14219
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014220The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014221type.
14222
14223The second and third arguments specify the rounding mode and exception
14224behavior as described above.
14225
14226Semantics:
14227""""""""""
14228
14229This function returns the same values as the libm ``log10`` functions
14230would, and handles error conditions in the same way.
14231
14232
14233'``llvm.experimental.constrained.log2``' Intrinsic
14234^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14235
14236Syntax:
14237"""""""
14238
14239::
14240
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014241 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014242 @llvm.experimental.constrained.log2(<type> <op1>,
14243 metadata <rounding mode>,
14244 metadata <exception behavior>)
14245
14246Overview:
14247"""""""""
14248
14249The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
14250logarithm of the specified value.
14251
14252Arguments:
14253""""""""""
14254
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014255The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014256type.
14257
14258The second and third arguments specify the rounding mode and exception
14259behavior as described above.
14260
14261Semantics:
14262""""""""""
14263
14264This function returns the same values as the libm ``log2`` functions
14265would, and handles error conditions in the same way.
14266
14267
14268'``llvm.experimental.constrained.rint``' Intrinsic
14269^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14270
14271Syntax:
14272"""""""
14273
14274::
14275
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014276 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014277 @llvm.experimental.constrained.rint(<type> <op1>,
14278 metadata <rounding mode>,
14279 metadata <exception behavior>)
14280
14281Overview:
14282"""""""""
14283
14284The '``llvm.experimental.constrained.rint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014285operand rounded to the nearest integer. It may raise an inexact floating-point
Andrew Kaylorf4660012017-05-25 21:31:00 +000014286exception if the operand is not an integer.
14287
14288Arguments:
14289""""""""""
14290
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014291The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014292type.
14293
14294The second and third arguments specify the rounding mode and exception
14295behavior as described above.
14296
14297Semantics:
14298""""""""""
14299
14300This function returns the same values as the libm ``rint`` functions
14301would, and handles error conditions in the same way. The rounding mode is
14302described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014303mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000014304mode argument is only intended as information to the compiler.
14305
14306
14307'``llvm.experimental.constrained.nearbyint``' Intrinsic
14308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14309
14310Syntax:
14311"""""""
14312
14313::
14314
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014315 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014316 @llvm.experimental.constrained.nearbyint(<type> <op1>,
14317 metadata <rounding mode>,
14318 metadata <exception behavior>)
14319
14320Overview:
14321"""""""""
14322
14323The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014324operand rounded to the nearest integer. It will not raise an inexact
14325floating-point exception if the operand is not an integer.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014326
14327
14328Arguments:
14329""""""""""
14330
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014331The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014332type.
14333
14334The second and third arguments specify the rounding mode and exception
14335behavior as described above.
14336
14337Semantics:
14338""""""""""
14339
14340This function returns the same values as the libm ``nearbyint`` functions
14341would, and handles error conditions in the same way. The rounding mode is
14342described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014343mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000014344mode argument is only intended as information to the compiler.
14345
14346
Sean Silvab084af42012-12-07 10:36:55 +000014347General Intrinsics
14348------------------
14349
14350This class of intrinsics is designed to be generic and has no specific
14351purpose.
14352
14353'``llvm.var.annotation``' Intrinsic
14354^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14355
14356Syntax:
14357"""""""
14358
14359::
14360
14361 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
14362
14363Overview:
14364"""""""""
14365
14366The '``llvm.var.annotation``' intrinsic.
14367
14368Arguments:
14369""""""""""
14370
14371The first argument is a pointer to a value, the second is a pointer to a
14372global string, the third is a pointer to a global string which is the
14373source file name, and the last argument is the line number.
14374
14375Semantics:
14376""""""""""
14377
14378This intrinsic allows annotation of local variables with arbitrary
14379strings. This can be useful for special purpose optimizations that want
14380to look for these annotations. These have no other defined use; they are
14381ignored by code generation and optimization.
14382
Michael Gottesman88d18832013-03-26 00:34:27 +000014383'``llvm.ptr.annotation.*``' Intrinsic
14384^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14385
14386Syntax:
14387"""""""
14388
14389This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
14390pointer to an integer of any width. *NOTE* you must specify an address space for
14391the pointer. The identifier for the default address space is the integer
14392'``0``'.
14393
14394::
14395
14396 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
14397 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
14398 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
14399 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
14400 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
14401
14402Overview:
14403"""""""""
14404
14405The '``llvm.ptr.annotation``' intrinsic.
14406
14407Arguments:
14408""""""""""
14409
14410The first argument is a pointer to an integer value of arbitrary bitwidth
14411(result of some expression), the second is a pointer to a global string, the
14412third is a pointer to a global string which is the source file name, and the
14413last argument is the line number. It returns the value of the first argument.
14414
14415Semantics:
14416""""""""""
14417
14418This intrinsic allows annotation of a pointer to an integer with arbitrary
14419strings. This can be useful for special purpose optimizations that want to look
14420for these annotations. These have no other defined use; they are ignored by code
14421generation and optimization.
14422
Sean Silvab084af42012-12-07 10:36:55 +000014423'``llvm.annotation.*``' Intrinsic
14424^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14425
14426Syntax:
14427"""""""
14428
14429This is an overloaded intrinsic. You can use '``llvm.annotation``' on
14430any integer bit width.
14431
14432::
14433
14434 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
14435 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
14436 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
14437 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
14438 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
14439
14440Overview:
14441"""""""""
14442
14443The '``llvm.annotation``' intrinsic.
14444
14445Arguments:
14446""""""""""
14447
14448The first argument is an integer value (result of some expression), the
14449second is a pointer to a global string, the third is a pointer to a
14450global string which is the source file name, and the last argument is
14451the line number. It returns the value of the first argument.
14452
14453Semantics:
14454""""""""""
14455
14456This intrinsic allows annotations to be put on arbitrary expressions
14457with arbitrary strings. This can be useful for special purpose
14458optimizations that want to look for these annotations. These have no
14459other defined use; they are ignored by code generation and optimization.
14460
Reid Klecknere33c94f2017-09-05 20:14:58 +000014461'``llvm.codeview.annotation``' Intrinsic
Reid Klecknerd4523682017-09-05 20:26:25 +000014462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknere33c94f2017-09-05 20:14:58 +000014463
14464Syntax:
14465"""""""
14466
14467This annotation emits a label at its program point and an associated
14468``S_ANNOTATION`` codeview record with some additional string metadata. This is
14469used to implement MSVC's ``__annotation`` intrinsic. It is marked
14470``noduplicate``, so calls to this intrinsic prevent inlining and should be
14471considered expensive.
14472
14473::
14474
14475 declare void @llvm.codeview.annotation(metadata)
14476
14477Arguments:
14478""""""""""
14479
14480The argument should be an MDTuple containing any number of MDStrings.
14481
Sean Silvab084af42012-12-07 10:36:55 +000014482'``llvm.trap``' Intrinsic
14483^^^^^^^^^^^^^^^^^^^^^^^^^
14484
14485Syntax:
14486"""""""
14487
14488::
14489
14490 declare void @llvm.trap() noreturn nounwind
14491
14492Overview:
14493"""""""""
14494
14495The '``llvm.trap``' intrinsic.
14496
14497Arguments:
14498""""""""""
14499
14500None.
14501
14502Semantics:
14503""""""""""
14504
14505This intrinsic is lowered to the target dependent trap instruction. If
14506the target does not have a trap instruction, this intrinsic will be
14507lowered to a call of the ``abort()`` function.
14508
14509'``llvm.debugtrap``' Intrinsic
14510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14511
14512Syntax:
14513"""""""
14514
14515::
14516
14517 declare void @llvm.debugtrap() nounwind
14518
14519Overview:
14520"""""""""
14521
14522The '``llvm.debugtrap``' intrinsic.
14523
14524Arguments:
14525""""""""""
14526
14527None.
14528
14529Semantics:
14530""""""""""
14531
14532This intrinsic is lowered to code which is intended to cause an
14533execution trap with the intention of requesting the attention of a
14534debugger.
14535
14536'``llvm.stackprotector``' Intrinsic
14537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14538
14539Syntax:
14540"""""""
14541
14542::
14543
14544 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
14545
14546Overview:
14547"""""""""
14548
14549The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
14550onto the stack at ``slot``. The stack slot is adjusted to ensure that it
14551is placed on the stack before local variables.
14552
14553Arguments:
14554""""""""""
14555
14556The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
14557The first argument is the value loaded from the stack guard
14558``@__stack_chk_guard``. The second variable is an ``alloca`` that has
14559enough space to hold the value of the guard.
14560
14561Semantics:
14562""""""""""
14563
Michael Gottesmandafc7d92013-08-12 18:35:32 +000014564This intrinsic causes the prologue/epilogue inserter to force the position of
14565the ``AllocaInst`` stack slot to be before local variables on the stack. This is
14566to ensure that if a local variable on the stack is overwritten, it will destroy
14567the value of the guard. When the function exits, the guard on the stack is
14568checked against the original guard by ``llvm.stackprotectorcheck``. If they are
14569different, then ``llvm.stackprotectorcheck`` causes the program to abort by
14570calling the ``__stack_chk_fail()`` function.
14571
Tim Shene885d5e2016-04-19 19:40:37 +000014572'``llvm.stackguard``' Intrinsic
14573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14574
14575Syntax:
14576"""""""
14577
14578::
14579
14580 declare i8* @llvm.stackguard()
14581
14582Overview:
14583"""""""""
14584
14585The ``llvm.stackguard`` intrinsic returns the system stack guard value.
14586
14587It should not be generated by frontends, since it is only for internal usage.
14588The reason why we create this intrinsic is that we still support IR form Stack
14589Protector in FastISel.
14590
14591Arguments:
14592""""""""""
14593
14594None.
14595
14596Semantics:
14597""""""""""
14598
14599On some platforms, the value returned by this intrinsic remains unchanged
14600between loads in the same thread. On other platforms, it returns the same
14601global variable value, if any, e.g. ``@__stack_chk_guard``.
14602
14603Currently some platforms have IR-level customized stack guard loading (e.g.
14604X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
14605in the future.
14606
Sean Silvab084af42012-12-07 10:36:55 +000014607'``llvm.objectsize``' Intrinsic
14608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14609
14610Syntax:
14611"""""""
14612
14613::
14614
George Burgess IV56c7e882017-03-21 20:08:59 +000014615 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
14616 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000014617
14618Overview:
14619"""""""""
14620
14621The ``llvm.objectsize`` intrinsic is designed to provide information to
14622the optimizers to determine at compile time whether a) an operation
14623(like memcpy) will overflow a buffer that corresponds to an object, or
14624b) that a runtime check for overflow isn't necessary. An object in this
14625context means an allocation of a specific class, structure, array, or
14626other object.
14627
14628Arguments:
14629""""""""""
14630
George Burgess IV56c7e882017-03-21 20:08:59 +000014631The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
14632a pointer to or into the ``object``. The second argument determines whether
14633``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
14634is unknown. The third argument controls how ``llvm.objectsize`` acts when
George Burgess IV3fbfa9c42018-07-09 22:21:16 +000014635``null`` in address space 0 is used as its pointer argument. If it's ``false``,
14636``llvm.objectsize`` reports 0 bytes available when given ``null``. Otherwise, if
14637the ``null`` is in a non-zero address space or if ``true`` is given for the
14638third argument of ``llvm.objectsize``, we assume its size is unknown.
George Burgess IV56c7e882017-03-21 20:08:59 +000014639
14640The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000014641
14642Semantics:
14643""""""""""
14644
14645The ``llvm.objectsize`` intrinsic is lowered to a constant representing
14646the size of the object concerned. If the size cannot be determined at
14647compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
14648on the ``min`` argument).
14649
14650'``llvm.expect``' Intrinsic
14651^^^^^^^^^^^^^^^^^^^^^^^^^^^
14652
14653Syntax:
14654"""""""
14655
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000014656This is an overloaded intrinsic. You can use ``llvm.expect`` on any
14657integer bit width.
14658
Sean Silvab084af42012-12-07 10:36:55 +000014659::
14660
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000014661 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000014662 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
14663 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
14664
14665Overview:
14666"""""""""
14667
14668The ``llvm.expect`` intrinsic provides information about expected (the
14669most probable) value of ``val``, which can be used by optimizers.
14670
14671Arguments:
14672""""""""""
14673
14674The ``llvm.expect`` intrinsic takes two arguments. The first argument is
14675a value. The second argument is an expected value, this needs to be a
14676constant value, variables are not allowed.
14677
14678Semantics:
14679""""""""""
14680
14681This intrinsic is lowered to the ``val``.
14682
Philip Reamese0e90832015-04-26 22:23:12 +000014683.. _int_assume:
14684
Hal Finkel93046912014-07-25 21:13:35 +000014685'``llvm.assume``' Intrinsic
14686^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14687
14688Syntax:
14689"""""""
14690
14691::
14692
14693 declare void @llvm.assume(i1 %cond)
14694
14695Overview:
14696"""""""""
14697
14698The ``llvm.assume`` allows the optimizer to assume that the provided
14699condition is true. This information can then be used in simplifying other parts
14700of the code.
14701
14702Arguments:
14703""""""""""
14704
14705The condition which the optimizer may assume is always true.
14706
14707Semantics:
14708""""""""""
14709
14710The intrinsic allows the optimizer to assume that the provided condition is
14711always true whenever the control flow reaches the intrinsic call. No code is
14712generated for this intrinsic, and instructions that contribute only to the
14713provided condition are not used for code generation. If the condition is
14714violated during execution, the behavior is undefined.
14715
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014716Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000014717used by the ``llvm.assume`` intrinsic in order to preserve the instructions
14718only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014719if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000014720sufficient overall improvement in code quality. For this reason,
14721``llvm.assume`` should not be used to document basic mathematical invariants
14722that the optimizer can otherwise deduce or facts that are of little use to the
14723optimizer.
14724
Daniel Berlin2c438a32017-02-07 19:29:25 +000014725.. _int_ssa_copy:
14726
14727'``llvm.ssa_copy``' Intrinsic
14728^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14729
14730Syntax:
14731"""""""
14732
14733::
14734
14735 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
14736
14737Arguments:
14738""""""""""
14739
14740The first argument is an operand which is used as the returned value.
14741
14742Overview:
14743""""""""""
14744
14745The ``llvm.ssa_copy`` intrinsic can be used to attach information to
14746operations by copying them and giving them new names. For example,
14747the PredicateInfo utility uses it to build Extended SSA form, and
14748attach various forms of information to operands that dominate specific
14749uses. It is not meant for general use, only for building temporary
14750renaming forms that require value splits at certain points.
14751
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014752.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000014753
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014754'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000014755^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14756
14757Syntax:
14758"""""""
14759
14760::
14761
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014762 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000014763
14764
14765Arguments:
14766""""""""""
14767
14768The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014769metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014770
14771Overview:
14772"""""""""
14773
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014774The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
14775with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014776
Peter Collingbourne0312f612016-06-25 00:23:04 +000014777'``llvm.type.checked.load``' Intrinsic
14778^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14779
14780Syntax:
14781"""""""
14782
14783::
14784
14785 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
14786
14787
14788Arguments:
14789""""""""""
14790
14791The first argument is a pointer from which to load a function pointer. The
14792second argument is the byte offset from which to load the function pointer. The
14793third argument is a metadata object representing a :doc:`type identifier
14794<TypeMetadata>`.
14795
14796Overview:
14797"""""""""
14798
14799The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
14800virtual table pointer using type metadata. This intrinsic is used to implement
14801control flow integrity in conjunction with virtual call optimization. The
14802virtual call optimization pass will optimize away ``llvm.type.checked.load``
14803intrinsics associated with devirtualized calls, thereby removing the type
14804check in cases where it is not needed to enforce the control flow integrity
14805constraint.
14806
14807If the given pointer is associated with a type metadata identifier, this
14808function returns true as the second element of its return value. (Note that
14809the function may also return true if the given pointer is not associated
14810with a type metadata identifier.) If the function's return value's second
14811element is true, the following rules apply to the first element:
14812
14813- If the given pointer is associated with the given type metadata identifier,
14814 it is the function pointer loaded from the given byte offset from the given
14815 pointer.
14816
14817- If the given pointer is not associated with the given type metadata
14818 identifier, it is one of the following (the choice of which is unspecified):
14819
14820 1. The function pointer that would have been loaded from an arbitrarily chosen
14821 (through an unspecified mechanism) pointer associated with the type
14822 metadata.
14823
14824 2. If the function has a non-void return type, a pointer to a function that
14825 returns an unspecified value without causing side effects.
14826
14827If the function's return value's second element is false, the value of the
14828first element is undefined.
14829
14830
Sean Silvab084af42012-12-07 10:36:55 +000014831'``llvm.donothing``' Intrinsic
14832^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14833
14834Syntax:
14835"""""""
14836
14837::
14838
14839 declare void @llvm.donothing() nounwind readnone
14840
14841Overview:
14842"""""""""
14843
Juergen Ributzkac9161192014-10-23 22:36:13 +000014844The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000014845three intrinsics (besides ``llvm.experimental.patchpoint`` and
14846``llvm.experimental.gc.statepoint``) that can be called with an invoke
14847instruction.
Sean Silvab084af42012-12-07 10:36:55 +000014848
14849Arguments:
14850""""""""""
14851
14852None.
14853
14854Semantics:
14855""""""""""
14856
14857This intrinsic does nothing, and it's removed by optimizers and ignored
14858by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000014859
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014860'``llvm.experimental.deoptimize``' Intrinsic
14861^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14862
14863Syntax:
14864"""""""
14865
14866::
14867
14868 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
14869
14870Overview:
14871"""""""""
14872
14873This intrinsic, together with :ref:`deoptimization operand bundles
14874<deopt_opbundles>`, allow frontends to express transfer of control and
14875frame-local state from the currently executing (typically more specialized,
14876hence faster) version of a function into another (typically more generic, hence
14877slower) version.
14878
14879In languages with a fully integrated managed runtime like Java and JavaScript
14880this intrinsic can be used to implement "uncommon trap" or "side exit" like
14881functionality. In unmanaged languages like C and C++, this intrinsic can be
14882used to represent the slow paths of specialized functions.
14883
14884
14885Arguments:
14886""""""""""
14887
14888The intrinsic takes an arbitrary number of arguments, whose meaning is
14889decided by the :ref:`lowering strategy<deoptimize_lowering>`.
14890
14891Semantics:
14892""""""""""
14893
14894The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
14895deoptimization continuation (denoted using a :ref:`deoptimization
14896operand bundle <deopt_opbundles>`) and returns the value returned by
14897the deoptimization continuation. Defining the semantic properties of
14898the continuation itself is out of scope of the language reference --
14899as far as LLVM is concerned, the deoptimization continuation can
14900invoke arbitrary side effects, including reading from and writing to
14901the entire heap.
14902
14903Deoptimization continuations expressed using ``"deopt"`` operand bundles always
14904continue execution to the end of the physical frame containing them, so all
14905calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
14906
14907 - ``@llvm.experimental.deoptimize`` cannot be invoked.
14908 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
14909 - The ``ret`` instruction must return the value produced by the
14910 ``@llvm.experimental.deoptimize`` call if there is one, or void.
14911
14912Note that the above restrictions imply that the return type for a call to
14913``@llvm.experimental.deoptimize`` will match the return type of its immediate
14914caller.
14915
14916The inliner composes the ``"deopt"`` continuations of the caller into the
14917``"deopt"`` continuations present in the inlinee, and also updates calls to this
14918intrinsic to return directly from the frame of the function it inlined into.
14919
Sanjoy Dase0aa4142016-05-12 01:17:38 +000014920All declarations of ``@llvm.experimental.deoptimize`` must share the
14921same calling convention.
14922
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014923.. _deoptimize_lowering:
14924
14925Lowering:
14926"""""""""
14927
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000014928Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
14929symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
14930ensure that this symbol is defined). The call arguments to
14931``@llvm.experimental.deoptimize`` are lowered as if they were formal
14932arguments of the specified types, and not as varargs.
14933
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014934
Sanjoy Das021de052016-03-31 00:18:46 +000014935'``llvm.experimental.guard``' Intrinsic
14936^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14937
14938Syntax:
14939"""""""
14940
14941::
14942
14943 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
14944
14945Overview:
14946"""""""""
14947
14948This intrinsic, together with :ref:`deoptimization operand bundles
14949<deopt_opbundles>`, allows frontends to express guards or checks on
14950optimistic assumptions made during compilation. The semantics of
14951``@llvm.experimental.guard`` is defined in terms of
14952``@llvm.experimental.deoptimize`` -- its body is defined to be
14953equivalent to:
14954
Renato Golin124f2592016-07-20 12:16:38 +000014955.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000014956
Renato Golin124f2592016-07-20 12:16:38 +000014957 define void @llvm.experimental.guard(i1 %pred, <args...>) {
14958 %realPred = and i1 %pred, undef
14959 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000014960
Renato Golin124f2592016-07-20 12:16:38 +000014961 leave:
14962 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
14963 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000014964
Renato Golin124f2592016-07-20 12:16:38 +000014965 continue:
14966 ret void
14967 }
Sanjoy Das021de052016-03-31 00:18:46 +000014968
Sanjoy Das47cf2af2016-04-30 00:55:59 +000014969
14970with the optional ``[, !make.implicit !{}]`` present if and only if it
14971is present on the call site. For more details on ``!make.implicit``,
14972see :doc:`FaultMaps`.
14973
Sanjoy Das021de052016-03-31 00:18:46 +000014974In words, ``@llvm.experimental.guard`` executes the attached
14975``"deopt"`` continuation if (but **not** only if) its first argument
14976is ``false``. Since the optimizer is allowed to replace the ``undef``
14977with an arbitrary value, it can optimize guard to fail "spuriously",
14978i.e. without the original condition being false (hence the "not only
14979if"); and this allows for "check widening" type optimizations.
14980
14981``@llvm.experimental.guard`` cannot be invoked.
14982
14983
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000014984'``llvm.load.relative``' Intrinsic
14985^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14986
14987Syntax:
14988"""""""
14989
14990::
14991
14992 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
14993
14994Overview:
14995"""""""""
14996
14997This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
14998adds ``%ptr`` to that value and returns it. The constant folder specifically
14999recognizes the form of this intrinsic and the constant initializers it may
15000load from; if a loaded constant initializer is known to have the form
15001``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
15002
15003LLVM provides that the calculation of such a constant initializer will
15004not overflow at link time under the medium code model if ``x`` is an
15005``unnamed_addr`` function. However, it does not provide this guarantee for
15006a constant initializer folded into a function body. This intrinsic can be
15007used to avoid the possibility of overflows when loading from such a constant.
15008
Dan Gohman2c74fe92017-11-08 21:59:51 +000015009'``llvm.sideeffect``' Intrinsic
15010^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15011
15012Syntax:
15013"""""""
15014
15015::
15016
15017 declare void @llvm.sideeffect() inaccessiblememonly nounwind
15018
15019Overview:
15020"""""""""
15021
15022The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
15023treat it as having side effects, so it can be inserted into a loop to
15024indicate that the loop shouldn't be assumed to terminate (which could
15025potentially lead to the loop being optimized away entirely), even if it's
15026an infinite loop with no other side effects.
15027
15028Arguments:
15029""""""""""
15030
15031None.
15032
15033Semantics:
15034""""""""""
15035
15036This intrinsic actually does nothing, but optimizers must assume that it
15037has externally observable side effects.
15038
Andrew Trick5e029ce2013-12-24 02:57:25 +000015039Stack Map Intrinsics
15040--------------------
15041
15042LLVM provides experimental intrinsics to support runtime patching
15043mechanisms commonly desired in dynamic language JITs. These intrinsics
15044are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015045
15046Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000015047-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000015048
15049These intrinsics are similar to the standard library memory intrinsics except
15050that they perform memory transfer as a sequence of atomic memory accesses.
15051
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015052.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000015053
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015054'``llvm.memcpy.element.unordered.atomic``' Intrinsic
15055^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000015056
15057Syntax:
15058"""""""
15059
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015060This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000015061any integer bit width and for different address spaces. Not all targets
15062support all bit widths however.
15063
15064::
15065
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015066 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
15067 i8* <src>,
15068 i32 <len>,
15069 i32 <element_size>)
15070 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
15071 i8* <src>,
15072 i64 <len>,
15073 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000015074
15075Overview:
15076"""""""""
15077
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015078The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
15079'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
15080as arrays with elements that are exactly ``element_size`` bytes, and the copy between
15081buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
15082that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015083
15084Arguments:
15085""""""""""
15086
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015087The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
15088intrinsic, with the added constraint that ``len`` is required to be a positive integer
15089multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
15090``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015091
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015092``element_size`` must be a compile-time constant positive power of two no greater than
15093target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015094
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015095For each of the input pointers ``align`` parameter attribute must be specified. It
15096must be a power of two no less than the ``element_size``. Caller guarantees that
15097both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015098
15099Semantics:
15100""""""""""
15101
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015102The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
15103memory from the source location to the destination location. These locations are not
15104allowed to overlap. The memory copy is performed as a sequence of load/store operations
15105where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015106aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015107
15108The order of the copy is unspecified. The same value may be read from the source
15109buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015110element. It is well defined to have concurrent reads and writes to both source and
15111destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015112
15113This intrinsic does not provide any additional ordering guarantees over those
15114provided by a set of unordered loads from the source location and stores to the
15115destination.
15116
15117Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000015118"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000015119
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015120In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
15121lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
15122is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015123
Daniel Neilson57226ef2017-07-12 15:25:26 +000015124Optimizer is allowed to inline memory copy when it's profitable to do so.
15125
15126'``llvm.memmove.element.unordered.atomic``' Intrinsic
15127^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15128
15129Syntax:
15130"""""""
15131
15132This is an overloaded intrinsic. You can use
15133``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
15134different address spaces. Not all targets support all bit widths however.
15135
15136::
15137
15138 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
15139 i8* <src>,
15140 i32 <len>,
15141 i32 <element_size>)
15142 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
15143 i8* <src>,
15144 i64 <len>,
15145 i32 <element_size>)
15146
15147Overview:
15148"""""""""
15149
15150The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
15151of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
15152``src`` are treated as arrays with elements that are exactly ``element_size``
15153bytes, and the copy between buffers uses a sequence of
15154:ref:`unordered atomic <ordering>` load/store operations that are a positive
15155integer multiple of the ``element_size`` in size.
15156
15157Arguments:
15158""""""""""
15159
15160The first three arguments are the same as they are in the
15161:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
15162``len`` is required to be a positive integer multiple of the ``element_size``.
15163If ``len`` is not a positive integer multiple of ``element_size``, then the
15164behaviour of the intrinsic is undefined.
15165
15166``element_size`` must be a compile-time constant positive power of two no
15167greater than a target-specific atomic access size limit.
15168
15169For each of the input pointers the ``align`` parameter attribute must be
15170specified. It must be a power of two no less than the ``element_size``. Caller
15171guarantees that both the source and destination pointers are aligned to that
15172boundary.
15173
15174Semantics:
15175""""""""""
15176
15177The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
15178of memory from the source location to the destination location. These locations
15179are allowed to overlap. The memory copy is performed as a sequence of load/store
15180operations where each access is guaranteed to be a multiple of ``element_size``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015181bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson57226ef2017-07-12 15:25:26 +000015182
15183The order of the copy is unspecified. The same value may be read from the source
15184buffer many times, but only one write is issued to the destination buffer per
15185element. It is well defined to have concurrent reads and writes to both source
15186and destination provided those reads and writes are unordered atomic when
15187specified.
15188
15189This intrinsic does not provide any additional ordering guarantees over those
15190provided by a set of unordered loads from the source location and stores to the
15191destination.
15192
15193Lowering:
15194"""""""""
15195
15196In the most general case call to the
15197'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
15198``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
15199actual element size.
15200
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015201The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000015202
15203.. _int_memset_element_unordered_atomic:
15204
15205'``llvm.memset.element.unordered.atomic``' Intrinsic
15206^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15207
15208Syntax:
15209"""""""
15210
15211This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
15212any integer bit width and for different address spaces. Not all targets
15213support all bit widths however.
15214
15215::
15216
15217 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
15218 i8 <value>,
15219 i32 <len>,
15220 i32 <element_size>)
15221 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
15222 i8 <value>,
15223 i64 <len>,
15224 i32 <element_size>)
15225
15226Overview:
15227"""""""""
15228
15229The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
15230'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
15231with elements that are exactly ``element_size`` bytes, and the assignment to that array
15232uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
15233that are a positive integer multiple of the ``element_size`` in size.
15234
15235Arguments:
15236""""""""""
15237
15238The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
15239intrinsic, with the added constraint that ``len`` is required to be a positive integer
15240multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
15241``element_size``, then the behaviour of the intrinsic is undefined.
15242
15243``element_size`` must be a compile-time constant positive power of two no greater than
15244target-specific atomic access size limit.
15245
15246The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
15247must be a power of two no less than the ``element_size``. Caller guarantees that
15248the destination pointer is aligned to that boundary.
15249
15250Semantics:
15251""""""""""
15252
15253The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
15254memory starting at the destination location to the given ``value``. The memory is
15255set with a sequence of store operations where each access is guaranteed to be a
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015256multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson965613e2017-07-12 21:57:23 +000015257
15258The order of the assignment is unspecified. Only one write is issued to the
15259destination buffer per element. It is well defined to have concurrent reads and
15260writes to the destination provided those reads and writes are unordered atomic
15261when specified.
15262
15263This intrinsic does not provide any additional ordering guarantees over those
15264provided by a set of unordered stores to the destination.
15265
15266Lowering:
15267"""""""""
15268
15269In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
15270lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
15271is replaced with an actual element size.
15272
15273The optimizer is allowed to inline the memory assignment when it's profitable to do so.