blob: b370e63998a12455e96c638da4fd0bd84714e3ac [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
Hans Wennborg2cfcc012018-05-22 10:14:07 +000083 can be used on global values to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000327 floating-point types are supported.
Sean Silvab084af42012-12-07 10:36:55 +0000328 - On *X86-64* only supports up to 10 bit type parameters and 6
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000329 floating-point parameters.
Sean Silvab084af42012-12-07 10:36:55 +0000330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Sean Fertilec70d28b2017-10-26 15:00:26 +0000530.. _runtime_preemption_model:
531
532Runtime Preemption Specifiers
533-----------------------------
534
535Global variables, functions and aliases may have an optional runtime preemption
536specifier. If a preemption specifier isn't given explicitly, then a
537symbol is assumed to be ``dso_preemptable``.
538
539``dso_preemptable``
540 Indicates that the function or variable may be replaced by a symbol from
541 outside the linkage unit at runtime.
542
543``dso_local``
544 The compiler may assume that a function or variable marked as ``dso_local``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000545 will resolve to a symbol within the same linkage unit. Direct access will
Sean Fertilec70d28b2017-10-26 15:00:26 +0000546 be generated even if the definition is not within this compilation unit.
547
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000548.. _namedtypes:
549
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000550Structure Types
551---------------
Sean Silvab084af42012-12-07 10:36:55 +0000552
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000553LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000554types <t_struct>`. Literal types are uniqued structurally, but identified types
555are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000556to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000557
Sean Silva706fba52015-08-06 22:56:24 +0000558An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000559
560.. code-block:: llvm
561
562 %mytype = type { %mytype*, i32 }
563
Sean Silvaa1190322015-08-06 22:56:48 +0000564Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000565literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000566
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000567.. _nointptrtype:
568
569Non-Integral Pointer Type
570-------------------------
571
572Note: non-integral pointer types are a work in progress, and they should be
573considered experimental at this time.
574
575LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000576spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
577Non-integral pointer types represent pointers that have an *unspecified* bitwise
578representation; that is, the integral representation may be target dependent or
579unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000580
581``inttoptr`` instructions converting integers to non-integral pointer types are
582ill-typed, and so are ``ptrtoint`` instructions converting values of
583non-integral pointer types to integers. Vector versions of said instructions
584are ill-typed as well.
585
Sean Silvab084af42012-12-07 10:36:55 +0000586.. _globalvars:
587
588Global Variables
589----------------
590
591Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000592instead of run-time.
593
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000594Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000595
596Global variables in other translation units can also be declared, in which
597case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000598
Bob Wilson85b24f22014-06-12 20:40:33 +0000599Either global variable definitions or declarations may have an explicit section
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000600to be placed in and may have an optional explicit alignment specified. If there
601is a mismatch between the explicit or inferred section information for the
602variable declaration and its definition the resulting behavior is undefined.
Bob Wilson85b24f22014-06-12 20:40:33 +0000603
Michael Gottesman006039c2013-01-31 05:48:48 +0000604A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000605the contents of the variable will **never** be modified (enabling better
606optimization, allowing the global data to be placed in the read-only
607section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000608initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000609variable.
610
611LLVM explicitly allows *declarations* of global variables to be marked
612constant, even if the final definition of the global is not. This
613capability can be used to enable slightly better optimization of the
614program, but requires the language definition to guarantee that
615optimizations based on the 'constantness' are valid for the translation
616units that do not include the definition.
617
618As SSA values, global variables define pointer values that are in scope
619(i.e. they dominate) all basic blocks in the program. Global variables
620always define a pointer to their "content" type because they describe a
621region of memory, and all memory objects in LLVM are accessed through
622pointers.
623
624Global variables can be marked with ``unnamed_addr`` which indicates
625that the address is not significant, only the content. Constants marked
626like this can be merged with other constants if they have the same
627initializer. Note that a constant with significant address *can* be
628merged with a ``unnamed_addr`` constant, the result being a constant
629whose address is significant.
630
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000631If the ``local_unnamed_addr`` attribute is given, the address is known to
632not be significant within the module.
633
Sean Silvab084af42012-12-07 10:36:55 +0000634A global variable may be declared to reside in a target-specific
635numbered address space. For targets that support them, address spaces
636may affect how optimizations are performed and/or what target
637instructions are used to access the variable. The default address space
638is zero. The address space qualifier must precede any other attributes.
639
640LLVM allows an explicit section to be specified for globals. If the
641target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000642Additionally, the global can placed in a comdat if the target has the necessary
643support.
Sean Silvab084af42012-12-07 10:36:55 +0000644
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000645External declarations may have an explicit section specified. Section
646information is retained in LLVM IR for targets that make use of this
647information. Attaching section information to an external declaration is an
648assertion that its definition is located in the specified section. If the
649definition is located in a different section, the behavior is undefined.
Erich Keane0343ef82017-08-22 15:30:43 +0000650
Michael Gottesmane743a302013-02-04 03:22:00 +0000651By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000652variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000653initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000654true even for variables potentially accessible from outside the
655module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000656``@llvm.used`` or dllexported variables. This assumption may be suppressed
657by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659An explicit alignment may be specified for a global, which must be a
660power of 2. If not present, or if the alignment is set to zero, the
661alignment of the global is set by the target to whatever it feels
662convenient. If an explicit alignment is specified, the global is forced
663to have exactly that alignment. Targets and optimizers are not allowed
664to over-align the global if the global has an assigned section. In this
665case, the extra alignment could be observable: for example, code could
666assume that the globals are densely packed in their section and try to
667iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000668iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000669
Javed Absarf3d79042017-05-11 12:28:08 +0000670Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
Sean Fertilec70d28b2017-10-26 15:00:26 +0000671an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
Javed Absarf3d79042017-05-11 12:28:08 +0000672an optional :ref:`global attributes <glattrs>` and
673an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000674
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000675Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000676:ref:`Thread Local Storage Model <tls_model>`.
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678Syntax::
679
Sean Fertilec70d28b2017-10-26 15:00:26 +0000680 @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
681 [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
683 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000684 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000686 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000687
Sean Silvab084af42012-12-07 10:36:55 +0000688For example, the following defines a global in a numbered address space
689with an initializer, section, and alignment:
690
691.. code-block:: llvm
692
693 @G = addrspace(5) constant float 1.0, section "foo", align 4
694
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000695The following example just declares a global variable
696
697.. code-block:: llvm
698
699 @G = external global i32
700
Sean Silvab084af42012-12-07 10:36:55 +0000701The following example defines a thread-local global with the
702``initialexec`` TLS model:
703
704.. code-block:: llvm
705
706 @G = thread_local(initialexec) global i32 0, align 4
707
708.. _functionstructure:
709
710Functions
711---------
712
713LLVM function definitions consist of the "``define``" keyword, an
Sean Fertilec70d28b2017-10-26 15:00:26 +0000714optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
715specifier <runtime_preemption_model>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000716style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
717an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000718an optional ``unnamed_addr`` attribute, a return type, an optional
719:ref:`parameter attribute <paramattrs>` for the return type, a function
720name, a (possibly empty) argument list (each with optional :ref:`parameter
721attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000722an optional address space, an optional section, an optional alignment,
David Majnemerdad0a642014-06-27 18:19:56 +0000723an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000724an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000725an optional :ref:`prologue <prologuedata>`,
726an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000727an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000728an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000731optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
732<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
733optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000734or ``local_unnamed_addr`` attribute, an optional address space, a return type,
735an optional :ref:`parameter attribute <paramattrs>` for the return type, a function name, a possibly
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000736empty list of arguments, an optional alignment, an optional :ref:`garbage
737collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
738:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000739
Bill Wendling6822ecb2013-10-27 05:09:12 +0000740A function definition contains a list of basic blocks, forming the CFG (Control
741Flow Graph) for the function. Each basic block may optionally start with a label
742(giving the basic block a symbol table entry), contains a list of instructions,
743and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
744function return). If an explicit label is not provided, a block is assigned an
745implicit numbered label, using the next value from the same counter as used for
746unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
747entry block does not have an explicit label, it will be assigned label "%0",
748then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000749
750The first basic block in a function is special in two ways: it is
751immediately executed on entrance to the function, and it is not allowed
752to have predecessor basic blocks (i.e. there can not be any branches to
753the entry block of a function). Because the block can have no
754predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
755
756LLVM allows an explicit section to be specified for functions. If the
757target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000758Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000759
760An explicit alignment may be specified for a function. If not present,
761or if the alignment is set to zero, the alignment of the function is set
762by the target to whatever it feels convenient. If an explicit alignment
763is specified, the function is forced to have at least that much
764alignment. All alignments must be a power of 2.
765
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000766If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000767be significant and two identical functions can be merged.
768
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000769If the ``local_unnamed_addr`` attribute is given, the address is known to
770not be significant within the module.
771
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000772If an explicit address space is not given, it will default to the program
773address space from the :ref:`datalayout string<langref_datalayout>`.
774
Sean Silvab084af42012-12-07 10:36:55 +0000775Syntax::
776
Sean Fertilec70d28b2017-10-26 15:00:26 +0000777 define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000778 [cconv] [ret attrs]
779 <ResultType> @<FunctionName> ([argument list])
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000780 [(unnamed_addr|local_unnamed_addr)] [AddrSpace] [fn Attrs]
781 [section "name"] [comdat [($name)]] [align N] [gc] [prefix Constant]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000782 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000783
Sean Silva706fba52015-08-06 22:56:24 +0000784The argument list is a comma separated sequence of arguments where each
785argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000786
787Syntax::
788
789 <type> [parameter Attrs] [name]
790
791
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000792.. _langref_aliases:
793
Sean Silvab084af42012-12-07 10:36:55 +0000794Aliases
795-------
796
Rafael Espindola64c1e182014-06-03 02:41:57 +0000797Aliases, unlike function or variables, don't create any new data. They
798are just a new symbol and metadata for an existing position.
799
800Aliases have a name and an aliasee that is either a global value or a
801constant expression.
802
Nico Rieck7157bb72014-01-14 15:22:47 +0000803Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Sean Fertilec70d28b2017-10-26 15:00:26 +0000804:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000805:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
806<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000807
808Syntax::
809
Sean Fertilec70d28b2017-10-26 15:00:26 +0000810 @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000811
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000812The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000813``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000814might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000815
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000816Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000817the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
818to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000819
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000820If the ``local_unnamed_addr`` attribute is given, the address is known to
821not be significant within the module.
822
Rafael Espindola64c1e182014-06-03 02:41:57 +0000823Since aliases are only a second name, some restrictions apply, of which
824some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000825
Rafael Espindola64c1e182014-06-03 02:41:57 +0000826* The expression defining the aliasee must be computable at assembly
827 time. Since it is just a name, no relocations can be used.
828
829* No alias in the expression can be weak as the possibility of the
830 intermediate alias being overridden cannot be represented in an
831 object file.
832
833* No global value in the expression can be a declaration, since that
834 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000835
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000836.. _langref_ifunc:
837
838IFuncs
839-------
840
841IFuncs, like as aliases, don't create any new data or func. They are just a new
842symbol that dynamic linker resolves at runtime by calling a resolver function.
843
844IFuncs have a name and a resolver that is a function called by dynamic linker
845that returns address of another function associated with the name.
846
847IFunc may have an optional :ref:`linkage type <linkage>` and an optional
848:ref:`visibility style <visibility>`.
849
850Syntax::
851
852 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
853
854
David Majnemerdad0a642014-06-27 18:19:56 +0000855.. _langref_comdats:
856
857Comdats
858-------
859
860Comdat IR provides access to COFF and ELF object file COMDAT functionality.
861
Sean Silvaa1190322015-08-06 22:56:48 +0000862Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000863specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000864that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000865aliasee computes to, if any.
866
867Comdats have a selection kind to provide input on how the linker should
868choose between keys in two different object files.
869
870Syntax::
871
872 $<Name> = comdat SelectionKind
873
874The selection kind must be one of the following:
875
876``any``
877 The linker may choose any COMDAT key, the choice is arbitrary.
878``exactmatch``
879 The linker may choose any COMDAT key but the sections must contain the
880 same data.
881``largest``
882 The linker will choose the section containing the largest COMDAT key.
883``noduplicates``
884 The linker requires that only section with this COMDAT key exist.
885``samesize``
886 The linker may choose any COMDAT key but the sections must contain the
887 same amount of data.
888
Sam Cleggea7cace2018-01-09 23:43:14 +0000889Note that the Mach-O platform doesn't support COMDATs, and ELF and WebAssembly
890only support ``any`` as a selection kind.
David Majnemerdad0a642014-06-27 18:19:56 +0000891
892Here is an example of a COMDAT group where a function will only be selected if
893the COMDAT key's section is the largest:
894
Renato Golin124f2592016-07-20 12:16:38 +0000895.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000896
897 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000898 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000899
Rafael Espindola83a362c2015-01-06 22:55:16 +0000900 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000901 ret void
902 }
903
Rafael Espindola83a362c2015-01-06 22:55:16 +0000904As a syntactic sugar the ``$name`` can be omitted if the name is the same as
905the global name:
906
Renato Golin124f2592016-07-20 12:16:38 +0000907.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000908
909 $foo = comdat any
910 @foo = global i32 2, comdat
911
912
David Majnemerdad0a642014-06-27 18:19:56 +0000913In a COFF object file, this will create a COMDAT section with selection kind
914``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
915and another COMDAT section with selection kind
916``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000917section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000918
919There are some restrictions on the properties of the global object.
920It, or an alias to it, must have the same name as the COMDAT group when
921targeting COFF.
922The contents and size of this object may be used during link-time to determine
923which COMDAT groups get selected depending on the selection kind.
924Because the name of the object must match the name of the COMDAT group, the
925linkage of the global object must not be local; local symbols can get renamed
926if a collision occurs in the symbol table.
927
928The combined use of COMDATS and section attributes may yield surprising results.
929For example:
930
Renato Golin124f2592016-07-20 12:16:38 +0000931.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000932
933 $foo = comdat any
934 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000935 @g1 = global i32 42, section "sec", comdat($foo)
936 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000937
938From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000939with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000940COMDAT groups and COMDATs, at the object file level, are represented by
941sections.
942
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000943Note that certain IR constructs like global variables and functions may
944create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000945COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000946in individual sections (e.g. when `-data-sections` or `-function-sections`
947is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000948
Sean Silvab084af42012-12-07 10:36:55 +0000949.. _namedmetadatastructure:
950
951Named Metadata
952--------------
953
954Named metadata is a collection of metadata. :ref:`Metadata
955nodes <metadata>` (but not metadata strings) are the only valid
956operands for a named metadata.
957
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000958#. Named metadata are represented as a string of characters with the
959 metadata prefix. The rules for metadata names are the same as for
960 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
961 are still valid, which allows any character to be part of a name.
962
Sean Silvab084af42012-12-07 10:36:55 +0000963Syntax::
964
965 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000966 !0 = !{!"zero"}
967 !1 = !{!"one"}
968 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000969 ; A named metadata.
970 !name = !{!0, !1, !2}
971
972.. _paramattrs:
973
974Parameter Attributes
975--------------------
976
977The return type and each parameter of a function type may have a set of
978*parameter attributes* associated with them. Parameter attributes are
979used to communicate additional information about the result or
980parameters of a function. Parameter attributes are considered to be part
981of the function, not of the function type, so functions with different
982parameter attributes can have the same function type.
983
984Parameter attributes are simple keywords that follow the type specified.
985If multiple parameter attributes are needed, they are space separated.
986For example:
987
988.. code-block:: llvm
989
990 declare i32 @printf(i8* noalias nocapture, ...)
991 declare i32 @atoi(i8 zeroext)
992 declare signext i8 @returns_signed_char()
993
994Note that any attributes for the function result (``nounwind``,
995``readonly``) come immediately after the argument list.
996
997Currently, only the following parameter attributes are defined:
998
999``zeroext``
1000 This indicates to the code generator that the parameter or return
1001 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +00001002 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +00001003``signext``
1004 This indicates to the code generator that the parameter or return
1005 value should be sign-extended to the extent required by the target's
1006 ABI (which is usually 32-bits) by the caller (for a parameter) or
1007 the callee (for a return value).
1008``inreg``
1009 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +00001010 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +00001011 a function call or return (usually, by putting it in a register as
1012 opposed to memory, though some targets use it to distinguish between
1013 two different kinds of registers). Use of this attribute is
1014 target-specific.
1015``byval``
1016 This indicates that the pointer parameter should really be passed by
1017 value to the function. The attribute implies that a hidden copy of
1018 the pointee is made between the caller and the callee, so the callee
1019 is unable to modify the value in the caller. This attribute is only
1020 valid on LLVM pointer arguments. It is generally used to pass
1021 structs and arrays by value, but is also valid on pointers to
1022 scalars. The copy is considered to belong to the caller not the
1023 callee (for example, ``readonly`` functions should not write to
1024 ``byval`` parameters). This is not a valid attribute for return
1025 values.
1026
1027 The byval attribute also supports specifying an alignment with the
1028 align attribute. It indicates the alignment of the stack slot to
1029 form and the known alignment of the pointer specified to the call
1030 site. If the alignment is not specified, then the code generator
1031 makes a target-specific assumption.
1032
Reid Klecknera534a382013-12-19 02:14:12 +00001033.. _attr_inalloca:
1034
1035``inalloca``
1036
Reid Kleckner60d3a832014-01-16 22:59:24 +00001037 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001038 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001039 be a pointer to stack memory produced by an ``alloca`` instruction.
1040 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001041 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001042 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001043
Reid Kleckner436c42e2014-01-17 23:58:17 +00001044 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001045 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001046 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001047 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001048 ``inalloca`` attribute also disables LLVM's implicit lowering of
1049 large aggregate return values, which means that frontend authors
1050 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001051
Reid Kleckner60d3a832014-01-16 22:59:24 +00001052 When the call site is reached, the argument allocation must have
1053 been the most recent stack allocation that is still live, or the
Eli Friedman0f522bd2018-07-25 18:26:38 +00001054 behavior is undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001055 space after an argument allocation and before its call site, but it
1056 must be cleared off with :ref:`llvm.stackrestore
1057 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001058
1059 See :doc:`InAlloca` for more information on how to use this
1060 attribute.
1061
Sean Silvab084af42012-12-07 10:36:55 +00001062``sret``
1063 This indicates that the pointer parameter specifies the address of a
1064 structure that is the return value of the function in the source
1065 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001066 loads and stores to the structure may be assumed by the callee not
1067 to trap and to be properly aligned. This is not a valid attribute
1068 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001069
Daniel Neilson1e687242018-01-19 17:13:12 +00001070.. _attr_align:
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001071
Hal Finkelccc70902014-07-22 16:58:55 +00001072``align <n>``
1073 This indicates that the pointer value may be assumed by the optimizer to
1074 have the specified alignment.
1075
1076 Note that this attribute has additional semantics when combined with the
1077 ``byval`` attribute.
1078
Sean Silva1703e702014-04-08 21:06:22 +00001079.. _noalias:
1080
Sean Silvab084af42012-12-07 10:36:55 +00001081``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001082 This indicates that objects accessed via pointer values
1083 :ref:`based <pointeraliasing>` on the argument or return value are not also
1084 accessed, during the execution of the function, via pointer values not
1085 *based* on the argument or return value. The attribute on a return value
1086 also has additional semantics described below. The caller shares the
1087 responsibility with the callee for ensuring that these requirements are met.
1088 For further details, please see the discussion of the NoAlias response in
1089 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001090
1091 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001092 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001093
1094 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001095 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1096 attribute on return values are stronger than the semantics of the attribute
1097 when used on function arguments. On function return values, the ``noalias``
1098 attribute indicates that the function acts like a system memory allocation
1099 function, returning a pointer to allocated storage disjoint from the
1100 storage for any other object accessible to the caller.
1101
Sean Silvab084af42012-12-07 10:36:55 +00001102``nocapture``
1103 This indicates that the callee does not make any copies of the
1104 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001105 attribute for return values. Addresses used in volatile operations
1106 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001107
1108.. _nest:
1109
1110``nest``
1111 This indicates that the pointer parameter can be excised using the
1112 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001113 attribute for return values and can only be applied to one parameter.
1114
1115``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001116 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001117 value. This is a hint to the optimizer and code generator used when
1118 generating the caller, allowing value propagation, tail call optimization,
1119 and omission of register saves and restores in some cases; it is not
1120 checked or enforced when generating the callee. The parameter and the
1121 function return type must be valid operands for the
1122 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1123 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001124
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001125``nonnull``
1126 This indicates that the parameter or return pointer is not null. This
1127 attribute may only be applied to pointer typed parameters. This is not
Eli Friedman0f522bd2018-07-25 18:26:38 +00001128 checked or enforced by LLVM; if the parameter or return pointer is null,
1129 the behavior is undefined.
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001130
Hal Finkelb0407ba2014-07-18 15:51:28 +00001131``dereferenceable(<n>)``
1132 This indicates that the parameter or return pointer is dereferenceable. This
1133 attribute may only be applied to pointer typed parameters. A pointer that
1134 is dereferenceable can be loaded from speculatively without a risk of
1135 trapping. The number of bytes known to be dereferenceable must be provided
1136 in parentheses. It is legal for the number of bytes to be less than the
1137 size of the pointee type. The ``nonnull`` attribute does not imply
1138 dereferenceability (consider a pointer to one element past the end of an
1139 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1140 ``addrspace(0)`` (which is the default address space).
1141
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001142``dereferenceable_or_null(<n>)``
1143 This indicates that the parameter or return value isn't both
1144 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001145 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001146 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1147 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1148 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1149 and in other address spaces ``dereferenceable_or_null(<n>)``
1150 implies that a pointer is at least one of ``dereferenceable(<n>)``
1151 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001152 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001153 pointer typed parameters.
1154
Manman Renf46262e2016-03-29 17:37:21 +00001155``swiftself``
1156 This indicates that the parameter is the self/context parameter. This is not
1157 a valid attribute for return values and can only be applied to one
1158 parameter.
1159
Manman Ren9bfd0d02016-04-01 21:41:15 +00001160``swifterror``
1161 This attribute is motivated to model and optimize Swift error handling. It
1162 can be applied to a parameter with pointer to pointer type or a
1163 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001164 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1165 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1166 the parameter or the alloca) can only be loaded and stored from, or used as
1167 a ``swifterror`` argument. This is not a valid attribute for return values
1168 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001169
1170 These constraints allow the calling convention to optimize access to
1171 ``swifterror`` variables by associating them with a specific register at
1172 call boundaries rather than placing them in memory. Since this does change
1173 the calling convention, a function which uses the ``swifterror`` attribute
1174 on a parameter is not ABI-compatible with one which does not.
1175
1176 These constraints also allow LLVM to assume that a ``swifterror`` argument
1177 does not alias any other memory visible within a function and that a
1178 ``swifterror`` alloca passed as an argument does not escape.
1179
Sean Silvab084af42012-12-07 10:36:55 +00001180.. _gc:
1181
Philip Reamesf80bbff2015-02-25 23:45:20 +00001182Garbage Collector Strategy Names
1183--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001184
Philip Reamesf80bbff2015-02-25 23:45:20 +00001185Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001186string:
1187
1188.. code-block:: llvm
1189
1190 define void @f() gc "name" { ... }
1191
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001192The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001193<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001194strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001195named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001196garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001197which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001198
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001199.. _prefixdata:
1200
1201Prefix Data
1202-----------
1203
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001204Prefix data is data associated with a function which the code
1205generator will emit immediately before the function's entrypoint.
1206The purpose of this feature is to allow frontends to associate
1207language-specific runtime metadata with specific functions and make it
1208available through the function pointer while still allowing the
1209function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001210
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001211To access the data for a given function, a program may bitcast the
1212function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001213index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001214the prefix data. For instance, take the example of a function annotated
1215with a single ``i32``,
1216
1217.. code-block:: llvm
1218
1219 define void @f() prefix i32 123 { ... }
1220
1221The prefix data can be referenced as,
1222
1223.. code-block:: llvm
1224
David Blaikie16a97eb2015-03-04 22:02:58 +00001225 %0 = bitcast void* () @f to i32*
1226 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001227 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001228
1229Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001230of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231beginning of the prefix data is aligned. This means that if the size
1232of the prefix data is not a multiple of the alignment size, the
1233function's entrypoint will not be aligned. If alignment of the
1234function's entrypoint is desired, padding must be added to the prefix
1235data.
1236
Sean Silvaa1190322015-08-06 22:56:48 +00001237A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001238to the ``available_externally`` linkage in that the data may be used by the
1239optimizers but will not be emitted in the object file.
1240
1241.. _prologuedata:
1242
1243Prologue Data
1244-------------
1245
1246The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1247be inserted prior to the function body. This can be used for enabling
1248function hot-patching and instrumentation.
1249
1250To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001251have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001252bytes which decode to a sequence of machine instructions, valid for the
1253module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001254the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001255the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001256definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001257makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001258
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001259A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001260which encodes the ``nop`` instruction:
1261
Renato Golin124f2592016-07-20 12:16:38 +00001262.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001263
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001264 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001265
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001266Generally prologue data can be formed by encoding a relative branch instruction
1267which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001268x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1269
Renato Golin124f2592016-07-20 12:16:38 +00001270.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001271
1272 %0 = type <{ i8, i8, i8* }>
1273
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001274 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001275
Sean Silvaa1190322015-08-06 22:56:48 +00001276A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001277to the ``available_externally`` linkage in that the data may be used by the
1278optimizers but will not be emitted in the object file.
1279
David Majnemer7fddecc2015-06-17 20:52:32 +00001280.. _personalityfn:
1281
1282Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001283--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001284
1285The ``personality`` attribute permits functions to specify what function
1286to use for exception handling.
1287
Bill Wendling63b88192013-02-06 06:52:58 +00001288.. _attrgrp:
1289
1290Attribute Groups
1291----------------
1292
1293Attribute groups are groups of attributes that are referenced by objects within
1294the IR. They are important for keeping ``.ll`` files readable, because a lot of
1295functions will use the same set of attributes. In the degenerative case of a
1296``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1297group will capture the important command line flags used to build that file.
1298
1299An attribute group is a module-level object. To use an attribute group, an
1300object references the attribute group's ID (e.g. ``#37``). An object may refer
1301to more than one attribute group. In that situation, the attributes from the
1302different groups are merged.
1303
1304Here is an example of attribute groups for a function that should always be
1305inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1306
1307.. code-block:: llvm
1308
1309 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001310 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001311
1312 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001313 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001314
1315 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1316 define void @f() #0 #1 { ... }
1317
Sean Silvab084af42012-12-07 10:36:55 +00001318.. _fnattrs:
1319
1320Function Attributes
1321-------------------
1322
1323Function attributes are set to communicate additional information about
1324a function. Function attributes are considered to be part of the
1325function, not of the function type, so functions with different function
1326attributes can have the same function type.
1327
1328Function attributes are simple keywords that follow the type specified.
1329If multiple attributes are needed, they are space separated. For
1330example:
1331
1332.. code-block:: llvm
1333
1334 define void @f() noinline { ... }
1335 define void @f() alwaysinline { ... }
1336 define void @f() alwaysinline optsize { ... }
1337 define void @f() optsize { ... }
1338
Sean Silvab084af42012-12-07 10:36:55 +00001339``alignstack(<n>)``
1340 This attribute indicates that, when emitting the prologue and
1341 epilogue, the backend should forcibly align the stack pointer.
1342 Specify the desired alignment, which must be a power of two, in
1343 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001344``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1345 This attribute indicates that the annotated function will always return at
1346 least a given number of bytes (or null). Its arguments are zero-indexed
1347 parameter numbers; if one argument is provided, then it's assumed that at
1348 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1349 returned pointer. If two are provided, then it's assumed that
1350 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1351 available. The referenced parameters must be integer types. No assumptions
1352 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001353``alwaysinline``
1354 This attribute indicates that the inliner should attempt to inline
1355 this function into callers whenever possible, ignoring any active
1356 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001357``builtin``
1358 This indicates that the callee function at a call site should be
1359 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001360 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001361 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001362 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001363``cold``
1364 This attribute indicates that this function is rarely called. When
1365 computing edge weights, basic blocks post-dominated by a cold
1366 function call are also considered to be cold; and, thus, given low
1367 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001368``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001369 In some parallel execution models, there exist operations that cannot be
1370 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001371 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001372
Justin Lebar58535b12016-02-17 17:46:41 +00001373 The ``convergent`` attribute may appear on functions or call/invoke
1374 instructions. When it appears on a function, it indicates that calls to
1375 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001376 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001377 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001378 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001379
Justin Lebar58535b12016-02-17 17:46:41 +00001380 When it appears on a call/invoke, the ``convergent`` attribute indicates
1381 that we should treat the call as though we're calling a convergent
1382 function. This is particularly useful on indirect calls; without this we
1383 may treat such calls as though the target is non-convergent.
1384
1385 The optimizer may remove the ``convergent`` attribute on functions when it
1386 can prove that the function does not execute any convergent operations.
1387 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1388 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001389``inaccessiblememonly``
1390 This attribute indicates that the function may only access memory that
1391 is not accessible by the module being compiled. This is a weaker form
Eli Friedman0f522bd2018-07-25 18:26:38 +00001392 of ``readnone``. If the function reads or writes other memory, the
1393 behavior is undefined.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001394``inaccessiblemem_or_argmemonly``
1395 This attribute indicates that the function may only access memory that is
1396 either not accessible by the module being compiled, or is pointed to
Eli Friedman0f522bd2018-07-25 18:26:38 +00001397 by its pointer arguments. This is a weaker form of ``argmemonly``. If the
1398 function reads or writes other memory, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001399``inlinehint``
1400 This attribute indicates that the source code contained a hint that
1401 inlining this function is desirable (such as the "inline" keyword in
1402 C/C++). It is just a hint; it imposes no requirements on the
1403 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001404``jumptable``
1405 This attribute indicates that the function should be added to a
1406 jump-instruction table at code-generation time, and that all address-taken
1407 references to this function should be replaced with a reference to the
1408 appropriate jump-instruction-table function pointer. Note that this creates
1409 a new pointer for the original function, which means that code that depends
1410 on function-pointer identity can break. So, any function annotated with
1411 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001412``minsize``
1413 This attribute suggests that optimization passes and code generator
1414 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001415 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001416 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001417``naked``
1418 This attribute disables prologue / epilogue emission for the
1419 function. This can have very system-specific consequences.
Sumanth Gundapaneni6af104e2017-07-28 22:26:22 +00001420``no-jump-tables``
1421 When this attribute is set to true, the jump tables and lookup tables that
1422 can be generated from a switch case lowering are disabled.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001423``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001424 This indicates that the callee function at a call site is not recognized as
1425 a built-in function. LLVM will retain the original call and not replace it
1426 with equivalent code based on the semantics of the built-in function, unless
1427 the call site uses the ``builtin`` attribute. This is valid at call sites
1428 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001429``noduplicate``
1430 This attribute indicates that calls to the function cannot be
1431 duplicated. A call to a ``noduplicate`` function may be moved
1432 within its parent function, but may not be duplicated within
1433 its parent function.
1434
1435 A function containing a ``noduplicate`` call may still
1436 be an inlining candidate, provided that the call is not
1437 duplicated by inlining. That implies that the function has
1438 internal linkage and only has one call site, so the original
1439 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001440``noimplicitfloat``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001441 This attributes disables implicit floating-point instructions.
Sean Silvab084af42012-12-07 10:36:55 +00001442``noinline``
1443 This attribute indicates that the inliner should never inline this
1444 function in any situation. This attribute may not be used together
1445 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001446``nonlazybind``
1447 This attribute suppresses lazy symbol binding for the function. This
1448 may make calls to the function faster, at the cost of extra program
1449 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001450``noredzone``
1451 This attribute indicates that the code generator should not use a
1452 red zone, even if the target-specific ABI normally permits it.
1453``noreturn``
1454 This function attribute indicates that the function never returns
1455 normally. This produces undefined behavior at runtime if the
1456 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001457``norecurse``
1458 This function attribute indicates that the function does not call itself
1459 either directly or indirectly down any possible call path. This produces
1460 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001461``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001462 This function attribute indicates that the function never raises an
1463 exception. If the function does raise an exception, its runtime
1464 behavior is undefined. However, functions marked nounwind may still
1465 trap or generate asynchronous exceptions. Exception handling schemes
1466 that are recognized by LLVM to handle asynchronous exceptions, such
1467 as SEH, will still provide their implementation defined semantics.
Manoj Gupta77eeac32018-07-09 22:27:23 +00001468``"null-pointer-is-valid"``
1469 If ``"null-pointer-is-valid"`` is set to ``"true"``, then ``null`` address
1470 in address-space 0 is considered to be a valid address for memory loads and
1471 stores. Any analysis or optimization should not treat dereferencing a
1472 pointer to ``null`` as undefined behavior in this function.
1473 Note: Comparing address of a global variable to ``null`` may still
1474 evaluate to false because of a limitation in querying this attribute inside
1475 constant expressions.
Matt Morehouse31819412018-03-22 19:50:10 +00001476``optforfuzzing``
1477 This attribute indicates that this function should be optimized
1478 for maximum fuzzing signal.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001479``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001480 This function attribute indicates that most optimization passes will skip
1481 this function, with the exception of interprocedural optimization passes.
1482 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001483 This attribute cannot be used together with the ``alwaysinline``
1484 attribute; this attribute is also incompatible
1485 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001486
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001487 This attribute requires the ``noinline`` attribute to be specified on
1488 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001489 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001490 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001491``optsize``
1492 This attribute suggests that optimization passes and code generator
1493 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001494 and otherwise do optimizations specifically to reduce code size as
1495 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001496``"patchable-function"``
1497 This attribute tells the code generator that the code
1498 generated for this function needs to follow certain conventions that
1499 make it possible for a runtime function to patch over it later.
1500 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001501 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001502
1503 * ``"prologue-short-redirect"`` - This style of patchable
1504 function is intended to support patching a function prologue to
1505 redirect control away from the function in a thread safe
1506 manner. It guarantees that the first instruction of the
1507 function will be large enough to accommodate a short jump
1508 instruction, and will be sufficiently aligned to allow being
1509 fully changed via an atomic compare-and-swap instruction.
1510 While the first requirement can be satisfied by inserting large
1511 enough NOP, LLVM can and will try to re-purpose an existing
1512 instruction (i.e. one that would have to be emitted anyway) as
1513 the patchable instruction larger than a short jump.
1514
1515 ``"prologue-short-redirect"`` is currently only supported on
1516 x86-64.
1517
1518 This attribute by itself does not imply restrictions on
1519 inter-procedural optimizations. All of the semantic effects the
1520 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001521``"probe-stack"``
1522 This attribute indicates that the function will trigger a guard region
1523 in the end of the stack. It ensures that accesses to the stack must be
1524 no further apart than the size of the guard region to a previous
1525 access of the stack. It takes one required string value, the name of
1526 the stack probing function that will be called.
1527
1528 If a function that has a ``"probe-stack"`` attribute is inlined into
1529 a function with another ``"probe-stack"`` attribute, the resulting
1530 function has the ``"probe-stack"`` attribute of the caller. If a
1531 function that has a ``"probe-stack"`` attribute is inlined into a
1532 function that has no ``"probe-stack"`` attribute at all, the resulting
1533 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001534``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001535 On a function, this attribute indicates that the function computes its
1536 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001537 without dereferencing any pointer arguments or otherwise accessing
1538 any mutable state (e.g. memory, control registers, etc) visible to
1539 caller functions. It does not write through any pointer arguments
1540 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001541 to callers. This means while it cannot unwind exceptions by calling
1542 the ``C++`` exception throwing methods (since they write to memory), there may
1543 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1544 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001545
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001546 On an argument, this attribute indicates that the function does not
1547 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001548 memory that the pointer points to if accessed through other pointers.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001549
1550 If a readnone function reads or writes memory visible to the program, or
1551 has other side-effects, the behavior is undefined. If a function reads from
1552 or writes to a readnone pointer argument, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001553``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001554 On a function, this attribute indicates that the function does not write
1555 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001556 modify any state (e.g. memory, control registers, etc) visible to
1557 caller functions. It may dereference pointer arguments and read
1558 state that may be set in the caller. A readonly function always
1559 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001560 called with the same set of arguments and global state. This means while it
1561 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1562 (since they write to memory), there may be non-``C++`` mechanisms that throw
1563 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001564
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001565 On an argument, this attribute indicates that the function does not write
1566 through this pointer argument, even though it may write to the memory that
1567 the pointer points to.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001568
1569 If a readonly function writes memory visible to the program, or
1570 has other side-effects, the behavior is undefined. If a function writes to
1571 a readonly pointer argument, the behavior is undefined.
whitequark08b20352017-06-22 23:22:36 +00001572``"stack-probe-size"``
1573 This attribute controls the behavior of stack probes: either
1574 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1575 It defines the size of the guard region. It ensures that if the function
1576 may use more stack space than the size of the guard region, stack probing
1577 sequence will be emitted. It takes one required integer value, which
1578 is 4096 by default.
1579
1580 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1581 a function with another ``"stack-probe-size"`` attribute, the resulting
1582 function has the ``"stack-probe-size"`` attribute that has the lower
1583 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1584 inlined into a function that has no ``"stack-probe-size"`` attribute
1585 at all, the resulting function has the ``"stack-probe-size"`` attribute
1586 of the callee.
Hans Wennborg89c35fc2018-02-23 13:46:25 +00001587``"no-stack-arg-probe"``
1588 This attribute disables ABI-required stack probes, if any.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001589``writeonly``
1590 On a function, this attribute indicates that the function may write to but
1591 does not read from memory.
1592
1593 On an argument, this attribute indicates that the function may write to but
1594 does not read through this pointer argument (even though it may read from
1595 the memory that the pointer points to).
Eli Friedman0f522bd2018-07-25 18:26:38 +00001596
1597 If a writeonly function reads memory visible to the program, or
1598 has other side-effects, the behavior is undefined. If a function reads
1599 from a writeonly pointer argument, the behavior is undefined.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001600``argmemonly``
1601 This attribute indicates that the only memory accesses inside function are
1602 loads and stores from objects pointed to by its pointer-typed arguments,
1603 with arbitrary offsets. Or in other words, all memory operations in the
1604 function can refer to memory only using pointers based on its function
1605 arguments.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001606
Igor Laevsky39d662f2015-07-11 10:30:36 +00001607 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1608 in order to specify that function reads only from its arguments.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001609
1610 If an argmemonly function reads or writes memory other than the pointer
1611 arguments, or has other side-effects, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001612``returns_twice``
1613 This attribute indicates that this function can return twice. The C
1614 ``setjmp`` is an example of such a function. The compiler disables
1615 some optimizations (like tail calls) in the caller of these
1616 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001617``safestack``
1618 This attribute indicates that
1619 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1620 protection is enabled for this function.
1621
1622 If a function that has a ``safestack`` attribute is inlined into a
1623 function that doesn't have a ``safestack`` attribute or which has an
1624 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1625 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001626``sanitize_address``
1627 This attribute indicates that AddressSanitizer checks
1628 (dynamic address safety analysis) are enabled for this function.
1629``sanitize_memory``
1630 This attribute indicates that MemorySanitizer checks (dynamic detection
1631 of accesses to uninitialized memory) are enabled for this function.
1632``sanitize_thread``
1633 This attribute indicates that ThreadSanitizer checks
1634 (dynamic thread safety analysis) are enabled for this function.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00001635``sanitize_hwaddress``
1636 This attribute indicates that HWAddressSanitizer checks
1637 (dynamic address safety analysis based on tagged pointers) are enabled for
1638 this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001639``speculatable``
1640 This function attribute indicates that the function does not have any
1641 effects besides calculating its result and does not have undefined behavior.
1642 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001643 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001644 externally observable. This attribute is only valid on functions
1645 and declarations, not on individual call sites. If a function is
1646 incorrectly marked as speculatable and really does exhibit
1647 undefined behavior, the undefined behavior may be observed even
1648 if the call site is dead code.
1649
Sean Silvab084af42012-12-07 10:36:55 +00001650``ssp``
1651 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001652 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001653 placed on the stack before the local variables that's checked upon
1654 return from the function to see if it has been overwritten. A
1655 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001656 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001657
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001658 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1659 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1660 - Calls to alloca() with variable sizes or constant sizes greater than
1661 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001662
Josh Magee24c7f062014-02-01 01:36:16 +00001663 Variables that are identified as requiring a protector will be arranged
1664 on the stack such that they are adjacent to the stack protector guard.
1665
Sean Silvab084af42012-12-07 10:36:55 +00001666 If a function that has an ``ssp`` attribute is inlined into a
1667 function that doesn't have an ``ssp`` attribute, then the resulting
1668 function will have an ``ssp`` attribute.
1669``sspreq``
1670 This attribute indicates that the function should *always* emit a
1671 stack smashing protector. This overrides the ``ssp`` function
1672 attribute.
1673
Josh Magee24c7f062014-02-01 01:36:16 +00001674 Variables that are identified as requiring a protector will be arranged
1675 on the stack such that they are adjacent to the stack protector guard.
1676 The specific layout rules are:
1677
1678 #. Large arrays and structures containing large arrays
1679 (``>= ssp-buffer-size``) are closest to the stack protector.
1680 #. Small arrays and structures containing small arrays
1681 (``< ssp-buffer-size``) are 2nd closest to the protector.
1682 #. Variables that have had their address taken are 3rd closest to the
1683 protector.
1684
Sean Silvab084af42012-12-07 10:36:55 +00001685 If a function that has an ``sspreq`` attribute is inlined into a
1686 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001687 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1688 an ``sspreq`` attribute.
1689``sspstrong``
1690 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001691 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001692 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001693 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001694
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001695 - Arrays of any size and type
1696 - Aggregates containing an array of any size and type.
1697 - Calls to alloca().
1698 - Local variables that have had their address taken.
1699
Josh Magee24c7f062014-02-01 01:36:16 +00001700 Variables that are identified as requiring a protector will be arranged
1701 on the stack such that they are adjacent to the stack protector guard.
1702 The specific layout rules are:
1703
1704 #. Large arrays and structures containing large arrays
1705 (``>= ssp-buffer-size``) are closest to the stack protector.
1706 #. Small arrays and structures containing small arrays
1707 (``< ssp-buffer-size``) are 2nd closest to the protector.
1708 #. Variables that have had their address taken are 3rd closest to the
1709 protector.
1710
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001711 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001712
1713 If a function that has an ``sspstrong`` attribute is inlined into a
1714 function that doesn't have an ``sspstrong`` attribute, then the
1715 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001716``strictfp``
1717 This attribute indicates that the function was called from a scope that
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001718 requires strict floating-point semantics. LLVM will not attempt any
1719 optimizations that require assumptions about the floating-point rounding
1720 mode or that might alter the state of floating-point status flags that
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001721 might otherwise be set or cleared by calling this function.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001722``"thunk"``
1723 This attribute indicates that the function will delegate to some other
1724 function with a tail call. The prototype of a thunk should not be used for
1725 optimization purposes. The caller is expected to cast the thunk prototype to
1726 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001727``uwtable``
1728 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001729 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001730 show that no exceptions passes by it. This is normally the case for
1731 the ELF x86-64 abi, but it can be disabled for some compilation
1732 units.
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001733``nocf_check``
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001734 This attribute indicates that no control-flow check will be performed on
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001735 the attributed entity. It disables -fcf-protection=<> for a specific
1736 entity to fine grain the HW control flow protection mechanism. The flag
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001737 is target independent and currently appertains to a function or function
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001738 pointer.
Vlad Tsyrklevichd17f61e2018-04-03 20:10:40 +00001739``shadowcallstack``
1740 This attribute indicates that the ShadowCallStack checks are enabled for
1741 the function. The instrumentation checks that the return address for the
1742 function has not changed between the function prolog and eiplog. It is
1743 currently x86_64-specific.
Sean Silvab084af42012-12-07 10:36:55 +00001744
Javed Absarf3d79042017-05-11 12:28:08 +00001745.. _glattrs:
1746
1747Global Attributes
1748-----------------
1749
1750Attributes may be set to communicate additional information about a global variable.
1751Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1752are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001753
1754.. _opbundles:
1755
1756Operand Bundles
1757---------------
1758
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001759Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001760with certain LLVM instructions (currently only ``call`` s and
1761``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001762incorrect and will change program semantics.
1763
1764Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001765
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001766 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001767 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1768 bundle operand ::= SSA value
1769 tag ::= string constant
1770
1771Operand bundles are **not** part of a function's signature, and a
1772given function may be called from multiple places with different kinds
1773of operand bundles. This reflects the fact that the operand bundles
1774are conceptually a part of the ``call`` (or ``invoke``), not the
1775callee being dispatched to.
1776
1777Operand bundles are a generic mechanism intended to support
1778runtime-introspection-like functionality for managed languages. While
1779the exact semantics of an operand bundle depend on the bundle tag,
1780there are certain limitations to how much the presence of an operand
1781bundle can influence the semantics of a program. These restrictions
1782are described as the semantics of an "unknown" operand bundle. As
1783long as the behavior of an operand bundle is describable within these
1784restrictions, LLVM does not need to have special knowledge of the
1785operand bundle to not miscompile programs containing it.
1786
David Majnemer34cacb42015-10-22 01:46:38 +00001787- The bundle operands for an unknown operand bundle escape in unknown
1788 ways before control is transferred to the callee or invokee.
1789- Calls and invokes with operand bundles have unknown read / write
1790 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001791 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001792 callsite specific attributes.
1793- An operand bundle at a call site cannot change the implementation
1794 of the called function. Inter-procedural optimizations work as
1795 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001796
Sanjoy Dascdafd842015-11-11 21:38:02 +00001797More specific types of operand bundles are described below.
1798
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001799.. _deopt_opbundles:
1800
Sanjoy Dascdafd842015-11-11 21:38:02 +00001801Deoptimization Operand Bundles
1802^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1803
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001804Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001805operand bundle tag. These operand bundles represent an alternate
1806"safe" continuation for the call site they're attached to, and can be
1807used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001808specified call site. There can be at most one ``"deopt"`` operand
1809bundle attached to a call site. Exact details of deoptimization is
1810out of scope for the language reference, but it usually involves
1811rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001812
1813From the compiler's perspective, deoptimization operand bundles make
1814the call sites they're attached to at least ``readonly``. They read
1815through all of their pointer typed operands (even if they're not
1816otherwise escaped) and the entire visible heap. Deoptimization
1817operand bundles do not capture their operands except during
1818deoptimization, in which case control will not be returned to the
1819compiled frame.
1820
Sanjoy Das2d161452015-11-18 06:23:38 +00001821The inliner knows how to inline through calls that have deoptimization
1822operand bundles. Just like inlining through a normal call site
1823involves composing the normal and exceptional continuations, inlining
1824through a call site with a deoptimization operand bundle needs to
1825appropriately compose the "safe" deoptimization continuation. The
1826inliner does this by prepending the parent's deoptimization
1827continuation to every deoptimization continuation in the inlined body.
1828E.g. inlining ``@f`` into ``@g`` in the following example
1829
1830.. code-block:: llvm
1831
1832 define void @f() {
1833 call void @x() ;; no deopt state
1834 call void @y() [ "deopt"(i32 10) ]
1835 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1836 ret void
1837 }
1838
1839 define void @g() {
1840 call void @f() [ "deopt"(i32 20) ]
1841 ret void
1842 }
1843
1844will result in
1845
1846.. code-block:: llvm
1847
1848 define void @g() {
1849 call void @x() ;; still no deopt state
1850 call void @y() [ "deopt"(i32 20, i32 10) ]
1851 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1852 ret void
1853 }
1854
1855It is the frontend's responsibility to structure or encode the
1856deoptimization state in a way that syntactically prepending the
1857caller's deoptimization state to the callee's deoptimization state is
1858semantically equivalent to composing the caller's deoptimization
1859continuation after the callee's deoptimization continuation.
1860
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001861.. _ob_funclet:
1862
David Majnemer3bb88c02015-12-15 21:27:27 +00001863Funclet Operand Bundles
1864^^^^^^^^^^^^^^^^^^^^^^^
1865
1866Funclet operand bundles are characterized by the ``"funclet"``
1867operand bundle tag. These operand bundles indicate that a call site
1868is within a particular funclet. There can be at most one
1869``"funclet"`` operand bundle attached to a call site and it must have
1870exactly one bundle operand.
1871
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001872If any funclet EH pads have been "entered" but not "exited" (per the
1873`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1874it is undefined behavior to execute a ``call`` or ``invoke`` which:
1875
1876* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1877 intrinsic, or
1878* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1879 not-yet-exited funclet EH pad.
1880
1881Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1882executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1883
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001884GC Transition Operand Bundles
1885^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1886
1887GC transition operand bundles are characterized by the
1888``"gc-transition"`` operand bundle tag. These operand bundles mark a
1889call as a transition between a function with one GC strategy to a
1890function with a different GC strategy. If coordinating the transition
1891between GC strategies requires additional code generation at the call
1892site, these bundles may contain any values that are needed by the
1893generated code. For more details, see :ref:`GC Transitions
1894<gc_transition_args>`.
1895
Sean Silvab084af42012-12-07 10:36:55 +00001896.. _moduleasm:
1897
1898Module-Level Inline Assembly
1899----------------------------
1900
1901Modules may contain "module-level inline asm" blocks, which corresponds
1902to the GCC "file scope inline asm" blocks. These blocks are internally
1903concatenated by LLVM and treated as a single unit, but may be separated
1904in the ``.ll`` file if desired. The syntax is very simple:
1905
1906.. code-block:: llvm
1907
1908 module asm "inline asm code goes here"
1909 module asm "more can go here"
1910
1911The strings can contain any character by escaping non-printable
1912characters. The escape sequence used is simply "\\xx" where "xx" is the
1913two digit hex code for the number.
1914
James Y Knightbc832ed2015-07-08 18:08:36 +00001915Note that the assembly string *must* be parseable by LLVM's integrated assembler
1916(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001917
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001918.. _langref_datalayout:
1919
Sean Silvab084af42012-12-07 10:36:55 +00001920Data Layout
1921-----------
1922
1923A module may specify a target specific data layout string that specifies
1924how data is to be laid out in memory. The syntax for the data layout is
1925simply:
1926
1927.. code-block:: llvm
1928
1929 target datalayout = "layout specification"
1930
1931The *layout specification* consists of a list of specifications
1932separated by the minus sign character ('-'). Each specification starts
1933with a letter and may include other information after the letter to
1934define some aspect of the data layout. The specifications accepted are
1935as follows:
1936
1937``E``
1938 Specifies that the target lays out data in big-endian form. That is,
1939 the bits with the most significance have the lowest address
1940 location.
1941``e``
1942 Specifies that the target lays out data in little-endian form. That
1943 is, the bits with the least significance have the lowest address
1944 location.
1945``S<size>``
1946 Specifies the natural alignment of the stack in bits. Alignment
1947 promotion of stack variables is limited to the natural stack
1948 alignment to avoid dynamic stack realignment. The stack alignment
1949 must be a multiple of 8-bits. If omitted, the natural stack
1950 alignment defaults to "unspecified", which does not prevent any
1951 alignment promotions.
Dylan McKayced2fe62018-02-19 09:56:22 +00001952``P<address space>``
1953 Specifies the address space that corresponds to program memory.
1954 Harvard architectures can use this to specify what space LLVM
1955 should place things such as functions into. If omitted, the
1956 program memory space defaults to the default address space of 0,
1957 which corresponds to a Von Neumann architecture that has code
1958 and data in the same space.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001959``A<address space>``
Dylan McKayced2fe62018-02-19 09:56:22 +00001960 Specifies the address space of objects created by '``alloca``'.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001961 Defaults to the default address space of 0.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001962``p[n]:<size>:<abi>:<pref>:<idx>``
Sean Silvab084af42012-12-07 10:36:55 +00001963 This specifies the *size* of a pointer and its ``<abi>`` and
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001964 ``<pref>``\erred alignments for address space ``n``. The fourth parameter
1965 ``<idx>`` is a size of index that used for address calculation. If not
1966 specified, the default index size is equal to the pointer size. All sizes
1967 are in bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001968 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001969 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001970``i<size>:<abi>:<pref>``
1971 This specifies the alignment for an integer type of a given bit
1972 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1973``v<size>:<abi>:<pref>``
1974 This specifies the alignment for a vector type of a given bit
1975 ``<size>``.
1976``f<size>:<abi>:<pref>``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001977 This specifies the alignment for a floating-point type of a given bit
Sean Silvab084af42012-12-07 10:36:55 +00001978 ``<size>``. Only values of ``<size>`` that are supported by the target
1979 will work. 32 (float) and 64 (double) are supported on all targets; 80
1980 or 128 (different flavors of long double) are also supported on some
1981 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001982``a:<abi>:<pref>``
1983 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001984``m:<mangling>``
Reid Klecknerf8b51c52018-03-16 20:13:32 +00001985 If present, specifies that llvm names are mangled in the output. Symbols
1986 prefixed with the mangling escape character ``\01`` are passed through
1987 directly to the assembler without the escape character. The mangling style
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001988 options are
1989
1990 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1991 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1992 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1993 symbols get a ``_`` prefix.
Reid Klecknerf8b51c52018-03-16 20:13:32 +00001994 * ``x``: Windows x86 COFF mangling: Private symbols get the usual prefix.
1995 Regular C symbols get a ``_`` prefix. Functions with ``__stdcall``,
1996 ``__fastcall``, and ``__vectorcall`` have custom mangling that appends
1997 ``@N`` where N is the number of bytes used to pass parameters. C++ symbols
1998 starting with ``?`` are not mangled in any way.
1999 * ``w``: Windows COFF mangling: Similar to ``x``, except that normal C
2000 symbols do not receive a ``_`` prefix.
Sean Silvab084af42012-12-07 10:36:55 +00002001``n<size1>:<size2>:<size3>...``
2002 This specifies a set of native integer widths for the target CPU in
2003 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
2004 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
2005 this set are considered to support most general arithmetic operations
2006 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00002007``ni:<address space0>:<address space1>:<address space2>...``
2008 This specifies pointer types with the specified address spaces
2009 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
2010 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00002011
Rafael Espindolaabdd7262014-01-06 21:40:24 +00002012On every specification that takes a ``<abi>:<pref>``, specifying the
2013``<pref>`` alignment is optional. If omitted, the preceding ``:``
2014should be omitted too and ``<pref>`` will be equal to ``<abi>``.
2015
Sean Silvab084af42012-12-07 10:36:55 +00002016When constructing the data layout for a given target, LLVM starts with a
2017default set of specifications which are then (possibly) overridden by
2018the specifications in the ``datalayout`` keyword. The default
2019specifications are given in this list:
2020
2021- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00002022- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
2023- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
2024 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002025- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00002026- ``i1:8:8`` - i1 is 8-bit (byte) aligned
2027- ``i8:8:8`` - i8 is 8-bit (byte) aligned
2028- ``i16:16:16`` - i16 is 16-bit aligned
2029- ``i32:32:32`` - i32 is 32-bit aligned
2030- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
2031 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002032- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002033- ``f32:32:32`` - float is 32-bit aligned
2034- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002035- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002036- ``v64:64:64`` - 64-bit vector is 64-bit aligned
2037- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00002038- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002039
2040When LLVM is determining the alignment for a given type, it uses the
2041following rules:
2042
2043#. If the type sought is an exact match for one of the specifications,
2044 that specification is used.
2045#. If no match is found, and the type sought is an integer type, then
2046 the smallest integer type that is larger than the bitwidth of the
2047 sought type is used. If none of the specifications are larger than
2048 the bitwidth then the largest integer type is used. For example,
2049 given the default specifications above, the i7 type will use the
2050 alignment of i8 (next largest) while both i65 and i256 will use the
2051 alignment of i64 (largest specified).
2052#. If no match is found, and the type sought is a vector type, then the
2053 largest vector type that is smaller than the sought vector type will
2054 be used as a fall back. This happens because <128 x double> can be
2055 implemented in terms of 64 <2 x double>, for example.
2056
2057The function of the data layout string may not be what you expect.
2058Notably, this is not a specification from the frontend of what alignment
2059the code generator should use.
2060
2061Instead, if specified, the target data layout is required to match what
2062the ultimate *code generator* expects. This string is used by the
2063mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00002064what the ultimate code generator uses. There is no way to generate IR
2065that does not embed this target-specific detail into the IR. If you
2066don't specify the string, the default specifications will be used to
2067generate a Data Layout and the optimization phases will operate
2068accordingly and introduce target specificity into the IR with respect to
2069these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00002070
Bill Wendling5cc90842013-10-18 23:41:25 +00002071.. _langref_triple:
2072
2073Target Triple
2074-------------
2075
2076A module may specify a target triple string that describes the target
2077host. The syntax for the target triple is simply:
2078
2079.. code-block:: llvm
2080
2081 target triple = "x86_64-apple-macosx10.7.0"
2082
2083The *target triple* string consists of a series of identifiers delimited
2084by the minus sign character ('-'). The canonical forms are:
2085
2086::
2087
2088 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2089 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2090
2091This information is passed along to the backend so that it generates
2092code for the proper architecture. It's possible to override this on the
2093command line with the ``-mtriple`` command line option.
2094
Sean Silvab084af42012-12-07 10:36:55 +00002095.. _pointeraliasing:
2096
2097Pointer Aliasing Rules
2098----------------------
2099
2100Any memory access must be done through a pointer value associated with
2101an address range of the memory access, otherwise the behavior is
2102undefined. Pointer values are associated with address ranges according
2103to the following rules:
2104
2105- A pointer value is associated with the addresses associated with any
2106 value it is *based* on.
2107- An address of a global variable is associated with the address range
2108 of the variable's storage.
2109- The result value of an allocation instruction is associated with the
2110 address range of the allocated storage.
2111- A null pointer in the default address-space is associated with no
2112 address.
2113- An integer constant other than zero or a pointer value returned from
2114 a function not defined within LLVM may be associated with address
2115 ranges allocated through mechanisms other than those provided by
2116 LLVM. Such ranges shall not overlap with any ranges of addresses
2117 allocated by mechanisms provided by LLVM.
2118
2119A pointer value is *based* on another pointer value according to the
2120following rules:
2121
Sanjoy Das6d489492017-09-13 18:49:22 +00002122- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2123 the pointer-typed operand of the ``getelementptr``.
2124- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2125 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2126 of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002127- The result value of a ``bitcast`` is *based* on the operand of the
2128 ``bitcast``.
2129- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2130 values that contribute (directly or indirectly) to the computation of
2131 the pointer's value.
2132- The "*based* on" relationship is transitive.
2133
2134Note that this definition of *"based"* is intentionally similar to the
2135definition of *"based"* in C99, though it is slightly weaker.
2136
2137LLVM IR does not associate types with memory. The result type of a
2138``load`` merely indicates the size and alignment of the memory from
2139which to load, as well as the interpretation of the value. The first
2140operand type of a ``store`` similarly only indicates the size and
2141alignment of the store.
2142
2143Consequently, type-based alias analysis, aka TBAA, aka
2144``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2145:ref:`Metadata <metadata>` may be used to encode additional information
2146which specialized optimization passes may use to implement type-based
2147alias analysis.
2148
2149.. _volatile:
2150
2151Volatile Memory Accesses
2152------------------------
2153
2154Certain memory accesses, such as :ref:`load <i_load>`'s,
2155:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2156marked ``volatile``. The optimizers must not change the number of
2157volatile operations or change their order of execution relative to other
2158volatile operations. The optimizers *may* change the order of volatile
2159operations relative to non-volatile operations. This is not Java's
2160"volatile" and has no cross-thread synchronization behavior.
2161
Andrew Trick89fc5a62013-01-30 21:19:35 +00002162IR-level volatile loads and stores cannot safely be optimized into
2163llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2164flagged volatile. Likewise, the backend should never split or merge
2165target-legal volatile load/store instructions.
2166
Andrew Trick7e6f9282013-01-31 00:49:39 +00002167.. admonition:: Rationale
2168
2169 Platforms may rely on volatile loads and stores of natively supported
2170 data width to be executed as single instruction. For example, in C
2171 this holds for an l-value of volatile primitive type with native
2172 hardware support, but not necessarily for aggregate types. The
2173 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002174 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002175 do not violate the frontend's contract with the language.
2176
Sean Silvab084af42012-12-07 10:36:55 +00002177.. _memmodel:
2178
2179Memory Model for Concurrent Operations
2180--------------------------------------
2181
2182The LLVM IR does not define any way to start parallel threads of
2183execution or to register signal handlers. Nonetheless, there are
2184platform-specific ways to create them, and we define LLVM IR's behavior
2185in their presence. This model is inspired by the C++0x memory model.
2186
2187For a more informal introduction to this model, see the :doc:`Atomics`.
2188
2189We define a *happens-before* partial order as the least partial order
2190that
2191
2192- Is a superset of single-thread program order, and
2193- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2194 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2195 techniques, like pthread locks, thread creation, thread joining,
2196 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2197 Constraints <ordering>`).
2198
2199Note that program order does not introduce *happens-before* edges
2200between a thread and signals executing inside that thread.
2201
2202Every (defined) read operation (load instructions, memcpy, atomic
2203loads/read-modify-writes, etc.) R reads a series of bytes written by
2204(defined) write operations (store instructions, atomic
2205stores/read-modify-writes, memcpy, etc.). For the purposes of this
2206section, initialized globals are considered to have a write of the
2207initializer which is atomic and happens before any other read or write
2208of the memory in question. For each byte of a read R, R\ :sub:`byte`
2209may see any write to the same byte, except:
2210
2211- If write\ :sub:`1` happens before write\ :sub:`2`, and
2212 write\ :sub:`2` happens before R\ :sub:`byte`, then
2213 R\ :sub:`byte` does not see write\ :sub:`1`.
2214- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2215 R\ :sub:`byte` does not see write\ :sub:`3`.
2216
2217Given that definition, R\ :sub:`byte` is defined as follows:
2218
2219- If R is volatile, the result is target-dependent. (Volatile is
2220 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002221 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002222 like normal memory. It does not generally provide cross-thread
2223 synchronization.)
2224- Otherwise, if there is no write to the same byte that happens before
2225 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2226- Otherwise, if R\ :sub:`byte` may see exactly one write,
2227 R\ :sub:`byte` returns the value written by that write.
2228- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2229 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2230 Memory Ordering Constraints <ordering>` section for additional
2231 constraints on how the choice is made.
2232- Otherwise R\ :sub:`byte` returns ``undef``.
2233
2234R returns the value composed of the series of bytes it read. This
2235implies that some bytes within the value may be ``undef`` **without**
2236the entire value being ``undef``. Note that this only defines the
2237semantics of the operation; it doesn't mean that targets will emit more
2238than one instruction to read the series of bytes.
2239
2240Note that in cases where none of the atomic intrinsics are used, this
2241model places only one restriction on IR transformations on top of what
2242is required for single-threaded execution: introducing a store to a byte
2243which might not otherwise be stored is not allowed in general.
2244(Specifically, in the case where another thread might write to and read
2245from an address, introducing a store can change a load that may see
2246exactly one write into a load that may see multiple writes.)
2247
2248.. _ordering:
2249
2250Atomic Memory Ordering Constraints
2251----------------------------------
2252
2253Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2254:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2255:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002256ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002257the same address they *synchronize with*. These semantics are borrowed
2258from Java and C++0x, but are somewhat more colloquial. If these
2259descriptions aren't precise enough, check those specs (see spec
2260references in the :doc:`atomics guide <Atomics>`).
2261:ref:`fence <i_fence>` instructions treat these orderings somewhat
2262differently since they don't take an address. See that instruction's
2263documentation for details.
2264
2265For a simpler introduction to the ordering constraints, see the
2266:doc:`Atomics`.
2267
2268``unordered``
2269 The set of values that can be read is governed by the happens-before
2270 partial order. A value cannot be read unless some operation wrote
2271 it. This is intended to provide a guarantee strong enough to model
2272 Java's non-volatile shared variables. This ordering cannot be
2273 specified for read-modify-write operations; it is not strong enough
2274 to make them atomic in any interesting way.
2275``monotonic``
2276 In addition to the guarantees of ``unordered``, there is a single
2277 total order for modifications by ``monotonic`` operations on each
2278 address. All modification orders must be compatible with the
2279 happens-before order. There is no guarantee that the modification
2280 orders can be combined to a global total order for the whole program
2281 (and this often will not be possible). The read in an atomic
2282 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2283 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2284 order immediately before the value it writes. If one atomic read
2285 happens before another atomic read of the same address, the later
2286 read must see the same value or a later value in the address's
2287 modification order. This disallows reordering of ``monotonic`` (or
2288 stronger) operations on the same address. If an address is written
2289 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2290 read that address repeatedly, the other threads must eventually see
2291 the write. This corresponds to the C++0x/C1x
2292 ``memory_order_relaxed``.
2293``acquire``
2294 In addition to the guarantees of ``monotonic``, a
2295 *synchronizes-with* edge may be formed with a ``release`` operation.
2296 This is intended to model C++'s ``memory_order_acquire``.
2297``release``
2298 In addition to the guarantees of ``monotonic``, if this operation
2299 writes a value which is subsequently read by an ``acquire``
2300 operation, it *synchronizes-with* that operation. (This isn't a
2301 complete description; see the C++0x definition of a release
2302 sequence.) This corresponds to the C++0x/C1x
2303 ``memory_order_release``.
2304``acq_rel`` (acquire+release)
2305 Acts as both an ``acquire`` and ``release`` operation on its
2306 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2307``seq_cst`` (sequentially consistent)
2308 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002309 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002310 writes), there is a global total order on all
2311 sequentially-consistent operations on all addresses, which is
2312 consistent with the *happens-before* partial order and with the
2313 modification orders of all the affected addresses. Each
2314 sequentially-consistent read sees the last preceding write to the
2315 same address in this global order. This corresponds to the C++0x/C1x
2316 ``memory_order_seq_cst`` and Java volatile.
2317
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002318.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002319
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002320If an atomic operation is marked ``syncscope("singlethread")``, it only
2321*synchronizes with* and only participates in the seq\_cst total orderings of
2322other operations running in the same thread (for example, in signal handlers).
2323
2324If an atomic operation is marked ``syncscope("<target-scope>")``, where
2325``<target-scope>`` is a target specific synchronization scope, then it is target
2326dependent if it *synchronizes with* and participates in the seq\_cst total
2327orderings of other operations.
2328
2329Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2330or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2331seq\_cst total orderings of other operations that are not marked
2332``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002333
Sanjay Patel54b161e2018-03-20 16:38:22 +00002334.. _floatenv:
2335
2336Floating-Point Environment
2337--------------------------
2338
2339The default LLVM floating-point environment assumes that floating-point
2340instructions do not have side effects. Results assume the round-to-nearest
2341rounding mode. No floating-point exception state is maintained in this
2342environment. Therefore, there is no attempt to create or preserve invalid
Chandler Carruth297620d2018-08-06 02:02:09 +00002343operation (SNaN) or division-by-zero exceptions.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002344
2345The benefit of this exception-free assumption is that floating-point
2346operations may be speculated freely without any other fast-math relaxations
2347to the floating-point model.
2348
2349Code that requires different behavior than this should use the
Sanjay Patelec95e0e2018-03-20 17:05:19 +00002350:ref:`Constrained Floating-Point Intrinsics <constrainedfp>`.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002351
Sean Silvab084af42012-12-07 10:36:55 +00002352.. _fastmath:
2353
2354Fast-Math Flags
2355---------------
2356
Sanjay Patel629c4112017-11-06 16:27:15 +00002357LLVM IR floating-point operations (:ref:`fadd <i_fadd>`,
Sean Silvab084af42012-12-07 10:36:55 +00002358:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002359:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002360may use the following flags to enable otherwise unsafe
Sanjay Patel629c4112017-11-06 16:27:15 +00002361floating-point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002362
2363``nnan``
2364 No NaNs - Allow optimizations to assume the arguments and result are not
Eli Friedmand3a30872018-07-17 20:31:42 +00002365 NaN. If an argument is a nan, or the result would be a nan, it produces
2366 a :ref:`poison value <poisonvalues>` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002367
2368``ninf``
2369 No Infs - Allow optimizations to assume the arguments and result are not
Eli Friedmand3a30872018-07-17 20:31:42 +00002370 +/-Inf. If an argument is +/-Inf, or the result would be +/-Inf, it
2371 produces a :ref:`poison value <poisonvalues>` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002372
2373``nsz``
2374 No Signed Zeros - Allow optimizations to treat the sign of a zero
2375 argument or result as insignificant.
2376
2377``arcp``
2378 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2379 argument rather than perform division.
2380
Adam Nemetcd847a82017-03-28 20:11:52 +00002381``contract``
2382 Allow floating-point contraction (e.g. fusing a multiply followed by an
2383 addition into a fused multiply-and-add).
2384
Sanjay Patel629c4112017-11-06 16:27:15 +00002385``afn``
2386 Approximate functions - Allow substitution of approximate calculations for
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002387 functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2388 for places where this can apply to LLVM's intrinsic math functions.
Sanjay Patel629c4112017-11-06 16:27:15 +00002389
2390``reassoc``
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002391 Allow reassociation transformations for floating-point instructions.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002392 This may dramatically change results in floating-point.
Sanjay Patel629c4112017-11-06 16:27:15 +00002393
Sean Silvab084af42012-12-07 10:36:55 +00002394``fast``
Sanjay Patel629c4112017-11-06 16:27:15 +00002395 This flag implies all of the others.
Sean Silvab084af42012-12-07 10:36:55 +00002396
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002397.. _uselistorder:
2398
2399Use-list Order Directives
2400-------------------------
2401
2402Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002403order to be recreated. ``<order-indexes>`` is a comma-separated list of
2404indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002405value's use-list is immediately sorted by these indexes.
2406
Sean Silvaa1190322015-08-06 22:56:48 +00002407Use-list directives may appear at function scope or global scope. They are not
2408instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002409function scope, they must appear after the terminator of the final basic block.
2410
2411If basic blocks have their address taken via ``blockaddress()`` expressions,
2412``uselistorder_bb`` can be used to reorder their use-lists from outside their
2413function's scope.
2414
2415:Syntax:
2416
2417::
2418
2419 uselistorder <ty> <value>, { <order-indexes> }
2420 uselistorder_bb @function, %block { <order-indexes> }
2421
2422:Examples:
2423
2424::
2425
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002426 define void @foo(i32 %arg1, i32 %arg2) {
2427 entry:
2428 ; ... instructions ...
2429 bb:
2430 ; ... instructions ...
2431
2432 ; At function scope.
2433 uselistorder i32 %arg1, { 1, 0, 2 }
2434 uselistorder label %bb, { 1, 0 }
2435 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002436
2437 ; At global scope.
2438 uselistorder i32* @global, { 1, 2, 0 }
2439 uselistorder i32 7, { 1, 0 }
2440 uselistorder i32 (i32) @bar, { 1, 0 }
2441 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2442
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002443.. _source_filename:
2444
2445Source Filename
2446---------------
2447
2448The *source filename* string is set to the original module identifier,
2449which will be the name of the compiled source file when compiling from
2450source through the clang front end, for example. It is then preserved through
2451the IR and bitcode.
2452
2453This is currently necessary to generate a consistent unique global
2454identifier for local functions used in profile data, which prepends the
2455source file name to the local function name.
2456
2457The syntax for the source file name is simply:
2458
Renato Golin124f2592016-07-20 12:16:38 +00002459.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002460
2461 source_filename = "/path/to/source.c"
2462
Sean Silvab084af42012-12-07 10:36:55 +00002463.. _typesystem:
2464
2465Type System
2466===========
2467
2468The LLVM type system is one of the most important features of the
2469intermediate representation. Being typed enables a number of
2470optimizations to be performed on the intermediate representation
2471directly, without having to do extra analyses on the side before the
2472transformation. A strong type system makes it easier to read the
2473generated code and enables novel analyses and transformations that are
2474not feasible to perform on normal three address code representations.
2475
Rafael Espindola08013342013-12-07 19:34:20 +00002476.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002477
Rafael Espindola08013342013-12-07 19:34:20 +00002478Void Type
2479---------
Sean Silvab084af42012-12-07 10:36:55 +00002480
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002481:Overview:
2482
Rafael Espindola08013342013-12-07 19:34:20 +00002483
2484The void type does not represent any value and has no size.
2485
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002486:Syntax:
2487
Rafael Espindola08013342013-12-07 19:34:20 +00002488
2489::
2490
2491 void
Sean Silvab084af42012-12-07 10:36:55 +00002492
2493
Rafael Espindola08013342013-12-07 19:34:20 +00002494.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002495
Rafael Espindola08013342013-12-07 19:34:20 +00002496Function Type
2497-------------
Sean Silvab084af42012-12-07 10:36:55 +00002498
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002499:Overview:
2500
Sean Silvab084af42012-12-07 10:36:55 +00002501
Rafael Espindola08013342013-12-07 19:34:20 +00002502The function type can be thought of as a function signature. It consists of a
2503return type and a list of formal parameter types. The return type of a function
2504type is a void type or first class type --- except for :ref:`label <t_label>`
2505and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002506
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002507:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002508
Rafael Espindola08013342013-12-07 19:34:20 +00002509::
Sean Silvab084af42012-12-07 10:36:55 +00002510
Rafael Espindola08013342013-12-07 19:34:20 +00002511 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002512
Rafael Espindola08013342013-12-07 19:34:20 +00002513...where '``<parameter list>``' is a comma-separated list of type
2514specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002515indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002516argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002517handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002518except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002519
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002520:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002521
Rafael Espindola08013342013-12-07 19:34:20 +00002522+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2523| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2524+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2525| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2526+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2527| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2528+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2529| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2530+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2531
2532.. _t_firstclass:
2533
2534First Class Types
2535-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002536
2537The :ref:`first class <t_firstclass>` types are perhaps the most important.
2538Values of these types are the only ones which can be produced by
2539instructions.
2540
Rafael Espindola08013342013-12-07 19:34:20 +00002541.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002542
Rafael Espindola08013342013-12-07 19:34:20 +00002543Single Value Types
2544^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002545
Rafael Espindola08013342013-12-07 19:34:20 +00002546These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002547
2548.. _t_integer:
2549
2550Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002551""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002552
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002553:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002554
2555The integer type is a very simple type that simply specifies an
2556arbitrary bit width for the integer type desired. Any bit width from 1
2557bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2558
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002559:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002560
2561::
2562
2563 iN
2564
2565The number of bits the integer will occupy is specified by the ``N``
2566value.
2567
2568Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002569*********
Sean Silvab084af42012-12-07 10:36:55 +00002570
2571+----------------+------------------------------------------------+
2572| ``i1`` | a single-bit integer. |
2573+----------------+------------------------------------------------+
2574| ``i32`` | a 32-bit integer. |
2575+----------------+------------------------------------------------+
2576| ``i1942652`` | a really big integer of over 1 million bits. |
2577+----------------+------------------------------------------------+
2578
2579.. _t_floating:
2580
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002581Floating-Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002582""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002583
2584.. list-table::
2585 :header-rows: 1
2586
2587 * - Type
2588 - Description
2589
2590 * - ``half``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002591 - 16-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002592
2593 * - ``float``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002594 - 32-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002595
2596 * - ``double``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002597 - 64-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002598
2599 * - ``fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002600 - 128-bit floating-point value (112-bit mantissa)
Sean Silvab084af42012-12-07 10:36:55 +00002601
2602 * - ``x86_fp80``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002603 - 80-bit floating-point value (X87)
Sean Silvab084af42012-12-07 10:36:55 +00002604
2605 * - ``ppc_fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002606 - 128-bit floating-point value (two 64-bits)
Sean Silvab084af42012-12-07 10:36:55 +00002607
Sanjay Patelbab6ce02018-03-21 15:22:09 +00002608The binary format of half, float, double, and fp128 correspond to the
2609IEEE-754-2008 specifications for binary16, binary32, binary64, and binary128
2610respectively.
2611
Reid Kleckner9a16d082014-03-05 02:41:37 +00002612X86_mmx Type
2613""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002614
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002615:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002616
Reid Kleckner9a16d082014-03-05 02:41:37 +00002617The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002618machine. The operations allowed on it are quite limited: parameters and
2619return values, load and store, and bitcast. User-specified MMX
2620instructions are represented as intrinsic or asm calls with arguments
2621and/or results of this type. There are no arrays, vectors or constants
2622of this type.
2623
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002624:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002625
2626::
2627
Reid Kleckner9a16d082014-03-05 02:41:37 +00002628 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002629
Sean Silvab084af42012-12-07 10:36:55 +00002630
Rafael Espindola08013342013-12-07 19:34:20 +00002631.. _t_pointer:
2632
2633Pointer Type
2634""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002635
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002636:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002637
Rafael Espindola08013342013-12-07 19:34:20 +00002638The pointer type is used to specify memory locations. Pointers are
2639commonly used to reference objects in memory.
2640
2641Pointer types may have an optional address space attribute defining the
2642numbered address space where the pointed-to object resides. The default
2643address space is number zero. The semantics of non-zero address spaces
2644are target-specific.
2645
2646Note that LLVM does not permit pointers to void (``void*``) nor does it
2647permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002648
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002649:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002650
2651::
2652
Rafael Espindola08013342013-12-07 19:34:20 +00002653 <type> *
2654
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002655:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002656
2657+-------------------------+--------------------------------------------------------------------------------------------------------------+
2658| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2659+-------------------------+--------------------------------------------------------------------------------------------------------------+
2660| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2661+-------------------------+--------------------------------------------------------------------------------------------------------------+
2662| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2663+-------------------------+--------------------------------------------------------------------------------------------------------------+
2664
2665.. _t_vector:
2666
2667Vector Type
2668"""""""""""
2669
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002670:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002671
2672A vector type is a simple derived type that represents a vector of
2673elements. Vector types are used when multiple primitive data are
2674operated in parallel using a single instruction (SIMD). A vector type
2675requires a size (number of elements) and an underlying primitive data
2676type. Vector types are considered :ref:`first class <t_firstclass>`.
2677
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002678:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002679
2680::
2681
2682 < <# elements> x <elementtype> >
2683
2684The number of elements is a constant integer value larger than 0;
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002685elementtype may be any integer, floating-point or pointer type. Vectors
Manuel Jacob961f7872014-07-30 12:30:06 +00002686of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002687
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002688:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002689
2690+-------------------+--------------------------------------------------+
2691| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2692+-------------------+--------------------------------------------------+
2693| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2694+-------------------+--------------------------------------------------+
2695| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2696+-------------------+--------------------------------------------------+
2697| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2698+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002699
2700.. _t_label:
2701
2702Label Type
2703^^^^^^^^^^
2704
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002705:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002706
2707The label type represents code labels.
2708
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002709:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002710
2711::
2712
2713 label
2714
David Majnemerb611e3f2015-08-14 05:09:07 +00002715.. _t_token:
2716
2717Token Type
2718^^^^^^^^^^
2719
2720:Overview:
2721
2722The token type is used when a value is associated with an instruction
2723but all uses of the value must not attempt to introspect or obscure it.
2724As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2725:ref:`select <i_select>` of type token.
2726
2727:Syntax:
2728
2729::
2730
2731 token
2732
2733
2734
Sean Silvab084af42012-12-07 10:36:55 +00002735.. _t_metadata:
2736
2737Metadata Type
2738^^^^^^^^^^^^^
2739
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002740:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002741
2742The metadata type represents embedded metadata. No derived types may be
2743created from metadata except for :ref:`function <t_function>` arguments.
2744
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002745:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002746
2747::
2748
2749 metadata
2750
Sean Silvab084af42012-12-07 10:36:55 +00002751.. _t_aggregate:
2752
2753Aggregate Types
2754^^^^^^^^^^^^^^^
2755
2756Aggregate Types are a subset of derived types that can contain multiple
2757member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2758aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2759aggregate types.
2760
2761.. _t_array:
2762
2763Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002764""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002765
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002766:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002767
2768The array type is a very simple derived type that arranges elements
2769sequentially in memory. The array type requires a size (number of
2770elements) and an underlying data type.
2771
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002772:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002773
2774::
2775
2776 [<# elements> x <elementtype>]
2777
2778The number of elements is a constant integer value; ``elementtype`` may
2779be any type with a size.
2780
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002781:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002782
2783+------------------+--------------------------------------+
2784| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2785+------------------+--------------------------------------+
2786| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2787+------------------+--------------------------------------+
2788| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2789+------------------+--------------------------------------+
2790
2791Here are some examples of multidimensional arrays:
2792
2793+-----------------------------+----------------------------------------------------------+
2794| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2795+-----------------------------+----------------------------------------------------------+
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002796| ``[12 x [10 x float]]`` | 12x10 array of single precision floating-point values. |
Sean Silvab084af42012-12-07 10:36:55 +00002797+-----------------------------+----------------------------------------------------------+
2798| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2799+-----------------------------+----------------------------------------------------------+
2800
2801There is no restriction on indexing beyond the end of the array implied
2802by a static type (though there are restrictions on indexing beyond the
2803bounds of an allocated object in some cases). This means that
2804single-dimension 'variable sized array' addressing can be implemented in
2805LLVM with a zero length array type. An implementation of 'pascal style
2806arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2807example.
2808
Sean Silvab084af42012-12-07 10:36:55 +00002809.. _t_struct:
2810
2811Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002812""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002813
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002814:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002815
2816The structure type is used to represent a collection of data members
2817together in memory. The elements of a structure may be any type that has
2818a size.
2819
2820Structures in memory are accessed using '``load``' and '``store``' by
2821getting a pointer to a field with the '``getelementptr``' instruction.
2822Structures in registers are accessed using the '``extractvalue``' and
2823'``insertvalue``' instructions.
2824
2825Structures may optionally be "packed" structures, which indicate that
2826the alignment of the struct is one byte, and that there is no padding
2827between the elements. In non-packed structs, padding between field types
2828is inserted as defined by the DataLayout string in the module, which is
2829required to match what the underlying code generator expects.
2830
2831Structures can either be "literal" or "identified". A literal structure
2832is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2833identified types are always defined at the top level with a name.
2834Literal types are uniqued by their contents and can never be recursive
2835or opaque since there is no way to write one. Identified types can be
2836recursive, can be opaqued, and are never uniqued.
2837
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002838:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002839
2840::
2841
2842 %T1 = type { <type list> } ; Identified normal struct type
2843 %T2 = type <{ <type list> }> ; Identified packed struct type
2844
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002845:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002846
2847+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2848| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2849+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002850| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002851+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2852| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2853+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2854
2855.. _t_opaque:
2856
2857Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002858""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002859
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002860:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002861
2862Opaque structure types are used to represent named structure types that
2863do not have a body specified. This corresponds (for example) to the C
2864notion of a forward declared structure.
2865
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002866:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002867
2868::
2869
2870 %X = type opaque
2871 %52 = type opaque
2872
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002873:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002874
2875+--------------+-------------------+
2876| ``opaque`` | An opaque type. |
2877+--------------+-------------------+
2878
Sean Silva1703e702014-04-08 21:06:22 +00002879.. _constants:
2880
Sean Silvab084af42012-12-07 10:36:55 +00002881Constants
2882=========
2883
2884LLVM has several different basic types of constants. This section
2885describes them all and their syntax.
2886
2887Simple Constants
2888----------------
2889
2890**Boolean constants**
2891 The two strings '``true``' and '``false``' are both valid constants
2892 of the ``i1`` type.
2893**Integer constants**
2894 Standard integers (such as '4') are constants of the
2895 :ref:`integer <t_integer>` type. Negative numbers may be used with
2896 integer types.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002897**Floating-point constants**
2898 Floating-point constants use standard decimal notation (e.g.
Sean Silvab084af42012-12-07 10:36:55 +00002899 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2900 hexadecimal notation (see below). The assembler requires the exact
2901 decimal value of a floating-point constant. For example, the
2902 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002903 decimal in binary. Floating-point constants must have a
2904 :ref:`floating-point <t_floating>` type.
Sean Silvab084af42012-12-07 10:36:55 +00002905**Null pointer constants**
2906 The identifier '``null``' is recognized as a null pointer constant
2907 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002908**Token constants**
2909 The identifier '``none``' is recognized as an empty token constant
2910 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002911
2912The one non-intuitive notation for constants is the hexadecimal form of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002913floating-point constants. For example, the form
Sean Silvab084af42012-12-07 10:36:55 +00002914'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002915than) '``double 4.5e+15``'. The only time hexadecimal floating-point
Sean Silvab084af42012-12-07 10:36:55 +00002916constants are required (and the only time that they are generated by the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002917disassembler) is when a floating-point constant must be emitted but it
2918cannot be represented as a decimal floating-point number in a reasonable
Sean Silvab084af42012-12-07 10:36:55 +00002919number of digits. For example, NaN's, infinities, and other special
2920values are represented in their IEEE hexadecimal format so that assembly
2921and disassembly do not cause any bits to change in the constants.
2922
2923When using the hexadecimal form, constants of types half, float, and
2924double are represented using the 16-digit form shown above (which
2925matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002926must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002927precision, respectively. Hexadecimal format is always used for long
2928double, and there are three forms of long double. The 80-bit format used
2929by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2930128-bit format used by PowerPC (two adjacent doubles) is represented by
2931``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002932represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2933will only work if they match the long double format on your target.
2934The IEEE 16-bit format (half precision) is represented by ``0xH``
2935followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2936(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002937
Reid Kleckner9a16d082014-03-05 02:41:37 +00002938There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002939
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002940.. _complexconstants:
2941
Sean Silvab084af42012-12-07 10:36:55 +00002942Complex Constants
2943-----------------
2944
2945Complex constants are a (potentially recursive) combination of simple
2946constants and smaller complex constants.
2947
2948**Structure constants**
2949 Structure constants are represented with notation similar to
2950 structure type definitions (a comma separated list of elements,
2951 surrounded by braces (``{}``)). For example:
2952 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2953 "``@G = external global i32``". Structure constants must have
2954 :ref:`structure type <t_struct>`, and the number and types of elements
2955 must match those specified by the type.
2956**Array constants**
2957 Array constants are represented with notation similar to array type
2958 definitions (a comma separated list of elements, surrounded by
2959 square brackets (``[]``)). For example:
2960 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2961 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002962 match those specified by the type. As a special case, character array
2963 constants may also be represented as a double-quoted string using the ``c``
2964 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002965**Vector constants**
2966 Vector constants are represented with notation similar to vector
2967 type definitions (a comma separated list of elements, surrounded by
2968 less-than/greater-than's (``<>``)). For example:
2969 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2970 must have :ref:`vector type <t_vector>`, and the number and types of
2971 elements must match those specified by the type.
2972**Zero initialization**
2973 The string '``zeroinitializer``' can be used to zero initialize a
2974 value to zero of *any* type, including scalar and
2975 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2976 having to print large zero initializers (e.g. for large arrays) and
2977 is always exactly equivalent to using explicit zero initializers.
2978**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002979 A metadata node is a constant tuple without types. For example:
2980 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002981 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2982 Unlike other typed constants that are meant to be interpreted as part of
2983 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002984 information such as debug info.
2985
2986Global Variable and Function Addresses
2987--------------------------------------
2988
2989The addresses of :ref:`global variables <globalvars>` and
2990:ref:`functions <functionstructure>` are always implicitly valid
2991(link-time) constants. These constants are explicitly referenced when
2992the :ref:`identifier for the global <identifiers>` is used and always have
2993:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2994file:
2995
2996.. code-block:: llvm
2997
2998 @X = global i32 17
2999 @Y = global i32 42
3000 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
3001
3002.. _undefvalues:
3003
3004Undefined Values
3005----------------
3006
3007The string '``undef``' can be used anywhere a constant is expected, and
3008indicates that the user of the value may receive an unspecified
3009bit-pattern. Undefined values may be of any type (other than '``label``'
3010or '``void``') and be used anywhere a constant is permitted.
3011
3012Undefined values are useful because they indicate to the compiler that
3013the program is well defined no matter what value is used. This gives the
3014compiler more freedom to optimize. Here are some examples of
3015(potentially surprising) transformations that are valid (in pseudo IR):
3016
3017.. code-block:: llvm
3018
3019 %A = add %X, undef
3020 %B = sub %X, undef
3021 %C = xor %X, undef
3022 Safe:
3023 %A = undef
3024 %B = undef
3025 %C = undef
3026
3027This is safe because all of the output bits are affected by the undef
3028bits. Any output bit can have a zero or one depending on the input bits.
3029
3030.. code-block:: llvm
3031
3032 %A = or %X, undef
3033 %B = and %X, undef
3034 Safe:
3035 %A = -1
3036 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00003037 Safe:
3038 %A = %X ;; By choosing undef as 0
3039 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00003040 Unsafe:
3041 %A = undef
3042 %B = undef
3043
3044These logical operations have bits that are not always affected by the
3045input. For example, if ``%X`` has a zero bit, then the output of the
3046'``and``' operation will always be a zero for that bit, no matter what
3047the corresponding bit from the '``undef``' is. As such, it is unsafe to
3048optimize or assume that the result of the '``and``' is '``undef``'.
3049However, it is safe to assume that all bits of the '``undef``' could be
30500, and optimize the '``and``' to 0. Likewise, it is safe to assume that
3051all the bits of the '``undef``' operand to the '``or``' could be set,
3052allowing the '``or``' to be folded to -1.
3053
3054.. code-block:: llvm
3055
3056 %A = select undef, %X, %Y
3057 %B = select undef, 42, %Y
3058 %C = select %X, %Y, undef
3059 Safe:
3060 %A = %X (or %Y)
3061 %B = 42 (or %Y)
3062 %C = %Y
3063 Unsafe:
3064 %A = undef
3065 %B = undef
3066 %C = undef
3067
3068This set of examples shows that undefined '``select``' (and conditional
3069branch) conditions can go *either way*, but they have to come from one
3070of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
3071both known to have a clear low bit, then ``%A`` would have to have a
3072cleared low bit. However, in the ``%C`` example, the optimizer is
3073allowed to assume that the '``undef``' operand could be the same as
3074``%Y``, allowing the whole '``select``' to be eliminated.
3075
Renato Golin124f2592016-07-20 12:16:38 +00003076.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003077
3078 %A = xor undef, undef
3079
3080 %B = undef
3081 %C = xor %B, %B
3082
3083 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00003084 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00003085 %F = icmp gte %D, 4
3086
3087 Safe:
3088 %A = undef
3089 %B = undef
3090 %C = undef
3091 %D = undef
3092 %E = undef
3093 %F = undef
3094
3095This example points out that two '``undef``' operands are not
3096necessarily the same. This can be surprising to people (and also matches
3097C semantics) where they assume that "``X^X``" is always zero, even if
3098``X`` is undefined. This isn't true for a number of reasons, but the
3099short answer is that an '``undef``' "variable" can arbitrarily change
3100its value over its "live range". This is true because the variable
3101doesn't actually *have a live range*. Instead, the value is logically
3102read from arbitrary registers that happen to be around when needed, so
3103the value is not necessarily consistent over time. In fact, ``%A`` and
3104``%C`` need to have the same semantics or the core LLVM "replace all
3105uses with" concept would not hold.
3106
3107.. code-block:: llvm
3108
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003109 %A = sdiv undef, %X
3110 %B = sdiv %X, undef
Sean Silvab084af42012-12-07 10:36:55 +00003111 Safe:
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003112 %A = 0
Sean Silvab084af42012-12-07 10:36:55 +00003113 b: unreachable
3114
3115These examples show the crucial difference between an *undefined value*
3116and *undefined behavior*. An undefined value (like '``undef``') is
3117allowed to have an arbitrary bit-pattern. This means that the ``%A``
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003118operation can be constant folded to '``0``', because the '``undef``'
3119could be zero, and zero divided by any value is zero.
Sean Silvab084af42012-12-07 10:36:55 +00003120However, in the second example, we can make a more aggressive
3121assumption: because the ``undef`` is allowed to be an arbitrary value,
3122we are allowed to assume that it could be zero. Since a divide by zero
3123has *undefined behavior*, we are allowed to assume that the operation
3124does not execute at all. This allows us to delete the divide and all
3125code after it. Because the undefined operation "can't happen", the
3126optimizer can assume that it occurs in dead code.
3127
Renato Golin124f2592016-07-20 12:16:38 +00003128.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003129
3130 a: store undef -> %X
3131 b: store %X -> undef
3132 Safe:
3133 a: <deleted>
3134 b: unreachable
3135
Sanjay Patel7b722402018-03-07 17:18:22 +00003136A store *of* an undefined value can be assumed to not have any effect;
3137we can assume that the value is overwritten with bits that happen to
3138match what was already there. However, a store *to* an undefined
3139location could clobber arbitrary memory, therefore, it has undefined
3140behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003141
3142.. _poisonvalues:
3143
3144Poison Values
3145-------------
3146
3147Poison values are similar to :ref:`undef values <undefvalues>`, however
3148they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003149that cannot evoke side effects has nevertheless detected a condition
3150that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003151
3152There is currently no way of representing a poison value in the IR; they
3153only exist when produced by operations such as :ref:`add <i_add>` with
3154the ``nsw`` flag.
3155
3156Poison value behavior is defined in terms of value *dependence*:
3157
3158- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3159- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3160 their dynamic predecessor basic block.
3161- Function arguments depend on the corresponding actual argument values
3162 in the dynamic callers of their functions.
3163- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3164 instructions that dynamically transfer control back to them.
3165- :ref:`Invoke <i_invoke>` instructions depend on the
3166 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3167 call instructions that dynamically transfer control back to them.
3168- Non-volatile loads and stores depend on the most recent stores to all
3169 of the referenced memory addresses, following the order in the IR
3170 (including loads and stores implied by intrinsics such as
3171 :ref:`@llvm.memcpy <int_memcpy>`.)
3172- An instruction with externally visible side effects depends on the
3173 most recent preceding instruction with externally visible side
3174 effects, following the order in the IR. (This includes :ref:`volatile
3175 operations <volatile>`.)
3176- An instruction *control-depends* on a :ref:`terminator
3177 instruction <terminators>` if the terminator instruction has
3178 multiple successors and the instruction is always executed when
3179 control transfers to one of the successors, and may not be executed
3180 when control is transferred to another.
3181- Additionally, an instruction also *control-depends* on a terminator
3182 instruction if the set of instructions it otherwise depends on would
3183 be different if the terminator had transferred control to a different
3184 successor.
3185- Dependence is transitive.
3186
Richard Smith32dbdf62014-07-31 04:25:36 +00003187Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3188with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003189on a poison value has undefined behavior.
3190
3191Here are some examples:
3192
3193.. code-block:: llvm
3194
3195 entry:
3196 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3197 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003198 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003199 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3200
3201 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003202 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003203
3204 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3205
3206 %narrowaddr = bitcast i32* @g to i16*
3207 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003208 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3209 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003210
3211 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3212 br i1 %cmp, label %true, label %end ; Branch to either destination.
3213
3214 true:
3215 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3216 ; it has undefined behavior.
3217 br label %end
3218
3219 end:
3220 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3221 ; Both edges into this PHI are
3222 ; control-dependent on %cmp, so this
3223 ; always results in a poison value.
3224
3225 store volatile i32 0, i32* @g ; This would depend on the store in %true
3226 ; if %cmp is true, or the store in %entry
3227 ; otherwise, so this is undefined behavior.
3228
3229 br i1 %cmp, label %second_true, label %second_end
3230 ; The same branch again, but this time the
3231 ; true block doesn't have side effects.
3232
3233 second_true:
3234 ; No side effects!
3235 ret void
3236
3237 second_end:
3238 store volatile i32 0, i32* @g ; This time, the instruction always depends
3239 ; on the store in %end. Also, it is
3240 ; control-equivalent to %end, so this is
3241 ; well-defined (ignoring earlier undefined
3242 ; behavior in this example).
3243
3244.. _blockaddress:
3245
3246Addresses of Basic Blocks
3247-------------------------
3248
3249``blockaddress(@function, %block)``
3250
3251The '``blockaddress``' constant computes the address of the specified
3252basic block in the specified function, and always has an ``i8*`` type.
3253Taking the address of the entry block is illegal.
3254
3255This value only has defined behavior when used as an operand to the
3256':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3257against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003258undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003259no label is equal to the null pointer. This may be passed around as an
3260opaque pointer sized value as long as the bits are not inspected. This
3261allows ``ptrtoint`` and arithmetic to be performed on these values so
3262long as the original value is reconstituted before the ``indirectbr``
3263instruction.
3264
3265Finally, some targets may provide defined semantics when using the value
3266as the operand to an inline assembly, but that is target specific.
3267
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003268.. _constantexprs:
3269
Sean Silvab084af42012-12-07 10:36:55 +00003270Constant Expressions
3271--------------------
3272
3273Constant expressions are used to allow expressions involving other
3274constants to be used as constants. Constant expressions may be of any
3275:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3276that does not have side effects (e.g. load and call are not supported).
3277The following is the syntax for constant expressions:
3278
3279``trunc (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003280 Perform the :ref:`trunc operation <i_trunc>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003281``zext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003282 Perform the :ref:`zext operation <i_zext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003283``sext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003284 Perform the :ref:`sext operation <i_sext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003285``fptrunc (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003286 Truncate a floating-point constant to another floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003287 The size of CST must be larger than the size of TYPE. Both types
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003288 must be floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003289``fpext (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003290 Floating-point extend a constant to another type. The size of CST
Sean Silvab084af42012-12-07 10:36:55 +00003291 must be smaller or equal to the size of TYPE. Both types must be
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003292 floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003293``fptoui (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003294 Convert a floating-point constant to the corresponding unsigned
Sean Silvab084af42012-12-07 10:36:55 +00003295 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003296 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003297 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003298 value won't fit in the integer type, the result is a
3299 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003300``fptosi (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003301 Convert a floating-point constant to the corresponding signed
Sean Silvab084af42012-12-07 10:36:55 +00003302 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003303 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003304 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003305 value won't fit in the integer type, the result is a
3306 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003307``uitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003308 Convert an unsigned integer constant to the corresponding
3309 floating-point constant. TYPE must be a scalar or vector floating-point
3310 type. CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003311 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003312``sitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003313 Convert a signed integer constant to the corresponding floating-point
3314 constant. TYPE must be a scalar or vector floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003315 CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003316 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003317``ptrtoint (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003318 Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003319``inttoptr (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003320 Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003321 This one is *really* dangerous!
3322``bitcast (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003323 Convert a constant, CST, to another TYPE.
3324 The constraints of the operands are the same as those for the
3325 :ref:`bitcast instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003326``addrspacecast (CST to TYPE)``
3327 Convert a constant pointer or constant vector of pointer, CST, to another
3328 TYPE in a different address space. The constraints of the operands are the
3329 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003330``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003331 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3332 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003333 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003334 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003335``select (COND, VAL1, VAL2)``
3336 Perform the :ref:`select operation <i_select>` on constants.
3337``icmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003338 Perform the :ref:`icmp operation <i_icmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003339``fcmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003340 Perform the :ref:`fcmp operation <i_fcmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003341``extractelement (VAL, IDX)``
3342 Perform the :ref:`extractelement operation <i_extractelement>` on
3343 constants.
3344``insertelement (VAL, ELT, IDX)``
3345 Perform the :ref:`insertelement operation <i_insertelement>` on
3346 constants.
3347``shufflevector (VEC1, VEC2, IDXMASK)``
3348 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3349 constants.
3350``extractvalue (VAL, IDX0, IDX1, ...)``
3351 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3352 constants. The index list is interpreted in a similar manner as
3353 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3354 least one index value must be specified.
3355``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3356 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3357 The index list is interpreted in a similar manner as indices in a
3358 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3359 value must be specified.
3360``OPCODE (LHS, RHS)``
3361 Perform the specified operation of the LHS and RHS constants. OPCODE
3362 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3363 binary <bitwiseops>` operations. The constraints on operands are
3364 the same as those for the corresponding instruction (e.g. no bitwise
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003365 operations on floating-point values are allowed).
Sean Silvab084af42012-12-07 10:36:55 +00003366
3367Other Values
3368============
3369
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003370.. _inlineasmexprs:
3371
Sean Silvab084af42012-12-07 10:36:55 +00003372Inline Assembler Expressions
3373----------------------------
3374
3375LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003376Inline Assembly <moduleasm>`) through the use of a special value. This value
3377represents the inline assembler as a template string (containing the
3378instructions to emit), a list of operand constraints (stored as a string), a
3379flag that indicates whether or not the inline asm expression has side effects,
3380and a flag indicating whether the function containing the asm needs to align its
3381stack conservatively.
3382
3383The template string supports argument substitution of the operands using "``$``"
3384followed by a number, to indicate substitution of the given register/memory
3385location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3386be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3387operand (See :ref:`inline-asm-modifiers`).
3388
3389A literal "``$``" may be included by using "``$$``" in the template. To include
3390other special characters into the output, the usual "``\XX``" escapes may be
3391used, just as in other strings. Note that after template substitution, the
3392resulting assembly string is parsed by LLVM's integrated assembler unless it is
3393disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3394syntax known to LLVM.
3395
Reid Kleckner71cb1642017-02-06 18:08:45 +00003396LLVM also supports a few more substitions useful for writing inline assembly:
3397
3398- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3399 This substitution is useful when declaring a local label. Many standard
3400 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3401 Adding a blob-unique identifier ensures that the two labels will not conflict
3402 during assembly. This is used to implement `GCC's %= special format
3403 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3404- ``${:comment}``: Expands to the comment character of the current target's
3405 assembly dialect. This is usually ``#``, but many targets use other strings,
3406 such as ``;``, ``//``, or ``!``.
3407- ``${:private}``: Expands to the assembler private label prefix. Labels with
3408 this prefix will not appear in the symbol table of the assembled object.
3409 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3410 relatively popular.
3411
James Y Knightbc832ed2015-07-08 18:08:36 +00003412LLVM's support for inline asm is modeled closely on the requirements of Clang's
3413GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3414modifier codes listed here are similar or identical to those in GCC's inline asm
3415support. However, to be clear, the syntax of the template and constraint strings
3416described here is *not* the same as the syntax accepted by GCC and Clang, and,
3417while most constraint letters are passed through as-is by Clang, some get
3418translated to other codes when converting from the C source to the LLVM
3419assembly.
3420
3421An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003422
3423.. code-block:: llvm
3424
3425 i32 (i32) asm "bswap $0", "=r,r"
3426
3427Inline assembler expressions may **only** be used as the callee operand
3428of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3429Thus, typically we have:
3430
3431.. code-block:: llvm
3432
3433 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3434
3435Inline asms with side effects not visible in the constraint list must be
3436marked as having side effects. This is done through the use of the
3437'``sideeffect``' keyword, like so:
3438
3439.. code-block:: llvm
3440
3441 call void asm sideeffect "eieio", ""()
3442
3443In some cases inline asms will contain code that will not work unless
3444the stack is aligned in some way, such as calls or SSE instructions on
3445x86, yet will not contain code that does that alignment within the asm.
3446The compiler should make conservative assumptions about what the asm
3447might contain and should generate its usual stack alignment code in the
3448prologue if the '``alignstack``' keyword is present:
3449
3450.. code-block:: llvm
3451
3452 call void asm alignstack "eieio", ""()
3453
3454Inline asms also support using non-standard assembly dialects. The
3455assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3456the inline asm is using the Intel dialect. Currently, ATT and Intel are
3457the only supported dialects. An example is:
3458
3459.. code-block:: llvm
3460
3461 call void asm inteldialect "eieio", ""()
3462
3463If multiple keywords appear the '``sideeffect``' keyword must come
3464first, the '``alignstack``' keyword second and the '``inteldialect``'
3465keyword last.
3466
James Y Knightbc832ed2015-07-08 18:08:36 +00003467Inline Asm Constraint String
3468^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3469
3470The constraint list is a comma-separated string, each element containing one or
3471more constraint codes.
3472
3473For each element in the constraint list an appropriate register or memory
3474operand will be chosen, and it will be made available to assembly template
3475string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3476second, etc.
3477
3478There are three different types of constraints, which are distinguished by a
3479prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3480constraints must always be given in that order: outputs first, then inputs, then
3481clobbers. They cannot be intermingled.
3482
3483There are also three different categories of constraint codes:
3484
3485- Register constraint. This is either a register class, or a fixed physical
3486 register. This kind of constraint will allocate a register, and if necessary,
3487 bitcast the argument or result to the appropriate type.
3488- Memory constraint. This kind of constraint is for use with an instruction
3489 taking a memory operand. Different constraints allow for different addressing
3490 modes used by the target.
3491- Immediate value constraint. This kind of constraint is for an integer or other
3492 immediate value which can be rendered directly into an instruction. The
3493 various target-specific constraints allow the selection of a value in the
3494 proper range for the instruction you wish to use it with.
3495
3496Output constraints
3497""""""""""""""""""
3498
3499Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3500indicates that the assembly will write to this operand, and the operand will
3501then be made available as a return value of the ``asm`` expression. Output
3502constraints do not consume an argument from the call instruction. (Except, see
3503below about indirect outputs).
3504
3505Normally, it is expected that no output locations are written to by the assembly
3506expression until *all* of the inputs have been read. As such, LLVM may assign
3507the same register to an output and an input. If this is not safe (e.g. if the
3508assembly contains two instructions, where the first writes to one output, and
3509the second reads an input and writes to a second output), then the "``&``"
3510modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003511"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003512will not use the same register for any inputs (other than an input tied to this
3513output).
3514
3515Input constraints
3516"""""""""""""""""
3517
3518Input constraints do not have a prefix -- just the constraint codes. Each input
3519constraint will consume one argument from the call instruction. It is not
3520permitted for the asm to write to any input register or memory location (unless
3521that input is tied to an output). Note also that multiple inputs may all be
3522assigned to the same register, if LLVM can determine that they necessarily all
3523contain the same value.
3524
3525Instead of providing a Constraint Code, input constraints may also "tie"
3526themselves to an output constraint, by providing an integer as the constraint
3527string. Tied inputs still consume an argument from the call instruction, and
3528take up a position in the asm template numbering as is usual -- they will simply
3529be constrained to always use the same register as the output they've been tied
3530to. For example, a constraint string of "``=r,0``" says to assign a register for
3531output, and use that register as an input as well (it being the 0'th
3532constraint).
3533
3534It is permitted to tie an input to an "early-clobber" output. In that case, no
3535*other* input may share the same register as the input tied to the early-clobber
3536(even when the other input has the same value).
3537
3538You may only tie an input to an output which has a register constraint, not a
3539memory constraint. Only a single input may be tied to an output.
3540
3541There is also an "interesting" feature which deserves a bit of explanation: if a
3542register class constraint allocates a register which is too small for the value
3543type operand provided as input, the input value will be split into multiple
3544registers, and all of them passed to the inline asm.
3545
3546However, this feature is often not as useful as you might think.
3547
3548Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3549architectures that have instructions which operate on multiple consecutive
3550instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3551SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3552hardware then loads into both the named register, and the next register. This
3553feature of inline asm would not be useful to support that.)
3554
3555A few of the targets provide a template string modifier allowing explicit access
3556to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3557``D``). On such an architecture, you can actually access the second allocated
3558register (yet, still, not any subsequent ones). But, in that case, you're still
3559probably better off simply splitting the value into two separate operands, for
3560clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3561despite existing only for use with this feature, is not really a good idea to
3562use)
3563
3564Indirect inputs and outputs
3565"""""""""""""""""""""""""""
3566
3567Indirect output or input constraints can be specified by the "``*``" modifier
3568(which goes after the "``=``" in case of an output). This indicates that the asm
3569will write to or read from the contents of an *address* provided as an input
3570argument. (Note that in this way, indirect outputs act more like an *input* than
3571an output: just like an input, they consume an argument of the call expression,
3572rather than producing a return value. An indirect output constraint is an
3573"output" only in that the asm is expected to write to the contents of the input
3574memory location, instead of just read from it).
3575
3576This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3577address of a variable as a value.
3578
3579It is also possible to use an indirect *register* constraint, but only on output
3580(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3581value normally, and then, separately emit a store to the address provided as
3582input, after the provided inline asm. (It's not clear what value this
3583functionality provides, compared to writing the store explicitly after the asm
3584statement, and it can only produce worse code, since it bypasses many
3585optimization passes. I would recommend not using it.)
3586
3587
3588Clobber constraints
3589"""""""""""""""""""
3590
3591A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3592consume an input operand, nor generate an output. Clobbers cannot use any of the
3593general constraint code letters -- they may use only explicit register
3594constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3595"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3596memory locations -- not only the memory pointed to by a declared indirect
3597output.
3598
Peter Zotov00257232016-08-30 10:48:31 +00003599Note that clobbering named registers that are also present in output
3600constraints is not legal.
3601
James Y Knightbc832ed2015-07-08 18:08:36 +00003602
3603Constraint Codes
3604""""""""""""""""
3605After a potential prefix comes constraint code, or codes.
3606
3607A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3608followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3609(e.g. "``{eax}``").
3610
3611The one and two letter constraint codes are typically chosen to be the same as
3612GCC's constraint codes.
3613
3614A single constraint may include one or more than constraint code in it, leaving
3615it up to LLVM to choose which one to use. This is included mainly for
3616compatibility with the translation of GCC inline asm coming from clang.
3617
3618There are two ways to specify alternatives, and either or both may be used in an
3619inline asm constraint list:
3620
36211) Append the codes to each other, making a constraint code set. E.g. "``im``"
3622 or "``{eax}m``". This means "choose any of the options in the set". The
3623 choice of constraint is made independently for each constraint in the
3624 constraint list.
3625
36262) Use "``|``" between constraint code sets, creating alternatives. Every
3627 constraint in the constraint list must have the same number of alternative
3628 sets. With this syntax, the same alternative in *all* of the items in the
3629 constraint list will be chosen together.
3630
3631Putting those together, you might have a two operand constraint string like
3632``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3633operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3634may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3635
3636However, the use of either of the alternatives features is *NOT* recommended, as
3637LLVM is not able to make an intelligent choice about which one to use. (At the
3638point it currently needs to choose, not enough information is available to do so
3639in a smart way.) Thus, it simply tries to make a choice that's most likely to
3640compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3641always choose to use memory, not registers). And, if given multiple registers,
3642or multiple register classes, it will simply choose the first one. (In fact, it
3643doesn't currently even ensure explicitly specified physical registers are
3644unique, so specifying multiple physical registers as alternatives, like
3645``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3646intended.)
3647
3648Supported Constraint Code List
3649""""""""""""""""""""""""""""""
3650
3651The constraint codes are, in general, expected to behave the same way they do in
3652GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3653inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3654and GCC likely indicates a bug in LLVM.
3655
3656Some constraint codes are typically supported by all targets:
3657
3658- ``r``: A register in the target's general purpose register class.
3659- ``m``: A memory address operand. It is target-specific what addressing modes
3660 are supported, typical examples are register, or register + register offset,
3661 or register + immediate offset (of some target-specific size).
3662- ``i``: An integer constant (of target-specific width). Allows either a simple
3663 immediate, or a relocatable value.
3664- ``n``: An integer constant -- *not* including relocatable values.
3665- ``s``: An integer constant, but allowing *only* relocatable values.
3666- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3667 useful to pass a label for an asm branch or call.
3668
3669 .. FIXME: but that surely isn't actually okay to jump out of an asm
3670 block without telling llvm about the control transfer???)
3671
3672- ``{register-name}``: Requires exactly the named physical register.
3673
3674Other constraints are target-specific:
3675
3676AArch64:
3677
3678- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3679- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3680 i.e. 0 to 4095 with optional shift by 12.
3681- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3682 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3683- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3684 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3685- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3686 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3687- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3688 32-bit register. This is a superset of ``K``: in addition to the bitmask
3689 immediate, also allows immediate integers which can be loaded with a single
3690 ``MOVZ`` or ``MOVL`` instruction.
3691- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3692 64-bit register. This is a superset of ``L``.
3693- ``Q``: Memory address operand must be in a single register (no
3694 offsets). (However, LLVM currently does this for the ``m`` constraint as
3695 well.)
3696- ``r``: A 32 or 64-bit integer register (W* or X*).
3697- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3698- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3699
3700AMDGPU:
3701
3702- ``r``: A 32 or 64-bit integer register.
3703- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3704- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3705
3706
3707All ARM modes:
3708
3709- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3710 operand. Treated the same as operand ``m``, at the moment.
3711
3712ARM and ARM's Thumb2 mode:
3713
3714- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3715- ``I``: An immediate integer valid for a data-processing instruction.
3716- ``J``: An immediate integer between -4095 and 4095.
3717- ``K``: An immediate integer whose bitwise inverse is valid for a
3718 data-processing instruction. (Can be used with template modifier "``B``" to
3719 print the inverted value).
3720- ``L``: An immediate integer whose negation is valid for a data-processing
3721 instruction. (Can be used with template modifier "``n``" to print the negated
3722 value).
3723- ``M``: A power of two or a integer between 0 and 32.
3724- ``N``: Invalid immediate constraint.
3725- ``O``: Invalid immediate constraint.
3726- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3727- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3728 as ``r``.
3729- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3730 invalid.
3731- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3732 ``d0-d31``, or ``q0-q15``.
3733- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3734 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003735- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3736 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003737
3738ARM's Thumb1 mode:
3739
3740- ``I``: An immediate integer between 0 and 255.
3741- ``J``: An immediate integer between -255 and -1.
3742- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3743 some amount.
3744- ``L``: An immediate integer between -7 and 7.
3745- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3746- ``N``: An immediate integer between 0 and 31.
3747- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3748- ``r``: A low 32-bit GPR register (``r0-r7``).
3749- ``l``: A low 32-bit GPR register (``r0-r7``).
3750- ``h``: A high GPR register (``r0-r7``).
3751- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3752 ``d0-d31``, or ``q0-q15``.
3753- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3754 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003755- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3756 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003757
3758
3759Hexagon:
3760
3761- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3762 at the moment.
3763- ``r``: A 32 or 64-bit register.
3764
3765MSP430:
3766
3767- ``r``: An 8 or 16-bit register.
3768
3769MIPS:
3770
3771- ``I``: An immediate signed 16-bit integer.
3772- ``J``: An immediate integer zero.
3773- ``K``: An immediate unsigned 16-bit integer.
3774- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3775- ``N``: An immediate integer between -65535 and -1.
3776- ``O``: An immediate signed 15-bit integer.
3777- ``P``: An immediate integer between 1 and 65535.
3778- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3779 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3780- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3781 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3782 ``m``.
3783- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3784 ``sc`` instruction on the given subtarget (details vary).
3785- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3786- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003787 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3788 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003789- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3790 ``25``).
3791- ``l``: The ``lo`` register, 32 or 64-bit.
3792- ``x``: Invalid.
3793
3794NVPTX:
3795
3796- ``b``: A 1-bit integer register.
3797- ``c`` or ``h``: A 16-bit integer register.
3798- ``r``: A 32-bit integer register.
3799- ``l`` or ``N``: A 64-bit integer register.
3800- ``f``: A 32-bit float register.
3801- ``d``: A 64-bit float register.
3802
3803
3804PowerPC:
3805
3806- ``I``: An immediate signed 16-bit integer.
3807- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3808- ``K``: An immediate unsigned 16-bit integer.
3809- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3810- ``M``: An immediate integer greater than 31.
3811- ``N``: An immediate integer that is an exact power of 2.
3812- ``O``: The immediate integer constant 0.
3813- ``P``: An immediate integer constant whose negation is a signed 16-bit
3814 constant.
3815- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3816 treated the same as ``m``.
3817- ``r``: A 32 or 64-bit integer register.
3818- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3819 ``R1-R31``).
3820- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3821 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3822- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3823 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3824 altivec vector register (``V0-V31``).
3825
3826 .. FIXME: is this a bug that v accepts QPX registers? I think this
3827 is supposed to only use the altivec vector registers?
3828
3829- ``y``: Condition register (``CR0-CR7``).
3830- ``wc``: An individual CR bit in a CR register.
3831- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3832 register set (overlapping both the floating-point and vector register files).
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003833- ``ws``: A 32 or 64-bit floating-point register, from the full VSX register
James Y Knightbc832ed2015-07-08 18:08:36 +00003834 set.
3835
3836Sparc:
3837
3838- ``I``: An immediate 13-bit signed integer.
3839- ``r``: A 32-bit integer register.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003840- ``f``: Any floating-point register on SparcV8, or a floating-point
James Y Knightd4e1b002017-05-12 15:59:10 +00003841 register in the "low" half of the registers on SparcV9.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003842- ``e``: Any floating-point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003843
3844SystemZ:
3845
3846- ``I``: An immediate unsigned 8-bit integer.
3847- ``J``: An immediate unsigned 12-bit integer.
3848- ``K``: An immediate signed 16-bit integer.
3849- ``L``: An immediate signed 20-bit integer.
3850- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003851- ``Q``: A memory address operand with a base address and a 12-bit immediate
3852 unsigned displacement.
3853- ``R``: A memory address operand with a base address, a 12-bit immediate
3854 unsigned displacement, and an index register.
3855- ``S``: A memory address operand with a base address and a 20-bit immediate
3856 signed displacement.
3857- ``T``: A memory address operand with a base address, a 20-bit immediate
3858 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003859- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3860- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3861 address context evaluates as zero).
3862- ``h``: A 32-bit value in the high part of a 64bit data register
3863 (LLVM-specific)
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003864- ``f``: A 32, 64, or 128-bit floating-point register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003865
3866X86:
3867
3868- ``I``: An immediate integer between 0 and 31.
3869- ``J``: An immediate integer between 0 and 64.
3870- ``K``: An immediate signed 8-bit integer.
3871- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3872 0xffffffff.
3873- ``M``: An immediate integer between 0 and 3.
3874- ``N``: An immediate unsigned 8-bit integer.
3875- ``O``: An immediate integer between 0 and 127.
3876- ``e``: An immediate 32-bit signed integer.
3877- ``Z``: An immediate 32-bit unsigned integer.
3878- ``o``, ``v``: Treated the same as ``m``, at the moment.
3879- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3880 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3881 registers, and on X86-64, it is all of the integer registers.
3882- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3883 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3884- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3885- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3886 existed since i386, and can be accessed without the REX prefix.
3887- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3888- ``y``: A 64-bit MMX register, if MMX is enabled.
3889- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3890 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3891 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3892 512-bit vector operand in an AVX512 register, Otherwise, an error.
3893- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3894- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3895 32-bit mode, a 64-bit integer operand will get split into two registers). It
3896 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3897 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3898 you're better off splitting it yourself, before passing it to the asm
3899 statement.
3900
3901XCore:
3902
3903- ``r``: A 32-bit integer register.
3904
3905
3906.. _inline-asm-modifiers:
3907
3908Asm template argument modifiers
3909^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3910
3911In the asm template string, modifiers can be used on the operand reference, like
3912"``${0:n}``".
3913
3914The modifiers are, in general, expected to behave the same way they do in
3915GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3916inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3917and GCC likely indicates a bug in LLVM.
3918
3919Target-independent:
3920
Sean Silvaa1190322015-08-06 22:56:48 +00003921- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003922 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3923- ``n``: Negate and print immediate integer constant unadorned, without the
3924 target-specific immediate punctuation (e.g. no ``$`` prefix).
3925- ``l``: Print as an unadorned label, without the target-specific label
3926 punctuation (e.g. no ``$`` prefix).
3927
3928AArch64:
3929
3930- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3931 instead of ``x30``, print ``w30``.
3932- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3933- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3934 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3935 ``v*``.
3936
3937AMDGPU:
3938
3939- ``r``: No effect.
3940
3941ARM:
3942
3943- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3944 register).
3945- ``P``: No effect.
3946- ``q``: No effect.
3947- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3948 as ``d4[1]`` instead of ``s9``)
3949- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3950 prefix.
3951- ``L``: Print the low 16-bits of an immediate integer constant.
3952- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3953 register operands subsequent to the specified one (!), so use carefully.
3954- ``Q``: Print the low-order register of a register-pair, or the low-order
3955 register of a two-register operand.
3956- ``R``: Print the high-order register of a register-pair, or the high-order
3957 register of a two-register operand.
3958- ``H``: Print the second register of a register-pair. (On a big-endian system,
3959 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3960 to ``R``.)
3961
3962 .. FIXME: H doesn't currently support printing the second register
3963 of a two-register operand.
3964
3965- ``e``: Print the low doubleword register of a NEON quad register.
3966- ``f``: Print the high doubleword register of a NEON quad register.
3967- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3968 adornment.
3969
3970Hexagon:
3971
3972- ``L``: Print the second register of a two-register operand. Requires that it
3973 has been allocated consecutively to the first.
3974
3975 .. FIXME: why is it restricted to consecutive ones? And there's
3976 nothing that ensures that happens, is there?
3977
3978- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3979 nothing. Used to print 'addi' vs 'add' instructions.
3980
3981MSP430:
3982
3983No additional modifiers.
3984
3985MIPS:
3986
3987- ``X``: Print an immediate integer as hexadecimal
3988- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3989- ``d``: Print an immediate integer as decimal.
3990- ``m``: Subtract one and print an immediate integer as decimal.
3991- ``z``: Print $0 if an immediate zero, otherwise print normally.
3992- ``L``: Print the low-order register of a two-register operand, or prints the
3993 address of the low-order word of a double-word memory operand.
3994
3995 .. FIXME: L seems to be missing memory operand support.
3996
3997- ``M``: Print the high-order register of a two-register operand, or prints the
3998 address of the high-order word of a double-word memory operand.
3999
4000 .. FIXME: M seems to be missing memory operand support.
4001
4002- ``D``: Print the second register of a two-register operand, or prints the
4003 second word of a double-word memory operand. (On a big-endian system, ``D`` is
4004 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
4005 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00004006- ``w``: No effect. Provided for compatibility with GCC which requires this
4007 modifier in order to print MSA registers (``W0-W31``) with the ``f``
4008 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00004009
4010NVPTX:
4011
4012- ``r``: No effect.
4013
4014PowerPC:
4015
4016- ``L``: Print the second register of a two-register operand. Requires that it
4017 has been allocated consecutively to the first.
4018
4019 .. FIXME: why is it restricted to consecutive ones? And there's
4020 nothing that ensures that happens, is there?
4021
4022- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4023 nothing. Used to print 'addi' vs 'add' instructions.
4024- ``y``: For a memory operand, prints formatter for a two-register X-form
4025 instruction. (Currently always prints ``r0,OPERAND``).
4026- ``U``: Prints 'u' if the memory operand is an update form, and nothing
4027 otherwise. (NOTE: LLVM does not support update form, so this will currently
4028 always print nothing)
4029- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
4030 not support indexed form, so this will currently always print nothing)
4031
4032Sparc:
4033
4034- ``r``: No effect.
4035
4036SystemZ:
4037
4038SystemZ implements only ``n``, and does *not* support any of the other
4039target-independent modifiers.
4040
4041X86:
4042
4043- ``c``: Print an unadorned integer or symbol name. (The latter is
4044 target-specific behavior for this typically target-independent modifier).
4045- ``A``: Print a register name with a '``*``' before it.
4046- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
4047 operand.
4048- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
4049 memory operand.
4050- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
4051 operand.
4052- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
4053 operand.
4054- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
4055 available, otherwise the 32-bit register name; do nothing on a memory operand.
4056- ``n``: Negate and print an unadorned integer, or, for operands other than an
4057 immediate integer (e.g. a relocatable symbol expression), print a '-' before
4058 the operand. (The behavior for relocatable symbol expressions is a
4059 target-specific behavior for this typically target-independent modifier)
4060- ``H``: Print a memory reference with additional offset +8.
4061- ``P``: Print a memory reference or operand for use as the argument of a call
4062 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
4063
4064XCore:
4065
4066No additional modifiers.
4067
4068
Sean Silvab084af42012-12-07 10:36:55 +00004069Inline Asm Metadata
4070^^^^^^^^^^^^^^^^^^^
4071
4072The call instructions that wrap inline asm nodes may have a
4073"``!srcloc``" MDNode attached to it that contains a list of constant
4074integers. If present, the code generator will use the integer as the
4075location cookie value when report errors through the ``LLVMContext``
4076error reporting mechanisms. This allows a front-end to correlate backend
4077errors that occur with inline asm back to the source code that produced
4078it. For example:
4079
4080.. code-block:: llvm
4081
4082 call void asm sideeffect "something bad", ""(), !srcloc !42
4083 ...
4084 !42 = !{ i32 1234567 }
4085
4086It is up to the front-end to make sense of the magic numbers it places
4087in the IR. If the MDNode contains multiple constants, the code generator
4088will use the one that corresponds to the line of the asm that the error
4089occurs on.
4090
4091.. _metadata:
4092
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004093Metadata
4094========
Sean Silvab084af42012-12-07 10:36:55 +00004095
4096LLVM IR allows metadata to be attached to instructions in the program
4097that can convey extra information about the code to the optimizers and
4098code generator. One example application of metadata is source-level
4099debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004100
Sean Silvaa1190322015-08-06 22:56:48 +00004101Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004102``call`` instruction, it uses the ``metadata`` type.
4103
4104All metadata are identified in syntax by a exclamation point ('``!``').
4105
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004106.. _metadata-string:
4107
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004108Metadata Nodes and Metadata Strings
4109-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00004110
4111A metadata string is a string surrounded by double quotes. It can
4112contain any character by escaping non-printable characters with
4113"``\xx``" where "``xx``" is the two digit hex code. For example:
4114"``!"test\00"``".
4115
4116Metadata nodes are represented with notation similar to structure
4117constants (a comma separated list of elements, surrounded by braces and
4118preceded by an exclamation point). Metadata nodes can have any values as
4119their operand. For example:
4120
4121.. code-block:: llvm
4122
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004123 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00004124
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004125Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4126
Renato Golin124f2592016-07-20 12:16:38 +00004127.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004128
4129 !0 = distinct !{!"test\00", i32 10}
4130
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004131``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004132content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004133when metadata operands change.
4134
Sean Silvab084af42012-12-07 10:36:55 +00004135A :ref:`named metadata <namedmetadatastructure>` is a collection of
4136metadata nodes, which can be looked up in the module symbol table. For
4137example:
4138
4139.. code-block:: llvm
4140
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004141 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004142
Adrian Prantl1b842da2017-07-28 20:44:29 +00004143Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4144intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004145
4146.. code-block:: llvm
4147
Adrian Prantlabe04752017-07-28 20:21:02 +00004148 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004149
Peter Collingbourne50108682015-11-06 02:41:02 +00004150Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4151to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004152
4153.. code-block:: llvm
4154
4155 %indvar.next = add i64 %indvar, 1, !dbg !21
4156
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004157Metadata can also be attached to a function or a global variable. Here metadata
4158``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4159and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004160
4161.. code-block:: llvm
4162
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004163 declare !dbg !22 void @f1()
4164 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004165 ret void
4166 }
4167
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004168 @g1 = global i32 0, !dbg !22
4169 @g2 = external global i32, !dbg !22
4170
4171A transformation is required to drop any metadata attachment that it does not
4172know or know it can't preserve. Currently there is an exception for metadata
4173attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4174unconditionally dropped unless the global is itself deleted.
4175
4176Metadata attached to a module using named metadata may not be dropped, with
4177the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4178
Sean Silvab084af42012-12-07 10:36:55 +00004179More information about specific metadata nodes recognized by the
4180optimizers and code generator is found below.
4181
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004182.. _specialized-metadata:
4183
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004184Specialized Metadata Nodes
4185^^^^^^^^^^^^^^^^^^^^^^^^^^
4186
4187Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004188to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004189order.
4190
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004191These aren't inherently debug info centric, but currently all the specialized
4192metadata nodes are related to debug info.
4193
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004194.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004195
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004196DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004197"""""""""""""
4198
Sean Silvaa1190322015-08-06 22:56:48 +00004199``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004200``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4201containing the debug info to be emitted along with the compile unit, regardless
4202of code optimizations (some nodes are only emitted if there are references to
4203them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4204indicating whether or not line-table discriminators are updated to provide
4205more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004206
Renato Golin124f2592016-07-20 12:16:38 +00004207.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004208
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004209 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004210 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004211 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004212 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4213 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004214
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004215Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004216specific compilation unit. File descriptors are defined using this scope. These
4217descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4218track of global variables, type information, and imported entities (declarations
4219and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004220
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004221.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004222
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004223DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004224""""""
4225
Sean Silvaa1190322015-08-06 22:56:48 +00004226``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004227
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004228.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004229
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004230 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4231 checksumkind: CSK_MD5,
4232 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004233
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004234Files are sometimes used in ``scope:`` fields, and are the only valid target
4235for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004236Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004237
Michael Kuperstein605308a2015-05-14 10:58:59 +00004238.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004239
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004240DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004241"""""""""""
4242
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004243``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004244``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004245
Renato Golin124f2592016-07-20 12:16:38 +00004246.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004247
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004248 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004249 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004250 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004251
Sean Silvaa1190322015-08-06 22:56:48 +00004252The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004253following:
4254
Renato Golin124f2592016-07-20 12:16:38 +00004255.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004256
4257 DW_ATE_address = 1
4258 DW_ATE_boolean = 2
4259 DW_ATE_float = 4
4260 DW_ATE_signed = 5
4261 DW_ATE_signed_char = 6
4262 DW_ATE_unsigned = 7
4263 DW_ATE_unsigned_char = 8
4264
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004265.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004266
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004267DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004268""""""""""""""""
4269
Sean Silvaa1190322015-08-06 22:56:48 +00004270``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004271refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004272types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004273represents a function with no return value (such as ``void foo() {}`` in C++).
4274
Renato Golin124f2592016-07-20 12:16:38 +00004275.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004276
4277 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4278 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004279 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004280
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004281.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004282
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004283DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004284"""""""""""""
4285
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004286``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004287qualified types.
4288
Renato Golin124f2592016-07-20 12:16:38 +00004289.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004290
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004291 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004292 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004293 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004294 align: 32)
4295
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004296The following ``tag:`` values are valid:
4297
Renato Golin124f2592016-07-20 12:16:38 +00004298.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004299
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004300 DW_TAG_member = 13
4301 DW_TAG_pointer_type = 15
4302 DW_TAG_reference_type = 16
4303 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004304 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004305 DW_TAG_ptr_to_member_type = 31
4306 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004307 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004308 DW_TAG_volatile_type = 53
4309 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004310 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004311
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004312.. _DIDerivedTypeMember:
4313
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004314``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004315<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004316``offset:`` is the member's bit offset. If the composite type has an ODR
4317``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4318uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004319
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004320``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4321field of :ref:`composite types <DICompositeType>` to describe parents and
4322friends.
4323
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004324``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4325
4326``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004327``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4328are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004329
4330Note that the ``void *`` type is expressed as a type derived from NULL.
4331
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004332.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004333
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004334DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004335"""""""""""""""
4336
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004337``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004338structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004339
4340If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004341identifier used for type merging between modules. When specified,
4342:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4343derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4344``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004345
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004346For a given ``identifier:``, there should only be a single composite type that
4347does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4348together will unique such definitions at parse time via the ``identifier:``
4349field, even if the nodes are ``distinct``.
4350
Renato Golin124f2592016-07-20 12:16:38 +00004351.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004352
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004353 !0 = !DIEnumerator(name: "SixKind", value: 7)
4354 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4355 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4356 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004357 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4358 elements: !{!0, !1, !2})
4359
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004360The following ``tag:`` values are valid:
4361
Renato Golin124f2592016-07-20 12:16:38 +00004362.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004363
4364 DW_TAG_array_type = 1
4365 DW_TAG_class_type = 2
4366 DW_TAG_enumeration_type = 4
4367 DW_TAG_structure_type = 19
4368 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004369
4370For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004371descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004372level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004373array type is a native packed vector.
4374
4375For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004376descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004377value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004378``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004379
4380For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4381``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004382<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4383``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4384``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004385
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004386.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004387
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004388DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004389""""""""""
4390
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004391``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sander de Smalen1cb94312018-01-24 10:30:23 +00004392:ref:`DICompositeType`.
4393
4394- ``count: -1`` indicates an empty array.
4395- ``count: !9`` describes the count with a :ref:`DILocalVariable`.
4396- ``count: !11`` describes the count with a :ref:`DIGlobalVariable`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004397
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004398.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004399
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004400 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4401 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4402 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004403
Sander de Smalenfdf40912018-01-24 09:56:07 +00004404 ; Scopes used in rest of example
4405 !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
Chandler Carruth24dd2112018-08-06 02:30:01 +00004406 !7 = distinct !DICompileUnit(language: DW_LANG_C99, file: !6)
4407 !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004408
4409 ; Use of local variable as count value
4410 !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
4411 !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
Chandler Carruth24dd2112018-08-06 02:30:01 +00004412 !11 = !DISubrange(count: !10, lowerBound: 0)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004413
4414 ; Use of global variable as count value
4415 !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
Chandler Carruth24dd2112018-08-06 02:30:01 +00004416 !13 = !DISubrange(count: !12, lowerBound: 0)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004417
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004418.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004419
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004420DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004421""""""""""""
4422
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004423``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4424variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004425
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004426.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004427
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004428 !0 = !DIEnumerator(name: "SixKind", value: 7)
4429 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4430 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004431
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004432DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004433"""""""""""""""""""""""
4434
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004435``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004436language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004437:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004438
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004439.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004440
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004441 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004442
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004443DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004444""""""""""""""""""""""""
4445
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004446``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004447language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004448but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004449``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004450:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004451
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004452.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004453
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004454 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004455
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004456DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004457"""""""""""
4458
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004459``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004460
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004461.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004462
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004463 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004464
Sander de Smalen1cb94312018-01-24 10:30:23 +00004465.. _DIGlobalVariable:
4466
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004467DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004468""""""""""""""""
4469
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004470``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004471
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004472.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004473
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004474 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004475 file: !2, line: 7, type: !3, isLocal: true,
4476 isDefinition: false, variable: i32* @foo,
4477 declaration: !4)
4478
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004479All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004480:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004481
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004482.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004483
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004484DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004485""""""""""""
4486
Peter Collingbourne50108682015-11-06 02:41:02 +00004487``DISubprogram`` nodes represent functions from the source language. A
4488``DISubprogram`` may be attached to a function definition using ``!dbg``
4489metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4490that must be retained, even if their IR counterparts are optimized out of
4491the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004492
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004493.. _DISubprogramDeclaration:
4494
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004495When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004496tree as opposed to a definition of a function. If the scope is a composite
4497type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4498then the subprogram declaration is uniqued based only on its ``linkageName:``
4499and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004500
Renato Golin124f2592016-07-20 12:16:38 +00004501.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004502
Peter Collingbourne50108682015-11-06 02:41:02 +00004503 define void @_Z3foov() !dbg !0 {
4504 ...
4505 }
4506
4507 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4508 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004509 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004510 containingType: !4,
4511 virtuality: DW_VIRTUALITY_pure_virtual,
4512 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004513 isOptimized: true, unit: !5, templateParams: !6,
4514 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004515
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004516.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004517
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004518DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004519""""""""""""""
4520
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004521``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004522<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004523two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004524fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004525
Renato Golin124f2592016-07-20 12:16:38 +00004526.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004527
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004528 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004529
4530Usually lexical blocks are ``distinct`` to prevent node merging based on
4531operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004532
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004533.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004534
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004535DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004536""""""""""""""""""
4537
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004538``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004539:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004540indicate textual inclusion, or the ``discriminator:`` field can be used to
4541discriminate between control flow within a single block in the source language.
4542
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004543.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004544
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004545 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4546 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4547 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004548
Michael Kuperstein605308a2015-05-14 10:58:59 +00004549.. _DILocation:
4550
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004551DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004552""""""""""
4553
Sean Silvaa1190322015-08-06 22:56:48 +00004554``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004555mandatory, and points at an :ref:`DILexicalBlockFile`, an
4556:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004557
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004558.. code-block:: text
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004559
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004560 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004561
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004562.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004563
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004564DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004565"""""""""""""""
4566
Sean Silvaa1190322015-08-06 22:56:48 +00004567``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004568the ``arg:`` field is set to non-zero, then this variable is a subprogram
4569parameter, and it will be included in the ``variables:`` field of its
4570:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004571
Renato Golin124f2592016-07-20 12:16:38 +00004572.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004573
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004574 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4575 type: !3, flags: DIFlagArtificial)
4576 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4577 type: !3)
4578 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004579
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004580DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004581""""""""""""
4582
Adrian Prantlb44c7762017-03-22 18:01:01 +00004583``DIExpression`` nodes represent expressions that are inspired by the DWARF
4584expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4585(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
Vedant Kumar8a05b012018-07-28 00:33:47 +00004586referenced LLVM variable relates to the source language variable. Debug
4587intrinsics are interpreted left-to-right: start by pushing the value/address
4588operand of the intrinsic onto a stack, then repeatedly push and evaluate
4589opcodes from the DIExpression until the final variable description is produced.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004590
Vedant Kumar8a05b012018-07-28 00:33:47 +00004591The current supported opcode vocabulary is limited:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004592
Adrian Prantl6825fb62017-04-18 01:21:53 +00004593- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004594- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4595 them together and appends the result to the expression stack.
4596- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4597 the last entry from the second last entry and appends the result to the
4598 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004599- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004600- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4601 here, respectively) of the variable fragment from the working expression. Note
Hiroshi Inoue760c0c92018-01-16 13:19:48 +00004602 that contrary to DW_OP_bit_piece, the offset is describing the location
Adrian Prantlb44c7762017-03-22 18:01:01 +00004603 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004604- ``DW_OP_swap`` swaps top two stack entries.
4605- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4606 of the stack is treated as an address. The second stack entry is treated as an
4607 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004608- ``DW_OP_stack_value`` marks a constant value.
4609
Adrian Prantl6825fb62017-04-18 01:21:53 +00004610DWARF specifies three kinds of simple location descriptions: Register, memory,
Vedant Kumar8a05b012018-07-28 00:33:47 +00004611and implicit location descriptions. Note that a location description is
4612defined over certain ranges of a program, i.e the location of a variable may
4613change over the course of the program. Register and memory location
4614descriptions describe the *concrete location* of a source variable (in the
4615sense that a debugger might modify its value), whereas *implicit locations*
4616describe merely the actual *value* of a source variable which might not exist
4617in registers or in memory (see ``DW_OP_stack_value``).
4618
4619A ``llvm.dbg.addr`` or ``llvm.dbg.declare`` intrinsic describes an indirect
4620value (the address) of a source variable. The first operand of the intrinsic
4621must be an address of some kind. A DIExpression attached to the intrinsic
4622refines this address to produce a concrete location for the source variable.
4623
4624A ``llvm.dbg.value`` intrinsic describes the direct value of a source variable.
4625The first operand of the intrinsic may be a direct or indirect value. A
4626DIExpresion attached to the intrinsic refines the first operand to produce a
4627direct value. For example, if the first operand is an indirect value, it may be
4628necessary to insert ``DW_OP_deref`` into the DIExpresion in order to produce a
4629valid debug intrinsic.
4630
4631.. note::
4632
4633 A DIExpression is interpreted in the same way regardless of which kind of
4634 debug intrinsic it's attached to.
Adrian Prantl6825fb62017-04-18 01:21:53 +00004635
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004636.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004637
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004638 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004639 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004640 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004641 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004642 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004643 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004644 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004645
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004646DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004647""""""""""""""
4648
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004649``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004650
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004651.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004652
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004653 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004654 getter: "getFoo", attributes: 7, type: !2)
4655
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004656DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004657""""""""""""""""
4658
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004659``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004660compile unit.
4661
Renato Golin124f2592016-07-20 12:16:38 +00004662.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004663
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004664 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004665 entity: !1, line: 7)
4666
Amjad Abouda9bcf162015-12-10 12:56:35 +00004667DIMacro
4668"""""""
4669
4670``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4671The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004672defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004673used to expand the macro identifier.
4674
Renato Golin124f2592016-07-20 12:16:38 +00004675.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004676
4677 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4678 value: "((x) + 1)")
4679 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4680
4681DIMacroFile
4682"""""""""""
4683
4684``DIMacroFile`` nodes represent inclusion of source files.
4685The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4686appear in the included source file.
4687
Renato Golin124f2592016-07-20 12:16:38 +00004688.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004689
4690 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4691 nodes: !3)
4692
Sean Silvab084af42012-12-07 10:36:55 +00004693'``tbaa``' Metadata
4694^^^^^^^^^^^^^^^^^^^
4695
4696In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004697suitable for doing type based alias analysis (TBAA). Instead, metadata is
4698added to the IR to describe a type system of a higher level language. This
4699can be used to implement C/C++ strict type aliasing rules, but it can also
4700be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004701
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004702This description of LLVM's TBAA system is broken into two parts:
4703:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4704:ref:`Representation<tbaa_node_representation>` talks about the metadata
4705encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004706
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004707It is always possible to trace any TBAA node to a "root" TBAA node (details
4708in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4709nodes with different roots have an unknown aliasing relationship, and LLVM
4710conservatively infers ``MayAlias`` between them. The rules mentioned in
4711this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004712
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004713.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004714
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004715Semantics
4716"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004717
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004718The TBAA metadata system, referred to as "struct path TBAA" (not to be
4719confused with ``tbaa.struct``), consists of the following high level
4720concepts: *Type Descriptors*, further subdivided into scalar type
4721descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004722
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004723**Type descriptors** describe the type system of the higher level language
4724being compiled. **Scalar type descriptors** describe types that do not
4725contain other types. Each scalar type has a parent type, which must also
4726be a scalar type or the TBAA root. Via this parent relation, scalar types
4727within a TBAA root form a tree. **Struct type descriptors** denote types
4728that contain a sequence of other type descriptors, at known offsets. These
4729contained type descriptors can either be struct type descriptors themselves
4730or scalar type descriptors.
4731
4732**Access tags** are metadata nodes attached to load and store instructions.
4733Access tags use type descriptors to describe the *location* being accessed
4734in terms of the type system of the higher level language. Access tags are
4735tuples consisting of a base type, an access type and an offset. The base
4736type is a scalar type descriptor or a struct type descriptor, the access
4737type is a scalar type descriptor, and the offset is a constant integer.
4738
4739The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4740things:
4741
4742 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4743 or store) of a value of type ``AccessTy`` contained in the struct type
4744 ``BaseTy`` at offset ``Offset``.
4745
4746 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4747 ``AccessTy`` must be the same; and the access tag describes a scalar
4748 access with scalar type ``AccessTy``.
4749
4750We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4751tuples this way:
4752
4753 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4754 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4755 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4756 undefined if ``Offset`` is non-zero.
4757
4758 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4759 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4760 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4761 to be relative within that inner type.
4762
4763A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4764aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4765Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4766Offset2)`` via the ``Parent`` relation or vice versa.
4767
4768As a concrete example, the type descriptor graph for the following program
4769
4770.. code-block:: c
4771
4772 struct Inner {
4773 int i; // offset 0
4774 float f; // offset 4
4775 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004776
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004777 struct Outer {
4778 float f; // offset 0
4779 double d; // offset 4
4780 struct Inner inner_a; // offset 12
4781 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004782
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004783 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4784 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4785 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
Fangrui Song74d6a742018-05-29 05:38:05 +00004786 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, FloatScalarTy, 16)
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004787 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4788 }
4789
4790is (note that in C and C++, ``char`` can be used to access any arbitrary
4791type):
4792
4793.. code-block:: text
4794
4795 Root = "TBAA Root"
4796 CharScalarTy = ("char", Root, 0)
4797 FloatScalarTy = ("float", CharScalarTy, 0)
4798 DoubleScalarTy = ("double", CharScalarTy, 0)
4799 IntScalarTy = ("int", CharScalarTy, 0)
4800 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4801 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4802 (InnerStructTy, 12)}
4803
4804
4805with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
48060)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4807``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4808
4809.. _tbaa_node_representation:
4810
4811Representation
4812""""""""""""""
4813
4814The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4815with exactly one ``MDString`` operand.
4816
4817Scalar type descriptors are represented as an ``MDNode`` s with two
4818operands. The first operand is an ``MDString`` denoting the name of the
4819struct type. LLVM does not assign meaning to the value of this operand, it
4820only cares about it being an ``MDString``. The second operand is an
4821``MDNode`` which points to the parent for said scalar type descriptor,
4822which is either another scalar type descriptor or the TBAA root. Scalar
4823type descriptors can have an optional third argument, but that must be the
4824constant integer zero.
4825
4826Struct type descriptors are represented as ``MDNode`` s with an odd number
4827of operands greater than 1. The first operand is an ``MDString`` denoting
4828the name of the struct type. Like in scalar type descriptors the actual
4829value of this name operand is irrelevant to LLVM. After the name operand,
4830the struct type descriptors have a sequence of alternating ``MDNode`` and
4831``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4832an ``MDNode``, denotes a contained field, and the 2N th operand, a
4833``ConstantInt``, is the offset of the said contained field. The offsets
4834must be in non-decreasing order.
4835
4836Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4837The first operand is an ``MDNode`` pointing to the node representing the
4838base type. The second operand is an ``MDNode`` pointing to the node
4839representing the access type. The third operand is a ``ConstantInt`` that
4840states the offset of the access. If a fourth field is present, it must be
4841a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4842that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004843``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004844AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4845the access type and the base type of an access tag must be the same, and
4846that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004847
4848'``tbaa.struct``' Metadata
4849^^^^^^^^^^^^^^^^^^^^^^^^^^
4850
4851The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4852aggregate assignment operations in C and similar languages, however it
4853is defined to copy a contiguous region of memory, which is more than
4854strictly necessary for aggregate types which contain holes due to
4855padding. Also, it doesn't contain any TBAA information about the fields
4856of the aggregate.
4857
4858``!tbaa.struct`` metadata can describe which memory subregions in a
4859memcpy are padding and what the TBAA tags of the struct are.
4860
4861The current metadata format is very simple. ``!tbaa.struct`` metadata
4862nodes are a list of operands which are in conceptual groups of three.
4863For each group of three, the first operand gives the byte offset of a
4864field in bytes, the second gives its size in bytes, and the third gives
4865its tbaa tag. e.g.:
4866
4867.. code-block:: llvm
4868
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004869 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004870
4871This describes a struct with two fields. The first is at offset 0 bytes
4872with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4873and has size 4 bytes and has tbaa tag !2.
4874
4875Note that the fields need not be contiguous. In this example, there is a
48764 byte gap between the two fields. This gap represents padding which
4877does not carry useful data and need not be preserved.
4878
Hal Finkel94146652014-07-24 14:25:39 +00004879'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004881
4882``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4883noalias memory-access sets. This means that some collection of memory access
4884instructions (loads, stores, memory-accessing calls, etc.) that carry
4885``noalias`` metadata can specifically be specified not to alias with some other
4886collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004887Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004888a domain.
4889
4890When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004891of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004892subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004893instruction's ``noalias`` list, then the two memory accesses are assumed not to
4894alias.
Hal Finkel94146652014-07-24 14:25:39 +00004895
Adam Nemet569a5b32016-04-27 00:52:48 +00004896Because scopes in one domain don't affect scopes in other domains, separate
4897domains can be used to compose multiple independent noalias sets. This is
4898used for example during inlining. As the noalias function parameters are
4899turned into noalias scope metadata, a new domain is used every time the
4900function is inlined.
4901
Hal Finkel029cde62014-07-25 15:50:02 +00004902The metadata identifying each domain is itself a list containing one or two
4903entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004904string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004905self-reference can be used to create globally unique domain names. A
4906descriptive string may optionally be provided as a second list entry.
4907
4908The metadata identifying each scope is also itself a list containing two or
4909three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004910is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004911self-reference can be used to create globally unique scope names. A metadata
4912reference to the scope's domain is the second entry. A descriptive string may
4913optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004914
4915For example,
4916
4917.. code-block:: llvm
4918
Hal Finkel029cde62014-07-25 15:50:02 +00004919 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004920 !0 = !{!0}
4921 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004922
Hal Finkel029cde62014-07-25 15:50:02 +00004923 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004924 !2 = !{!2, !0}
4925 !3 = !{!3, !0}
4926 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004927
Hal Finkel029cde62014-07-25 15:50:02 +00004928 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004929 !5 = !{!4} ; A list containing only scope !4
4930 !6 = !{!4, !3, !2}
4931 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004932
4933 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004934 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004935 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004936
Hal Finkel029cde62014-07-25 15:50:02 +00004937 ; These two instructions also don't alias (for domain !1, the set of scopes
4938 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004939 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004940 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004941
Adam Nemet0a8416f2015-05-11 08:30:28 +00004942 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004943 ; the !noalias list is not a superset of, or equal to, the scopes in the
4944 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004945 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004946 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004947
Sean Silvab084af42012-12-07 10:36:55 +00004948'``fpmath``' Metadata
4949^^^^^^^^^^^^^^^^^^^^^
4950
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00004951``fpmath`` metadata may be attached to any instruction of floating-point
Sean Silvab084af42012-12-07 10:36:55 +00004952type. It can be used to express the maximum acceptable error in the
4953result of that instruction, in ULPs, thus potentially allowing the
4954compiler to use a more efficient but less accurate method of computing
4955it. ULP is defined as follows:
4956
4957 If ``x`` is a real number that lies between two finite consecutive
4958 floating-point numbers ``a`` and ``b``, without being equal to one
4959 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4960 distance between the two non-equal finite floating-point numbers
4961 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4962
Matt Arsenault82f41512016-06-27 19:43:15 +00004963The metadata node shall consist of a single positive float type number
4964representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004965
4966.. code-block:: llvm
4967
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004968 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004969
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004970.. _range-metadata:
4971
Sean Silvab084af42012-12-07 10:36:55 +00004972'``range``' Metadata
4973^^^^^^^^^^^^^^^^^^^^
4974
Jingyue Wu37fcb592014-06-19 16:50:16 +00004975``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4976integer types. It expresses the possible ranges the loaded value or the value
Eli Friedmane15a1112018-07-17 20:38:11 +00004977returned by the called function at this call site is in. If the loaded or
4978returned value is not in the specified range, the behavior is undefined. The
4979ranges are represented with a flattened list of integers. The loaded value or
4980the value returned is known to be in the union of the ranges defined by each
4981consecutive pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004982
4983- The type must match the type loaded by the instruction.
4984- The pair ``a,b`` represents the range ``[a,b)``.
4985- Both ``a`` and ``b`` are constants.
4986- The range is allowed to wrap.
4987- The range should not represent the full or empty set. That is,
4988 ``a!=b``.
4989
4990In addition, the pairs must be in signed order of the lower bound and
4991they must be non-contiguous.
4992
4993Examples:
4994
4995.. code-block:: llvm
4996
David Blaikiec7aabbb2015-03-04 22:06:14 +00004997 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4998 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004999 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
5000 %d = invoke i8 @bar() to label %cont
5001 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00005002 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005003 !0 = !{ i8 0, i8 2 }
5004 !1 = !{ i8 255, i8 2 }
5005 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
5006 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00005007
Peter Collingbourne235c2752016-12-08 19:01:00 +00005008'``absolute_symbol``' Metadata
5009^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5010
5011``absolute_symbol`` metadata may be attached to a global variable
5012declaration. It marks the declaration as a reference to an absolute symbol,
5013which causes the backend to use absolute relocations for the symbol even
5014in position independent code, and expresses the possible ranges that the
5015global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00005016``range`` metadata, with the extension that the pair ``all-ones,all-ones``
5017may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00005018
Peter Collingbourned88f9282017-01-20 21:56:37 +00005019Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00005020
5021.. code-block:: llvm
5022
5023 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00005024 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00005025
5026 ...
5027 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00005028 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00005029
Matthew Simpson36bbc8c2017-10-16 22:22:11 +00005030'``callees``' Metadata
5031^^^^^^^^^^^^^^^^^^^^^^
5032
5033``callees`` metadata may be attached to indirect call sites. If ``callees``
5034metadata is attached to a call site, and any callee is not among the set of
5035functions provided by the metadata, the behavior is undefined. The intent of
5036this metadata is to facilitate optimizations such as indirect-call promotion.
5037For example, in the code below, the call instruction may only target the
5038``add`` or ``sub`` functions:
5039
5040.. code-block:: llvm
5041
5042 %result = call i64 %binop(i64 %x, i64 %y), !callees !0
5043
5044 ...
5045 !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
5046
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005047'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00005048^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005049
5050``unpredictable`` metadata may be attached to any branch or switch
5051instruction. It can be used to express the unpredictability of control
5052flow. Similar to the llvm.expect intrinsic, it may be used to alter
5053optimizations related to compare and branch instructions. The metadata
5054is treated as a boolean value; if it exists, it signals that the branch
5055or switch that it is attached to is completely unpredictable.
5056
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005057'``llvm.loop``'
5058^^^^^^^^^^^^^^^
5059
5060It is sometimes useful to attach information to loop constructs. Currently,
5061loop metadata is implemented as metadata attached to the branch instruction
5062in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00005063guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00005064specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005065
5066The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00005067itself to avoid merging it with any other identifier metadata, e.g.,
5068during module linkage or function inlining. That is, each loop should refer
5069to their own identification metadata even if they reside in separate functions.
5070The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005071constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005072
5073.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00005074
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005075 !0 = !{!0}
5076 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005077
Mark Heffernan893752a2014-07-18 19:24:51 +00005078The loop identifier metadata can be used to specify additional
5079per-loop metadata. Any operands after the first operand can be treated
5080as user-defined metadata. For example the ``llvm.loop.unroll.count``
5081suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005082
Paul Redmond5fdf8362013-05-28 20:00:34 +00005083.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005084
Paul Redmond5fdf8362013-05-28 20:00:34 +00005085 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
5086 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005087 !0 = !{!0, !1}
5088 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005089
Mark Heffernan9d20e422014-07-21 23:11:03 +00005090'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
5091^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00005092
Mark Heffernan9d20e422014-07-21 23:11:03 +00005093Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
5094used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00005095vectorization width and interleave count. These metadata should be used in
5096conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00005097``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
5098optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00005099it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00005100which contains information about loop-carried memory dependencies can be helpful
5101in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00005102
Mark Heffernan9d20e422014-07-21 23:11:03 +00005103'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00005104^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5105
Mark Heffernan9d20e422014-07-21 23:11:03 +00005106This metadata suggests an interleave count to the loop interleaver.
5107The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00005108second operand is an integer specifying the interleave count. For
5109example:
5110
5111.. code-block:: llvm
5112
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005113 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005114
Mark Heffernan9d20e422014-07-21 23:11:03 +00005115Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00005116multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00005117then the interleave count will be determined automatically.
5118
5119'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00005120^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00005121
5122This metadata selectively enables or disables vectorization for the loop. The
5123first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00005124is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000051250 disables vectorization:
5126
5127.. code-block:: llvm
5128
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005129 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5130 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00005131
5132'``llvm.loop.vectorize.width``' Metadata
5133^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5134
5135This metadata sets the target width of the vectorizer. The first
5136operand is the string ``llvm.loop.vectorize.width`` and the second
5137operand is an integer specifying the width. For example:
5138
5139.. code-block:: llvm
5140
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005141 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005142
5143Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00005144vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000051450 or if the loop does not have this metadata the width will be
5146determined automatically.
5147
5148'``llvm.loop.unroll``'
5149^^^^^^^^^^^^^^^^^^^^^^
5150
5151Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5152optimization hints such as the unroll factor. ``llvm.loop.unroll``
5153metadata should be used in conjunction with ``llvm.loop`` loop
5154identification metadata. The ``llvm.loop.unroll`` metadata are only
5155optimization hints and the unrolling will only be performed if the
5156optimizer believes it is safe to do so.
5157
Mark Heffernan893752a2014-07-18 19:24:51 +00005158'``llvm.loop.unroll.count``' Metadata
5159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5160
5161This metadata suggests an unroll factor to the loop unroller. The
5162first operand is the string ``llvm.loop.unroll.count`` and the second
5163operand is a positive integer specifying the unroll factor. For
5164example:
5165
5166.. code-block:: llvm
5167
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005168 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005169
5170If the trip count of the loop is less than the unroll count the loop
5171will be partially unrolled.
5172
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005173'``llvm.loop.unroll.disable``' Metadata
5174^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5175
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005176This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00005177which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005178
5179.. code-block:: llvm
5180
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005181 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005182
Kevin Qin715b01e2015-03-09 06:14:18 +00005183'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00005184^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00005185
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005186This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005187operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005188
5189.. code-block:: llvm
5190
5191 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5192
Mark Heffernan89391542015-08-10 17:28:08 +00005193'``llvm.loop.unroll.enable``' Metadata
5194^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5195
5196This metadata suggests that the loop should be fully unrolled if the trip count
5197is known at compile time and partially unrolled if the trip count is not known
5198at compile time. The metadata has a single operand which is the string
5199``llvm.loop.unroll.enable``. For example:
5200
5201.. code-block:: llvm
5202
5203 !0 = !{!"llvm.loop.unroll.enable"}
5204
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005205'``llvm.loop.unroll.full``' Metadata
5206^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5207
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005208This metadata suggests that the loop should be unrolled fully. The
5209metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005210For example:
5211
5212.. code-block:: llvm
5213
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005214 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005215
David Green7fbf06c2018-07-19 12:37:00 +00005216'``llvm.loop.unroll_and_jam``'
5217^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5218
5219This metadata is treated very similarly to the ``llvm.loop.unroll`` metadata
5220above, but affect the unroll and jam pass. In addition any loop with
5221``llvm.loop.unroll`` metadata but no ``llvm.loop.unroll_and_jam`` metadata will
5222disable unroll and jam (so ``llvm.loop.unroll`` metadata will be left to the
5223unroller, plus ``llvm.loop.unroll.disable`` metadata will disable unroll and jam
5224too.)
5225
5226The metadata for unroll and jam otherwise is the same as for ``unroll``.
5227``llvm.loop.unroll_and_jam.enable``, ``llvm.loop.unroll_and_jam.disable`` and
5228``llvm.loop.unroll_and_jam.count`` do the same as for unroll.
5229``llvm.loop.unroll_and_jam.full`` is not supported. Again these are only hints
5230and the normal safety checks will still be performed.
5231
5232'``llvm.loop.unroll_and_jam.count``' Metadata
5233^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5234
5235This metadata suggests an unroll and jam factor to use, similarly to
5236``llvm.loop.unroll.count``. The first operand is the string
5237``llvm.loop.unroll_and_jam.count`` and the second operand is a positive integer
5238specifying the unroll factor. For example:
5239
5240.. code-block:: llvm
5241
5242 !0 = !{!"llvm.loop.unroll_and_jam.count", i32 4}
5243
5244If the trip count of the loop is less than the unroll count the loop
5245will be partially unroll and jammed.
5246
5247'``llvm.loop.unroll_and_jam.disable``' Metadata
5248^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5249
5250This metadata disables loop unroll and jamming. The metadata has a single
5251operand which is the string ``llvm.loop.unroll_and_jam.disable``. For example:
5252
5253.. code-block:: llvm
5254
5255 !0 = !{!"llvm.loop.unroll_and_jam.disable"}
5256
5257'``llvm.loop.unroll_and_jam.enable``' Metadata
5258^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5259
5260This metadata suggests that the loop should be fully unroll and jammed if the
5261trip count is known at compile time and partially unrolled if the trip count is
5262not known at compile time. The metadata has a single operand which is the
5263string ``llvm.loop.unroll_and_jam.enable``. For example:
5264
5265.. code-block:: llvm
5266
5267 !0 = !{!"llvm.loop.unroll_and_jam.enable"}
5268
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005269'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005270^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005271
5272This metadata indicates that the loop should not be versioned for the purpose
5273of enabling loop-invariant code motion (LICM). The metadata has a single operand
5274which is the string ``llvm.loop.licm_versioning.disable``. For example:
5275
5276.. code-block:: llvm
5277
5278 !0 = !{!"llvm.loop.licm_versioning.disable"}
5279
Adam Nemetd2fa4142016-04-27 05:28:18 +00005280'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005281^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005282
5283Loop distribution allows splitting a loop into multiple loops. Currently,
5284this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005285memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005286dependencies into their own loop.
5287
5288This metadata can be used to selectively enable or disable distribution of the
5289loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5290second operand is a bit. If the bit operand value is 1 distribution is
5291enabled. A value of 0 disables distribution:
5292
5293.. code-block:: llvm
5294
5295 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5296 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5297
5298This metadata should be used in conjunction with ``llvm.loop`` loop
5299identification metadata.
5300
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005301'``llvm.mem``'
5302^^^^^^^^^^^^^^^
5303
5304Metadata types used to annotate memory accesses with information helpful
5305for optimizations are prefixed with ``llvm.mem``.
5306
5307'``llvm.mem.parallel_loop_access``' Metadata
5308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5309
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005310The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5311or metadata containing a list of loop identifiers for nested loops.
5312The metadata is attached to memory accessing instructions and denotes that
5313no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005314with the same loop identifier. The metadata on memory reads also implies that
5315if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005316
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005317Precisely, given two instructions ``m1`` and ``m2`` that both have the
5318``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5319set of loops associated with that metadata, respectively, then there is no loop
5320carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005321``L2``.
5322
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005323As a special case, if all memory accessing instructions in a loop have
5324``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5325loop has no loop carried memory dependences and is considered to be a parallel
5326loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005327
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005328Note that if not all memory access instructions have such metadata referring to
5329the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005330memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005331safe mechanism, this causes loops that were originally parallel to be considered
5332sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005333insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005334
5335Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005336both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005337metadata types that refer to the same loop identifier metadata.
5338
5339.. code-block:: llvm
5340
5341 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005342 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005343 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005344 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005345 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005346 ...
5347 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005348
5349 for.end:
5350 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005351 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005352
5353It is also possible to have nested parallel loops. In that case the
5354memory accesses refer to a list of loop identifier metadata nodes instead of
5355the loop identifier metadata node directly:
5356
5357.. code-block:: llvm
5358
5359 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005360 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005361 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005362 ...
5363 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005364
5365 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005366 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005367 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005368 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005369 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005370 ...
5371 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005372
5373 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005374 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005375 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005376 ...
5377 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005378
5379 outer.for.end: ; preds = %for.body
5380 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005381 !0 = !{!1, !2} ; a list of loop identifiers
5382 !1 = !{!1} ; an identifier for the inner loop
5383 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005384
Hiroshi Yamauchidce9def2017-11-02 22:26:51 +00005385'``irr_loop``' Metadata
5386^^^^^^^^^^^^^^^^^^^^^^^
5387
5388``irr_loop`` metadata may be attached to the terminator instruction of a basic
5389block that's an irreducible loop header (note that an irreducible loop has more
5390than once header basic blocks.) If ``irr_loop`` metadata is attached to the
5391terminator instruction of a basic block that is not really an irreducible loop
5392header, the behavior is undefined. The intent of this metadata is to improve the
5393accuracy of the block frequency propagation. For example, in the code below, the
5394block ``header0`` may have a loop header weight (relative to the other headers of
5395the irreducible loop) of 100:
5396
5397.. code-block:: llvm
5398
5399 header0:
5400 ...
5401 br i1 %cmp, label %t1, label %t2, !irr_loop !0
5402
5403 ...
5404 !0 = !{"loop_header_weight", i64 100}
5405
5406Irreducible loop header weights are typically based on profile data.
5407
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005408'``invariant.group``' Metadata
5409^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5410
Piotr Padlewski74b155f2018-04-08 13:53:04 +00005411The experimental ``invariant.group`` metadata may be attached to
Piotr Padlewskice358262018-05-18 23:53:46 +00005412``load``/``store`` instructions referencing a single metadata with no entries.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005413The existence of the ``invariant.group`` metadata on the instruction tells
5414the optimizer that every ``load`` and ``store`` to the same pointer operand
Piotr Padlewskice358262018-05-18 23:53:46 +00005415can be assumed to load or store the same
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005416value (but see the ``llvm.launder.invariant.group`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005417when two pointers are considered the same). Pointers returned by bitcast or
5418getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005419
5420Examples:
5421
5422.. code-block:: llvm
5423
5424 @unknownPtr = external global i8
5425 ...
5426 %ptr = alloca i8
5427 store i8 42, i8* %ptr, !invariant.group !0
5428 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005429
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005430 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5431 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005432
5433 %newPtr = call i8* @getPointer(i8* %ptr)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005434 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005435
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005436 %unknownValue = load i8, i8* @unknownPtr
5437 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005438
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005439 call void @foo(i8* %ptr)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005440 %newPtr2 = call i8* @llvm.launder.invariant.group(i8* %ptr)
5441 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through launder.invariant.group to get value of %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005442
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005443 ...
5444 declare void @foo(i8*)
5445 declare i8* @getPointer(i8*)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005446 declare i8* @llvm.launder.invariant.group(i8*)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005447
Piotr Padlewskice358262018-05-18 23:53:46 +00005448 !0 = !{}
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005449
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005450The invariant.group metadata must be dropped when replacing one pointer by
5451another based on aliasing information. This is because invariant.group is tied
5452to the SSA value of the pointer operand.
5453
5454.. code-block:: llvm
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005455
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005456 %v = load i8, i8* %x, !invariant.group !0
5457 ; if %x mustalias %y then we can replace the above instruction with
5458 %v = load i8, i8* %y
5459
Piotr Padlewski74b155f2018-04-08 13:53:04 +00005460Note that this is an experimental feature, which means that its semantics might
5461change in the future.
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005462
Peter Collingbournea333db82016-07-26 22:31:30 +00005463'``type``' Metadata
5464^^^^^^^^^^^^^^^^^^^
5465
5466See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005467
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005468'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005469^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005470
5471The ``associated`` metadata may be attached to a global object
5472declaration with a single argument that references another global object.
5473
5474This metadata prevents discarding of the global object in linker GC
5475unless the referenced object is also discarded. The linker support for
5476this feature is spotty. For best compatibility, globals carrying this
5477metadata may also:
5478
5479- Be in a comdat with the referenced global.
5480- Be in @llvm.compiler.used.
5481- Have an explicit section with a name which is a valid C identifier.
5482
5483It does not have any effect on non-ELF targets.
5484
5485Example:
5486
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005487.. code-block:: text
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005488
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005489 $a = comdat any
5490 @a = global i32 1, comdat $a
5491 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5492 !0 = !{i32* @a}
5493
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005494
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005495'``prof``' Metadata
5496^^^^^^^^^^^^^^^^^^^
5497
5498The ``prof`` metadata is used to record profile data in the IR.
5499The first operand of the metadata node indicates the profile metadata
5500type. There are currently 3 types:
5501:ref:`branch_weights<prof_node_branch_weights>`,
5502:ref:`function_entry_count<prof_node_function_entry_count>`, and
5503:ref:`VP<prof_node_VP>`.
5504
5505.. _prof_node_branch_weights:
5506
5507branch_weights
5508""""""""""""""
5509
5510Branch weight metadata attached to a branch, select, switch or call instruction
5511represents the likeliness of the associated branch being taken.
5512For more information, see :doc:`BranchWeightMetadata`.
5513
5514.. _prof_node_function_entry_count:
5515
5516function_entry_count
5517""""""""""""""""""""
5518
5519Function entry count metadata can be attached to function definitions
5520to record the number of times the function is called. Used with BFI
5521information, it is also used to derive the basic block profile count.
5522For more information, see :doc:`BranchWeightMetadata`.
5523
5524.. _prof_node_VP:
5525
5526VP
5527""
5528
5529VP (value profile) metadata can be attached to instructions that have
5530value profile information. Currently this is indirect calls (where it
5531records the hottest callees) and calls to memory intrinsics such as memcpy,
5532memmove, and memset (where it records the hottest byte lengths).
5533
5534Each VP metadata node contains "VP" string, then a uint32_t value for the value
5535profiling kind, a uint64_t value for the total number of times the instruction
5536is executed, followed by uint64_t value and execution count pairs.
5537The value profiling kind is 0 for indirect call targets and 1 for memory
5538operations. For indirect call targets, each profile value is a hash
5539of the callee function name, and for memory operations each value is the
5540byte length.
5541
5542Note that the value counts do not need to add up to the total count
5543listed in the third operand (in practice only the top hottest values
5544are tracked and reported).
5545
5546Indirect call example:
5547
5548.. code-block:: llvm
5549
5550 call void %f(), !prof !1
5551 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5552
5553Note that the VP type is 0 (the second operand), which indicates this is
5554an indirect call value profile data. The third operand indicates that the
5555indirect call executed 1600 times. The 4th and 6th operands give the
5556hashes of the 2 hottest target functions' names (this is the same hash used
5557to represent function names in the profile database), and the 5th and 7th
5558operands give the execution count that each of the respective prior target
5559functions was called.
5560
Sean Silvab084af42012-12-07 10:36:55 +00005561Module Flags Metadata
5562=====================
5563
5564Information about the module as a whole is difficult to convey to LLVM's
5565subsystems. The LLVM IR isn't sufficient to transmit this information.
5566The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005567this. These flags are in the form of key / value pairs --- much like a
5568dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005569look it up.
5570
5571The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5572Each triplet has the following form:
5573
5574- The first element is a *behavior* flag, which specifies the behavior
5575 when two (or more) modules are merged together, and it encounters two
5576 (or more) metadata with the same ID. The supported behaviors are
5577 described below.
5578- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005579 metadata. Each module may only have one flag entry for each unique ID (not
5580 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005581- The third element is the value of the flag.
5582
5583When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005584``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5585each unique metadata ID string, there will be exactly one entry in the merged
5586modules ``llvm.module.flags`` metadata table, and the value for that entry will
5587be determined by the merge behavior flag, as described below. The only exception
5588is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005589
5590The following behaviors are supported:
5591
5592.. list-table::
5593 :header-rows: 1
5594 :widths: 10 90
5595
5596 * - Value
5597 - Behavior
5598
5599 * - 1
5600 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005601 Emits an error if two values disagree, otherwise the resulting value
5602 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005603
5604 * - 2
5605 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005606 Emits a warning if two values disagree. The result value will be the
5607 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005608
5609 * - 3
5610 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005611 Adds a requirement that another module flag be present and have a
5612 specified value after linking is performed. The value must be a
5613 metadata pair, where the first element of the pair is the ID of the
5614 module flag to be restricted, and the second element of the pair is
5615 the value the module flag should be restricted to. This behavior can
5616 be used to restrict the allowable results (via triggering of an
5617 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005618
5619 * - 4
5620 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005621 Uses the specified value, regardless of the behavior or value of the
5622 other module. If both modules specify **Override**, but the values
5623 differ, an error will be emitted.
5624
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005625 * - 5
5626 - **Append**
5627 Appends the two values, which are required to be metadata nodes.
5628
5629 * - 6
5630 - **AppendUnique**
5631 Appends the two values, which are required to be metadata
5632 nodes. However, duplicate entries in the second list are dropped
5633 during the append operation.
5634
Steven Wu86a511e2017-08-15 16:16:33 +00005635 * - 7
5636 - **Max**
5637 Takes the max of the two values, which are required to be integers.
5638
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005639It is an error for a particular unique flag ID to have multiple behaviors,
5640except in the case of **Require** (which adds restrictions on another metadata
5641value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005642
5643An example of module flags:
5644
5645.. code-block:: llvm
5646
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005647 !0 = !{ i32 1, !"foo", i32 1 }
5648 !1 = !{ i32 4, !"bar", i32 37 }
5649 !2 = !{ i32 2, !"qux", i32 42 }
5650 !3 = !{ i32 3, !"qux",
5651 !{
5652 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005653 }
5654 }
5655 !llvm.module.flags = !{ !0, !1, !2, !3 }
5656
5657- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5658 if two or more ``!"foo"`` flags are seen is to emit an error if their
5659 values are not equal.
5660
5661- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5662 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005663 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005664
5665- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5666 behavior if two or more ``!"qux"`` flags are seen is to emit a
5667 warning if their values are not equal.
5668
5669- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5670
5671 ::
5672
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005673 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005674
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005675 The behavior is to emit an error if the ``llvm.module.flags`` does not
5676 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5677 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005678
5679Objective-C Garbage Collection Module Flags Metadata
5680----------------------------------------------------
5681
5682On the Mach-O platform, Objective-C stores metadata about garbage
5683collection in a special section called "image info". The metadata
5684consists of a version number and a bitmask specifying what types of
5685garbage collection are supported (if any) by the file. If two or more
5686modules are linked together their garbage collection metadata needs to
5687be merged rather than appended together.
5688
5689The Objective-C garbage collection module flags metadata consists of the
5690following key-value pairs:
5691
5692.. list-table::
5693 :header-rows: 1
5694 :widths: 30 70
5695
5696 * - Key
5697 - Value
5698
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005699 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005700 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005701
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005702 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005703 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005704 always 0.
5705
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005706 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005707 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005708 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5709 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5710 Objective-C ABI version 2.
5711
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005712 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005713 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005714 not. Valid values are 0, for no garbage collection, and 2, for garbage
5715 collection supported.
5716
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005717 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005718 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005719 If present, its value must be 6. This flag requires that the
5720 ``Objective-C Garbage Collection`` flag have the value 2.
5721
5722Some important flag interactions:
5723
5724- If a module with ``Objective-C Garbage Collection`` set to 0 is
5725 merged with a module with ``Objective-C Garbage Collection`` set to
5726 2, then the resulting module has the
5727 ``Objective-C Garbage Collection`` flag set to 0.
5728- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5729 merged with a module with ``Objective-C GC Only`` set to 6.
5730
Oliver Stannard5dc29342014-06-20 10:08:11 +00005731C type width Module Flags Metadata
5732----------------------------------
5733
5734The ARM backend emits a section into each generated object file describing the
5735options that it was compiled with (in a compiler-independent way) to prevent
5736linking incompatible objects, and to allow automatic library selection. Some
5737of these options are not visible at the IR level, namely wchar_t width and enum
5738width.
5739
5740To pass this information to the backend, these options are encoded in module
5741flags metadata, using the following key-value pairs:
5742
5743.. list-table::
5744 :header-rows: 1
5745 :widths: 30 70
5746
5747 * - Key
5748 - Value
5749
5750 * - short_wchar
5751 - * 0 --- sizeof(wchar_t) == 4
5752 * 1 --- sizeof(wchar_t) == 2
5753
5754 * - short_enum
5755 - * 0 --- Enums are at least as large as an ``int``.
5756 * 1 --- Enums are stored in the smallest integer type which can
5757 represent all of its values.
5758
5759For example, the following metadata section specifies that the module was
5760compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5761enum is the smallest type which can represent all of its values::
5762
5763 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005764 !0 = !{i32 1, !"short_wchar", i32 1}
5765 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005766
Peter Collingbourne89061b22017-06-12 20:10:48 +00005767Automatic Linker Flags Named Metadata
5768=====================================
5769
5770Some targets support embedding flags to the linker inside individual object
5771files. Typically this is used in conjunction with language extensions which
5772allow source files to explicitly declare the libraries they depend on, and have
5773these automatically be transmitted to the linker via object files.
5774
5775These flags are encoded in the IR using named metadata with the name
5776``!llvm.linker.options``. Each operand is expected to be a metadata node
5777which should be a list of other metadata nodes, each of which should be a
5778list of metadata strings defining linker options.
5779
5780For example, the following metadata section specifies two separate sets of
5781linker options, presumably to link against ``libz`` and the ``Cocoa``
5782framework::
5783
5784 !0 = !{ !"-lz" },
5785 !1 = !{ !"-framework", !"Cocoa" } } }
5786 !llvm.linker.options = !{ !0, !1 }
5787
5788The metadata encoding as lists of lists of options, as opposed to a collapsed
5789list of options, is chosen so that the IR encoding can use multiple option
5790strings to specify e.g., a single library, while still having that specifier be
5791preserved as an atomic element that can be recognized by a target specific
5792assembly writer or object file emitter.
5793
5794Each individual option is required to be either a valid option for the target's
5795linker, or an option that is reserved by the target specific assembly writer or
5796object file emitter. No other aspect of these options is defined by the IR.
5797
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005798.. _summary:
5799
5800ThinLTO Summary
5801===============
5802
5803Compiling with `ThinLTO <https://clang.llvm.org/docs/ThinLTO.html>`_
5804causes the building of a compact summary of the module that is emitted into
5805the bitcode. The summary is emitted into the LLVM assembly and identified
5806in syntax by a caret ('``^``').
5807
5808*Note that temporarily the summary entries are skipped when parsing the
5809assembly, although the parsing support is actively being implemented. The
5810following describes when the summary entries will be parsed once implemented.*
5811The summary will be parsed into a ModuleSummaryIndex object under the
5812same conditions where summary index is currently built from bitcode.
5813Specifically, tools that test the Thin Link portion of a ThinLTO compile
5814(i.e. llvm-lto and llvm-lto2), or when parsing a combined index
5815for a distributed ThinLTO backend via clang's "``-fthinlto-index=<>``" flag.
5816Additionally, it will be parsed into a bitcode output, along with the Module
5817IR, via the "``llvm-as``" tool. Tools that parse the Module IR for the purposes
5818of optimization (e.g. "``clang -x ir``" and "``opt``"), will ignore the
5819summary entries (just as they currently ignore summary entries in a bitcode
5820input file).
5821
5822There are currently 3 types of summary entries in the LLVM assembly:
5823:ref:`module paths<module_path_summary>`,
5824:ref:`global values<gv_summary>`, and
5825:ref:`type identifiers<typeid_summary>`.
5826
5827.. _module_path_summary:
5828
5829Module Path Summary Entry
5830-------------------------
5831
5832Each module path summary entry lists a module containing global values included
5833in the summary. For a single IR module there will be one such entry, but
5834in a combined summary index produced during the thin link, there will be
5835one module path entry per linked module with summary.
5836
5837Example:
5838
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005839.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005840
5841 ^0 = module: (path: "/path/to/file.o", hash: (2468601609, 1329373163, 1565878005, 638838075, 3148790418))
5842
5843The ``path`` field is a string path to the bitcode file, and the ``hash``
5844field is the 160-bit SHA-1 hash of the IR bitcode contents, used for
5845incremental builds and caching.
5846
5847.. _gv_summary:
5848
5849Global Value Summary Entry
5850--------------------------
5851
5852Each global value summary entry corresponds to a global value defined or
5853referenced by a summarized module.
5854
5855Example:
5856
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005857.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005858
5859 ^4 = gv: (name: "f"[, summaries: (Summary)[, (Summary)]*]?) ; guid = 14740650423002898831
5860
5861For declarations, there will not be a summary list. For definitions, a
5862global value will contain a list of summaries, one per module containing
5863a definition. There can be multiple entries in a combined summary index
5864for symbols with weak linkage.
5865
5866Each ``Summary`` format will depend on whether the global value is a
5867:ref:`function<function_summary>`, :ref:`variable<variable_summary>`, or
5868:ref:`alias<alias_summary>`.
5869
5870.. _function_summary:
5871
5872Function Summary
5873^^^^^^^^^^^^^^^^
5874
5875If the global value is a function, the ``Summary`` entry will look like:
5876
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005877.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005878
5879 function: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), insts: 2[, FuncFlags]?[, Calls]?[, TypeIdInfo]?[, Refs]?
5880
5881The ``module`` field includes the summary entry id for the module containing
5882this definition, and the ``flags`` field contains information such as
5883the linkage type, a flag indicating whether it is legal to import the
5884definition, whether it is globally live and whether the linker resolved it
5885to a local definition (the latter two are populated during the thin link).
5886The ``insts`` field contains the number of IR instructions in the function.
5887Finally, there are several optional fields: :ref:`FuncFlags<funcflags_summary>`,
5888:ref:`Calls<calls_summary>`, :ref:`TypeIdInfo<typeidinfo_summary>`,
5889:ref:`Refs<refs_summary>`.
5890
5891.. _variable_summary:
5892
5893Global Variable Summary
5894^^^^^^^^^^^^^^^^^^^^^^^
5895
5896If the global value is a variable, the ``Summary`` entry will look like:
5897
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005898.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005899
5900 variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0)[, Refs]?
5901
5902The variable entry contains a subset of the fields in a
5903:ref:`function summary <function_summary>`, see the descriptions there.
5904
5905.. _alias_summary:
5906
5907Alias Summary
5908^^^^^^^^^^^^^
5909
5910If the global value is an alias, the ``Summary`` entry will look like:
5911
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005912.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005913
5914 alias: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), aliasee: ^2)
5915
5916The ``module`` and ``flags`` fields are as described for a
5917:ref:`function summary <function_summary>`. The ``aliasee`` field
5918contains a reference to the global value summary entry of the aliasee.
5919
5920.. _funcflags_summary:
5921
5922Function Flags
5923^^^^^^^^^^^^^^
5924
5925The optional ``FuncFlags`` field looks like:
5926
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005927.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005928
5929 funcFlags: (readNone: 0, readOnly: 0, noRecurse: 0, returnDoesNotAlias: 0)
5930
5931If unspecified, flags are assumed to hold the conservative ``false`` value of
5932``0``.
5933
5934.. _calls_summary:
5935
5936Calls
5937^^^^^
5938
5939The optional ``Calls`` field looks like:
5940
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005941.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005942
5943 calls: ((Callee)[, (Callee)]*)
5944
5945where each ``Callee`` looks like:
5946
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005947.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005948
5949 callee: ^1[, hotness: None]?[, relbf: 0]?
5950
5951The ``callee`` refers to the summary entry id of the callee. At most one
5952of ``hotness`` (which can take the values ``Unknown``, ``Cold``, ``None``,
5953``Hot``, and ``Critical``), and ``relbf`` (which holds the integer
5954branch frequency relative to the entry frequency, scaled down by 2^8)
5955may be specified. The defaults are ``Unknown`` and ``0``, respectively.
5956
5957.. _refs_summary:
5958
5959Refs
5960^^^^
5961
5962The optional ``Refs`` field looks like:
5963
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005964.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005965
5966 refs: ((Ref)[, (Ref)]*)
5967
5968where each ``Ref`` contains a reference to the summary id of the referenced
5969value (e.g. ``^1``).
5970
5971.. _typeidinfo_summary:
5972
5973TypeIdInfo
5974^^^^^^^^^^
5975
5976The optional ``TypeIdInfo`` field, used for
5977`Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
5978looks like:
5979
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005980.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005981
5982 typeIdInfo: [(TypeTests)]?[, (TypeTestAssumeVCalls)]?[, (TypeCheckedLoadVCalls)]?[, (TypeTestAssumeConstVCalls)]?[, (TypeCheckedLoadConstVCalls)]?
5983
5984These optional fields have the following forms:
5985
5986TypeTests
5987"""""""""
5988
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005989.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005990
5991 typeTests: (TypeIdRef[, TypeIdRef]*)
5992
5993Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
5994by summary id or ``GUID``.
5995
5996TypeTestAssumeVCalls
5997""""""""""""""""""""
5998
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005999.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006000
6001 typeTestAssumeVCalls: (VFuncId[, VFuncId]*)
6002
6003Where each VFuncId has the format:
6004
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006005.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006006
6007 vFuncId: (TypeIdRef, offset: 16)
6008
6009Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
6010by summary id or ``GUID`` preceeded by a ``guid:`` tag.
6011
6012TypeCheckedLoadVCalls
6013"""""""""""""""""""""
6014
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006015.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006016
6017 typeCheckedLoadVCalls: (VFuncId[, VFuncId]*)
6018
6019Where each VFuncId has the format described for ``TypeTestAssumeVCalls``.
6020
6021TypeTestAssumeConstVCalls
6022"""""""""""""""""""""""""
6023
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006024.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006025
6026 typeTestAssumeConstVCalls: (ConstVCall[, ConstVCall]*)
6027
6028Where each ConstVCall has the format:
6029
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006030.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006031
6032 VFuncId, args: (Arg[, Arg]*)
6033
6034and where each VFuncId has the format described for ``TypeTestAssumeVCalls``,
6035and each Arg is an integer argument number.
6036
6037TypeCheckedLoadConstVCalls
6038""""""""""""""""""""""""""
6039
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006040.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006041
6042 typeCheckedLoadConstVCalls: (ConstVCall[, ConstVCall]*)
6043
6044Where each ConstVCall has the format described for
6045``TypeTestAssumeConstVCalls``.
6046
6047.. _typeid_summary:
6048
6049Type ID Summary Entry
6050---------------------
6051
6052Each type id summary entry corresponds to a type identifier resolution
6053which is generated during the LTO link portion of the compile when building
6054with `Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
6055so these are only present in a combined summary index.
6056
6057Example:
6058
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006059.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006060
6061 ^4 = typeid: (name: "_ZTS1A", summary: (typeTestRes: (kind: allOnes, sizeM1BitWidth: 7[, alignLog2: 0]?[, sizeM1: 0]?[, bitMask: 0]?[, inlineBits: 0]?)[, WpdResolutions]?)) ; guid = 7004155349499253778
6062
6063The ``typeTestRes`` gives the type test resolution ``kind`` (which may
6064be ``unsat``, ``byteArray``, ``inline``, ``single``, or ``allOnes``), and
6065the ``size-1`` bit width. It is followed by optional flags, which default to 0,
6066and an optional WpdResolutions (whole program devirtualization resolution)
6067field that looks like:
6068
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006069.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006070
6071 wpdResolutions: ((offset: 0, WpdRes)[, (offset: 1, WpdRes)]*
6072
6073where each entry is a mapping from the given byte offset to the whole-program
6074devirtualization resolution WpdRes, that has one of the following formats:
6075
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006076.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006077
6078 wpdRes: (kind: branchFunnel)
6079 wpdRes: (kind: singleImpl, singleImplName: "_ZN1A1nEi")
6080 wpdRes: (kind: indir)
6081
6082Additionally, each wpdRes has an optional ``resByArg`` field, which
6083describes the resolutions for calls with all constant integer arguments:
6084
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006085.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006086
6087 resByArg: (ResByArg[, ResByArg]*)
6088
6089where ResByArg is:
6090
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006091.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006092
6093 args: (Arg[, Arg]*), byArg: (kind: UniformRetVal[, info: 0][, byte: 0][, bit: 0])
6094
6095Where the ``kind`` can be ``Indir``, ``UniformRetVal``, ``UniqueRetVal``
6096or ``VirtualConstProp``. The ``info`` field is only used if the kind
6097is ``UniformRetVal`` (indicates the uniform return value), or
6098``UniqueRetVal`` (holds the return value associated with the unique vtable
6099(0 or 1)). The ``byte`` and ``bit`` fields are only used if the target does
6100not support the use of absolute symbols to store constants.
6101
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006102.. _intrinsicglobalvariables:
6103
Sean Silvab084af42012-12-07 10:36:55 +00006104Intrinsic Global Variables
6105==========================
6106
6107LLVM has a number of "magic" global variables that contain data that
6108affect code generation or other IR semantics. These are documented here.
6109All globals of this sort should have a section specified as
6110"``llvm.metadata``". This section and all globals that start with
6111"``llvm.``" are reserved for use by LLVM.
6112
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006113.. _gv_llvmused:
6114
Sean Silvab084af42012-12-07 10:36:55 +00006115The '``llvm.used``' Global Variable
6116-----------------------------------
6117
Rafael Espindola74f2e462013-04-22 14:58:02 +00006118The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00006119:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00006120pointers to named global variables, functions and aliases which may optionally
6121have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00006122use of it is:
6123
6124.. code-block:: llvm
6125
6126 @X = global i8 4
6127 @Y = global i32 123
6128
6129 @llvm.used = appending global [2 x i8*] [
6130 i8* @X,
6131 i8* bitcast (i32* @Y to i8*)
6132 ], section "llvm.metadata"
6133
Rafael Espindola74f2e462013-04-22 14:58:02 +00006134If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
6135and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00006136symbol that it cannot see (which is why they have to be named). For example, if
6137a variable has internal linkage and no references other than that from the
6138``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
6139references from inline asms and other things the compiler cannot "see", and
6140corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00006141
6142On some targets, the code generator must emit a directive to the
6143assembler or object file to prevent the assembler and linker from
6144molesting the symbol.
6145
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006146.. _gv_llvmcompilerused:
6147
Sean Silvab084af42012-12-07 10:36:55 +00006148The '``llvm.compiler.used``' Global Variable
6149--------------------------------------------
6150
6151The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
6152directive, except that it only prevents the compiler from touching the
6153symbol. On targets that support it, this allows an intelligent linker to
6154optimize references to the symbol without being impeded as it would be
6155by ``@llvm.used``.
6156
6157This is a rare construct that should only be used in rare circumstances,
6158and should not be exposed to source languages.
6159
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006160.. _gv_llvmglobalctors:
6161
Sean Silvab084af42012-12-07 10:36:55 +00006162The '``llvm.global_ctors``' Global Variable
6163-------------------------------------------
6164
6165.. code-block:: llvm
6166
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006167 %0 = type { i32, void ()*, i8* }
6168 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006169
6170The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006171functions, priorities, and an optional associated global or function.
6172The functions referenced by this array will be called in ascending order
6173of priority (i.e. lowest first) when the module is loaded. The order of
6174functions with the same priority is not defined.
6175
6176If the third field is present, non-null, and points to a global variable
6177or function, the initializer function will only run if the associated
6178data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006179
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006180.. _llvmglobaldtors:
6181
Sean Silvab084af42012-12-07 10:36:55 +00006182The '``llvm.global_dtors``' Global Variable
6183-------------------------------------------
6184
6185.. code-block:: llvm
6186
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006187 %0 = type { i32, void ()*, i8* }
6188 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006189
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006190The ``@llvm.global_dtors`` array contains a list of destructor
6191functions, priorities, and an optional associated global or function.
6192The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00006193order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006194order of functions with the same priority is not defined.
6195
6196If the third field is present, non-null, and points to a global variable
6197or function, the destructor function will only run if the associated
6198data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006199
6200Instruction Reference
6201=====================
6202
6203The LLVM instruction set consists of several different classifications
6204of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
6205instructions <binaryops>`, :ref:`bitwise binary
6206instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
6207:ref:`other instructions <otherops>`.
6208
6209.. _terminators:
6210
6211Terminator Instructions
6212-----------------------
6213
6214As mentioned :ref:`previously <functionstructure>`, every basic block in a
6215program ends with a "Terminator" instruction, which indicates which
6216block should be executed after the current block is finished. These
6217terminator instructions typically yield a '``void``' value: they produce
6218control flow, not values (the one exception being the
6219':ref:`invoke <i_invoke>`' instruction).
6220
6221The terminator instructions are: ':ref:`ret <i_ret>`',
6222':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
6223':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00006224':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00006225':ref:`catchret <i_catchret>`',
6226':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00006227and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00006228
6229.. _i_ret:
6230
6231'``ret``' Instruction
6232^^^^^^^^^^^^^^^^^^^^^
6233
6234Syntax:
6235"""""""
6236
6237::
6238
6239 ret <type> <value> ; Return a value from a non-void function
6240 ret void ; Return from void function
6241
6242Overview:
6243"""""""""
6244
6245The '``ret``' instruction is used to return control flow (and optionally
6246a value) from a function back to the caller.
6247
6248There are two forms of the '``ret``' instruction: one that returns a
6249value and then causes control flow, and one that just causes control
6250flow to occur.
6251
6252Arguments:
6253""""""""""
6254
6255The '``ret``' instruction optionally accepts a single argument, the
6256return value. The type of the return value must be a ':ref:`first
6257class <t_firstclass>`' type.
6258
6259A function is not :ref:`well formed <wellformed>` if it it has a non-void
6260return type and contains a '``ret``' instruction with no return value or
6261a return value with a type that does not match its type, or if it has a
6262void return type and contains a '``ret``' instruction with a return
6263value.
6264
6265Semantics:
6266""""""""""
6267
6268When the '``ret``' instruction is executed, control flow returns back to
6269the calling function's context. If the caller is a
6270":ref:`call <i_call>`" instruction, execution continues at the
6271instruction after the call. If the caller was an
6272":ref:`invoke <i_invoke>`" instruction, execution continues at the
6273beginning of the "normal" destination block. If the instruction returns
6274a value, that value shall set the call or invoke instruction's return
6275value.
6276
6277Example:
6278""""""""
6279
6280.. code-block:: llvm
6281
6282 ret i32 5 ; Return an integer value of 5
6283 ret void ; Return from a void function
6284 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
6285
6286.. _i_br:
6287
6288'``br``' Instruction
6289^^^^^^^^^^^^^^^^^^^^
6290
6291Syntax:
6292"""""""
6293
6294::
6295
6296 br i1 <cond>, label <iftrue>, label <iffalse>
6297 br label <dest> ; Unconditional branch
6298
6299Overview:
6300"""""""""
6301
6302The '``br``' instruction is used to cause control flow to transfer to a
6303different basic block in the current function. There are two forms of
6304this instruction, corresponding to a conditional branch and an
6305unconditional branch.
6306
6307Arguments:
6308""""""""""
6309
6310The conditional branch form of the '``br``' instruction takes a single
6311'``i1``' value and two '``label``' values. The unconditional form of the
6312'``br``' instruction takes a single '``label``' value as a target.
6313
6314Semantics:
6315""""""""""
6316
6317Upon execution of a conditional '``br``' instruction, the '``i1``'
6318argument is evaluated. If the value is ``true``, control flows to the
6319'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
6320to the '``iffalse``' ``label`` argument.
6321
6322Example:
6323""""""""
6324
6325.. code-block:: llvm
6326
6327 Test:
6328 %cond = icmp eq i32 %a, %b
6329 br i1 %cond, label %IfEqual, label %IfUnequal
6330 IfEqual:
6331 ret i32 1
6332 IfUnequal:
6333 ret i32 0
6334
6335.. _i_switch:
6336
6337'``switch``' Instruction
6338^^^^^^^^^^^^^^^^^^^^^^^^
6339
6340Syntax:
6341"""""""
6342
6343::
6344
6345 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
6346
6347Overview:
6348"""""""""
6349
6350The '``switch``' instruction is used to transfer control flow to one of
6351several different places. It is a generalization of the '``br``'
6352instruction, allowing a branch to occur to one of many possible
6353destinations.
6354
6355Arguments:
6356""""""""""
6357
6358The '``switch``' instruction uses three parameters: an integer
6359comparison value '``value``', a default '``label``' destination, and an
6360array of pairs of comparison value constants and '``label``'s. The table
6361is not allowed to contain duplicate constant entries.
6362
6363Semantics:
6364""""""""""
6365
6366The ``switch`` instruction specifies a table of values and destinations.
6367When the '``switch``' instruction is executed, this table is searched
6368for the given value. If the value is found, control flow is transferred
6369to the corresponding destination; otherwise, control flow is transferred
6370to the default destination.
6371
6372Implementation:
6373"""""""""""""""
6374
6375Depending on properties of the target machine and the particular
6376``switch`` instruction, this instruction may be code generated in
6377different ways. For example, it could be generated as a series of
6378chained conditional branches or with a lookup table.
6379
6380Example:
6381""""""""
6382
6383.. code-block:: llvm
6384
6385 ; Emulate a conditional br instruction
6386 %Val = zext i1 %value to i32
6387 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
6388
6389 ; Emulate an unconditional br instruction
6390 switch i32 0, label %dest [ ]
6391
6392 ; Implement a jump table:
6393 switch i32 %val, label %otherwise [ i32 0, label %onzero
6394 i32 1, label %onone
6395 i32 2, label %ontwo ]
6396
6397.. _i_indirectbr:
6398
6399'``indirectbr``' Instruction
6400^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6401
6402Syntax:
6403"""""""
6404
6405::
6406
6407 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
6408
6409Overview:
6410"""""""""
6411
6412The '``indirectbr``' instruction implements an indirect branch to a
6413label within the current function, whose address is specified by
6414"``address``". Address must be derived from a
6415:ref:`blockaddress <blockaddress>` constant.
6416
6417Arguments:
6418""""""""""
6419
6420The '``address``' argument is the address of the label to jump to. The
6421rest of the arguments indicate the full set of possible destinations
6422that the address may point to. Blocks are allowed to occur multiple
6423times in the destination list, though this isn't particularly useful.
6424
6425This destination list is required so that dataflow analysis has an
6426accurate understanding of the CFG.
6427
6428Semantics:
6429""""""""""
6430
6431Control transfers to the block specified in the address argument. All
6432possible destination blocks must be listed in the label list, otherwise
6433this instruction has undefined behavior. This implies that jumps to
6434labels defined in other functions have undefined behavior as well.
6435
6436Implementation:
6437"""""""""""""""
6438
6439This is typically implemented with a jump through a register.
6440
6441Example:
6442""""""""
6443
6444.. code-block:: llvm
6445
6446 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
6447
6448.. _i_invoke:
6449
6450'``invoke``' Instruction
6451^^^^^^^^^^^^^^^^^^^^^^^^
6452
6453Syntax:
6454"""""""
6455
6456::
6457
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00006458 <result> = invoke [cconv] [ret attrs] [addrspace(<num>)] [<ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006459 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00006460
6461Overview:
6462"""""""""
6463
6464The '``invoke``' instruction causes control to transfer to a specified
6465function, with the possibility of control flow transfer to either the
6466'``normal``' label or the '``exception``' label. If the callee function
6467returns with the "``ret``" instruction, control flow will return to the
6468"normal" label. If the callee (or any indirect callees) returns via the
6469":ref:`resume <i_resume>`" instruction or other exception handling
6470mechanism, control is interrupted and continued at the dynamically
6471nearest "exception" label.
6472
6473The '``exception``' label is a `landing
6474pad <ExceptionHandling.html#overview>`_ for the exception. As such,
6475'``exception``' label is required to have the
6476":ref:`landingpad <i_landingpad>`" instruction, which contains the
6477information about the behavior of the program after unwinding happens,
6478as its first non-PHI instruction. The restrictions on the
6479"``landingpad``" instruction's tightly couples it to the "``invoke``"
6480instruction, so that the important information contained within the
6481"``landingpad``" instruction can't be lost through normal code motion.
6482
6483Arguments:
6484""""""""""
6485
6486This instruction requires several arguments:
6487
6488#. The optional "cconv" marker indicates which :ref:`calling
6489 convention <callingconv>` the call should use. If none is
6490 specified, the call defaults to using C calling conventions.
6491#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6492 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6493 are valid here.
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00006494#. The optional addrspace attribute can be used to indicate the adress space
6495 of the called function. If it is not specified, the program address space
6496 from the :ref:`datalayout string<langref_datalayout>` will be used.
David Blaikieb83cf102016-07-13 17:21:34 +00006497#. '``ty``': the type of the call instruction itself which is also the
6498 type of the return value. Functions that return no value are marked
6499 ``void``.
6500#. '``fnty``': shall be the signature of the function being invoked. The
6501 argument types must match the types implied by this signature. This
6502 type can be omitted if the function is not varargs.
6503#. '``fnptrval``': An LLVM value containing a pointer to a function to
6504 be invoked. In most cases, this is a direct function invocation, but
6505 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
6506 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00006507#. '``function args``': argument list whose types match the function
6508 signature argument types and parameter attributes. All arguments must
6509 be of :ref:`first class <t_firstclass>` type. If the function signature
6510 indicates the function accepts a variable number of arguments, the
6511 extra arguments can be specified.
6512#. '``normal label``': the label reached when the called function
6513 executes a '``ret``' instruction.
6514#. '``exception label``': the label reached when a callee returns via
6515 the :ref:`resume <i_resume>` instruction or other exception handling
6516 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00006517#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006518#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00006519
6520Semantics:
6521""""""""""
6522
6523This instruction is designed to operate as a standard '``call``'
6524instruction in most regards. The primary difference is that it
6525establishes an association with a label, which is used by the runtime
6526library to unwind the stack.
6527
6528This instruction is used in languages with destructors to ensure that
6529proper cleanup is performed in the case of either a ``longjmp`` or a
6530thrown exception. Additionally, this is important for implementation of
6531'``catch``' clauses in high-level languages that support them.
6532
6533For the purposes of the SSA form, the definition of the value returned
6534by the '``invoke``' instruction is deemed to occur on the edge from the
6535current block to the "normal" label. If the callee unwinds then no
6536return value is available.
6537
6538Example:
6539""""""""
6540
6541.. code-block:: llvm
6542
6543 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006544 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006545 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006546 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006547
6548.. _i_resume:
6549
6550'``resume``' Instruction
6551^^^^^^^^^^^^^^^^^^^^^^^^
6552
6553Syntax:
6554"""""""
6555
6556::
6557
6558 resume <type> <value>
6559
6560Overview:
6561"""""""""
6562
6563The '``resume``' instruction is a terminator instruction that has no
6564successors.
6565
6566Arguments:
6567""""""""""
6568
6569The '``resume``' instruction requires one argument, which must have the
6570same type as the result of any '``landingpad``' instruction in the same
6571function.
6572
6573Semantics:
6574""""""""""
6575
6576The '``resume``' instruction resumes propagation of an existing
6577(in-flight) exception whose unwinding was interrupted with a
6578:ref:`landingpad <i_landingpad>` instruction.
6579
6580Example:
6581""""""""
6582
6583.. code-block:: llvm
6584
6585 resume { i8*, i32 } %exn
6586
David Majnemer8a1c45d2015-12-12 05:38:55 +00006587.. _i_catchswitch:
6588
6589'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00006590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00006591
6592Syntax:
6593"""""""
6594
6595::
6596
6597 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6598 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6599
6600Overview:
6601"""""""""
6602
6603The '``catchswitch``' instruction is used by `LLVM's exception handling system
6604<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6605that may be executed by the :ref:`EH personality routine <personalityfn>`.
6606
6607Arguments:
6608""""""""""
6609
6610The ``parent`` argument is the token of the funclet that contains the
6611``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6612this operand may be the token ``none``.
6613
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006614The ``default`` argument is the label of another basic block beginning with
6615either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6616must be a legal target with respect to the ``parent`` links, as described in
6617the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006618
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006619The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006620:ref:`catchpad <i_catchpad>` instruction.
6621
6622Semantics:
6623""""""""""
6624
6625Executing this instruction transfers control to one of the successors in
6626``handlers``, if appropriate, or continues to unwind via the unwind label if
6627present.
6628
6629The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6630it must be both the first non-phi instruction and last instruction in the basic
6631block. Therefore, it must be the only non-phi instruction in the block.
6632
6633Example:
6634""""""""
6635
Renato Golin124f2592016-07-20 12:16:38 +00006636.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00006637
6638 dispatch1:
6639 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6640 dispatch2:
6641 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6642
David Majnemer654e1302015-07-31 17:58:14 +00006643.. _i_catchret:
6644
6645'``catchret``' Instruction
6646^^^^^^^^^^^^^^^^^^^^^^^^^^
6647
6648Syntax:
6649"""""""
6650
6651::
6652
David Majnemer8a1c45d2015-12-12 05:38:55 +00006653 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00006654
6655Overview:
6656"""""""""
6657
6658The '``catchret``' instruction is a terminator instruction that has a
6659single successor.
6660
6661
6662Arguments:
6663""""""""""
6664
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006665The first argument to a '``catchret``' indicates which ``catchpad`` it
6666exits. It must be a :ref:`catchpad <i_catchpad>`.
6667The second argument to a '``catchret``' specifies where control will
6668transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00006669
6670Semantics:
6671""""""""""
6672
David Majnemer8a1c45d2015-12-12 05:38:55 +00006673The '``catchret``' instruction ends an existing (in-flight) exception whose
6674unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6675:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6676code to, for example, destroy the active exception. Control then transfers to
6677``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006678
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006679The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6680If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6681funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6682the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006683
6684Example:
6685""""""""
6686
Renato Golin124f2592016-07-20 12:16:38 +00006687.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006688
David Majnemer8a1c45d2015-12-12 05:38:55 +00006689 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006690
David Majnemer654e1302015-07-31 17:58:14 +00006691.. _i_cleanupret:
6692
6693'``cleanupret``' Instruction
6694^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6695
6696Syntax:
6697"""""""
6698
6699::
6700
David Majnemer8a1c45d2015-12-12 05:38:55 +00006701 cleanupret from <value> unwind label <continue>
6702 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006703
6704Overview:
6705"""""""""
6706
6707The '``cleanupret``' instruction is a terminator instruction that has
6708an optional successor.
6709
6710
6711Arguments:
6712""""""""""
6713
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006714The '``cleanupret``' instruction requires one argument, which indicates
6715which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006716If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6717funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6718the ``cleanupret``'s behavior is undefined.
6719
6720The '``cleanupret``' instruction also has an optional successor, ``continue``,
6721which must be the label of another basic block beginning with either a
6722``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6723be a legal target with respect to the ``parent`` links, as described in the
6724`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006725
6726Semantics:
6727""""""""""
6728
6729The '``cleanupret``' instruction indicates to the
6730:ref:`personality function <personalityfn>` that one
6731:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6732It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006733
David Majnemer654e1302015-07-31 17:58:14 +00006734Example:
6735""""""""
6736
Renato Golin124f2592016-07-20 12:16:38 +00006737.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006738
David Majnemer8a1c45d2015-12-12 05:38:55 +00006739 cleanupret from %cleanup unwind to caller
6740 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006741
Sean Silvab084af42012-12-07 10:36:55 +00006742.. _i_unreachable:
6743
6744'``unreachable``' Instruction
6745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6746
6747Syntax:
6748"""""""
6749
6750::
6751
6752 unreachable
6753
6754Overview:
6755"""""""""
6756
6757The '``unreachable``' instruction has no defined semantics. This
6758instruction is used to inform the optimizer that a particular portion of
6759the code is not reachable. This can be used to indicate that the code
6760after a no-return function cannot be reached, and other facts.
6761
6762Semantics:
6763""""""""""
6764
6765The '``unreachable``' instruction has no defined semantics.
6766
6767.. _binaryops:
6768
6769Binary Operations
6770-----------------
6771
6772Binary operators are used to do most of the computation in a program.
6773They require two operands of the same type, execute an operation on
6774them, and produce a single value. The operands might represent multiple
6775data, as is the case with the :ref:`vector <t_vector>` data type. The
6776result value has the same type as its operands.
6777
6778There are several different binary operators:
6779
6780.. _i_add:
6781
6782'``add``' Instruction
6783^^^^^^^^^^^^^^^^^^^^^
6784
6785Syntax:
6786"""""""
6787
6788::
6789
Tim Northover675a0962014-06-13 14:24:23 +00006790 <result> = add <ty> <op1>, <op2> ; yields ty:result
6791 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6792 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6793 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006794
6795Overview:
6796"""""""""
6797
6798The '``add``' instruction returns the sum of its two operands.
6799
6800Arguments:
6801""""""""""
6802
6803The two arguments to the '``add``' instruction must be
6804:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6805arguments must have identical types.
6806
6807Semantics:
6808""""""""""
6809
6810The value produced is the integer sum of the two operands.
6811
6812If the sum has unsigned overflow, the result returned is the
6813mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6814the result.
6815
6816Because LLVM integers use a two's complement representation, this
6817instruction is appropriate for both signed and unsigned integers.
6818
6819``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6820respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6821result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6822unsigned and/or signed overflow, respectively, occurs.
6823
6824Example:
6825""""""""
6826
Renato Golin124f2592016-07-20 12:16:38 +00006827.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006828
Tim Northover675a0962014-06-13 14:24:23 +00006829 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006830
6831.. _i_fadd:
6832
6833'``fadd``' Instruction
6834^^^^^^^^^^^^^^^^^^^^^^
6835
6836Syntax:
6837"""""""
6838
6839::
6840
Tim Northover675a0962014-06-13 14:24:23 +00006841 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006842
6843Overview:
6844"""""""""
6845
6846The '``fadd``' instruction returns the sum of its two operands.
6847
6848Arguments:
6849""""""""""
6850
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006851The two arguments to the '``fadd``' instruction must be
6852:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6853floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006854
6855Semantics:
6856""""""""""
6857
Sanjay Patel7b722402018-03-07 17:18:22 +00006858The value produced is the floating-point sum of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006859This instruction is assumed to execute in the default :ref:`floating-point
6860environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00006861This instruction can also take any number of :ref:`fast-math
6862flags <fastmath>`, which are optimization hints to enable otherwise
6863unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006864
6865Example:
6866""""""""
6867
Renato Golin124f2592016-07-20 12:16:38 +00006868.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006869
Tim Northover675a0962014-06-13 14:24:23 +00006870 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006871
6872'``sub``' Instruction
6873^^^^^^^^^^^^^^^^^^^^^
6874
6875Syntax:
6876"""""""
6877
6878::
6879
Tim Northover675a0962014-06-13 14:24:23 +00006880 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6881 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6882 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6883 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006884
6885Overview:
6886"""""""""
6887
6888The '``sub``' instruction returns the difference of its two operands.
6889
6890Note that the '``sub``' instruction is used to represent the '``neg``'
6891instruction present in most other intermediate representations.
6892
6893Arguments:
6894""""""""""
6895
6896The two arguments to the '``sub``' instruction must be
6897:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6898arguments must have identical types.
6899
6900Semantics:
6901""""""""""
6902
6903The value produced is the integer difference of the two operands.
6904
6905If the difference has unsigned overflow, the result returned is the
6906mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6907the result.
6908
6909Because LLVM integers use a two's complement representation, this
6910instruction is appropriate for both signed and unsigned integers.
6911
6912``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6913respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6914result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6915unsigned and/or signed overflow, respectively, occurs.
6916
6917Example:
6918""""""""
6919
Renato Golin124f2592016-07-20 12:16:38 +00006920.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006921
Tim Northover675a0962014-06-13 14:24:23 +00006922 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6923 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006924
6925.. _i_fsub:
6926
6927'``fsub``' Instruction
6928^^^^^^^^^^^^^^^^^^^^^^
6929
6930Syntax:
6931"""""""
6932
6933::
6934
Tim Northover675a0962014-06-13 14:24:23 +00006935 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006936
6937Overview:
6938"""""""""
6939
6940The '``fsub``' instruction returns the difference of its two operands.
6941
6942Note that the '``fsub``' instruction is used to represent the '``fneg``'
6943instruction present in most other intermediate representations.
6944
6945Arguments:
6946""""""""""
6947
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006948The two arguments to the '``fsub``' instruction must be
6949:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6950floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006951
6952Semantics:
6953""""""""""
6954
Sanjay Patel7b722402018-03-07 17:18:22 +00006955The value produced is the floating-point difference of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006956This instruction is assumed to execute in the default :ref:`floating-point
6957environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00006958This instruction can also take any number of :ref:`fast-math
6959flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006960unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006961
6962Example:
6963""""""""
6964
Renato Golin124f2592016-07-20 12:16:38 +00006965.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006966
Tim Northover675a0962014-06-13 14:24:23 +00006967 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6968 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006969
6970'``mul``' Instruction
6971^^^^^^^^^^^^^^^^^^^^^
6972
6973Syntax:
6974"""""""
6975
6976::
6977
Tim Northover675a0962014-06-13 14:24:23 +00006978 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6979 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6980 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6981 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006982
6983Overview:
6984"""""""""
6985
6986The '``mul``' instruction returns the product of its two operands.
6987
6988Arguments:
6989""""""""""
6990
6991The two arguments to the '``mul``' instruction must be
6992:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6993arguments must have identical types.
6994
6995Semantics:
6996""""""""""
6997
6998The value produced is the integer product of the two operands.
6999
7000If the result of the multiplication has unsigned overflow, the result
7001returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
7002bit width of the result.
7003
7004Because LLVM integers use a two's complement representation, and the
7005result is the same width as the operands, this instruction returns the
7006correct result for both signed and unsigned integers. If a full product
7007(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
7008sign-extended or zero-extended as appropriate to the width of the full
7009product.
7010
7011``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7012respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7013result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
7014unsigned and/or signed overflow, respectively, occurs.
7015
7016Example:
7017""""""""
7018
Renato Golin124f2592016-07-20 12:16:38 +00007019.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007020
Tim Northover675a0962014-06-13 14:24:23 +00007021 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00007022
7023.. _i_fmul:
7024
7025'``fmul``' Instruction
7026^^^^^^^^^^^^^^^^^^^^^^
7027
7028Syntax:
7029"""""""
7030
7031::
7032
Tim Northover675a0962014-06-13 14:24:23 +00007033 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007034
7035Overview:
7036"""""""""
7037
7038The '``fmul``' instruction returns the product of its two operands.
7039
7040Arguments:
7041""""""""""
7042
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007043The two arguments to the '``fmul``' instruction must be
7044:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
7045floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007046
7047Semantics:
7048""""""""""
7049
Sanjay Patel7b722402018-03-07 17:18:22 +00007050The value produced is the floating-point product of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007051This instruction is assumed to execute in the default :ref:`floating-point
7052environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007053This instruction can also take any number of :ref:`fast-math
7054flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007055unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007056
7057Example:
7058""""""""
7059
Renato Golin124f2592016-07-20 12:16:38 +00007060.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007061
Tim Northover675a0962014-06-13 14:24:23 +00007062 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00007063
7064'``udiv``' Instruction
7065^^^^^^^^^^^^^^^^^^^^^^
7066
7067Syntax:
7068"""""""
7069
7070::
7071
Tim Northover675a0962014-06-13 14:24:23 +00007072 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
7073 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007074
7075Overview:
7076"""""""""
7077
7078The '``udiv``' instruction returns the quotient of its two operands.
7079
7080Arguments:
7081""""""""""
7082
7083The two arguments to the '``udiv``' instruction must be
7084:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7085arguments must have identical types.
7086
7087Semantics:
7088""""""""""
7089
7090The value produced is the unsigned integer quotient of the two operands.
7091
7092Note that unsigned integer division and signed integer division are
7093distinct operations; for signed integer division, use '``sdiv``'.
7094
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007095Division by zero is undefined behavior. For vectors, if any element
7096of the divisor is zero, the operation has undefined behavior.
7097
Sean Silvab084af42012-12-07 10:36:55 +00007098
7099If the ``exact`` keyword is present, the result value of the ``udiv`` is
7100a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
7101such, "((a udiv exact b) mul b) == a").
7102
7103Example:
7104""""""""
7105
Renato Golin124f2592016-07-20 12:16:38 +00007106.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007107
Tim Northover675a0962014-06-13 14:24:23 +00007108 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007109
7110'``sdiv``' Instruction
7111^^^^^^^^^^^^^^^^^^^^^^
7112
7113Syntax:
7114"""""""
7115
7116::
7117
Tim Northover675a0962014-06-13 14:24:23 +00007118 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
7119 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007120
7121Overview:
7122"""""""""
7123
7124The '``sdiv``' instruction returns the quotient of its two operands.
7125
7126Arguments:
7127""""""""""
7128
7129The two arguments to the '``sdiv``' instruction must be
7130:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7131arguments must have identical types.
7132
7133Semantics:
7134""""""""""
7135
7136The value produced is the signed integer quotient of the two operands
7137rounded towards zero.
7138
7139Note that signed integer division and unsigned integer division are
7140distinct operations; for unsigned integer division, use '``udiv``'.
7141
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007142Division by zero is undefined behavior. For vectors, if any element
7143of the divisor is zero, the operation has undefined behavior.
7144Overflow also leads to undefined behavior; this is a rare case, but can
7145occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00007146
7147If the ``exact`` keyword is present, the result value of the ``sdiv`` is
7148a :ref:`poison value <poisonvalues>` if the result would be rounded.
7149
7150Example:
7151""""""""
7152
Renato Golin124f2592016-07-20 12:16:38 +00007153.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007154
Tim Northover675a0962014-06-13 14:24:23 +00007155 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007156
7157.. _i_fdiv:
7158
7159'``fdiv``' Instruction
7160^^^^^^^^^^^^^^^^^^^^^^
7161
7162Syntax:
7163"""""""
7164
7165::
7166
Tim Northover675a0962014-06-13 14:24:23 +00007167 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007168
7169Overview:
7170"""""""""
7171
7172The '``fdiv``' instruction returns the quotient of its two operands.
7173
7174Arguments:
7175""""""""""
7176
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007177The two arguments to the '``fdiv``' instruction must be
7178:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
7179floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007180
7181Semantics:
7182""""""""""
7183
Sanjay Patel7b722402018-03-07 17:18:22 +00007184The value produced is the floating-point quotient of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007185This instruction is assumed to execute in the default :ref:`floating-point
7186environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007187This instruction can also take any number of :ref:`fast-math
7188flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007189unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007190
7191Example:
7192""""""""
7193
Renato Golin124f2592016-07-20 12:16:38 +00007194.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007195
Tim Northover675a0962014-06-13 14:24:23 +00007196 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007197
7198'``urem``' Instruction
7199^^^^^^^^^^^^^^^^^^^^^^
7200
7201Syntax:
7202"""""""
7203
7204::
7205
Tim Northover675a0962014-06-13 14:24:23 +00007206 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007207
7208Overview:
7209"""""""""
7210
7211The '``urem``' instruction returns the remainder from the unsigned
7212division of its two arguments.
7213
7214Arguments:
7215""""""""""
7216
7217The two arguments to the '``urem``' instruction must be
7218:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7219arguments must have identical types.
7220
7221Semantics:
7222""""""""""
7223
7224This instruction returns the unsigned integer *remainder* of a division.
7225This instruction always performs an unsigned division to get the
7226remainder.
7227
7228Note that unsigned integer remainder and signed integer remainder are
7229distinct operations; for signed integer remainder, use '``srem``'.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007230
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007231Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007232For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007233undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007234
7235Example:
7236""""""""
7237
Renato Golin124f2592016-07-20 12:16:38 +00007238.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007239
Tim Northover675a0962014-06-13 14:24:23 +00007240 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007241
7242'``srem``' Instruction
7243^^^^^^^^^^^^^^^^^^^^^^
7244
7245Syntax:
7246"""""""
7247
7248::
7249
Tim Northover675a0962014-06-13 14:24:23 +00007250 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007251
7252Overview:
7253"""""""""
7254
7255The '``srem``' instruction returns the remainder from the signed
7256division of its two operands. This instruction can also take
7257:ref:`vector <t_vector>` versions of the values in which case the elements
7258must be integers.
7259
7260Arguments:
7261""""""""""
7262
7263The two arguments to the '``srem``' instruction must be
7264:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7265arguments must have identical types.
7266
7267Semantics:
7268""""""""""
7269
7270This instruction returns the *remainder* of a division (where the result
7271is either zero or has the same sign as the dividend, ``op1``), not the
7272*modulo* operator (where the result is either zero or has the same sign
7273as the divisor, ``op2``) of a value. For more information about the
7274difference, see `The Math
7275Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
7276table of how this is implemented in various languages, please see
7277`Wikipedia: modulo
7278operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
7279
7280Note that signed integer remainder and unsigned integer remainder are
7281distinct operations; for unsigned integer remainder, use '``urem``'.
7282
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007283Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007284For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007285undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007286Overflow also leads to undefined behavior; this is a rare case, but can
7287occur, for example, by taking the remainder of a 32-bit division of
7288-2147483648 by -1. (The remainder doesn't actually overflow, but this
7289rule lets srem be implemented using instructions that return both the
7290result of the division and the remainder.)
7291
7292Example:
7293""""""""
7294
Renato Golin124f2592016-07-20 12:16:38 +00007295.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007296
Tim Northover675a0962014-06-13 14:24:23 +00007297 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007298
7299.. _i_frem:
7300
7301'``frem``' Instruction
7302^^^^^^^^^^^^^^^^^^^^^^
7303
7304Syntax:
7305"""""""
7306
7307::
7308
Tim Northover675a0962014-06-13 14:24:23 +00007309 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007310
7311Overview:
7312"""""""""
7313
7314The '``frem``' instruction returns the remainder from the division of
7315its two operands.
7316
7317Arguments:
7318""""""""""
7319
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007320The two arguments to the '``frem``' instruction must be
7321:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
7322floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007323
7324Semantics:
7325""""""""""
7326
Sanjay Patel7b722402018-03-07 17:18:22 +00007327The value produced is the floating-point remainder of the two operands.
7328This is the same output as a libm '``fmod``' function, but without any
7329possibility of setting ``errno``. The remainder has the same sign as the
7330dividend.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007331This instruction is assumed to execute in the default :ref:`floating-point
7332environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00007333This instruction can also take any number of :ref:`fast-math
7334flags <fastmath>`, which are optimization hints to enable otherwise
7335unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007336
7337Example:
7338""""""""
7339
Renato Golin124f2592016-07-20 12:16:38 +00007340.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007341
Tim Northover675a0962014-06-13 14:24:23 +00007342 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007343
7344.. _bitwiseops:
7345
7346Bitwise Binary Operations
7347-------------------------
7348
7349Bitwise binary operators are used to do various forms of bit-twiddling
7350in a program. They are generally very efficient instructions and can
7351commonly be strength reduced from other instructions. They require two
7352operands of the same type, execute an operation on them, and produce a
7353single value. The resulting value is the same type as its operands.
7354
7355'``shl``' Instruction
7356^^^^^^^^^^^^^^^^^^^^^
7357
7358Syntax:
7359"""""""
7360
7361::
7362
Tim Northover675a0962014-06-13 14:24:23 +00007363 <result> = shl <ty> <op1>, <op2> ; yields ty:result
7364 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
7365 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
7366 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007367
7368Overview:
7369"""""""""
7370
7371The '``shl``' instruction returns the first operand shifted to the left
7372a specified number of bits.
7373
7374Arguments:
7375""""""""""
7376
7377Both arguments to the '``shl``' instruction must be the same
7378:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7379'``op2``' is treated as an unsigned value.
7380
7381Semantics:
7382""""""""""
7383
7384The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
7385where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00007386dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007387``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
7388If the arguments are vectors, each vector element of ``op1`` is shifted
7389by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007390
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007391If the ``nuw`` keyword is present, then the shift produces a poison
7392value if it shifts out any non-zero bits.
7393If the ``nsw`` keyword is present, then the shift produces a poison
Sanjay Patel2896c772018-06-01 15:21:14 +00007394value if it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00007395
7396Example:
7397""""""""
7398
Renato Golin124f2592016-07-20 12:16:38 +00007399.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007400
Tim Northover675a0962014-06-13 14:24:23 +00007401 <result> = shl i32 4, %var ; yields i32: 4 << %var
7402 <result> = shl i32 4, 2 ; yields i32: 16
7403 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00007404 <result> = shl i32 1, 32 ; undefined
7405 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
7406
7407'``lshr``' Instruction
7408^^^^^^^^^^^^^^^^^^^^^^
7409
7410Syntax:
7411"""""""
7412
7413::
7414
Tim Northover675a0962014-06-13 14:24:23 +00007415 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
7416 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007417
7418Overview:
7419"""""""""
7420
7421The '``lshr``' instruction (logical shift right) returns the first
7422operand shifted to the right a specified number of bits with zero fill.
7423
7424Arguments:
7425""""""""""
7426
7427Both arguments to the '``lshr``' instruction must be the same
7428:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7429'``op2``' is treated as an unsigned value.
7430
7431Semantics:
7432""""""""""
7433
7434This instruction always performs a logical shift right operation. The
7435most significant bits of the result will be filled with zero bits after
7436the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007437than the number of bits in ``op1``, this instruction returns a :ref:`poison
7438value <poisonvalues>`. If the arguments are vectors, each vector element
7439of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007440
7441If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007442a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007443
7444Example:
7445""""""""
7446
Renato Golin124f2592016-07-20 12:16:38 +00007447.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007448
Tim Northover675a0962014-06-13 14:24:23 +00007449 <result> = lshr i32 4, 1 ; yields i32:result = 2
7450 <result> = lshr i32 4, 2 ; yields i32:result = 1
7451 <result> = lshr i8 4, 3 ; yields i8:result = 0
7452 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00007453 <result> = lshr i32 1, 32 ; undefined
7454 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
7455
7456'``ashr``' Instruction
7457^^^^^^^^^^^^^^^^^^^^^^
7458
7459Syntax:
7460"""""""
7461
7462::
7463
Tim Northover675a0962014-06-13 14:24:23 +00007464 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
7465 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007466
7467Overview:
7468"""""""""
7469
7470The '``ashr``' instruction (arithmetic shift right) returns the first
7471operand shifted to the right a specified number of bits with sign
7472extension.
7473
7474Arguments:
7475""""""""""
7476
7477Both arguments to the '``ashr``' instruction must be the same
7478:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7479'``op2``' is treated as an unsigned value.
7480
7481Semantics:
7482""""""""""
7483
7484This instruction always performs an arithmetic shift right operation,
7485The most significant bits of the result will be filled with the sign bit
7486of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007487than the number of bits in ``op1``, this instruction returns a :ref:`poison
7488value <poisonvalues>`. If the arguments are vectors, each vector element
7489of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007490
7491If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007492a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007493
7494Example:
7495""""""""
7496
Renato Golin124f2592016-07-20 12:16:38 +00007497.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007498
Tim Northover675a0962014-06-13 14:24:23 +00007499 <result> = ashr i32 4, 1 ; yields i32:result = 2
7500 <result> = ashr i32 4, 2 ; yields i32:result = 1
7501 <result> = ashr i8 4, 3 ; yields i8:result = 0
7502 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00007503 <result> = ashr i32 1, 32 ; undefined
7504 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
7505
7506'``and``' Instruction
7507^^^^^^^^^^^^^^^^^^^^^
7508
7509Syntax:
7510"""""""
7511
7512::
7513
Tim Northover675a0962014-06-13 14:24:23 +00007514 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007515
7516Overview:
7517"""""""""
7518
7519The '``and``' instruction returns the bitwise logical and of its two
7520operands.
7521
7522Arguments:
7523""""""""""
7524
7525The two arguments to the '``and``' instruction must be
7526:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7527arguments must have identical types.
7528
7529Semantics:
7530""""""""""
7531
7532The truth table used for the '``and``' instruction is:
7533
7534+-----+-----+-----+
7535| In0 | In1 | Out |
7536+-----+-----+-----+
7537| 0 | 0 | 0 |
7538+-----+-----+-----+
7539| 0 | 1 | 0 |
7540+-----+-----+-----+
7541| 1 | 0 | 0 |
7542+-----+-----+-----+
7543| 1 | 1 | 1 |
7544+-----+-----+-----+
7545
7546Example:
7547""""""""
7548
Renato Golin124f2592016-07-20 12:16:38 +00007549.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007550
Tim Northover675a0962014-06-13 14:24:23 +00007551 <result> = and i32 4, %var ; yields i32:result = 4 & %var
7552 <result> = and i32 15, 40 ; yields i32:result = 8
7553 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00007554
7555'``or``' Instruction
7556^^^^^^^^^^^^^^^^^^^^
7557
7558Syntax:
7559"""""""
7560
7561::
7562
Tim Northover675a0962014-06-13 14:24:23 +00007563 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007564
7565Overview:
7566"""""""""
7567
7568The '``or``' instruction returns the bitwise logical inclusive or of its
7569two operands.
7570
7571Arguments:
7572""""""""""
7573
7574The two arguments to the '``or``' instruction must be
7575:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7576arguments must have identical types.
7577
7578Semantics:
7579""""""""""
7580
7581The truth table used for the '``or``' instruction is:
7582
7583+-----+-----+-----+
7584| In0 | In1 | Out |
7585+-----+-----+-----+
7586| 0 | 0 | 0 |
7587+-----+-----+-----+
7588| 0 | 1 | 1 |
7589+-----+-----+-----+
7590| 1 | 0 | 1 |
7591+-----+-----+-----+
7592| 1 | 1 | 1 |
7593+-----+-----+-----+
7594
7595Example:
7596""""""""
7597
7598::
7599
Tim Northover675a0962014-06-13 14:24:23 +00007600 <result> = or i32 4, %var ; yields i32:result = 4 | %var
7601 <result> = or i32 15, 40 ; yields i32:result = 47
7602 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00007603
7604'``xor``' Instruction
7605^^^^^^^^^^^^^^^^^^^^^
7606
7607Syntax:
7608"""""""
7609
7610::
7611
Tim Northover675a0962014-06-13 14:24:23 +00007612 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007613
7614Overview:
7615"""""""""
7616
7617The '``xor``' instruction returns the bitwise logical exclusive or of
7618its two operands. The ``xor`` is used to implement the "one's
7619complement" operation, which is the "~" operator in C.
7620
7621Arguments:
7622""""""""""
7623
7624The two arguments to the '``xor``' instruction must be
7625:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7626arguments must have identical types.
7627
7628Semantics:
7629""""""""""
7630
7631The truth table used for the '``xor``' instruction is:
7632
7633+-----+-----+-----+
7634| In0 | In1 | Out |
7635+-----+-----+-----+
7636| 0 | 0 | 0 |
7637+-----+-----+-----+
7638| 0 | 1 | 1 |
7639+-----+-----+-----+
7640| 1 | 0 | 1 |
7641+-----+-----+-----+
7642| 1 | 1 | 0 |
7643+-----+-----+-----+
7644
7645Example:
7646""""""""
7647
Renato Golin124f2592016-07-20 12:16:38 +00007648.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007649
Tim Northover675a0962014-06-13 14:24:23 +00007650 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7651 <result> = xor i32 15, 40 ; yields i32:result = 39
7652 <result> = xor i32 4, 8 ; yields i32:result = 12
7653 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00007654
7655Vector Operations
7656-----------------
7657
7658LLVM supports several instructions to represent vector operations in a
7659target-independent manner. These instructions cover the element-access
7660and vector-specific operations needed to process vectors effectively.
7661While LLVM does directly support these vector operations, many
7662sophisticated algorithms will want to use target-specific intrinsics to
7663take full advantage of a specific target.
7664
7665.. _i_extractelement:
7666
7667'``extractelement``' Instruction
7668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7669
7670Syntax:
7671"""""""
7672
7673::
7674
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007675 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00007676
7677Overview:
7678"""""""""
7679
7680The '``extractelement``' instruction extracts a single scalar element
7681from a vector at a specified index.
7682
7683Arguments:
7684""""""""""
7685
7686The first operand of an '``extractelement``' instruction is a value of
7687:ref:`vector <t_vector>` type. The second operand is an index indicating
7688the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007689variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007690
7691Semantics:
7692""""""""""
7693
7694The result is a scalar of the same type as the element type of ``val``.
7695Its value is the value at position ``idx`` of ``val``. If ``idx``
Eli Friedman2c7a81b2018-06-08 21:23:09 +00007696exceeds the length of ``val``, the result is a
7697:ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00007698
7699Example:
7700""""""""
7701
Renato Golin124f2592016-07-20 12:16:38 +00007702.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007703
7704 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7705
7706.. _i_insertelement:
7707
7708'``insertelement``' Instruction
7709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7710
7711Syntax:
7712"""""""
7713
7714::
7715
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007716 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007717
7718Overview:
7719"""""""""
7720
7721The '``insertelement``' instruction inserts a scalar element into a
7722vector at a specified index.
7723
7724Arguments:
7725""""""""""
7726
7727The first operand of an '``insertelement``' instruction is a value of
7728:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7729type must equal the element type of the first operand. The third operand
7730is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007731index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007732
7733Semantics:
7734""""""""""
7735
7736The result is a vector of the same type as ``val``. Its element values
7737are those of ``val`` except at position ``idx``, where it gets the value
Eli Friedman2c7a81b2018-06-08 21:23:09 +00007738``elt``. If ``idx`` exceeds the length of ``val``, the result
7739is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00007740
7741Example:
7742""""""""
7743
Renato Golin124f2592016-07-20 12:16:38 +00007744.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007745
7746 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7747
7748.. _i_shufflevector:
7749
7750'``shufflevector``' Instruction
7751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7752
7753Syntax:
7754"""""""
7755
7756::
7757
7758 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7759
7760Overview:
7761"""""""""
7762
7763The '``shufflevector``' instruction constructs a permutation of elements
7764from two input vectors, returning a vector with the same element type as
7765the input and length that is the same as the shuffle mask.
7766
7767Arguments:
7768""""""""""
7769
7770The first two operands of a '``shufflevector``' instruction are vectors
7771with the same type. The third argument is a shuffle mask whose element
7772type is always 'i32'. The result of the instruction is a vector whose
7773length is the same as the shuffle mask and whose element type is the
7774same as the element type of the first two operands.
7775
7776The shuffle mask operand is required to be a constant vector with either
7777constant integer or undef values.
7778
7779Semantics:
7780""""""""""
7781
7782The elements of the two input vectors are numbered from left to right
7783across both of the vectors. The shuffle mask operand specifies, for each
7784element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007785result element gets. If the shuffle mask is undef, the result vector is
7786undef. If any element of the mask operand is undef, that element of the
7787result is undef. If the shuffle mask selects an undef element from one
7788of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007789
7790Example:
7791""""""""
7792
Renato Golin124f2592016-07-20 12:16:38 +00007793.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007794
7795 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7796 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7797 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7798 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7799 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7800 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7801 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7802 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7803
7804Aggregate Operations
7805--------------------
7806
7807LLVM supports several instructions for working with
7808:ref:`aggregate <t_aggregate>` values.
7809
7810.. _i_extractvalue:
7811
7812'``extractvalue``' Instruction
7813^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7814
7815Syntax:
7816"""""""
7817
7818::
7819
7820 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7821
7822Overview:
7823"""""""""
7824
7825The '``extractvalue``' instruction extracts the value of a member field
7826from an :ref:`aggregate <t_aggregate>` value.
7827
7828Arguments:
7829""""""""""
7830
7831The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007832:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007833constant indices to specify which value to extract in a similar manner
7834as indices in a '``getelementptr``' instruction.
7835
7836The major differences to ``getelementptr`` indexing are:
7837
7838- Since the value being indexed is not a pointer, the first index is
7839 omitted and assumed to be zero.
7840- At least one index must be specified.
7841- Not only struct indices but also array indices must be in bounds.
7842
7843Semantics:
7844""""""""""
7845
7846The result is the value at the position in the aggregate specified by
7847the index operands.
7848
7849Example:
7850""""""""
7851
Renato Golin124f2592016-07-20 12:16:38 +00007852.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007853
7854 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7855
7856.. _i_insertvalue:
7857
7858'``insertvalue``' Instruction
7859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7860
7861Syntax:
7862"""""""
7863
7864::
7865
7866 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7867
7868Overview:
7869"""""""""
7870
7871The '``insertvalue``' instruction inserts a value into a member field in
7872an :ref:`aggregate <t_aggregate>` value.
7873
7874Arguments:
7875""""""""""
7876
7877The first operand of an '``insertvalue``' instruction is a value of
7878:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7879a first-class value to insert. The following operands are constant
7880indices indicating the position at which to insert the value in a
7881similar manner as indices in a '``extractvalue``' instruction. The value
7882to insert must have the same type as the value identified by the
7883indices.
7884
7885Semantics:
7886""""""""""
7887
7888The result is an aggregate of the same type as ``val``. Its value is
7889that of ``val`` except that the value at the position specified by the
7890indices is that of ``elt``.
7891
7892Example:
7893""""""""
7894
7895.. code-block:: llvm
7896
7897 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7898 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007899 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007900
7901.. _memoryops:
7902
7903Memory Access and Addressing Operations
7904---------------------------------------
7905
7906A key design point of an SSA-based representation is how it represents
7907memory. In LLVM, no memory locations are in SSA form, which makes things
7908very simple. This section describes how to read, write, and allocate
7909memory in LLVM.
7910
7911.. _i_alloca:
7912
7913'``alloca``' Instruction
7914^^^^^^^^^^^^^^^^^^^^^^^^
7915
7916Syntax:
7917"""""""
7918
7919::
7920
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007921 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007922
7923Overview:
7924"""""""""
7925
7926The '``alloca``' instruction allocates memory on the stack frame of the
7927currently executing function, to be automatically released when this
7928function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007929address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007930
7931Arguments:
7932""""""""""
7933
7934The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7935bytes of memory on the runtime stack, returning a pointer of the
7936appropriate type to the program. If "NumElements" is specified, it is
7937the number of elements allocated, otherwise "NumElements" is defaulted
7938to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007939allocation is guaranteed to be aligned to at least that boundary. The
7940alignment may not be greater than ``1 << 29``. If not specified, or if
7941zero, the target can choose to align the allocation on any convenient
7942boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007943
7944'``type``' may be any sized type.
7945
7946Semantics:
7947""""""""""
7948
7949Memory is allocated; a pointer is returned. The operation is undefined
7950if there is insufficient stack space for the allocation. '``alloca``'d
7951memory is automatically released when the function returns. The
7952'``alloca``' instruction is commonly used to represent automatic
7953variables that must have an address available. When the function returns
7954(either with the ``ret`` or ``resume`` instructions), the memory is
Eli Friedman18f882c2018-07-11 00:02:01 +00007955reclaimed. Allocating zero bytes is legal, but the returned pointer may not
7956be unique. The order in which memory is allocated (ie., which way the stack
7957grows) is not specified.
Sean Silvab084af42012-12-07 10:36:55 +00007958
7959Example:
7960""""""""
7961
7962.. code-block:: llvm
7963
Tim Northover675a0962014-06-13 14:24:23 +00007964 %ptr = alloca i32 ; yields i32*:ptr
7965 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7966 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7967 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007968
7969.. _i_load:
7970
7971'``load``' Instruction
7972^^^^^^^^^^^^^^^^^^^^^^
7973
7974Syntax:
7975"""""""
7976
7977::
7978
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007979 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007980 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007981 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007982 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007983 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007984
7985Overview:
7986"""""""""
7987
7988The '``load``' instruction is used to read from memory.
7989
7990Arguments:
7991""""""""""
7992
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007993The argument to the ``load`` instruction specifies the memory address from which
7994to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7995known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7996the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7997modify the number or order of execution of this ``load`` with other
7998:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007999
JF Bastiend1fb5852015-12-17 22:09:19 +00008000If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008001<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8002``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
8003Atomic loads produce :ref:`defined <memmodel>` results when they may see
8004multiple atomic stores. The type of the pointee must be an integer, pointer, or
8005floating-point type whose bit width is a power of two greater than or equal to
8006eight and less than or equal to a target-specific size limit. ``align`` must be
8007explicitly specified on atomic loads, and the load has undefined behavior if the
8008alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00008009pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00008010
8011The optional constant ``align`` argument specifies the alignment of the
8012operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00008013or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00008014alignment for the target. It is the responsibility of the code emitter
8015to ensure that the alignment information is correct. Overestimating the
8016alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00008017may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00008018maximum possible alignment is ``1 << 29``. An alignment value higher
8019than the size of the loaded type implies memory up to the alignment
8020value bytes can be safely loaded without trapping in the default
8021address space. Access of the high bytes can interfere with debugging
8022tools, so should not be accessed if the function has the
8023``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00008024
8025The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008026metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00008027``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008028metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00008029that this load is not expected to be reused in the cache. The code
8030generator may select special instructions to save cache bandwidth, such
8031as the ``MOVNT`` instruction on x86.
8032
8033The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008034metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00008035entries. If a load instruction tagged with the ``!invariant.load``
8036metadata is executed, the optimizer may assume the memory location
8037referenced by the load contains the same value at all points in the
Eli Friedmane15a1112018-07-17 20:38:11 +00008038program where the memory location is known to be dereferenceable;
8039otherwise, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008040
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008041The optional ``!invariant.group`` metadata must reference a single metadata name
Piotr Padlewskice358262018-05-18 23:53:46 +00008042 ``<index>`` corresponding to a metadata node with no entries.
8043 See ``invariant.group`` metadata.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008044
Philip Reamescdb72f32014-10-20 22:40:55 +00008045The optional ``!nonnull`` metadata must reference a single
8046metadata name ``<index>`` corresponding to a metadata node with no
8047entries. The existence of the ``!nonnull`` metadata on the
8048instruction tells the optimizer that the value loaded is known to
Eli Friedmane15a1112018-07-17 20:38:11 +00008049never be null. If the value is null at runtime, the behavior is undefined.
8050This is analogous to the ``nonnull`` attribute on parameters and return
8051values. This metadata can only be applied to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00008052
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008053The optional ``!dereferenceable`` metadata must reference a single metadata
8054name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00008055entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00008056tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00008057The number of bytes known to be dereferenceable is specified by the integer
8058value in the metadata node. This is analogous to the ''dereferenceable''
8059attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00008060to loads of a pointer type.
8061
8062The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008063metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
8064``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00008065instruction tells the optimizer that the value loaded is known to be either
8066dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00008067The number of bytes known to be dereferenceable is specified by the integer
8068value in the metadata node. This is analogous to the ''dereferenceable_or_null''
8069attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00008070to loads of a pointer type.
8071
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008072The optional ``!align`` metadata must reference a single metadata name
8073``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
8074The existence of the ``!align`` metadata on the instruction tells the
8075optimizer that the value loaded is known to be aligned to a boundary specified
8076by the integer value in the metadata node. The alignment must be a power of 2.
8077This is analogous to the ''align'' attribute on parameters and return values.
Eli Friedmane15a1112018-07-17 20:38:11 +00008078This metadata can only be applied to loads of a pointer type. If the returned
8079value is not appropriately aligned at runtime, the behavior is undefined.
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008080
Sean Silvab084af42012-12-07 10:36:55 +00008081Semantics:
8082""""""""""
8083
8084The location of memory pointed to is loaded. If the value being loaded
8085is of scalar type then the number of bytes read does not exceed the
8086minimum number of bytes needed to hold all bits of the type. For
8087example, loading an ``i24`` reads at most three bytes. When loading a
8088value of a type like ``i20`` with a size that is not an integral number
8089of bytes, the result is undefined if the value was not originally
8090written using a store of the same type.
8091
8092Examples:
8093"""""""""
8094
8095.. code-block:: llvm
8096
Tim Northover675a0962014-06-13 14:24:23 +00008097 %ptr = alloca i32 ; yields i32*:ptr
8098 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00008099 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008100
8101.. _i_store:
8102
8103'``store``' Instruction
8104^^^^^^^^^^^^^^^^^^^^^^^
8105
8106Syntax:
8107"""""""
8108
8109::
8110
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008111 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008112 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008113
8114Overview:
8115"""""""""
8116
8117The '``store``' instruction is used to write to memory.
8118
8119Arguments:
8120""""""""""
8121
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00008122There are two arguments to the ``store`` instruction: a value to store and an
8123address at which to store it. The type of the ``<pointer>`` operand must be a
8124pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
8125operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
8126allowed to modify the number or order of execution of this ``store`` with other
8127:ref:`volatile operations <volatile>`. Only values of :ref:`first class
8128<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
8129structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00008130
JF Bastiend1fb5852015-12-17 22:09:19 +00008131If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008132<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8133``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
8134Atomic loads produce :ref:`defined <memmodel>` results when they may see
8135multiple atomic stores. The type of the pointee must be an integer, pointer, or
8136floating-point type whose bit width is a power of two greater than or equal to
8137eight and less than or equal to a target-specific size limit. ``align`` must be
8138explicitly specified on atomic stores, and the store has undefined behavior if
8139the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00008140pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00008141
Eli Benderskyca380842013-04-17 17:17:20 +00008142The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00008143operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00008144or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00008145alignment for the target. It is the responsibility of the code emitter
8146to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00008147alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00008148alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00008149safe. The maximum possible alignment is ``1 << 29``. An alignment
8150value higher than the size of the stored type implies memory up to the
8151alignment value bytes can be stored to without trapping in the default
8152address space. Storing to the higher bytes however may result in data
8153races if another thread can access the same address. Introducing a
8154data race is not allowed. Storing to the extra bytes is not allowed
8155even in situations where a data race is known to not exist if the
8156function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00008157
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008158The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00008159name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008160value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00008161tells the optimizer and code generator that this load is not expected to
8162be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00008163instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00008164x86.
8165
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008166The optional ``!invariant.group`` metadata must reference a
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008167single metadata name ``<index>``. See ``invariant.group`` metadata.
8168
Sean Silvab084af42012-12-07 10:36:55 +00008169Semantics:
8170""""""""""
8171
Eli Benderskyca380842013-04-17 17:17:20 +00008172The contents of memory are updated to contain ``<value>`` at the
8173location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00008174of scalar type then the number of bytes written does not exceed the
8175minimum number of bytes needed to hold all bits of the type. For
8176example, storing an ``i24`` writes at most three bytes. When writing a
8177value of a type like ``i20`` with a size that is not an integral number
8178of bytes, it is unspecified what happens to the extra bits that do not
8179belong to the type, but they will typically be overwritten.
8180
8181Example:
8182""""""""
8183
8184.. code-block:: llvm
8185
Tim Northover675a0962014-06-13 14:24:23 +00008186 %ptr = alloca i32 ; yields i32*:ptr
8187 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00008188 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008189
8190.. _i_fence:
8191
8192'``fence``' Instruction
8193^^^^^^^^^^^^^^^^^^^^^^^
8194
8195Syntax:
8196"""""""
8197
8198::
8199
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008200 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008201
8202Overview:
8203"""""""""
8204
8205The '``fence``' instruction is used to introduce happens-before edges
8206between operations.
8207
8208Arguments:
8209""""""""""
8210
8211'``fence``' instructions take an :ref:`ordering <ordering>` argument which
8212defines what *synchronizes-with* edges they add. They can only be given
8213``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
8214
8215Semantics:
8216""""""""""
8217
8218A fence A which has (at least) ``release`` ordering semantics
8219*synchronizes with* a fence B with (at least) ``acquire`` ordering
8220semantics if and only if there exist atomic operations X and Y, both
8221operating on some atomic object M, such that A is sequenced before X, X
8222modifies M (either directly or through some side effect of a sequence
8223headed by X), Y is sequenced before B, and Y observes M. This provides a
8224*happens-before* dependency between A and B. Rather than an explicit
8225``fence``, one (but not both) of the atomic operations X or Y might
8226provide a ``release`` or ``acquire`` (resp.) ordering constraint and
8227still *synchronize-with* the explicit ``fence`` and establish the
8228*happens-before* edge.
8229
8230A ``fence`` which has ``seq_cst`` ordering, in addition to having both
8231``acquire`` and ``release`` semantics specified above, participates in
8232the global program order of other ``seq_cst`` operations and/or fences.
8233
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008234A ``fence`` instruction can also take an optional
8235":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008236
8237Example:
8238""""""""
8239
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008240.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008241
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008242 fence acquire ; yields void
8243 fence syncscope("singlethread") seq_cst ; yields void
8244 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008245
8246.. _i_cmpxchg:
8247
8248'``cmpxchg``' Instruction
8249^^^^^^^^^^^^^^^^^^^^^^^^^
8250
8251Syntax:
8252"""""""
8253
8254::
8255
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008256 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00008257
8258Overview:
8259"""""""""
8260
8261The '``cmpxchg``' instruction is used to atomically modify memory. It
8262loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00008263equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00008264
8265Arguments:
8266""""""""""
8267
8268There are three arguments to the '``cmpxchg``' instruction: an address
8269to operate on, a value to compare to the value currently be at that
8270address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00008271are equal. The type of '<cmp>' must be an integer or pointer type whose
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008272bit width is a power of two greater than or equal to eight and less
Philip Reames1960cfd2016-02-19 00:06:41 +00008273than or equal to a target-specific size limit. '<cmp>' and '<new>' must
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008274have the same type, and the type of '<pointer>' must be a pointer to
8275that type. If the ``cmpxchg`` is marked as ``volatile``, then the
Philip Reames1960cfd2016-02-19 00:06:41 +00008276optimizer is not allowed to modify the number or order of execution of
8277this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008278
Tim Northovere94a5182014-03-11 10:48:52 +00008279The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00008280``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
8281must be at least ``monotonic``, the ordering constraint on failure must be no
8282stronger than that on success, and the failure ordering cannot be either
8283``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00008284
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008285A ``cmpxchg`` instruction can also take an optional
8286":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008287
8288The pointer passed into cmpxchg must have alignment greater than or
8289equal to the size in memory of the operand.
8290
8291Semantics:
8292""""""""""
8293
Tim Northover420a2162014-06-13 14:24:07 +00008294The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun93f2b4b2017-08-09 22:22:04 +00008295is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
8296written to the location. The original value at the location is returned,
8297together with a flag indicating success (true) or failure (false).
Tim Northover420a2162014-06-13 14:24:07 +00008298
8299If the cmpxchg operation is marked as ``weak`` then a spurious failure is
8300permitted: the operation may not write ``<new>`` even if the comparison
8301matched.
8302
8303If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
8304if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00008305
Tim Northovere94a5182014-03-11 10:48:52 +00008306A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
8307identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
8308load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00008309
8310Example:
8311""""""""
8312
8313.. code-block:: llvm
8314
8315 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008316 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008317 br label %loop
8318
8319 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008320 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00008321 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00008322 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00008323 %value_loaded = extractvalue { i32, i1 } %val_success, 0
8324 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00008325 br i1 %success, label %done, label %loop
8326
8327 done:
8328 ...
8329
8330.. _i_atomicrmw:
8331
8332'``atomicrmw``' Instruction
8333^^^^^^^^^^^^^^^^^^^^^^^^^^^
8334
8335Syntax:
8336"""""""
8337
8338::
8339
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008340 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00008341
8342Overview:
8343"""""""""
8344
8345The '``atomicrmw``' instruction is used to atomically modify memory.
8346
8347Arguments:
8348""""""""""
8349
8350There are three arguments to the '``atomicrmw``' instruction: an
8351operation to apply, an address whose value to modify, an argument to the
8352operation. The operation must be one of the following keywords:
8353
8354- xchg
8355- add
8356- sub
8357- and
8358- nand
8359- or
8360- xor
8361- max
8362- min
8363- umax
8364- umin
8365
8366The type of '<value>' must be an integer type whose bit width is a power
8367of two greater than or equal to eight and less than or equal to a
8368target-specific size limit. The type of the '``<pointer>``' operand must
8369be a pointer to that type. If the ``atomicrmw`` is marked as
8370``volatile``, then the optimizer is not allowed to modify the number or
8371order of execution of this ``atomicrmw`` with other :ref:`volatile
8372operations <volatile>`.
8373
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008374A ``atomicrmw`` instruction can also take an optional
8375":ref:`syncscope <syncscope>`" argument.
8376
Sean Silvab084af42012-12-07 10:36:55 +00008377Semantics:
8378""""""""""
8379
8380The contents of memory at the location specified by the '``<pointer>``'
8381operand are atomically read, modified, and written back. The original
8382value at the location is returned. The modification is specified by the
8383operation argument:
8384
8385- xchg: ``*ptr = val``
8386- add: ``*ptr = *ptr + val``
8387- sub: ``*ptr = *ptr - val``
8388- and: ``*ptr = *ptr & val``
8389- nand: ``*ptr = ~(*ptr & val)``
8390- or: ``*ptr = *ptr | val``
8391- xor: ``*ptr = *ptr ^ val``
8392- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
8393- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
8394- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
8395 comparison)
8396- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
8397 comparison)
8398
8399Example:
8400""""""""
8401
8402.. code-block:: llvm
8403
Tim Northover675a0962014-06-13 14:24:23 +00008404 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008405
8406.. _i_getelementptr:
8407
8408'``getelementptr``' Instruction
8409^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8410
8411Syntax:
8412"""""""
8413
8414::
8415
Peter Collingbourned93620b2016-11-10 22:34:55 +00008416 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8417 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8418 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00008419
8420Overview:
8421"""""""""
8422
8423The '``getelementptr``' instruction is used to get the address of a
8424subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008425address calculation only and does not access memory. The instruction can also
8426be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00008427
8428Arguments:
8429""""""""""
8430
David Blaikie16a97eb2015-03-04 22:02:58 +00008431The first argument is always a type used as the basis for the calculations.
8432The second argument is always a pointer or a vector of pointers, and is the
8433base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00008434that indicate which of the elements of the aggregate object are indexed.
8435The interpretation of each index is dependent on the type being indexed
8436into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00008437second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00008438(not necessarily the value directly pointed to, since the first index
8439can be non-zero), etc. The first type indexed into must be a pointer
8440value, subsequent types can be arrays, vectors, and structs. Note that
8441subsequent types being indexed into can never be pointers, since that
8442would require loading the pointer before continuing calculation.
8443
8444The type of each index argument depends on the type it is indexing into.
8445When indexing into a (optionally packed) structure, only ``i32`` integer
8446**constants** are allowed (when using a vector of indices they must all
8447be the **same** ``i32`` integer constant). When indexing into an array,
8448pointer or vector, integers of any width are allowed, and they are not
8449required to be constant. These integers are treated as signed values
8450where relevant.
8451
8452For example, let's consider a C code fragment and how it gets compiled
8453to LLVM:
8454
8455.. code-block:: c
8456
8457 struct RT {
8458 char A;
8459 int B[10][20];
8460 char C;
8461 };
8462 struct ST {
8463 int X;
8464 double Y;
8465 struct RT Z;
8466 };
8467
8468 int *foo(struct ST *s) {
8469 return &s[1].Z.B[5][13];
8470 }
8471
8472The LLVM code generated by Clang is:
8473
8474.. code-block:: llvm
8475
8476 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
8477 %struct.ST = type { i32, double, %struct.RT }
8478
8479 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
8480 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00008481 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00008482 ret i32* %arrayidx
8483 }
8484
8485Semantics:
8486""""""""""
8487
8488In the example above, the first index is indexing into the
8489'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
8490= '``{ i32, double, %struct.RT }``' type, a structure. The second index
8491indexes into the third element of the structure, yielding a
8492'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
8493structure. The third index indexes into the second element of the
8494structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
8495dimensions of the array are subscripted into, yielding an '``i32``'
8496type. The '``getelementptr``' instruction returns a pointer to this
8497element, thus computing a value of '``i32*``' type.
8498
8499Note that it is perfectly legal to index partially through a structure,
8500returning a pointer to an inner element. Because of this, the LLVM code
8501for the given testcase is equivalent to:
8502
8503.. code-block:: llvm
8504
8505 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00008506 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
8507 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
8508 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
8509 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
8510 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00008511 ret i32* %t5
8512 }
8513
8514If the ``inbounds`` keyword is present, the result value of the
8515``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
8516pointer is not an *in bounds* address of an allocated object, or if any
8517of the addresses that would be formed by successive addition of the
8518offsets implied by the indices to the base address with infinitely
8519precise signed arithmetic are not an *in bounds* address of that
8520allocated object. The *in bounds* addresses for an allocated object are
8521all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00008522past the end. The only *in bounds* address for a null pointer in the
8523default address-space is the null pointer itself. In cases where the
8524base is a vector of pointers the ``inbounds`` keyword applies to each
8525of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00008526
8527If the ``inbounds`` keyword is not present, the offsets are added to the
8528base address with silently-wrapping two's complement arithmetic. If the
8529offsets have a different width from the pointer, they are sign-extended
8530or truncated to the width of the pointer. The result value of the
8531``getelementptr`` may be outside the object pointed to by the base
8532pointer. The result value may not necessarily be used to access memory
8533though, even if it happens to point into allocated storage. See the
8534:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
8535information.
8536
Peter Collingbourned93620b2016-11-10 22:34:55 +00008537If the ``inrange`` keyword is present before any index, loading from or
8538storing to any pointer derived from the ``getelementptr`` has undefined
8539behavior if the load or store would access memory outside of the bounds of
8540the element selected by the index marked as ``inrange``. The result of a
8541pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
8542involving memory) involving a pointer derived from a ``getelementptr`` with
8543the ``inrange`` keyword is undefined, with the exception of comparisons
8544in the case where both operands are in the range of the element selected
8545by the ``inrange`` keyword, inclusive of the address one past the end of
8546that element. Note that the ``inrange`` keyword is currently only allowed
8547in constant ``getelementptr`` expressions.
8548
Sean Silvab084af42012-12-07 10:36:55 +00008549The getelementptr instruction is often confusing. For some more insight
8550into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
8551
8552Example:
8553""""""""
8554
8555.. code-block:: llvm
8556
8557 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008558 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008559 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008560 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008561 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008562 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008563 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008564 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00008565
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008566Vector of pointers:
8567"""""""""""""""""""
8568
8569The ``getelementptr`` returns a vector of pointers, instead of a single address,
8570when one or more of its arguments is a vector. In such cases, all vector
8571arguments should have the same number of elements, and every scalar argument
8572will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00008573
8574.. code-block:: llvm
8575
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008576 ; All arguments are vectors:
8577 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
8578 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008579
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008580 ; Add the same scalar offset to each pointer of a vector:
8581 ; A[i] = ptrs[i] + offset*sizeof(i8)
8582 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00008583
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008584 ; Add distinct offsets to the same pointer:
8585 ; A[i] = ptr + offsets[i]*sizeof(i8)
8586 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008587
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008588 ; In all cases described above the type of the result is <4 x i8*>
8589
8590The two following instructions are equivalent:
8591
8592.. code-block:: llvm
8593
8594 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8595 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
8596 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
8597 <4 x i32> %ind4,
8598 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00008599
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008600 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8601 i32 2, i32 1, <4 x i32> %ind4, i64 13
8602
8603Let's look at the C code, where the vector version of ``getelementptr``
8604makes sense:
8605
8606.. code-block:: c
8607
8608 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00008609 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008610 for (int i = 0; i < size; ++i) {
8611 A[i] = B[C[i]];
8612 }
8613
8614.. code-block:: llvm
8615
8616 ; get pointers for 8 elements from array B
8617 %ptrs = getelementptr double, double* %B, <8 x i32> %C
8618 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00008619 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008620 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00008621
8622Conversion Operations
8623---------------------
8624
8625The instructions in this category are the conversion instructions
8626(casting) which all take a single operand and a type. They perform
8627various bit conversions on the operand.
8628
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008629.. _i_trunc:
8630
Sean Silvab084af42012-12-07 10:36:55 +00008631'``trunc .. to``' Instruction
8632^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8633
8634Syntax:
8635"""""""
8636
8637::
8638
8639 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8640
8641Overview:
8642"""""""""
8643
8644The '``trunc``' instruction truncates its operand to the type ``ty2``.
8645
8646Arguments:
8647""""""""""
8648
8649The '``trunc``' instruction takes a value to trunc, and a type to trunc
8650it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8651of the same number of integers. The bit size of the ``value`` must be
8652larger than the bit size of the destination type, ``ty2``. Equal sized
8653types are not allowed.
8654
8655Semantics:
8656""""""""""
8657
8658The '``trunc``' instruction truncates the high order bits in ``value``
8659and converts the remaining bits to ``ty2``. Since the source size must
8660be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8661It will always truncate bits.
8662
8663Example:
8664""""""""
8665
8666.. code-block:: llvm
8667
8668 %X = trunc i32 257 to i8 ; yields i8:1
8669 %Y = trunc i32 123 to i1 ; yields i1:true
8670 %Z = trunc i32 122 to i1 ; yields i1:false
8671 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
8672
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008673.. _i_zext:
8674
Sean Silvab084af42012-12-07 10:36:55 +00008675'``zext .. to``' Instruction
8676^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8677
8678Syntax:
8679"""""""
8680
8681::
8682
8683 <result> = zext <ty> <value> to <ty2> ; yields ty2
8684
8685Overview:
8686"""""""""
8687
8688The '``zext``' instruction zero extends its operand to type ``ty2``.
8689
8690Arguments:
8691""""""""""
8692
8693The '``zext``' instruction takes a value to cast, and a type to cast it
8694to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8695the same number of integers. The bit size of the ``value`` must be
8696smaller than the bit size of the destination type, ``ty2``.
8697
8698Semantics:
8699""""""""""
8700
8701The ``zext`` fills the high order bits of the ``value`` with zero bits
8702until it reaches the size of the destination type, ``ty2``.
8703
8704When zero extending from i1, the result will always be either 0 or 1.
8705
8706Example:
8707""""""""
8708
8709.. code-block:: llvm
8710
8711 %X = zext i32 257 to i64 ; yields i64:257
8712 %Y = zext i1 true to i32 ; yields i32:1
8713 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8714
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008715.. _i_sext:
8716
Sean Silvab084af42012-12-07 10:36:55 +00008717'``sext .. to``' Instruction
8718^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8719
8720Syntax:
8721"""""""
8722
8723::
8724
8725 <result> = sext <ty> <value> to <ty2> ; yields ty2
8726
8727Overview:
8728"""""""""
8729
8730The '``sext``' sign extends ``value`` to the type ``ty2``.
8731
8732Arguments:
8733""""""""""
8734
8735The '``sext``' instruction takes a value to cast, and a type to cast it
8736to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8737the same number of integers. The bit size of the ``value`` must be
8738smaller than the bit size of the destination type, ``ty2``.
8739
8740Semantics:
8741""""""""""
8742
8743The '``sext``' instruction performs a sign extension by copying the sign
8744bit (highest order bit) of the ``value`` until it reaches the bit size
8745of the type ``ty2``.
8746
8747When sign extending from i1, the extension always results in -1 or 0.
8748
8749Example:
8750""""""""
8751
8752.. code-block:: llvm
8753
8754 %X = sext i8 -1 to i16 ; yields i16 :65535
8755 %Y = sext i1 true to i32 ; yields i32:-1
8756 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8757
8758'``fptrunc .. to``' Instruction
8759^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8760
8761Syntax:
8762"""""""
8763
8764::
8765
8766 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8767
8768Overview:
8769"""""""""
8770
8771The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8772
8773Arguments:
8774""""""""""
8775
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008776The '``fptrunc``' instruction takes a :ref:`floating-point <t_floating>`
8777value to cast and a :ref:`floating-point <t_floating>` type to cast it to.
Sean Silvab084af42012-12-07 10:36:55 +00008778The size of ``value`` must be larger than the size of ``ty2``. This
8779implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8780
8781Semantics:
8782""""""""""
8783
Dan Liew50456fb2015-09-03 18:43:56 +00008784The '``fptrunc``' instruction casts a ``value`` from a larger
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008785:ref:`floating-point <t_floating>` type to a smaller :ref:`floating-point
Sanjay Pateld96a3632018-04-03 13:05:20 +00008786<t_floating>` type.
8787This instruction is assumed to execute in the default :ref:`floating-point
8788environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00008789
8790Example:
8791""""""""
8792
8793.. code-block:: llvm
8794
Sanjay Pateld96a3632018-04-03 13:05:20 +00008795 %X = fptrunc double 16777217.0 to float ; yields float:16777216.0
8796 %Y = fptrunc double 1.0E+300 to half ; yields half:+infinity
Sean Silvab084af42012-12-07 10:36:55 +00008797
8798'``fpext .. to``' Instruction
8799^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8800
8801Syntax:
8802"""""""
8803
8804::
8805
8806 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8807
8808Overview:
8809"""""""""
8810
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008811The '``fpext``' extends a floating-point ``value`` to a larger floating-point
8812value.
Sean Silvab084af42012-12-07 10:36:55 +00008813
8814Arguments:
8815""""""""""
8816
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008817The '``fpext``' instruction takes a :ref:`floating-point <t_floating>`
8818``value`` to cast, and a :ref:`floating-point <t_floating>` type to cast it
Sean Silvab084af42012-12-07 10:36:55 +00008819to. The source type must be smaller than the destination type.
8820
8821Semantics:
8822""""""""""
8823
8824The '``fpext``' instruction extends the ``value`` from a smaller
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008825:ref:`floating-point <t_floating>` type to a larger :ref:`floating-point
8826<t_floating>` type. The ``fpext`` cannot be used to make a
Sean Silvab084af42012-12-07 10:36:55 +00008827*no-op cast* because it always changes bits. Use ``bitcast`` to make a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008828*no-op cast* for a floating-point cast.
Sean Silvab084af42012-12-07 10:36:55 +00008829
8830Example:
8831""""""""
8832
8833.. code-block:: llvm
8834
8835 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8836 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8837
8838'``fptoui .. to``' Instruction
8839^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8840
8841Syntax:
8842"""""""
8843
8844::
8845
8846 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8847
8848Overview:
8849"""""""""
8850
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008851The '``fptoui``' converts a floating-point ``value`` to its unsigned
Sean Silvab084af42012-12-07 10:36:55 +00008852integer equivalent of type ``ty2``.
8853
8854Arguments:
8855""""""""""
8856
8857The '``fptoui``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008858scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00008859cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008860``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00008861type with the same number of elements as ``ty``
8862
8863Semantics:
8864""""""""""
8865
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008866The '``fptoui``' instruction converts its :ref:`floating-point
8867<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00008868unsigned integer value. If the value cannot fit in ``ty2``, the result
8869is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008870
8871Example:
8872""""""""
8873
8874.. code-block:: llvm
8875
8876 %X = fptoui double 123.0 to i32 ; yields i32:123
8877 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8878 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8879
8880'``fptosi .. to``' Instruction
8881^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8882
8883Syntax:
8884"""""""
8885
8886::
8887
8888 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8889
8890Overview:
8891"""""""""
8892
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008893The '``fptosi``' instruction converts :ref:`floating-point <t_floating>`
Sean Silvab084af42012-12-07 10:36:55 +00008894``value`` to type ``ty2``.
8895
8896Arguments:
8897""""""""""
8898
8899The '``fptosi``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008900scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00008901cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008902``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00008903type with the same number of elements as ``ty``
8904
8905Semantics:
8906""""""""""
8907
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008908The '``fptosi``' instruction converts its :ref:`floating-point
8909<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00008910signed integer value. If the value cannot fit in ``ty2``, the result
8911is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008912
8913Example:
8914""""""""
8915
8916.. code-block:: llvm
8917
8918 %X = fptosi double -123.0 to i32 ; yields i32:-123
8919 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8920 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8921
8922'``uitofp .. to``' Instruction
8923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8924
8925Syntax:
8926"""""""
8927
8928::
8929
8930 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8931
8932Overview:
8933"""""""""
8934
8935The '``uitofp``' instruction regards ``value`` as an unsigned integer
8936and converts that value to the ``ty2`` type.
8937
8938Arguments:
8939""""""""""
8940
8941The '``uitofp``' instruction takes a value to cast, which must be a
8942scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008943``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
8944``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00008945type with the same number of elements as ``ty``
8946
8947Semantics:
8948""""""""""
8949
8950The '``uitofp``' instruction interprets its operand as an unsigned
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008951integer quantity and converts it to the corresponding floating-point
Eli Friedman3f1ce092018-06-14 22:58:48 +00008952value. If the value cannot be exactly represented, it is rounded using
8953the default rounding mode.
8954
Sean Silvab084af42012-12-07 10:36:55 +00008955
8956Example:
8957""""""""
8958
8959.. code-block:: llvm
8960
8961 %X = uitofp i32 257 to float ; yields float:257.0
8962 %Y = uitofp i8 -1 to double ; yields double:255.0
8963
8964'``sitofp .. to``' Instruction
8965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8966
8967Syntax:
8968"""""""
8969
8970::
8971
8972 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8973
8974Overview:
8975"""""""""
8976
8977The '``sitofp``' instruction regards ``value`` as a signed integer and
8978converts that value to the ``ty2`` type.
8979
8980Arguments:
8981""""""""""
8982
8983The '``sitofp``' instruction takes a value to cast, which must be a
8984scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008985``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
8986``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00008987type with the same number of elements as ``ty``
8988
8989Semantics:
8990""""""""""
8991
8992The '``sitofp``' instruction interprets its operand as a signed integer
Eli Friedman3f1ce092018-06-14 22:58:48 +00008993quantity and converts it to the corresponding floating-point value. If the
8994value cannot be exactly represented, it is rounded using the default rounding
8995mode.
Sean Silvab084af42012-12-07 10:36:55 +00008996
8997Example:
8998""""""""
8999
9000.. code-block:: llvm
9001
9002 %X = sitofp i32 257 to float ; yields float:257.0
9003 %Y = sitofp i8 -1 to double ; yields double:-1.0
9004
9005.. _i_ptrtoint:
9006
9007'``ptrtoint .. to``' Instruction
9008^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9009
9010Syntax:
9011"""""""
9012
9013::
9014
9015 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
9016
9017Overview:
9018"""""""""
9019
9020The '``ptrtoint``' instruction converts the pointer or a vector of
9021pointers ``value`` to the integer (or vector of integers) type ``ty2``.
9022
9023Arguments:
9024""""""""""
9025
9026The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00009027a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00009028type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
9029a vector of integers type.
9030
9031Semantics:
9032""""""""""
9033
9034The '``ptrtoint``' instruction converts ``value`` to integer type
9035``ty2`` by interpreting the pointer value as an integer and either
9036truncating or zero extending that value to the size of the integer type.
9037If ``value`` is smaller than ``ty2`` then a zero extension is done. If
9038``value`` is larger than ``ty2`` then a truncation is done. If they are
9039the same size, then nothing is done (*no-op cast*) other than a type
9040change.
9041
9042Example:
9043""""""""
9044
9045.. code-block:: llvm
9046
9047 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
9048 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
9049 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
9050
9051.. _i_inttoptr:
9052
9053'``inttoptr .. to``' Instruction
9054^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9055
9056Syntax:
9057"""""""
9058
9059::
9060
9061 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
9062
9063Overview:
9064"""""""""
9065
9066The '``inttoptr``' instruction converts an integer ``value`` to a
9067pointer type, ``ty2``.
9068
9069Arguments:
9070""""""""""
9071
9072The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
9073cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
9074type.
9075
9076Semantics:
9077""""""""""
9078
9079The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
9080applying either a zero extension or a truncation depending on the size
9081of the integer ``value``. If ``value`` is larger than the size of a
9082pointer then a truncation is done. If ``value`` is smaller than the size
9083of a pointer then a zero extension is done. If they are the same size,
9084nothing is done (*no-op cast*).
9085
9086Example:
9087""""""""
9088
9089.. code-block:: llvm
9090
9091 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
9092 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
9093 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
9094 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
9095
9096.. _i_bitcast:
9097
9098'``bitcast .. to``' Instruction
9099^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9100
9101Syntax:
9102"""""""
9103
9104::
9105
9106 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
9107
9108Overview:
9109"""""""""
9110
9111The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
9112changing any bits.
9113
9114Arguments:
9115""""""""""
9116
9117The '``bitcast``' instruction takes a value to cast, which must be a
9118non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009119also be a non-aggregate :ref:`first class <t_firstclass>` type. The
9120bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00009121identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009122also be a pointer of the same size. This instruction supports bitwise
9123conversion of vectors to integers and to vectors of other types (as
9124long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00009125
9126Semantics:
9127""""""""""
9128
Matt Arsenault24b49c42013-07-31 17:49:08 +00009129The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
9130is always a *no-op cast* because no bits change with this
9131conversion. The conversion is done as if the ``value`` had been stored
9132to memory and read back as type ``ty2``. Pointer (or vector of
9133pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009134pointers) types with the same address space through this instruction.
9135To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
9136or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00009137
9138Example:
9139""""""""
9140
Renato Golin124f2592016-07-20 12:16:38 +00009141.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009142
9143 %X = bitcast i8 255 to i8 ; yields i8 :-1
9144 %Y = bitcast i32* %x to sint* ; yields sint*:%x
9145 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
9146 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
9147
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009148.. _i_addrspacecast:
9149
9150'``addrspacecast .. to``' Instruction
9151^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9152
9153Syntax:
9154"""""""
9155
9156::
9157
9158 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
9159
9160Overview:
9161"""""""""
9162
9163The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
9164address space ``n`` to type ``pty2`` in address space ``m``.
9165
9166Arguments:
9167""""""""""
9168
9169The '``addrspacecast``' instruction takes a pointer or vector of pointer value
9170to cast and a pointer type to cast it to, which must have a different
9171address space.
9172
9173Semantics:
9174""""""""""
9175
9176The '``addrspacecast``' instruction converts the pointer value
9177``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00009178value modification, depending on the target and the address space
9179pair. Pointer conversions within the same address space must be
9180performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009181conversion is legal then both result and operand refer to the same memory
9182location.
9183
9184Example:
9185""""""""
9186
9187.. code-block:: llvm
9188
Matt Arsenault9c13dd02013-11-15 22:43:50 +00009189 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
9190 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
9191 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009192
Sean Silvab084af42012-12-07 10:36:55 +00009193.. _otherops:
9194
9195Other Operations
9196----------------
9197
9198The instructions in this category are the "miscellaneous" instructions,
9199which defy better classification.
9200
9201.. _i_icmp:
9202
9203'``icmp``' Instruction
9204^^^^^^^^^^^^^^^^^^^^^^
9205
9206Syntax:
9207"""""""
9208
9209::
9210
Tim Northover675a0962014-06-13 14:24:23 +00009211 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009212
9213Overview:
9214"""""""""
9215
9216The '``icmp``' instruction returns a boolean value or a vector of
9217boolean values based on comparison of its two integer, integer vector,
9218pointer, or pointer vector operands.
9219
9220Arguments:
9221""""""""""
9222
9223The '``icmp``' instruction takes three operands. The first operand is
9224the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009225not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009226
9227#. ``eq``: equal
9228#. ``ne``: not equal
9229#. ``ugt``: unsigned greater than
9230#. ``uge``: unsigned greater or equal
9231#. ``ult``: unsigned less than
9232#. ``ule``: unsigned less or equal
9233#. ``sgt``: signed greater than
9234#. ``sge``: signed greater or equal
9235#. ``slt``: signed less than
9236#. ``sle``: signed less or equal
9237
9238The remaining two arguments must be :ref:`integer <t_integer>` or
9239:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
9240must also be identical types.
9241
9242Semantics:
9243""""""""""
9244
9245The '``icmp``' compares ``op1`` and ``op2`` according to the condition
9246code given as ``cond``. The comparison performed always yields either an
9247:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
9248
9249#. ``eq``: yields ``true`` if the operands are equal, ``false``
9250 otherwise. No sign interpretation is necessary or performed.
9251#. ``ne``: yields ``true`` if the operands are unequal, ``false``
9252 otherwise. No sign interpretation is necessary or performed.
9253#. ``ugt``: interprets the operands as unsigned values and yields
9254 ``true`` if ``op1`` is greater than ``op2``.
9255#. ``uge``: interprets the operands as unsigned values and yields
9256 ``true`` if ``op1`` is greater than or equal to ``op2``.
9257#. ``ult``: interprets the operands as unsigned values and yields
9258 ``true`` if ``op1`` is less than ``op2``.
9259#. ``ule``: interprets the operands as unsigned values and yields
9260 ``true`` if ``op1`` is less than or equal to ``op2``.
9261#. ``sgt``: interprets the operands as signed values and yields ``true``
9262 if ``op1`` is greater than ``op2``.
9263#. ``sge``: interprets the operands as signed values and yields ``true``
9264 if ``op1`` is greater than or equal to ``op2``.
9265#. ``slt``: interprets the operands as signed values and yields ``true``
9266 if ``op1`` is less than ``op2``.
9267#. ``sle``: interprets the operands as signed values and yields ``true``
9268 if ``op1`` is less than or equal to ``op2``.
9269
9270If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
9271are compared as if they were integers.
9272
9273If the operands are integer vectors, then they are compared element by
9274element. The result is an ``i1`` vector with the same number of elements
9275as the values being compared. Otherwise, the result is an ``i1``.
9276
9277Example:
9278""""""""
9279
Renato Golin124f2592016-07-20 12:16:38 +00009280.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009281
9282 <result> = icmp eq i32 4, 5 ; yields: result=false
9283 <result> = icmp ne float* %X, %X ; yields: result=false
9284 <result> = icmp ult i16 4, 5 ; yields: result=true
9285 <result> = icmp sgt i16 4, 5 ; yields: result=false
9286 <result> = icmp ule i16 -4, 5 ; yields: result=false
9287 <result> = icmp sge i16 4, 5 ; yields: result=false
9288
Sean Silvab084af42012-12-07 10:36:55 +00009289.. _i_fcmp:
9290
9291'``fcmp``' Instruction
9292^^^^^^^^^^^^^^^^^^^^^^
9293
9294Syntax:
9295"""""""
9296
9297::
9298
James Molloy88eb5352015-07-10 12:52:00 +00009299 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009300
9301Overview:
9302"""""""""
9303
9304The '``fcmp``' instruction returns a boolean value or vector of boolean
9305values based on comparison of its operands.
9306
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009307If the operands are floating-point scalars, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009308boolean (:ref:`i1 <t_integer>`).
9309
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009310If the operands are floating-point vectors, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009311vector of boolean with the same number of elements as the operands being
9312compared.
9313
9314Arguments:
9315""""""""""
9316
9317The '``fcmp``' instruction takes three operands. The first operand is
9318the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009319not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009320
9321#. ``false``: no comparison, always returns false
9322#. ``oeq``: ordered and equal
9323#. ``ogt``: ordered and greater than
9324#. ``oge``: ordered and greater than or equal
9325#. ``olt``: ordered and less than
9326#. ``ole``: ordered and less than or equal
9327#. ``one``: ordered and not equal
9328#. ``ord``: ordered (no nans)
9329#. ``ueq``: unordered or equal
9330#. ``ugt``: unordered or greater than
9331#. ``uge``: unordered or greater than or equal
9332#. ``ult``: unordered or less than
9333#. ``ule``: unordered or less than or equal
9334#. ``une``: unordered or not equal
9335#. ``uno``: unordered (either nans)
9336#. ``true``: no comparison, always returns true
9337
9338*Ordered* means that neither operand is a QNAN while *unordered* means
9339that either operand may be a QNAN.
9340
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009341Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating-point
9342<t_floating>` type or a :ref:`vector <t_vector>` of floating-point type.
9343They must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00009344
9345Semantics:
9346""""""""""
9347
9348The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
9349condition code given as ``cond``. If the operands are vectors, then the
9350vectors are compared element by element. Each comparison performed
9351always yields an :ref:`i1 <t_integer>` result, as follows:
9352
9353#. ``false``: always yields ``false``, regardless of operands.
9354#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
9355 is equal to ``op2``.
9356#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
9357 is greater than ``op2``.
9358#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
9359 is greater than or equal to ``op2``.
9360#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
9361 is less than ``op2``.
9362#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
9363 is less than or equal to ``op2``.
9364#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
9365 is not equal to ``op2``.
9366#. ``ord``: yields ``true`` if both operands are not a QNAN.
9367#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
9368 equal to ``op2``.
9369#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
9370 greater than ``op2``.
9371#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
9372 greater than or equal to ``op2``.
9373#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
9374 less than ``op2``.
9375#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
9376 less than or equal to ``op2``.
9377#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
9378 not equal to ``op2``.
9379#. ``uno``: yields ``true`` if either operand is a QNAN.
9380#. ``true``: always yields ``true``, regardless of operands.
9381
James Molloy88eb5352015-07-10 12:52:00 +00009382The ``fcmp`` instruction can also optionally take any number of
9383:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009384otherwise unsafe floating-point optimizations.
James Molloy88eb5352015-07-10 12:52:00 +00009385
9386Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
9387only flags that have any effect on its semantics are those that allow
9388assumptions to be made about the values of input arguments; namely
Eli Friedman8bb43262018-07-17 20:28:31 +00009389``nnan``, ``ninf``, and ``reassoc``. See :ref:`fastmath` for more information.
James Molloy88eb5352015-07-10 12:52:00 +00009390
Sean Silvab084af42012-12-07 10:36:55 +00009391Example:
9392""""""""
9393
Renato Golin124f2592016-07-20 12:16:38 +00009394.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009395
9396 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
9397 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
9398 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
9399 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
9400
Sean Silvab084af42012-12-07 10:36:55 +00009401.. _i_phi:
9402
9403'``phi``' Instruction
9404^^^^^^^^^^^^^^^^^^^^^
9405
9406Syntax:
9407"""""""
9408
9409::
9410
9411 <result> = phi <ty> [ <val0>, <label0>], ...
9412
9413Overview:
9414"""""""""
9415
9416The '``phi``' instruction is used to implement the φ node in the SSA
9417graph representing the function.
9418
9419Arguments:
9420""""""""""
9421
9422The type of the incoming values is specified with the first type field.
9423After this, the '``phi``' instruction takes a list of pairs as
9424arguments, with one pair for each predecessor basic block of the current
9425block. Only values of :ref:`first class <t_firstclass>` type may be used as
9426the value arguments to the PHI node. Only labels may be used as the
9427label arguments.
9428
9429There must be no non-phi instructions between the start of a basic block
9430and the PHI instructions: i.e. PHI instructions must be first in a basic
9431block.
9432
9433For the purposes of the SSA form, the use of each incoming value is
9434deemed to occur on the edge from the corresponding predecessor block to
9435the current block (but after any definition of an '``invoke``'
9436instruction's return value on the same edge).
9437
9438Semantics:
9439""""""""""
9440
9441At runtime, the '``phi``' instruction logically takes on the value
9442specified by the pair corresponding to the predecessor basic block that
9443executed just prior to the current block.
9444
9445Example:
9446""""""""
9447
9448.. code-block:: llvm
9449
9450 Loop: ; Infinite loop that counts from 0 on up...
9451 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
9452 %nextindvar = add i32 %indvar, 1
9453 br label %Loop
9454
9455.. _i_select:
9456
9457'``select``' Instruction
9458^^^^^^^^^^^^^^^^^^^^^^^^
9459
9460Syntax:
9461"""""""
9462
9463::
9464
9465 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
9466
9467 selty is either i1 or {<N x i1>}
9468
9469Overview:
9470"""""""""
9471
9472The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00009473condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00009474
9475Arguments:
9476""""""""""
9477
9478The '``select``' instruction requires an 'i1' value or a vector of 'i1'
9479values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00009480class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00009481
9482Semantics:
9483""""""""""
9484
9485If the condition is an i1 and it evaluates to 1, the instruction returns
9486the first value argument; otherwise, it returns the second value
9487argument.
9488
9489If the condition is a vector of i1, then the value arguments must be
9490vectors of the same size, and the selection is done element by element.
9491
David Majnemer40a0b592015-03-03 22:45:47 +00009492If the condition is an i1 and the value arguments are vectors of the
9493same size, then an entire vector is selected.
9494
Sean Silvab084af42012-12-07 10:36:55 +00009495Example:
9496""""""""
9497
9498.. code-block:: llvm
9499
9500 %X = select i1 true, i8 17, i8 42 ; yields i8:17
9501
9502.. _i_call:
9503
9504'``call``' Instruction
9505^^^^^^^^^^^^^^^^^^^^^^
9506
9507Syntax:
9508"""""""
9509
9510::
9511
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00009512 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] [addrspace(<num>)]
9513 [<ty>|<fnty> <fnptrval>(<function args>) [fn attrs] [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00009514
9515Overview:
9516"""""""""
9517
9518The '``call``' instruction represents a simple function call.
9519
9520Arguments:
9521""""""""""
9522
9523This instruction requires several arguments:
9524
Reid Kleckner5772b772014-04-24 20:14:34 +00009525#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00009526 should perform tail call optimization. The ``tail`` marker is a hint that
9527 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00009528 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00009529 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00009530
9531 #. The call will not cause unbounded stack growth if it is part of a
9532 recursive cycle in the call graph.
9533 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
9534 forwarded in place.
9535
Florian Hahnedae5a62018-01-17 23:29:25 +00009536 Both markers imply that the callee does not access allocas from the caller.
9537 The ``tail`` marker additionally implies that the callee does not access
9538 varargs from the caller, while ``musttail`` implies that varargs from the
9539 caller are passed to the callee. Calls marked ``musttail`` must obey the
9540 following additional rules:
Reid Kleckner5772b772014-04-24 20:14:34 +00009541
9542 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
9543 or a pointer bitcast followed by a ret instruction.
9544 - The ret instruction must return the (possibly bitcasted) value
9545 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00009546 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00009547 parameters or return types may differ in pointee type, but not
9548 in address space.
9549 - The calling conventions of the caller and callee must match.
9550 - All ABI-impacting function attributes, such as sret, byval, inreg,
9551 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00009552 - The callee must be varargs iff the caller is varargs. Bitcasting a
9553 non-varargs function to the appropriate varargs type is legal so
9554 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00009555
9556 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
9557 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00009558
9559 - Caller and callee both have the calling convention ``fastcc``.
9560 - The call is in tail position (ret immediately follows call and ret
9561 uses value of call or is void).
9562 - Option ``-tailcallopt`` is enabled, or
9563 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00009564 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00009565 met. <CodeGenerator.html#tailcallopt>`_
9566
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00009567#. The optional ``notail`` marker indicates that the optimizers should not add
9568 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
9569 call optimization from being performed on the call.
9570
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00009571#. The optional ``fast-math flags`` marker indicates that the call has one or more
Sanjay Patelfa54ace2015-12-14 21:59:03 +00009572 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
9573 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
9574 for calls that return a floating-point scalar or vector type.
9575
Sean Silvab084af42012-12-07 10:36:55 +00009576#. The optional "cconv" marker indicates which :ref:`calling
9577 convention <callingconv>` the call should use. If none is
9578 specified, the call defaults to using C calling conventions. The
9579 calling convention of the call must match the calling convention of
9580 the target function, or else the behavior is undefined.
9581#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
9582 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
9583 are valid here.
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00009584#. The optional addrspace attribute can be used to indicate the adress space
9585 of the called function. If it is not specified, the program address space
9586 from the :ref:`datalayout string<langref_datalayout>` will be used.
Sean Silvab084af42012-12-07 10:36:55 +00009587#. '``ty``': the type of the call instruction itself which is also the
9588 type of the return value. Functions that return no value are marked
9589 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00009590#. '``fnty``': shall be the signature of the function being called. The
9591 argument types must match the types implied by this signature. This
9592 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00009593#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00009594 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00009595 indirect ``call``'s are just as possible, calling an arbitrary pointer
9596 to function value.
9597#. '``function args``': argument list whose types match the function
9598 signature argument types and parameter attributes. All arguments must
9599 be of :ref:`first class <t_firstclass>` type. If the function signature
9600 indicates the function accepts a variable number of arguments, the
9601 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00009602#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009603#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00009604
9605Semantics:
9606""""""""""
9607
9608The '``call``' instruction is used to cause control flow to transfer to
9609a specified function, with its incoming arguments bound to the specified
9610values. Upon a '``ret``' instruction in the called function, control
9611flow continues with the instruction after the function call, and the
9612return value of the function is bound to the result argument.
9613
9614Example:
9615""""""""
9616
9617.. code-block:: llvm
9618
9619 %retval = call i32 @test(i32 %argc)
9620 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
9621 %X = tail call i32 @foo() ; yields i32
9622 %Y = tail call fastcc i32 @foo() ; yields i32
9623 call void %foo(i8 97 signext)
9624
9625 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00009626 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00009627 %gr = extractvalue %struct.A %r, 0 ; yields i32
9628 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
9629 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
9630 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
9631
9632llvm treats calls to some functions with names and arguments that match
9633the standard C99 library as being the C99 library functions, and may
9634perform optimizations or generate code for them under that assumption.
9635This is something we'd like to change in the future to provide better
9636support for freestanding environments and non-C-based languages.
9637
9638.. _i_va_arg:
9639
9640'``va_arg``' Instruction
9641^^^^^^^^^^^^^^^^^^^^^^^^
9642
9643Syntax:
9644"""""""
9645
9646::
9647
9648 <resultval> = va_arg <va_list*> <arglist>, <argty>
9649
9650Overview:
9651"""""""""
9652
9653The '``va_arg``' instruction is used to access arguments passed through
9654the "variable argument" area of a function call. It is used to implement
9655the ``va_arg`` macro in C.
9656
9657Arguments:
9658""""""""""
9659
9660This instruction takes a ``va_list*`` value and the type of the
9661argument. It returns a value of the specified argument type and
9662increments the ``va_list`` to point to the next argument. The actual
9663type of ``va_list`` is target specific.
9664
9665Semantics:
9666""""""""""
9667
9668The '``va_arg``' instruction loads an argument of the specified type
9669from the specified ``va_list`` and causes the ``va_list`` to point to
9670the next argument. For more information, see the variable argument
9671handling :ref:`Intrinsic Functions <int_varargs>`.
9672
9673It is legal for this instruction to be called in a function which does
9674not take a variable number of arguments, for example, the ``vfprintf``
9675function.
9676
9677``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
9678function <intrinsics>` because it takes a type as an argument.
9679
9680Example:
9681""""""""
9682
9683See the :ref:`variable argument processing <int_varargs>` section.
9684
9685Note that the code generator does not yet fully support va\_arg on many
9686targets. Also, it does not currently support va\_arg with aggregate
9687types on any target.
9688
9689.. _i_landingpad:
9690
9691'``landingpad``' Instruction
9692^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9693
9694Syntax:
9695"""""""
9696
9697::
9698
David Majnemer7fddecc2015-06-17 20:52:32 +00009699 <resultval> = landingpad <resultty> <clause>+
9700 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00009701
9702 <clause> := catch <type> <value>
9703 <clause> := filter <array constant type> <array constant>
9704
9705Overview:
9706"""""""""
9707
9708The '``landingpad``' instruction is used by `LLVM's exception handling
9709system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009710is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009711code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009712defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009713re-entry to the function. The ``resultval`` has the type ``resultty``.
9714
9715Arguments:
9716""""""""""
9717
David Majnemer7fddecc2015-06-17 20:52:32 +00009718The optional
Sean Silvab084af42012-12-07 10:36:55 +00009719``cleanup`` flag indicates that the landing pad block is a cleanup.
9720
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009721A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009722contains the global variable representing the "type" that may be caught
9723or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9724clause takes an array constant as its argument. Use
9725"``[0 x i8**] undef``" for a filter which cannot throw. The
9726'``landingpad``' instruction must contain *at least* one ``clause`` or
9727the ``cleanup`` flag.
9728
9729Semantics:
9730""""""""""
9731
9732The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009733:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009734therefore the "result type" of the ``landingpad`` instruction. As with
9735calling conventions, how the personality function results are
9736represented in LLVM IR is target specific.
9737
9738The clauses are applied in order from top to bottom. If two
9739``landingpad`` instructions are merged together through inlining, the
9740clauses from the calling function are appended to the list of clauses.
9741When the call stack is being unwound due to an exception being thrown,
9742the exception is compared against each ``clause`` in turn. If it doesn't
9743match any of the clauses, and the ``cleanup`` flag is not set, then
9744unwinding continues further up the call stack.
9745
9746The ``landingpad`` instruction has several restrictions:
9747
9748- A landing pad block is a basic block which is the unwind destination
9749 of an '``invoke``' instruction.
9750- A landing pad block must have a '``landingpad``' instruction as its
9751 first non-PHI instruction.
9752- There can be only one '``landingpad``' instruction within the landing
9753 pad block.
9754- A basic block that is not a landing pad block may not include a
9755 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009756
9757Example:
9758""""""""
9759
9760.. code-block:: llvm
9761
9762 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009763 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009764 catch i8** @_ZTIi
9765 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009766 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009767 cleanup
9768 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009769 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009770 catch i8** @_ZTIi
9771 filter [1 x i8**] [@_ZTId]
9772
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009773.. _i_catchpad:
9774
9775'``catchpad``' Instruction
9776^^^^^^^^^^^^^^^^^^^^^^^^^^
9777
9778Syntax:
9779"""""""
9780
9781::
9782
9783 <resultval> = catchpad within <catchswitch> [<args>*]
9784
9785Overview:
9786"""""""""
9787
9788The '``catchpad``' instruction is used by `LLVM's exception handling
9789system <ExceptionHandling.html#overview>`_ to specify that a basic block
9790begins a catch handler --- one where a personality routine attempts to transfer
9791control to catch an exception.
9792
9793Arguments:
9794""""""""""
9795
9796The ``catchswitch`` operand must always be a token produced by a
9797:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9798ensures that each ``catchpad`` has exactly one predecessor block, and it always
9799terminates in a ``catchswitch``.
9800
9801The ``args`` correspond to whatever information the personality routine
9802requires to know if this is an appropriate handler for the exception. Control
9803will transfer to the ``catchpad`` if this is the first appropriate handler for
9804the exception.
9805
9806The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9807``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9808pads.
9809
9810Semantics:
9811""""""""""
9812
9813When the call stack is being unwound due to an exception being thrown, the
9814exception is compared against the ``args``. If it doesn't match, control will
9815not reach the ``catchpad`` instruction. The representation of ``args`` is
9816entirely target and personality function-specific.
9817
9818Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9819instruction must be the first non-phi of its parent basic block.
9820
9821The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9822instructions is described in the
9823`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9824
9825When a ``catchpad`` has been "entered" but not yet "exited" (as
9826described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9827it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9828that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9829
9830Example:
9831""""""""
9832
Renato Golin124f2592016-07-20 12:16:38 +00009833.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009834
9835 dispatch:
9836 %cs = catchswitch within none [label %handler0] unwind to caller
9837 ;; A catch block which can catch an integer.
9838 handler0:
9839 %tok = catchpad within %cs [i8** @_ZTIi]
9840
David Majnemer654e1302015-07-31 17:58:14 +00009841.. _i_cleanuppad:
9842
9843'``cleanuppad``' Instruction
9844^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9845
9846Syntax:
9847"""""""
9848
9849::
9850
David Majnemer8a1c45d2015-12-12 05:38:55 +00009851 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009852
9853Overview:
9854"""""""""
9855
9856The '``cleanuppad``' instruction is used by `LLVM's exception handling
9857system <ExceptionHandling.html#overview>`_ to specify that a basic block
9858is a cleanup block --- one where a personality routine attempts to
9859transfer control to run cleanup actions.
9860The ``args`` correspond to whatever additional
9861information the :ref:`personality function <personalityfn>` requires to
9862execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009863The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009864match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9865The ``parent`` argument is the token of the funclet that contains the
9866``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9867this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009868
9869Arguments:
9870""""""""""
9871
9872The instruction takes a list of arbitrary values which are interpreted
9873by the :ref:`personality function <personalityfn>`.
9874
9875Semantics:
9876""""""""""
9877
David Majnemer654e1302015-07-31 17:58:14 +00009878When the call stack is being unwound due to an exception being thrown,
9879the :ref:`personality function <personalityfn>` transfers control to the
9880``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009881As with calling conventions, how the personality function results are
9882represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009883
9884The ``cleanuppad`` instruction has several restrictions:
9885
9886- A cleanup block is a basic block which is the unwind destination of
9887 an exceptional instruction.
9888- A cleanup block must have a '``cleanuppad``' instruction as its
9889 first non-PHI instruction.
9890- There can be only one '``cleanuppad``' instruction within the
9891 cleanup block.
9892- A basic block that is not a cleanup block may not include a
9893 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009894
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009895When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9896described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9897it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9898that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009899
David Majnemer654e1302015-07-31 17:58:14 +00009900Example:
9901""""""""
9902
Renato Golin124f2592016-07-20 12:16:38 +00009903.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009904
David Majnemer8a1c45d2015-12-12 05:38:55 +00009905 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009906
Sean Silvab084af42012-12-07 10:36:55 +00009907.. _intrinsics:
9908
9909Intrinsic Functions
9910===================
9911
9912LLVM supports the notion of an "intrinsic function". These functions
9913have well known names and semantics and are required to follow certain
9914restrictions. Overall, these intrinsics represent an extension mechanism
9915for the LLVM language that does not require changing all of the
9916transformations in LLVM when adding to the language (or the bitcode
9917reader/writer, the parser, etc...).
9918
9919Intrinsic function names must all start with an "``llvm.``" prefix. This
9920prefix is reserved in LLVM for intrinsic names; thus, function names may
9921not begin with this prefix. Intrinsic functions must always be external
9922functions: you cannot define the body of intrinsic functions. Intrinsic
9923functions may only be used in call or invoke instructions: it is illegal
9924to take the address of an intrinsic function. Additionally, because
9925intrinsic functions are part of the LLVM language, it is required if any
9926are added that they be documented here.
9927
9928Some intrinsic functions can be overloaded, i.e., the intrinsic
9929represents a family of functions that perform the same operation but on
9930different data types. Because LLVM can represent over 8 million
9931different integer types, overloading is used commonly to allow an
9932intrinsic function to operate on any integer type. One or more of the
9933argument types or the result type can be overloaded to accept any
9934integer type. Argument types may also be defined as exactly matching a
9935previous argument's type or the result type. This allows an intrinsic
9936function which accepts multiple arguments, but needs all of them to be
9937of the same type, to only be overloaded with respect to a single
9938argument or the result.
9939
9940Overloaded intrinsics will have the names of its overloaded argument
9941types encoded into its function name, each preceded by a period. Only
9942those types which are overloaded result in a name suffix. Arguments
9943whose type is matched against another type do not. For example, the
9944``llvm.ctpop`` function can take an integer of any width and returns an
9945integer of exactly the same integer width. This leads to a family of
9946functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9947``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9948overloaded, and only one type suffix is required. Because the argument's
9949type is matched against the return type, it does not require its own
9950name suffix.
9951
9952To learn how to add an intrinsic function, please see the `Extending
9953LLVM Guide <ExtendingLLVM.html>`_.
9954
9955.. _int_varargs:
9956
9957Variable Argument Handling Intrinsics
9958-------------------------------------
9959
9960Variable argument support is defined in LLVM with the
9961:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9962functions. These functions are related to the similarly named macros
9963defined in the ``<stdarg.h>`` header file.
9964
9965All of these functions operate on arguments that use a target-specific
9966value type "``va_list``". The LLVM assembly language reference manual
9967does not define what this type is, so all transformations should be
9968prepared to handle these functions regardless of the type used.
9969
9970This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9971variable argument handling intrinsic functions are used.
9972
9973.. code-block:: llvm
9974
Tim Northoverab60bb92014-11-02 01:21:51 +00009975 ; This struct is different for every platform. For most platforms,
9976 ; it is merely an i8*.
9977 %struct.va_list = type { i8* }
9978
9979 ; For Unix x86_64 platforms, va_list is the following struct:
9980 ; %struct.va_list = type { i32, i32, i8*, i8* }
9981
Sean Silvab084af42012-12-07 10:36:55 +00009982 define i32 @test(i32 %X, ...) {
9983 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009984 %ap = alloca %struct.va_list
9985 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009986 call void @llvm.va_start(i8* %ap2)
9987
9988 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009989 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009990
9991 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9992 %aq = alloca i8*
9993 %aq2 = bitcast i8** %aq to i8*
9994 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9995 call void @llvm.va_end(i8* %aq2)
9996
9997 ; Stop processing of arguments.
9998 call void @llvm.va_end(i8* %ap2)
9999 ret i32 %tmp
10000 }
10001
10002 declare void @llvm.va_start(i8*)
10003 declare void @llvm.va_copy(i8*, i8*)
10004 declare void @llvm.va_end(i8*)
10005
10006.. _int_va_start:
10007
10008'``llvm.va_start``' Intrinsic
10009^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10010
10011Syntax:
10012"""""""
10013
10014::
10015
Nick Lewycky04f6de02013-09-11 22:04:52 +000010016 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +000010017
10018Overview:
10019"""""""""
10020
10021The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
10022subsequent use by ``va_arg``.
10023
10024Arguments:
10025""""""""""
10026
10027The argument is a pointer to a ``va_list`` element to initialize.
10028
10029Semantics:
10030""""""""""
10031
10032The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
10033available in C. In a target-dependent way, it initializes the
10034``va_list`` element to which the argument points, so that the next call
10035to ``va_arg`` will produce the first variable argument passed to the
10036function. Unlike the C ``va_start`` macro, this intrinsic does not need
10037to know the last argument of the function as the compiler can figure
10038that out.
10039
10040'``llvm.va_end``' Intrinsic
10041^^^^^^^^^^^^^^^^^^^^^^^^^^^
10042
10043Syntax:
10044"""""""
10045
10046::
10047
10048 declare void @llvm.va_end(i8* <arglist>)
10049
10050Overview:
10051"""""""""
10052
10053The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
10054initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
10055
10056Arguments:
10057""""""""""
10058
10059The argument is a pointer to a ``va_list`` to destroy.
10060
10061Semantics:
10062""""""""""
10063
10064The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
10065available in C. In a target-dependent way, it destroys the ``va_list``
10066element to which the argument points. Calls to
10067:ref:`llvm.va_start <int_va_start>` and
10068:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
10069``llvm.va_end``.
10070
10071.. _int_va_copy:
10072
10073'``llvm.va_copy``' Intrinsic
10074^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10075
10076Syntax:
10077"""""""
10078
10079::
10080
10081 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
10082
10083Overview:
10084"""""""""
10085
10086The '``llvm.va_copy``' intrinsic copies the current argument position
10087from the source argument list to the destination argument list.
10088
10089Arguments:
10090""""""""""
10091
10092The first argument is a pointer to a ``va_list`` element to initialize.
10093The second argument is a pointer to a ``va_list`` element to copy from.
10094
10095Semantics:
10096""""""""""
10097
10098The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
10099available in C. In a target-dependent way, it copies the source
10100``va_list`` element into the destination ``va_list`` element. This
10101intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
10102arbitrarily complex and require, for example, memory allocation.
10103
10104Accurate Garbage Collection Intrinsics
10105--------------------------------------
10106
Philip Reamesc5b0f562015-02-25 23:52:06 +000010107LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010108(GC) requires the frontend to generate code containing appropriate intrinsic
10109calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +000010110intrinsics in a manner which is appropriate for the target collector.
10111
Sean Silvab084af42012-12-07 10:36:55 +000010112These intrinsics allow identification of :ref:`GC roots on the
10113stack <int_gcroot>`, as well as garbage collector implementations that
10114require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +000010115Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +000010116these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +000010117details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +000010118
Philip Reamesf80bbff2015-02-25 23:45:20 +000010119Experimental Statepoint Intrinsics
10120^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10121
10122LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +000010123collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010124to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +000010125:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010126differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +000010127<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +000010128described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +000010129
10130.. _int_gcroot:
10131
10132'``llvm.gcroot``' Intrinsic
10133^^^^^^^^^^^^^^^^^^^^^^^^^^^
10134
10135Syntax:
10136"""""""
10137
10138::
10139
10140 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
10141
10142Overview:
10143"""""""""
10144
10145The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
10146the code generator, and allows some metadata to be associated with it.
10147
10148Arguments:
10149""""""""""
10150
10151The first argument specifies the address of a stack object that contains
10152the root pointer. The second pointer (which must be either a constant or
10153a global value address) contains the meta-data to be associated with the
10154root.
10155
10156Semantics:
10157""""""""""
10158
10159At runtime, a call to this intrinsic stores a null pointer into the
10160"ptrloc" location. At compile-time, the code generator generates
10161information to allow the runtime to find the pointer at GC safe points.
10162The '``llvm.gcroot``' intrinsic may only be used in a function which
10163:ref:`specifies a GC algorithm <gc>`.
10164
10165.. _int_gcread:
10166
10167'``llvm.gcread``' Intrinsic
10168^^^^^^^^^^^^^^^^^^^^^^^^^^^
10169
10170Syntax:
10171"""""""
10172
10173::
10174
10175 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
10176
10177Overview:
10178"""""""""
10179
10180The '``llvm.gcread``' intrinsic identifies reads of references from heap
10181locations, allowing garbage collector implementations that require read
10182barriers.
10183
10184Arguments:
10185""""""""""
10186
10187The second argument is the address to read from, which should be an
10188address allocated from the garbage collector. The first object is a
10189pointer to the start of the referenced object, if needed by the language
10190runtime (otherwise null).
10191
10192Semantics:
10193""""""""""
10194
10195The '``llvm.gcread``' intrinsic has the same semantics as a load
10196instruction, but may be replaced with substantially more complex code by
10197the garbage collector runtime, as needed. The '``llvm.gcread``'
10198intrinsic may only be used in a function which :ref:`specifies a GC
10199algorithm <gc>`.
10200
10201.. _int_gcwrite:
10202
10203'``llvm.gcwrite``' Intrinsic
10204^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10205
10206Syntax:
10207"""""""
10208
10209::
10210
10211 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
10212
10213Overview:
10214"""""""""
10215
10216The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
10217locations, allowing garbage collector implementations that require write
10218barriers (such as generational or reference counting collectors).
10219
10220Arguments:
10221""""""""""
10222
10223The first argument is the reference to store, the second is the start of
10224the object to store it to, and the third is the address of the field of
10225Obj to store to. If the runtime does not require a pointer to the
10226object, Obj may be null.
10227
10228Semantics:
10229""""""""""
10230
10231The '``llvm.gcwrite``' intrinsic has the same semantics as a store
10232instruction, but may be replaced with substantially more complex code by
10233the garbage collector runtime, as needed. The '``llvm.gcwrite``'
10234intrinsic may only be used in a function which :ref:`specifies a GC
10235algorithm <gc>`.
10236
10237Code Generator Intrinsics
10238-------------------------
10239
10240These intrinsics are provided by LLVM to expose special features that
10241may only be implemented with code generator support.
10242
10243'``llvm.returnaddress``' Intrinsic
10244^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10245
10246Syntax:
10247"""""""
10248
10249::
10250
George Burgess IVfbc34982017-05-20 04:52:29 +000010251 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +000010252
10253Overview:
10254"""""""""
10255
10256The '``llvm.returnaddress``' intrinsic attempts to compute a
10257target-specific value indicating the return address of the current
10258function or one of its callers.
10259
10260Arguments:
10261""""""""""
10262
10263The argument to this intrinsic indicates which function to return the
10264address for. Zero indicates the calling function, one indicates its
10265caller, etc. The argument is **required** to be a constant integer
10266value.
10267
10268Semantics:
10269""""""""""
10270
10271The '``llvm.returnaddress``' intrinsic either returns a pointer
10272indicating the return address of the specified call frame, or zero if it
10273cannot be identified. The value returned by this intrinsic is likely to
10274be incorrect or 0 for arguments other than zero, so it should only be
10275used for debugging purposes.
10276
10277Note that calling this intrinsic does not prevent function inlining or
10278other aggressive transformations, so the value returned may not be that
10279of the obvious source-language caller.
10280
Albert Gutowski795d7d62016-10-12 22:13:19 +000010281'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +000010282^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +000010283
10284Syntax:
10285"""""""
10286
10287::
10288
George Burgess IVfbc34982017-05-20 04:52:29 +000010289 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +000010290
10291Overview:
10292"""""""""
10293
10294The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
10295pointer to the place in the stack frame where the return address of the
10296current function is stored.
10297
10298Semantics:
10299""""""""""
10300
10301Note that calling this intrinsic does not prevent function inlining or
10302other aggressive transformations, so the value returned may not be that
10303of the obvious source-language caller.
10304
10305This intrinsic is only implemented for x86.
10306
Sean Silvab084af42012-12-07 10:36:55 +000010307'``llvm.frameaddress``' Intrinsic
10308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10309
10310Syntax:
10311"""""""
10312
10313::
10314
10315 declare i8* @llvm.frameaddress(i32 <level>)
10316
10317Overview:
10318"""""""""
10319
10320The '``llvm.frameaddress``' intrinsic attempts to return the
10321target-specific frame pointer value for the specified stack frame.
10322
10323Arguments:
10324""""""""""
10325
10326The argument to this intrinsic indicates which function to return the
10327frame pointer for. Zero indicates the calling function, one indicates
10328its caller, etc. The argument is **required** to be a constant integer
10329value.
10330
10331Semantics:
10332""""""""""
10333
10334The '``llvm.frameaddress``' intrinsic either returns a pointer
10335indicating the frame address of the specified call frame, or zero if it
10336cannot be identified. The value returned by this intrinsic is likely to
10337be incorrect or 0 for arguments other than zero, so it should only be
10338used for debugging purposes.
10339
10340Note that calling this intrinsic does not prevent function inlining or
10341other aggressive transformations, so the value returned may not be that
10342of the obvious source-language caller.
10343
Reid Kleckner60381792015-07-07 22:25:32 +000010344'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +000010345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10346
10347Syntax:
10348"""""""
10349
10350::
10351
Reid Kleckner60381792015-07-07 22:25:32 +000010352 declare void @llvm.localescape(...)
10353 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +000010354
10355Overview:
10356"""""""""
10357
Reid Kleckner60381792015-07-07 22:25:32 +000010358The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
10359allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010360live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +000010361computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +000010362
10363Arguments:
10364""""""""""
10365
Reid Kleckner60381792015-07-07 22:25:32 +000010366All arguments to '``llvm.localescape``' must be pointers to static allocas or
10367casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010368once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +000010369
Reid Kleckner60381792015-07-07 22:25:32 +000010370The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +000010371bitcasted pointer to a function defined in the current module. The code
10372generator cannot determine the frame allocation offset of functions defined in
10373other modules.
10374
Reid Klecknerd5afc62f2015-07-07 23:23:03 +000010375The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
10376call frame that is currently live. The return value of '``llvm.localaddress``'
10377is one way to produce such a value, but various runtimes also expose a suitable
10378pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +000010379
Reid Kleckner60381792015-07-07 22:25:32 +000010380The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
10381'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010382
Reid Klecknere9b89312015-01-13 00:48:10 +000010383Semantics:
10384""""""""""
10385
Reid Kleckner60381792015-07-07 22:25:32 +000010386These intrinsics allow a group of functions to share access to a set of local
10387stack allocations of a one parent function. The parent function may call the
10388'``llvm.localescape``' intrinsic once from the function entry block, and the
10389child functions can use '``llvm.localrecover``' to access the escaped allocas.
10390The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
10391the escaped allocas are allocated, which would break attempts to use
10392'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +000010393
Renato Golinc7aea402014-05-06 16:51:25 +000010394.. _int_read_register:
10395.. _int_write_register:
10396
10397'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
10398^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10399
10400Syntax:
10401"""""""
10402
10403::
10404
10405 declare i32 @llvm.read_register.i32(metadata)
10406 declare i64 @llvm.read_register.i64(metadata)
10407 declare void @llvm.write_register.i32(metadata, i32 @value)
10408 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +000010409 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +000010410
10411Overview:
10412"""""""""
10413
10414The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
10415provides access to the named register. The register must be valid on
10416the architecture being compiled to. The type needs to be compatible
10417with the register being read.
10418
10419Semantics:
10420""""""""""
10421
10422The '``llvm.read_register``' intrinsic returns the current value of the
10423register, where possible. The '``llvm.write_register``' intrinsic sets
10424the current value of the register, where possible.
10425
10426This is useful to implement named register global variables that need
10427to always be mapped to a specific register, as is common practice on
10428bare-metal programs including OS kernels.
10429
10430The compiler doesn't check for register availability or use of the used
10431register in surrounding code, including inline assembly. Because of that,
10432allocatable registers are not supported.
10433
10434Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +000010435architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +000010436work is needed to support other registers and even more so, allocatable
10437registers.
10438
Sean Silvab084af42012-12-07 10:36:55 +000010439.. _int_stacksave:
10440
10441'``llvm.stacksave``' Intrinsic
10442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10443
10444Syntax:
10445"""""""
10446
10447::
10448
10449 declare i8* @llvm.stacksave()
10450
10451Overview:
10452"""""""""
10453
10454The '``llvm.stacksave``' intrinsic is used to remember the current state
10455of the function stack, for use with
10456:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
10457implementing language features like scoped automatic variable sized
10458arrays in C99.
10459
10460Semantics:
10461""""""""""
10462
10463This intrinsic returns a opaque pointer value that can be passed to
10464:ref:`llvm.stackrestore <int_stackrestore>`. When an
10465``llvm.stackrestore`` intrinsic is executed with a value saved from
10466``llvm.stacksave``, it effectively restores the state of the stack to
10467the state it was in when the ``llvm.stacksave`` intrinsic executed. In
10468practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
10469were allocated after the ``llvm.stacksave`` was executed.
10470
10471.. _int_stackrestore:
10472
10473'``llvm.stackrestore``' Intrinsic
10474^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10475
10476Syntax:
10477"""""""
10478
10479::
10480
10481 declare void @llvm.stackrestore(i8* %ptr)
10482
10483Overview:
10484"""""""""
10485
10486The '``llvm.stackrestore``' intrinsic is used to restore the state of
10487the function stack to the state it was in when the corresponding
10488:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
10489useful for implementing language features like scoped automatic variable
10490sized arrays in C99.
10491
10492Semantics:
10493""""""""""
10494
10495See the description for :ref:`llvm.stacksave <int_stacksave>`.
10496
Yury Gribovd7dbb662015-12-01 11:40:55 +000010497.. _int_get_dynamic_area_offset:
10498
10499'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +000010500^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +000010501
10502Syntax:
10503"""""""
10504
10505::
10506
10507 declare i32 @llvm.get.dynamic.area.offset.i32()
10508 declare i64 @llvm.get.dynamic.area.offset.i64()
10509
Lang Hames10239932016-10-08 00:20:42 +000010510Overview:
10511"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +000010512
10513 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
10514 get the offset from native stack pointer to the address of the most
10515 recent dynamic alloca on the caller's stack. These intrinsics are
10516 intendend for use in combination with
10517 :ref:`llvm.stacksave <int_stacksave>` to get a
10518 pointer to the most recent dynamic alloca. This is useful, for example,
10519 for AddressSanitizer's stack unpoisoning routines.
10520
10521Semantics:
10522""""""""""
10523
10524 These intrinsics return a non-negative integer value that can be used to
10525 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
10526 on the caller's stack. In particular, for targets where stack grows downwards,
10527 adding this offset to the native stack pointer would get the address of the most
10528 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +000010529 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +000010530 one past the end of the most recent dynamic alloca.
10531
10532 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
10533 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
10534 compile-time-known constant value.
10535
10536 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +000010537 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +000010538
Sean Silvab084af42012-12-07 10:36:55 +000010539'``llvm.prefetch``' Intrinsic
10540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10541
10542Syntax:
10543"""""""
10544
10545::
10546
10547 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
10548
10549Overview:
10550"""""""""
10551
10552The '``llvm.prefetch``' intrinsic is a hint to the code generator to
10553insert a prefetch instruction if supported; otherwise, it is a noop.
10554Prefetches have no effect on the behavior of the program but can change
10555its performance characteristics.
10556
10557Arguments:
10558""""""""""
10559
10560``address`` is the address to be prefetched, ``rw`` is the specifier
10561determining if the fetch should be for a read (0) or write (1), and
10562``locality`` is a temporal locality specifier ranging from (0) - no
10563locality, to (3) - extremely local keep in cache. The ``cache type``
10564specifies whether the prefetch is performed on the data (1) or
10565instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
10566arguments must be constant integers.
10567
10568Semantics:
10569""""""""""
10570
10571This intrinsic does not modify the behavior of the program. In
10572particular, prefetches cannot trap and do not produce a value. On
10573targets that support this intrinsic, the prefetch can provide hints to
10574the processor cache for better performance.
10575
10576'``llvm.pcmarker``' Intrinsic
10577^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10578
10579Syntax:
10580"""""""
10581
10582::
10583
10584 declare void @llvm.pcmarker(i32 <id>)
10585
10586Overview:
10587"""""""""
10588
10589The '``llvm.pcmarker``' intrinsic is a method to export a Program
10590Counter (PC) in a region of code to simulators and other tools. The
10591method is target specific, but it is expected that the marker will use
10592exported symbols to transmit the PC of the marker. The marker makes no
10593guarantees that it will remain with any specific instruction after
10594optimizations. It is possible that the presence of a marker will inhibit
10595optimizations. The intended use is to be inserted after optimizations to
10596allow correlations of simulation runs.
10597
10598Arguments:
10599""""""""""
10600
10601``id`` is a numerical id identifying the marker.
10602
10603Semantics:
10604""""""""""
10605
10606This intrinsic does not modify the behavior of the program. Backends
10607that do not support this intrinsic may ignore it.
10608
10609'``llvm.readcyclecounter``' Intrinsic
10610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10611
10612Syntax:
10613"""""""
10614
10615::
10616
10617 declare i64 @llvm.readcyclecounter()
10618
10619Overview:
10620"""""""""
10621
10622The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
10623counter register (or similar low latency, high accuracy clocks) on those
10624targets that support it. On X86, it should map to RDTSC. On Alpha, it
10625should map to RPCC. As the backing counters overflow quickly (on the
10626order of 9 seconds on alpha), this should only be used for small
10627timings.
10628
10629Semantics:
10630""""""""""
10631
10632When directly supported, reading the cycle counter should not modify any
10633memory. Implementations are allowed to either return a application
10634specific value or a system wide value. On backends without support, this
10635is lowered to a constant 0.
10636
Tim Northoverbc933082013-05-23 19:11:20 +000010637Note that runtime support may be conditional on the privilege-level code is
10638running at and the host platform.
10639
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010640'``llvm.clear_cache``' Intrinsic
10641^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10642
10643Syntax:
10644"""""""
10645
10646::
10647
10648 declare void @llvm.clear_cache(i8*, i8*)
10649
10650Overview:
10651"""""""""
10652
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010653The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
10654in the specified range to the execution unit of the processor. On
10655targets with non-unified instruction and data cache, the implementation
10656flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010657
10658Semantics:
10659""""""""""
10660
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010661On platforms with coherent instruction and data caches (e.g. x86), this
10662intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000010663cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010664instructions or a system call, if cache flushing requires special
10665privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010666
Sean Silvad02bf3e2014-04-07 22:29:53 +000010667The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010668time library.
Renato Golin93010e62014-03-26 14:01:32 +000010669
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010670This instrinsic does *not* empty the instruction pipeline. Modifications
10671of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010672
Vedant Kumar51ce6682018-01-26 23:54:25 +000010673'``llvm.instrprof.increment``' Intrinsic
Justin Bogner61ba2e32014-12-08 18:02:35 +000010674^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10675
10676Syntax:
10677"""""""
10678
10679::
10680
Vedant Kumar51ce6682018-01-26 23:54:25 +000010681 declare void @llvm.instrprof.increment(i8* <name>, i64 <hash>,
Justin Bogner61ba2e32014-12-08 18:02:35 +000010682 i32 <num-counters>, i32 <index>)
10683
10684Overview:
10685"""""""""
10686
Vedant Kumar51ce6682018-01-26 23:54:25 +000010687The '``llvm.instrprof.increment``' intrinsic can be emitted by a
Justin Bogner61ba2e32014-12-08 18:02:35 +000010688frontend for use with instrumentation based profiling. These will be
10689lowered by the ``-instrprof`` pass to generate execution counts of a
10690program at runtime.
10691
10692Arguments:
10693""""""""""
10694
10695The first argument is a pointer to a global variable containing the
10696name of the entity being instrumented. This should generally be the
10697(mangled) function name for a set of counters.
10698
10699The second argument is a hash value that can be used by the consumer
10700of the profile data to detect changes to the instrumented source, and
10701the third is the number of counters associated with ``name``. It is an
10702error if ``hash`` or ``num-counters`` differ between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010703``instrprof.increment`` that refer to the same name.
Justin Bogner61ba2e32014-12-08 18:02:35 +000010704
10705The last argument refers to which of the counters for ``name`` should
10706be incremented. It should be a value between 0 and ``num-counters``.
10707
10708Semantics:
10709""""""""""
10710
10711This intrinsic represents an increment of a profiling counter. It will
10712cause the ``-instrprof`` pass to generate the appropriate data
10713structures and the code to increment the appropriate value, in a
10714format that can be written out by a compiler runtime and consumed via
10715the ``llvm-profdata`` tool.
10716
Vedant Kumar51ce6682018-01-26 23:54:25 +000010717'``llvm.instrprof.increment.step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010718^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010719
10720Syntax:
10721"""""""
10722
10723::
10724
Vedant Kumar51ce6682018-01-26 23:54:25 +000010725 declare void @llvm.instrprof.increment.step(i8* <name>, i64 <hash>,
Xinliang David Li4ca17332016-09-18 18:34:07 +000010726 i32 <num-counters>,
10727 i32 <index>, i64 <step>)
10728
10729Overview:
10730"""""""""
10731
Vedant Kumar51ce6682018-01-26 23:54:25 +000010732The '``llvm.instrprof.increment.step``' intrinsic is an extension to
10733the '``llvm.instrprof.increment``' intrinsic with an additional fifth
Xinliang David Li4ca17332016-09-18 18:34:07 +000010734argument to specify the step of the increment.
10735
10736Arguments:
10737""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010738The first four arguments are the same as '``llvm.instrprof.increment``'
Pete Couperused9569d2017-08-23 20:58:22 +000010739intrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010740
10741The last argument specifies the value of the increment of the counter variable.
10742
10743Semantics:
10744""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010745See description of '``llvm.instrprof.increment``' instrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010746
10747
Vedant Kumar51ce6682018-01-26 23:54:25 +000010748'``llvm.instrprof.value.profile``' Intrinsic
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010749^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10750
10751Syntax:
10752"""""""
10753
10754::
10755
Vedant Kumar51ce6682018-01-26 23:54:25 +000010756 declare void @llvm.instrprof.value.profile(i8* <name>, i64 <hash>,
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010757 i64 <value>, i32 <value_kind>,
10758 i32 <index>)
10759
10760Overview:
10761"""""""""
10762
Vedant Kumar51ce6682018-01-26 23:54:25 +000010763The '``llvm.instrprof.value.profile``' intrinsic can be emitted by a
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010764frontend for use with instrumentation based profiling. This will be
10765lowered by the ``-instrprof`` pass to find out the target values,
10766instrumented expressions take in a program at runtime.
10767
10768Arguments:
10769""""""""""
10770
10771The first argument is a pointer to a global variable containing the
10772name of the entity being instrumented. ``name`` should generally be the
10773(mangled) function name for a set of counters.
10774
10775The second argument is a hash value that can be used by the consumer
10776of the profile data to detect changes to the instrumented source. It
10777is an error if ``hash`` differs between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010778``llvm.instrprof.*`` that refer to the same name.
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010779
10780The third argument is the value of the expression being profiled. The profiled
10781expression's value should be representable as an unsigned 64-bit value. The
10782fourth argument represents the kind of value profiling that is being done. The
10783supported value profiling kinds are enumerated through the
10784``InstrProfValueKind`` type declared in the
10785``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10786index of the instrumented expression within ``name``. It should be >= 0.
10787
10788Semantics:
10789""""""""""
10790
10791This intrinsic represents the point where a call to a runtime routine
10792should be inserted for value profiling of target expressions. ``-instrprof``
10793pass will generate the appropriate data structures and replace the
Vedant Kumar51ce6682018-01-26 23:54:25 +000010794``llvm.instrprof.value.profile`` intrinsic with the call to the profile
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010795runtime library with proper arguments.
10796
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010797'``llvm.thread.pointer``' Intrinsic
10798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10799
10800Syntax:
10801"""""""
10802
10803::
10804
10805 declare i8* @llvm.thread.pointer()
10806
10807Overview:
10808"""""""""
10809
10810The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10811pointer.
10812
10813Semantics:
10814""""""""""
10815
10816The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10817for the current thread. The exact semantics of this value are target
10818specific: it may point to the start of TLS area, to the end, or somewhere
10819in the middle. Depending on the target, this intrinsic may read a register,
10820call a helper function, read from an alternate memory space, or perform
10821other operations necessary to locate the TLS area. Not all targets support
10822this intrinsic.
10823
Sean Silvab084af42012-12-07 10:36:55 +000010824Standard C Library Intrinsics
10825-----------------------------
10826
10827LLVM provides intrinsics for a few important standard C library
10828functions. These intrinsics allow source-language front-ends to pass
10829information about the alignment of the pointer arguments to the code
10830generator, providing opportunity for more efficient code generation.
10831
10832.. _int_memcpy:
10833
10834'``llvm.memcpy``' Intrinsic
10835^^^^^^^^^^^^^^^^^^^^^^^^^^^
10836
10837Syntax:
10838"""""""
10839
10840This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10841integer bit width and for different address spaces. Not all targets
10842support all bit widths however.
10843
10844::
10845
10846 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010847 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010848 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010849 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010850
10851Overview:
10852"""""""""
10853
10854The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10855source location to the destination location.
10856
10857Note that, unlike the standard libc function, the ``llvm.memcpy.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010858intrinsics do not return a value, takes extra isvolatile
Sean Silvab084af42012-12-07 10:36:55 +000010859arguments and the pointers can be in specified address spaces.
10860
10861Arguments:
10862""""""""""
10863
10864The first argument is a pointer to the destination, the second is a
10865pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010866specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010867boolean indicating a volatile access.
10868
Daniel Neilson39eb6a52018-01-19 17:24:21 +000010869The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010870for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010871
10872If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10873a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10874very cleanly specified and it is unwise to depend on it.
10875
10876Semantics:
10877""""""""""
10878
10879The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10880source location to the destination location, which are not allowed to
10881overlap. It copies "len" bytes of memory over. If the argument is known
10882to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010883argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010884
Daniel Neilson57226ef2017-07-12 15:25:26 +000010885.. _int_memmove:
10886
Sean Silvab084af42012-12-07 10:36:55 +000010887'``llvm.memmove``' Intrinsic
10888^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10889
10890Syntax:
10891"""""""
10892
10893This is an overloaded intrinsic. You can use llvm.memmove on any integer
10894bit width and for different address space. Not all targets support all
10895bit widths however.
10896
10897::
10898
10899 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010900 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010901 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010902 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010903
10904Overview:
10905"""""""""
10906
10907The '``llvm.memmove.*``' intrinsics move a block of memory from the
10908source location to the destination location. It is similar to the
10909'``llvm.memcpy``' intrinsic but allows the two memory locations to
10910overlap.
10911
10912Note that, unlike the standard libc function, the ``llvm.memmove.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010913intrinsics do not return a value, takes an extra isvolatile
10914argument and the pointers can be in specified address spaces.
Sean Silvab084af42012-12-07 10:36:55 +000010915
10916Arguments:
10917""""""""""
10918
10919The first argument is a pointer to the destination, the second is a
10920pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010921specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010922boolean indicating a volatile access.
10923
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010924The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010925for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010926
10927If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10928is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10929not very cleanly specified and it is unwise to depend on it.
10930
10931Semantics:
10932""""""""""
10933
10934The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10935source location to the destination location, which may overlap. It
10936copies "len" bytes of memory over. If the argument is known to be
10937aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010938otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010939
Daniel Neilson965613e2017-07-12 21:57:23 +000010940.. _int_memset:
10941
Sean Silvab084af42012-12-07 10:36:55 +000010942'``llvm.memset.*``' Intrinsics
10943^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10944
10945Syntax:
10946"""""""
10947
10948This is an overloaded intrinsic. You can use llvm.memset on any integer
10949bit width and for different address spaces. However, not all targets
10950support all bit widths.
10951
10952::
10953
10954 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010955 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010956 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010957 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010958
10959Overview:
10960"""""""""
10961
10962The '``llvm.memset.*``' intrinsics fill a block of memory with a
10963particular byte value.
10964
10965Note that, unlike the standard libc function, the ``llvm.memset``
Daniel Neilson1e687242018-01-19 17:13:12 +000010966intrinsic does not return a value and takes an extra volatile
10967argument. Also, the destination can be in an arbitrary address space.
Sean Silvab084af42012-12-07 10:36:55 +000010968
10969Arguments:
10970""""""""""
10971
10972The first argument is a pointer to the destination to fill, the second
10973is the byte value with which to fill it, the third argument is an
10974integer argument specifying the number of bytes to fill, and the fourth
Daniel Neilson1e687242018-01-19 17:13:12 +000010975is a boolean indicating a volatile access.
Sean Silvab084af42012-12-07 10:36:55 +000010976
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010977The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010978for the first arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010979
10980If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10981a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10982very cleanly specified and it is unwise to depend on it.
10983
10984Semantics:
10985""""""""""
10986
10987The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010988at the destination location.
Sean Silvab084af42012-12-07 10:36:55 +000010989
10990'``llvm.sqrt.*``' Intrinsic
10991^^^^^^^^^^^^^^^^^^^^^^^^^^^
10992
10993Syntax:
10994"""""""
10995
10996This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010997floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010998all types however.
10999
11000::
11001
11002 declare float @llvm.sqrt.f32(float %Val)
11003 declare double @llvm.sqrt.f64(double %Val)
11004 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
11005 declare fp128 @llvm.sqrt.f128(fp128 %Val)
11006 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
11007
11008Overview:
11009"""""""""
11010
Sanjay Patel629c4112017-11-06 16:27:15 +000011011The '``llvm.sqrt``' intrinsics return the square root of the specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011012
11013Arguments:
11014""""""""""
11015
Sanjay Patel629c4112017-11-06 16:27:15 +000011016The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011017
11018Semantics:
11019""""""""""
11020
Sanjay Patel629c4112017-11-06 16:27:15 +000011021Return the same value as a corresponding libm '``sqrt``' function but without
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011022trapping or setting ``errno``. For types specified by IEEE-754, the result
Sanjay Patel629c4112017-11-06 16:27:15 +000011023matches a conforming libm implementation.
11024
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011025When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011026using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011027
11028'``llvm.powi.*``' Intrinsic
11029^^^^^^^^^^^^^^^^^^^^^^^^^^^
11030
11031Syntax:
11032"""""""
11033
11034This is an overloaded intrinsic. You can use ``llvm.powi`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011035floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011036all types however.
11037
11038::
11039
11040 declare float @llvm.powi.f32(float %Val, i32 %power)
11041 declare double @llvm.powi.f64(double %Val, i32 %power)
11042 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
11043 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
11044 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
11045
11046Overview:
11047"""""""""
11048
11049The '``llvm.powi.*``' intrinsics return the first operand raised to the
11050specified (positive or negative) power. The order of evaluation of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011051multiplications is not defined. When a vector of floating-point type is
Sean Silvab084af42012-12-07 10:36:55 +000011052used, the second argument remains a scalar integer value.
11053
11054Arguments:
11055""""""""""
11056
11057The second argument is an integer power, and the first is a value to
11058raise to that power.
11059
11060Semantics:
11061""""""""""
11062
11063This function returns the first value raised to the second power with an
11064unspecified sequence of rounding operations.
11065
11066'``llvm.sin.*``' Intrinsic
11067^^^^^^^^^^^^^^^^^^^^^^^^^^
11068
11069Syntax:
11070"""""""
11071
11072This is an overloaded intrinsic. You can use ``llvm.sin`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011073floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011074all types however.
11075
11076::
11077
11078 declare float @llvm.sin.f32(float %Val)
11079 declare double @llvm.sin.f64(double %Val)
11080 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
11081 declare fp128 @llvm.sin.f128(fp128 %Val)
11082 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
11083
11084Overview:
11085"""""""""
11086
11087The '``llvm.sin.*``' intrinsics return the sine of the operand.
11088
11089Arguments:
11090""""""""""
11091
Sanjay Patel629c4112017-11-06 16:27:15 +000011092The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011093
11094Semantics:
11095""""""""""
11096
Sanjay Patel629c4112017-11-06 16:27:15 +000011097Return the same value as a corresponding libm '``sin``' function but without
11098trapping or setting ``errno``.
11099
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011100When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011101using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011102
11103'``llvm.cos.*``' Intrinsic
11104^^^^^^^^^^^^^^^^^^^^^^^^^^
11105
11106Syntax:
11107"""""""
11108
11109This is an overloaded intrinsic. You can use ``llvm.cos`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011110floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011111all types however.
11112
11113::
11114
11115 declare float @llvm.cos.f32(float %Val)
11116 declare double @llvm.cos.f64(double %Val)
11117 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
11118 declare fp128 @llvm.cos.f128(fp128 %Val)
11119 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
11120
11121Overview:
11122"""""""""
11123
11124The '``llvm.cos.*``' intrinsics return the cosine of the operand.
11125
11126Arguments:
11127""""""""""
11128
Sanjay Patel629c4112017-11-06 16:27:15 +000011129The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011130
11131Semantics:
11132""""""""""
11133
Sanjay Patel629c4112017-11-06 16:27:15 +000011134Return the same value as a corresponding libm '``cos``' function but without
11135trapping or setting ``errno``.
11136
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011137When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011138using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011139
11140'``llvm.pow.*``' Intrinsic
11141^^^^^^^^^^^^^^^^^^^^^^^^^^
11142
11143Syntax:
11144"""""""
11145
11146This is an overloaded intrinsic. You can use ``llvm.pow`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011147floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011148all types however.
11149
11150::
11151
11152 declare float @llvm.pow.f32(float %Val, float %Power)
11153 declare double @llvm.pow.f64(double %Val, double %Power)
11154 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
11155 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
11156 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
11157
11158Overview:
11159"""""""""
11160
11161The '``llvm.pow.*``' intrinsics return the first operand raised to the
11162specified (positive or negative) power.
11163
11164Arguments:
11165""""""""""
11166
Sanjay Patel629c4112017-11-06 16:27:15 +000011167The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011168
11169Semantics:
11170""""""""""
11171
Sanjay Patel629c4112017-11-06 16:27:15 +000011172Return the same value as a corresponding libm '``pow``' function but without
11173trapping or setting ``errno``.
11174
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011175When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011176using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011177
11178'``llvm.exp.*``' Intrinsic
11179^^^^^^^^^^^^^^^^^^^^^^^^^^
11180
11181Syntax:
11182"""""""
11183
11184This is an overloaded intrinsic. You can use ``llvm.exp`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011185floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011186all types however.
11187
11188::
11189
11190 declare float @llvm.exp.f32(float %Val)
11191 declare double @llvm.exp.f64(double %Val)
11192 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
11193 declare fp128 @llvm.exp.f128(fp128 %Val)
11194 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
11195
11196Overview:
11197"""""""""
11198
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011199The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
11200value.
Sean Silvab084af42012-12-07 10:36:55 +000011201
11202Arguments:
11203""""""""""
11204
Sanjay Patel629c4112017-11-06 16:27:15 +000011205The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011206
11207Semantics:
11208""""""""""
11209
Sanjay Patel629c4112017-11-06 16:27:15 +000011210Return the same value as a corresponding libm '``exp``' function but without
11211trapping or setting ``errno``.
11212
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011213When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011214using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011215
11216'``llvm.exp2.*``' Intrinsic
11217^^^^^^^^^^^^^^^^^^^^^^^^^^^
11218
11219Syntax:
11220"""""""
11221
11222This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011223floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011224all types however.
11225
11226::
11227
11228 declare float @llvm.exp2.f32(float %Val)
11229 declare double @llvm.exp2.f64(double %Val)
11230 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
11231 declare fp128 @llvm.exp2.f128(fp128 %Val)
11232 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
11233
11234Overview:
11235"""""""""
11236
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011237The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
11238specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011239
11240Arguments:
11241""""""""""
11242
Sanjay Patel629c4112017-11-06 16:27:15 +000011243The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011244
11245Semantics:
11246""""""""""
11247
Sanjay Patel629c4112017-11-06 16:27:15 +000011248Return the same value as a corresponding libm '``exp2``' function but without
11249trapping or setting ``errno``.
11250
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011251When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011252using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011253
11254'``llvm.log.*``' Intrinsic
11255^^^^^^^^^^^^^^^^^^^^^^^^^^
11256
11257Syntax:
11258"""""""
11259
11260This is an overloaded intrinsic. You can use ``llvm.log`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011261floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011262all types however.
11263
11264::
11265
11266 declare float @llvm.log.f32(float %Val)
11267 declare double @llvm.log.f64(double %Val)
11268 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
11269 declare fp128 @llvm.log.f128(fp128 %Val)
11270 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
11271
11272Overview:
11273"""""""""
11274
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011275The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
11276value.
Sean Silvab084af42012-12-07 10:36:55 +000011277
11278Arguments:
11279""""""""""
11280
Sanjay Patel629c4112017-11-06 16:27:15 +000011281The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011282
11283Semantics:
11284""""""""""
11285
Sanjay Patel629c4112017-11-06 16:27:15 +000011286Return the same value as a corresponding libm '``log``' function but without
11287trapping or setting ``errno``.
11288
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011289When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011290using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011291
11292'``llvm.log10.*``' Intrinsic
11293^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11294
11295Syntax:
11296"""""""
11297
11298This is an overloaded intrinsic. You can use ``llvm.log10`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011299floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011300all types however.
11301
11302::
11303
11304 declare float @llvm.log10.f32(float %Val)
11305 declare double @llvm.log10.f64(double %Val)
11306 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
11307 declare fp128 @llvm.log10.f128(fp128 %Val)
11308 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
11309
11310Overview:
11311"""""""""
11312
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011313The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
11314specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011315
11316Arguments:
11317""""""""""
11318
Sanjay Patel629c4112017-11-06 16:27:15 +000011319The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011320
11321Semantics:
11322""""""""""
11323
Sanjay Patel629c4112017-11-06 16:27:15 +000011324Return the same value as a corresponding libm '``log10``' function but without
11325trapping or setting ``errno``.
11326
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011327When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011328using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011329
11330'``llvm.log2.*``' Intrinsic
11331^^^^^^^^^^^^^^^^^^^^^^^^^^^
11332
11333Syntax:
11334"""""""
11335
11336This is an overloaded intrinsic. You can use ``llvm.log2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011337floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011338all types however.
11339
11340::
11341
11342 declare float @llvm.log2.f32(float %Val)
11343 declare double @llvm.log2.f64(double %Val)
11344 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
11345 declare fp128 @llvm.log2.f128(fp128 %Val)
11346 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
11347
11348Overview:
11349"""""""""
11350
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011351The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
11352value.
Sean Silvab084af42012-12-07 10:36:55 +000011353
11354Arguments:
11355""""""""""
11356
Sanjay Patel629c4112017-11-06 16:27:15 +000011357The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011358
11359Semantics:
11360""""""""""
11361
Sanjay Patel629c4112017-11-06 16:27:15 +000011362Return the same value as a corresponding libm '``log2``' function but without
11363trapping or setting ``errno``.
11364
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011365When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011366using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011367
11368'``llvm.fma.*``' Intrinsic
11369^^^^^^^^^^^^^^^^^^^^^^^^^^
11370
11371Syntax:
11372"""""""
11373
11374This is an overloaded intrinsic. You can use ``llvm.fma`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011375floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011376all types however.
11377
11378::
11379
11380 declare float @llvm.fma.f32(float %a, float %b, float %c)
11381 declare double @llvm.fma.f64(double %a, double %b, double %c)
11382 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
11383 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
11384 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
11385
11386Overview:
11387"""""""""
11388
Sanjay Patel629c4112017-11-06 16:27:15 +000011389The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
Sean Silvab084af42012-12-07 10:36:55 +000011390
11391Arguments:
11392""""""""""
11393
Sanjay Patel629c4112017-11-06 16:27:15 +000011394The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011395
11396Semantics:
11397""""""""""
11398
Sanjay Patel629c4112017-11-06 16:27:15 +000011399Return the same value as a corresponding libm '``fma``' function but without
11400trapping or setting ``errno``.
11401
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011402When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011403using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011404
11405'``llvm.fabs.*``' Intrinsic
11406^^^^^^^^^^^^^^^^^^^^^^^^^^^
11407
11408Syntax:
11409"""""""
11410
11411This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011412floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011413all types however.
11414
11415::
11416
11417 declare float @llvm.fabs.f32(float %Val)
11418 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011419 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011420 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011421 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011422
11423Overview:
11424"""""""""
11425
11426The '``llvm.fabs.*``' intrinsics return the absolute value of the
11427operand.
11428
11429Arguments:
11430""""""""""
11431
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011432The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011433type.
11434
11435Semantics:
11436""""""""""
11437
11438This function returns the same values as the libm ``fabs`` functions
11439would, and handles error conditions in the same way.
11440
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011441'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011443
11444Syntax:
11445"""""""
11446
11447This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011448floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011449all types however.
11450
11451::
11452
Matt Arsenault64313c92014-10-22 18:25:02 +000011453 declare float @llvm.minnum.f32(float %Val0, float %Val1)
11454 declare double @llvm.minnum.f64(double %Val0, double %Val1)
11455 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11456 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
11457 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011458
11459Overview:
11460"""""""""
11461
11462The '``llvm.minnum.*``' intrinsics return the minimum of the two
11463arguments.
11464
11465
11466Arguments:
11467""""""""""
11468
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011469The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011470type.
11471
11472Semantics:
11473""""""""""
11474
11475Follows the IEEE-754 semantics for minNum, which also match for libm's
11476fmin.
11477
11478If either operand is a NaN, returns the other non-NaN operand. Returns
11479NaN only if both operands are NaN. If the operands compare equal,
11480returns a value that compares equal to both operands. This means that
11481fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11482
11483'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011485
11486Syntax:
11487"""""""
11488
11489This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011490floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011491all types however.
11492
11493::
11494
Matt Arsenault64313c92014-10-22 18:25:02 +000011495 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
11496 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
11497 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11498 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
11499 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011500
11501Overview:
11502"""""""""
11503
11504The '``llvm.maxnum.*``' intrinsics return the maximum of the two
11505arguments.
11506
11507
11508Arguments:
11509""""""""""
11510
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011511The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011512type.
11513
11514Semantics:
11515""""""""""
11516Follows the IEEE-754 semantics for maxNum, which also match for libm's
11517fmax.
11518
11519If either operand is a NaN, returns the other non-NaN operand. Returns
11520NaN only if both operands are NaN. If the operands compare equal,
11521returns a value that compares equal to both operands. This means that
11522fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11523
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011524'``llvm.copysign.*``' Intrinsic
11525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11526
11527Syntax:
11528"""""""
11529
11530This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011531floating-point or vector of floating-point type. Not all targets support
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011532all types however.
11533
11534::
11535
11536 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
11537 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
11538 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
11539 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
11540 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
11541
11542Overview:
11543"""""""""
11544
11545The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
11546first operand and the sign of the second operand.
11547
11548Arguments:
11549""""""""""
11550
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011551The arguments and return value are floating-point numbers of the same
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011552type.
11553
11554Semantics:
11555""""""""""
11556
11557This function returns the same values as the libm ``copysign``
11558functions would, and handles error conditions in the same way.
11559
Sean Silvab084af42012-12-07 10:36:55 +000011560'``llvm.floor.*``' Intrinsic
11561^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11562
11563Syntax:
11564"""""""
11565
11566This is an overloaded intrinsic. You can use ``llvm.floor`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011567floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011568all types however.
11569
11570::
11571
11572 declare float @llvm.floor.f32(float %Val)
11573 declare double @llvm.floor.f64(double %Val)
11574 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
11575 declare fp128 @llvm.floor.f128(fp128 %Val)
11576 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
11577
11578Overview:
11579"""""""""
11580
11581The '``llvm.floor.*``' intrinsics return the floor of the operand.
11582
11583Arguments:
11584""""""""""
11585
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011586The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011587type.
11588
11589Semantics:
11590""""""""""
11591
11592This function returns the same values as the libm ``floor`` functions
11593would, and handles error conditions in the same way.
11594
11595'``llvm.ceil.*``' Intrinsic
11596^^^^^^^^^^^^^^^^^^^^^^^^^^^
11597
11598Syntax:
11599"""""""
11600
11601This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011602floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011603all types however.
11604
11605::
11606
11607 declare float @llvm.ceil.f32(float %Val)
11608 declare double @llvm.ceil.f64(double %Val)
11609 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
11610 declare fp128 @llvm.ceil.f128(fp128 %Val)
11611 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
11612
11613Overview:
11614"""""""""
11615
11616The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
11617
11618Arguments:
11619""""""""""
11620
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011621The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011622type.
11623
11624Semantics:
11625""""""""""
11626
11627This function returns the same values as the libm ``ceil`` functions
11628would, and handles error conditions in the same way.
11629
11630'``llvm.trunc.*``' Intrinsic
11631^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11632
11633Syntax:
11634"""""""
11635
11636This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011637floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011638all types however.
11639
11640::
11641
11642 declare float @llvm.trunc.f32(float %Val)
11643 declare double @llvm.trunc.f64(double %Val)
11644 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
11645 declare fp128 @llvm.trunc.f128(fp128 %Val)
11646 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
11647
11648Overview:
11649"""""""""
11650
11651The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
11652nearest integer not larger in magnitude than the operand.
11653
11654Arguments:
11655""""""""""
11656
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011657The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011658type.
11659
11660Semantics:
11661""""""""""
11662
11663This function returns the same values as the libm ``trunc`` functions
11664would, and handles error conditions in the same way.
11665
11666'``llvm.rint.*``' Intrinsic
11667^^^^^^^^^^^^^^^^^^^^^^^^^^^
11668
11669Syntax:
11670"""""""
11671
11672This is an overloaded intrinsic. You can use ``llvm.rint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011673floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011674all types however.
11675
11676::
11677
11678 declare float @llvm.rint.f32(float %Val)
11679 declare double @llvm.rint.f64(double %Val)
11680 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
11681 declare fp128 @llvm.rint.f128(fp128 %Val)
11682 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
11683
11684Overview:
11685"""""""""
11686
11687The '``llvm.rint.*``' intrinsics returns the operand rounded to the
11688nearest integer. It may raise an inexact floating-point exception if the
11689operand isn't an integer.
11690
11691Arguments:
11692""""""""""
11693
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011694The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011695type.
11696
11697Semantics:
11698""""""""""
11699
11700This function returns the same values as the libm ``rint`` functions
11701would, and handles error conditions in the same way.
11702
11703'``llvm.nearbyint.*``' Intrinsic
11704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11705
11706Syntax:
11707"""""""
11708
11709This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011710floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011711all types however.
11712
11713::
11714
11715 declare float @llvm.nearbyint.f32(float %Val)
11716 declare double @llvm.nearbyint.f64(double %Val)
11717 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
11718 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
11719 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
11720
11721Overview:
11722"""""""""
11723
11724The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
11725nearest integer.
11726
11727Arguments:
11728""""""""""
11729
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011730The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011731type.
11732
11733Semantics:
11734""""""""""
11735
11736This function returns the same values as the libm ``nearbyint``
11737functions would, and handles error conditions in the same way.
11738
Hal Finkel171817e2013-08-07 22:49:12 +000011739'``llvm.round.*``' Intrinsic
11740^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11741
11742Syntax:
11743"""""""
11744
11745This is an overloaded intrinsic. You can use ``llvm.round`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011746floating-point or vector of floating-point type. Not all targets support
Hal Finkel171817e2013-08-07 22:49:12 +000011747all types however.
11748
11749::
11750
11751 declare float @llvm.round.f32(float %Val)
11752 declare double @llvm.round.f64(double %Val)
11753 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11754 declare fp128 @llvm.round.f128(fp128 %Val)
11755 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11756
11757Overview:
11758"""""""""
11759
11760The '``llvm.round.*``' intrinsics returns the operand rounded to the
11761nearest integer.
11762
11763Arguments:
11764""""""""""
11765
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011766The argument and return value are floating-point numbers of the same
Hal Finkel171817e2013-08-07 22:49:12 +000011767type.
11768
11769Semantics:
11770""""""""""
11771
11772This function returns the same values as the libm ``round``
11773functions would, and handles error conditions in the same way.
11774
Sean Silvab084af42012-12-07 10:36:55 +000011775Bit Manipulation Intrinsics
11776---------------------------
11777
11778LLVM provides intrinsics for a few important bit manipulation
11779operations. These allow efficient code generation for some algorithms.
11780
James Molloy90111f72015-11-12 12:29:09 +000011781'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011782^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011783
11784Syntax:
11785"""""""
11786
11787This is an overloaded intrinsic function. You can use bitreverse on any
11788integer type.
11789
11790::
11791
11792 declare i16 @llvm.bitreverse.i16(i16 <id>)
11793 declare i32 @llvm.bitreverse.i32(i32 <id>)
11794 declare i64 @llvm.bitreverse.i64(i64 <id>)
11795
11796Overview:
11797"""""""""
11798
11799The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011800bitpattern of an integer value; for example ``0b10110110`` becomes
11801``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011802
11803Semantics:
11804""""""""""
11805
Yichao Yu5abf14b2016-11-23 16:25:31 +000011806The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011807``M`` in the input moved to bit ``N-M`` in the output.
11808
Sean Silvab084af42012-12-07 10:36:55 +000011809'``llvm.bswap.*``' Intrinsics
11810^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11811
11812Syntax:
11813"""""""
11814
11815This is an overloaded intrinsic function. You can use bswap on any
11816integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11817
11818::
11819
11820 declare i16 @llvm.bswap.i16(i16 <id>)
11821 declare i32 @llvm.bswap.i32(i32 <id>)
11822 declare i64 @llvm.bswap.i64(i64 <id>)
11823
11824Overview:
11825"""""""""
11826
11827The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11828values with an even number of bytes (positive multiple of 16 bits).
11829These are useful for performing operations on data that is not in the
11830target's native byte order.
11831
11832Semantics:
11833""""""""""
11834
11835The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11836and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11837intrinsic returns an i32 value that has the four bytes of the input i32
11838swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11839returned i32 will have its bytes in 3, 2, 1, 0 order. The
11840``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11841concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11842respectively).
11843
11844'``llvm.ctpop.*``' Intrinsic
11845^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11846
11847Syntax:
11848"""""""
11849
11850This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11851bit width, or on any vector with integer elements. Not all targets
11852support all bit widths or vector types, however.
11853
11854::
11855
11856 declare i8 @llvm.ctpop.i8(i8 <src>)
11857 declare i16 @llvm.ctpop.i16(i16 <src>)
11858 declare i32 @llvm.ctpop.i32(i32 <src>)
11859 declare i64 @llvm.ctpop.i64(i64 <src>)
11860 declare i256 @llvm.ctpop.i256(i256 <src>)
11861 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11862
11863Overview:
11864"""""""""
11865
11866The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11867in a value.
11868
11869Arguments:
11870""""""""""
11871
11872The only argument is the value to be counted. The argument may be of any
11873integer type, or a vector with integer elements. The return type must
11874match the argument type.
11875
11876Semantics:
11877""""""""""
11878
11879The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11880each element of a vector.
11881
11882'``llvm.ctlz.*``' Intrinsic
11883^^^^^^^^^^^^^^^^^^^^^^^^^^^
11884
11885Syntax:
11886"""""""
11887
11888This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11889integer bit width, or any vector whose elements are integers. Not all
11890targets support all bit widths or vector types, however.
11891
11892::
11893
11894 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11895 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11896 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11897 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11898 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011899 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011900
11901Overview:
11902"""""""""
11903
11904The '``llvm.ctlz``' family of intrinsic functions counts the number of
11905leading zeros in a variable.
11906
11907Arguments:
11908""""""""""
11909
11910The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011911any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011912type must match the first argument type.
11913
11914The second argument must be a constant and is a flag to indicate whether
11915the intrinsic should ensure that a zero as the first argument produces a
11916defined result. Historically some architectures did not provide a
11917defined result for zero values as efficiently, and many algorithms are
11918now predicated on avoiding zero-value inputs.
11919
11920Semantics:
11921""""""""""
11922
11923The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11924zeros in a variable, or within each element of the vector. If
11925``src == 0`` then the result is the size in bits of the type of ``src``
11926if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11927``llvm.ctlz(i32 2) = 30``.
11928
11929'``llvm.cttz.*``' Intrinsic
11930^^^^^^^^^^^^^^^^^^^^^^^^^^^
11931
11932Syntax:
11933"""""""
11934
11935This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11936integer bit width, or any vector of integer elements. Not all targets
11937support all bit widths or vector types, however.
11938
11939::
11940
11941 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11942 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11943 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11944 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11945 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011946 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011947
11948Overview:
11949"""""""""
11950
11951The '``llvm.cttz``' family of intrinsic functions counts the number of
11952trailing zeros.
11953
11954Arguments:
11955""""""""""
11956
11957The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011958any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011959type must match the first argument type.
11960
11961The second argument must be a constant and is a flag to indicate whether
11962the intrinsic should ensure that a zero as the first argument produces a
11963defined result. Historically some architectures did not provide a
11964defined result for zero values as efficiently, and many algorithms are
11965now predicated on avoiding zero-value inputs.
11966
11967Semantics:
11968""""""""""
11969
11970The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11971zeros in a variable, or within each element of a vector. If ``src == 0``
11972then the result is the size in bits of the type of ``src`` if
11973``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11974``llvm.cttz(2) = 1``.
11975
Philip Reames34843ae2015-03-05 05:55:55 +000011976.. _int_overflow:
11977
Sanjay Patelc71adc82018-07-16 22:59:31 +000011978'``llvm.fshl.*``' Intrinsic
11979^^^^^^^^^^^^^^^^^^^^^^^^^^^
11980
11981Syntax:
11982"""""""
11983
11984This is an overloaded intrinsic. You can use ``llvm.fshl`` on any
11985integer bit width or any vector of integer elements. Not all targets
11986support all bit widths or vector types, however.
11987
11988::
11989
11990 declare i8 @llvm.fshl.i8 (i8 %a, i8 %b, i8 %c)
11991 declare i67 @llvm.fshl.i67(i67 %a, i67 %b, i67 %c)
11992 declare <2 x i32> @llvm.fshl.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
11993
11994Overview:
11995"""""""""
11996
11997The '``llvm.fshl``' family of intrinsic functions performs a funnel shift left:
11998the first two values are concatenated as { %a : %b } (%a is the most significant
11999bits of the wide value), the combined value is shifted left, and the most
12000significant bits are extracted to produce a result that is the same size as the
12001original arguments. If the first 2 arguments are identical, this is equivalent
12002to a rotate left operation. For vector types, the operation occurs for each
12003element of the vector. The shift argument is treated as an unsigned amount
12004modulo the element size of the arguments.
12005
12006Arguments:
12007""""""""""
12008
12009The first two arguments are the values to be concatenated. The third
12010argument is the shift amount. The arguments may be any integer type or a
12011vector with integer element type. All arguments and the return value must
12012have the same type.
12013
12014Example:
12015""""""""
12016
12017.. code-block:: text
12018
12019 %r = call i8 @llvm.fshl.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: msb_extract((concat(x, y) << (z % 8)), 8)
12020 %r = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 15) ; %r = i8: 128 (0b10000000)
12021 %r = call i8 @llvm.fshl.i8(i8 15, i8 15, i8 11) ; %r = i8: 120 (0b01111000)
12022 %r = call i8 @llvm.fshl.i8(i8 0, i8 255, i8 8) ; %r = i8: 0 (0b00000000)
12023
12024'``llvm.fshr.*``' Intrinsic
12025^^^^^^^^^^^^^^^^^^^^^^^^^^^
12026
12027Syntax:
12028"""""""
12029
12030This is an overloaded intrinsic. You can use ``llvm.fshr`` on any
12031integer bit width or any vector of integer elements. Not all targets
12032support all bit widths or vector types, however.
12033
12034::
12035
12036 declare i8 @llvm.fshr.i8 (i8 %a, i8 %b, i8 %c)
12037 declare i67 @llvm.fshr.i67(i67 %a, i67 %b, i67 %c)
12038 declare <2 x i32> @llvm.fshr.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
12039
12040Overview:
12041"""""""""
12042
12043The '``llvm.fshr``' family of intrinsic functions performs a funnel shift right:
12044the first two values are concatenated as { %a : %b } (%a is the most significant
12045bits of the wide value), the combined value is shifted right, and the least
12046significant bits are extracted to produce a result that is the same size as the
12047original arguments. If the first 2 arguments are identical, this is equivalent
12048to a rotate right operation. For vector types, the operation occurs for each
12049element of the vector. The shift argument is treated as an unsigned amount
12050modulo the element size of the arguments.
12051
12052Arguments:
12053""""""""""
12054
12055The first two arguments are the values to be concatenated. The third
12056argument is the shift amount. The arguments may be any integer type or a
12057vector with integer element type. All arguments and the return value must
12058have the same type.
12059
12060Example:
12061""""""""
12062
12063.. code-block:: text
12064
12065 %r = call i8 @llvm.fshr.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: lsb_extract((concat(x, y) >> (z % 8)), 8)
12066 %r = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 15) ; %r = i8: 254 (0b11111110)
12067 %r = call i8 @llvm.fshr.i8(i8 15, i8 15, i8 11) ; %r = i8: 225 (0b11100001)
12068 %r = call i8 @llvm.fshr.i8(i8 0, i8 255, i8 8) ; %r = i8: 255 (0b11111111)
12069
Sean Silvab084af42012-12-07 10:36:55 +000012070Arithmetic with Overflow Intrinsics
12071-----------------------------------
12072
John Regehr6a493f22016-05-12 20:55:09 +000012073LLVM provides intrinsics for fast arithmetic overflow checking.
12074
12075Each of these intrinsics returns a two-element struct. The first
12076element of this struct contains the result of the corresponding
12077arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
12078the result. Therefore, for example, the first element of the struct
12079returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
12080result of a 32-bit ``add`` instruction with the same operands, where
12081the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
12082
12083The second element of the result is an ``i1`` that is 1 if the
12084arithmetic operation overflowed and 0 otherwise. An operation
12085overflows if, for any values of its operands ``A`` and ``B`` and for
12086any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
12087not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
12088``sext`` for signed overflow and ``zext`` for unsigned overflow, and
12089``op`` is the underlying arithmetic operation.
12090
12091The behavior of these intrinsics is well-defined for all argument
12092values.
Sean Silvab084af42012-12-07 10:36:55 +000012093
12094'``llvm.sadd.with.overflow.*``' Intrinsics
12095^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12096
12097Syntax:
12098"""""""
12099
12100This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
12101on any integer bit width.
12102
12103::
12104
12105 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
12106 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12107 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
12108
12109Overview:
12110"""""""""
12111
12112The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
12113a signed addition of the two arguments, and indicate whether an overflow
12114occurred during the signed summation.
12115
12116Arguments:
12117""""""""""
12118
12119The arguments (%a and %b) and the first element of the result structure
12120may be of integer types of any bit width, but they must have the same
12121bit width. The second element of the result structure must be of type
12122``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12123addition.
12124
12125Semantics:
12126""""""""""
12127
12128The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012129a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012130first element of which is the signed summation, and the second element
12131of which is a bit specifying if the signed summation resulted in an
12132overflow.
12133
12134Examples:
12135"""""""""
12136
12137.. code-block:: llvm
12138
12139 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12140 %sum = extractvalue {i32, i1} %res, 0
12141 %obit = extractvalue {i32, i1} %res, 1
12142 br i1 %obit, label %overflow, label %normal
12143
12144'``llvm.uadd.with.overflow.*``' Intrinsics
12145^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12146
12147Syntax:
12148"""""""
12149
12150This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
12151on any integer bit width.
12152
12153::
12154
12155 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
12156 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12157 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
12158
12159Overview:
12160"""""""""
12161
12162The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
12163an unsigned addition of the two arguments, and indicate whether a carry
12164occurred during the unsigned summation.
12165
12166Arguments:
12167""""""""""
12168
12169The arguments (%a and %b) and the first element of the result structure
12170may be of integer types of any bit width, but they must have the same
12171bit width. The second element of the result structure must be of type
12172``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12173addition.
12174
12175Semantics:
12176""""""""""
12177
12178The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012179an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012180first element of which is the sum, and the second element of which is a
12181bit specifying if the unsigned summation resulted in a carry.
12182
12183Examples:
12184"""""""""
12185
12186.. code-block:: llvm
12187
12188 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12189 %sum = extractvalue {i32, i1} %res, 0
12190 %obit = extractvalue {i32, i1} %res, 1
12191 br i1 %obit, label %carry, label %normal
12192
12193'``llvm.ssub.with.overflow.*``' Intrinsics
12194^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12195
12196Syntax:
12197"""""""
12198
12199This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
12200on any integer bit width.
12201
12202::
12203
12204 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
12205 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12206 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
12207
12208Overview:
12209"""""""""
12210
12211The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
12212a signed subtraction of the two arguments, and indicate whether an
12213overflow occurred during the signed subtraction.
12214
12215Arguments:
12216""""""""""
12217
12218The arguments (%a and %b) and the first element of the result structure
12219may be of integer types of any bit width, but they must have the same
12220bit width. The second element of the result structure must be of type
12221``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12222subtraction.
12223
12224Semantics:
12225""""""""""
12226
12227The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012228a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012229first element of which is the subtraction, and the second element of
12230which is a bit specifying if the signed subtraction resulted in an
12231overflow.
12232
12233Examples:
12234"""""""""
12235
12236.. code-block:: llvm
12237
12238 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12239 %sum = extractvalue {i32, i1} %res, 0
12240 %obit = extractvalue {i32, i1} %res, 1
12241 br i1 %obit, label %overflow, label %normal
12242
12243'``llvm.usub.with.overflow.*``' Intrinsics
12244^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12245
12246Syntax:
12247"""""""
12248
12249This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
12250on any integer bit width.
12251
12252::
12253
12254 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
12255 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12256 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
12257
12258Overview:
12259"""""""""
12260
12261The '``llvm.usub.with.overflow``' family of intrinsic functions perform
12262an unsigned subtraction of the two arguments, and indicate whether an
12263overflow occurred during the unsigned subtraction.
12264
12265Arguments:
12266""""""""""
12267
12268The arguments (%a and %b) and the first element of the result structure
12269may be of integer types of any bit width, but they must have the same
12270bit width. The second element of the result structure must be of type
12271``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12272subtraction.
12273
12274Semantics:
12275""""""""""
12276
12277The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012278an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012279the first element of which is the subtraction, and the second element of
12280which is a bit specifying if the unsigned subtraction resulted in an
12281overflow.
12282
12283Examples:
12284"""""""""
12285
12286.. code-block:: llvm
12287
12288 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12289 %sum = extractvalue {i32, i1} %res, 0
12290 %obit = extractvalue {i32, i1} %res, 1
12291 br i1 %obit, label %overflow, label %normal
12292
12293'``llvm.smul.with.overflow.*``' Intrinsics
12294^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12295
12296Syntax:
12297"""""""
12298
12299This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
12300on any integer bit width.
12301
12302::
12303
12304 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
12305 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12306 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
12307
12308Overview:
12309"""""""""
12310
12311The '``llvm.smul.with.overflow``' family of intrinsic functions perform
12312a signed multiplication of the two arguments, and indicate whether an
12313overflow occurred during the signed multiplication.
12314
12315Arguments:
12316""""""""""
12317
12318The arguments (%a and %b) and the first element of the result structure
12319may be of integer types of any bit width, but they must have the same
12320bit width. The second element of the result structure must be of type
12321``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12322multiplication.
12323
12324Semantics:
12325""""""""""
12326
12327The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012328a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012329the first element of which is the multiplication, and the second element
12330of which is a bit specifying if the signed multiplication resulted in an
12331overflow.
12332
12333Examples:
12334"""""""""
12335
12336.. code-block:: llvm
12337
12338 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12339 %sum = extractvalue {i32, i1} %res, 0
12340 %obit = extractvalue {i32, i1} %res, 1
12341 br i1 %obit, label %overflow, label %normal
12342
12343'``llvm.umul.with.overflow.*``' Intrinsics
12344^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12345
12346Syntax:
12347"""""""
12348
12349This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
12350on any integer bit width.
12351
12352::
12353
12354 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
12355 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12356 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
12357
12358Overview:
12359"""""""""
12360
12361The '``llvm.umul.with.overflow``' family of intrinsic functions perform
12362a unsigned multiplication of the two arguments, and indicate whether an
12363overflow occurred during the unsigned multiplication.
12364
12365Arguments:
12366""""""""""
12367
12368The arguments (%a and %b) and the first element of the result structure
12369may be of integer types of any bit width, but they must have the same
12370bit width. The second element of the result structure must be of type
12371``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12372multiplication.
12373
12374Semantics:
12375""""""""""
12376
12377The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012378an unsigned multiplication of the two arguments. They return a structure ---
12379the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000012380element of which is a bit specifying if the unsigned multiplication
12381resulted in an overflow.
12382
12383Examples:
12384"""""""""
12385
12386.. code-block:: llvm
12387
12388 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12389 %sum = extractvalue {i32, i1} %res, 0
12390 %obit = extractvalue {i32, i1} %res, 1
12391 br i1 %obit, label %overflow, label %normal
12392
12393Specialised Arithmetic Intrinsics
12394---------------------------------
12395
Owen Anderson1056a922015-07-11 07:01:27 +000012396'``llvm.canonicalize.*``' Intrinsic
12397^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12398
12399Syntax:
12400"""""""
12401
12402::
12403
12404 declare float @llvm.canonicalize.f32(float %a)
12405 declare double @llvm.canonicalize.f64(double %b)
12406
12407Overview:
12408"""""""""
12409
12410The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012411encoding of a floating-point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000012412implementing certain numeric primitives such as frexp. The canonical encoding is
12413defined by IEEE-754-2008 to be:
12414
12415::
12416
12417 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000012418 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000012419 numbers, infinities, and NaNs, especially in decimal formats.
12420
12421This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000012422conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000012423according to section 6.2.
12424
12425Examples of non-canonical encodings:
12426
Sean Silvaa1190322015-08-06 22:56:48 +000012427- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000012428 converted to a canonical representation per hardware-specific protocol.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012429- Many normal decimal floating-point numbers have non-canonical alternative
Owen Anderson1056a922015-07-11 07:01:27 +000012430 encodings.
12431- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000012432 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000012433 a zero of the same sign by this operation.
12434
12435Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
12436default exception handling must signal an invalid exception, and produce a
12437quiet NaN result.
12438
12439This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000012440that the compiler does not constant fold the operation. Likewise, division by
124411.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000012442-0.0 is also sufficient provided that the rounding mode is not -Infinity.
12443
Sean Silvaa1190322015-08-06 22:56:48 +000012444``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000012445
12446- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
12447- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
12448 to ``(x == y)``
12449
12450Additionally, the sign of zero must be conserved:
12451``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
12452
12453The payload bits of a NaN must be conserved, with two exceptions.
12454First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000012455must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000012456usual methods.
12457
12458The canonicalization operation may be optimized away if:
12459
Sean Silvaa1190322015-08-06 22:56:48 +000012460- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000012461 floating-point operation that is required by the standard to be canonical.
12462- The result is consumed only by (or fused with) other floating-point
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012463 operations. That is, the bits of the floating-point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000012464
Sean Silvab084af42012-12-07 10:36:55 +000012465'``llvm.fmuladd.*``' Intrinsic
12466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12467
12468Syntax:
12469"""""""
12470
12471::
12472
12473 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
12474 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
12475
12476Overview:
12477"""""""""
12478
12479The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000012480expressions that can be fused if the code generator determines that (a) the
12481target instruction set has support for a fused operation, and (b) that the
12482fused operation is more efficient than the equivalent, separate pair of mul
12483and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000012484
12485Arguments:
12486""""""""""
12487
12488The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
12489multiplicands, a and b, and an addend c.
12490
12491Semantics:
12492""""""""""
12493
12494The expression:
12495
12496::
12497
12498 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
12499
12500is equivalent to the expression a \* b + c, except that rounding will
12501not be performed between the multiplication and addition steps if the
12502code generator fuses the operations. Fusion is not guaranteed, even if
12503the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000012504corresponding llvm.fma.\* intrinsic function should be used
12505instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000012506
12507Examples:
12508"""""""""
12509
12510.. code-block:: llvm
12511
Tim Northover675a0962014-06-13 14:24:23 +000012512 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000012513
Amara Emersoncf9daa32017-05-09 10:43:25 +000012514
12515Experimental Vector Reduction Intrinsics
12516----------------------------------------
12517
12518Horizontal reductions of vectors can be expressed using the following
12519intrinsics. Each one takes a vector operand as an input and applies its
12520respective operation across all elements of the vector, returning a single
12521scalar result of the same element type.
12522
12523
12524'``llvm.experimental.vector.reduce.add.*``' Intrinsic
12525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12526
12527Syntax:
12528"""""""
12529
12530::
12531
12532 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
12533 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
12534
12535Overview:
12536"""""""""
12537
12538The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
12539reduction of a vector, returning the result as a scalar. The return type matches
12540the element-type of the vector input.
12541
12542Arguments:
12543""""""""""
12544The argument to this intrinsic must be a vector of integer values.
12545
12546'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
12547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12548
12549Syntax:
12550"""""""
12551
12552::
12553
12554 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
12555 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
12556
12557Overview:
12558"""""""""
12559
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012560The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012561``ADD`` reduction of a vector, returning the result as a scalar. The return type
12562matches the element-type of the vector input.
12563
12564If the intrinsic call has fast-math flags, then the reduction will not preserve
12565the associativity of an equivalent scalarized counterpart. If it does not have
12566fast-math flags, then the reduction will be *ordered*, implying that the
12567operation respects the associativity of a scalarized reduction.
12568
12569
12570Arguments:
12571""""""""""
12572The first argument to this intrinsic is a scalar accumulator value, which is
12573only used when there are no fast-math flags attached. This argument may be undef
12574when fast-math flags are used.
12575
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012576The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012577
12578Examples:
12579"""""""""
12580
12581.. code-block:: llvm
12582
12583 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12584 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12585
12586
12587'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
12588^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12589
12590Syntax:
12591"""""""
12592
12593::
12594
12595 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
12596 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
12597
12598Overview:
12599"""""""""
12600
12601The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
12602reduction of a vector, returning the result as a scalar. The return type matches
12603the element-type of the vector input.
12604
12605Arguments:
12606""""""""""
12607The argument to this intrinsic must be a vector of integer values.
12608
12609'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
12610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12611
12612Syntax:
12613"""""""
12614
12615::
12616
12617 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
12618 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
12619
12620Overview:
12621"""""""""
12622
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012623The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012624``MUL`` reduction of a vector, returning the result as a scalar. The return type
12625matches the element-type of the vector input.
12626
12627If the intrinsic call has fast-math flags, then the reduction will not preserve
12628the associativity of an equivalent scalarized counterpart. If it does not have
12629fast-math flags, then the reduction will be *ordered*, implying that the
12630operation respects the associativity of a scalarized reduction.
12631
12632
12633Arguments:
12634""""""""""
12635The first argument to this intrinsic is a scalar accumulator value, which is
12636only used when there are no fast-math flags attached. This argument may be undef
12637when fast-math flags are used.
12638
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012639The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012640
12641Examples:
12642"""""""""
12643
12644.. code-block:: llvm
12645
12646 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12647 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12648
12649'``llvm.experimental.vector.reduce.and.*``' Intrinsic
12650^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12651
12652Syntax:
12653"""""""
12654
12655::
12656
12657 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
12658
12659Overview:
12660"""""""""
12661
12662The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
12663reduction of a vector, returning the result as a scalar. The return type matches
12664the element-type of the vector input.
12665
12666Arguments:
12667""""""""""
12668The argument to this intrinsic must be a vector of integer values.
12669
12670'``llvm.experimental.vector.reduce.or.*``' Intrinsic
12671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12672
12673Syntax:
12674"""""""
12675
12676::
12677
12678 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
12679
12680Overview:
12681"""""""""
12682
12683The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
12684of a vector, returning the result as a scalar. The return type matches the
12685element-type of the vector input.
12686
12687Arguments:
12688""""""""""
12689The argument to this intrinsic must be a vector of integer values.
12690
12691'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
12692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12693
12694Syntax:
12695"""""""
12696
12697::
12698
12699 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
12700
12701Overview:
12702"""""""""
12703
12704The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
12705reduction of a vector, returning the result as a scalar. The return type matches
12706the element-type of the vector input.
12707
12708Arguments:
12709""""""""""
12710The argument to this intrinsic must be a vector of integer values.
12711
12712'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
12713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12714
12715Syntax:
12716"""""""
12717
12718::
12719
12720 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
12721
12722Overview:
12723"""""""""
12724
12725The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
12726``MAX`` reduction of a vector, returning the result as a scalar. The return type
12727matches the element-type of the vector input.
12728
12729Arguments:
12730""""""""""
12731The argument to this intrinsic must be a vector of integer values.
12732
12733'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
12734^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12735
12736Syntax:
12737"""""""
12738
12739::
12740
12741 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
12742
12743Overview:
12744"""""""""
12745
12746The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
12747``MIN`` reduction of a vector, returning the result as a scalar. The return type
12748matches the element-type of the vector input.
12749
12750Arguments:
12751""""""""""
12752The argument to this intrinsic must be a vector of integer values.
12753
12754'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
12755^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12756
12757Syntax:
12758"""""""
12759
12760::
12761
12762 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
12763
12764Overview:
12765"""""""""
12766
12767The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
12768integer ``MAX`` reduction of a vector, returning the result as a scalar. The
12769return type matches the element-type of the vector input.
12770
12771Arguments:
12772""""""""""
12773The argument to this intrinsic must be a vector of integer values.
12774
12775'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
12776^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12777
12778Syntax:
12779"""""""
12780
12781::
12782
12783 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
12784
12785Overview:
12786"""""""""
12787
12788The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
12789integer ``MIN`` reduction of a vector, returning the result as a scalar. The
12790return type matches the element-type of the vector input.
12791
12792Arguments:
12793""""""""""
12794The argument to this intrinsic must be a vector of integer values.
12795
12796'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
12797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12798
12799Syntax:
12800"""""""
12801
12802::
12803
12804 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
12805 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
12806
12807Overview:
12808"""""""""
12809
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012810The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012811``MAX`` reduction of a vector, returning the result as a scalar. The return type
12812matches the element-type of the vector input.
12813
12814If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12815assume that NaNs are not present in the input vector.
12816
12817Arguments:
12818""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012819The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012820
12821'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12822^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12823
12824Syntax:
12825"""""""
12826
12827::
12828
12829 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12830 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12831
12832Overview:
12833"""""""""
12834
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012835The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012836``MIN`` reduction of a vector, returning the result as a scalar. The return type
12837matches the element-type of the vector input.
12838
12839If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12840assume that NaNs are not present in the input vector.
12841
12842Arguments:
12843""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012844The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012845
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012846Half Precision Floating-Point Intrinsics
Sean Silvab084af42012-12-07 10:36:55 +000012847----------------------------------------
12848
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012849For most target platforms, half precision floating-point is a
Sean Silvab084af42012-12-07 10:36:55 +000012850storage-only format. This means that it is a dense encoding (in memory)
12851but does not support computation in the format.
12852
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012853This means that code must first load the half-precision floating-point
Sean Silvab084af42012-12-07 10:36:55 +000012854value as an i16, then convert it to float with
12855:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12856then be performed on the float value (including extending to double
12857etc). To store the value back to memory, it is first converted to float
12858if needed, then converted to i16 with
12859:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12860i16 value.
12861
12862.. _int_convert_to_fp16:
12863
12864'``llvm.convert.to.fp16``' Intrinsic
12865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12866
12867Syntax:
12868"""""""
12869
12870::
12871
Tim Northoverfd7e4242014-07-17 10:51:23 +000012872 declare i16 @llvm.convert.to.fp16.f32(float %a)
12873 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012874
12875Overview:
12876"""""""""
12877
Tim Northoverfd7e4242014-07-17 10:51:23 +000012878The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012879conventional floating-point type to half precision floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000012880
12881Arguments:
12882""""""""""
12883
12884The intrinsic function contains single argument - the value to be
12885converted.
12886
12887Semantics:
12888""""""""""
12889
Tim Northoverfd7e4242014-07-17 10:51:23 +000012890The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012891conventional floating-point format to half precision floating-point format. The
Tim Northoverfd7e4242014-07-17 10:51:23 +000012892return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012893
12894Examples:
12895"""""""""
12896
12897.. code-block:: llvm
12898
Tim Northoverfd7e4242014-07-17 10:51:23 +000012899 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012900 store i16 %res, i16* @x, align 2
12901
12902.. _int_convert_from_fp16:
12903
12904'``llvm.convert.from.fp16``' Intrinsic
12905^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12906
12907Syntax:
12908"""""""
12909
12910::
12911
Tim Northoverfd7e4242014-07-17 10:51:23 +000012912 declare float @llvm.convert.from.fp16.f32(i16 %a)
12913 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012914
12915Overview:
12916"""""""""
12917
12918The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012919conversion from half precision floating-point format to single precision
12920floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000012921
12922Arguments:
12923""""""""""
12924
12925The intrinsic function contains single argument - the value to be
12926converted.
12927
12928Semantics:
12929""""""""""
12930
12931The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012932conversion from half single precision floating-point format to single
12933precision floating-point format. The input half-float value is
Sean Silvab084af42012-12-07 10:36:55 +000012934represented by an ``i16`` value.
12935
12936Examples:
12937"""""""""
12938
12939.. code-block:: llvm
12940
David Blaikiec7aabbb2015-03-04 22:06:14 +000012941 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012942 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012943
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012944.. _dbg_intrinsics:
12945
Sean Silvab084af42012-12-07 10:36:55 +000012946Debugger Intrinsics
12947-------------------
12948
12949The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12950prefix), are described in the `LLVM Source Level
Hans Wennborg65195622017-09-28 15:16:37 +000012951Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
Sean Silvab084af42012-12-07 10:36:55 +000012952document.
12953
12954Exception Handling Intrinsics
12955-----------------------------
12956
12957The LLVM exception handling intrinsics (which all start with
12958``llvm.eh.`` prefix), are described in the `LLVM Exception
Hans Wennborg65195622017-09-28 15:16:37 +000012959Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
Sean Silvab084af42012-12-07 10:36:55 +000012960
12961.. _int_trampoline:
12962
12963Trampoline Intrinsics
12964---------------------
12965
12966These intrinsics make it possible to excise one parameter, marked with
12967the :ref:`nest <nest>` attribute, from a function. The result is a
12968callable function pointer lacking the nest parameter - the caller does
12969not need to provide a value for it. Instead, the value to use is stored
12970in advance in a "trampoline", a block of memory usually allocated on the
12971stack, which also contains code to splice the nest value into the
12972argument list. This is used to implement the GCC nested function address
12973extension.
12974
12975For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
12976then the resulting function pointer has signature ``i32 (i32, i32)*``.
12977It can be created as follows:
12978
12979.. code-block:: llvm
12980
12981 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000012982 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000012983 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
12984 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
12985 %fp = bitcast i8* %p to i32 (i32, i32)*
12986
12987The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
12988``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
12989
12990.. _int_it:
12991
12992'``llvm.init.trampoline``' Intrinsic
12993^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12994
12995Syntax:
12996"""""""
12997
12998::
12999
13000 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
13001
13002Overview:
13003"""""""""
13004
13005This fills the memory pointed to by ``tramp`` with executable code,
13006turning it into a trampoline.
13007
13008Arguments:
13009""""""""""
13010
13011The ``llvm.init.trampoline`` intrinsic takes three arguments, all
13012pointers. The ``tramp`` argument must point to a sufficiently large and
13013sufficiently aligned block of memory; this memory is written to by the
13014intrinsic. Note that the size and the alignment are target-specific -
13015LLVM currently provides no portable way of determining them, so a
13016front-end that generates this intrinsic needs to have some
13017target-specific knowledge. The ``func`` argument must hold a function
13018bitcast to an ``i8*``.
13019
13020Semantics:
13021""""""""""
13022
13023The block of memory pointed to by ``tramp`` is filled with target
13024dependent code, turning it into a function. Then ``tramp`` needs to be
13025passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
13026be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
13027function's signature is the same as that of ``func`` with any arguments
13028marked with the ``nest`` attribute removed. At most one such ``nest``
13029argument is allowed, and it must be of pointer type. Calling the new
13030function is equivalent to calling ``func`` with the same argument list,
13031but with ``nval`` used for the missing ``nest`` argument. If, after
13032calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
13033modified, then the effect of any later call to the returned function
13034pointer is undefined.
13035
13036.. _int_at:
13037
13038'``llvm.adjust.trampoline``' Intrinsic
13039^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13040
13041Syntax:
13042"""""""
13043
13044::
13045
13046 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
13047
13048Overview:
13049"""""""""
13050
13051This performs any required machine-specific adjustment to the address of
13052a trampoline (passed as ``tramp``).
13053
13054Arguments:
13055""""""""""
13056
13057``tramp`` must point to a block of memory which already has trampoline
13058code filled in by a previous call to
13059:ref:`llvm.init.trampoline <int_it>`.
13060
13061Semantics:
13062""""""""""
13063
13064On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000013065different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000013066intrinsic returns the executable address corresponding to ``tramp``
13067after performing the required machine specific adjustments. The pointer
13068returned can then be :ref:`bitcast and executed <int_trampoline>`.
13069
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013070.. _int_mload_mstore:
13071
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013072Masked Vector Load and Store Intrinsics
13073---------------------------------------
13074
13075LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
13076
13077.. _int_mload:
13078
13079'``llvm.masked.load.*``' Intrinsics
13080^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13081
13082Syntax:
13083"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013084This is an overloaded intrinsic. The loaded data is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013085
13086::
13087
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013088 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
13089 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013090 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013091 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013092 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013093 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013094
13095Overview:
13096"""""""""
13097
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013098Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013099
13100
13101Arguments:
13102""""""""""
13103
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013104The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013105
13106
13107Semantics:
13108""""""""""
13109
13110The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
13111The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
13112
13113
13114::
13115
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013116 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000013117
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013118 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000013119 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000013120 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013121
13122.. _int_mstore:
13123
13124'``llvm.masked.store.*``' Intrinsics
13125^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13126
13127Syntax:
13128"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013129This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013130
13131::
13132
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013133 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
13134 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013135 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013136 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013137 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013138 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013139
13140Overview:
13141"""""""""
13142
13143Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
13144
13145Arguments:
13146""""""""""
13147
13148The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
13149
13150
13151Semantics:
13152""""""""""
13153
13154The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
13155The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
13156
13157::
13158
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013159 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000013160
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000013161 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000013162 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013163 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
13164 store <16 x float> %res, <16 x float>* %ptr, align 4
13165
13166
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013167Masked Vector Gather and Scatter Intrinsics
13168-------------------------------------------
13169
13170LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
13171
13172.. _int_mgather:
13173
13174'``llvm.masked.gather.*``' Intrinsics
13175^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13176
13177Syntax:
13178"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013179This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating-point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013180
13181::
13182
Elad Cohenef5798a2017-05-03 12:28:54 +000013183 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
13184 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
13185 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013186
13187Overview:
13188"""""""""
13189
13190Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
13191
13192
13193Arguments:
13194""""""""""
13195
13196The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
13197
13198
13199Semantics:
13200""""""""""
13201
13202The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
13203The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
13204
13205
13206::
13207
Elad Cohenef5798a2017-05-03 12:28:54 +000013208 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013209
13210 ;; The gather with all-true mask is equivalent to the following instruction sequence
13211 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
13212 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
13213 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
13214 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
13215
13216 %val0 = load double, double* %ptr0, align 8
13217 %val1 = load double, double* %ptr1, align 8
13218 %val2 = load double, double* %ptr2, align 8
13219 %val3 = load double, double* %ptr3, align 8
13220
13221 %vec0 = insertelement <4 x double>undef, %val0, 0
13222 %vec01 = insertelement <4 x double>%vec0, %val1, 1
13223 %vec012 = insertelement <4 x double>%vec01, %val2, 2
13224 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
13225
13226.. _int_mscatter:
13227
13228'``llvm.masked.scatter.*``' Intrinsics
13229^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13230
13231Syntax:
13232"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013233This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013234
13235::
13236
Elad Cohenef5798a2017-05-03 12:28:54 +000013237 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
13238 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
13239 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013240
13241Overview:
13242"""""""""
13243
13244Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
13245
13246Arguments:
13247""""""""""
13248
13249The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
13250
13251
13252Semantics:
13253""""""""""
13254
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000013255The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013256
13257::
13258
Sylvestre Ledru84666a12016-02-14 20:16:22 +000013259 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000013260 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013261
13262 ;; It is equivalent to a list of scalar stores
13263 %val0 = extractelement <8 x i32> %value, i32 0
13264 %val1 = extractelement <8 x i32> %value, i32 1
13265 ..
13266 %val7 = extractelement <8 x i32> %value, i32 7
13267 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
13268 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
13269 ..
13270 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
13271 ;; Note: the order of the following stores is important when they overlap:
13272 store i32 %val0, i32* %ptr0, align 4
13273 store i32 %val1, i32* %ptr1, align 4
13274 ..
13275 store i32 %val7, i32* %ptr7, align 4
13276
13277
Elena Demikhovsky0ef2ce32018-06-06 09:11:46 +000013278Masked Vector Expanding Load and Compressing Store Intrinsics
13279-------------------------------------------------------------
13280
13281LLVM provides intrinsics for expanding load and compressing store operations. Data selected from a vector according to a mask is stored in consecutive memory addresses (compressed store), and vice-versa (expanding load). These operations effective map to "if (cond.i) a[j++] = v.i" and "if (cond.i) v.i = a[j++]" patterns, respectively. Note that when the mask starts with '1' bits followed by '0' bits, these operations are identical to :ref:`llvm.masked.store <int_mstore>` and :ref:`llvm.masked.load <int_mload>`.
13282
13283.. _int_expandload:
13284
13285'``llvm.masked.expandload.*``' Intrinsics
13286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13287
13288Syntax:
13289"""""""
13290This is an overloaded intrinsic. Several values of integer, floating point or pointer data type are loaded from consecutive memory addresses and stored into the elements of a vector according to the mask.
13291
13292::
13293
13294 declare <16 x float> @llvm.masked.expandload.v16f32 (float* <ptr>, <16 x i1> <mask>, <16 x float> <passthru>)
13295 declare <2 x i64> @llvm.masked.expandload.v2i64 (i64* <ptr>, <2 x i1> <mask>, <2 x i64> <passthru>)
13296
13297Overview:
13298"""""""""
13299
13300Reads a number of scalar values sequentially from memory location provided in '``ptr``' and spreads them in a vector. The '``mask``' holds a bit for each vector lane. The number of elements read from memory is equal to the number of '1' bits in the mask. The loaded elements are positioned in the destination vector according to the sequence of '1' and '0' bits in the mask. E.g., if the mask vector is '10010001', "explandload" reads 3 values from memory addresses ptr, ptr+1, ptr+2 and places them in lanes 0, 3 and 7 accordingly. The masked-off lanes are filled by elements from the corresponding lanes of the '``passthru``' operand.
13301
13302
13303Arguments:
13304""""""""""
13305
13306The first operand is the base pointer for the load. It has the same underlying type as the element of the returned vector. The second operand, mask, is a vector of boolean values with the same number of elements as the return type. The third is a pass-through value that is used to fill the masked-off lanes of the result. The return type and the type of the '``passthru``' operand have the same vector type.
13307
13308Semantics:
13309""""""""""
13310
13311The '``llvm.masked.expandload``' intrinsic is designed for reading multiple scalar values from adjacent memory addresses into possibly non-adjacent vector lanes. It is useful for targets that support vector expanding loads and allows vectorizing loop with cross-iteration dependency like in the following example:
13312
13313.. code-block:: c
13314
13315 // In this loop we load from B and spread the elements into array A.
13316 double *A, B; int *C;
13317 for (int i = 0; i < size; ++i) {
13318 if (C[i] != 0)
13319 A[i] = B[j++];
13320 }
13321
13322
13323.. code-block:: llvm
13324
13325 ; Load several elements from array B and expand them in a vector.
13326 ; The number of loaded elements is equal to the number of '1' elements in the Mask.
13327 %Tmp = call <8 x double> @llvm.masked.expandload.v8f64(double* %Bptr, <8 x i1> %Mask, <8 x double> undef)
13328 ; Store the result in A
13329 call void @llvm.masked.store.v8f64.p0v8f64(<8 x double> %Tmp, <8 x double>* %Aptr, i32 8, <8 x i1> %Mask)
13330
13331 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
13332 %MaskI = bitcast <8 x i1> %Mask to i8
13333 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
13334 %MaskI64 = zext i8 %MaskIPopcnt to i64
13335 %BNextInd = add i64 %BInd, %MaskI64
13336
13337
13338Other targets may support this intrinsic differently, for example, by lowering it into a sequence of conditional scalar load operations and shuffles.
13339If all mask elements are '1', the intrinsic behavior is equivalent to the regular unmasked vector load.
13340
13341.. _int_compressstore:
13342
13343'``llvm.masked.compressstore.*``' Intrinsics
13344^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13345
13346Syntax:
13347"""""""
13348This is an overloaded intrinsic. A number of scalar values of integer, floating point or pointer data type are collected from an input vector and stored into adjacent memory addresses. A mask defines which elements to collect from the vector.
13349
13350::
13351
13352 declare void @llvm.masked.compressstore.v8i32 (<8 x i32> <value>, i32* <ptr>, <8 x i1> <mask>)
13353 declare void @llvm.masked.compressstore.v16f32 (<16 x float> <value>, float* <ptr>, <16 x i1> <mask>)
13354
13355Overview:
13356"""""""""
13357
13358Selects elements from input vector '``value``' according to the '``mask``'. All selected elements are written into adjacent memory addresses starting at address '`ptr`', from lower to higher. The mask holds a bit for each vector lane, and is used to select elements to be stored. The number of elements to be stored is equal to the number of active bits in the mask.
13359
13360Arguments:
13361""""""""""
13362
13363The first operand is the input vector, from which elements are collected and written to memory. The second operand is the base pointer for the store, it has the same underlying type as the element of the input vector operand. The third operand is the mask, a vector of boolean values. The mask and the input vector must have the same number of vector elements.
13364
13365
13366Semantics:
13367""""""""""
13368
13369The '``llvm.masked.compressstore``' intrinsic is designed for compressing data in memory. It allows to collect elements from possibly non-adjacent lanes of a vector and store them contiguously in memory in one IR operation. It is useful for targets that support compressing store operations and allows vectorizing loops with cross-iteration dependences like in the following example:
13370
13371.. code-block:: c
13372
13373 // In this loop we load elements from A and store them consecutively in B
13374 double *A, B; int *C;
13375 for (int i = 0; i < size; ++i) {
13376 if (C[i] != 0)
13377 B[j++] = A[i]
13378 }
13379
13380
13381.. code-block:: llvm
13382
13383 ; Load elements from A.
13384 %Tmp = call <8 x double> @llvm.masked.load.v8f64.p0v8f64(<8 x double>* %Aptr, i32 8, <8 x i1> %Mask, <8 x double> undef)
13385 ; Store all selected elements consecutively in array B
13386 call <void> @llvm.masked.compressstore.v8f64(<8 x double> %Tmp, double* %Bptr, <8 x i1> %Mask)
13387
13388 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
13389 %MaskI = bitcast <8 x i1> %Mask to i8
13390 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
13391 %MaskI64 = zext i8 %MaskIPopcnt to i64
13392 %BNextInd = add i64 %BInd, %MaskI64
13393
13394
13395Other targets may support this intrinsic differently, for example, by lowering it into a sequence of branches that guard scalar store operations.
13396
13397
Sean Silvab084af42012-12-07 10:36:55 +000013398Memory Use Markers
13399------------------
13400
Sanjay Patel69bf48e2014-07-04 19:40:43 +000013401This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000013402memory objects and ranges where variables are immutable.
13403
Reid Klecknera534a382013-12-19 02:14:12 +000013404.. _int_lifestart:
13405
Sean Silvab084af42012-12-07 10:36:55 +000013406'``llvm.lifetime.start``' Intrinsic
13407^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13408
13409Syntax:
13410"""""""
13411
13412::
13413
13414 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
13415
13416Overview:
13417"""""""""
13418
13419The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
13420object's lifetime.
13421
13422Arguments:
13423""""""""""
13424
13425The first argument is a constant integer representing the size of the
13426object, or -1 if it is variable sized. The second argument is a pointer
13427to the object.
13428
13429Semantics:
13430""""""""""
13431
13432This intrinsic indicates that before this point in the code, the value
13433of the memory pointed to by ``ptr`` is dead. This means that it is known
13434to never be used and has an undefined value. A load from the pointer
13435that precedes this intrinsic can be replaced with ``'undef'``.
13436
Reid Klecknera534a382013-12-19 02:14:12 +000013437.. _int_lifeend:
13438
Sean Silvab084af42012-12-07 10:36:55 +000013439'``llvm.lifetime.end``' Intrinsic
13440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13441
13442Syntax:
13443"""""""
13444
13445::
13446
13447 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
13448
13449Overview:
13450"""""""""
13451
13452The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
13453object's lifetime.
13454
13455Arguments:
13456""""""""""
13457
13458The first argument is a constant integer representing the size of the
13459object, or -1 if it is variable sized. The second argument is a pointer
13460to the object.
13461
13462Semantics:
13463""""""""""
13464
13465This intrinsic indicates that after this point in the code, the value of
13466the memory pointed to by ``ptr`` is dead. This means that it is known to
13467never be used and has an undefined value. Any stores into the memory
13468object following this intrinsic may be removed as dead.
13469
13470'``llvm.invariant.start``' Intrinsic
13471^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13472
13473Syntax:
13474"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013475This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000013476
13477::
13478
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013479 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000013480
13481Overview:
13482"""""""""
13483
13484The '``llvm.invariant.start``' intrinsic specifies that the contents of
13485a memory object will not change.
13486
13487Arguments:
13488""""""""""
13489
13490The first argument is a constant integer representing the size of the
13491object, or -1 if it is variable sized. The second argument is a pointer
13492to the object.
13493
13494Semantics:
13495""""""""""
13496
13497This intrinsic indicates that until an ``llvm.invariant.end`` that uses
13498the return value, the referenced memory location is constant and
13499unchanging.
13500
13501'``llvm.invariant.end``' Intrinsic
13502^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13503
13504Syntax:
13505"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013506This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000013507
13508::
13509
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013510 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000013511
13512Overview:
13513"""""""""
13514
13515The '``llvm.invariant.end``' intrinsic specifies that the contents of a
13516memory object are mutable.
13517
13518Arguments:
13519""""""""""
13520
13521The first argument is the matching ``llvm.invariant.start`` intrinsic.
13522The second argument is a constant integer representing the size of the
13523object, or -1 if it is variable sized and the third argument is a
13524pointer to the object.
13525
13526Semantics:
13527""""""""""
13528
13529This intrinsic indicates that the memory is mutable again.
13530
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013531'``llvm.launder.invariant.group``' Intrinsic
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13533
13534Syntax:
13535"""""""
Yaxun Liu407ca362017-11-16 16:32:16 +000013536This is an overloaded intrinsic. The memory object can belong to any address
13537space. The returned pointer must belong to the same address space as the
13538argument.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013539
13540::
13541
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013542 declare i8* @llvm.launder.invariant.group.p0i8(i8* <ptr>)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013543
13544Overview:
13545"""""""""
13546
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013547The '``llvm.launder.invariant.group``' intrinsic can be used when an invariant
Piotr Padlewski5b3db452018-07-02 04:49:30 +000013548established by ``invariant.group`` metadata no longer holds, to obtain a new
13549pointer value that carries fresh invariant group information. It is an
13550experimental intrinsic, which means that its semantics might change in the
13551future.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013552
13553
13554Arguments:
13555""""""""""
13556
Piotr Padlewski5b3db452018-07-02 04:49:30 +000013557The ``llvm.launder.invariant.group`` takes only one argument, which is a pointer
13558to the memory.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013559
13560Semantics:
13561""""""""""
13562
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013563Returns another pointer that aliases its argument but which is considered different
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013564for the purposes of ``load``/``store`` ``invariant.group`` metadata.
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013565It does not read any accessible memory and the execution can be speculated.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013566
Piotr Padlewski5b3db452018-07-02 04:49:30 +000013567'``llvm.strip.invariant.group``' Intrinsic
13568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13569
13570Syntax:
13571"""""""
13572This is an overloaded intrinsic. The memory object can belong to any address
13573space. The returned pointer must belong to the same address space as the
13574argument.
13575
13576::
13577
13578 declare i8* @llvm.strip.invariant.group.p0i8(i8* <ptr>)
13579
13580Overview:
13581"""""""""
13582
13583The '``llvm.strip.invariant.group``' intrinsic can be used when an invariant
13584established by ``invariant.group`` metadata no longer holds, to obtain a new pointer
13585value that does not carry the invariant information. It is an experimental
13586intrinsic, which means that its semantics might change in the future.
13587
13588
13589Arguments:
13590""""""""""
13591
13592The ``llvm.strip.invariant.group`` takes only one argument, which is a pointer
13593to the memory.
13594
13595Semantics:
13596""""""""""
13597
13598Returns another pointer that aliases its argument but which has no associated
13599``invariant.group`` metadata.
13600It does not read any memory and can be speculated.
13601
13602
13603
Sanjay Patel54b161e2018-03-20 16:38:22 +000013604.. _constrainedfp:
13605
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013606Constrained Floating-Point Intrinsics
Andrew Kaylora0a11642017-01-26 23:27:59 +000013607-------------------------------------
13608
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013609These intrinsics are used to provide special handling of floating-point
13610operations when specific rounding mode or floating-point exception behavior is
Andrew Kaylora0a11642017-01-26 23:27:59 +000013611required. By default, LLVM optimization passes assume that the rounding mode is
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013612round-to-nearest and that floating-point exceptions will not be monitored.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013613Constrained FP intrinsics are used to support non-default rounding modes and
13614accurately preserve exception behavior without compromising LLVM's ability to
13615optimize FP code when the default behavior is used.
13616
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013617Each of these intrinsics corresponds to a normal floating-point operation. The
Andrew Kaylora0a11642017-01-26 23:27:59 +000013618first two arguments and the return value are the same as the corresponding FP
13619operation.
13620
13621The third argument is a metadata argument specifying the rounding mode to be
13622assumed. This argument must be one of the following strings:
13623
13624::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000013625
Andrew Kaylora0a11642017-01-26 23:27:59 +000013626 "round.dynamic"
13627 "round.tonearest"
13628 "round.downward"
13629 "round.upward"
13630 "round.towardzero"
13631
13632If this argument is "round.dynamic" optimization passes must assume that the
13633rounding mode is unknown and may change at runtime. No transformations that
13634depend on rounding mode may be performed in this case.
13635
13636The other possible values for the rounding mode argument correspond to the
13637similarly named IEEE rounding modes. If the argument is any of these values
13638optimization passes may perform transformations as long as they are consistent
13639with the specified rounding mode.
13640
13641For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
13642"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
13643'x-0' should evaluate to '-0' when rounding downward. However, this
13644transformation is legal for all other rounding modes.
13645
13646For values other than "round.dynamic" optimization passes may assume that the
13647actual runtime rounding mode (as defined in a target-specific manner) matches
13648the specified rounding mode, but this is not guaranteed. Using a specific
13649non-dynamic rounding mode which does not match the actual rounding mode at
13650runtime results in undefined behavior.
13651
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013652The fourth argument to the constrained floating-point intrinsics specifies the
Andrew Kaylora0a11642017-01-26 23:27:59 +000013653required exception behavior. This argument must be one of the following
13654strings:
13655
13656::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000013657
Andrew Kaylora0a11642017-01-26 23:27:59 +000013658 "fpexcept.ignore"
13659 "fpexcept.maytrap"
13660 "fpexcept.strict"
13661
13662If this argument is "fpexcept.ignore" optimization passes may assume that the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013663exception status flags will not be read and that floating-point exceptions will
Andrew Kaylora0a11642017-01-26 23:27:59 +000013664be masked. This allows transformations to be performed that may change the
13665exception semantics of the original code. For example, FP operations may be
13666speculatively executed in this case whereas they must not be for either of the
13667other possible values of this argument.
13668
13669If the exception behavior argument is "fpexcept.maytrap" optimization passes
13670must avoid transformations that may raise exceptions that would not have been
13671raised by the original code (such as speculatively executing FP operations), but
13672passes are not required to preserve all exceptions that are implied by the
13673original code. For example, exceptions may be potentially hidden by constant
13674folding.
13675
13676If the exception behavior argument is "fpexcept.strict" all transformations must
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013677strictly preserve the floating-point exception semantics of the original code.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013678Any FP exception that would have been raised by the original code must be raised
13679by the transformed code, and the transformed code must not raise any FP
13680exceptions that would not have been raised by the original code. This is the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013681exception behavior argument that will be used if the code being compiled reads
Andrew Kaylora0a11642017-01-26 23:27:59 +000013682the FP exception status flags, but this mode can also be used with code that
13683unmasks FP exceptions.
13684
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013685The number and order of floating-point exceptions is NOT guaranteed. For
Andrew Kaylora0a11642017-01-26 23:27:59 +000013686example, a series of FP operations that each may raise exceptions may be
13687vectorized into a single instruction that raises each unique exception a single
13688time.
13689
13690
13691'``llvm.experimental.constrained.fadd``' Intrinsic
13692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13693
13694Syntax:
13695"""""""
13696
13697::
13698
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013699 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013700 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
13701 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013702 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013703
13704Overview:
13705"""""""""
13706
13707The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
13708two operands.
13709
13710
13711Arguments:
13712""""""""""
13713
13714The first two arguments to the '``llvm.experimental.constrained.fadd``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013715intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13716of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013717
13718The third and fourth arguments specify the rounding mode and exception
13719behavior as described above.
13720
13721Semantics:
13722""""""""""
13723
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013724The value produced is the floating-point sum of the two value operands and has
Andrew Kaylora0a11642017-01-26 23:27:59 +000013725the same type as the operands.
13726
13727
13728'``llvm.experimental.constrained.fsub``' Intrinsic
13729^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13730
13731Syntax:
13732"""""""
13733
13734::
13735
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013736 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013737 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
13738 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013739 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013740
13741Overview:
13742"""""""""
13743
13744The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
13745of its two operands.
13746
13747
13748Arguments:
13749""""""""""
13750
13751The first two arguments to the '``llvm.experimental.constrained.fsub``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013752intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13753of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013754
13755The third and fourth arguments specify the rounding mode and exception
13756behavior as described above.
13757
13758Semantics:
13759""""""""""
13760
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013761The value produced is the floating-point difference of the two value operands
Andrew Kaylora0a11642017-01-26 23:27:59 +000013762and has the same type as the operands.
13763
13764
13765'``llvm.experimental.constrained.fmul``' Intrinsic
13766^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13767
13768Syntax:
13769"""""""
13770
13771::
13772
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013773 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013774 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
13775 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013776 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013777
13778Overview:
13779"""""""""
13780
13781The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
13782its two operands.
13783
13784
13785Arguments:
13786""""""""""
13787
13788The first two arguments to the '``llvm.experimental.constrained.fmul``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013789intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13790of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013791
13792The third and fourth arguments specify the rounding mode and exception
13793behavior as described above.
13794
13795Semantics:
13796""""""""""
13797
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013798The value produced is the floating-point product of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000013799has the same type as the operands.
13800
13801
13802'``llvm.experimental.constrained.fdiv``' Intrinsic
13803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13804
13805Syntax:
13806"""""""
13807
13808::
13809
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013810 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013811 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
13812 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013813 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013814
13815Overview:
13816"""""""""
13817
13818The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
13819its two operands.
13820
13821
13822Arguments:
13823""""""""""
13824
13825The first two arguments to the '``llvm.experimental.constrained.fdiv``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013826intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13827of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013828
13829The third and fourth arguments specify the rounding mode and exception
13830behavior as described above.
13831
13832Semantics:
13833""""""""""
13834
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013835The value produced is the floating-point quotient of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000013836has the same type as the operands.
13837
13838
13839'``llvm.experimental.constrained.frem``' Intrinsic
13840^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13841
13842Syntax:
13843"""""""
13844
13845::
13846
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013847 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013848 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
13849 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013850 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013851
13852Overview:
13853"""""""""
13854
13855The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
13856from the division of its two operands.
13857
13858
13859Arguments:
13860""""""""""
13861
13862The first two arguments to the '``llvm.experimental.constrained.frem``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013863intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13864of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013865
13866The third and fourth arguments specify the rounding mode and exception
13867behavior as described above. The rounding mode argument has no effect, since
13868the result of frem is never rounded, but the argument is included for
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013869consistency with the other constrained floating-point intrinsics.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013870
13871Semantics:
13872""""""""""
13873
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013874The value produced is the floating-point remainder from the division of the two
Andrew Kaylora0a11642017-01-26 23:27:59 +000013875value operands and has the same type as the operands. The remainder has the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013876same sign as the dividend.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013877
Wei Dinga131d3f2017-08-24 04:18:24 +000013878'``llvm.experimental.constrained.fma``' Intrinsic
13879^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13880
13881Syntax:
13882"""""""
13883
13884::
13885
13886 declare <type>
13887 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
13888 metadata <rounding mode>,
13889 metadata <exception behavior>)
13890
13891Overview:
13892"""""""""
13893
13894The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
13895fused-multiply-add operation on its operands.
13896
13897Arguments:
13898""""""""""
13899
13900The first three arguments to the '``llvm.experimental.constrained.fma``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013901intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector
13902<t_vector>` of floating-point values. All arguments must have identical types.
Wei Dinga131d3f2017-08-24 04:18:24 +000013903
13904The fourth and fifth arguments specify the rounding mode and exception behavior
13905as described above.
13906
13907Semantics:
13908""""""""""
13909
13910The result produced is the product of the first two operands added to the third
13911operand computed with infinite precision, and then rounded to the target
13912precision.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013913
Andrew Kaylorf4660012017-05-25 21:31:00 +000013914Constrained libm-equivalent Intrinsics
13915--------------------------------------
13916
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013917In addition to the basic floating-point operations for which constrained
Andrew Kaylorf4660012017-05-25 21:31:00 +000013918intrinsics are described above, there are constrained versions of various
13919operations which provide equivalent behavior to a corresponding libm function.
13920These intrinsics allow the precise behavior of these operations with respect to
13921rounding mode and exception behavior to be controlled.
13922
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013923As with the basic constrained floating-point intrinsics, the rounding mode
Andrew Kaylorf4660012017-05-25 21:31:00 +000013924and exception behavior arguments only control the behavior of the optimizer.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013925They do not change the runtime floating-point environment.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013926
13927
13928'``llvm.experimental.constrained.sqrt``' Intrinsic
13929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13930
13931Syntax:
13932"""""""
13933
13934::
13935
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013936 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013937 @llvm.experimental.constrained.sqrt(<type> <op1>,
13938 metadata <rounding mode>,
13939 metadata <exception behavior>)
13940
13941Overview:
13942"""""""""
13943
13944The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
13945of the specified value, returning the same value as the libm '``sqrt``'
13946functions would, but without setting ``errno``.
13947
13948Arguments:
13949""""""""""
13950
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013951The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013952type.
13953
13954The second and third arguments specify the rounding mode and exception
13955behavior as described above.
13956
13957Semantics:
13958""""""""""
13959
13960This function returns the nonnegative square root of the specified value.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013961If the value is less than negative zero, a floating-point exception occurs
Hiroshi Inoue760c0c92018-01-16 13:19:48 +000013962and the return value is architecture specific.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013963
13964
13965'``llvm.experimental.constrained.pow``' Intrinsic
13966^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13967
13968Syntax:
13969"""""""
13970
13971::
13972
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013973 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013974 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
13975 metadata <rounding mode>,
13976 metadata <exception behavior>)
13977
13978Overview:
13979"""""""""
13980
13981The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
13982raised to the (positive or negative) power specified by the second operand.
13983
13984Arguments:
13985""""""""""
13986
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013987The first two arguments and the return value are floating-point numbers of the
Andrew Kaylorf4660012017-05-25 21:31:00 +000013988same type. The second argument specifies the power to which the first argument
13989should be raised.
13990
13991The third and fourth arguments specify the rounding mode and exception
13992behavior as described above.
13993
13994Semantics:
13995""""""""""
13996
13997This function returns the first value raised to the second power,
13998returning the same values as the libm ``pow`` functions would, and
13999handles error conditions in the same way.
14000
14001
14002'``llvm.experimental.constrained.powi``' Intrinsic
14003^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14004
14005Syntax:
14006"""""""
14007
14008::
14009
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014010 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014011 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
14012 metadata <rounding mode>,
14013 metadata <exception behavior>)
14014
14015Overview:
14016"""""""""
14017
14018The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
14019raised to the (positive or negative) power specified by the second operand. The
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014020order of evaluation of multiplications is not defined. When a vector of
14021floating-point type is used, the second argument remains a scalar integer value.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014022
14023
14024Arguments:
14025""""""""""
14026
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014027The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014028type. The second argument is a 32-bit signed integer specifying the power to
14029which the first argument should be raised.
14030
14031The third and fourth arguments specify the rounding mode and exception
14032behavior as described above.
14033
14034Semantics:
14035""""""""""
14036
14037This function returns the first value raised to the second power with an
14038unspecified sequence of rounding operations.
14039
14040
14041'``llvm.experimental.constrained.sin``' Intrinsic
14042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14043
14044Syntax:
14045"""""""
14046
14047::
14048
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014049 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014050 @llvm.experimental.constrained.sin(<type> <op1>,
14051 metadata <rounding mode>,
14052 metadata <exception behavior>)
14053
14054Overview:
14055"""""""""
14056
14057The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
14058first operand.
14059
14060Arguments:
14061""""""""""
14062
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014063The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014064type.
14065
14066The second and third arguments specify the rounding mode and exception
14067behavior as described above.
14068
14069Semantics:
14070""""""""""
14071
14072This function returns the sine of the specified operand, returning the
14073same values as the libm ``sin`` functions would, and handles error
14074conditions in the same way.
14075
14076
14077'``llvm.experimental.constrained.cos``' Intrinsic
14078^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14079
14080Syntax:
14081"""""""
14082
14083::
14084
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014085 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014086 @llvm.experimental.constrained.cos(<type> <op1>,
14087 metadata <rounding mode>,
14088 metadata <exception behavior>)
14089
14090Overview:
14091"""""""""
14092
14093The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
14094first operand.
14095
14096Arguments:
14097""""""""""
14098
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014099The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014100type.
14101
14102The second and third arguments specify the rounding mode and exception
14103behavior as described above.
14104
14105Semantics:
14106""""""""""
14107
14108This function returns the cosine of the specified operand, returning the
14109same values as the libm ``cos`` functions would, and handles error
14110conditions in the same way.
14111
14112
14113'``llvm.experimental.constrained.exp``' Intrinsic
14114^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14115
14116Syntax:
14117"""""""
14118
14119::
14120
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014121 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014122 @llvm.experimental.constrained.exp(<type> <op1>,
14123 metadata <rounding mode>,
14124 metadata <exception behavior>)
14125
14126Overview:
14127"""""""""
14128
14129The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
14130exponential of the specified value.
14131
14132Arguments:
14133""""""""""
14134
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014135The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014136type.
14137
14138The second and third arguments specify the rounding mode and exception
14139behavior as described above.
14140
14141Semantics:
14142""""""""""
14143
14144This function returns the same values as the libm ``exp`` functions
14145would, and handles error conditions in the same way.
14146
14147
14148'``llvm.experimental.constrained.exp2``' Intrinsic
14149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14150
14151Syntax:
14152"""""""
14153
14154::
14155
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014156 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014157 @llvm.experimental.constrained.exp2(<type> <op1>,
14158 metadata <rounding mode>,
14159 metadata <exception behavior>)
14160
14161Overview:
14162"""""""""
14163
14164The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
14165exponential of the specified value.
14166
14167
14168Arguments:
14169""""""""""
14170
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014171The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014172type.
14173
14174The second and third arguments specify the rounding mode and exception
14175behavior as described above.
14176
14177Semantics:
14178""""""""""
14179
14180This function returns the same values as the libm ``exp2`` functions
14181would, and handles error conditions in the same way.
14182
14183
14184'``llvm.experimental.constrained.log``' Intrinsic
14185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14186
14187Syntax:
14188"""""""
14189
14190::
14191
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014192 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014193 @llvm.experimental.constrained.log(<type> <op1>,
14194 metadata <rounding mode>,
14195 metadata <exception behavior>)
14196
14197Overview:
14198"""""""""
14199
14200The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
14201logarithm of the specified value.
14202
14203Arguments:
14204""""""""""
14205
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014206The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014207type.
14208
14209The second and third arguments specify the rounding mode and exception
14210behavior as described above.
14211
14212
14213Semantics:
14214""""""""""
14215
14216This function returns the same values as the libm ``log`` functions
14217would, and handles error conditions in the same way.
14218
14219
14220'``llvm.experimental.constrained.log10``' Intrinsic
14221^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14222
14223Syntax:
14224"""""""
14225
14226::
14227
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014228 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014229 @llvm.experimental.constrained.log10(<type> <op1>,
14230 metadata <rounding mode>,
14231 metadata <exception behavior>)
14232
14233Overview:
14234"""""""""
14235
14236The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
14237logarithm of the specified value.
14238
14239Arguments:
14240""""""""""
14241
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014242The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014243type.
14244
14245The second and third arguments specify the rounding mode and exception
14246behavior as described above.
14247
14248Semantics:
14249""""""""""
14250
14251This function returns the same values as the libm ``log10`` functions
14252would, and handles error conditions in the same way.
14253
14254
14255'``llvm.experimental.constrained.log2``' Intrinsic
14256^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14257
14258Syntax:
14259"""""""
14260
14261::
14262
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014263 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014264 @llvm.experimental.constrained.log2(<type> <op1>,
14265 metadata <rounding mode>,
14266 metadata <exception behavior>)
14267
14268Overview:
14269"""""""""
14270
14271The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
14272logarithm of the specified value.
14273
14274Arguments:
14275""""""""""
14276
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014277The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014278type.
14279
14280The second and third arguments specify the rounding mode and exception
14281behavior as described above.
14282
14283Semantics:
14284""""""""""
14285
14286This function returns the same values as the libm ``log2`` functions
14287would, and handles error conditions in the same way.
14288
14289
14290'``llvm.experimental.constrained.rint``' Intrinsic
14291^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14292
14293Syntax:
14294"""""""
14295
14296::
14297
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014298 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014299 @llvm.experimental.constrained.rint(<type> <op1>,
14300 metadata <rounding mode>,
14301 metadata <exception behavior>)
14302
14303Overview:
14304"""""""""
14305
14306The '``llvm.experimental.constrained.rint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014307operand rounded to the nearest integer. It may raise an inexact floating-point
Andrew Kaylorf4660012017-05-25 21:31:00 +000014308exception if the operand is not an integer.
14309
14310Arguments:
14311""""""""""
14312
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014313The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014314type.
14315
14316The second and third arguments specify the rounding mode and exception
14317behavior as described above.
14318
14319Semantics:
14320""""""""""
14321
14322This function returns the same values as the libm ``rint`` functions
14323would, and handles error conditions in the same way. The rounding mode is
14324described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014325mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000014326mode argument is only intended as information to the compiler.
14327
14328
14329'``llvm.experimental.constrained.nearbyint``' Intrinsic
14330^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14331
14332Syntax:
14333"""""""
14334
14335::
14336
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014337 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014338 @llvm.experimental.constrained.nearbyint(<type> <op1>,
14339 metadata <rounding mode>,
14340 metadata <exception behavior>)
14341
14342Overview:
14343"""""""""
14344
14345The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014346operand rounded to the nearest integer. It will not raise an inexact
14347floating-point exception if the operand is not an integer.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014348
14349
14350Arguments:
14351""""""""""
14352
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014353The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014354type.
14355
14356The second and third arguments specify the rounding mode and exception
14357behavior as described above.
14358
14359Semantics:
14360""""""""""
14361
14362This function returns the same values as the libm ``nearbyint`` functions
14363would, and handles error conditions in the same way. The rounding mode is
14364described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014365mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000014366mode argument is only intended as information to the compiler.
14367
14368
Sean Silvab084af42012-12-07 10:36:55 +000014369General Intrinsics
14370------------------
14371
14372This class of intrinsics is designed to be generic and has no specific
14373purpose.
14374
14375'``llvm.var.annotation``' Intrinsic
14376^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14377
14378Syntax:
14379"""""""
14380
14381::
14382
14383 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
14384
14385Overview:
14386"""""""""
14387
14388The '``llvm.var.annotation``' intrinsic.
14389
14390Arguments:
14391""""""""""
14392
14393The first argument is a pointer to a value, the second is a pointer to a
14394global string, the third is a pointer to a global string which is the
14395source file name, and the last argument is the line number.
14396
14397Semantics:
14398""""""""""
14399
14400This intrinsic allows annotation of local variables with arbitrary
14401strings. This can be useful for special purpose optimizations that want
14402to look for these annotations. These have no other defined use; they are
14403ignored by code generation and optimization.
14404
Michael Gottesman88d18832013-03-26 00:34:27 +000014405'``llvm.ptr.annotation.*``' Intrinsic
14406^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14407
14408Syntax:
14409"""""""
14410
14411This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
14412pointer to an integer of any width. *NOTE* you must specify an address space for
14413the pointer. The identifier for the default address space is the integer
14414'``0``'.
14415
14416::
14417
14418 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
14419 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
14420 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
14421 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
14422 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
14423
14424Overview:
14425"""""""""
14426
14427The '``llvm.ptr.annotation``' intrinsic.
14428
14429Arguments:
14430""""""""""
14431
14432The first argument is a pointer to an integer value of arbitrary bitwidth
14433(result of some expression), the second is a pointer to a global string, the
14434third is a pointer to a global string which is the source file name, and the
14435last argument is the line number. It returns the value of the first argument.
14436
14437Semantics:
14438""""""""""
14439
14440This intrinsic allows annotation of a pointer to an integer with arbitrary
14441strings. This can be useful for special purpose optimizations that want to look
14442for these annotations. These have no other defined use; they are ignored by code
14443generation and optimization.
14444
Sean Silvab084af42012-12-07 10:36:55 +000014445'``llvm.annotation.*``' Intrinsic
14446^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14447
14448Syntax:
14449"""""""
14450
14451This is an overloaded intrinsic. You can use '``llvm.annotation``' on
14452any integer bit width.
14453
14454::
14455
14456 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
14457 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
14458 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
14459 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
14460 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
14461
14462Overview:
14463"""""""""
14464
14465The '``llvm.annotation``' intrinsic.
14466
14467Arguments:
14468""""""""""
14469
14470The first argument is an integer value (result of some expression), the
14471second is a pointer to a global string, the third is a pointer to a
14472global string which is the source file name, and the last argument is
14473the line number. It returns the value of the first argument.
14474
14475Semantics:
14476""""""""""
14477
14478This intrinsic allows annotations to be put on arbitrary expressions
14479with arbitrary strings. This can be useful for special purpose
14480optimizations that want to look for these annotations. These have no
14481other defined use; they are ignored by code generation and optimization.
14482
Reid Klecknere33c94f2017-09-05 20:14:58 +000014483'``llvm.codeview.annotation``' Intrinsic
Reid Klecknerd4523682017-09-05 20:26:25 +000014484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknere33c94f2017-09-05 20:14:58 +000014485
14486Syntax:
14487"""""""
14488
14489This annotation emits a label at its program point and an associated
14490``S_ANNOTATION`` codeview record with some additional string metadata. This is
14491used to implement MSVC's ``__annotation`` intrinsic. It is marked
14492``noduplicate``, so calls to this intrinsic prevent inlining and should be
14493considered expensive.
14494
14495::
14496
14497 declare void @llvm.codeview.annotation(metadata)
14498
14499Arguments:
14500""""""""""
14501
14502The argument should be an MDTuple containing any number of MDStrings.
14503
Sean Silvab084af42012-12-07 10:36:55 +000014504'``llvm.trap``' Intrinsic
14505^^^^^^^^^^^^^^^^^^^^^^^^^
14506
14507Syntax:
14508"""""""
14509
14510::
14511
14512 declare void @llvm.trap() noreturn nounwind
14513
14514Overview:
14515"""""""""
14516
14517The '``llvm.trap``' intrinsic.
14518
14519Arguments:
14520""""""""""
14521
14522None.
14523
14524Semantics:
14525""""""""""
14526
14527This intrinsic is lowered to the target dependent trap instruction. If
14528the target does not have a trap instruction, this intrinsic will be
14529lowered to a call of the ``abort()`` function.
14530
14531'``llvm.debugtrap``' Intrinsic
14532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14533
14534Syntax:
14535"""""""
14536
14537::
14538
14539 declare void @llvm.debugtrap() nounwind
14540
14541Overview:
14542"""""""""
14543
14544The '``llvm.debugtrap``' intrinsic.
14545
14546Arguments:
14547""""""""""
14548
14549None.
14550
14551Semantics:
14552""""""""""
14553
14554This intrinsic is lowered to code which is intended to cause an
14555execution trap with the intention of requesting the attention of a
14556debugger.
14557
14558'``llvm.stackprotector``' Intrinsic
14559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14560
14561Syntax:
14562"""""""
14563
14564::
14565
14566 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
14567
14568Overview:
14569"""""""""
14570
14571The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
14572onto the stack at ``slot``. The stack slot is adjusted to ensure that it
14573is placed on the stack before local variables.
14574
14575Arguments:
14576""""""""""
14577
14578The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
14579The first argument is the value loaded from the stack guard
14580``@__stack_chk_guard``. The second variable is an ``alloca`` that has
14581enough space to hold the value of the guard.
14582
14583Semantics:
14584""""""""""
14585
Michael Gottesmandafc7d92013-08-12 18:35:32 +000014586This intrinsic causes the prologue/epilogue inserter to force the position of
14587the ``AllocaInst`` stack slot to be before local variables on the stack. This is
14588to ensure that if a local variable on the stack is overwritten, it will destroy
14589the value of the guard. When the function exits, the guard on the stack is
14590checked against the original guard by ``llvm.stackprotectorcheck``. If they are
14591different, then ``llvm.stackprotectorcheck`` causes the program to abort by
14592calling the ``__stack_chk_fail()`` function.
14593
Tim Shene885d5e2016-04-19 19:40:37 +000014594'``llvm.stackguard``' Intrinsic
14595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14596
14597Syntax:
14598"""""""
14599
14600::
14601
14602 declare i8* @llvm.stackguard()
14603
14604Overview:
14605"""""""""
14606
14607The ``llvm.stackguard`` intrinsic returns the system stack guard value.
14608
14609It should not be generated by frontends, since it is only for internal usage.
14610The reason why we create this intrinsic is that we still support IR form Stack
14611Protector in FastISel.
14612
14613Arguments:
14614""""""""""
14615
14616None.
14617
14618Semantics:
14619""""""""""
14620
14621On some platforms, the value returned by this intrinsic remains unchanged
14622between loads in the same thread. On other platforms, it returns the same
14623global variable value, if any, e.g. ``@__stack_chk_guard``.
14624
14625Currently some platforms have IR-level customized stack guard loading (e.g.
14626X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
14627in the future.
14628
Sean Silvab084af42012-12-07 10:36:55 +000014629'``llvm.objectsize``' Intrinsic
14630^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14631
14632Syntax:
14633"""""""
14634
14635::
14636
George Burgess IV56c7e882017-03-21 20:08:59 +000014637 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
14638 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000014639
14640Overview:
14641"""""""""
14642
14643The ``llvm.objectsize`` intrinsic is designed to provide information to
14644the optimizers to determine at compile time whether a) an operation
14645(like memcpy) will overflow a buffer that corresponds to an object, or
14646b) that a runtime check for overflow isn't necessary. An object in this
14647context means an allocation of a specific class, structure, array, or
14648other object.
14649
14650Arguments:
14651""""""""""
14652
George Burgess IV56c7e882017-03-21 20:08:59 +000014653The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
14654a pointer to or into the ``object``. The second argument determines whether
14655``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
14656is unknown. The third argument controls how ``llvm.objectsize`` acts when
George Burgess IV3fbfa9c42018-07-09 22:21:16 +000014657``null`` in address space 0 is used as its pointer argument. If it's ``false``,
14658``llvm.objectsize`` reports 0 bytes available when given ``null``. Otherwise, if
14659the ``null`` is in a non-zero address space or if ``true`` is given for the
14660third argument of ``llvm.objectsize``, we assume its size is unknown.
George Burgess IV56c7e882017-03-21 20:08:59 +000014661
14662The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000014663
14664Semantics:
14665""""""""""
14666
14667The ``llvm.objectsize`` intrinsic is lowered to a constant representing
14668the size of the object concerned. If the size cannot be determined at
14669compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
14670on the ``min`` argument).
14671
14672'``llvm.expect``' Intrinsic
14673^^^^^^^^^^^^^^^^^^^^^^^^^^^
14674
14675Syntax:
14676"""""""
14677
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000014678This is an overloaded intrinsic. You can use ``llvm.expect`` on any
14679integer bit width.
14680
Sean Silvab084af42012-12-07 10:36:55 +000014681::
14682
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000014683 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000014684 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
14685 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
14686
14687Overview:
14688"""""""""
14689
14690The ``llvm.expect`` intrinsic provides information about expected (the
14691most probable) value of ``val``, which can be used by optimizers.
14692
14693Arguments:
14694""""""""""
14695
14696The ``llvm.expect`` intrinsic takes two arguments. The first argument is
14697a value. The second argument is an expected value, this needs to be a
14698constant value, variables are not allowed.
14699
14700Semantics:
14701""""""""""
14702
14703This intrinsic is lowered to the ``val``.
14704
Philip Reamese0e90832015-04-26 22:23:12 +000014705.. _int_assume:
14706
Hal Finkel93046912014-07-25 21:13:35 +000014707'``llvm.assume``' Intrinsic
14708^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14709
14710Syntax:
14711"""""""
14712
14713::
14714
14715 declare void @llvm.assume(i1 %cond)
14716
14717Overview:
14718"""""""""
14719
14720The ``llvm.assume`` allows the optimizer to assume that the provided
14721condition is true. This information can then be used in simplifying other parts
14722of the code.
14723
14724Arguments:
14725""""""""""
14726
14727The condition which the optimizer may assume is always true.
14728
14729Semantics:
14730""""""""""
14731
14732The intrinsic allows the optimizer to assume that the provided condition is
14733always true whenever the control flow reaches the intrinsic call. No code is
14734generated for this intrinsic, and instructions that contribute only to the
14735provided condition are not used for code generation. If the condition is
14736violated during execution, the behavior is undefined.
14737
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014738Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000014739used by the ``llvm.assume`` intrinsic in order to preserve the instructions
14740only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014741if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000014742sufficient overall improvement in code quality. For this reason,
14743``llvm.assume`` should not be used to document basic mathematical invariants
14744that the optimizer can otherwise deduce or facts that are of little use to the
14745optimizer.
14746
Daniel Berlin2c438a32017-02-07 19:29:25 +000014747.. _int_ssa_copy:
14748
14749'``llvm.ssa_copy``' Intrinsic
14750^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14751
14752Syntax:
14753"""""""
14754
14755::
14756
14757 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
14758
14759Arguments:
14760""""""""""
14761
14762The first argument is an operand which is used as the returned value.
14763
14764Overview:
14765""""""""""
14766
14767The ``llvm.ssa_copy`` intrinsic can be used to attach information to
14768operations by copying them and giving them new names. For example,
14769the PredicateInfo utility uses it to build Extended SSA form, and
14770attach various forms of information to operands that dominate specific
14771uses. It is not meant for general use, only for building temporary
14772renaming forms that require value splits at certain points.
14773
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014774.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000014775
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014776'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000014777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14778
14779Syntax:
14780"""""""
14781
14782::
14783
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014784 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000014785
14786
14787Arguments:
14788""""""""""
14789
14790The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014791metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014792
14793Overview:
14794"""""""""
14795
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014796The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
14797with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014798
Peter Collingbourne0312f612016-06-25 00:23:04 +000014799'``llvm.type.checked.load``' Intrinsic
14800^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14801
14802Syntax:
14803"""""""
14804
14805::
14806
14807 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
14808
14809
14810Arguments:
14811""""""""""
14812
14813The first argument is a pointer from which to load a function pointer. The
14814second argument is the byte offset from which to load the function pointer. The
14815third argument is a metadata object representing a :doc:`type identifier
14816<TypeMetadata>`.
14817
14818Overview:
14819"""""""""
14820
14821The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
14822virtual table pointer using type metadata. This intrinsic is used to implement
14823control flow integrity in conjunction with virtual call optimization. The
14824virtual call optimization pass will optimize away ``llvm.type.checked.load``
14825intrinsics associated with devirtualized calls, thereby removing the type
14826check in cases where it is not needed to enforce the control flow integrity
14827constraint.
14828
14829If the given pointer is associated with a type metadata identifier, this
14830function returns true as the second element of its return value. (Note that
14831the function may also return true if the given pointer is not associated
14832with a type metadata identifier.) If the function's return value's second
14833element is true, the following rules apply to the first element:
14834
14835- If the given pointer is associated with the given type metadata identifier,
14836 it is the function pointer loaded from the given byte offset from the given
14837 pointer.
14838
14839- If the given pointer is not associated with the given type metadata
14840 identifier, it is one of the following (the choice of which is unspecified):
14841
14842 1. The function pointer that would have been loaded from an arbitrarily chosen
14843 (through an unspecified mechanism) pointer associated with the type
14844 metadata.
14845
14846 2. If the function has a non-void return type, a pointer to a function that
14847 returns an unspecified value without causing side effects.
14848
14849If the function's return value's second element is false, the value of the
14850first element is undefined.
14851
14852
Sean Silvab084af42012-12-07 10:36:55 +000014853'``llvm.donothing``' Intrinsic
14854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14855
14856Syntax:
14857"""""""
14858
14859::
14860
14861 declare void @llvm.donothing() nounwind readnone
14862
14863Overview:
14864"""""""""
14865
Juergen Ributzkac9161192014-10-23 22:36:13 +000014866The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000014867three intrinsics (besides ``llvm.experimental.patchpoint`` and
14868``llvm.experimental.gc.statepoint``) that can be called with an invoke
14869instruction.
Sean Silvab084af42012-12-07 10:36:55 +000014870
14871Arguments:
14872""""""""""
14873
14874None.
14875
14876Semantics:
14877""""""""""
14878
14879This intrinsic does nothing, and it's removed by optimizers and ignored
14880by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000014881
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014882'``llvm.experimental.deoptimize``' Intrinsic
14883^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14884
14885Syntax:
14886"""""""
14887
14888::
14889
14890 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
14891
14892Overview:
14893"""""""""
14894
14895This intrinsic, together with :ref:`deoptimization operand bundles
14896<deopt_opbundles>`, allow frontends to express transfer of control and
14897frame-local state from the currently executing (typically more specialized,
14898hence faster) version of a function into another (typically more generic, hence
14899slower) version.
14900
14901In languages with a fully integrated managed runtime like Java and JavaScript
14902this intrinsic can be used to implement "uncommon trap" or "side exit" like
14903functionality. In unmanaged languages like C and C++, this intrinsic can be
14904used to represent the slow paths of specialized functions.
14905
14906
14907Arguments:
14908""""""""""
14909
14910The intrinsic takes an arbitrary number of arguments, whose meaning is
14911decided by the :ref:`lowering strategy<deoptimize_lowering>`.
14912
14913Semantics:
14914""""""""""
14915
14916The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
14917deoptimization continuation (denoted using a :ref:`deoptimization
14918operand bundle <deopt_opbundles>`) and returns the value returned by
14919the deoptimization continuation. Defining the semantic properties of
14920the continuation itself is out of scope of the language reference --
14921as far as LLVM is concerned, the deoptimization continuation can
14922invoke arbitrary side effects, including reading from and writing to
14923the entire heap.
14924
14925Deoptimization continuations expressed using ``"deopt"`` operand bundles always
14926continue execution to the end of the physical frame containing them, so all
14927calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
14928
14929 - ``@llvm.experimental.deoptimize`` cannot be invoked.
14930 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
14931 - The ``ret`` instruction must return the value produced by the
14932 ``@llvm.experimental.deoptimize`` call if there is one, or void.
14933
14934Note that the above restrictions imply that the return type for a call to
14935``@llvm.experimental.deoptimize`` will match the return type of its immediate
14936caller.
14937
14938The inliner composes the ``"deopt"`` continuations of the caller into the
14939``"deopt"`` continuations present in the inlinee, and also updates calls to this
14940intrinsic to return directly from the frame of the function it inlined into.
14941
Sanjoy Dase0aa4142016-05-12 01:17:38 +000014942All declarations of ``@llvm.experimental.deoptimize`` must share the
14943same calling convention.
14944
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014945.. _deoptimize_lowering:
14946
14947Lowering:
14948"""""""""
14949
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000014950Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
14951symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
14952ensure that this symbol is defined). The call arguments to
14953``@llvm.experimental.deoptimize`` are lowered as if they were formal
14954arguments of the specified types, and not as varargs.
14955
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014956
Sanjoy Das021de052016-03-31 00:18:46 +000014957'``llvm.experimental.guard``' Intrinsic
14958^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14959
14960Syntax:
14961"""""""
14962
14963::
14964
14965 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
14966
14967Overview:
14968"""""""""
14969
14970This intrinsic, together with :ref:`deoptimization operand bundles
14971<deopt_opbundles>`, allows frontends to express guards or checks on
14972optimistic assumptions made during compilation. The semantics of
14973``@llvm.experimental.guard`` is defined in terms of
14974``@llvm.experimental.deoptimize`` -- its body is defined to be
14975equivalent to:
14976
Renato Golin124f2592016-07-20 12:16:38 +000014977.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000014978
Renato Golin124f2592016-07-20 12:16:38 +000014979 define void @llvm.experimental.guard(i1 %pred, <args...>) {
14980 %realPred = and i1 %pred, undef
14981 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000014982
Renato Golin124f2592016-07-20 12:16:38 +000014983 leave:
14984 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
14985 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000014986
Renato Golin124f2592016-07-20 12:16:38 +000014987 continue:
14988 ret void
14989 }
Sanjoy Das021de052016-03-31 00:18:46 +000014990
Sanjoy Das47cf2af2016-04-30 00:55:59 +000014991
14992with the optional ``[, !make.implicit !{}]`` present if and only if it
14993is present on the call site. For more details on ``!make.implicit``,
14994see :doc:`FaultMaps`.
14995
Sanjoy Das021de052016-03-31 00:18:46 +000014996In words, ``@llvm.experimental.guard`` executes the attached
14997``"deopt"`` continuation if (but **not** only if) its first argument
14998is ``false``. Since the optimizer is allowed to replace the ``undef``
14999with an arbitrary value, it can optimize guard to fail "spuriously",
15000i.e. without the original condition being false (hence the "not only
15001if"); and this allows for "check widening" type optimizations.
15002
15003``@llvm.experimental.guard`` cannot be invoked.
15004
15005
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000015006'``llvm.load.relative``' Intrinsic
15007^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15008
15009Syntax:
15010"""""""
15011
15012::
15013
15014 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
15015
15016Overview:
15017"""""""""
15018
15019This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
15020adds ``%ptr`` to that value and returns it. The constant folder specifically
15021recognizes the form of this intrinsic and the constant initializers it may
15022load from; if a loaded constant initializer is known to have the form
15023``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
15024
15025LLVM provides that the calculation of such a constant initializer will
15026not overflow at link time under the medium code model if ``x`` is an
15027``unnamed_addr`` function. However, it does not provide this guarantee for
15028a constant initializer folded into a function body. This intrinsic can be
15029used to avoid the possibility of overflows when loading from such a constant.
15030
Dan Gohman2c74fe92017-11-08 21:59:51 +000015031'``llvm.sideeffect``' Intrinsic
15032^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15033
15034Syntax:
15035"""""""
15036
15037::
15038
15039 declare void @llvm.sideeffect() inaccessiblememonly nounwind
15040
15041Overview:
15042"""""""""
15043
15044The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
15045treat it as having side effects, so it can be inserted into a loop to
15046indicate that the loop shouldn't be assumed to terminate (which could
15047potentially lead to the loop being optimized away entirely), even if it's
15048an infinite loop with no other side effects.
15049
15050Arguments:
15051""""""""""
15052
15053None.
15054
15055Semantics:
15056""""""""""
15057
15058This intrinsic actually does nothing, but optimizers must assume that it
15059has externally observable side effects.
15060
Andrew Trick5e029ce2013-12-24 02:57:25 +000015061Stack Map Intrinsics
15062--------------------
15063
15064LLVM provides experimental intrinsics to support runtime patching
15065mechanisms commonly desired in dynamic language JITs. These intrinsics
15066are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015067
15068Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000015069-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000015070
15071These intrinsics are similar to the standard library memory intrinsics except
15072that they perform memory transfer as a sequence of atomic memory accesses.
15073
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015074.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000015075
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015076'``llvm.memcpy.element.unordered.atomic``' Intrinsic
15077^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000015078
15079Syntax:
15080"""""""
15081
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015082This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000015083any integer bit width and for different address spaces. Not all targets
15084support all bit widths however.
15085
15086::
15087
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015088 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
15089 i8* <src>,
15090 i32 <len>,
15091 i32 <element_size>)
15092 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
15093 i8* <src>,
15094 i64 <len>,
15095 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000015096
15097Overview:
15098"""""""""
15099
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015100The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
15101'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
15102as arrays with elements that are exactly ``element_size`` bytes, and the copy between
15103buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
15104that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015105
15106Arguments:
15107""""""""""
15108
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015109The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
15110intrinsic, with the added constraint that ``len`` is required to be a positive integer
15111multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
15112``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015113
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015114``element_size`` must be a compile-time constant positive power of two no greater than
15115target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015116
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015117For each of the input pointers ``align`` parameter attribute must be specified. It
15118must be a power of two no less than the ``element_size``. Caller guarantees that
15119both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015120
15121Semantics:
15122""""""""""
15123
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015124The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
15125memory from the source location to the destination location. These locations are not
15126allowed to overlap. The memory copy is performed as a sequence of load/store operations
15127where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015128aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015129
15130The order of the copy is unspecified. The same value may be read from the source
15131buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015132element. It is well defined to have concurrent reads and writes to both source and
15133destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015134
15135This intrinsic does not provide any additional ordering guarantees over those
15136provided by a set of unordered loads from the source location and stores to the
15137destination.
15138
15139Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000015140"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000015141
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015142In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
15143lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
15144is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015145
Daniel Neilson57226ef2017-07-12 15:25:26 +000015146Optimizer is allowed to inline memory copy when it's profitable to do so.
15147
15148'``llvm.memmove.element.unordered.atomic``' Intrinsic
15149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15150
15151Syntax:
15152"""""""
15153
15154This is an overloaded intrinsic. You can use
15155``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
15156different address spaces. Not all targets support all bit widths however.
15157
15158::
15159
15160 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
15161 i8* <src>,
15162 i32 <len>,
15163 i32 <element_size>)
15164 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
15165 i8* <src>,
15166 i64 <len>,
15167 i32 <element_size>)
15168
15169Overview:
15170"""""""""
15171
15172The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
15173of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
15174``src`` are treated as arrays with elements that are exactly ``element_size``
15175bytes, and the copy between buffers uses a sequence of
15176:ref:`unordered atomic <ordering>` load/store operations that are a positive
15177integer multiple of the ``element_size`` in size.
15178
15179Arguments:
15180""""""""""
15181
15182The first three arguments are the same as they are in the
15183:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
15184``len`` is required to be a positive integer multiple of the ``element_size``.
15185If ``len`` is not a positive integer multiple of ``element_size``, then the
15186behaviour of the intrinsic is undefined.
15187
15188``element_size`` must be a compile-time constant positive power of two no
15189greater than a target-specific atomic access size limit.
15190
15191For each of the input pointers the ``align`` parameter attribute must be
15192specified. It must be a power of two no less than the ``element_size``. Caller
15193guarantees that both the source and destination pointers are aligned to that
15194boundary.
15195
15196Semantics:
15197""""""""""
15198
15199The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
15200of memory from the source location to the destination location. These locations
15201are allowed to overlap. The memory copy is performed as a sequence of load/store
15202operations where each access is guaranteed to be a multiple of ``element_size``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015203bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson57226ef2017-07-12 15:25:26 +000015204
15205The order of the copy is unspecified. The same value may be read from the source
15206buffer many times, but only one write is issued to the destination buffer per
15207element. It is well defined to have concurrent reads and writes to both source
15208and destination provided those reads and writes are unordered atomic when
15209specified.
15210
15211This intrinsic does not provide any additional ordering guarantees over those
15212provided by a set of unordered loads from the source location and stores to the
15213destination.
15214
15215Lowering:
15216"""""""""
15217
15218In the most general case call to the
15219'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
15220``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
15221actual element size.
15222
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015223The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000015224
15225.. _int_memset_element_unordered_atomic:
15226
15227'``llvm.memset.element.unordered.atomic``' Intrinsic
15228^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15229
15230Syntax:
15231"""""""
15232
15233This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
15234any integer bit width and for different address spaces. Not all targets
15235support all bit widths however.
15236
15237::
15238
15239 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
15240 i8 <value>,
15241 i32 <len>,
15242 i32 <element_size>)
15243 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
15244 i8 <value>,
15245 i64 <len>,
15246 i32 <element_size>)
15247
15248Overview:
15249"""""""""
15250
15251The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
15252'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
15253with elements that are exactly ``element_size`` bytes, and the assignment to that array
15254uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
15255that are a positive integer multiple of the ``element_size`` in size.
15256
15257Arguments:
15258""""""""""
15259
15260The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
15261intrinsic, with the added constraint that ``len`` is required to be a positive integer
15262multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
15263``element_size``, then the behaviour of the intrinsic is undefined.
15264
15265``element_size`` must be a compile-time constant positive power of two no greater than
15266target-specific atomic access size limit.
15267
15268The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
15269must be a power of two no less than the ``element_size``. Caller guarantees that
15270the destination pointer is aligned to that boundary.
15271
15272Semantics:
15273""""""""""
15274
15275The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
15276memory starting at the destination location to the given ``value``. The memory is
15277set with a sequence of store operations where each access is guaranteed to be a
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015278multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson965613e2017-07-12 21:57:23 +000015279
15280The order of the assignment is unspecified. Only one write is issued to the
15281destination buffer per element. It is well defined to have concurrent reads and
15282writes to the destination provided those reads and writes are unordered atomic
15283when specified.
15284
15285This intrinsic does not provide any additional ordering guarantees over those
15286provided by a set of unordered stores to the destination.
15287
15288Lowering:
15289"""""""""
15290
15291In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
15292lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
15293is replaced with an actual element size.
15294
15295The optimizer is allowed to inline the memory assignment when it's profitable to do so.