blob: 1f540d9236897ef2ea53cf9bd2d914fef0972232 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
Hans Wennborg2cfcc012018-05-22 10:14:07 +000083 can be used on global values to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000327 floating-point types are supported.
Sean Silvab084af42012-12-07 10:36:55 +0000328 - On *X86-64* only supports up to 10 bit type parameters and 6
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000329 floating-point parameters.
Sean Silvab084af42012-12-07 10:36:55 +0000330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Sean Fertilec70d28b2017-10-26 15:00:26 +0000530.. _runtime_preemption_model:
531
532Runtime Preemption Specifiers
533-----------------------------
534
535Global variables, functions and aliases may have an optional runtime preemption
536specifier. If a preemption specifier isn't given explicitly, then a
537symbol is assumed to be ``dso_preemptable``.
538
539``dso_preemptable``
540 Indicates that the function or variable may be replaced by a symbol from
541 outside the linkage unit at runtime.
542
543``dso_local``
544 The compiler may assume that a function or variable marked as ``dso_local``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000545 will resolve to a symbol within the same linkage unit. Direct access will
Sean Fertilec70d28b2017-10-26 15:00:26 +0000546 be generated even if the definition is not within this compilation unit.
547
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000548.. _namedtypes:
549
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000550Structure Types
551---------------
Sean Silvab084af42012-12-07 10:36:55 +0000552
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000553LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000554types <t_struct>`. Literal types are uniqued structurally, but identified types
555are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000556to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000557
Sean Silva706fba52015-08-06 22:56:24 +0000558An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000559
560.. code-block:: llvm
561
562 %mytype = type { %mytype*, i32 }
563
Sean Silvaa1190322015-08-06 22:56:48 +0000564Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000565literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000566
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000567.. _nointptrtype:
568
569Non-Integral Pointer Type
570-------------------------
571
572Note: non-integral pointer types are a work in progress, and they should be
573considered experimental at this time.
574
575LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000576spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
577Non-integral pointer types represent pointers that have an *unspecified* bitwise
578representation; that is, the integral representation may be target dependent or
579unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000580
581``inttoptr`` instructions converting integers to non-integral pointer types are
582ill-typed, and so are ``ptrtoint`` instructions converting values of
583non-integral pointer types to integers. Vector versions of said instructions
584are ill-typed as well.
585
Sean Silvab084af42012-12-07 10:36:55 +0000586.. _globalvars:
587
588Global Variables
589----------------
590
591Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000592instead of run-time.
593
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000594Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000595
596Global variables in other translation units can also be declared, in which
597case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000598
Bob Wilson85b24f22014-06-12 20:40:33 +0000599Either global variable definitions or declarations may have an explicit section
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000600to be placed in and may have an optional explicit alignment specified. If there
601is a mismatch between the explicit or inferred section information for the
602variable declaration and its definition the resulting behavior is undefined.
Bob Wilson85b24f22014-06-12 20:40:33 +0000603
Michael Gottesman006039c2013-01-31 05:48:48 +0000604A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000605the contents of the variable will **never** be modified (enabling better
606optimization, allowing the global data to be placed in the read-only
607section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000608initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000609variable.
610
611LLVM explicitly allows *declarations* of global variables to be marked
612constant, even if the final definition of the global is not. This
613capability can be used to enable slightly better optimization of the
614program, but requires the language definition to guarantee that
615optimizations based on the 'constantness' are valid for the translation
616units that do not include the definition.
617
618As SSA values, global variables define pointer values that are in scope
619(i.e. they dominate) all basic blocks in the program. Global variables
620always define a pointer to their "content" type because they describe a
621region of memory, and all memory objects in LLVM are accessed through
622pointers.
623
624Global variables can be marked with ``unnamed_addr`` which indicates
625that the address is not significant, only the content. Constants marked
626like this can be merged with other constants if they have the same
627initializer. Note that a constant with significant address *can* be
628merged with a ``unnamed_addr`` constant, the result being a constant
629whose address is significant.
630
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000631If the ``local_unnamed_addr`` attribute is given, the address is known to
632not be significant within the module.
633
Sean Silvab084af42012-12-07 10:36:55 +0000634A global variable may be declared to reside in a target-specific
635numbered address space. For targets that support them, address spaces
636may affect how optimizations are performed and/or what target
637instructions are used to access the variable. The default address space
638is zero. The address space qualifier must precede any other attributes.
639
640LLVM allows an explicit section to be specified for globals. If the
641target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000642Additionally, the global can placed in a comdat if the target has the necessary
643support.
Sean Silvab084af42012-12-07 10:36:55 +0000644
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000645External declarations may have an explicit section specified. Section
646information is retained in LLVM IR for targets that make use of this
647information. Attaching section information to an external declaration is an
648assertion that its definition is located in the specified section. If the
649definition is located in a different section, the behavior is undefined.
Erich Keane0343ef82017-08-22 15:30:43 +0000650
Michael Gottesmane743a302013-02-04 03:22:00 +0000651By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000652variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000653initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000654true even for variables potentially accessible from outside the
655module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000656``@llvm.used`` or dllexported variables. This assumption may be suppressed
657by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659An explicit alignment may be specified for a global, which must be a
660power of 2. If not present, or if the alignment is set to zero, the
661alignment of the global is set by the target to whatever it feels
662convenient. If an explicit alignment is specified, the global is forced
663to have exactly that alignment. Targets and optimizers are not allowed
664to over-align the global if the global has an assigned section. In this
665case, the extra alignment could be observable: for example, code could
666assume that the globals are densely packed in their section and try to
667iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000668iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000669
Javed Absarf3d79042017-05-11 12:28:08 +0000670Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
Sean Fertilec70d28b2017-10-26 15:00:26 +0000671an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
Javed Absarf3d79042017-05-11 12:28:08 +0000672an optional :ref:`global attributes <glattrs>` and
673an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000674
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000675Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000676:ref:`Thread Local Storage Model <tls_model>`.
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678Syntax::
679
Sean Fertilec70d28b2017-10-26 15:00:26 +0000680 @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
681 [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
683 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000684 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000686 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000687
Sean Silvab084af42012-12-07 10:36:55 +0000688For example, the following defines a global in a numbered address space
689with an initializer, section, and alignment:
690
691.. code-block:: llvm
692
693 @G = addrspace(5) constant float 1.0, section "foo", align 4
694
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000695The following example just declares a global variable
696
697.. code-block:: llvm
698
699 @G = external global i32
700
Sean Silvab084af42012-12-07 10:36:55 +0000701The following example defines a thread-local global with the
702``initialexec`` TLS model:
703
704.. code-block:: llvm
705
706 @G = thread_local(initialexec) global i32 0, align 4
707
708.. _functionstructure:
709
710Functions
711---------
712
713LLVM function definitions consist of the "``define``" keyword, an
Sean Fertilec70d28b2017-10-26 15:00:26 +0000714optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
715specifier <runtime_preemption_model>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000716style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
717an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000718an optional ``unnamed_addr`` attribute, a return type, an optional
719:ref:`parameter attribute <paramattrs>` for the return type, a function
720name, a (possibly empty) argument list (each with optional :ref:`parameter
721attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000722an optional section, an optional alignment,
723an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000724an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000725an optional :ref:`prologue <prologuedata>`,
726an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000727an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000728an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000731optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
732<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
733optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
734or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
735attribute <paramattrs>` for the return type, a function name, a possibly
736empty list of arguments, an optional alignment, an optional :ref:`garbage
737collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
738:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000739
Bill Wendling6822ecb2013-10-27 05:09:12 +0000740A function definition contains a list of basic blocks, forming the CFG (Control
741Flow Graph) for the function. Each basic block may optionally start with a label
742(giving the basic block a symbol table entry), contains a list of instructions,
743and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
744function return). If an explicit label is not provided, a block is assigned an
745implicit numbered label, using the next value from the same counter as used for
746unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
747entry block does not have an explicit label, it will be assigned label "%0",
748then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000749
750The first basic block in a function is special in two ways: it is
751immediately executed on entrance to the function, and it is not allowed
752to have predecessor basic blocks (i.e. there can not be any branches to
753the entry block of a function). Because the block can have no
754predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
755
756LLVM allows an explicit section to be specified for functions. If the
757target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000758Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000759
760An explicit alignment may be specified for a function. If not present,
761or if the alignment is set to zero, the alignment of the function is set
762by the target to whatever it feels convenient. If an explicit alignment
763is specified, the function is forced to have at least that much
764alignment. All alignments must be a power of 2.
765
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000766If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000767be significant and two identical functions can be merged.
768
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000769If the ``local_unnamed_addr`` attribute is given, the address is known to
770not be significant within the module.
771
Sean Silvab084af42012-12-07 10:36:55 +0000772Syntax::
773
Sean Fertilec70d28b2017-10-26 15:00:26 +0000774 define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000775 [cconv] [ret attrs]
776 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000777 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
778 [comdat [($name)]] [align N] [gc] [prefix Constant]
779 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000780
Sean Silva706fba52015-08-06 22:56:24 +0000781The argument list is a comma separated sequence of arguments where each
782argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000783
784Syntax::
785
786 <type> [parameter Attrs] [name]
787
788
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000789.. _langref_aliases:
790
Sean Silvab084af42012-12-07 10:36:55 +0000791Aliases
792-------
793
Rafael Espindola64c1e182014-06-03 02:41:57 +0000794Aliases, unlike function or variables, don't create any new data. They
795are just a new symbol and metadata for an existing position.
796
797Aliases have a name and an aliasee that is either a global value or a
798constant expression.
799
Nico Rieck7157bb72014-01-14 15:22:47 +0000800Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Sean Fertilec70d28b2017-10-26 15:00:26 +0000801:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000802:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
803<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000804
805Syntax::
806
Sean Fertilec70d28b2017-10-26 15:00:26 +0000807 @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000808
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000809The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000810``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000811might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000812
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000813Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000814the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
815to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000816
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000817If the ``local_unnamed_addr`` attribute is given, the address is known to
818not be significant within the module.
819
Rafael Espindola64c1e182014-06-03 02:41:57 +0000820Since aliases are only a second name, some restrictions apply, of which
821some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000822
Rafael Espindola64c1e182014-06-03 02:41:57 +0000823* The expression defining the aliasee must be computable at assembly
824 time. Since it is just a name, no relocations can be used.
825
826* No alias in the expression can be weak as the possibility of the
827 intermediate alias being overridden cannot be represented in an
828 object file.
829
830* No global value in the expression can be a declaration, since that
831 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000832
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000833.. _langref_ifunc:
834
835IFuncs
836-------
837
838IFuncs, like as aliases, don't create any new data or func. They are just a new
839symbol that dynamic linker resolves at runtime by calling a resolver function.
840
841IFuncs have a name and a resolver that is a function called by dynamic linker
842that returns address of another function associated with the name.
843
844IFunc may have an optional :ref:`linkage type <linkage>` and an optional
845:ref:`visibility style <visibility>`.
846
847Syntax::
848
849 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
850
851
David Majnemerdad0a642014-06-27 18:19:56 +0000852.. _langref_comdats:
853
854Comdats
855-------
856
857Comdat IR provides access to COFF and ELF object file COMDAT functionality.
858
Sean Silvaa1190322015-08-06 22:56:48 +0000859Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000860specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000861that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000862aliasee computes to, if any.
863
864Comdats have a selection kind to provide input on how the linker should
865choose between keys in two different object files.
866
867Syntax::
868
869 $<Name> = comdat SelectionKind
870
871The selection kind must be one of the following:
872
873``any``
874 The linker may choose any COMDAT key, the choice is arbitrary.
875``exactmatch``
876 The linker may choose any COMDAT key but the sections must contain the
877 same data.
878``largest``
879 The linker will choose the section containing the largest COMDAT key.
880``noduplicates``
881 The linker requires that only section with this COMDAT key exist.
882``samesize``
883 The linker may choose any COMDAT key but the sections must contain the
884 same amount of data.
885
Sam Cleggea7cace2018-01-09 23:43:14 +0000886Note that the Mach-O platform doesn't support COMDATs, and ELF and WebAssembly
887only support ``any`` as a selection kind.
David Majnemerdad0a642014-06-27 18:19:56 +0000888
889Here is an example of a COMDAT group where a function will only be selected if
890the COMDAT key's section is the largest:
891
Renato Golin124f2592016-07-20 12:16:38 +0000892.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000893
894 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000895 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000896
Rafael Espindola83a362c2015-01-06 22:55:16 +0000897 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000898 ret void
899 }
900
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901As a syntactic sugar the ``$name`` can be omitted if the name is the same as
902the global name:
903
Renato Golin124f2592016-07-20 12:16:38 +0000904.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000905
906 $foo = comdat any
907 @foo = global i32 2, comdat
908
909
David Majnemerdad0a642014-06-27 18:19:56 +0000910In a COFF object file, this will create a COMDAT section with selection kind
911``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
912and another COMDAT section with selection kind
913``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000914section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000915
916There are some restrictions on the properties of the global object.
917It, or an alias to it, must have the same name as the COMDAT group when
918targeting COFF.
919The contents and size of this object may be used during link-time to determine
920which COMDAT groups get selected depending on the selection kind.
921Because the name of the object must match the name of the COMDAT group, the
922linkage of the global object must not be local; local symbols can get renamed
923if a collision occurs in the symbol table.
924
925The combined use of COMDATS and section attributes may yield surprising results.
926For example:
927
Renato Golin124f2592016-07-20 12:16:38 +0000928.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000929
930 $foo = comdat any
931 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000932 @g1 = global i32 42, section "sec", comdat($foo)
933 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000934
935From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000936with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000937COMDAT groups and COMDATs, at the object file level, are represented by
938sections.
939
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000940Note that certain IR constructs like global variables and functions may
941create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000942COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000943in individual sections (e.g. when `-data-sections` or `-function-sections`
944is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000945
Sean Silvab084af42012-12-07 10:36:55 +0000946.. _namedmetadatastructure:
947
948Named Metadata
949--------------
950
951Named metadata is a collection of metadata. :ref:`Metadata
952nodes <metadata>` (but not metadata strings) are the only valid
953operands for a named metadata.
954
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000955#. Named metadata are represented as a string of characters with the
956 metadata prefix. The rules for metadata names are the same as for
957 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
958 are still valid, which allows any character to be part of a name.
959
Sean Silvab084af42012-12-07 10:36:55 +0000960Syntax::
961
962 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000963 !0 = !{!"zero"}
964 !1 = !{!"one"}
965 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000966 ; A named metadata.
967 !name = !{!0, !1, !2}
968
969.. _paramattrs:
970
971Parameter Attributes
972--------------------
973
974The return type and each parameter of a function type may have a set of
975*parameter attributes* associated with them. Parameter attributes are
976used to communicate additional information about the result or
977parameters of a function. Parameter attributes are considered to be part
978of the function, not of the function type, so functions with different
979parameter attributes can have the same function type.
980
981Parameter attributes are simple keywords that follow the type specified.
982If multiple parameter attributes are needed, they are space separated.
983For example:
984
985.. code-block:: llvm
986
987 declare i32 @printf(i8* noalias nocapture, ...)
988 declare i32 @atoi(i8 zeroext)
989 declare signext i8 @returns_signed_char()
990
991Note that any attributes for the function result (``nounwind``,
992``readonly``) come immediately after the argument list.
993
994Currently, only the following parameter attributes are defined:
995
996``zeroext``
997 This indicates to the code generator that the parameter or return
998 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000999 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +00001000``signext``
1001 This indicates to the code generator that the parameter or return
1002 value should be sign-extended to the extent required by the target's
1003 ABI (which is usually 32-bits) by the caller (for a parameter) or
1004 the callee (for a return value).
1005``inreg``
1006 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +00001007 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +00001008 a function call or return (usually, by putting it in a register as
1009 opposed to memory, though some targets use it to distinguish between
1010 two different kinds of registers). Use of this attribute is
1011 target-specific.
1012``byval``
1013 This indicates that the pointer parameter should really be passed by
1014 value to the function. The attribute implies that a hidden copy of
1015 the pointee is made between the caller and the callee, so the callee
1016 is unable to modify the value in the caller. This attribute is only
1017 valid on LLVM pointer arguments. It is generally used to pass
1018 structs and arrays by value, but is also valid on pointers to
1019 scalars. The copy is considered to belong to the caller not the
1020 callee (for example, ``readonly`` functions should not write to
1021 ``byval`` parameters). This is not a valid attribute for return
1022 values.
1023
1024 The byval attribute also supports specifying an alignment with the
1025 align attribute. It indicates the alignment of the stack slot to
1026 form and the known alignment of the pointer specified to the call
1027 site. If the alignment is not specified, then the code generator
1028 makes a target-specific assumption.
1029
Reid Klecknera534a382013-12-19 02:14:12 +00001030.. _attr_inalloca:
1031
1032``inalloca``
1033
Reid Kleckner60d3a832014-01-16 22:59:24 +00001034 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001035 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001036 be a pointer to stack memory produced by an ``alloca`` instruction.
1037 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001038 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001039 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001040
Reid Kleckner436c42e2014-01-17 23:58:17 +00001041 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001042 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001043 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001044 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001045 ``inalloca`` attribute also disables LLVM's implicit lowering of
1046 large aggregate return values, which means that frontend authors
1047 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001048
Reid Kleckner60d3a832014-01-16 22:59:24 +00001049 When the call site is reached, the argument allocation must have
1050 been the most recent stack allocation that is still live, or the
Eli Friedman0f522bd2018-07-25 18:26:38 +00001051 behavior is undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001052 space after an argument allocation and before its call site, but it
1053 must be cleared off with :ref:`llvm.stackrestore
1054 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001055
1056 See :doc:`InAlloca` for more information on how to use this
1057 attribute.
1058
Sean Silvab084af42012-12-07 10:36:55 +00001059``sret``
1060 This indicates that the pointer parameter specifies the address of a
1061 structure that is the return value of the function in the source
1062 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001063 loads and stores to the structure may be assumed by the callee not
1064 to trap and to be properly aligned. This is not a valid attribute
1065 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001066
Daniel Neilson1e687242018-01-19 17:13:12 +00001067.. _attr_align:
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001068
Hal Finkelccc70902014-07-22 16:58:55 +00001069``align <n>``
1070 This indicates that the pointer value may be assumed by the optimizer to
1071 have the specified alignment.
1072
1073 Note that this attribute has additional semantics when combined with the
1074 ``byval`` attribute.
1075
Sean Silva1703e702014-04-08 21:06:22 +00001076.. _noalias:
1077
Sean Silvab084af42012-12-07 10:36:55 +00001078``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001079 This indicates that objects accessed via pointer values
1080 :ref:`based <pointeraliasing>` on the argument or return value are not also
1081 accessed, during the execution of the function, via pointer values not
1082 *based* on the argument or return value. The attribute on a return value
1083 also has additional semantics described below. The caller shares the
1084 responsibility with the callee for ensuring that these requirements are met.
1085 For further details, please see the discussion of the NoAlias response in
1086 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001087
1088 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001089 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001090
1091 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001092 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1093 attribute on return values are stronger than the semantics of the attribute
1094 when used on function arguments. On function return values, the ``noalias``
1095 attribute indicates that the function acts like a system memory allocation
1096 function, returning a pointer to allocated storage disjoint from the
1097 storage for any other object accessible to the caller.
1098
Sean Silvab084af42012-12-07 10:36:55 +00001099``nocapture``
1100 This indicates that the callee does not make any copies of the
1101 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001102 attribute for return values. Addresses used in volatile operations
1103 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001104
1105.. _nest:
1106
1107``nest``
1108 This indicates that the pointer parameter can be excised using the
1109 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001110 attribute for return values and can only be applied to one parameter.
1111
1112``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001113 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001114 value. This is a hint to the optimizer and code generator used when
1115 generating the caller, allowing value propagation, tail call optimization,
1116 and omission of register saves and restores in some cases; it is not
1117 checked or enforced when generating the callee. The parameter and the
1118 function return type must be valid operands for the
1119 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1120 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001121
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001122``nonnull``
1123 This indicates that the parameter or return pointer is not null. This
1124 attribute may only be applied to pointer typed parameters. This is not
Eli Friedman0f522bd2018-07-25 18:26:38 +00001125 checked or enforced by LLVM; if the parameter or return pointer is null,
1126 the behavior is undefined.
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001127
Hal Finkelb0407ba2014-07-18 15:51:28 +00001128``dereferenceable(<n>)``
1129 This indicates that the parameter or return pointer is dereferenceable. This
1130 attribute may only be applied to pointer typed parameters. A pointer that
1131 is dereferenceable can be loaded from speculatively without a risk of
1132 trapping. The number of bytes known to be dereferenceable must be provided
1133 in parentheses. It is legal for the number of bytes to be less than the
1134 size of the pointee type. The ``nonnull`` attribute does not imply
1135 dereferenceability (consider a pointer to one element past the end of an
1136 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1137 ``addrspace(0)`` (which is the default address space).
1138
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001139``dereferenceable_or_null(<n>)``
1140 This indicates that the parameter or return value isn't both
1141 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001142 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001143 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1144 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1145 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1146 and in other address spaces ``dereferenceable_or_null(<n>)``
1147 implies that a pointer is at least one of ``dereferenceable(<n>)``
1148 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001149 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001150 pointer typed parameters.
1151
Manman Renf46262e2016-03-29 17:37:21 +00001152``swiftself``
1153 This indicates that the parameter is the self/context parameter. This is not
1154 a valid attribute for return values and can only be applied to one
1155 parameter.
1156
Manman Ren9bfd0d02016-04-01 21:41:15 +00001157``swifterror``
1158 This attribute is motivated to model and optimize Swift error handling. It
1159 can be applied to a parameter with pointer to pointer type or a
1160 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001161 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1162 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1163 the parameter or the alloca) can only be loaded and stored from, or used as
1164 a ``swifterror`` argument. This is not a valid attribute for return values
1165 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001166
1167 These constraints allow the calling convention to optimize access to
1168 ``swifterror`` variables by associating them with a specific register at
1169 call boundaries rather than placing them in memory. Since this does change
1170 the calling convention, a function which uses the ``swifterror`` attribute
1171 on a parameter is not ABI-compatible with one which does not.
1172
1173 These constraints also allow LLVM to assume that a ``swifterror`` argument
1174 does not alias any other memory visible within a function and that a
1175 ``swifterror`` alloca passed as an argument does not escape.
1176
Sean Silvab084af42012-12-07 10:36:55 +00001177.. _gc:
1178
Philip Reamesf80bbff2015-02-25 23:45:20 +00001179Garbage Collector Strategy Names
1180--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001181
Philip Reamesf80bbff2015-02-25 23:45:20 +00001182Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001183string:
1184
1185.. code-block:: llvm
1186
1187 define void @f() gc "name" { ... }
1188
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001189The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001190<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001191strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001192named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001193garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001194which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001195
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001196.. _prefixdata:
1197
1198Prefix Data
1199-----------
1200
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001201Prefix data is data associated with a function which the code
1202generator will emit immediately before the function's entrypoint.
1203The purpose of this feature is to allow frontends to associate
1204language-specific runtime metadata with specific functions and make it
1205available through the function pointer while still allowing the
1206function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001207
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001208To access the data for a given function, a program may bitcast the
1209function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001210index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001211the prefix data. For instance, take the example of a function annotated
1212with a single ``i32``,
1213
1214.. code-block:: llvm
1215
1216 define void @f() prefix i32 123 { ... }
1217
1218The prefix data can be referenced as,
1219
1220.. code-block:: llvm
1221
David Blaikie16a97eb2015-03-04 22:02:58 +00001222 %0 = bitcast void* () @f to i32*
1223 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001224 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001225
1226Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001227of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001228beginning of the prefix data is aligned. This means that if the size
1229of the prefix data is not a multiple of the alignment size, the
1230function's entrypoint will not be aligned. If alignment of the
1231function's entrypoint is desired, padding must be added to the prefix
1232data.
1233
Sean Silvaa1190322015-08-06 22:56:48 +00001234A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001235to the ``available_externally`` linkage in that the data may be used by the
1236optimizers but will not be emitted in the object file.
1237
1238.. _prologuedata:
1239
1240Prologue Data
1241-------------
1242
1243The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1244be inserted prior to the function body. This can be used for enabling
1245function hot-patching and instrumentation.
1246
1247To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001248have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001249bytes which decode to a sequence of machine instructions, valid for the
1250module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001251the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001252the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001253definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001254makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001255
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001256A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001257which encodes the ``nop`` instruction:
1258
Renato Golin124f2592016-07-20 12:16:38 +00001259.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001260
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001261 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001262
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001263Generally prologue data can be formed by encoding a relative branch instruction
1264which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001265x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1266
Renato Golin124f2592016-07-20 12:16:38 +00001267.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001268
1269 %0 = type <{ i8, i8, i8* }>
1270
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001271 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001272
Sean Silvaa1190322015-08-06 22:56:48 +00001273A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001274to the ``available_externally`` linkage in that the data may be used by the
1275optimizers but will not be emitted in the object file.
1276
David Majnemer7fddecc2015-06-17 20:52:32 +00001277.. _personalityfn:
1278
1279Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001280--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001281
1282The ``personality`` attribute permits functions to specify what function
1283to use for exception handling.
1284
Bill Wendling63b88192013-02-06 06:52:58 +00001285.. _attrgrp:
1286
1287Attribute Groups
1288----------------
1289
1290Attribute groups are groups of attributes that are referenced by objects within
1291the IR. They are important for keeping ``.ll`` files readable, because a lot of
1292functions will use the same set of attributes. In the degenerative case of a
1293``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1294group will capture the important command line flags used to build that file.
1295
1296An attribute group is a module-level object. To use an attribute group, an
1297object references the attribute group's ID (e.g. ``#37``). An object may refer
1298to more than one attribute group. In that situation, the attributes from the
1299different groups are merged.
1300
1301Here is an example of attribute groups for a function that should always be
1302inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1303
1304.. code-block:: llvm
1305
1306 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001307 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001308
1309 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001310 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001311
1312 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1313 define void @f() #0 #1 { ... }
1314
Sean Silvab084af42012-12-07 10:36:55 +00001315.. _fnattrs:
1316
1317Function Attributes
1318-------------------
1319
1320Function attributes are set to communicate additional information about
1321a function. Function attributes are considered to be part of the
1322function, not of the function type, so functions with different function
1323attributes can have the same function type.
1324
1325Function attributes are simple keywords that follow the type specified.
1326If multiple attributes are needed, they are space separated. For
1327example:
1328
1329.. code-block:: llvm
1330
1331 define void @f() noinline { ... }
1332 define void @f() alwaysinline { ... }
1333 define void @f() alwaysinline optsize { ... }
1334 define void @f() optsize { ... }
1335
Sean Silvab084af42012-12-07 10:36:55 +00001336``alignstack(<n>)``
1337 This attribute indicates that, when emitting the prologue and
1338 epilogue, the backend should forcibly align the stack pointer.
1339 Specify the desired alignment, which must be a power of two, in
1340 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001341``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1342 This attribute indicates that the annotated function will always return at
1343 least a given number of bytes (or null). Its arguments are zero-indexed
1344 parameter numbers; if one argument is provided, then it's assumed that at
1345 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1346 returned pointer. If two are provided, then it's assumed that
1347 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1348 available. The referenced parameters must be integer types. No assumptions
1349 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001350``alwaysinline``
1351 This attribute indicates that the inliner should attempt to inline
1352 this function into callers whenever possible, ignoring any active
1353 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001354``builtin``
1355 This indicates that the callee function at a call site should be
1356 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001357 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001358 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001359 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001360``cold``
1361 This attribute indicates that this function is rarely called. When
1362 computing edge weights, basic blocks post-dominated by a cold
1363 function call are also considered to be cold; and, thus, given low
1364 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001365``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001366 In some parallel execution models, there exist operations that cannot be
1367 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001368 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001369
Justin Lebar58535b12016-02-17 17:46:41 +00001370 The ``convergent`` attribute may appear on functions or call/invoke
1371 instructions. When it appears on a function, it indicates that calls to
1372 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001373 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001374 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001375 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001376
Justin Lebar58535b12016-02-17 17:46:41 +00001377 When it appears on a call/invoke, the ``convergent`` attribute indicates
1378 that we should treat the call as though we're calling a convergent
1379 function. This is particularly useful on indirect calls; without this we
1380 may treat such calls as though the target is non-convergent.
1381
1382 The optimizer may remove the ``convergent`` attribute on functions when it
1383 can prove that the function does not execute any convergent operations.
1384 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1385 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001386``inaccessiblememonly``
1387 This attribute indicates that the function may only access memory that
1388 is not accessible by the module being compiled. This is a weaker form
Eli Friedman0f522bd2018-07-25 18:26:38 +00001389 of ``readnone``. If the function reads or writes other memory, the
1390 behavior is undefined.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001391``inaccessiblemem_or_argmemonly``
1392 This attribute indicates that the function may only access memory that is
1393 either not accessible by the module being compiled, or is pointed to
Eli Friedman0f522bd2018-07-25 18:26:38 +00001394 by its pointer arguments. This is a weaker form of ``argmemonly``. If the
1395 function reads or writes other memory, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001396``inlinehint``
1397 This attribute indicates that the source code contained a hint that
1398 inlining this function is desirable (such as the "inline" keyword in
1399 C/C++). It is just a hint; it imposes no requirements on the
1400 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001401``jumptable``
1402 This attribute indicates that the function should be added to a
1403 jump-instruction table at code-generation time, and that all address-taken
1404 references to this function should be replaced with a reference to the
1405 appropriate jump-instruction-table function pointer. Note that this creates
1406 a new pointer for the original function, which means that code that depends
1407 on function-pointer identity can break. So, any function annotated with
1408 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001409``minsize``
1410 This attribute suggests that optimization passes and code generator
1411 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001412 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001413 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001414``naked``
1415 This attribute disables prologue / epilogue emission for the
1416 function. This can have very system-specific consequences.
Sumanth Gundapaneni6af104e2017-07-28 22:26:22 +00001417``no-jump-tables``
1418 When this attribute is set to true, the jump tables and lookup tables that
1419 can be generated from a switch case lowering are disabled.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001420``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001421 This indicates that the callee function at a call site is not recognized as
1422 a built-in function. LLVM will retain the original call and not replace it
1423 with equivalent code based on the semantics of the built-in function, unless
1424 the call site uses the ``builtin`` attribute. This is valid at call sites
1425 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001426``noduplicate``
1427 This attribute indicates that calls to the function cannot be
1428 duplicated. A call to a ``noduplicate`` function may be moved
1429 within its parent function, but may not be duplicated within
1430 its parent function.
1431
1432 A function containing a ``noduplicate`` call may still
1433 be an inlining candidate, provided that the call is not
1434 duplicated by inlining. That implies that the function has
1435 internal linkage and only has one call site, so the original
1436 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001437``noimplicitfloat``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001438 This attributes disables implicit floating-point instructions.
Sean Silvab084af42012-12-07 10:36:55 +00001439``noinline``
1440 This attribute indicates that the inliner should never inline this
1441 function in any situation. This attribute may not be used together
1442 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001443``nonlazybind``
1444 This attribute suppresses lazy symbol binding for the function. This
1445 may make calls to the function faster, at the cost of extra program
1446 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001447``noredzone``
1448 This attribute indicates that the code generator should not use a
1449 red zone, even if the target-specific ABI normally permits it.
1450``noreturn``
1451 This function attribute indicates that the function never returns
1452 normally. This produces undefined behavior at runtime if the
1453 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001454``norecurse``
1455 This function attribute indicates that the function does not call itself
1456 either directly or indirectly down any possible call path. This produces
1457 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001458``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001459 This function attribute indicates that the function never raises an
1460 exception. If the function does raise an exception, its runtime
1461 behavior is undefined. However, functions marked nounwind may still
1462 trap or generate asynchronous exceptions. Exception handling schemes
1463 that are recognized by LLVM to handle asynchronous exceptions, such
1464 as SEH, will still provide their implementation defined semantics.
Manoj Gupta77eeac32018-07-09 22:27:23 +00001465``"null-pointer-is-valid"``
1466 If ``"null-pointer-is-valid"`` is set to ``"true"``, then ``null`` address
1467 in address-space 0 is considered to be a valid address for memory loads and
1468 stores. Any analysis or optimization should not treat dereferencing a
1469 pointer to ``null`` as undefined behavior in this function.
1470 Note: Comparing address of a global variable to ``null`` may still
1471 evaluate to false because of a limitation in querying this attribute inside
1472 constant expressions.
Matt Morehouse31819412018-03-22 19:50:10 +00001473``optforfuzzing``
1474 This attribute indicates that this function should be optimized
1475 for maximum fuzzing signal.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001476``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001477 This function attribute indicates that most optimization passes will skip
1478 this function, with the exception of interprocedural optimization passes.
1479 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001480 This attribute cannot be used together with the ``alwaysinline``
1481 attribute; this attribute is also incompatible
1482 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001483
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001484 This attribute requires the ``noinline`` attribute to be specified on
1485 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001486 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001487 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001488``optsize``
1489 This attribute suggests that optimization passes and code generator
1490 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001491 and otherwise do optimizations specifically to reduce code size as
1492 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001493``"patchable-function"``
1494 This attribute tells the code generator that the code
1495 generated for this function needs to follow certain conventions that
1496 make it possible for a runtime function to patch over it later.
1497 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001498 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001499
1500 * ``"prologue-short-redirect"`` - This style of patchable
1501 function is intended to support patching a function prologue to
1502 redirect control away from the function in a thread safe
1503 manner. It guarantees that the first instruction of the
1504 function will be large enough to accommodate a short jump
1505 instruction, and will be sufficiently aligned to allow being
1506 fully changed via an atomic compare-and-swap instruction.
1507 While the first requirement can be satisfied by inserting large
1508 enough NOP, LLVM can and will try to re-purpose an existing
1509 instruction (i.e. one that would have to be emitted anyway) as
1510 the patchable instruction larger than a short jump.
1511
1512 ``"prologue-short-redirect"`` is currently only supported on
1513 x86-64.
1514
1515 This attribute by itself does not imply restrictions on
1516 inter-procedural optimizations. All of the semantic effects the
1517 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001518``"probe-stack"``
1519 This attribute indicates that the function will trigger a guard region
1520 in the end of the stack. It ensures that accesses to the stack must be
1521 no further apart than the size of the guard region to a previous
1522 access of the stack. It takes one required string value, the name of
1523 the stack probing function that will be called.
1524
1525 If a function that has a ``"probe-stack"`` attribute is inlined into
1526 a function with another ``"probe-stack"`` attribute, the resulting
1527 function has the ``"probe-stack"`` attribute of the caller. If a
1528 function that has a ``"probe-stack"`` attribute is inlined into a
1529 function that has no ``"probe-stack"`` attribute at all, the resulting
1530 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001531``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001532 On a function, this attribute indicates that the function computes its
1533 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001534 without dereferencing any pointer arguments or otherwise accessing
1535 any mutable state (e.g. memory, control registers, etc) visible to
1536 caller functions. It does not write through any pointer arguments
1537 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001538 to callers. This means while it cannot unwind exceptions by calling
1539 the ``C++`` exception throwing methods (since they write to memory), there may
1540 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1541 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001542
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001543 On an argument, this attribute indicates that the function does not
1544 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001545 memory that the pointer points to if accessed through other pointers.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001546
1547 If a readnone function reads or writes memory visible to the program, or
1548 has other side-effects, the behavior is undefined. If a function reads from
1549 or writes to a readnone pointer argument, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001550``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001551 On a function, this attribute indicates that the function does not write
1552 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001553 modify any state (e.g. memory, control registers, etc) visible to
1554 caller functions. It may dereference pointer arguments and read
1555 state that may be set in the caller. A readonly function always
1556 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001557 called with the same set of arguments and global state. This means while it
1558 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1559 (since they write to memory), there may be non-``C++`` mechanisms that throw
1560 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001561
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001562 On an argument, this attribute indicates that the function does not write
1563 through this pointer argument, even though it may write to the memory that
1564 the pointer points to.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001565
1566 If a readonly function writes memory visible to the program, or
1567 has other side-effects, the behavior is undefined. If a function writes to
1568 a readonly pointer argument, the behavior is undefined.
whitequark08b20352017-06-22 23:22:36 +00001569``"stack-probe-size"``
1570 This attribute controls the behavior of stack probes: either
1571 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1572 It defines the size of the guard region. It ensures that if the function
1573 may use more stack space than the size of the guard region, stack probing
1574 sequence will be emitted. It takes one required integer value, which
1575 is 4096 by default.
1576
1577 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1578 a function with another ``"stack-probe-size"`` attribute, the resulting
1579 function has the ``"stack-probe-size"`` attribute that has the lower
1580 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1581 inlined into a function that has no ``"stack-probe-size"`` attribute
1582 at all, the resulting function has the ``"stack-probe-size"`` attribute
1583 of the callee.
Hans Wennborg89c35fc2018-02-23 13:46:25 +00001584``"no-stack-arg-probe"``
1585 This attribute disables ABI-required stack probes, if any.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001586``writeonly``
1587 On a function, this attribute indicates that the function may write to but
1588 does not read from memory.
1589
1590 On an argument, this attribute indicates that the function may write to but
1591 does not read through this pointer argument (even though it may read from
1592 the memory that the pointer points to).
Eli Friedman0f522bd2018-07-25 18:26:38 +00001593
1594 If a writeonly function reads memory visible to the program, or
1595 has other side-effects, the behavior is undefined. If a function reads
1596 from a writeonly pointer argument, the behavior is undefined.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001597``argmemonly``
1598 This attribute indicates that the only memory accesses inside function are
1599 loads and stores from objects pointed to by its pointer-typed arguments,
1600 with arbitrary offsets. Or in other words, all memory operations in the
1601 function can refer to memory only using pointers based on its function
1602 arguments.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001603
Igor Laevsky39d662f2015-07-11 10:30:36 +00001604 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1605 in order to specify that function reads only from its arguments.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001606
1607 If an argmemonly function reads or writes memory other than the pointer
1608 arguments, or has other side-effects, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001609``returns_twice``
1610 This attribute indicates that this function can return twice. The C
1611 ``setjmp`` is an example of such a function. The compiler disables
1612 some optimizations (like tail calls) in the caller of these
1613 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001614``safestack``
1615 This attribute indicates that
1616 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1617 protection is enabled for this function.
1618
1619 If a function that has a ``safestack`` attribute is inlined into a
1620 function that doesn't have a ``safestack`` attribute or which has an
1621 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1622 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001623``sanitize_address``
1624 This attribute indicates that AddressSanitizer checks
1625 (dynamic address safety analysis) are enabled for this function.
1626``sanitize_memory``
1627 This attribute indicates that MemorySanitizer checks (dynamic detection
1628 of accesses to uninitialized memory) are enabled for this function.
1629``sanitize_thread``
1630 This attribute indicates that ThreadSanitizer checks
1631 (dynamic thread safety analysis) are enabled for this function.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00001632``sanitize_hwaddress``
1633 This attribute indicates that HWAddressSanitizer checks
1634 (dynamic address safety analysis based on tagged pointers) are enabled for
1635 this function.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001636``speculatable``
1637 This function attribute indicates that the function does not have any
1638 effects besides calculating its result and does not have undefined behavior.
1639 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001640 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001641 externally observable. This attribute is only valid on functions
1642 and declarations, not on individual call sites. If a function is
1643 incorrectly marked as speculatable and really does exhibit
1644 undefined behavior, the undefined behavior may be observed even
1645 if the call site is dead code.
1646
Sean Silvab084af42012-12-07 10:36:55 +00001647``ssp``
1648 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001649 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001650 placed on the stack before the local variables that's checked upon
1651 return from the function to see if it has been overwritten. A
1652 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001653 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001654
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001655 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1656 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1657 - Calls to alloca() with variable sizes or constant sizes greater than
1658 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001659
Josh Magee24c7f062014-02-01 01:36:16 +00001660 Variables that are identified as requiring a protector will be arranged
1661 on the stack such that they are adjacent to the stack protector guard.
1662
Sean Silvab084af42012-12-07 10:36:55 +00001663 If a function that has an ``ssp`` attribute is inlined into a
1664 function that doesn't have an ``ssp`` attribute, then the resulting
1665 function will have an ``ssp`` attribute.
1666``sspreq``
1667 This attribute indicates that the function should *always* emit a
1668 stack smashing protector. This overrides the ``ssp`` function
1669 attribute.
1670
Josh Magee24c7f062014-02-01 01:36:16 +00001671 Variables that are identified as requiring a protector will be arranged
1672 on the stack such that they are adjacent to the stack protector guard.
1673 The specific layout rules are:
1674
1675 #. Large arrays and structures containing large arrays
1676 (``>= ssp-buffer-size``) are closest to the stack protector.
1677 #. Small arrays and structures containing small arrays
1678 (``< ssp-buffer-size``) are 2nd closest to the protector.
1679 #. Variables that have had their address taken are 3rd closest to the
1680 protector.
1681
Sean Silvab084af42012-12-07 10:36:55 +00001682 If a function that has an ``sspreq`` attribute is inlined into a
1683 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001684 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1685 an ``sspreq`` attribute.
1686``sspstrong``
1687 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001688 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001689 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001690 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001691
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001692 - Arrays of any size and type
1693 - Aggregates containing an array of any size and type.
1694 - Calls to alloca().
1695 - Local variables that have had their address taken.
1696
Josh Magee24c7f062014-02-01 01:36:16 +00001697 Variables that are identified as requiring a protector will be arranged
1698 on the stack such that they are adjacent to the stack protector guard.
1699 The specific layout rules are:
1700
1701 #. Large arrays and structures containing large arrays
1702 (``>= ssp-buffer-size``) are closest to the stack protector.
1703 #. Small arrays and structures containing small arrays
1704 (``< ssp-buffer-size``) are 2nd closest to the protector.
1705 #. Variables that have had their address taken are 3rd closest to the
1706 protector.
1707
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001708 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001709
1710 If a function that has an ``sspstrong`` attribute is inlined into a
1711 function that doesn't have an ``sspstrong`` attribute, then the
1712 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001713``strictfp``
1714 This attribute indicates that the function was called from a scope that
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001715 requires strict floating-point semantics. LLVM will not attempt any
1716 optimizations that require assumptions about the floating-point rounding
1717 mode or that might alter the state of floating-point status flags that
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001718 might otherwise be set or cleared by calling this function.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001719``"thunk"``
1720 This attribute indicates that the function will delegate to some other
1721 function with a tail call. The prototype of a thunk should not be used for
1722 optimization purposes. The caller is expected to cast the thunk prototype to
1723 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001724``uwtable``
1725 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001726 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001727 show that no exceptions passes by it. This is normally the case for
1728 the ELF x86-64 abi, but it can be disabled for some compilation
1729 units.
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001730``nocf_check``
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001731 This attribute indicates that no control-flow check will be performed on
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001732 the attributed entity. It disables -fcf-protection=<> for a specific
1733 entity to fine grain the HW control flow protection mechanism. The flag
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001734 is target independent and currently appertains to a function or function
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001735 pointer.
Vlad Tsyrklevichd17f61e2018-04-03 20:10:40 +00001736``shadowcallstack``
1737 This attribute indicates that the ShadowCallStack checks are enabled for
1738 the function. The instrumentation checks that the return address for the
1739 function has not changed between the function prolog and eiplog. It is
1740 currently x86_64-specific.
Sean Silvab084af42012-12-07 10:36:55 +00001741
Javed Absarf3d79042017-05-11 12:28:08 +00001742.. _glattrs:
1743
1744Global Attributes
1745-----------------
1746
1747Attributes may be set to communicate additional information about a global variable.
1748Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1749are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001750
1751.. _opbundles:
1752
1753Operand Bundles
1754---------------
1755
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001756Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001757with certain LLVM instructions (currently only ``call`` s and
1758``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001759incorrect and will change program semantics.
1760
1761Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001762
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001763 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001764 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1765 bundle operand ::= SSA value
1766 tag ::= string constant
1767
1768Operand bundles are **not** part of a function's signature, and a
1769given function may be called from multiple places with different kinds
1770of operand bundles. This reflects the fact that the operand bundles
1771are conceptually a part of the ``call`` (or ``invoke``), not the
1772callee being dispatched to.
1773
1774Operand bundles are a generic mechanism intended to support
1775runtime-introspection-like functionality for managed languages. While
1776the exact semantics of an operand bundle depend on the bundle tag,
1777there are certain limitations to how much the presence of an operand
1778bundle can influence the semantics of a program. These restrictions
1779are described as the semantics of an "unknown" operand bundle. As
1780long as the behavior of an operand bundle is describable within these
1781restrictions, LLVM does not need to have special knowledge of the
1782operand bundle to not miscompile programs containing it.
1783
David Majnemer34cacb42015-10-22 01:46:38 +00001784- The bundle operands for an unknown operand bundle escape in unknown
1785 ways before control is transferred to the callee or invokee.
1786- Calls and invokes with operand bundles have unknown read / write
1787 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001788 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001789 callsite specific attributes.
1790- An operand bundle at a call site cannot change the implementation
1791 of the called function. Inter-procedural optimizations work as
1792 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001793
Sanjoy Dascdafd842015-11-11 21:38:02 +00001794More specific types of operand bundles are described below.
1795
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001796.. _deopt_opbundles:
1797
Sanjoy Dascdafd842015-11-11 21:38:02 +00001798Deoptimization Operand Bundles
1799^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1800
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001801Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001802operand bundle tag. These operand bundles represent an alternate
1803"safe" continuation for the call site they're attached to, and can be
1804used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001805specified call site. There can be at most one ``"deopt"`` operand
1806bundle attached to a call site. Exact details of deoptimization is
1807out of scope for the language reference, but it usually involves
1808rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001809
1810From the compiler's perspective, deoptimization operand bundles make
1811the call sites they're attached to at least ``readonly``. They read
1812through all of their pointer typed operands (even if they're not
1813otherwise escaped) and the entire visible heap. Deoptimization
1814operand bundles do not capture their operands except during
1815deoptimization, in which case control will not be returned to the
1816compiled frame.
1817
Sanjoy Das2d161452015-11-18 06:23:38 +00001818The inliner knows how to inline through calls that have deoptimization
1819operand bundles. Just like inlining through a normal call site
1820involves composing the normal and exceptional continuations, inlining
1821through a call site with a deoptimization operand bundle needs to
1822appropriately compose the "safe" deoptimization continuation. The
1823inliner does this by prepending the parent's deoptimization
1824continuation to every deoptimization continuation in the inlined body.
1825E.g. inlining ``@f`` into ``@g`` in the following example
1826
1827.. code-block:: llvm
1828
1829 define void @f() {
1830 call void @x() ;; no deopt state
1831 call void @y() [ "deopt"(i32 10) ]
1832 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1833 ret void
1834 }
1835
1836 define void @g() {
1837 call void @f() [ "deopt"(i32 20) ]
1838 ret void
1839 }
1840
1841will result in
1842
1843.. code-block:: llvm
1844
1845 define void @g() {
1846 call void @x() ;; still no deopt state
1847 call void @y() [ "deopt"(i32 20, i32 10) ]
1848 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1849 ret void
1850 }
1851
1852It is the frontend's responsibility to structure or encode the
1853deoptimization state in a way that syntactically prepending the
1854caller's deoptimization state to the callee's deoptimization state is
1855semantically equivalent to composing the caller's deoptimization
1856continuation after the callee's deoptimization continuation.
1857
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001858.. _ob_funclet:
1859
David Majnemer3bb88c02015-12-15 21:27:27 +00001860Funclet Operand Bundles
1861^^^^^^^^^^^^^^^^^^^^^^^
1862
1863Funclet operand bundles are characterized by the ``"funclet"``
1864operand bundle tag. These operand bundles indicate that a call site
1865is within a particular funclet. There can be at most one
1866``"funclet"`` operand bundle attached to a call site and it must have
1867exactly one bundle operand.
1868
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001869If any funclet EH pads have been "entered" but not "exited" (per the
1870`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1871it is undefined behavior to execute a ``call`` or ``invoke`` which:
1872
1873* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1874 intrinsic, or
1875* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1876 not-yet-exited funclet EH pad.
1877
1878Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1879executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1880
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001881GC Transition Operand Bundles
1882^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1883
1884GC transition operand bundles are characterized by the
1885``"gc-transition"`` operand bundle tag. These operand bundles mark a
1886call as a transition between a function with one GC strategy to a
1887function with a different GC strategy. If coordinating the transition
1888between GC strategies requires additional code generation at the call
1889site, these bundles may contain any values that are needed by the
1890generated code. For more details, see :ref:`GC Transitions
1891<gc_transition_args>`.
1892
Sean Silvab084af42012-12-07 10:36:55 +00001893.. _moduleasm:
1894
1895Module-Level Inline Assembly
1896----------------------------
1897
1898Modules may contain "module-level inline asm" blocks, which corresponds
1899to the GCC "file scope inline asm" blocks. These blocks are internally
1900concatenated by LLVM and treated as a single unit, but may be separated
1901in the ``.ll`` file if desired. The syntax is very simple:
1902
1903.. code-block:: llvm
1904
1905 module asm "inline asm code goes here"
1906 module asm "more can go here"
1907
1908The strings can contain any character by escaping non-printable
1909characters. The escape sequence used is simply "\\xx" where "xx" is the
1910two digit hex code for the number.
1911
James Y Knightbc832ed2015-07-08 18:08:36 +00001912Note that the assembly string *must* be parseable by LLVM's integrated assembler
1913(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001914
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001915.. _langref_datalayout:
1916
Sean Silvab084af42012-12-07 10:36:55 +00001917Data Layout
1918-----------
1919
1920A module may specify a target specific data layout string that specifies
1921how data is to be laid out in memory. The syntax for the data layout is
1922simply:
1923
1924.. code-block:: llvm
1925
1926 target datalayout = "layout specification"
1927
1928The *layout specification* consists of a list of specifications
1929separated by the minus sign character ('-'). Each specification starts
1930with a letter and may include other information after the letter to
1931define some aspect of the data layout. The specifications accepted are
1932as follows:
1933
1934``E``
1935 Specifies that the target lays out data in big-endian form. That is,
1936 the bits with the most significance have the lowest address
1937 location.
1938``e``
1939 Specifies that the target lays out data in little-endian form. That
1940 is, the bits with the least significance have the lowest address
1941 location.
1942``S<size>``
1943 Specifies the natural alignment of the stack in bits. Alignment
1944 promotion of stack variables is limited to the natural stack
1945 alignment to avoid dynamic stack realignment. The stack alignment
1946 must be a multiple of 8-bits. If omitted, the natural stack
1947 alignment defaults to "unspecified", which does not prevent any
1948 alignment promotions.
Dylan McKayced2fe62018-02-19 09:56:22 +00001949``P<address space>``
1950 Specifies the address space that corresponds to program memory.
1951 Harvard architectures can use this to specify what space LLVM
1952 should place things such as functions into. If omitted, the
1953 program memory space defaults to the default address space of 0,
1954 which corresponds to a Von Neumann architecture that has code
1955 and data in the same space.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001956``A<address space>``
Dylan McKayced2fe62018-02-19 09:56:22 +00001957 Specifies the address space of objects created by '``alloca``'.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001958 Defaults to the default address space of 0.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001959``p[n]:<size>:<abi>:<pref>:<idx>``
Sean Silvab084af42012-12-07 10:36:55 +00001960 This specifies the *size* of a pointer and its ``<abi>`` and
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001961 ``<pref>``\erred alignments for address space ``n``. The fourth parameter
1962 ``<idx>`` is a size of index that used for address calculation. If not
1963 specified, the default index size is equal to the pointer size. All sizes
1964 are in bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001965 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001966 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001967``i<size>:<abi>:<pref>``
1968 This specifies the alignment for an integer type of a given bit
1969 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1970``v<size>:<abi>:<pref>``
1971 This specifies the alignment for a vector type of a given bit
1972 ``<size>``.
1973``f<size>:<abi>:<pref>``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001974 This specifies the alignment for a floating-point type of a given bit
Sean Silvab084af42012-12-07 10:36:55 +00001975 ``<size>``. Only values of ``<size>`` that are supported by the target
1976 will work. 32 (float) and 64 (double) are supported on all targets; 80
1977 or 128 (different flavors of long double) are also supported on some
1978 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001979``a:<abi>:<pref>``
1980 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001981``m:<mangling>``
Reid Klecknerf8b51c52018-03-16 20:13:32 +00001982 If present, specifies that llvm names are mangled in the output. Symbols
1983 prefixed with the mangling escape character ``\01`` are passed through
1984 directly to the assembler without the escape character. The mangling style
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001985 options are
1986
1987 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1988 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1989 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1990 symbols get a ``_`` prefix.
Reid Klecknerf8b51c52018-03-16 20:13:32 +00001991 * ``x``: Windows x86 COFF mangling: Private symbols get the usual prefix.
1992 Regular C symbols get a ``_`` prefix. Functions with ``__stdcall``,
1993 ``__fastcall``, and ``__vectorcall`` have custom mangling that appends
1994 ``@N`` where N is the number of bytes used to pass parameters. C++ symbols
1995 starting with ``?`` are not mangled in any way.
1996 * ``w``: Windows COFF mangling: Similar to ``x``, except that normal C
1997 symbols do not receive a ``_`` prefix.
Sean Silvab084af42012-12-07 10:36:55 +00001998``n<size1>:<size2>:<size3>...``
1999 This specifies a set of native integer widths for the target CPU in
2000 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
2001 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
2002 this set are considered to support most general arithmetic operations
2003 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00002004``ni:<address space0>:<address space1>:<address space2>...``
2005 This specifies pointer types with the specified address spaces
2006 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
2007 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00002008
Rafael Espindolaabdd7262014-01-06 21:40:24 +00002009On every specification that takes a ``<abi>:<pref>``, specifying the
2010``<pref>`` alignment is optional. If omitted, the preceding ``:``
2011should be omitted too and ``<pref>`` will be equal to ``<abi>``.
2012
Sean Silvab084af42012-12-07 10:36:55 +00002013When constructing the data layout for a given target, LLVM starts with a
2014default set of specifications which are then (possibly) overridden by
2015the specifications in the ``datalayout`` keyword. The default
2016specifications are given in this list:
2017
2018- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00002019- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
2020- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
2021 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002022- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00002023- ``i1:8:8`` - i1 is 8-bit (byte) aligned
2024- ``i8:8:8`` - i8 is 8-bit (byte) aligned
2025- ``i16:16:16`` - i16 is 16-bit aligned
2026- ``i32:32:32`` - i32 is 32-bit aligned
2027- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
2028 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002029- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002030- ``f32:32:32`` - float is 32-bit aligned
2031- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002032- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002033- ``v64:64:64`` - 64-bit vector is 64-bit aligned
2034- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00002035- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002036
2037When LLVM is determining the alignment for a given type, it uses the
2038following rules:
2039
2040#. If the type sought is an exact match for one of the specifications,
2041 that specification is used.
2042#. If no match is found, and the type sought is an integer type, then
2043 the smallest integer type that is larger than the bitwidth of the
2044 sought type is used. If none of the specifications are larger than
2045 the bitwidth then the largest integer type is used. For example,
2046 given the default specifications above, the i7 type will use the
2047 alignment of i8 (next largest) while both i65 and i256 will use the
2048 alignment of i64 (largest specified).
2049#. If no match is found, and the type sought is a vector type, then the
2050 largest vector type that is smaller than the sought vector type will
2051 be used as a fall back. This happens because <128 x double> can be
2052 implemented in terms of 64 <2 x double>, for example.
2053
2054The function of the data layout string may not be what you expect.
2055Notably, this is not a specification from the frontend of what alignment
2056the code generator should use.
2057
2058Instead, if specified, the target data layout is required to match what
2059the ultimate *code generator* expects. This string is used by the
2060mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00002061what the ultimate code generator uses. There is no way to generate IR
2062that does not embed this target-specific detail into the IR. If you
2063don't specify the string, the default specifications will be used to
2064generate a Data Layout and the optimization phases will operate
2065accordingly and introduce target specificity into the IR with respect to
2066these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00002067
Bill Wendling5cc90842013-10-18 23:41:25 +00002068.. _langref_triple:
2069
2070Target Triple
2071-------------
2072
2073A module may specify a target triple string that describes the target
2074host. The syntax for the target triple is simply:
2075
2076.. code-block:: llvm
2077
2078 target triple = "x86_64-apple-macosx10.7.0"
2079
2080The *target triple* string consists of a series of identifiers delimited
2081by the minus sign character ('-'). The canonical forms are:
2082
2083::
2084
2085 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2086 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2087
2088This information is passed along to the backend so that it generates
2089code for the proper architecture. It's possible to override this on the
2090command line with the ``-mtriple`` command line option.
2091
Sean Silvab084af42012-12-07 10:36:55 +00002092.. _pointeraliasing:
2093
2094Pointer Aliasing Rules
2095----------------------
2096
2097Any memory access must be done through a pointer value associated with
2098an address range of the memory access, otherwise the behavior is
2099undefined. Pointer values are associated with address ranges according
2100to the following rules:
2101
2102- A pointer value is associated with the addresses associated with any
2103 value it is *based* on.
2104- An address of a global variable is associated with the address range
2105 of the variable's storage.
2106- The result value of an allocation instruction is associated with the
2107 address range of the allocated storage.
2108- A null pointer in the default address-space is associated with no
2109 address.
2110- An integer constant other than zero or a pointer value returned from
2111 a function not defined within LLVM may be associated with address
2112 ranges allocated through mechanisms other than those provided by
2113 LLVM. Such ranges shall not overlap with any ranges of addresses
2114 allocated by mechanisms provided by LLVM.
2115
2116A pointer value is *based* on another pointer value according to the
2117following rules:
2118
Sanjoy Das6d489492017-09-13 18:49:22 +00002119- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2120 the pointer-typed operand of the ``getelementptr``.
2121- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2122 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2123 of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002124- The result value of a ``bitcast`` is *based* on the operand of the
2125 ``bitcast``.
2126- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2127 values that contribute (directly or indirectly) to the computation of
2128 the pointer's value.
2129- The "*based* on" relationship is transitive.
2130
2131Note that this definition of *"based"* is intentionally similar to the
2132definition of *"based"* in C99, though it is slightly weaker.
2133
2134LLVM IR does not associate types with memory. The result type of a
2135``load`` merely indicates the size and alignment of the memory from
2136which to load, as well as the interpretation of the value. The first
2137operand type of a ``store`` similarly only indicates the size and
2138alignment of the store.
2139
2140Consequently, type-based alias analysis, aka TBAA, aka
2141``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2142:ref:`Metadata <metadata>` may be used to encode additional information
2143which specialized optimization passes may use to implement type-based
2144alias analysis.
2145
2146.. _volatile:
2147
2148Volatile Memory Accesses
2149------------------------
2150
2151Certain memory accesses, such as :ref:`load <i_load>`'s,
2152:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2153marked ``volatile``. The optimizers must not change the number of
2154volatile operations or change their order of execution relative to other
2155volatile operations. The optimizers *may* change the order of volatile
2156operations relative to non-volatile operations. This is not Java's
2157"volatile" and has no cross-thread synchronization behavior.
2158
Andrew Trick89fc5a62013-01-30 21:19:35 +00002159IR-level volatile loads and stores cannot safely be optimized into
2160llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2161flagged volatile. Likewise, the backend should never split or merge
2162target-legal volatile load/store instructions.
2163
Andrew Trick7e6f9282013-01-31 00:49:39 +00002164.. admonition:: Rationale
2165
2166 Platforms may rely on volatile loads and stores of natively supported
2167 data width to be executed as single instruction. For example, in C
2168 this holds for an l-value of volatile primitive type with native
2169 hardware support, but not necessarily for aggregate types. The
2170 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002171 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002172 do not violate the frontend's contract with the language.
2173
Sean Silvab084af42012-12-07 10:36:55 +00002174.. _memmodel:
2175
2176Memory Model for Concurrent Operations
2177--------------------------------------
2178
2179The LLVM IR does not define any way to start parallel threads of
2180execution or to register signal handlers. Nonetheless, there are
2181platform-specific ways to create them, and we define LLVM IR's behavior
2182in their presence. This model is inspired by the C++0x memory model.
2183
2184For a more informal introduction to this model, see the :doc:`Atomics`.
2185
2186We define a *happens-before* partial order as the least partial order
2187that
2188
2189- Is a superset of single-thread program order, and
2190- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2191 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2192 techniques, like pthread locks, thread creation, thread joining,
2193 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2194 Constraints <ordering>`).
2195
2196Note that program order does not introduce *happens-before* edges
2197between a thread and signals executing inside that thread.
2198
2199Every (defined) read operation (load instructions, memcpy, atomic
2200loads/read-modify-writes, etc.) R reads a series of bytes written by
2201(defined) write operations (store instructions, atomic
2202stores/read-modify-writes, memcpy, etc.). For the purposes of this
2203section, initialized globals are considered to have a write of the
2204initializer which is atomic and happens before any other read or write
2205of the memory in question. For each byte of a read R, R\ :sub:`byte`
2206may see any write to the same byte, except:
2207
2208- If write\ :sub:`1` happens before write\ :sub:`2`, and
2209 write\ :sub:`2` happens before R\ :sub:`byte`, then
2210 R\ :sub:`byte` does not see write\ :sub:`1`.
2211- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2212 R\ :sub:`byte` does not see write\ :sub:`3`.
2213
2214Given that definition, R\ :sub:`byte` is defined as follows:
2215
2216- If R is volatile, the result is target-dependent. (Volatile is
2217 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002218 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002219 like normal memory. It does not generally provide cross-thread
2220 synchronization.)
2221- Otherwise, if there is no write to the same byte that happens before
2222 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2223- Otherwise, if R\ :sub:`byte` may see exactly one write,
2224 R\ :sub:`byte` returns the value written by that write.
2225- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2226 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2227 Memory Ordering Constraints <ordering>` section for additional
2228 constraints on how the choice is made.
2229- Otherwise R\ :sub:`byte` returns ``undef``.
2230
2231R returns the value composed of the series of bytes it read. This
2232implies that some bytes within the value may be ``undef`` **without**
2233the entire value being ``undef``. Note that this only defines the
2234semantics of the operation; it doesn't mean that targets will emit more
2235than one instruction to read the series of bytes.
2236
2237Note that in cases where none of the atomic intrinsics are used, this
2238model places only one restriction on IR transformations on top of what
2239is required for single-threaded execution: introducing a store to a byte
2240which might not otherwise be stored is not allowed in general.
2241(Specifically, in the case where another thread might write to and read
2242from an address, introducing a store can change a load that may see
2243exactly one write into a load that may see multiple writes.)
2244
2245.. _ordering:
2246
2247Atomic Memory Ordering Constraints
2248----------------------------------
2249
2250Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2251:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2252:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002253ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002254the same address they *synchronize with*. These semantics are borrowed
2255from Java and C++0x, but are somewhat more colloquial. If these
2256descriptions aren't precise enough, check those specs (see spec
2257references in the :doc:`atomics guide <Atomics>`).
2258:ref:`fence <i_fence>` instructions treat these orderings somewhat
2259differently since they don't take an address. See that instruction's
2260documentation for details.
2261
2262For a simpler introduction to the ordering constraints, see the
2263:doc:`Atomics`.
2264
2265``unordered``
2266 The set of values that can be read is governed by the happens-before
2267 partial order. A value cannot be read unless some operation wrote
2268 it. This is intended to provide a guarantee strong enough to model
2269 Java's non-volatile shared variables. This ordering cannot be
2270 specified for read-modify-write operations; it is not strong enough
2271 to make them atomic in any interesting way.
2272``monotonic``
2273 In addition to the guarantees of ``unordered``, there is a single
2274 total order for modifications by ``monotonic`` operations on each
2275 address. All modification orders must be compatible with the
2276 happens-before order. There is no guarantee that the modification
2277 orders can be combined to a global total order for the whole program
2278 (and this often will not be possible). The read in an atomic
2279 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2280 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2281 order immediately before the value it writes. If one atomic read
2282 happens before another atomic read of the same address, the later
2283 read must see the same value or a later value in the address's
2284 modification order. This disallows reordering of ``monotonic`` (or
2285 stronger) operations on the same address. If an address is written
2286 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2287 read that address repeatedly, the other threads must eventually see
2288 the write. This corresponds to the C++0x/C1x
2289 ``memory_order_relaxed``.
2290``acquire``
2291 In addition to the guarantees of ``monotonic``, a
2292 *synchronizes-with* edge may be formed with a ``release`` operation.
2293 This is intended to model C++'s ``memory_order_acquire``.
2294``release``
2295 In addition to the guarantees of ``monotonic``, if this operation
2296 writes a value which is subsequently read by an ``acquire``
2297 operation, it *synchronizes-with* that operation. (This isn't a
2298 complete description; see the C++0x definition of a release
2299 sequence.) This corresponds to the C++0x/C1x
2300 ``memory_order_release``.
2301``acq_rel`` (acquire+release)
2302 Acts as both an ``acquire`` and ``release`` operation on its
2303 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2304``seq_cst`` (sequentially consistent)
2305 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002306 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002307 writes), there is a global total order on all
2308 sequentially-consistent operations on all addresses, which is
2309 consistent with the *happens-before* partial order and with the
2310 modification orders of all the affected addresses. Each
2311 sequentially-consistent read sees the last preceding write to the
2312 same address in this global order. This corresponds to the C++0x/C1x
2313 ``memory_order_seq_cst`` and Java volatile.
2314
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002315.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002316
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002317If an atomic operation is marked ``syncscope("singlethread")``, it only
2318*synchronizes with* and only participates in the seq\_cst total orderings of
2319other operations running in the same thread (for example, in signal handlers).
2320
2321If an atomic operation is marked ``syncscope("<target-scope>")``, where
2322``<target-scope>`` is a target specific synchronization scope, then it is target
2323dependent if it *synchronizes with* and participates in the seq\_cst total
2324orderings of other operations.
2325
2326Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2327or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2328seq\_cst total orderings of other operations that are not marked
2329``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002330
Sanjay Patel54b161e2018-03-20 16:38:22 +00002331.. _floatenv:
2332
2333Floating-Point Environment
2334--------------------------
2335
2336The default LLVM floating-point environment assumes that floating-point
2337instructions do not have side effects. Results assume the round-to-nearest
2338rounding mode. No floating-point exception state is maintained in this
2339environment. Therefore, there is no attempt to create or preserve invalid
Chandler Carruth297620d2018-08-06 02:02:09 +00002340operation (SNaN) or division-by-zero exceptions.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002341
2342The benefit of this exception-free assumption is that floating-point
2343operations may be speculated freely without any other fast-math relaxations
2344to the floating-point model.
2345
2346Code that requires different behavior than this should use the
Sanjay Patelec95e0e2018-03-20 17:05:19 +00002347:ref:`Constrained Floating-Point Intrinsics <constrainedfp>`.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002348
Sean Silvab084af42012-12-07 10:36:55 +00002349.. _fastmath:
2350
2351Fast-Math Flags
2352---------------
2353
Sanjay Patel629c4112017-11-06 16:27:15 +00002354LLVM IR floating-point operations (:ref:`fadd <i_fadd>`,
Sean Silvab084af42012-12-07 10:36:55 +00002355:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002356:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002357may use the following flags to enable otherwise unsafe
Sanjay Patel629c4112017-11-06 16:27:15 +00002358floating-point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002359
2360``nnan``
2361 No NaNs - Allow optimizations to assume the arguments and result are not
Eli Friedmand3a30872018-07-17 20:31:42 +00002362 NaN. If an argument is a nan, or the result would be a nan, it produces
2363 a :ref:`poison value <poisonvalues>` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002364
2365``ninf``
2366 No Infs - Allow optimizations to assume the arguments and result are not
Eli Friedmand3a30872018-07-17 20:31:42 +00002367 +/-Inf. If an argument is +/-Inf, or the result would be +/-Inf, it
2368 produces a :ref:`poison value <poisonvalues>` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002369
2370``nsz``
2371 No Signed Zeros - Allow optimizations to treat the sign of a zero
2372 argument or result as insignificant.
2373
2374``arcp``
2375 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2376 argument rather than perform division.
2377
Adam Nemetcd847a82017-03-28 20:11:52 +00002378``contract``
2379 Allow floating-point contraction (e.g. fusing a multiply followed by an
2380 addition into a fused multiply-and-add).
2381
Sanjay Patel629c4112017-11-06 16:27:15 +00002382``afn``
2383 Approximate functions - Allow substitution of approximate calculations for
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002384 functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2385 for places where this can apply to LLVM's intrinsic math functions.
Sanjay Patel629c4112017-11-06 16:27:15 +00002386
2387``reassoc``
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002388 Allow reassociation transformations for floating-point instructions.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002389 This may dramatically change results in floating-point.
Sanjay Patel629c4112017-11-06 16:27:15 +00002390
Sean Silvab084af42012-12-07 10:36:55 +00002391``fast``
Sanjay Patel629c4112017-11-06 16:27:15 +00002392 This flag implies all of the others.
Sean Silvab084af42012-12-07 10:36:55 +00002393
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002394.. _uselistorder:
2395
2396Use-list Order Directives
2397-------------------------
2398
2399Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002400order to be recreated. ``<order-indexes>`` is a comma-separated list of
2401indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002402value's use-list is immediately sorted by these indexes.
2403
Sean Silvaa1190322015-08-06 22:56:48 +00002404Use-list directives may appear at function scope or global scope. They are not
2405instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002406function scope, they must appear after the terminator of the final basic block.
2407
2408If basic blocks have their address taken via ``blockaddress()`` expressions,
2409``uselistorder_bb`` can be used to reorder their use-lists from outside their
2410function's scope.
2411
2412:Syntax:
2413
2414::
2415
2416 uselistorder <ty> <value>, { <order-indexes> }
2417 uselistorder_bb @function, %block { <order-indexes> }
2418
2419:Examples:
2420
2421::
2422
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002423 define void @foo(i32 %arg1, i32 %arg2) {
2424 entry:
2425 ; ... instructions ...
2426 bb:
2427 ; ... instructions ...
2428
2429 ; At function scope.
2430 uselistorder i32 %arg1, { 1, 0, 2 }
2431 uselistorder label %bb, { 1, 0 }
2432 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002433
2434 ; At global scope.
2435 uselistorder i32* @global, { 1, 2, 0 }
2436 uselistorder i32 7, { 1, 0 }
2437 uselistorder i32 (i32) @bar, { 1, 0 }
2438 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2439
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002440.. _source_filename:
2441
2442Source Filename
2443---------------
2444
2445The *source filename* string is set to the original module identifier,
2446which will be the name of the compiled source file when compiling from
2447source through the clang front end, for example. It is then preserved through
2448the IR and bitcode.
2449
2450This is currently necessary to generate a consistent unique global
2451identifier for local functions used in profile data, which prepends the
2452source file name to the local function name.
2453
2454The syntax for the source file name is simply:
2455
Renato Golin124f2592016-07-20 12:16:38 +00002456.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002457
2458 source_filename = "/path/to/source.c"
2459
Sean Silvab084af42012-12-07 10:36:55 +00002460.. _typesystem:
2461
2462Type System
2463===========
2464
2465The LLVM type system is one of the most important features of the
2466intermediate representation. Being typed enables a number of
2467optimizations to be performed on the intermediate representation
2468directly, without having to do extra analyses on the side before the
2469transformation. A strong type system makes it easier to read the
2470generated code and enables novel analyses and transformations that are
2471not feasible to perform on normal three address code representations.
2472
Rafael Espindola08013342013-12-07 19:34:20 +00002473.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002474
Rafael Espindola08013342013-12-07 19:34:20 +00002475Void Type
2476---------
Sean Silvab084af42012-12-07 10:36:55 +00002477
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002478:Overview:
2479
Rafael Espindola08013342013-12-07 19:34:20 +00002480
2481The void type does not represent any value and has no size.
2482
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002483:Syntax:
2484
Rafael Espindola08013342013-12-07 19:34:20 +00002485
2486::
2487
2488 void
Sean Silvab084af42012-12-07 10:36:55 +00002489
2490
Rafael Espindola08013342013-12-07 19:34:20 +00002491.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002492
Rafael Espindola08013342013-12-07 19:34:20 +00002493Function Type
2494-------------
Sean Silvab084af42012-12-07 10:36:55 +00002495
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002496:Overview:
2497
Sean Silvab084af42012-12-07 10:36:55 +00002498
Rafael Espindola08013342013-12-07 19:34:20 +00002499The function type can be thought of as a function signature. It consists of a
2500return type and a list of formal parameter types. The return type of a function
2501type is a void type or first class type --- except for :ref:`label <t_label>`
2502and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002503
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002504:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002505
Rafael Espindola08013342013-12-07 19:34:20 +00002506::
Sean Silvab084af42012-12-07 10:36:55 +00002507
Rafael Espindola08013342013-12-07 19:34:20 +00002508 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002509
Rafael Espindola08013342013-12-07 19:34:20 +00002510...where '``<parameter list>``' is a comma-separated list of type
2511specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002512indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002513argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002514handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002515except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002516
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002517:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002518
Rafael Espindola08013342013-12-07 19:34:20 +00002519+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2520| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2521+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2522| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2523+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2524| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2525+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2526| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2527+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2528
2529.. _t_firstclass:
2530
2531First Class Types
2532-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002533
2534The :ref:`first class <t_firstclass>` types are perhaps the most important.
2535Values of these types are the only ones which can be produced by
2536instructions.
2537
Rafael Espindola08013342013-12-07 19:34:20 +00002538.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002539
Rafael Espindola08013342013-12-07 19:34:20 +00002540Single Value Types
2541^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002542
Rafael Espindola08013342013-12-07 19:34:20 +00002543These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002544
2545.. _t_integer:
2546
2547Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002548""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002549
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002550:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002551
2552The integer type is a very simple type that simply specifies an
2553arbitrary bit width for the integer type desired. Any bit width from 1
2554bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2555
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002556:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002557
2558::
2559
2560 iN
2561
2562The number of bits the integer will occupy is specified by the ``N``
2563value.
2564
2565Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002566*********
Sean Silvab084af42012-12-07 10:36:55 +00002567
2568+----------------+------------------------------------------------+
2569| ``i1`` | a single-bit integer. |
2570+----------------+------------------------------------------------+
2571| ``i32`` | a 32-bit integer. |
2572+----------------+------------------------------------------------+
2573| ``i1942652`` | a really big integer of over 1 million bits. |
2574+----------------+------------------------------------------------+
2575
2576.. _t_floating:
2577
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002578Floating-Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002579""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002580
2581.. list-table::
2582 :header-rows: 1
2583
2584 * - Type
2585 - Description
2586
2587 * - ``half``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002588 - 16-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002589
2590 * - ``float``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002591 - 32-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002592
2593 * - ``double``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002594 - 64-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002595
2596 * - ``fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002597 - 128-bit floating-point value (112-bit mantissa)
Sean Silvab084af42012-12-07 10:36:55 +00002598
2599 * - ``x86_fp80``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002600 - 80-bit floating-point value (X87)
Sean Silvab084af42012-12-07 10:36:55 +00002601
2602 * - ``ppc_fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002603 - 128-bit floating-point value (two 64-bits)
Sean Silvab084af42012-12-07 10:36:55 +00002604
Sanjay Patelbab6ce02018-03-21 15:22:09 +00002605The binary format of half, float, double, and fp128 correspond to the
2606IEEE-754-2008 specifications for binary16, binary32, binary64, and binary128
2607respectively.
2608
Reid Kleckner9a16d082014-03-05 02:41:37 +00002609X86_mmx Type
2610""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002611
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002612:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002613
Reid Kleckner9a16d082014-03-05 02:41:37 +00002614The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002615machine. The operations allowed on it are quite limited: parameters and
2616return values, load and store, and bitcast. User-specified MMX
2617instructions are represented as intrinsic or asm calls with arguments
2618and/or results of this type. There are no arrays, vectors or constants
2619of this type.
2620
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002621:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002622
2623::
2624
Reid Kleckner9a16d082014-03-05 02:41:37 +00002625 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002626
Sean Silvab084af42012-12-07 10:36:55 +00002627
Rafael Espindola08013342013-12-07 19:34:20 +00002628.. _t_pointer:
2629
2630Pointer Type
2631""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002632
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002633:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002634
Rafael Espindola08013342013-12-07 19:34:20 +00002635The pointer type is used to specify memory locations. Pointers are
2636commonly used to reference objects in memory.
2637
2638Pointer types may have an optional address space attribute defining the
2639numbered address space where the pointed-to object resides. The default
2640address space is number zero. The semantics of non-zero address spaces
2641are target-specific.
2642
2643Note that LLVM does not permit pointers to void (``void*``) nor does it
2644permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002645
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002646:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002647
2648::
2649
Rafael Espindola08013342013-12-07 19:34:20 +00002650 <type> *
2651
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002652:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002653
2654+-------------------------+--------------------------------------------------------------------------------------------------------------+
2655| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2656+-------------------------+--------------------------------------------------------------------------------------------------------------+
2657| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2658+-------------------------+--------------------------------------------------------------------------------------------------------------+
2659| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2660+-------------------------+--------------------------------------------------------------------------------------------------------------+
2661
2662.. _t_vector:
2663
2664Vector Type
2665"""""""""""
2666
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002667:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002668
2669A vector type is a simple derived type that represents a vector of
2670elements. Vector types are used when multiple primitive data are
2671operated in parallel using a single instruction (SIMD). A vector type
2672requires a size (number of elements) and an underlying primitive data
2673type. Vector types are considered :ref:`first class <t_firstclass>`.
2674
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002675:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002676
2677::
2678
2679 < <# elements> x <elementtype> >
2680
2681The number of elements is a constant integer value larger than 0;
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002682elementtype may be any integer, floating-point or pointer type. Vectors
Manuel Jacob961f7872014-07-30 12:30:06 +00002683of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002684
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002685:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002686
2687+-------------------+--------------------------------------------------+
2688| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2689+-------------------+--------------------------------------------------+
2690| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2691+-------------------+--------------------------------------------------+
2692| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2693+-------------------+--------------------------------------------------+
2694| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2695+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002696
2697.. _t_label:
2698
2699Label Type
2700^^^^^^^^^^
2701
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002702:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002703
2704The label type represents code labels.
2705
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002706:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002707
2708::
2709
2710 label
2711
David Majnemerb611e3f2015-08-14 05:09:07 +00002712.. _t_token:
2713
2714Token Type
2715^^^^^^^^^^
2716
2717:Overview:
2718
2719The token type is used when a value is associated with an instruction
2720but all uses of the value must not attempt to introspect or obscure it.
2721As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2722:ref:`select <i_select>` of type token.
2723
2724:Syntax:
2725
2726::
2727
2728 token
2729
2730
2731
Sean Silvab084af42012-12-07 10:36:55 +00002732.. _t_metadata:
2733
2734Metadata Type
2735^^^^^^^^^^^^^
2736
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002737:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002738
2739The metadata type represents embedded metadata. No derived types may be
2740created from metadata except for :ref:`function <t_function>` arguments.
2741
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002742:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002743
2744::
2745
2746 metadata
2747
Sean Silvab084af42012-12-07 10:36:55 +00002748.. _t_aggregate:
2749
2750Aggregate Types
2751^^^^^^^^^^^^^^^
2752
2753Aggregate Types are a subset of derived types that can contain multiple
2754member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2755aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2756aggregate types.
2757
2758.. _t_array:
2759
2760Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002761""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002762
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002763:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002764
2765The array type is a very simple derived type that arranges elements
2766sequentially in memory. The array type requires a size (number of
2767elements) and an underlying data type.
2768
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002769:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002770
2771::
2772
2773 [<# elements> x <elementtype>]
2774
2775The number of elements is a constant integer value; ``elementtype`` may
2776be any type with a size.
2777
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002778:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002779
2780+------------------+--------------------------------------+
2781| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2782+------------------+--------------------------------------+
2783| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2784+------------------+--------------------------------------+
2785| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2786+------------------+--------------------------------------+
2787
2788Here are some examples of multidimensional arrays:
2789
2790+-----------------------------+----------------------------------------------------------+
2791| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2792+-----------------------------+----------------------------------------------------------+
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002793| ``[12 x [10 x float]]`` | 12x10 array of single precision floating-point values. |
Sean Silvab084af42012-12-07 10:36:55 +00002794+-----------------------------+----------------------------------------------------------+
2795| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2796+-----------------------------+----------------------------------------------------------+
2797
2798There is no restriction on indexing beyond the end of the array implied
2799by a static type (though there are restrictions on indexing beyond the
2800bounds of an allocated object in some cases). This means that
2801single-dimension 'variable sized array' addressing can be implemented in
2802LLVM with a zero length array type. An implementation of 'pascal style
2803arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2804example.
2805
Sean Silvab084af42012-12-07 10:36:55 +00002806.. _t_struct:
2807
2808Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002809""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002810
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002811:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002812
2813The structure type is used to represent a collection of data members
2814together in memory. The elements of a structure may be any type that has
2815a size.
2816
2817Structures in memory are accessed using '``load``' and '``store``' by
2818getting a pointer to a field with the '``getelementptr``' instruction.
2819Structures in registers are accessed using the '``extractvalue``' and
2820'``insertvalue``' instructions.
2821
2822Structures may optionally be "packed" structures, which indicate that
2823the alignment of the struct is one byte, and that there is no padding
2824between the elements. In non-packed structs, padding between field types
2825is inserted as defined by the DataLayout string in the module, which is
2826required to match what the underlying code generator expects.
2827
2828Structures can either be "literal" or "identified". A literal structure
2829is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2830identified types are always defined at the top level with a name.
2831Literal types are uniqued by their contents and can never be recursive
2832or opaque since there is no way to write one. Identified types can be
2833recursive, can be opaqued, and are never uniqued.
2834
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002835:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002836
2837::
2838
2839 %T1 = type { <type list> } ; Identified normal struct type
2840 %T2 = type <{ <type list> }> ; Identified packed struct type
2841
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002842:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002843
2844+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2845| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2846+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002847| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002848+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2849| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2850+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2851
2852.. _t_opaque:
2853
2854Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002855""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002856
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002857:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002858
2859Opaque structure types are used to represent named structure types that
2860do not have a body specified. This corresponds (for example) to the C
2861notion of a forward declared structure.
2862
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002863:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002864
2865::
2866
2867 %X = type opaque
2868 %52 = type opaque
2869
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002870:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002871
2872+--------------+-------------------+
2873| ``opaque`` | An opaque type. |
2874+--------------+-------------------+
2875
Sean Silva1703e702014-04-08 21:06:22 +00002876.. _constants:
2877
Sean Silvab084af42012-12-07 10:36:55 +00002878Constants
2879=========
2880
2881LLVM has several different basic types of constants. This section
2882describes them all and their syntax.
2883
2884Simple Constants
2885----------------
2886
2887**Boolean constants**
2888 The two strings '``true``' and '``false``' are both valid constants
2889 of the ``i1`` type.
2890**Integer constants**
2891 Standard integers (such as '4') are constants of the
2892 :ref:`integer <t_integer>` type. Negative numbers may be used with
2893 integer types.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002894**Floating-point constants**
2895 Floating-point constants use standard decimal notation (e.g.
Sean Silvab084af42012-12-07 10:36:55 +00002896 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2897 hexadecimal notation (see below). The assembler requires the exact
2898 decimal value of a floating-point constant. For example, the
2899 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002900 decimal in binary. Floating-point constants must have a
2901 :ref:`floating-point <t_floating>` type.
Sean Silvab084af42012-12-07 10:36:55 +00002902**Null pointer constants**
2903 The identifier '``null``' is recognized as a null pointer constant
2904 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002905**Token constants**
2906 The identifier '``none``' is recognized as an empty token constant
2907 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002908
2909The one non-intuitive notation for constants is the hexadecimal form of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002910floating-point constants. For example, the form
Sean Silvab084af42012-12-07 10:36:55 +00002911'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002912than) '``double 4.5e+15``'. The only time hexadecimal floating-point
Sean Silvab084af42012-12-07 10:36:55 +00002913constants are required (and the only time that they are generated by the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002914disassembler) is when a floating-point constant must be emitted but it
2915cannot be represented as a decimal floating-point number in a reasonable
Sean Silvab084af42012-12-07 10:36:55 +00002916number of digits. For example, NaN's, infinities, and other special
2917values are represented in their IEEE hexadecimal format so that assembly
2918and disassembly do not cause any bits to change in the constants.
2919
2920When using the hexadecimal form, constants of types half, float, and
2921double are represented using the 16-digit form shown above (which
2922matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002923must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002924precision, respectively. Hexadecimal format is always used for long
2925double, and there are three forms of long double. The 80-bit format used
2926by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2927128-bit format used by PowerPC (two adjacent doubles) is represented by
2928``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002929represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2930will only work if they match the long double format on your target.
2931The IEEE 16-bit format (half precision) is represented by ``0xH``
2932followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2933(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002934
Reid Kleckner9a16d082014-03-05 02:41:37 +00002935There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002936
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002937.. _complexconstants:
2938
Sean Silvab084af42012-12-07 10:36:55 +00002939Complex Constants
2940-----------------
2941
2942Complex constants are a (potentially recursive) combination of simple
2943constants and smaller complex constants.
2944
2945**Structure constants**
2946 Structure constants are represented with notation similar to
2947 structure type definitions (a comma separated list of elements,
2948 surrounded by braces (``{}``)). For example:
2949 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2950 "``@G = external global i32``". Structure constants must have
2951 :ref:`structure type <t_struct>`, and the number and types of elements
2952 must match those specified by the type.
2953**Array constants**
2954 Array constants are represented with notation similar to array type
2955 definitions (a comma separated list of elements, surrounded by
2956 square brackets (``[]``)). For example:
2957 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2958 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002959 match those specified by the type. As a special case, character array
2960 constants may also be represented as a double-quoted string using the ``c``
2961 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002962**Vector constants**
2963 Vector constants are represented with notation similar to vector
2964 type definitions (a comma separated list of elements, surrounded by
2965 less-than/greater-than's (``<>``)). For example:
2966 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2967 must have :ref:`vector type <t_vector>`, and the number and types of
2968 elements must match those specified by the type.
2969**Zero initialization**
2970 The string '``zeroinitializer``' can be used to zero initialize a
2971 value to zero of *any* type, including scalar and
2972 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2973 having to print large zero initializers (e.g. for large arrays) and
2974 is always exactly equivalent to using explicit zero initializers.
2975**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002976 A metadata node is a constant tuple without types. For example:
2977 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002978 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2979 Unlike other typed constants that are meant to be interpreted as part of
2980 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002981 information such as debug info.
2982
2983Global Variable and Function Addresses
2984--------------------------------------
2985
2986The addresses of :ref:`global variables <globalvars>` and
2987:ref:`functions <functionstructure>` are always implicitly valid
2988(link-time) constants. These constants are explicitly referenced when
2989the :ref:`identifier for the global <identifiers>` is used and always have
2990:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2991file:
2992
2993.. code-block:: llvm
2994
2995 @X = global i32 17
2996 @Y = global i32 42
2997 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2998
2999.. _undefvalues:
3000
3001Undefined Values
3002----------------
3003
3004The string '``undef``' can be used anywhere a constant is expected, and
3005indicates that the user of the value may receive an unspecified
3006bit-pattern. Undefined values may be of any type (other than '``label``'
3007or '``void``') and be used anywhere a constant is permitted.
3008
3009Undefined values are useful because they indicate to the compiler that
3010the program is well defined no matter what value is used. This gives the
3011compiler more freedom to optimize. Here are some examples of
3012(potentially surprising) transformations that are valid (in pseudo IR):
3013
3014.. code-block:: llvm
3015
3016 %A = add %X, undef
3017 %B = sub %X, undef
3018 %C = xor %X, undef
3019 Safe:
3020 %A = undef
3021 %B = undef
3022 %C = undef
3023
3024This is safe because all of the output bits are affected by the undef
3025bits. Any output bit can have a zero or one depending on the input bits.
3026
3027.. code-block:: llvm
3028
3029 %A = or %X, undef
3030 %B = and %X, undef
3031 Safe:
3032 %A = -1
3033 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00003034 Safe:
3035 %A = %X ;; By choosing undef as 0
3036 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00003037 Unsafe:
3038 %A = undef
3039 %B = undef
3040
3041These logical operations have bits that are not always affected by the
3042input. For example, if ``%X`` has a zero bit, then the output of the
3043'``and``' operation will always be a zero for that bit, no matter what
3044the corresponding bit from the '``undef``' is. As such, it is unsafe to
3045optimize or assume that the result of the '``and``' is '``undef``'.
3046However, it is safe to assume that all bits of the '``undef``' could be
30470, and optimize the '``and``' to 0. Likewise, it is safe to assume that
3048all the bits of the '``undef``' operand to the '``or``' could be set,
3049allowing the '``or``' to be folded to -1.
3050
3051.. code-block:: llvm
3052
3053 %A = select undef, %X, %Y
3054 %B = select undef, 42, %Y
3055 %C = select %X, %Y, undef
3056 Safe:
3057 %A = %X (or %Y)
3058 %B = 42 (or %Y)
3059 %C = %Y
3060 Unsafe:
3061 %A = undef
3062 %B = undef
3063 %C = undef
3064
3065This set of examples shows that undefined '``select``' (and conditional
3066branch) conditions can go *either way*, but they have to come from one
3067of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
3068both known to have a clear low bit, then ``%A`` would have to have a
3069cleared low bit. However, in the ``%C`` example, the optimizer is
3070allowed to assume that the '``undef``' operand could be the same as
3071``%Y``, allowing the whole '``select``' to be eliminated.
3072
Renato Golin124f2592016-07-20 12:16:38 +00003073.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003074
3075 %A = xor undef, undef
3076
3077 %B = undef
3078 %C = xor %B, %B
3079
3080 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00003081 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00003082 %F = icmp gte %D, 4
3083
3084 Safe:
3085 %A = undef
3086 %B = undef
3087 %C = undef
3088 %D = undef
3089 %E = undef
3090 %F = undef
3091
3092This example points out that two '``undef``' operands are not
3093necessarily the same. This can be surprising to people (and also matches
3094C semantics) where they assume that "``X^X``" is always zero, even if
3095``X`` is undefined. This isn't true for a number of reasons, but the
3096short answer is that an '``undef``' "variable" can arbitrarily change
3097its value over its "live range". This is true because the variable
3098doesn't actually *have a live range*. Instead, the value is logically
3099read from arbitrary registers that happen to be around when needed, so
3100the value is not necessarily consistent over time. In fact, ``%A`` and
3101``%C`` need to have the same semantics or the core LLVM "replace all
3102uses with" concept would not hold.
3103
3104.. code-block:: llvm
3105
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003106 %A = sdiv undef, %X
3107 %B = sdiv %X, undef
Sean Silvab084af42012-12-07 10:36:55 +00003108 Safe:
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003109 %A = 0
Sean Silvab084af42012-12-07 10:36:55 +00003110 b: unreachable
3111
3112These examples show the crucial difference between an *undefined value*
3113and *undefined behavior*. An undefined value (like '``undef``') is
3114allowed to have an arbitrary bit-pattern. This means that the ``%A``
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003115operation can be constant folded to '``0``', because the '``undef``'
3116could be zero, and zero divided by any value is zero.
Sean Silvab084af42012-12-07 10:36:55 +00003117However, in the second example, we can make a more aggressive
3118assumption: because the ``undef`` is allowed to be an arbitrary value,
3119we are allowed to assume that it could be zero. Since a divide by zero
3120has *undefined behavior*, we are allowed to assume that the operation
3121does not execute at all. This allows us to delete the divide and all
3122code after it. Because the undefined operation "can't happen", the
3123optimizer can assume that it occurs in dead code.
3124
Renato Golin124f2592016-07-20 12:16:38 +00003125.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003126
3127 a: store undef -> %X
3128 b: store %X -> undef
3129 Safe:
3130 a: <deleted>
3131 b: unreachable
3132
Sanjay Patel7b722402018-03-07 17:18:22 +00003133A store *of* an undefined value can be assumed to not have any effect;
3134we can assume that the value is overwritten with bits that happen to
3135match what was already there. However, a store *to* an undefined
3136location could clobber arbitrary memory, therefore, it has undefined
3137behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003138
3139.. _poisonvalues:
3140
3141Poison Values
3142-------------
3143
3144Poison values are similar to :ref:`undef values <undefvalues>`, however
3145they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003146that cannot evoke side effects has nevertheless detected a condition
3147that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003148
3149There is currently no way of representing a poison value in the IR; they
3150only exist when produced by operations such as :ref:`add <i_add>` with
3151the ``nsw`` flag.
3152
3153Poison value behavior is defined in terms of value *dependence*:
3154
3155- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3156- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3157 their dynamic predecessor basic block.
3158- Function arguments depend on the corresponding actual argument values
3159 in the dynamic callers of their functions.
3160- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3161 instructions that dynamically transfer control back to them.
3162- :ref:`Invoke <i_invoke>` instructions depend on the
3163 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3164 call instructions that dynamically transfer control back to them.
3165- Non-volatile loads and stores depend on the most recent stores to all
3166 of the referenced memory addresses, following the order in the IR
3167 (including loads and stores implied by intrinsics such as
3168 :ref:`@llvm.memcpy <int_memcpy>`.)
3169- An instruction with externally visible side effects depends on the
3170 most recent preceding instruction with externally visible side
3171 effects, following the order in the IR. (This includes :ref:`volatile
3172 operations <volatile>`.)
3173- An instruction *control-depends* on a :ref:`terminator
3174 instruction <terminators>` if the terminator instruction has
3175 multiple successors and the instruction is always executed when
3176 control transfers to one of the successors, and may not be executed
3177 when control is transferred to another.
3178- Additionally, an instruction also *control-depends* on a terminator
3179 instruction if the set of instructions it otherwise depends on would
3180 be different if the terminator had transferred control to a different
3181 successor.
3182- Dependence is transitive.
3183
Richard Smith32dbdf62014-07-31 04:25:36 +00003184Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3185with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003186on a poison value has undefined behavior.
3187
3188Here are some examples:
3189
3190.. code-block:: llvm
3191
3192 entry:
3193 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3194 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003195 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003196 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3197
3198 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003199 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003200
3201 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3202
3203 %narrowaddr = bitcast i32* @g to i16*
3204 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003205 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3206 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003207
3208 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3209 br i1 %cmp, label %true, label %end ; Branch to either destination.
3210
3211 true:
3212 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3213 ; it has undefined behavior.
3214 br label %end
3215
3216 end:
3217 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3218 ; Both edges into this PHI are
3219 ; control-dependent on %cmp, so this
3220 ; always results in a poison value.
3221
3222 store volatile i32 0, i32* @g ; This would depend on the store in %true
3223 ; if %cmp is true, or the store in %entry
3224 ; otherwise, so this is undefined behavior.
3225
3226 br i1 %cmp, label %second_true, label %second_end
3227 ; The same branch again, but this time the
3228 ; true block doesn't have side effects.
3229
3230 second_true:
3231 ; No side effects!
3232 ret void
3233
3234 second_end:
3235 store volatile i32 0, i32* @g ; This time, the instruction always depends
3236 ; on the store in %end. Also, it is
3237 ; control-equivalent to %end, so this is
3238 ; well-defined (ignoring earlier undefined
3239 ; behavior in this example).
3240
3241.. _blockaddress:
3242
3243Addresses of Basic Blocks
3244-------------------------
3245
3246``blockaddress(@function, %block)``
3247
3248The '``blockaddress``' constant computes the address of the specified
3249basic block in the specified function, and always has an ``i8*`` type.
3250Taking the address of the entry block is illegal.
3251
3252This value only has defined behavior when used as an operand to the
3253':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3254against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003255undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003256no label is equal to the null pointer. This may be passed around as an
3257opaque pointer sized value as long as the bits are not inspected. This
3258allows ``ptrtoint`` and arithmetic to be performed on these values so
3259long as the original value is reconstituted before the ``indirectbr``
3260instruction.
3261
3262Finally, some targets may provide defined semantics when using the value
3263as the operand to an inline assembly, but that is target specific.
3264
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003265.. _constantexprs:
3266
Sean Silvab084af42012-12-07 10:36:55 +00003267Constant Expressions
3268--------------------
3269
3270Constant expressions are used to allow expressions involving other
3271constants to be used as constants. Constant expressions may be of any
3272:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3273that does not have side effects (e.g. load and call are not supported).
3274The following is the syntax for constant expressions:
3275
3276``trunc (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003277 Perform the :ref:`trunc operation <i_trunc>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003278``zext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003279 Perform the :ref:`zext operation <i_zext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003280``sext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003281 Perform the :ref:`sext operation <i_sext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003282``fptrunc (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003283 Truncate a floating-point constant to another floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003284 The size of CST must be larger than the size of TYPE. Both types
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003285 must be floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003286``fpext (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003287 Floating-point extend a constant to another type. The size of CST
Sean Silvab084af42012-12-07 10:36:55 +00003288 must be smaller or equal to the size of TYPE. Both types must be
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003289 floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003290``fptoui (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003291 Convert a floating-point constant to the corresponding unsigned
Sean Silvab084af42012-12-07 10:36:55 +00003292 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003293 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003294 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003295 value won't fit in the integer type, the result is a
3296 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003297``fptosi (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003298 Convert a floating-point constant to the corresponding signed
Sean Silvab084af42012-12-07 10:36:55 +00003299 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003300 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003301 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003302 value won't fit in the integer type, the result is a
3303 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003304``uitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003305 Convert an unsigned integer constant to the corresponding
3306 floating-point constant. TYPE must be a scalar or vector floating-point
3307 type. CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003308 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003309``sitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003310 Convert a signed integer constant to the corresponding floating-point
3311 constant. TYPE must be a scalar or vector floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003312 CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003313 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003314``ptrtoint (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003315 Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003316``inttoptr (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003317 Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003318 This one is *really* dangerous!
3319``bitcast (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003320 Convert a constant, CST, to another TYPE.
3321 The constraints of the operands are the same as those for the
3322 :ref:`bitcast instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003323``addrspacecast (CST to TYPE)``
3324 Convert a constant pointer or constant vector of pointer, CST, to another
3325 TYPE in a different address space. The constraints of the operands are the
3326 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003327``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003328 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3329 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003330 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003331 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003332``select (COND, VAL1, VAL2)``
3333 Perform the :ref:`select operation <i_select>` on constants.
3334``icmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003335 Perform the :ref:`icmp operation <i_icmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003336``fcmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003337 Perform the :ref:`fcmp operation <i_fcmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003338``extractelement (VAL, IDX)``
3339 Perform the :ref:`extractelement operation <i_extractelement>` on
3340 constants.
3341``insertelement (VAL, ELT, IDX)``
3342 Perform the :ref:`insertelement operation <i_insertelement>` on
3343 constants.
3344``shufflevector (VEC1, VEC2, IDXMASK)``
3345 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3346 constants.
3347``extractvalue (VAL, IDX0, IDX1, ...)``
3348 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3349 constants. The index list is interpreted in a similar manner as
3350 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3351 least one index value must be specified.
3352``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3353 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3354 The index list is interpreted in a similar manner as indices in a
3355 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3356 value must be specified.
3357``OPCODE (LHS, RHS)``
3358 Perform the specified operation of the LHS and RHS constants. OPCODE
3359 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3360 binary <bitwiseops>` operations. The constraints on operands are
3361 the same as those for the corresponding instruction (e.g. no bitwise
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003362 operations on floating-point values are allowed).
Sean Silvab084af42012-12-07 10:36:55 +00003363
3364Other Values
3365============
3366
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003367.. _inlineasmexprs:
3368
Sean Silvab084af42012-12-07 10:36:55 +00003369Inline Assembler Expressions
3370----------------------------
3371
3372LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003373Inline Assembly <moduleasm>`) through the use of a special value. This value
3374represents the inline assembler as a template string (containing the
3375instructions to emit), a list of operand constraints (stored as a string), a
3376flag that indicates whether or not the inline asm expression has side effects,
3377and a flag indicating whether the function containing the asm needs to align its
3378stack conservatively.
3379
3380The template string supports argument substitution of the operands using "``$``"
3381followed by a number, to indicate substitution of the given register/memory
3382location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3383be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3384operand (See :ref:`inline-asm-modifiers`).
3385
3386A literal "``$``" may be included by using "``$$``" in the template. To include
3387other special characters into the output, the usual "``\XX``" escapes may be
3388used, just as in other strings. Note that after template substitution, the
3389resulting assembly string is parsed by LLVM's integrated assembler unless it is
3390disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3391syntax known to LLVM.
3392
Reid Kleckner71cb1642017-02-06 18:08:45 +00003393LLVM also supports a few more substitions useful for writing inline assembly:
3394
3395- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3396 This substitution is useful when declaring a local label. Many standard
3397 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3398 Adding a blob-unique identifier ensures that the two labels will not conflict
3399 during assembly. This is used to implement `GCC's %= special format
3400 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3401- ``${:comment}``: Expands to the comment character of the current target's
3402 assembly dialect. This is usually ``#``, but many targets use other strings,
3403 such as ``;``, ``//``, or ``!``.
3404- ``${:private}``: Expands to the assembler private label prefix. Labels with
3405 this prefix will not appear in the symbol table of the assembled object.
3406 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3407 relatively popular.
3408
James Y Knightbc832ed2015-07-08 18:08:36 +00003409LLVM's support for inline asm is modeled closely on the requirements of Clang's
3410GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3411modifier codes listed here are similar or identical to those in GCC's inline asm
3412support. However, to be clear, the syntax of the template and constraint strings
3413described here is *not* the same as the syntax accepted by GCC and Clang, and,
3414while most constraint letters are passed through as-is by Clang, some get
3415translated to other codes when converting from the C source to the LLVM
3416assembly.
3417
3418An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003419
3420.. code-block:: llvm
3421
3422 i32 (i32) asm "bswap $0", "=r,r"
3423
3424Inline assembler expressions may **only** be used as the callee operand
3425of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3426Thus, typically we have:
3427
3428.. code-block:: llvm
3429
3430 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3431
3432Inline asms with side effects not visible in the constraint list must be
3433marked as having side effects. This is done through the use of the
3434'``sideeffect``' keyword, like so:
3435
3436.. code-block:: llvm
3437
3438 call void asm sideeffect "eieio", ""()
3439
3440In some cases inline asms will contain code that will not work unless
3441the stack is aligned in some way, such as calls or SSE instructions on
3442x86, yet will not contain code that does that alignment within the asm.
3443The compiler should make conservative assumptions about what the asm
3444might contain and should generate its usual stack alignment code in the
3445prologue if the '``alignstack``' keyword is present:
3446
3447.. code-block:: llvm
3448
3449 call void asm alignstack "eieio", ""()
3450
3451Inline asms also support using non-standard assembly dialects. The
3452assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3453the inline asm is using the Intel dialect. Currently, ATT and Intel are
3454the only supported dialects. An example is:
3455
3456.. code-block:: llvm
3457
3458 call void asm inteldialect "eieio", ""()
3459
3460If multiple keywords appear the '``sideeffect``' keyword must come
3461first, the '``alignstack``' keyword second and the '``inteldialect``'
3462keyword last.
3463
James Y Knightbc832ed2015-07-08 18:08:36 +00003464Inline Asm Constraint String
3465^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3466
3467The constraint list is a comma-separated string, each element containing one or
3468more constraint codes.
3469
3470For each element in the constraint list an appropriate register or memory
3471operand will be chosen, and it will be made available to assembly template
3472string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3473second, etc.
3474
3475There are three different types of constraints, which are distinguished by a
3476prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3477constraints must always be given in that order: outputs first, then inputs, then
3478clobbers. They cannot be intermingled.
3479
3480There are also three different categories of constraint codes:
3481
3482- Register constraint. This is either a register class, or a fixed physical
3483 register. This kind of constraint will allocate a register, and if necessary,
3484 bitcast the argument or result to the appropriate type.
3485- Memory constraint. This kind of constraint is for use with an instruction
3486 taking a memory operand. Different constraints allow for different addressing
3487 modes used by the target.
3488- Immediate value constraint. This kind of constraint is for an integer or other
3489 immediate value which can be rendered directly into an instruction. The
3490 various target-specific constraints allow the selection of a value in the
3491 proper range for the instruction you wish to use it with.
3492
3493Output constraints
3494""""""""""""""""""
3495
3496Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3497indicates that the assembly will write to this operand, and the operand will
3498then be made available as a return value of the ``asm`` expression. Output
3499constraints do not consume an argument from the call instruction. (Except, see
3500below about indirect outputs).
3501
3502Normally, it is expected that no output locations are written to by the assembly
3503expression until *all* of the inputs have been read. As such, LLVM may assign
3504the same register to an output and an input. If this is not safe (e.g. if the
3505assembly contains two instructions, where the first writes to one output, and
3506the second reads an input and writes to a second output), then the "``&``"
3507modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003508"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003509will not use the same register for any inputs (other than an input tied to this
3510output).
3511
3512Input constraints
3513"""""""""""""""""
3514
3515Input constraints do not have a prefix -- just the constraint codes. Each input
3516constraint will consume one argument from the call instruction. It is not
3517permitted for the asm to write to any input register or memory location (unless
3518that input is tied to an output). Note also that multiple inputs may all be
3519assigned to the same register, if LLVM can determine that they necessarily all
3520contain the same value.
3521
3522Instead of providing a Constraint Code, input constraints may also "tie"
3523themselves to an output constraint, by providing an integer as the constraint
3524string. Tied inputs still consume an argument from the call instruction, and
3525take up a position in the asm template numbering as is usual -- they will simply
3526be constrained to always use the same register as the output they've been tied
3527to. For example, a constraint string of "``=r,0``" says to assign a register for
3528output, and use that register as an input as well (it being the 0'th
3529constraint).
3530
3531It is permitted to tie an input to an "early-clobber" output. In that case, no
3532*other* input may share the same register as the input tied to the early-clobber
3533(even when the other input has the same value).
3534
3535You may only tie an input to an output which has a register constraint, not a
3536memory constraint. Only a single input may be tied to an output.
3537
3538There is also an "interesting" feature which deserves a bit of explanation: if a
3539register class constraint allocates a register which is too small for the value
3540type operand provided as input, the input value will be split into multiple
3541registers, and all of them passed to the inline asm.
3542
3543However, this feature is often not as useful as you might think.
3544
3545Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3546architectures that have instructions which operate on multiple consecutive
3547instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3548SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3549hardware then loads into both the named register, and the next register. This
3550feature of inline asm would not be useful to support that.)
3551
3552A few of the targets provide a template string modifier allowing explicit access
3553to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3554``D``). On such an architecture, you can actually access the second allocated
3555register (yet, still, not any subsequent ones). But, in that case, you're still
3556probably better off simply splitting the value into two separate operands, for
3557clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3558despite existing only for use with this feature, is not really a good idea to
3559use)
3560
3561Indirect inputs and outputs
3562"""""""""""""""""""""""""""
3563
3564Indirect output or input constraints can be specified by the "``*``" modifier
3565(which goes after the "``=``" in case of an output). This indicates that the asm
3566will write to or read from the contents of an *address* provided as an input
3567argument. (Note that in this way, indirect outputs act more like an *input* than
3568an output: just like an input, they consume an argument of the call expression,
3569rather than producing a return value. An indirect output constraint is an
3570"output" only in that the asm is expected to write to the contents of the input
3571memory location, instead of just read from it).
3572
3573This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3574address of a variable as a value.
3575
3576It is also possible to use an indirect *register* constraint, but only on output
3577(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3578value normally, and then, separately emit a store to the address provided as
3579input, after the provided inline asm. (It's not clear what value this
3580functionality provides, compared to writing the store explicitly after the asm
3581statement, and it can only produce worse code, since it bypasses many
3582optimization passes. I would recommend not using it.)
3583
3584
3585Clobber constraints
3586"""""""""""""""""""
3587
3588A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3589consume an input operand, nor generate an output. Clobbers cannot use any of the
3590general constraint code letters -- they may use only explicit register
3591constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3592"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3593memory locations -- not only the memory pointed to by a declared indirect
3594output.
3595
Peter Zotov00257232016-08-30 10:48:31 +00003596Note that clobbering named registers that are also present in output
3597constraints is not legal.
3598
James Y Knightbc832ed2015-07-08 18:08:36 +00003599
3600Constraint Codes
3601""""""""""""""""
3602After a potential prefix comes constraint code, or codes.
3603
3604A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3605followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3606(e.g. "``{eax}``").
3607
3608The one and two letter constraint codes are typically chosen to be the same as
3609GCC's constraint codes.
3610
3611A single constraint may include one or more than constraint code in it, leaving
3612it up to LLVM to choose which one to use. This is included mainly for
3613compatibility with the translation of GCC inline asm coming from clang.
3614
3615There are two ways to specify alternatives, and either or both may be used in an
3616inline asm constraint list:
3617
36181) Append the codes to each other, making a constraint code set. E.g. "``im``"
3619 or "``{eax}m``". This means "choose any of the options in the set". The
3620 choice of constraint is made independently for each constraint in the
3621 constraint list.
3622
36232) Use "``|``" between constraint code sets, creating alternatives. Every
3624 constraint in the constraint list must have the same number of alternative
3625 sets. With this syntax, the same alternative in *all* of the items in the
3626 constraint list will be chosen together.
3627
3628Putting those together, you might have a two operand constraint string like
3629``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3630operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3631may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3632
3633However, the use of either of the alternatives features is *NOT* recommended, as
3634LLVM is not able to make an intelligent choice about which one to use. (At the
3635point it currently needs to choose, not enough information is available to do so
3636in a smart way.) Thus, it simply tries to make a choice that's most likely to
3637compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3638always choose to use memory, not registers). And, if given multiple registers,
3639or multiple register classes, it will simply choose the first one. (In fact, it
3640doesn't currently even ensure explicitly specified physical registers are
3641unique, so specifying multiple physical registers as alternatives, like
3642``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3643intended.)
3644
3645Supported Constraint Code List
3646""""""""""""""""""""""""""""""
3647
3648The constraint codes are, in general, expected to behave the same way they do in
3649GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3650inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3651and GCC likely indicates a bug in LLVM.
3652
3653Some constraint codes are typically supported by all targets:
3654
3655- ``r``: A register in the target's general purpose register class.
3656- ``m``: A memory address operand. It is target-specific what addressing modes
3657 are supported, typical examples are register, or register + register offset,
3658 or register + immediate offset (of some target-specific size).
3659- ``i``: An integer constant (of target-specific width). Allows either a simple
3660 immediate, or a relocatable value.
3661- ``n``: An integer constant -- *not* including relocatable values.
3662- ``s``: An integer constant, but allowing *only* relocatable values.
3663- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3664 useful to pass a label for an asm branch or call.
3665
3666 .. FIXME: but that surely isn't actually okay to jump out of an asm
3667 block without telling llvm about the control transfer???)
3668
3669- ``{register-name}``: Requires exactly the named physical register.
3670
3671Other constraints are target-specific:
3672
3673AArch64:
3674
3675- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3676- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3677 i.e. 0 to 4095 with optional shift by 12.
3678- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3679 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3680- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3681 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3682- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3683 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3684- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3685 32-bit register. This is a superset of ``K``: in addition to the bitmask
3686 immediate, also allows immediate integers which can be loaded with a single
3687 ``MOVZ`` or ``MOVL`` instruction.
3688- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3689 64-bit register. This is a superset of ``L``.
3690- ``Q``: Memory address operand must be in a single register (no
3691 offsets). (However, LLVM currently does this for the ``m`` constraint as
3692 well.)
3693- ``r``: A 32 or 64-bit integer register (W* or X*).
3694- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3695- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3696
3697AMDGPU:
3698
3699- ``r``: A 32 or 64-bit integer register.
3700- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3701- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3702
3703
3704All ARM modes:
3705
3706- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3707 operand. Treated the same as operand ``m``, at the moment.
3708
3709ARM and ARM's Thumb2 mode:
3710
3711- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3712- ``I``: An immediate integer valid for a data-processing instruction.
3713- ``J``: An immediate integer between -4095 and 4095.
3714- ``K``: An immediate integer whose bitwise inverse is valid for a
3715 data-processing instruction. (Can be used with template modifier "``B``" to
3716 print the inverted value).
3717- ``L``: An immediate integer whose negation is valid for a data-processing
3718 instruction. (Can be used with template modifier "``n``" to print the negated
3719 value).
3720- ``M``: A power of two or a integer between 0 and 32.
3721- ``N``: Invalid immediate constraint.
3722- ``O``: Invalid immediate constraint.
3723- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3724- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3725 as ``r``.
3726- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3727 invalid.
3728- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3729 ``d0-d31``, or ``q0-q15``.
3730- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3731 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003732- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3733 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003734
3735ARM's Thumb1 mode:
3736
3737- ``I``: An immediate integer between 0 and 255.
3738- ``J``: An immediate integer between -255 and -1.
3739- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3740 some amount.
3741- ``L``: An immediate integer between -7 and 7.
3742- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3743- ``N``: An immediate integer between 0 and 31.
3744- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3745- ``r``: A low 32-bit GPR register (``r0-r7``).
3746- ``l``: A low 32-bit GPR register (``r0-r7``).
3747- ``h``: A high GPR register (``r0-r7``).
3748- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3749 ``d0-d31``, or ``q0-q15``.
3750- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3751 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003752- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3753 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003754
3755
3756Hexagon:
3757
3758- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3759 at the moment.
3760- ``r``: A 32 or 64-bit register.
3761
3762MSP430:
3763
3764- ``r``: An 8 or 16-bit register.
3765
3766MIPS:
3767
3768- ``I``: An immediate signed 16-bit integer.
3769- ``J``: An immediate integer zero.
3770- ``K``: An immediate unsigned 16-bit integer.
3771- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3772- ``N``: An immediate integer between -65535 and -1.
3773- ``O``: An immediate signed 15-bit integer.
3774- ``P``: An immediate integer between 1 and 65535.
3775- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3776 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3777- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3778 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3779 ``m``.
3780- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3781 ``sc`` instruction on the given subtarget (details vary).
3782- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3783- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003784 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3785 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003786- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3787 ``25``).
3788- ``l``: The ``lo`` register, 32 or 64-bit.
3789- ``x``: Invalid.
3790
3791NVPTX:
3792
3793- ``b``: A 1-bit integer register.
3794- ``c`` or ``h``: A 16-bit integer register.
3795- ``r``: A 32-bit integer register.
3796- ``l`` or ``N``: A 64-bit integer register.
3797- ``f``: A 32-bit float register.
3798- ``d``: A 64-bit float register.
3799
3800
3801PowerPC:
3802
3803- ``I``: An immediate signed 16-bit integer.
3804- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3805- ``K``: An immediate unsigned 16-bit integer.
3806- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3807- ``M``: An immediate integer greater than 31.
3808- ``N``: An immediate integer that is an exact power of 2.
3809- ``O``: The immediate integer constant 0.
3810- ``P``: An immediate integer constant whose negation is a signed 16-bit
3811 constant.
3812- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3813 treated the same as ``m``.
3814- ``r``: A 32 or 64-bit integer register.
3815- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3816 ``R1-R31``).
3817- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3818 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3819- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3820 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3821 altivec vector register (``V0-V31``).
3822
3823 .. FIXME: is this a bug that v accepts QPX registers? I think this
3824 is supposed to only use the altivec vector registers?
3825
3826- ``y``: Condition register (``CR0-CR7``).
3827- ``wc``: An individual CR bit in a CR register.
3828- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3829 register set (overlapping both the floating-point and vector register files).
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003830- ``ws``: A 32 or 64-bit floating-point register, from the full VSX register
James Y Knightbc832ed2015-07-08 18:08:36 +00003831 set.
3832
3833Sparc:
3834
3835- ``I``: An immediate 13-bit signed integer.
3836- ``r``: A 32-bit integer register.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003837- ``f``: Any floating-point register on SparcV8, or a floating-point
James Y Knightd4e1b002017-05-12 15:59:10 +00003838 register in the "low" half of the registers on SparcV9.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003839- ``e``: Any floating-point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003840
3841SystemZ:
3842
3843- ``I``: An immediate unsigned 8-bit integer.
3844- ``J``: An immediate unsigned 12-bit integer.
3845- ``K``: An immediate signed 16-bit integer.
3846- ``L``: An immediate signed 20-bit integer.
3847- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003848- ``Q``: A memory address operand with a base address and a 12-bit immediate
3849 unsigned displacement.
3850- ``R``: A memory address operand with a base address, a 12-bit immediate
3851 unsigned displacement, and an index register.
3852- ``S``: A memory address operand with a base address and a 20-bit immediate
3853 signed displacement.
3854- ``T``: A memory address operand with a base address, a 20-bit immediate
3855 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003856- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3857- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3858 address context evaluates as zero).
3859- ``h``: A 32-bit value in the high part of a 64bit data register
3860 (LLVM-specific)
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003861- ``f``: A 32, 64, or 128-bit floating-point register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003862
3863X86:
3864
3865- ``I``: An immediate integer between 0 and 31.
3866- ``J``: An immediate integer between 0 and 64.
3867- ``K``: An immediate signed 8-bit integer.
3868- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3869 0xffffffff.
3870- ``M``: An immediate integer between 0 and 3.
3871- ``N``: An immediate unsigned 8-bit integer.
3872- ``O``: An immediate integer between 0 and 127.
3873- ``e``: An immediate 32-bit signed integer.
3874- ``Z``: An immediate 32-bit unsigned integer.
3875- ``o``, ``v``: Treated the same as ``m``, at the moment.
3876- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3877 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3878 registers, and on X86-64, it is all of the integer registers.
3879- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3880 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3881- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3882- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3883 existed since i386, and can be accessed without the REX prefix.
3884- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3885- ``y``: A 64-bit MMX register, if MMX is enabled.
3886- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3887 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3888 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3889 512-bit vector operand in an AVX512 register, Otherwise, an error.
3890- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3891- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3892 32-bit mode, a 64-bit integer operand will get split into two registers). It
3893 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3894 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3895 you're better off splitting it yourself, before passing it to the asm
3896 statement.
3897
3898XCore:
3899
3900- ``r``: A 32-bit integer register.
3901
3902
3903.. _inline-asm-modifiers:
3904
3905Asm template argument modifiers
3906^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3907
3908In the asm template string, modifiers can be used on the operand reference, like
3909"``${0:n}``".
3910
3911The modifiers are, in general, expected to behave the same way they do in
3912GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3913inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3914and GCC likely indicates a bug in LLVM.
3915
3916Target-independent:
3917
Sean Silvaa1190322015-08-06 22:56:48 +00003918- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003919 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3920- ``n``: Negate and print immediate integer constant unadorned, without the
3921 target-specific immediate punctuation (e.g. no ``$`` prefix).
3922- ``l``: Print as an unadorned label, without the target-specific label
3923 punctuation (e.g. no ``$`` prefix).
3924
3925AArch64:
3926
3927- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3928 instead of ``x30``, print ``w30``.
3929- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3930- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3931 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3932 ``v*``.
3933
3934AMDGPU:
3935
3936- ``r``: No effect.
3937
3938ARM:
3939
3940- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3941 register).
3942- ``P``: No effect.
3943- ``q``: No effect.
3944- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3945 as ``d4[1]`` instead of ``s9``)
3946- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3947 prefix.
3948- ``L``: Print the low 16-bits of an immediate integer constant.
3949- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3950 register operands subsequent to the specified one (!), so use carefully.
3951- ``Q``: Print the low-order register of a register-pair, or the low-order
3952 register of a two-register operand.
3953- ``R``: Print the high-order register of a register-pair, or the high-order
3954 register of a two-register operand.
3955- ``H``: Print the second register of a register-pair. (On a big-endian system,
3956 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3957 to ``R``.)
3958
3959 .. FIXME: H doesn't currently support printing the second register
3960 of a two-register operand.
3961
3962- ``e``: Print the low doubleword register of a NEON quad register.
3963- ``f``: Print the high doubleword register of a NEON quad register.
3964- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3965 adornment.
3966
3967Hexagon:
3968
3969- ``L``: Print the second register of a two-register operand. Requires that it
3970 has been allocated consecutively to the first.
3971
3972 .. FIXME: why is it restricted to consecutive ones? And there's
3973 nothing that ensures that happens, is there?
3974
3975- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3976 nothing. Used to print 'addi' vs 'add' instructions.
3977
3978MSP430:
3979
3980No additional modifiers.
3981
3982MIPS:
3983
3984- ``X``: Print an immediate integer as hexadecimal
3985- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3986- ``d``: Print an immediate integer as decimal.
3987- ``m``: Subtract one and print an immediate integer as decimal.
3988- ``z``: Print $0 if an immediate zero, otherwise print normally.
3989- ``L``: Print the low-order register of a two-register operand, or prints the
3990 address of the low-order word of a double-word memory operand.
3991
3992 .. FIXME: L seems to be missing memory operand support.
3993
3994- ``M``: Print the high-order register of a two-register operand, or prints the
3995 address of the high-order word of a double-word memory operand.
3996
3997 .. FIXME: M seems to be missing memory operand support.
3998
3999- ``D``: Print the second register of a two-register operand, or prints the
4000 second word of a double-word memory operand. (On a big-endian system, ``D`` is
4001 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
4002 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00004003- ``w``: No effect. Provided for compatibility with GCC which requires this
4004 modifier in order to print MSA registers (``W0-W31``) with the ``f``
4005 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00004006
4007NVPTX:
4008
4009- ``r``: No effect.
4010
4011PowerPC:
4012
4013- ``L``: Print the second register of a two-register operand. Requires that it
4014 has been allocated consecutively to the first.
4015
4016 .. FIXME: why is it restricted to consecutive ones? And there's
4017 nothing that ensures that happens, is there?
4018
4019- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4020 nothing. Used to print 'addi' vs 'add' instructions.
4021- ``y``: For a memory operand, prints formatter for a two-register X-form
4022 instruction. (Currently always prints ``r0,OPERAND``).
4023- ``U``: Prints 'u' if the memory operand is an update form, and nothing
4024 otherwise. (NOTE: LLVM does not support update form, so this will currently
4025 always print nothing)
4026- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
4027 not support indexed form, so this will currently always print nothing)
4028
4029Sparc:
4030
4031- ``r``: No effect.
4032
4033SystemZ:
4034
4035SystemZ implements only ``n``, and does *not* support any of the other
4036target-independent modifiers.
4037
4038X86:
4039
4040- ``c``: Print an unadorned integer or symbol name. (The latter is
4041 target-specific behavior for this typically target-independent modifier).
4042- ``A``: Print a register name with a '``*``' before it.
4043- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
4044 operand.
4045- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
4046 memory operand.
4047- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
4048 operand.
4049- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
4050 operand.
4051- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
4052 available, otherwise the 32-bit register name; do nothing on a memory operand.
4053- ``n``: Negate and print an unadorned integer, or, for operands other than an
4054 immediate integer (e.g. a relocatable symbol expression), print a '-' before
4055 the operand. (The behavior for relocatable symbol expressions is a
4056 target-specific behavior for this typically target-independent modifier)
4057- ``H``: Print a memory reference with additional offset +8.
4058- ``P``: Print a memory reference or operand for use as the argument of a call
4059 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
4060
4061XCore:
4062
4063No additional modifiers.
4064
4065
Sean Silvab084af42012-12-07 10:36:55 +00004066Inline Asm Metadata
4067^^^^^^^^^^^^^^^^^^^
4068
4069The call instructions that wrap inline asm nodes may have a
4070"``!srcloc``" MDNode attached to it that contains a list of constant
4071integers. If present, the code generator will use the integer as the
4072location cookie value when report errors through the ``LLVMContext``
4073error reporting mechanisms. This allows a front-end to correlate backend
4074errors that occur with inline asm back to the source code that produced
4075it. For example:
4076
4077.. code-block:: llvm
4078
4079 call void asm sideeffect "something bad", ""(), !srcloc !42
4080 ...
4081 !42 = !{ i32 1234567 }
4082
4083It is up to the front-end to make sense of the magic numbers it places
4084in the IR. If the MDNode contains multiple constants, the code generator
4085will use the one that corresponds to the line of the asm that the error
4086occurs on.
4087
4088.. _metadata:
4089
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004090Metadata
4091========
Sean Silvab084af42012-12-07 10:36:55 +00004092
4093LLVM IR allows metadata to be attached to instructions in the program
4094that can convey extra information about the code to the optimizers and
4095code generator. One example application of metadata is source-level
4096debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004097
Sean Silvaa1190322015-08-06 22:56:48 +00004098Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004099``call`` instruction, it uses the ``metadata`` type.
4100
4101All metadata are identified in syntax by a exclamation point ('``!``').
4102
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004103.. _metadata-string:
4104
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004105Metadata Nodes and Metadata Strings
4106-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00004107
4108A metadata string is a string surrounded by double quotes. It can
4109contain any character by escaping non-printable characters with
4110"``\xx``" where "``xx``" is the two digit hex code. For example:
4111"``!"test\00"``".
4112
4113Metadata nodes are represented with notation similar to structure
4114constants (a comma separated list of elements, surrounded by braces and
4115preceded by an exclamation point). Metadata nodes can have any values as
4116their operand. For example:
4117
4118.. code-block:: llvm
4119
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004120 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00004121
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004122Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4123
Renato Golin124f2592016-07-20 12:16:38 +00004124.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004125
4126 !0 = distinct !{!"test\00", i32 10}
4127
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004128``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004129content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004130when metadata operands change.
4131
Sean Silvab084af42012-12-07 10:36:55 +00004132A :ref:`named metadata <namedmetadatastructure>` is a collection of
4133metadata nodes, which can be looked up in the module symbol table. For
4134example:
4135
4136.. code-block:: llvm
4137
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004138 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004139
Adrian Prantl1b842da2017-07-28 20:44:29 +00004140Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4141intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004142
4143.. code-block:: llvm
4144
Adrian Prantlabe04752017-07-28 20:21:02 +00004145 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004146
Peter Collingbourne50108682015-11-06 02:41:02 +00004147Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4148to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004149
4150.. code-block:: llvm
4151
4152 %indvar.next = add i64 %indvar, 1, !dbg !21
4153
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004154Metadata can also be attached to a function or a global variable. Here metadata
4155``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4156and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004157
4158.. code-block:: llvm
4159
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004160 declare !dbg !22 void @f1()
4161 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004162 ret void
4163 }
4164
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004165 @g1 = global i32 0, !dbg !22
4166 @g2 = external global i32, !dbg !22
4167
4168A transformation is required to drop any metadata attachment that it does not
4169know or know it can't preserve. Currently there is an exception for metadata
4170attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4171unconditionally dropped unless the global is itself deleted.
4172
4173Metadata attached to a module using named metadata may not be dropped, with
4174the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4175
Sean Silvab084af42012-12-07 10:36:55 +00004176More information about specific metadata nodes recognized by the
4177optimizers and code generator is found below.
4178
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004179.. _specialized-metadata:
4180
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004181Specialized Metadata Nodes
4182^^^^^^^^^^^^^^^^^^^^^^^^^^
4183
4184Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004185to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004186order.
4187
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004188These aren't inherently debug info centric, but currently all the specialized
4189metadata nodes are related to debug info.
4190
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004191.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004192
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004193DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004194"""""""""""""
4195
Sean Silvaa1190322015-08-06 22:56:48 +00004196``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004197``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4198containing the debug info to be emitted along with the compile unit, regardless
4199of code optimizations (some nodes are only emitted if there are references to
4200them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4201indicating whether or not line-table discriminators are updated to provide
4202more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004203
Renato Golin124f2592016-07-20 12:16:38 +00004204.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004205
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004206 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004207 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004208 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004209 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4210 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004211
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004212Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004213specific compilation unit. File descriptors are defined using this scope. These
4214descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4215track of global variables, type information, and imported entities (declarations
4216and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004217
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004218.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004219
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004220DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004221""""""
4222
Sean Silvaa1190322015-08-06 22:56:48 +00004223``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004224
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004225.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004226
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004227 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4228 checksumkind: CSK_MD5,
4229 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004230
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004231Files are sometimes used in ``scope:`` fields, and are the only valid target
4232for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004233Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004234
Michael Kuperstein605308a2015-05-14 10:58:59 +00004235.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004236
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004237DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004238"""""""""""
4239
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004240``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004241``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004242
Renato Golin124f2592016-07-20 12:16:38 +00004243.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004244
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004245 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004246 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004247 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004248
Sean Silvaa1190322015-08-06 22:56:48 +00004249The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004250following:
4251
Renato Golin124f2592016-07-20 12:16:38 +00004252.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004253
4254 DW_ATE_address = 1
4255 DW_ATE_boolean = 2
4256 DW_ATE_float = 4
4257 DW_ATE_signed = 5
4258 DW_ATE_signed_char = 6
4259 DW_ATE_unsigned = 7
4260 DW_ATE_unsigned_char = 8
4261
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004262.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004263
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004264DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004265""""""""""""""""
4266
Sean Silvaa1190322015-08-06 22:56:48 +00004267``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004268refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004269types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004270represents a function with no return value (such as ``void foo() {}`` in C++).
4271
Renato Golin124f2592016-07-20 12:16:38 +00004272.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004273
4274 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4275 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004276 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004277
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004278.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004279
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004280DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004281"""""""""""""
4282
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004283``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004284qualified types.
4285
Renato Golin124f2592016-07-20 12:16:38 +00004286.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004287
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004288 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004289 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004290 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004291 align: 32)
4292
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004293The following ``tag:`` values are valid:
4294
Renato Golin124f2592016-07-20 12:16:38 +00004295.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004296
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004297 DW_TAG_member = 13
4298 DW_TAG_pointer_type = 15
4299 DW_TAG_reference_type = 16
4300 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004301 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004302 DW_TAG_ptr_to_member_type = 31
4303 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004304 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004305 DW_TAG_volatile_type = 53
4306 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004307 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004308
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004309.. _DIDerivedTypeMember:
4310
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004311``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004312<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004313``offset:`` is the member's bit offset. If the composite type has an ODR
4314``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4315uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004316
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004317``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4318field of :ref:`composite types <DICompositeType>` to describe parents and
4319friends.
4320
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004321``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4322
4323``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004324``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4325are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004326
4327Note that the ``void *`` type is expressed as a type derived from NULL.
4328
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004329.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004330
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004331DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004332"""""""""""""""
4333
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004334``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004335structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004336
4337If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004338identifier used for type merging between modules. When specified,
4339:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4340derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4341``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004342
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004343For a given ``identifier:``, there should only be a single composite type that
4344does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4345together will unique such definitions at parse time via the ``identifier:``
4346field, even if the nodes are ``distinct``.
4347
Renato Golin124f2592016-07-20 12:16:38 +00004348.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004349
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004350 !0 = !DIEnumerator(name: "SixKind", value: 7)
4351 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4352 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4353 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004354 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4355 elements: !{!0, !1, !2})
4356
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004357The following ``tag:`` values are valid:
4358
Renato Golin124f2592016-07-20 12:16:38 +00004359.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004360
4361 DW_TAG_array_type = 1
4362 DW_TAG_class_type = 2
4363 DW_TAG_enumeration_type = 4
4364 DW_TAG_structure_type = 19
4365 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004366
4367For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004368descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004369level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004370array type is a native packed vector.
4371
4372For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004373descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004374value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004375``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004376
4377For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4378``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004379<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4380``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4381``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004382
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004383.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004384
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004385DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004386""""""""""
4387
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004388``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sander de Smalen1cb94312018-01-24 10:30:23 +00004389:ref:`DICompositeType`.
4390
4391- ``count: -1`` indicates an empty array.
4392- ``count: !9`` describes the count with a :ref:`DILocalVariable`.
4393- ``count: !11`` describes the count with a :ref:`DIGlobalVariable`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004394
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004395.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004396
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004397 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4398 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4399 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004400
Sander de Smalenfdf40912018-01-24 09:56:07 +00004401 ; Scopes used in rest of example
4402 !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
Chandler Carruth24dd2112018-08-06 02:30:01 +00004403 !7 = distinct !DICompileUnit(language: DW_LANG_C99, file: !6)
4404 !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004405
4406 ; Use of local variable as count value
4407 !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
4408 !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
Chandler Carruth24dd2112018-08-06 02:30:01 +00004409 !11 = !DISubrange(count: !10, lowerBound: 0)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004410
4411 ; Use of global variable as count value
4412 !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
Chandler Carruth24dd2112018-08-06 02:30:01 +00004413 !13 = !DISubrange(count: !12, lowerBound: 0)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004414
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004415.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004416
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004417DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004418""""""""""""
4419
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004420``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4421variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004422
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004423.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004424
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004425 !0 = !DIEnumerator(name: "SixKind", value: 7)
4426 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4427 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004428
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004429DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004430"""""""""""""""""""""""
4431
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004432``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004433language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004434:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004435
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004436.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004437
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004438 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004439
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004440DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004441""""""""""""""""""""""""
4442
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004443``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004444language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004445but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004446``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004447:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004448
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004449.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004450
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004451 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004452
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004453DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004454"""""""""""
4455
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004456``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004457
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004458.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004459
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004460 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004461
Sander de Smalen1cb94312018-01-24 10:30:23 +00004462.. _DIGlobalVariable:
4463
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004464DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004465""""""""""""""""
4466
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004467``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004468
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004469.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004470
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004471 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004472 file: !2, line: 7, type: !3, isLocal: true,
4473 isDefinition: false, variable: i32* @foo,
4474 declaration: !4)
4475
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004476All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004477:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004478
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004479.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004480
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004481DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004482""""""""""""
4483
Peter Collingbourne50108682015-11-06 02:41:02 +00004484``DISubprogram`` nodes represent functions from the source language. A
4485``DISubprogram`` may be attached to a function definition using ``!dbg``
4486metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4487that must be retained, even if their IR counterparts are optimized out of
4488the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004489
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004490.. _DISubprogramDeclaration:
4491
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004492When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004493tree as opposed to a definition of a function. If the scope is a composite
4494type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4495then the subprogram declaration is uniqued based only on its ``linkageName:``
4496and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004497
Renato Golin124f2592016-07-20 12:16:38 +00004498.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004499
Peter Collingbourne50108682015-11-06 02:41:02 +00004500 define void @_Z3foov() !dbg !0 {
4501 ...
4502 }
4503
4504 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4505 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004506 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004507 containingType: !4,
4508 virtuality: DW_VIRTUALITY_pure_virtual,
4509 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004510 isOptimized: true, unit: !5, templateParams: !6,
4511 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004512
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004513.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004514
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004515DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004516""""""""""""""
4517
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004518``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004519<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004520two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004521fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004522
Renato Golin124f2592016-07-20 12:16:38 +00004523.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004524
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004525 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004526
4527Usually lexical blocks are ``distinct`` to prevent node merging based on
4528operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004529
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004530.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004531
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004532DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004533""""""""""""""""""
4534
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004535``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004536:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004537indicate textual inclusion, or the ``discriminator:`` field can be used to
4538discriminate between control flow within a single block in the source language.
4539
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004540.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004541
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004542 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4543 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4544 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004545
Michael Kuperstein605308a2015-05-14 10:58:59 +00004546.. _DILocation:
4547
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004548DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004549""""""""""
4550
Sean Silvaa1190322015-08-06 22:56:48 +00004551``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004552mandatory, and points at an :ref:`DILexicalBlockFile`, an
4553:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004554
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004555.. code-block:: text
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004556
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004557 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004558
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004559.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004560
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004561DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004562"""""""""""""""
4563
Sean Silvaa1190322015-08-06 22:56:48 +00004564``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004565the ``arg:`` field is set to non-zero, then this variable is a subprogram
4566parameter, and it will be included in the ``variables:`` field of its
4567:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004568
Renato Golin124f2592016-07-20 12:16:38 +00004569.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004570
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004571 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4572 type: !3, flags: DIFlagArtificial)
4573 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4574 type: !3)
4575 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004576
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004577DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004578""""""""""""
4579
Adrian Prantlb44c7762017-03-22 18:01:01 +00004580``DIExpression`` nodes represent expressions that are inspired by the DWARF
4581expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4582(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
Vedant Kumar8a05b012018-07-28 00:33:47 +00004583referenced LLVM variable relates to the source language variable. Debug
4584intrinsics are interpreted left-to-right: start by pushing the value/address
4585operand of the intrinsic onto a stack, then repeatedly push and evaluate
4586opcodes from the DIExpression until the final variable description is produced.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004587
Vedant Kumar8a05b012018-07-28 00:33:47 +00004588The current supported opcode vocabulary is limited:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004589
Adrian Prantl6825fb62017-04-18 01:21:53 +00004590- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004591- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4592 them together and appends the result to the expression stack.
4593- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4594 the last entry from the second last entry and appends the result to the
4595 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004596- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004597- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4598 here, respectively) of the variable fragment from the working expression. Note
Hiroshi Inoue760c0c92018-01-16 13:19:48 +00004599 that contrary to DW_OP_bit_piece, the offset is describing the location
Adrian Prantlb44c7762017-03-22 18:01:01 +00004600 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004601- ``DW_OP_swap`` swaps top two stack entries.
4602- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4603 of the stack is treated as an address. The second stack entry is treated as an
4604 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004605- ``DW_OP_stack_value`` marks a constant value.
4606
Adrian Prantl6825fb62017-04-18 01:21:53 +00004607DWARF specifies three kinds of simple location descriptions: Register, memory,
Vedant Kumar8a05b012018-07-28 00:33:47 +00004608and implicit location descriptions. Note that a location description is
4609defined over certain ranges of a program, i.e the location of a variable may
4610change over the course of the program. Register and memory location
4611descriptions describe the *concrete location* of a source variable (in the
4612sense that a debugger might modify its value), whereas *implicit locations*
4613describe merely the actual *value* of a source variable which might not exist
4614in registers or in memory (see ``DW_OP_stack_value``).
4615
4616A ``llvm.dbg.addr`` or ``llvm.dbg.declare`` intrinsic describes an indirect
4617value (the address) of a source variable. The first operand of the intrinsic
4618must be an address of some kind. A DIExpression attached to the intrinsic
4619refines this address to produce a concrete location for the source variable.
4620
4621A ``llvm.dbg.value`` intrinsic describes the direct value of a source variable.
4622The first operand of the intrinsic may be a direct or indirect value. A
4623DIExpresion attached to the intrinsic refines the first operand to produce a
4624direct value. For example, if the first operand is an indirect value, it may be
4625necessary to insert ``DW_OP_deref`` into the DIExpresion in order to produce a
4626valid debug intrinsic.
4627
4628.. note::
4629
4630 A DIExpression is interpreted in the same way regardless of which kind of
4631 debug intrinsic it's attached to.
Adrian Prantl6825fb62017-04-18 01:21:53 +00004632
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004633.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004634
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004635 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004636 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004637 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004638 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004639 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004640 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004641 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004642
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004643DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004644""""""""""""""
4645
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004646``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004647
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004648.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004649
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004650 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004651 getter: "getFoo", attributes: 7, type: !2)
4652
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004653DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004654""""""""""""""""
4655
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004656``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004657compile unit.
4658
Renato Golin124f2592016-07-20 12:16:38 +00004659.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004660
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004661 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004662 entity: !1, line: 7)
4663
Amjad Abouda9bcf162015-12-10 12:56:35 +00004664DIMacro
4665"""""""
4666
4667``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4668The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004669defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004670used to expand the macro identifier.
4671
Renato Golin124f2592016-07-20 12:16:38 +00004672.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004673
4674 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4675 value: "((x) + 1)")
4676 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4677
4678DIMacroFile
4679"""""""""""
4680
4681``DIMacroFile`` nodes represent inclusion of source files.
4682The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4683appear in the included source file.
4684
Renato Golin124f2592016-07-20 12:16:38 +00004685.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004686
4687 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4688 nodes: !3)
4689
Sean Silvab084af42012-12-07 10:36:55 +00004690'``tbaa``' Metadata
4691^^^^^^^^^^^^^^^^^^^
4692
4693In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004694suitable for doing type based alias analysis (TBAA). Instead, metadata is
4695added to the IR to describe a type system of a higher level language. This
4696can be used to implement C/C++ strict type aliasing rules, but it can also
4697be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004698
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004699This description of LLVM's TBAA system is broken into two parts:
4700:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4701:ref:`Representation<tbaa_node_representation>` talks about the metadata
4702encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004703
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004704It is always possible to trace any TBAA node to a "root" TBAA node (details
4705in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4706nodes with different roots have an unknown aliasing relationship, and LLVM
4707conservatively infers ``MayAlias`` between them. The rules mentioned in
4708this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004709
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004710.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004711
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004712Semantics
4713"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004714
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004715The TBAA metadata system, referred to as "struct path TBAA" (not to be
4716confused with ``tbaa.struct``), consists of the following high level
4717concepts: *Type Descriptors*, further subdivided into scalar type
4718descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004719
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004720**Type descriptors** describe the type system of the higher level language
4721being compiled. **Scalar type descriptors** describe types that do not
4722contain other types. Each scalar type has a parent type, which must also
4723be a scalar type or the TBAA root. Via this parent relation, scalar types
4724within a TBAA root form a tree. **Struct type descriptors** denote types
4725that contain a sequence of other type descriptors, at known offsets. These
4726contained type descriptors can either be struct type descriptors themselves
4727or scalar type descriptors.
4728
4729**Access tags** are metadata nodes attached to load and store instructions.
4730Access tags use type descriptors to describe the *location* being accessed
4731in terms of the type system of the higher level language. Access tags are
4732tuples consisting of a base type, an access type and an offset. The base
4733type is a scalar type descriptor or a struct type descriptor, the access
4734type is a scalar type descriptor, and the offset is a constant integer.
4735
4736The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4737things:
4738
4739 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4740 or store) of a value of type ``AccessTy`` contained in the struct type
4741 ``BaseTy`` at offset ``Offset``.
4742
4743 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4744 ``AccessTy`` must be the same; and the access tag describes a scalar
4745 access with scalar type ``AccessTy``.
4746
4747We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4748tuples this way:
4749
4750 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4751 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4752 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4753 undefined if ``Offset`` is non-zero.
4754
4755 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4756 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4757 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4758 to be relative within that inner type.
4759
4760A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4761aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4762Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4763Offset2)`` via the ``Parent`` relation or vice versa.
4764
4765As a concrete example, the type descriptor graph for the following program
4766
4767.. code-block:: c
4768
4769 struct Inner {
4770 int i; // offset 0
4771 float f; // offset 4
4772 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004773
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004774 struct Outer {
4775 float f; // offset 0
4776 double d; // offset 4
4777 struct Inner inner_a; // offset 12
4778 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004779
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004780 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4781 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4782 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
Fangrui Song74d6a742018-05-29 05:38:05 +00004783 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, FloatScalarTy, 16)
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004784 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4785 }
4786
4787is (note that in C and C++, ``char`` can be used to access any arbitrary
4788type):
4789
4790.. code-block:: text
4791
4792 Root = "TBAA Root"
4793 CharScalarTy = ("char", Root, 0)
4794 FloatScalarTy = ("float", CharScalarTy, 0)
4795 DoubleScalarTy = ("double", CharScalarTy, 0)
4796 IntScalarTy = ("int", CharScalarTy, 0)
4797 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4798 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4799 (InnerStructTy, 12)}
4800
4801
4802with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
48030)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4804``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4805
4806.. _tbaa_node_representation:
4807
4808Representation
4809""""""""""""""
4810
4811The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4812with exactly one ``MDString`` operand.
4813
4814Scalar type descriptors are represented as an ``MDNode`` s with two
4815operands. The first operand is an ``MDString`` denoting the name of the
4816struct type. LLVM does not assign meaning to the value of this operand, it
4817only cares about it being an ``MDString``. The second operand is an
4818``MDNode`` which points to the parent for said scalar type descriptor,
4819which is either another scalar type descriptor or the TBAA root. Scalar
4820type descriptors can have an optional third argument, but that must be the
4821constant integer zero.
4822
4823Struct type descriptors are represented as ``MDNode`` s with an odd number
4824of operands greater than 1. The first operand is an ``MDString`` denoting
4825the name of the struct type. Like in scalar type descriptors the actual
4826value of this name operand is irrelevant to LLVM. After the name operand,
4827the struct type descriptors have a sequence of alternating ``MDNode`` and
4828``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4829an ``MDNode``, denotes a contained field, and the 2N th operand, a
4830``ConstantInt``, is the offset of the said contained field. The offsets
4831must be in non-decreasing order.
4832
4833Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4834The first operand is an ``MDNode`` pointing to the node representing the
4835base type. The second operand is an ``MDNode`` pointing to the node
4836representing the access type. The third operand is a ``ConstantInt`` that
4837states the offset of the access. If a fourth field is present, it must be
4838a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4839that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004840``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004841AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4842the access type and the base type of an access tag must be the same, and
4843that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004844
4845'``tbaa.struct``' Metadata
4846^^^^^^^^^^^^^^^^^^^^^^^^^^
4847
4848The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4849aggregate assignment operations in C and similar languages, however it
4850is defined to copy a contiguous region of memory, which is more than
4851strictly necessary for aggregate types which contain holes due to
4852padding. Also, it doesn't contain any TBAA information about the fields
4853of the aggregate.
4854
4855``!tbaa.struct`` metadata can describe which memory subregions in a
4856memcpy are padding and what the TBAA tags of the struct are.
4857
4858The current metadata format is very simple. ``!tbaa.struct`` metadata
4859nodes are a list of operands which are in conceptual groups of three.
4860For each group of three, the first operand gives the byte offset of a
4861field in bytes, the second gives its size in bytes, and the third gives
4862its tbaa tag. e.g.:
4863
4864.. code-block:: llvm
4865
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004866 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004867
4868This describes a struct with two fields. The first is at offset 0 bytes
4869with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4870and has size 4 bytes and has tbaa tag !2.
4871
4872Note that the fields need not be contiguous. In this example, there is a
48734 byte gap between the two fields. This gap represents padding which
4874does not carry useful data and need not be preserved.
4875
Hal Finkel94146652014-07-24 14:25:39 +00004876'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004877^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004878
4879``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4880noalias memory-access sets. This means that some collection of memory access
4881instructions (loads, stores, memory-accessing calls, etc.) that carry
4882``noalias`` metadata can specifically be specified not to alias with some other
4883collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004884Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004885a domain.
4886
4887When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004888of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004889subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004890instruction's ``noalias`` list, then the two memory accesses are assumed not to
4891alias.
Hal Finkel94146652014-07-24 14:25:39 +00004892
Adam Nemet569a5b32016-04-27 00:52:48 +00004893Because scopes in one domain don't affect scopes in other domains, separate
4894domains can be used to compose multiple independent noalias sets. This is
4895used for example during inlining. As the noalias function parameters are
4896turned into noalias scope metadata, a new domain is used every time the
4897function is inlined.
4898
Hal Finkel029cde62014-07-25 15:50:02 +00004899The metadata identifying each domain is itself a list containing one or two
4900entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004901string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004902self-reference can be used to create globally unique domain names. A
4903descriptive string may optionally be provided as a second list entry.
4904
4905The metadata identifying each scope is also itself a list containing two or
4906three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004907is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004908self-reference can be used to create globally unique scope names. A metadata
4909reference to the scope's domain is the second entry. A descriptive string may
4910optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004911
4912For example,
4913
4914.. code-block:: llvm
4915
Hal Finkel029cde62014-07-25 15:50:02 +00004916 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004917 !0 = !{!0}
4918 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004919
Hal Finkel029cde62014-07-25 15:50:02 +00004920 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004921 !2 = !{!2, !0}
4922 !3 = !{!3, !0}
4923 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004924
Hal Finkel029cde62014-07-25 15:50:02 +00004925 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004926 !5 = !{!4} ; A list containing only scope !4
4927 !6 = !{!4, !3, !2}
4928 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004929
4930 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004931 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004932 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004933
Hal Finkel029cde62014-07-25 15:50:02 +00004934 ; These two instructions also don't alias (for domain !1, the set of scopes
4935 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004936 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004937 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004938
Adam Nemet0a8416f2015-05-11 08:30:28 +00004939 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004940 ; the !noalias list is not a superset of, or equal to, the scopes in the
4941 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004942 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004943 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004944
Sean Silvab084af42012-12-07 10:36:55 +00004945'``fpmath``' Metadata
4946^^^^^^^^^^^^^^^^^^^^^
4947
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00004948``fpmath`` metadata may be attached to any instruction of floating-point
Sean Silvab084af42012-12-07 10:36:55 +00004949type. It can be used to express the maximum acceptable error in the
4950result of that instruction, in ULPs, thus potentially allowing the
4951compiler to use a more efficient but less accurate method of computing
4952it. ULP is defined as follows:
4953
4954 If ``x`` is a real number that lies between two finite consecutive
4955 floating-point numbers ``a`` and ``b``, without being equal to one
4956 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4957 distance between the two non-equal finite floating-point numbers
4958 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4959
Matt Arsenault82f41512016-06-27 19:43:15 +00004960The metadata node shall consist of a single positive float type number
4961representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004962
4963.. code-block:: llvm
4964
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004965 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004966
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004967.. _range-metadata:
4968
Sean Silvab084af42012-12-07 10:36:55 +00004969'``range``' Metadata
4970^^^^^^^^^^^^^^^^^^^^
4971
Jingyue Wu37fcb592014-06-19 16:50:16 +00004972``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4973integer types. It expresses the possible ranges the loaded value or the value
Eli Friedmane15a1112018-07-17 20:38:11 +00004974returned by the called function at this call site is in. If the loaded or
4975returned value is not in the specified range, the behavior is undefined. The
4976ranges are represented with a flattened list of integers. The loaded value or
4977the value returned is known to be in the union of the ranges defined by each
4978consecutive pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004979
4980- The type must match the type loaded by the instruction.
4981- The pair ``a,b`` represents the range ``[a,b)``.
4982- Both ``a`` and ``b`` are constants.
4983- The range is allowed to wrap.
4984- The range should not represent the full or empty set. That is,
4985 ``a!=b``.
4986
4987In addition, the pairs must be in signed order of the lower bound and
4988they must be non-contiguous.
4989
4990Examples:
4991
4992.. code-block:: llvm
4993
David Blaikiec7aabbb2015-03-04 22:06:14 +00004994 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4995 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004996 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4997 %d = invoke i8 @bar() to label %cont
4998 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004999 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005000 !0 = !{ i8 0, i8 2 }
5001 !1 = !{ i8 255, i8 2 }
5002 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
5003 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00005004
Peter Collingbourne235c2752016-12-08 19:01:00 +00005005'``absolute_symbol``' Metadata
5006^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5007
5008``absolute_symbol`` metadata may be attached to a global variable
5009declaration. It marks the declaration as a reference to an absolute symbol,
5010which causes the backend to use absolute relocations for the symbol even
5011in position independent code, and expresses the possible ranges that the
5012global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00005013``range`` metadata, with the extension that the pair ``all-ones,all-ones``
5014may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00005015
Peter Collingbourned88f9282017-01-20 21:56:37 +00005016Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00005017
5018.. code-block:: llvm
5019
5020 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00005021 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00005022
5023 ...
5024 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00005025 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00005026
Matthew Simpson36bbc8c2017-10-16 22:22:11 +00005027'``callees``' Metadata
5028^^^^^^^^^^^^^^^^^^^^^^
5029
5030``callees`` metadata may be attached to indirect call sites. If ``callees``
5031metadata is attached to a call site, and any callee is not among the set of
5032functions provided by the metadata, the behavior is undefined. The intent of
5033this metadata is to facilitate optimizations such as indirect-call promotion.
5034For example, in the code below, the call instruction may only target the
5035``add`` or ``sub`` functions:
5036
5037.. code-block:: llvm
5038
5039 %result = call i64 %binop(i64 %x, i64 %y), !callees !0
5040
5041 ...
5042 !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
5043
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005044'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00005045^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005046
5047``unpredictable`` metadata may be attached to any branch or switch
5048instruction. It can be used to express the unpredictability of control
5049flow. Similar to the llvm.expect intrinsic, it may be used to alter
5050optimizations related to compare and branch instructions. The metadata
5051is treated as a boolean value; if it exists, it signals that the branch
5052or switch that it is attached to is completely unpredictable.
5053
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005054'``llvm.loop``'
5055^^^^^^^^^^^^^^^
5056
5057It is sometimes useful to attach information to loop constructs. Currently,
5058loop metadata is implemented as metadata attached to the branch instruction
5059in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00005060guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00005061specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005062
5063The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00005064itself to avoid merging it with any other identifier metadata, e.g.,
5065during module linkage or function inlining. That is, each loop should refer
5066to their own identification metadata even if they reside in separate functions.
5067The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005068constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005069
5070.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00005071
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005072 !0 = !{!0}
5073 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005074
Mark Heffernan893752a2014-07-18 19:24:51 +00005075The loop identifier metadata can be used to specify additional
5076per-loop metadata. Any operands after the first operand can be treated
5077as user-defined metadata. For example the ``llvm.loop.unroll.count``
5078suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005079
Paul Redmond5fdf8362013-05-28 20:00:34 +00005080.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005081
Paul Redmond5fdf8362013-05-28 20:00:34 +00005082 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
5083 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005084 !0 = !{!0, !1}
5085 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005086
Mark Heffernan9d20e422014-07-21 23:11:03 +00005087'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
5088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00005089
Mark Heffernan9d20e422014-07-21 23:11:03 +00005090Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
5091used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00005092vectorization width and interleave count. These metadata should be used in
5093conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00005094``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
5095optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00005096it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00005097which contains information about loop-carried memory dependencies can be helpful
5098in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00005099
Mark Heffernan9d20e422014-07-21 23:11:03 +00005100'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00005101^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5102
Mark Heffernan9d20e422014-07-21 23:11:03 +00005103This metadata suggests an interleave count to the loop interleaver.
5104The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00005105second operand is an integer specifying the interleave count. For
5106example:
5107
5108.. code-block:: llvm
5109
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005110 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005111
Mark Heffernan9d20e422014-07-21 23:11:03 +00005112Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00005113multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00005114then the interleave count will be determined automatically.
5115
5116'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00005117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00005118
5119This metadata selectively enables or disables vectorization for the loop. The
5120first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00005121is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000051220 disables vectorization:
5123
5124.. code-block:: llvm
5125
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005126 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5127 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00005128
5129'``llvm.loop.vectorize.width``' Metadata
5130^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5131
5132This metadata sets the target width of the vectorizer. The first
5133operand is the string ``llvm.loop.vectorize.width`` and the second
5134operand is an integer specifying the width. For example:
5135
5136.. code-block:: llvm
5137
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005138 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005139
5140Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00005141vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000051420 or if the loop does not have this metadata the width will be
5143determined automatically.
5144
5145'``llvm.loop.unroll``'
5146^^^^^^^^^^^^^^^^^^^^^^
5147
5148Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5149optimization hints such as the unroll factor. ``llvm.loop.unroll``
5150metadata should be used in conjunction with ``llvm.loop`` loop
5151identification metadata. The ``llvm.loop.unroll`` metadata are only
5152optimization hints and the unrolling will only be performed if the
5153optimizer believes it is safe to do so.
5154
Mark Heffernan893752a2014-07-18 19:24:51 +00005155'``llvm.loop.unroll.count``' Metadata
5156^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5157
5158This metadata suggests an unroll factor to the loop unroller. The
5159first operand is the string ``llvm.loop.unroll.count`` and the second
5160operand is a positive integer specifying the unroll factor. For
5161example:
5162
5163.. code-block:: llvm
5164
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005165 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005166
5167If the trip count of the loop is less than the unroll count the loop
5168will be partially unrolled.
5169
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005170'``llvm.loop.unroll.disable``' Metadata
5171^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5172
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005173This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00005174which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005175
5176.. code-block:: llvm
5177
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005178 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005179
Kevin Qin715b01e2015-03-09 06:14:18 +00005180'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00005181^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00005182
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005183This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005184operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005185
5186.. code-block:: llvm
5187
5188 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5189
Mark Heffernan89391542015-08-10 17:28:08 +00005190'``llvm.loop.unroll.enable``' Metadata
5191^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5192
5193This metadata suggests that the loop should be fully unrolled if the trip count
5194is known at compile time and partially unrolled if the trip count is not known
5195at compile time. The metadata has a single operand which is the string
5196``llvm.loop.unroll.enable``. For example:
5197
5198.. code-block:: llvm
5199
5200 !0 = !{!"llvm.loop.unroll.enable"}
5201
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005202'``llvm.loop.unroll.full``' Metadata
5203^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5204
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005205This metadata suggests that the loop should be unrolled fully. The
5206metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005207For example:
5208
5209.. code-block:: llvm
5210
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005211 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005212
David Green7fbf06c2018-07-19 12:37:00 +00005213'``llvm.loop.unroll_and_jam``'
5214^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5215
5216This metadata is treated very similarly to the ``llvm.loop.unroll`` metadata
5217above, but affect the unroll and jam pass. In addition any loop with
5218``llvm.loop.unroll`` metadata but no ``llvm.loop.unroll_and_jam`` metadata will
5219disable unroll and jam (so ``llvm.loop.unroll`` metadata will be left to the
5220unroller, plus ``llvm.loop.unroll.disable`` metadata will disable unroll and jam
5221too.)
5222
5223The metadata for unroll and jam otherwise is the same as for ``unroll``.
5224``llvm.loop.unroll_and_jam.enable``, ``llvm.loop.unroll_and_jam.disable`` and
5225``llvm.loop.unroll_and_jam.count`` do the same as for unroll.
5226``llvm.loop.unroll_and_jam.full`` is not supported. Again these are only hints
5227and the normal safety checks will still be performed.
5228
5229'``llvm.loop.unroll_and_jam.count``' Metadata
5230^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5231
5232This metadata suggests an unroll and jam factor to use, similarly to
5233``llvm.loop.unroll.count``. The first operand is the string
5234``llvm.loop.unroll_and_jam.count`` and the second operand is a positive integer
5235specifying the unroll factor. For example:
5236
5237.. code-block:: llvm
5238
5239 !0 = !{!"llvm.loop.unroll_and_jam.count", i32 4}
5240
5241If the trip count of the loop is less than the unroll count the loop
5242will be partially unroll and jammed.
5243
5244'``llvm.loop.unroll_and_jam.disable``' Metadata
5245^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5246
5247This metadata disables loop unroll and jamming. The metadata has a single
5248operand which is the string ``llvm.loop.unroll_and_jam.disable``. For example:
5249
5250.. code-block:: llvm
5251
5252 !0 = !{!"llvm.loop.unroll_and_jam.disable"}
5253
5254'``llvm.loop.unroll_and_jam.enable``' Metadata
5255^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5256
5257This metadata suggests that the loop should be fully unroll and jammed if the
5258trip count is known at compile time and partially unrolled if the trip count is
5259not known at compile time. The metadata has a single operand which is the
5260string ``llvm.loop.unroll_and_jam.enable``. For example:
5261
5262.. code-block:: llvm
5263
5264 !0 = !{!"llvm.loop.unroll_and_jam.enable"}
5265
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005266'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005267^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005268
5269This metadata indicates that the loop should not be versioned for the purpose
5270of enabling loop-invariant code motion (LICM). The metadata has a single operand
5271which is the string ``llvm.loop.licm_versioning.disable``. For example:
5272
5273.. code-block:: llvm
5274
5275 !0 = !{!"llvm.loop.licm_versioning.disable"}
5276
Adam Nemetd2fa4142016-04-27 05:28:18 +00005277'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005279
5280Loop distribution allows splitting a loop into multiple loops. Currently,
5281this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005282memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005283dependencies into their own loop.
5284
5285This metadata can be used to selectively enable or disable distribution of the
5286loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5287second operand is a bit. If the bit operand value is 1 distribution is
5288enabled. A value of 0 disables distribution:
5289
5290.. code-block:: llvm
5291
5292 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5293 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5294
5295This metadata should be used in conjunction with ``llvm.loop`` loop
5296identification metadata.
5297
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005298'``llvm.mem``'
5299^^^^^^^^^^^^^^^
5300
5301Metadata types used to annotate memory accesses with information helpful
5302for optimizations are prefixed with ``llvm.mem``.
5303
5304'``llvm.mem.parallel_loop_access``' Metadata
5305^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5306
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005307The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5308or metadata containing a list of loop identifiers for nested loops.
5309The metadata is attached to memory accessing instructions and denotes that
5310no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005311with the same loop identifier. The metadata on memory reads also implies that
5312if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005313
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005314Precisely, given two instructions ``m1`` and ``m2`` that both have the
5315``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5316set of loops associated with that metadata, respectively, then there is no loop
5317carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005318``L2``.
5319
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005320As a special case, if all memory accessing instructions in a loop have
5321``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5322loop has no loop carried memory dependences and is considered to be a parallel
5323loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005324
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005325Note that if not all memory access instructions have such metadata referring to
5326the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005327memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005328safe mechanism, this causes loops that were originally parallel to be considered
5329sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005330insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005331
5332Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005333both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005334metadata types that refer to the same loop identifier metadata.
5335
5336.. code-block:: llvm
5337
5338 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005339 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005340 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005341 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005342 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005343 ...
5344 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005345
5346 for.end:
5347 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005348 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005349
5350It is also possible to have nested parallel loops. In that case the
5351memory accesses refer to a list of loop identifier metadata nodes instead of
5352the loop identifier metadata node directly:
5353
5354.. code-block:: llvm
5355
5356 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005357 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005358 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005359 ...
5360 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005361
5362 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005363 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005364 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005365 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005366 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005367 ...
5368 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005369
5370 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005371 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005372 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005373 ...
5374 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005375
5376 outer.for.end: ; preds = %for.body
5377 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005378 !0 = !{!1, !2} ; a list of loop identifiers
5379 !1 = !{!1} ; an identifier for the inner loop
5380 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005381
Hiroshi Yamauchidce9def2017-11-02 22:26:51 +00005382'``irr_loop``' Metadata
5383^^^^^^^^^^^^^^^^^^^^^^^
5384
5385``irr_loop`` metadata may be attached to the terminator instruction of a basic
5386block that's an irreducible loop header (note that an irreducible loop has more
5387than once header basic blocks.) If ``irr_loop`` metadata is attached to the
5388terminator instruction of a basic block that is not really an irreducible loop
5389header, the behavior is undefined. The intent of this metadata is to improve the
5390accuracy of the block frequency propagation. For example, in the code below, the
5391block ``header0`` may have a loop header weight (relative to the other headers of
5392the irreducible loop) of 100:
5393
5394.. code-block:: llvm
5395
5396 header0:
5397 ...
5398 br i1 %cmp, label %t1, label %t2, !irr_loop !0
5399
5400 ...
5401 !0 = !{"loop_header_weight", i64 100}
5402
5403Irreducible loop header weights are typically based on profile data.
5404
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005405'``invariant.group``' Metadata
5406^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5407
Piotr Padlewski74b155f2018-04-08 13:53:04 +00005408The experimental ``invariant.group`` metadata may be attached to
Piotr Padlewskice358262018-05-18 23:53:46 +00005409``load``/``store`` instructions referencing a single metadata with no entries.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005410The existence of the ``invariant.group`` metadata on the instruction tells
5411the optimizer that every ``load`` and ``store`` to the same pointer operand
Piotr Padlewskice358262018-05-18 23:53:46 +00005412can be assumed to load or store the same
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005413value (but see the ``llvm.launder.invariant.group`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005414when two pointers are considered the same). Pointers returned by bitcast or
5415getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005416
5417Examples:
5418
5419.. code-block:: llvm
5420
5421 @unknownPtr = external global i8
5422 ...
5423 %ptr = alloca i8
5424 store i8 42, i8* %ptr, !invariant.group !0
5425 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005426
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005427 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5428 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005429
5430 %newPtr = call i8* @getPointer(i8* %ptr)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005431 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005432
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005433 %unknownValue = load i8, i8* @unknownPtr
5434 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005435
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005436 call void @foo(i8* %ptr)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005437 %newPtr2 = call i8* @llvm.launder.invariant.group(i8* %ptr)
5438 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through launder.invariant.group to get value of %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005439
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005440 ...
5441 declare void @foo(i8*)
5442 declare i8* @getPointer(i8*)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005443 declare i8* @llvm.launder.invariant.group(i8*)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005444
Piotr Padlewskice358262018-05-18 23:53:46 +00005445 !0 = !{}
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005446
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005447The invariant.group metadata must be dropped when replacing one pointer by
5448another based on aliasing information. This is because invariant.group is tied
5449to the SSA value of the pointer operand.
5450
5451.. code-block:: llvm
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005452
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005453 %v = load i8, i8* %x, !invariant.group !0
5454 ; if %x mustalias %y then we can replace the above instruction with
5455 %v = load i8, i8* %y
5456
Piotr Padlewski74b155f2018-04-08 13:53:04 +00005457Note that this is an experimental feature, which means that its semantics might
5458change in the future.
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005459
Peter Collingbournea333db82016-07-26 22:31:30 +00005460'``type``' Metadata
5461^^^^^^^^^^^^^^^^^^^
5462
5463See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005464
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005465'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005466^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005467
5468The ``associated`` metadata may be attached to a global object
5469declaration with a single argument that references another global object.
5470
5471This metadata prevents discarding of the global object in linker GC
5472unless the referenced object is also discarded. The linker support for
5473this feature is spotty. For best compatibility, globals carrying this
5474metadata may also:
5475
5476- Be in a comdat with the referenced global.
5477- Be in @llvm.compiler.used.
5478- Have an explicit section with a name which is a valid C identifier.
5479
5480It does not have any effect on non-ELF targets.
5481
5482Example:
5483
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005484.. code-block:: text
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005485
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005486 $a = comdat any
5487 @a = global i32 1, comdat $a
5488 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5489 !0 = !{i32* @a}
5490
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005491
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005492'``prof``' Metadata
5493^^^^^^^^^^^^^^^^^^^
5494
5495The ``prof`` metadata is used to record profile data in the IR.
5496The first operand of the metadata node indicates the profile metadata
5497type. There are currently 3 types:
5498:ref:`branch_weights<prof_node_branch_weights>`,
5499:ref:`function_entry_count<prof_node_function_entry_count>`, and
5500:ref:`VP<prof_node_VP>`.
5501
5502.. _prof_node_branch_weights:
5503
5504branch_weights
5505""""""""""""""
5506
5507Branch weight metadata attached to a branch, select, switch or call instruction
5508represents the likeliness of the associated branch being taken.
5509For more information, see :doc:`BranchWeightMetadata`.
5510
5511.. _prof_node_function_entry_count:
5512
5513function_entry_count
5514""""""""""""""""""""
5515
5516Function entry count metadata can be attached to function definitions
5517to record the number of times the function is called. Used with BFI
5518information, it is also used to derive the basic block profile count.
5519For more information, see :doc:`BranchWeightMetadata`.
5520
5521.. _prof_node_VP:
5522
5523VP
5524""
5525
5526VP (value profile) metadata can be attached to instructions that have
5527value profile information. Currently this is indirect calls (where it
5528records the hottest callees) and calls to memory intrinsics such as memcpy,
5529memmove, and memset (where it records the hottest byte lengths).
5530
5531Each VP metadata node contains "VP" string, then a uint32_t value for the value
5532profiling kind, a uint64_t value for the total number of times the instruction
5533is executed, followed by uint64_t value and execution count pairs.
5534The value profiling kind is 0 for indirect call targets and 1 for memory
5535operations. For indirect call targets, each profile value is a hash
5536of the callee function name, and for memory operations each value is the
5537byte length.
5538
5539Note that the value counts do not need to add up to the total count
5540listed in the third operand (in practice only the top hottest values
5541are tracked and reported).
5542
5543Indirect call example:
5544
5545.. code-block:: llvm
5546
5547 call void %f(), !prof !1
5548 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5549
5550Note that the VP type is 0 (the second operand), which indicates this is
5551an indirect call value profile data. The third operand indicates that the
5552indirect call executed 1600 times. The 4th and 6th operands give the
5553hashes of the 2 hottest target functions' names (this is the same hash used
5554to represent function names in the profile database), and the 5th and 7th
5555operands give the execution count that each of the respective prior target
5556functions was called.
5557
Sean Silvab084af42012-12-07 10:36:55 +00005558Module Flags Metadata
5559=====================
5560
5561Information about the module as a whole is difficult to convey to LLVM's
5562subsystems. The LLVM IR isn't sufficient to transmit this information.
5563The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005564this. These flags are in the form of key / value pairs --- much like a
5565dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005566look it up.
5567
5568The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5569Each triplet has the following form:
5570
5571- The first element is a *behavior* flag, which specifies the behavior
5572 when two (or more) modules are merged together, and it encounters two
5573 (or more) metadata with the same ID. The supported behaviors are
5574 described below.
5575- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005576 metadata. Each module may only have one flag entry for each unique ID (not
5577 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005578- The third element is the value of the flag.
5579
5580When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005581``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5582each unique metadata ID string, there will be exactly one entry in the merged
5583modules ``llvm.module.flags`` metadata table, and the value for that entry will
5584be determined by the merge behavior flag, as described below. The only exception
5585is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005586
5587The following behaviors are supported:
5588
5589.. list-table::
5590 :header-rows: 1
5591 :widths: 10 90
5592
5593 * - Value
5594 - Behavior
5595
5596 * - 1
5597 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005598 Emits an error if two values disagree, otherwise the resulting value
5599 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005600
5601 * - 2
5602 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005603 Emits a warning if two values disagree. The result value will be the
5604 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005605
5606 * - 3
5607 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005608 Adds a requirement that another module flag be present and have a
5609 specified value after linking is performed. The value must be a
5610 metadata pair, where the first element of the pair is the ID of the
5611 module flag to be restricted, and the second element of the pair is
5612 the value the module flag should be restricted to. This behavior can
5613 be used to restrict the allowable results (via triggering of an
5614 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005615
5616 * - 4
5617 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005618 Uses the specified value, regardless of the behavior or value of the
5619 other module. If both modules specify **Override**, but the values
5620 differ, an error will be emitted.
5621
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005622 * - 5
5623 - **Append**
5624 Appends the two values, which are required to be metadata nodes.
5625
5626 * - 6
5627 - **AppendUnique**
5628 Appends the two values, which are required to be metadata
5629 nodes. However, duplicate entries in the second list are dropped
5630 during the append operation.
5631
Steven Wu86a511e2017-08-15 16:16:33 +00005632 * - 7
5633 - **Max**
5634 Takes the max of the two values, which are required to be integers.
5635
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005636It is an error for a particular unique flag ID to have multiple behaviors,
5637except in the case of **Require** (which adds restrictions on another metadata
5638value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005639
5640An example of module flags:
5641
5642.. code-block:: llvm
5643
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005644 !0 = !{ i32 1, !"foo", i32 1 }
5645 !1 = !{ i32 4, !"bar", i32 37 }
5646 !2 = !{ i32 2, !"qux", i32 42 }
5647 !3 = !{ i32 3, !"qux",
5648 !{
5649 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005650 }
5651 }
5652 !llvm.module.flags = !{ !0, !1, !2, !3 }
5653
5654- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5655 if two or more ``!"foo"`` flags are seen is to emit an error if their
5656 values are not equal.
5657
5658- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5659 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005660 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005661
5662- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5663 behavior if two or more ``!"qux"`` flags are seen is to emit a
5664 warning if their values are not equal.
5665
5666- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5667
5668 ::
5669
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005670 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005671
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005672 The behavior is to emit an error if the ``llvm.module.flags`` does not
5673 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5674 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005675
5676Objective-C Garbage Collection Module Flags Metadata
5677----------------------------------------------------
5678
5679On the Mach-O platform, Objective-C stores metadata about garbage
5680collection in a special section called "image info". The metadata
5681consists of a version number and a bitmask specifying what types of
5682garbage collection are supported (if any) by the file. If two or more
5683modules are linked together their garbage collection metadata needs to
5684be merged rather than appended together.
5685
5686The Objective-C garbage collection module flags metadata consists of the
5687following key-value pairs:
5688
5689.. list-table::
5690 :header-rows: 1
5691 :widths: 30 70
5692
5693 * - Key
5694 - Value
5695
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005696 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005697 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005698
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005699 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005700 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005701 always 0.
5702
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005703 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005704 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005705 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5706 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5707 Objective-C ABI version 2.
5708
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005709 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005710 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005711 not. Valid values are 0, for no garbage collection, and 2, for garbage
5712 collection supported.
5713
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005714 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005715 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005716 If present, its value must be 6. This flag requires that the
5717 ``Objective-C Garbage Collection`` flag have the value 2.
5718
5719Some important flag interactions:
5720
5721- If a module with ``Objective-C Garbage Collection`` set to 0 is
5722 merged with a module with ``Objective-C Garbage Collection`` set to
5723 2, then the resulting module has the
5724 ``Objective-C Garbage Collection`` flag set to 0.
5725- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5726 merged with a module with ``Objective-C GC Only`` set to 6.
5727
Oliver Stannard5dc29342014-06-20 10:08:11 +00005728C type width Module Flags Metadata
5729----------------------------------
5730
5731The ARM backend emits a section into each generated object file describing the
5732options that it was compiled with (in a compiler-independent way) to prevent
5733linking incompatible objects, and to allow automatic library selection. Some
5734of these options are not visible at the IR level, namely wchar_t width and enum
5735width.
5736
5737To pass this information to the backend, these options are encoded in module
5738flags metadata, using the following key-value pairs:
5739
5740.. list-table::
5741 :header-rows: 1
5742 :widths: 30 70
5743
5744 * - Key
5745 - Value
5746
5747 * - short_wchar
5748 - * 0 --- sizeof(wchar_t) == 4
5749 * 1 --- sizeof(wchar_t) == 2
5750
5751 * - short_enum
5752 - * 0 --- Enums are at least as large as an ``int``.
5753 * 1 --- Enums are stored in the smallest integer type which can
5754 represent all of its values.
5755
5756For example, the following metadata section specifies that the module was
5757compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5758enum is the smallest type which can represent all of its values::
5759
5760 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005761 !0 = !{i32 1, !"short_wchar", i32 1}
5762 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005763
Peter Collingbourne89061b22017-06-12 20:10:48 +00005764Automatic Linker Flags Named Metadata
5765=====================================
5766
5767Some targets support embedding flags to the linker inside individual object
5768files. Typically this is used in conjunction with language extensions which
5769allow source files to explicitly declare the libraries they depend on, and have
5770these automatically be transmitted to the linker via object files.
5771
5772These flags are encoded in the IR using named metadata with the name
5773``!llvm.linker.options``. Each operand is expected to be a metadata node
5774which should be a list of other metadata nodes, each of which should be a
5775list of metadata strings defining linker options.
5776
5777For example, the following metadata section specifies two separate sets of
5778linker options, presumably to link against ``libz`` and the ``Cocoa``
5779framework::
5780
5781 !0 = !{ !"-lz" },
5782 !1 = !{ !"-framework", !"Cocoa" } } }
5783 !llvm.linker.options = !{ !0, !1 }
5784
5785The metadata encoding as lists of lists of options, as opposed to a collapsed
5786list of options, is chosen so that the IR encoding can use multiple option
5787strings to specify e.g., a single library, while still having that specifier be
5788preserved as an atomic element that can be recognized by a target specific
5789assembly writer or object file emitter.
5790
5791Each individual option is required to be either a valid option for the target's
5792linker, or an option that is reserved by the target specific assembly writer or
5793object file emitter. No other aspect of these options is defined by the IR.
5794
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005795.. _summary:
5796
5797ThinLTO Summary
5798===============
5799
5800Compiling with `ThinLTO <https://clang.llvm.org/docs/ThinLTO.html>`_
5801causes the building of a compact summary of the module that is emitted into
5802the bitcode. The summary is emitted into the LLVM assembly and identified
5803in syntax by a caret ('``^``').
5804
5805*Note that temporarily the summary entries are skipped when parsing the
5806assembly, although the parsing support is actively being implemented. The
5807following describes when the summary entries will be parsed once implemented.*
5808The summary will be parsed into a ModuleSummaryIndex object under the
5809same conditions where summary index is currently built from bitcode.
5810Specifically, tools that test the Thin Link portion of a ThinLTO compile
5811(i.e. llvm-lto and llvm-lto2), or when parsing a combined index
5812for a distributed ThinLTO backend via clang's "``-fthinlto-index=<>``" flag.
5813Additionally, it will be parsed into a bitcode output, along with the Module
5814IR, via the "``llvm-as``" tool. Tools that parse the Module IR for the purposes
5815of optimization (e.g. "``clang -x ir``" and "``opt``"), will ignore the
5816summary entries (just as they currently ignore summary entries in a bitcode
5817input file).
5818
5819There are currently 3 types of summary entries in the LLVM assembly:
5820:ref:`module paths<module_path_summary>`,
5821:ref:`global values<gv_summary>`, and
5822:ref:`type identifiers<typeid_summary>`.
5823
5824.. _module_path_summary:
5825
5826Module Path Summary Entry
5827-------------------------
5828
5829Each module path summary entry lists a module containing global values included
5830in the summary. For a single IR module there will be one such entry, but
5831in a combined summary index produced during the thin link, there will be
5832one module path entry per linked module with summary.
5833
5834Example:
5835
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005836.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005837
5838 ^0 = module: (path: "/path/to/file.o", hash: (2468601609, 1329373163, 1565878005, 638838075, 3148790418))
5839
5840The ``path`` field is a string path to the bitcode file, and the ``hash``
5841field is the 160-bit SHA-1 hash of the IR bitcode contents, used for
5842incremental builds and caching.
5843
5844.. _gv_summary:
5845
5846Global Value Summary Entry
5847--------------------------
5848
5849Each global value summary entry corresponds to a global value defined or
5850referenced by a summarized module.
5851
5852Example:
5853
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005854.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005855
5856 ^4 = gv: (name: "f"[, summaries: (Summary)[, (Summary)]*]?) ; guid = 14740650423002898831
5857
5858For declarations, there will not be a summary list. For definitions, a
5859global value will contain a list of summaries, one per module containing
5860a definition. There can be multiple entries in a combined summary index
5861for symbols with weak linkage.
5862
5863Each ``Summary`` format will depend on whether the global value is a
5864:ref:`function<function_summary>`, :ref:`variable<variable_summary>`, or
5865:ref:`alias<alias_summary>`.
5866
5867.. _function_summary:
5868
5869Function Summary
5870^^^^^^^^^^^^^^^^
5871
5872If the global value is a function, the ``Summary`` entry will look like:
5873
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005874.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005875
5876 function: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), insts: 2[, FuncFlags]?[, Calls]?[, TypeIdInfo]?[, Refs]?
5877
5878The ``module`` field includes the summary entry id for the module containing
5879this definition, and the ``flags`` field contains information such as
5880the linkage type, a flag indicating whether it is legal to import the
5881definition, whether it is globally live and whether the linker resolved it
5882to a local definition (the latter two are populated during the thin link).
5883The ``insts`` field contains the number of IR instructions in the function.
5884Finally, there are several optional fields: :ref:`FuncFlags<funcflags_summary>`,
5885:ref:`Calls<calls_summary>`, :ref:`TypeIdInfo<typeidinfo_summary>`,
5886:ref:`Refs<refs_summary>`.
5887
5888.. _variable_summary:
5889
5890Global Variable Summary
5891^^^^^^^^^^^^^^^^^^^^^^^
5892
5893If the global value is a variable, the ``Summary`` entry will look like:
5894
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005895.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005896
5897 variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0)[, Refs]?
5898
5899The variable entry contains a subset of the fields in a
5900:ref:`function summary <function_summary>`, see the descriptions there.
5901
5902.. _alias_summary:
5903
5904Alias Summary
5905^^^^^^^^^^^^^
5906
5907If the global value is an alias, the ``Summary`` entry will look like:
5908
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005909.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005910
5911 alias: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), aliasee: ^2)
5912
5913The ``module`` and ``flags`` fields are as described for a
5914:ref:`function summary <function_summary>`. The ``aliasee`` field
5915contains a reference to the global value summary entry of the aliasee.
5916
5917.. _funcflags_summary:
5918
5919Function Flags
5920^^^^^^^^^^^^^^
5921
5922The optional ``FuncFlags`` field looks like:
5923
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005924.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005925
5926 funcFlags: (readNone: 0, readOnly: 0, noRecurse: 0, returnDoesNotAlias: 0)
5927
5928If unspecified, flags are assumed to hold the conservative ``false`` value of
5929``0``.
5930
5931.. _calls_summary:
5932
5933Calls
5934^^^^^
5935
5936The optional ``Calls`` field looks like:
5937
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005938.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005939
5940 calls: ((Callee)[, (Callee)]*)
5941
5942where each ``Callee`` looks like:
5943
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005944.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005945
5946 callee: ^1[, hotness: None]?[, relbf: 0]?
5947
5948The ``callee`` refers to the summary entry id of the callee. At most one
5949of ``hotness`` (which can take the values ``Unknown``, ``Cold``, ``None``,
5950``Hot``, and ``Critical``), and ``relbf`` (which holds the integer
5951branch frequency relative to the entry frequency, scaled down by 2^8)
5952may be specified. The defaults are ``Unknown`` and ``0``, respectively.
5953
5954.. _refs_summary:
5955
5956Refs
5957^^^^
5958
5959The optional ``Refs`` field looks like:
5960
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005961.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005962
5963 refs: ((Ref)[, (Ref)]*)
5964
5965where each ``Ref`` contains a reference to the summary id of the referenced
5966value (e.g. ``^1``).
5967
5968.. _typeidinfo_summary:
5969
5970TypeIdInfo
5971^^^^^^^^^^
5972
5973The optional ``TypeIdInfo`` field, used for
5974`Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
5975looks like:
5976
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005977.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005978
5979 typeIdInfo: [(TypeTests)]?[, (TypeTestAssumeVCalls)]?[, (TypeCheckedLoadVCalls)]?[, (TypeTestAssumeConstVCalls)]?[, (TypeCheckedLoadConstVCalls)]?
5980
5981These optional fields have the following forms:
5982
5983TypeTests
5984"""""""""
5985
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005986.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005987
5988 typeTests: (TypeIdRef[, TypeIdRef]*)
5989
5990Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
5991by summary id or ``GUID``.
5992
5993TypeTestAssumeVCalls
5994""""""""""""""""""""
5995
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005996.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005997
5998 typeTestAssumeVCalls: (VFuncId[, VFuncId]*)
5999
6000Where each VFuncId has the format:
6001
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006002.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006003
6004 vFuncId: (TypeIdRef, offset: 16)
6005
6006Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
6007by summary id or ``GUID`` preceeded by a ``guid:`` tag.
6008
6009TypeCheckedLoadVCalls
6010"""""""""""""""""""""
6011
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006012.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006013
6014 typeCheckedLoadVCalls: (VFuncId[, VFuncId]*)
6015
6016Where each VFuncId has the format described for ``TypeTestAssumeVCalls``.
6017
6018TypeTestAssumeConstVCalls
6019"""""""""""""""""""""""""
6020
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006021.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006022
6023 typeTestAssumeConstVCalls: (ConstVCall[, ConstVCall]*)
6024
6025Where each ConstVCall has the format:
6026
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006027.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006028
6029 VFuncId, args: (Arg[, Arg]*)
6030
6031and where each VFuncId has the format described for ``TypeTestAssumeVCalls``,
6032and each Arg is an integer argument number.
6033
6034TypeCheckedLoadConstVCalls
6035""""""""""""""""""""""""""
6036
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006037.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006038
6039 typeCheckedLoadConstVCalls: (ConstVCall[, ConstVCall]*)
6040
6041Where each ConstVCall has the format described for
6042``TypeTestAssumeConstVCalls``.
6043
6044.. _typeid_summary:
6045
6046Type ID Summary Entry
6047---------------------
6048
6049Each type id summary entry corresponds to a type identifier resolution
6050which is generated during the LTO link portion of the compile when building
6051with `Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
6052so these are only present in a combined summary index.
6053
6054Example:
6055
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006056.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006057
6058 ^4 = typeid: (name: "_ZTS1A", summary: (typeTestRes: (kind: allOnes, sizeM1BitWidth: 7[, alignLog2: 0]?[, sizeM1: 0]?[, bitMask: 0]?[, inlineBits: 0]?)[, WpdResolutions]?)) ; guid = 7004155349499253778
6059
6060The ``typeTestRes`` gives the type test resolution ``kind`` (which may
6061be ``unsat``, ``byteArray``, ``inline``, ``single``, or ``allOnes``), and
6062the ``size-1`` bit width. It is followed by optional flags, which default to 0,
6063and an optional WpdResolutions (whole program devirtualization resolution)
6064field that looks like:
6065
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006066.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006067
6068 wpdResolutions: ((offset: 0, WpdRes)[, (offset: 1, WpdRes)]*
6069
6070where each entry is a mapping from the given byte offset to the whole-program
6071devirtualization resolution WpdRes, that has one of the following formats:
6072
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006073.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006074
6075 wpdRes: (kind: branchFunnel)
6076 wpdRes: (kind: singleImpl, singleImplName: "_ZN1A1nEi")
6077 wpdRes: (kind: indir)
6078
6079Additionally, each wpdRes has an optional ``resByArg`` field, which
6080describes the resolutions for calls with all constant integer arguments:
6081
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006082.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006083
6084 resByArg: (ResByArg[, ResByArg]*)
6085
6086where ResByArg is:
6087
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006088.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006089
6090 args: (Arg[, Arg]*), byArg: (kind: UniformRetVal[, info: 0][, byte: 0][, bit: 0])
6091
6092Where the ``kind`` can be ``Indir``, ``UniformRetVal``, ``UniqueRetVal``
6093or ``VirtualConstProp``. The ``info`` field is only used if the kind
6094is ``UniformRetVal`` (indicates the uniform return value), or
6095``UniqueRetVal`` (holds the return value associated with the unique vtable
6096(0 or 1)). The ``byte`` and ``bit`` fields are only used if the target does
6097not support the use of absolute symbols to store constants.
6098
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006099.. _intrinsicglobalvariables:
6100
Sean Silvab084af42012-12-07 10:36:55 +00006101Intrinsic Global Variables
6102==========================
6103
6104LLVM has a number of "magic" global variables that contain data that
6105affect code generation or other IR semantics. These are documented here.
6106All globals of this sort should have a section specified as
6107"``llvm.metadata``". This section and all globals that start with
6108"``llvm.``" are reserved for use by LLVM.
6109
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006110.. _gv_llvmused:
6111
Sean Silvab084af42012-12-07 10:36:55 +00006112The '``llvm.used``' Global Variable
6113-----------------------------------
6114
Rafael Espindola74f2e462013-04-22 14:58:02 +00006115The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00006116:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00006117pointers to named global variables, functions and aliases which may optionally
6118have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00006119use of it is:
6120
6121.. code-block:: llvm
6122
6123 @X = global i8 4
6124 @Y = global i32 123
6125
6126 @llvm.used = appending global [2 x i8*] [
6127 i8* @X,
6128 i8* bitcast (i32* @Y to i8*)
6129 ], section "llvm.metadata"
6130
Rafael Espindola74f2e462013-04-22 14:58:02 +00006131If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
6132and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00006133symbol that it cannot see (which is why they have to be named). For example, if
6134a variable has internal linkage and no references other than that from the
6135``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
6136references from inline asms and other things the compiler cannot "see", and
6137corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00006138
6139On some targets, the code generator must emit a directive to the
6140assembler or object file to prevent the assembler and linker from
6141molesting the symbol.
6142
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006143.. _gv_llvmcompilerused:
6144
Sean Silvab084af42012-12-07 10:36:55 +00006145The '``llvm.compiler.used``' Global Variable
6146--------------------------------------------
6147
6148The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
6149directive, except that it only prevents the compiler from touching the
6150symbol. On targets that support it, this allows an intelligent linker to
6151optimize references to the symbol without being impeded as it would be
6152by ``@llvm.used``.
6153
6154This is a rare construct that should only be used in rare circumstances,
6155and should not be exposed to source languages.
6156
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006157.. _gv_llvmglobalctors:
6158
Sean Silvab084af42012-12-07 10:36:55 +00006159The '``llvm.global_ctors``' Global Variable
6160-------------------------------------------
6161
6162.. code-block:: llvm
6163
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006164 %0 = type { i32, void ()*, i8* }
6165 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006166
6167The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006168functions, priorities, and an optional associated global or function.
6169The functions referenced by this array will be called in ascending order
6170of priority (i.e. lowest first) when the module is loaded. The order of
6171functions with the same priority is not defined.
6172
6173If the third field is present, non-null, and points to a global variable
6174or function, the initializer function will only run if the associated
6175data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006176
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006177.. _llvmglobaldtors:
6178
Sean Silvab084af42012-12-07 10:36:55 +00006179The '``llvm.global_dtors``' Global Variable
6180-------------------------------------------
6181
6182.. code-block:: llvm
6183
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006184 %0 = type { i32, void ()*, i8* }
6185 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006186
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006187The ``@llvm.global_dtors`` array contains a list of destructor
6188functions, priorities, and an optional associated global or function.
6189The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00006190order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006191order of functions with the same priority is not defined.
6192
6193If the third field is present, non-null, and points to a global variable
6194or function, the destructor function will only run if the associated
6195data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006196
6197Instruction Reference
6198=====================
6199
6200The LLVM instruction set consists of several different classifications
6201of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
6202instructions <binaryops>`, :ref:`bitwise binary
6203instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
6204:ref:`other instructions <otherops>`.
6205
6206.. _terminators:
6207
6208Terminator Instructions
6209-----------------------
6210
6211As mentioned :ref:`previously <functionstructure>`, every basic block in a
6212program ends with a "Terminator" instruction, which indicates which
6213block should be executed after the current block is finished. These
6214terminator instructions typically yield a '``void``' value: they produce
6215control flow, not values (the one exception being the
6216':ref:`invoke <i_invoke>`' instruction).
6217
6218The terminator instructions are: ':ref:`ret <i_ret>`',
6219':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
6220':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00006221':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00006222':ref:`catchret <i_catchret>`',
6223':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00006224and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00006225
6226.. _i_ret:
6227
6228'``ret``' Instruction
6229^^^^^^^^^^^^^^^^^^^^^
6230
6231Syntax:
6232"""""""
6233
6234::
6235
6236 ret <type> <value> ; Return a value from a non-void function
6237 ret void ; Return from void function
6238
6239Overview:
6240"""""""""
6241
6242The '``ret``' instruction is used to return control flow (and optionally
6243a value) from a function back to the caller.
6244
6245There are two forms of the '``ret``' instruction: one that returns a
6246value and then causes control flow, and one that just causes control
6247flow to occur.
6248
6249Arguments:
6250""""""""""
6251
6252The '``ret``' instruction optionally accepts a single argument, the
6253return value. The type of the return value must be a ':ref:`first
6254class <t_firstclass>`' type.
6255
6256A function is not :ref:`well formed <wellformed>` if it it has a non-void
6257return type and contains a '``ret``' instruction with no return value or
6258a return value with a type that does not match its type, or if it has a
6259void return type and contains a '``ret``' instruction with a return
6260value.
6261
6262Semantics:
6263""""""""""
6264
6265When the '``ret``' instruction is executed, control flow returns back to
6266the calling function's context. If the caller is a
6267":ref:`call <i_call>`" instruction, execution continues at the
6268instruction after the call. If the caller was an
6269":ref:`invoke <i_invoke>`" instruction, execution continues at the
6270beginning of the "normal" destination block. If the instruction returns
6271a value, that value shall set the call or invoke instruction's return
6272value.
6273
6274Example:
6275""""""""
6276
6277.. code-block:: llvm
6278
6279 ret i32 5 ; Return an integer value of 5
6280 ret void ; Return from a void function
6281 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
6282
6283.. _i_br:
6284
6285'``br``' Instruction
6286^^^^^^^^^^^^^^^^^^^^
6287
6288Syntax:
6289"""""""
6290
6291::
6292
6293 br i1 <cond>, label <iftrue>, label <iffalse>
6294 br label <dest> ; Unconditional branch
6295
6296Overview:
6297"""""""""
6298
6299The '``br``' instruction is used to cause control flow to transfer to a
6300different basic block in the current function. There are two forms of
6301this instruction, corresponding to a conditional branch and an
6302unconditional branch.
6303
6304Arguments:
6305""""""""""
6306
6307The conditional branch form of the '``br``' instruction takes a single
6308'``i1``' value and two '``label``' values. The unconditional form of the
6309'``br``' instruction takes a single '``label``' value as a target.
6310
6311Semantics:
6312""""""""""
6313
6314Upon execution of a conditional '``br``' instruction, the '``i1``'
6315argument is evaluated. If the value is ``true``, control flows to the
6316'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
6317to the '``iffalse``' ``label`` argument.
6318
6319Example:
6320""""""""
6321
6322.. code-block:: llvm
6323
6324 Test:
6325 %cond = icmp eq i32 %a, %b
6326 br i1 %cond, label %IfEqual, label %IfUnequal
6327 IfEqual:
6328 ret i32 1
6329 IfUnequal:
6330 ret i32 0
6331
6332.. _i_switch:
6333
6334'``switch``' Instruction
6335^^^^^^^^^^^^^^^^^^^^^^^^
6336
6337Syntax:
6338"""""""
6339
6340::
6341
6342 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
6343
6344Overview:
6345"""""""""
6346
6347The '``switch``' instruction is used to transfer control flow to one of
6348several different places. It is a generalization of the '``br``'
6349instruction, allowing a branch to occur to one of many possible
6350destinations.
6351
6352Arguments:
6353""""""""""
6354
6355The '``switch``' instruction uses three parameters: an integer
6356comparison value '``value``', a default '``label``' destination, and an
6357array of pairs of comparison value constants and '``label``'s. The table
6358is not allowed to contain duplicate constant entries.
6359
6360Semantics:
6361""""""""""
6362
6363The ``switch`` instruction specifies a table of values and destinations.
6364When the '``switch``' instruction is executed, this table is searched
6365for the given value. If the value is found, control flow is transferred
6366to the corresponding destination; otherwise, control flow is transferred
6367to the default destination.
6368
6369Implementation:
6370"""""""""""""""
6371
6372Depending on properties of the target machine and the particular
6373``switch`` instruction, this instruction may be code generated in
6374different ways. For example, it could be generated as a series of
6375chained conditional branches or with a lookup table.
6376
6377Example:
6378""""""""
6379
6380.. code-block:: llvm
6381
6382 ; Emulate a conditional br instruction
6383 %Val = zext i1 %value to i32
6384 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
6385
6386 ; Emulate an unconditional br instruction
6387 switch i32 0, label %dest [ ]
6388
6389 ; Implement a jump table:
6390 switch i32 %val, label %otherwise [ i32 0, label %onzero
6391 i32 1, label %onone
6392 i32 2, label %ontwo ]
6393
6394.. _i_indirectbr:
6395
6396'``indirectbr``' Instruction
6397^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6398
6399Syntax:
6400"""""""
6401
6402::
6403
6404 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
6405
6406Overview:
6407"""""""""
6408
6409The '``indirectbr``' instruction implements an indirect branch to a
6410label within the current function, whose address is specified by
6411"``address``". Address must be derived from a
6412:ref:`blockaddress <blockaddress>` constant.
6413
6414Arguments:
6415""""""""""
6416
6417The '``address``' argument is the address of the label to jump to. The
6418rest of the arguments indicate the full set of possible destinations
6419that the address may point to. Blocks are allowed to occur multiple
6420times in the destination list, though this isn't particularly useful.
6421
6422This destination list is required so that dataflow analysis has an
6423accurate understanding of the CFG.
6424
6425Semantics:
6426""""""""""
6427
6428Control transfers to the block specified in the address argument. All
6429possible destination blocks must be listed in the label list, otherwise
6430this instruction has undefined behavior. This implies that jumps to
6431labels defined in other functions have undefined behavior as well.
6432
6433Implementation:
6434"""""""""""""""
6435
6436This is typically implemented with a jump through a register.
6437
6438Example:
6439""""""""
6440
6441.. code-block:: llvm
6442
6443 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
6444
6445.. _i_invoke:
6446
6447'``invoke``' Instruction
6448^^^^^^^^^^^^^^^^^^^^^^^^
6449
6450Syntax:
6451"""""""
6452
6453::
6454
David Blaikieb83cf102016-07-13 17:21:34 +00006455 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006456 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00006457
6458Overview:
6459"""""""""
6460
6461The '``invoke``' instruction causes control to transfer to a specified
6462function, with the possibility of control flow transfer to either the
6463'``normal``' label or the '``exception``' label. If the callee function
6464returns with the "``ret``" instruction, control flow will return to the
6465"normal" label. If the callee (or any indirect callees) returns via the
6466":ref:`resume <i_resume>`" instruction or other exception handling
6467mechanism, control is interrupted and continued at the dynamically
6468nearest "exception" label.
6469
6470The '``exception``' label is a `landing
6471pad <ExceptionHandling.html#overview>`_ for the exception. As such,
6472'``exception``' label is required to have the
6473":ref:`landingpad <i_landingpad>`" instruction, which contains the
6474information about the behavior of the program after unwinding happens,
6475as its first non-PHI instruction. The restrictions on the
6476"``landingpad``" instruction's tightly couples it to the "``invoke``"
6477instruction, so that the important information contained within the
6478"``landingpad``" instruction can't be lost through normal code motion.
6479
6480Arguments:
6481""""""""""
6482
6483This instruction requires several arguments:
6484
6485#. The optional "cconv" marker indicates which :ref:`calling
6486 convention <callingconv>` the call should use. If none is
6487 specified, the call defaults to using C calling conventions.
6488#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6489 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6490 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00006491#. '``ty``': the type of the call instruction itself which is also the
6492 type of the return value. Functions that return no value are marked
6493 ``void``.
6494#. '``fnty``': shall be the signature of the function being invoked. The
6495 argument types must match the types implied by this signature. This
6496 type can be omitted if the function is not varargs.
6497#. '``fnptrval``': An LLVM value containing a pointer to a function to
6498 be invoked. In most cases, this is a direct function invocation, but
6499 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
6500 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00006501#. '``function args``': argument list whose types match the function
6502 signature argument types and parameter attributes. All arguments must
6503 be of :ref:`first class <t_firstclass>` type. If the function signature
6504 indicates the function accepts a variable number of arguments, the
6505 extra arguments can be specified.
6506#. '``normal label``': the label reached when the called function
6507 executes a '``ret``' instruction.
6508#. '``exception label``': the label reached when a callee returns via
6509 the :ref:`resume <i_resume>` instruction or other exception handling
6510 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00006511#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006512#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00006513
6514Semantics:
6515""""""""""
6516
6517This instruction is designed to operate as a standard '``call``'
6518instruction in most regards. The primary difference is that it
6519establishes an association with a label, which is used by the runtime
6520library to unwind the stack.
6521
6522This instruction is used in languages with destructors to ensure that
6523proper cleanup is performed in the case of either a ``longjmp`` or a
6524thrown exception. Additionally, this is important for implementation of
6525'``catch``' clauses in high-level languages that support them.
6526
6527For the purposes of the SSA form, the definition of the value returned
6528by the '``invoke``' instruction is deemed to occur on the edge from the
6529current block to the "normal" label. If the callee unwinds then no
6530return value is available.
6531
6532Example:
6533""""""""
6534
6535.. code-block:: llvm
6536
6537 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006538 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006539 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006540 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006541
6542.. _i_resume:
6543
6544'``resume``' Instruction
6545^^^^^^^^^^^^^^^^^^^^^^^^
6546
6547Syntax:
6548"""""""
6549
6550::
6551
6552 resume <type> <value>
6553
6554Overview:
6555"""""""""
6556
6557The '``resume``' instruction is a terminator instruction that has no
6558successors.
6559
6560Arguments:
6561""""""""""
6562
6563The '``resume``' instruction requires one argument, which must have the
6564same type as the result of any '``landingpad``' instruction in the same
6565function.
6566
6567Semantics:
6568""""""""""
6569
6570The '``resume``' instruction resumes propagation of an existing
6571(in-flight) exception whose unwinding was interrupted with a
6572:ref:`landingpad <i_landingpad>` instruction.
6573
6574Example:
6575""""""""
6576
6577.. code-block:: llvm
6578
6579 resume { i8*, i32 } %exn
6580
David Majnemer8a1c45d2015-12-12 05:38:55 +00006581.. _i_catchswitch:
6582
6583'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00006584^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00006585
6586Syntax:
6587"""""""
6588
6589::
6590
6591 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6592 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6593
6594Overview:
6595"""""""""
6596
6597The '``catchswitch``' instruction is used by `LLVM's exception handling system
6598<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6599that may be executed by the :ref:`EH personality routine <personalityfn>`.
6600
6601Arguments:
6602""""""""""
6603
6604The ``parent`` argument is the token of the funclet that contains the
6605``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6606this operand may be the token ``none``.
6607
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006608The ``default`` argument is the label of another basic block beginning with
6609either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6610must be a legal target with respect to the ``parent`` links, as described in
6611the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006612
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006613The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006614:ref:`catchpad <i_catchpad>` instruction.
6615
6616Semantics:
6617""""""""""
6618
6619Executing this instruction transfers control to one of the successors in
6620``handlers``, if appropriate, or continues to unwind via the unwind label if
6621present.
6622
6623The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6624it must be both the first non-phi instruction and last instruction in the basic
6625block. Therefore, it must be the only non-phi instruction in the block.
6626
6627Example:
6628""""""""
6629
Renato Golin124f2592016-07-20 12:16:38 +00006630.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00006631
6632 dispatch1:
6633 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6634 dispatch2:
6635 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6636
David Majnemer654e1302015-07-31 17:58:14 +00006637.. _i_catchret:
6638
6639'``catchret``' Instruction
6640^^^^^^^^^^^^^^^^^^^^^^^^^^
6641
6642Syntax:
6643"""""""
6644
6645::
6646
David Majnemer8a1c45d2015-12-12 05:38:55 +00006647 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00006648
6649Overview:
6650"""""""""
6651
6652The '``catchret``' instruction is a terminator instruction that has a
6653single successor.
6654
6655
6656Arguments:
6657""""""""""
6658
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006659The first argument to a '``catchret``' indicates which ``catchpad`` it
6660exits. It must be a :ref:`catchpad <i_catchpad>`.
6661The second argument to a '``catchret``' specifies where control will
6662transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00006663
6664Semantics:
6665""""""""""
6666
David Majnemer8a1c45d2015-12-12 05:38:55 +00006667The '``catchret``' instruction ends an existing (in-flight) exception whose
6668unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6669:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6670code to, for example, destroy the active exception. Control then transfers to
6671``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006672
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006673The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6674If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6675funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6676the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006677
6678Example:
6679""""""""
6680
Renato Golin124f2592016-07-20 12:16:38 +00006681.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006682
David Majnemer8a1c45d2015-12-12 05:38:55 +00006683 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006684
David Majnemer654e1302015-07-31 17:58:14 +00006685.. _i_cleanupret:
6686
6687'``cleanupret``' Instruction
6688^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6689
6690Syntax:
6691"""""""
6692
6693::
6694
David Majnemer8a1c45d2015-12-12 05:38:55 +00006695 cleanupret from <value> unwind label <continue>
6696 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006697
6698Overview:
6699"""""""""
6700
6701The '``cleanupret``' instruction is a terminator instruction that has
6702an optional successor.
6703
6704
6705Arguments:
6706""""""""""
6707
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006708The '``cleanupret``' instruction requires one argument, which indicates
6709which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006710If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6711funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6712the ``cleanupret``'s behavior is undefined.
6713
6714The '``cleanupret``' instruction also has an optional successor, ``continue``,
6715which must be the label of another basic block beginning with either a
6716``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6717be a legal target with respect to the ``parent`` links, as described in the
6718`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006719
6720Semantics:
6721""""""""""
6722
6723The '``cleanupret``' instruction indicates to the
6724:ref:`personality function <personalityfn>` that one
6725:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6726It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006727
David Majnemer654e1302015-07-31 17:58:14 +00006728Example:
6729""""""""
6730
Renato Golin124f2592016-07-20 12:16:38 +00006731.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006732
David Majnemer8a1c45d2015-12-12 05:38:55 +00006733 cleanupret from %cleanup unwind to caller
6734 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006735
Sean Silvab084af42012-12-07 10:36:55 +00006736.. _i_unreachable:
6737
6738'``unreachable``' Instruction
6739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6740
6741Syntax:
6742"""""""
6743
6744::
6745
6746 unreachable
6747
6748Overview:
6749"""""""""
6750
6751The '``unreachable``' instruction has no defined semantics. This
6752instruction is used to inform the optimizer that a particular portion of
6753the code is not reachable. This can be used to indicate that the code
6754after a no-return function cannot be reached, and other facts.
6755
6756Semantics:
6757""""""""""
6758
6759The '``unreachable``' instruction has no defined semantics.
6760
6761.. _binaryops:
6762
6763Binary Operations
6764-----------------
6765
6766Binary operators are used to do most of the computation in a program.
6767They require two operands of the same type, execute an operation on
6768them, and produce a single value. The operands might represent multiple
6769data, as is the case with the :ref:`vector <t_vector>` data type. The
6770result value has the same type as its operands.
6771
6772There are several different binary operators:
6773
6774.. _i_add:
6775
6776'``add``' Instruction
6777^^^^^^^^^^^^^^^^^^^^^
6778
6779Syntax:
6780"""""""
6781
6782::
6783
Tim Northover675a0962014-06-13 14:24:23 +00006784 <result> = add <ty> <op1>, <op2> ; yields ty:result
6785 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6786 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6787 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006788
6789Overview:
6790"""""""""
6791
6792The '``add``' instruction returns the sum of its two operands.
6793
6794Arguments:
6795""""""""""
6796
6797The two arguments to the '``add``' instruction must be
6798:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6799arguments must have identical types.
6800
6801Semantics:
6802""""""""""
6803
6804The value produced is the integer sum of the two operands.
6805
6806If the sum has unsigned overflow, the result returned is the
6807mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6808the result.
6809
6810Because LLVM integers use a two's complement representation, this
6811instruction is appropriate for both signed and unsigned integers.
6812
6813``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6814respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6815result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6816unsigned and/or signed overflow, respectively, occurs.
6817
6818Example:
6819""""""""
6820
Renato Golin124f2592016-07-20 12:16:38 +00006821.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006822
Tim Northover675a0962014-06-13 14:24:23 +00006823 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006824
6825.. _i_fadd:
6826
6827'``fadd``' Instruction
6828^^^^^^^^^^^^^^^^^^^^^^
6829
6830Syntax:
6831"""""""
6832
6833::
6834
Tim Northover675a0962014-06-13 14:24:23 +00006835 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006836
6837Overview:
6838"""""""""
6839
6840The '``fadd``' instruction returns the sum of its two operands.
6841
6842Arguments:
6843""""""""""
6844
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006845The two arguments to the '``fadd``' instruction must be
6846:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6847floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006848
6849Semantics:
6850""""""""""
6851
Sanjay Patel7b722402018-03-07 17:18:22 +00006852The value produced is the floating-point sum of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006853This instruction is assumed to execute in the default :ref:`floating-point
6854environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00006855This instruction can also take any number of :ref:`fast-math
6856flags <fastmath>`, which are optimization hints to enable otherwise
6857unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006858
6859Example:
6860""""""""
6861
Renato Golin124f2592016-07-20 12:16:38 +00006862.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006863
Tim Northover675a0962014-06-13 14:24:23 +00006864 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006865
6866'``sub``' Instruction
6867^^^^^^^^^^^^^^^^^^^^^
6868
6869Syntax:
6870"""""""
6871
6872::
6873
Tim Northover675a0962014-06-13 14:24:23 +00006874 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6875 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6876 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6877 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006878
6879Overview:
6880"""""""""
6881
6882The '``sub``' instruction returns the difference of its two operands.
6883
6884Note that the '``sub``' instruction is used to represent the '``neg``'
6885instruction present in most other intermediate representations.
6886
6887Arguments:
6888""""""""""
6889
6890The two arguments to the '``sub``' instruction must be
6891:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6892arguments must have identical types.
6893
6894Semantics:
6895""""""""""
6896
6897The value produced is the integer difference of the two operands.
6898
6899If the difference has unsigned overflow, the result returned is the
6900mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6901the result.
6902
6903Because LLVM integers use a two's complement representation, this
6904instruction is appropriate for both signed and unsigned integers.
6905
6906``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6907respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6908result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6909unsigned and/or signed overflow, respectively, occurs.
6910
6911Example:
6912""""""""
6913
Renato Golin124f2592016-07-20 12:16:38 +00006914.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006915
Tim Northover675a0962014-06-13 14:24:23 +00006916 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6917 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006918
6919.. _i_fsub:
6920
6921'``fsub``' Instruction
6922^^^^^^^^^^^^^^^^^^^^^^
6923
6924Syntax:
6925"""""""
6926
6927::
6928
Tim Northover675a0962014-06-13 14:24:23 +00006929 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006930
6931Overview:
6932"""""""""
6933
6934The '``fsub``' instruction returns the difference of its two operands.
6935
6936Note that the '``fsub``' instruction is used to represent the '``fneg``'
6937instruction present in most other intermediate representations.
6938
6939Arguments:
6940""""""""""
6941
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006942The two arguments to the '``fsub``' instruction must be
6943:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6944floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006945
6946Semantics:
6947""""""""""
6948
Sanjay Patel7b722402018-03-07 17:18:22 +00006949The value produced is the floating-point difference of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006950This instruction is assumed to execute in the default :ref:`floating-point
6951environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00006952This instruction can also take any number of :ref:`fast-math
6953flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006954unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006955
6956Example:
6957""""""""
6958
Renato Golin124f2592016-07-20 12:16:38 +00006959.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006960
Tim Northover675a0962014-06-13 14:24:23 +00006961 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6962 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006963
6964'``mul``' Instruction
6965^^^^^^^^^^^^^^^^^^^^^
6966
6967Syntax:
6968"""""""
6969
6970::
6971
Tim Northover675a0962014-06-13 14:24:23 +00006972 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6973 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6974 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6975 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006976
6977Overview:
6978"""""""""
6979
6980The '``mul``' instruction returns the product of its two operands.
6981
6982Arguments:
6983""""""""""
6984
6985The two arguments to the '``mul``' instruction must be
6986:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6987arguments must have identical types.
6988
6989Semantics:
6990""""""""""
6991
6992The value produced is the integer product of the two operands.
6993
6994If the result of the multiplication has unsigned overflow, the result
6995returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6996bit width of the result.
6997
6998Because LLVM integers use a two's complement representation, and the
6999result is the same width as the operands, this instruction returns the
7000correct result for both signed and unsigned integers. If a full product
7001(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
7002sign-extended or zero-extended as appropriate to the width of the full
7003product.
7004
7005``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7006respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7007result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
7008unsigned and/or signed overflow, respectively, occurs.
7009
7010Example:
7011""""""""
7012
Renato Golin124f2592016-07-20 12:16:38 +00007013.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007014
Tim Northover675a0962014-06-13 14:24:23 +00007015 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00007016
7017.. _i_fmul:
7018
7019'``fmul``' Instruction
7020^^^^^^^^^^^^^^^^^^^^^^
7021
7022Syntax:
7023"""""""
7024
7025::
7026
Tim Northover675a0962014-06-13 14:24:23 +00007027 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007028
7029Overview:
7030"""""""""
7031
7032The '``fmul``' instruction returns the product of its two operands.
7033
7034Arguments:
7035""""""""""
7036
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007037The two arguments to the '``fmul``' instruction must be
7038:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
7039floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007040
7041Semantics:
7042""""""""""
7043
Sanjay Patel7b722402018-03-07 17:18:22 +00007044The value produced is the floating-point product of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007045This instruction is assumed to execute in the default :ref:`floating-point
7046environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007047This instruction can also take any number of :ref:`fast-math
7048flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007049unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007050
7051Example:
7052""""""""
7053
Renato Golin124f2592016-07-20 12:16:38 +00007054.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007055
Tim Northover675a0962014-06-13 14:24:23 +00007056 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00007057
7058'``udiv``' Instruction
7059^^^^^^^^^^^^^^^^^^^^^^
7060
7061Syntax:
7062"""""""
7063
7064::
7065
Tim Northover675a0962014-06-13 14:24:23 +00007066 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
7067 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007068
7069Overview:
7070"""""""""
7071
7072The '``udiv``' instruction returns the quotient of its two operands.
7073
7074Arguments:
7075""""""""""
7076
7077The two arguments to the '``udiv``' instruction must be
7078:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7079arguments must have identical types.
7080
7081Semantics:
7082""""""""""
7083
7084The value produced is the unsigned integer quotient of the two operands.
7085
7086Note that unsigned integer division and signed integer division are
7087distinct operations; for signed integer division, use '``sdiv``'.
7088
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007089Division by zero is undefined behavior. For vectors, if any element
7090of the divisor is zero, the operation has undefined behavior.
7091
Sean Silvab084af42012-12-07 10:36:55 +00007092
7093If the ``exact`` keyword is present, the result value of the ``udiv`` is
7094a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
7095such, "((a udiv exact b) mul b) == a").
7096
7097Example:
7098""""""""
7099
Renato Golin124f2592016-07-20 12:16:38 +00007100.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007101
Tim Northover675a0962014-06-13 14:24:23 +00007102 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007103
7104'``sdiv``' Instruction
7105^^^^^^^^^^^^^^^^^^^^^^
7106
7107Syntax:
7108"""""""
7109
7110::
7111
Tim Northover675a0962014-06-13 14:24:23 +00007112 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
7113 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007114
7115Overview:
7116"""""""""
7117
7118The '``sdiv``' instruction returns the quotient of its two operands.
7119
7120Arguments:
7121""""""""""
7122
7123The two arguments to the '``sdiv``' instruction must be
7124:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7125arguments must have identical types.
7126
7127Semantics:
7128""""""""""
7129
7130The value produced is the signed integer quotient of the two operands
7131rounded towards zero.
7132
7133Note that signed integer division and unsigned integer division are
7134distinct operations; for unsigned integer division, use '``udiv``'.
7135
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007136Division by zero is undefined behavior. For vectors, if any element
7137of the divisor is zero, the operation has undefined behavior.
7138Overflow also leads to undefined behavior; this is a rare case, but can
7139occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00007140
7141If the ``exact`` keyword is present, the result value of the ``sdiv`` is
7142a :ref:`poison value <poisonvalues>` if the result would be rounded.
7143
7144Example:
7145""""""""
7146
Renato Golin124f2592016-07-20 12:16:38 +00007147.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007148
Tim Northover675a0962014-06-13 14:24:23 +00007149 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007150
7151.. _i_fdiv:
7152
7153'``fdiv``' Instruction
7154^^^^^^^^^^^^^^^^^^^^^^
7155
7156Syntax:
7157"""""""
7158
7159::
7160
Tim Northover675a0962014-06-13 14:24:23 +00007161 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007162
7163Overview:
7164"""""""""
7165
7166The '``fdiv``' instruction returns the quotient of its two operands.
7167
7168Arguments:
7169""""""""""
7170
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007171The two arguments to the '``fdiv``' instruction must be
7172:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
7173floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007174
7175Semantics:
7176""""""""""
7177
Sanjay Patel7b722402018-03-07 17:18:22 +00007178The value produced is the floating-point quotient of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007179This instruction is assumed to execute in the default :ref:`floating-point
7180environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007181This instruction can also take any number of :ref:`fast-math
7182flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007183unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007184
7185Example:
7186""""""""
7187
Renato Golin124f2592016-07-20 12:16:38 +00007188.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007189
Tim Northover675a0962014-06-13 14:24:23 +00007190 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007191
7192'``urem``' Instruction
7193^^^^^^^^^^^^^^^^^^^^^^
7194
7195Syntax:
7196"""""""
7197
7198::
7199
Tim Northover675a0962014-06-13 14:24:23 +00007200 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007201
7202Overview:
7203"""""""""
7204
7205The '``urem``' instruction returns the remainder from the unsigned
7206division of its two arguments.
7207
7208Arguments:
7209""""""""""
7210
7211The two arguments to the '``urem``' instruction must be
7212:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7213arguments must have identical types.
7214
7215Semantics:
7216""""""""""
7217
7218This instruction returns the unsigned integer *remainder* of a division.
7219This instruction always performs an unsigned division to get the
7220remainder.
7221
7222Note that unsigned integer remainder and signed integer remainder are
7223distinct operations; for signed integer remainder, use '``srem``'.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007224
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007225Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007226For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007227undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007228
7229Example:
7230""""""""
7231
Renato Golin124f2592016-07-20 12:16:38 +00007232.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007233
Tim Northover675a0962014-06-13 14:24:23 +00007234 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007235
7236'``srem``' Instruction
7237^^^^^^^^^^^^^^^^^^^^^^
7238
7239Syntax:
7240"""""""
7241
7242::
7243
Tim Northover675a0962014-06-13 14:24:23 +00007244 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007245
7246Overview:
7247"""""""""
7248
7249The '``srem``' instruction returns the remainder from the signed
7250division of its two operands. This instruction can also take
7251:ref:`vector <t_vector>` versions of the values in which case the elements
7252must be integers.
7253
7254Arguments:
7255""""""""""
7256
7257The two arguments to the '``srem``' instruction must be
7258:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7259arguments must have identical types.
7260
7261Semantics:
7262""""""""""
7263
7264This instruction returns the *remainder* of a division (where the result
7265is either zero or has the same sign as the dividend, ``op1``), not the
7266*modulo* operator (where the result is either zero or has the same sign
7267as the divisor, ``op2``) of a value. For more information about the
7268difference, see `The Math
7269Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
7270table of how this is implemented in various languages, please see
7271`Wikipedia: modulo
7272operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
7273
7274Note that signed integer remainder and unsigned integer remainder are
7275distinct operations; for unsigned integer remainder, use '``urem``'.
7276
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007277Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007278For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007279undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007280Overflow also leads to undefined behavior; this is a rare case, but can
7281occur, for example, by taking the remainder of a 32-bit division of
7282-2147483648 by -1. (The remainder doesn't actually overflow, but this
7283rule lets srem be implemented using instructions that return both the
7284result of the division and the remainder.)
7285
7286Example:
7287""""""""
7288
Renato Golin124f2592016-07-20 12:16:38 +00007289.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007290
Tim Northover675a0962014-06-13 14:24:23 +00007291 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007292
7293.. _i_frem:
7294
7295'``frem``' Instruction
7296^^^^^^^^^^^^^^^^^^^^^^
7297
7298Syntax:
7299"""""""
7300
7301::
7302
Tim Northover675a0962014-06-13 14:24:23 +00007303 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007304
7305Overview:
7306"""""""""
7307
7308The '``frem``' instruction returns the remainder from the division of
7309its two operands.
7310
7311Arguments:
7312""""""""""
7313
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007314The two arguments to the '``frem``' instruction must be
7315:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
7316floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007317
7318Semantics:
7319""""""""""
7320
Sanjay Patel7b722402018-03-07 17:18:22 +00007321The value produced is the floating-point remainder of the two operands.
7322This is the same output as a libm '``fmod``' function, but without any
7323possibility of setting ``errno``. The remainder has the same sign as the
7324dividend.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007325This instruction is assumed to execute in the default :ref:`floating-point
7326environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00007327This instruction can also take any number of :ref:`fast-math
7328flags <fastmath>`, which are optimization hints to enable otherwise
7329unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007330
7331Example:
7332""""""""
7333
Renato Golin124f2592016-07-20 12:16:38 +00007334.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007335
Tim Northover675a0962014-06-13 14:24:23 +00007336 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007337
7338.. _bitwiseops:
7339
7340Bitwise Binary Operations
7341-------------------------
7342
7343Bitwise binary operators are used to do various forms of bit-twiddling
7344in a program. They are generally very efficient instructions and can
7345commonly be strength reduced from other instructions. They require two
7346operands of the same type, execute an operation on them, and produce a
7347single value. The resulting value is the same type as its operands.
7348
7349'``shl``' Instruction
7350^^^^^^^^^^^^^^^^^^^^^
7351
7352Syntax:
7353"""""""
7354
7355::
7356
Tim Northover675a0962014-06-13 14:24:23 +00007357 <result> = shl <ty> <op1>, <op2> ; yields ty:result
7358 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
7359 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
7360 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007361
7362Overview:
7363"""""""""
7364
7365The '``shl``' instruction returns the first operand shifted to the left
7366a specified number of bits.
7367
7368Arguments:
7369""""""""""
7370
7371Both arguments to the '``shl``' instruction must be the same
7372:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7373'``op2``' is treated as an unsigned value.
7374
7375Semantics:
7376""""""""""
7377
7378The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
7379where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00007380dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007381``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
7382If the arguments are vectors, each vector element of ``op1`` is shifted
7383by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007384
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007385If the ``nuw`` keyword is present, then the shift produces a poison
7386value if it shifts out any non-zero bits.
7387If the ``nsw`` keyword is present, then the shift produces a poison
Sanjay Patel2896c772018-06-01 15:21:14 +00007388value if it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00007389
7390Example:
7391""""""""
7392
Renato Golin124f2592016-07-20 12:16:38 +00007393.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007394
Tim Northover675a0962014-06-13 14:24:23 +00007395 <result> = shl i32 4, %var ; yields i32: 4 << %var
7396 <result> = shl i32 4, 2 ; yields i32: 16
7397 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00007398 <result> = shl i32 1, 32 ; undefined
7399 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
7400
7401'``lshr``' Instruction
7402^^^^^^^^^^^^^^^^^^^^^^
7403
7404Syntax:
7405"""""""
7406
7407::
7408
Tim Northover675a0962014-06-13 14:24:23 +00007409 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
7410 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007411
7412Overview:
7413"""""""""
7414
7415The '``lshr``' instruction (logical shift right) returns the first
7416operand shifted to the right a specified number of bits with zero fill.
7417
7418Arguments:
7419""""""""""
7420
7421Both arguments to the '``lshr``' instruction must be the same
7422:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7423'``op2``' is treated as an unsigned value.
7424
7425Semantics:
7426""""""""""
7427
7428This instruction always performs a logical shift right operation. The
7429most significant bits of the result will be filled with zero bits after
7430the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007431than the number of bits in ``op1``, this instruction returns a :ref:`poison
7432value <poisonvalues>`. If the arguments are vectors, each vector element
7433of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007434
7435If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007436a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007437
7438Example:
7439""""""""
7440
Renato Golin124f2592016-07-20 12:16:38 +00007441.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007442
Tim Northover675a0962014-06-13 14:24:23 +00007443 <result> = lshr i32 4, 1 ; yields i32:result = 2
7444 <result> = lshr i32 4, 2 ; yields i32:result = 1
7445 <result> = lshr i8 4, 3 ; yields i8:result = 0
7446 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00007447 <result> = lshr i32 1, 32 ; undefined
7448 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
7449
7450'``ashr``' Instruction
7451^^^^^^^^^^^^^^^^^^^^^^
7452
7453Syntax:
7454"""""""
7455
7456::
7457
Tim Northover675a0962014-06-13 14:24:23 +00007458 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
7459 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007460
7461Overview:
7462"""""""""
7463
7464The '``ashr``' instruction (arithmetic shift right) returns the first
7465operand shifted to the right a specified number of bits with sign
7466extension.
7467
7468Arguments:
7469""""""""""
7470
7471Both arguments to the '``ashr``' instruction must be the same
7472:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7473'``op2``' is treated as an unsigned value.
7474
7475Semantics:
7476""""""""""
7477
7478This instruction always performs an arithmetic shift right operation,
7479The most significant bits of the result will be filled with the sign bit
7480of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007481than the number of bits in ``op1``, this instruction returns a :ref:`poison
7482value <poisonvalues>`. If the arguments are vectors, each vector element
7483of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007484
7485If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007486a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007487
7488Example:
7489""""""""
7490
Renato Golin124f2592016-07-20 12:16:38 +00007491.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007492
Tim Northover675a0962014-06-13 14:24:23 +00007493 <result> = ashr i32 4, 1 ; yields i32:result = 2
7494 <result> = ashr i32 4, 2 ; yields i32:result = 1
7495 <result> = ashr i8 4, 3 ; yields i8:result = 0
7496 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00007497 <result> = ashr i32 1, 32 ; undefined
7498 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
7499
7500'``and``' Instruction
7501^^^^^^^^^^^^^^^^^^^^^
7502
7503Syntax:
7504"""""""
7505
7506::
7507
Tim Northover675a0962014-06-13 14:24:23 +00007508 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007509
7510Overview:
7511"""""""""
7512
7513The '``and``' instruction returns the bitwise logical and of its two
7514operands.
7515
7516Arguments:
7517""""""""""
7518
7519The two arguments to the '``and``' instruction must be
7520:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7521arguments must have identical types.
7522
7523Semantics:
7524""""""""""
7525
7526The truth table used for the '``and``' instruction is:
7527
7528+-----+-----+-----+
7529| In0 | In1 | Out |
7530+-----+-----+-----+
7531| 0 | 0 | 0 |
7532+-----+-----+-----+
7533| 0 | 1 | 0 |
7534+-----+-----+-----+
7535| 1 | 0 | 0 |
7536+-----+-----+-----+
7537| 1 | 1 | 1 |
7538+-----+-----+-----+
7539
7540Example:
7541""""""""
7542
Renato Golin124f2592016-07-20 12:16:38 +00007543.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007544
Tim Northover675a0962014-06-13 14:24:23 +00007545 <result> = and i32 4, %var ; yields i32:result = 4 & %var
7546 <result> = and i32 15, 40 ; yields i32:result = 8
7547 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00007548
7549'``or``' Instruction
7550^^^^^^^^^^^^^^^^^^^^
7551
7552Syntax:
7553"""""""
7554
7555::
7556
Tim Northover675a0962014-06-13 14:24:23 +00007557 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007558
7559Overview:
7560"""""""""
7561
7562The '``or``' instruction returns the bitwise logical inclusive or of its
7563two operands.
7564
7565Arguments:
7566""""""""""
7567
7568The two arguments to the '``or``' instruction must be
7569:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7570arguments must have identical types.
7571
7572Semantics:
7573""""""""""
7574
7575The truth table used for the '``or``' instruction is:
7576
7577+-----+-----+-----+
7578| In0 | In1 | Out |
7579+-----+-----+-----+
7580| 0 | 0 | 0 |
7581+-----+-----+-----+
7582| 0 | 1 | 1 |
7583+-----+-----+-----+
7584| 1 | 0 | 1 |
7585+-----+-----+-----+
7586| 1 | 1 | 1 |
7587+-----+-----+-----+
7588
7589Example:
7590""""""""
7591
7592::
7593
Tim Northover675a0962014-06-13 14:24:23 +00007594 <result> = or i32 4, %var ; yields i32:result = 4 | %var
7595 <result> = or i32 15, 40 ; yields i32:result = 47
7596 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00007597
7598'``xor``' Instruction
7599^^^^^^^^^^^^^^^^^^^^^
7600
7601Syntax:
7602"""""""
7603
7604::
7605
Tim Northover675a0962014-06-13 14:24:23 +00007606 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007607
7608Overview:
7609"""""""""
7610
7611The '``xor``' instruction returns the bitwise logical exclusive or of
7612its two operands. The ``xor`` is used to implement the "one's
7613complement" operation, which is the "~" operator in C.
7614
7615Arguments:
7616""""""""""
7617
7618The two arguments to the '``xor``' instruction must be
7619:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7620arguments must have identical types.
7621
7622Semantics:
7623""""""""""
7624
7625The truth table used for the '``xor``' instruction is:
7626
7627+-----+-----+-----+
7628| In0 | In1 | Out |
7629+-----+-----+-----+
7630| 0 | 0 | 0 |
7631+-----+-----+-----+
7632| 0 | 1 | 1 |
7633+-----+-----+-----+
7634| 1 | 0 | 1 |
7635+-----+-----+-----+
7636| 1 | 1 | 0 |
7637+-----+-----+-----+
7638
7639Example:
7640""""""""
7641
Renato Golin124f2592016-07-20 12:16:38 +00007642.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007643
Tim Northover675a0962014-06-13 14:24:23 +00007644 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7645 <result> = xor i32 15, 40 ; yields i32:result = 39
7646 <result> = xor i32 4, 8 ; yields i32:result = 12
7647 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00007648
7649Vector Operations
7650-----------------
7651
7652LLVM supports several instructions to represent vector operations in a
7653target-independent manner. These instructions cover the element-access
7654and vector-specific operations needed to process vectors effectively.
7655While LLVM does directly support these vector operations, many
7656sophisticated algorithms will want to use target-specific intrinsics to
7657take full advantage of a specific target.
7658
7659.. _i_extractelement:
7660
7661'``extractelement``' Instruction
7662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7663
7664Syntax:
7665"""""""
7666
7667::
7668
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007669 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00007670
7671Overview:
7672"""""""""
7673
7674The '``extractelement``' instruction extracts a single scalar element
7675from a vector at a specified index.
7676
7677Arguments:
7678""""""""""
7679
7680The first operand of an '``extractelement``' instruction is a value of
7681:ref:`vector <t_vector>` type. The second operand is an index indicating
7682the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007683variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007684
7685Semantics:
7686""""""""""
7687
7688The result is a scalar of the same type as the element type of ``val``.
7689Its value is the value at position ``idx`` of ``val``. If ``idx``
Eli Friedman2c7a81b2018-06-08 21:23:09 +00007690exceeds the length of ``val``, the result is a
7691:ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00007692
7693Example:
7694""""""""
7695
Renato Golin124f2592016-07-20 12:16:38 +00007696.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007697
7698 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7699
7700.. _i_insertelement:
7701
7702'``insertelement``' Instruction
7703^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7704
7705Syntax:
7706"""""""
7707
7708::
7709
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007710 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007711
7712Overview:
7713"""""""""
7714
7715The '``insertelement``' instruction inserts a scalar element into a
7716vector at a specified index.
7717
7718Arguments:
7719""""""""""
7720
7721The first operand of an '``insertelement``' instruction is a value of
7722:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7723type must equal the element type of the first operand. The third operand
7724is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007725index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007726
7727Semantics:
7728""""""""""
7729
7730The result is a vector of the same type as ``val``. Its element values
7731are those of ``val`` except at position ``idx``, where it gets the value
Eli Friedman2c7a81b2018-06-08 21:23:09 +00007732``elt``. If ``idx`` exceeds the length of ``val``, the result
7733is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00007734
7735Example:
7736""""""""
7737
Renato Golin124f2592016-07-20 12:16:38 +00007738.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007739
7740 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7741
7742.. _i_shufflevector:
7743
7744'``shufflevector``' Instruction
7745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7746
7747Syntax:
7748"""""""
7749
7750::
7751
7752 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7753
7754Overview:
7755"""""""""
7756
7757The '``shufflevector``' instruction constructs a permutation of elements
7758from two input vectors, returning a vector with the same element type as
7759the input and length that is the same as the shuffle mask.
7760
7761Arguments:
7762""""""""""
7763
7764The first two operands of a '``shufflevector``' instruction are vectors
7765with the same type. The third argument is a shuffle mask whose element
7766type is always 'i32'. The result of the instruction is a vector whose
7767length is the same as the shuffle mask and whose element type is the
7768same as the element type of the first two operands.
7769
7770The shuffle mask operand is required to be a constant vector with either
7771constant integer or undef values.
7772
7773Semantics:
7774""""""""""
7775
7776The elements of the two input vectors are numbered from left to right
7777across both of the vectors. The shuffle mask operand specifies, for each
7778element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007779result element gets. If the shuffle mask is undef, the result vector is
7780undef. If any element of the mask operand is undef, that element of the
7781result is undef. If the shuffle mask selects an undef element from one
7782of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007783
7784Example:
7785""""""""
7786
Renato Golin124f2592016-07-20 12:16:38 +00007787.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007788
7789 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7790 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7791 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7792 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7793 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7794 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7795 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7796 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7797
7798Aggregate Operations
7799--------------------
7800
7801LLVM supports several instructions for working with
7802:ref:`aggregate <t_aggregate>` values.
7803
7804.. _i_extractvalue:
7805
7806'``extractvalue``' Instruction
7807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7808
7809Syntax:
7810"""""""
7811
7812::
7813
7814 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7815
7816Overview:
7817"""""""""
7818
7819The '``extractvalue``' instruction extracts the value of a member field
7820from an :ref:`aggregate <t_aggregate>` value.
7821
7822Arguments:
7823""""""""""
7824
7825The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007826:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007827constant indices to specify which value to extract in a similar manner
7828as indices in a '``getelementptr``' instruction.
7829
7830The major differences to ``getelementptr`` indexing are:
7831
7832- Since the value being indexed is not a pointer, the first index is
7833 omitted and assumed to be zero.
7834- At least one index must be specified.
7835- Not only struct indices but also array indices must be in bounds.
7836
7837Semantics:
7838""""""""""
7839
7840The result is the value at the position in the aggregate specified by
7841the index operands.
7842
7843Example:
7844""""""""
7845
Renato Golin124f2592016-07-20 12:16:38 +00007846.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007847
7848 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7849
7850.. _i_insertvalue:
7851
7852'``insertvalue``' Instruction
7853^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7854
7855Syntax:
7856"""""""
7857
7858::
7859
7860 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7861
7862Overview:
7863"""""""""
7864
7865The '``insertvalue``' instruction inserts a value into a member field in
7866an :ref:`aggregate <t_aggregate>` value.
7867
7868Arguments:
7869""""""""""
7870
7871The first operand of an '``insertvalue``' instruction is a value of
7872:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7873a first-class value to insert. The following operands are constant
7874indices indicating the position at which to insert the value in a
7875similar manner as indices in a '``extractvalue``' instruction. The value
7876to insert must have the same type as the value identified by the
7877indices.
7878
7879Semantics:
7880""""""""""
7881
7882The result is an aggregate of the same type as ``val``. Its value is
7883that of ``val`` except that the value at the position specified by the
7884indices is that of ``elt``.
7885
7886Example:
7887""""""""
7888
7889.. code-block:: llvm
7890
7891 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7892 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007893 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007894
7895.. _memoryops:
7896
7897Memory Access and Addressing Operations
7898---------------------------------------
7899
7900A key design point of an SSA-based representation is how it represents
7901memory. In LLVM, no memory locations are in SSA form, which makes things
7902very simple. This section describes how to read, write, and allocate
7903memory in LLVM.
7904
7905.. _i_alloca:
7906
7907'``alloca``' Instruction
7908^^^^^^^^^^^^^^^^^^^^^^^^
7909
7910Syntax:
7911"""""""
7912
7913::
7914
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007915 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007916
7917Overview:
7918"""""""""
7919
7920The '``alloca``' instruction allocates memory on the stack frame of the
7921currently executing function, to be automatically released when this
7922function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007923address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007924
7925Arguments:
7926""""""""""
7927
7928The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7929bytes of memory on the runtime stack, returning a pointer of the
7930appropriate type to the program. If "NumElements" is specified, it is
7931the number of elements allocated, otherwise "NumElements" is defaulted
7932to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007933allocation is guaranteed to be aligned to at least that boundary. The
7934alignment may not be greater than ``1 << 29``. If not specified, or if
7935zero, the target can choose to align the allocation on any convenient
7936boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007937
7938'``type``' may be any sized type.
7939
7940Semantics:
7941""""""""""
7942
7943Memory is allocated; a pointer is returned. The operation is undefined
7944if there is insufficient stack space for the allocation. '``alloca``'d
7945memory is automatically released when the function returns. The
7946'``alloca``' instruction is commonly used to represent automatic
7947variables that must have an address available. When the function returns
7948(either with the ``ret`` or ``resume`` instructions), the memory is
Eli Friedman18f882c2018-07-11 00:02:01 +00007949reclaimed. Allocating zero bytes is legal, but the returned pointer may not
7950be unique. The order in which memory is allocated (ie., which way the stack
7951grows) is not specified.
Sean Silvab084af42012-12-07 10:36:55 +00007952
7953Example:
7954""""""""
7955
7956.. code-block:: llvm
7957
Tim Northover675a0962014-06-13 14:24:23 +00007958 %ptr = alloca i32 ; yields i32*:ptr
7959 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7960 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7961 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007962
7963.. _i_load:
7964
7965'``load``' Instruction
7966^^^^^^^^^^^^^^^^^^^^^^
7967
7968Syntax:
7969"""""""
7970
7971::
7972
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007973 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007974 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007975 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007976 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007977 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007978
7979Overview:
7980"""""""""
7981
7982The '``load``' instruction is used to read from memory.
7983
7984Arguments:
7985""""""""""
7986
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007987The argument to the ``load`` instruction specifies the memory address from which
7988to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7989known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7990the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7991modify the number or order of execution of this ``load`` with other
7992:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007993
JF Bastiend1fb5852015-12-17 22:09:19 +00007994If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00007995<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
7996``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
7997Atomic loads produce :ref:`defined <memmodel>` results when they may see
7998multiple atomic stores. The type of the pointee must be an integer, pointer, or
7999floating-point type whose bit width is a power of two greater than or equal to
8000eight and less than or equal to a target-specific size limit. ``align`` must be
8001explicitly specified on atomic loads, and the load has undefined behavior if the
8002alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00008003pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00008004
8005The optional constant ``align`` argument specifies the alignment of the
8006operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00008007or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00008008alignment for the target. It is the responsibility of the code emitter
8009to ensure that the alignment information is correct. Overestimating the
8010alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00008011may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00008012maximum possible alignment is ``1 << 29``. An alignment value higher
8013than the size of the loaded type implies memory up to the alignment
8014value bytes can be safely loaded without trapping in the default
8015address space. Access of the high bytes can interfere with debugging
8016tools, so should not be accessed if the function has the
8017``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00008018
8019The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008020metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00008021``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008022metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00008023that this load is not expected to be reused in the cache. The code
8024generator may select special instructions to save cache bandwidth, such
8025as the ``MOVNT`` instruction on x86.
8026
8027The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008028metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00008029entries. If a load instruction tagged with the ``!invariant.load``
8030metadata is executed, the optimizer may assume the memory location
8031referenced by the load contains the same value at all points in the
Eli Friedmane15a1112018-07-17 20:38:11 +00008032program where the memory location is known to be dereferenceable;
8033otherwise, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008034
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008035The optional ``!invariant.group`` metadata must reference a single metadata name
Piotr Padlewskice358262018-05-18 23:53:46 +00008036 ``<index>`` corresponding to a metadata node with no entries.
8037 See ``invariant.group`` metadata.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008038
Philip Reamescdb72f32014-10-20 22:40:55 +00008039The optional ``!nonnull`` metadata must reference a single
8040metadata name ``<index>`` corresponding to a metadata node with no
8041entries. The existence of the ``!nonnull`` metadata on the
8042instruction tells the optimizer that the value loaded is known to
Eli Friedmane15a1112018-07-17 20:38:11 +00008043never be null. If the value is null at runtime, the behavior is undefined.
8044This is analogous to the ``nonnull`` attribute on parameters and return
8045values. This metadata can only be applied to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00008046
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008047The optional ``!dereferenceable`` metadata must reference a single metadata
8048name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00008049entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00008050tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00008051The number of bytes known to be dereferenceable is specified by the integer
8052value in the metadata node. This is analogous to the ''dereferenceable''
8053attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00008054to loads of a pointer type.
8055
8056The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008057metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
8058``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00008059instruction tells the optimizer that the value loaded is known to be either
8060dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00008061The number of bytes known to be dereferenceable is specified by the integer
8062value in the metadata node. This is analogous to the ''dereferenceable_or_null''
8063attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00008064to loads of a pointer type.
8065
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008066The optional ``!align`` metadata must reference a single metadata name
8067``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
8068The existence of the ``!align`` metadata on the instruction tells the
8069optimizer that the value loaded is known to be aligned to a boundary specified
8070by the integer value in the metadata node. The alignment must be a power of 2.
8071This is analogous to the ''align'' attribute on parameters and return values.
Eli Friedmane15a1112018-07-17 20:38:11 +00008072This metadata can only be applied to loads of a pointer type. If the returned
8073value is not appropriately aligned at runtime, the behavior is undefined.
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008074
Sean Silvab084af42012-12-07 10:36:55 +00008075Semantics:
8076""""""""""
8077
8078The location of memory pointed to is loaded. If the value being loaded
8079is of scalar type then the number of bytes read does not exceed the
8080minimum number of bytes needed to hold all bits of the type. For
8081example, loading an ``i24`` reads at most three bytes. When loading a
8082value of a type like ``i20`` with a size that is not an integral number
8083of bytes, the result is undefined if the value was not originally
8084written using a store of the same type.
8085
8086Examples:
8087"""""""""
8088
8089.. code-block:: llvm
8090
Tim Northover675a0962014-06-13 14:24:23 +00008091 %ptr = alloca i32 ; yields i32*:ptr
8092 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00008093 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008094
8095.. _i_store:
8096
8097'``store``' Instruction
8098^^^^^^^^^^^^^^^^^^^^^^^
8099
8100Syntax:
8101"""""""
8102
8103::
8104
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008105 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008106 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008107
8108Overview:
8109"""""""""
8110
8111The '``store``' instruction is used to write to memory.
8112
8113Arguments:
8114""""""""""
8115
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00008116There are two arguments to the ``store`` instruction: a value to store and an
8117address at which to store it. The type of the ``<pointer>`` operand must be a
8118pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
8119operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
8120allowed to modify the number or order of execution of this ``store`` with other
8121:ref:`volatile operations <volatile>`. Only values of :ref:`first class
8122<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
8123structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00008124
JF Bastiend1fb5852015-12-17 22:09:19 +00008125If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008126<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8127``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
8128Atomic loads produce :ref:`defined <memmodel>` results when they may see
8129multiple atomic stores. The type of the pointee must be an integer, pointer, or
8130floating-point type whose bit width is a power of two greater than or equal to
8131eight and less than or equal to a target-specific size limit. ``align`` must be
8132explicitly specified on atomic stores, and the store has undefined behavior if
8133the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00008134pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00008135
Eli Benderskyca380842013-04-17 17:17:20 +00008136The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00008137operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00008138or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00008139alignment for the target. It is the responsibility of the code emitter
8140to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00008141alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00008142alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00008143safe. The maximum possible alignment is ``1 << 29``. An alignment
8144value higher than the size of the stored type implies memory up to the
8145alignment value bytes can be stored to without trapping in the default
8146address space. Storing to the higher bytes however may result in data
8147races if another thread can access the same address. Introducing a
8148data race is not allowed. Storing to the extra bytes is not allowed
8149even in situations where a data race is known to not exist if the
8150function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00008151
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008152The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00008153name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008154value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00008155tells the optimizer and code generator that this load is not expected to
8156be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00008157instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00008158x86.
8159
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008160The optional ``!invariant.group`` metadata must reference a
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008161single metadata name ``<index>``. See ``invariant.group`` metadata.
8162
Sean Silvab084af42012-12-07 10:36:55 +00008163Semantics:
8164""""""""""
8165
Eli Benderskyca380842013-04-17 17:17:20 +00008166The contents of memory are updated to contain ``<value>`` at the
8167location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00008168of scalar type then the number of bytes written does not exceed the
8169minimum number of bytes needed to hold all bits of the type. For
8170example, storing an ``i24`` writes at most three bytes. When writing a
8171value of a type like ``i20`` with a size that is not an integral number
8172of bytes, it is unspecified what happens to the extra bits that do not
8173belong to the type, but they will typically be overwritten.
8174
8175Example:
8176""""""""
8177
8178.. code-block:: llvm
8179
Tim Northover675a0962014-06-13 14:24:23 +00008180 %ptr = alloca i32 ; yields i32*:ptr
8181 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00008182 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008183
8184.. _i_fence:
8185
8186'``fence``' Instruction
8187^^^^^^^^^^^^^^^^^^^^^^^
8188
8189Syntax:
8190"""""""
8191
8192::
8193
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008194 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008195
8196Overview:
8197"""""""""
8198
8199The '``fence``' instruction is used to introduce happens-before edges
8200between operations.
8201
8202Arguments:
8203""""""""""
8204
8205'``fence``' instructions take an :ref:`ordering <ordering>` argument which
8206defines what *synchronizes-with* edges they add. They can only be given
8207``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
8208
8209Semantics:
8210""""""""""
8211
8212A fence A which has (at least) ``release`` ordering semantics
8213*synchronizes with* a fence B with (at least) ``acquire`` ordering
8214semantics if and only if there exist atomic operations X and Y, both
8215operating on some atomic object M, such that A is sequenced before X, X
8216modifies M (either directly or through some side effect of a sequence
8217headed by X), Y is sequenced before B, and Y observes M. This provides a
8218*happens-before* dependency between A and B. Rather than an explicit
8219``fence``, one (but not both) of the atomic operations X or Y might
8220provide a ``release`` or ``acquire`` (resp.) ordering constraint and
8221still *synchronize-with* the explicit ``fence`` and establish the
8222*happens-before* edge.
8223
8224A ``fence`` which has ``seq_cst`` ordering, in addition to having both
8225``acquire`` and ``release`` semantics specified above, participates in
8226the global program order of other ``seq_cst`` operations and/or fences.
8227
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008228A ``fence`` instruction can also take an optional
8229":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008230
8231Example:
8232""""""""
8233
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008234.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008235
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008236 fence acquire ; yields void
8237 fence syncscope("singlethread") seq_cst ; yields void
8238 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008239
8240.. _i_cmpxchg:
8241
8242'``cmpxchg``' Instruction
8243^^^^^^^^^^^^^^^^^^^^^^^^^
8244
8245Syntax:
8246"""""""
8247
8248::
8249
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008250 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00008251
8252Overview:
8253"""""""""
8254
8255The '``cmpxchg``' instruction is used to atomically modify memory. It
8256loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00008257equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00008258
8259Arguments:
8260""""""""""
8261
8262There are three arguments to the '``cmpxchg``' instruction: an address
8263to operate on, a value to compare to the value currently be at that
8264address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00008265are equal. The type of '<cmp>' must be an integer or pointer type whose
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008266bit width is a power of two greater than or equal to eight and less
Philip Reames1960cfd2016-02-19 00:06:41 +00008267than or equal to a target-specific size limit. '<cmp>' and '<new>' must
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008268have the same type, and the type of '<pointer>' must be a pointer to
8269that type. If the ``cmpxchg`` is marked as ``volatile``, then the
Philip Reames1960cfd2016-02-19 00:06:41 +00008270optimizer is not allowed to modify the number or order of execution of
8271this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008272
Tim Northovere94a5182014-03-11 10:48:52 +00008273The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00008274``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
8275must be at least ``monotonic``, the ordering constraint on failure must be no
8276stronger than that on success, and the failure ordering cannot be either
8277``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00008278
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008279A ``cmpxchg`` instruction can also take an optional
8280":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008281
8282The pointer passed into cmpxchg must have alignment greater than or
8283equal to the size in memory of the operand.
8284
8285Semantics:
8286""""""""""
8287
Tim Northover420a2162014-06-13 14:24:07 +00008288The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun93f2b4b2017-08-09 22:22:04 +00008289is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
8290written to the location. The original value at the location is returned,
8291together with a flag indicating success (true) or failure (false).
Tim Northover420a2162014-06-13 14:24:07 +00008292
8293If the cmpxchg operation is marked as ``weak`` then a spurious failure is
8294permitted: the operation may not write ``<new>`` even if the comparison
8295matched.
8296
8297If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
8298if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00008299
Tim Northovere94a5182014-03-11 10:48:52 +00008300A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
8301identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
8302load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00008303
8304Example:
8305""""""""
8306
8307.. code-block:: llvm
8308
8309 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008310 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008311 br label %loop
8312
8313 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008314 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00008315 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00008316 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00008317 %value_loaded = extractvalue { i32, i1 } %val_success, 0
8318 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00008319 br i1 %success, label %done, label %loop
8320
8321 done:
8322 ...
8323
8324.. _i_atomicrmw:
8325
8326'``atomicrmw``' Instruction
8327^^^^^^^^^^^^^^^^^^^^^^^^^^^
8328
8329Syntax:
8330"""""""
8331
8332::
8333
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008334 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00008335
8336Overview:
8337"""""""""
8338
8339The '``atomicrmw``' instruction is used to atomically modify memory.
8340
8341Arguments:
8342""""""""""
8343
8344There are three arguments to the '``atomicrmw``' instruction: an
8345operation to apply, an address whose value to modify, an argument to the
8346operation. The operation must be one of the following keywords:
8347
8348- xchg
8349- add
8350- sub
8351- and
8352- nand
8353- or
8354- xor
8355- max
8356- min
8357- umax
8358- umin
8359
8360The type of '<value>' must be an integer type whose bit width is a power
8361of two greater than or equal to eight and less than or equal to a
8362target-specific size limit. The type of the '``<pointer>``' operand must
8363be a pointer to that type. If the ``atomicrmw`` is marked as
8364``volatile``, then the optimizer is not allowed to modify the number or
8365order of execution of this ``atomicrmw`` with other :ref:`volatile
8366operations <volatile>`.
8367
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008368A ``atomicrmw`` instruction can also take an optional
8369":ref:`syncscope <syncscope>`" argument.
8370
Sean Silvab084af42012-12-07 10:36:55 +00008371Semantics:
8372""""""""""
8373
8374The contents of memory at the location specified by the '``<pointer>``'
8375operand are atomically read, modified, and written back. The original
8376value at the location is returned. The modification is specified by the
8377operation argument:
8378
8379- xchg: ``*ptr = val``
8380- add: ``*ptr = *ptr + val``
8381- sub: ``*ptr = *ptr - val``
8382- and: ``*ptr = *ptr & val``
8383- nand: ``*ptr = ~(*ptr & val)``
8384- or: ``*ptr = *ptr | val``
8385- xor: ``*ptr = *ptr ^ val``
8386- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
8387- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
8388- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
8389 comparison)
8390- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
8391 comparison)
8392
8393Example:
8394""""""""
8395
8396.. code-block:: llvm
8397
Tim Northover675a0962014-06-13 14:24:23 +00008398 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008399
8400.. _i_getelementptr:
8401
8402'``getelementptr``' Instruction
8403^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8404
8405Syntax:
8406"""""""
8407
8408::
8409
Peter Collingbourned93620b2016-11-10 22:34:55 +00008410 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8411 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8412 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00008413
8414Overview:
8415"""""""""
8416
8417The '``getelementptr``' instruction is used to get the address of a
8418subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008419address calculation only and does not access memory. The instruction can also
8420be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00008421
8422Arguments:
8423""""""""""
8424
David Blaikie16a97eb2015-03-04 22:02:58 +00008425The first argument is always a type used as the basis for the calculations.
8426The second argument is always a pointer or a vector of pointers, and is the
8427base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00008428that indicate which of the elements of the aggregate object are indexed.
8429The interpretation of each index is dependent on the type being indexed
8430into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00008431second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00008432(not necessarily the value directly pointed to, since the first index
8433can be non-zero), etc. The first type indexed into must be a pointer
8434value, subsequent types can be arrays, vectors, and structs. Note that
8435subsequent types being indexed into can never be pointers, since that
8436would require loading the pointer before continuing calculation.
8437
8438The type of each index argument depends on the type it is indexing into.
8439When indexing into a (optionally packed) structure, only ``i32`` integer
8440**constants** are allowed (when using a vector of indices they must all
8441be the **same** ``i32`` integer constant). When indexing into an array,
8442pointer or vector, integers of any width are allowed, and they are not
8443required to be constant. These integers are treated as signed values
8444where relevant.
8445
8446For example, let's consider a C code fragment and how it gets compiled
8447to LLVM:
8448
8449.. code-block:: c
8450
8451 struct RT {
8452 char A;
8453 int B[10][20];
8454 char C;
8455 };
8456 struct ST {
8457 int X;
8458 double Y;
8459 struct RT Z;
8460 };
8461
8462 int *foo(struct ST *s) {
8463 return &s[1].Z.B[5][13];
8464 }
8465
8466The LLVM code generated by Clang is:
8467
8468.. code-block:: llvm
8469
8470 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
8471 %struct.ST = type { i32, double, %struct.RT }
8472
8473 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
8474 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00008475 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00008476 ret i32* %arrayidx
8477 }
8478
8479Semantics:
8480""""""""""
8481
8482In the example above, the first index is indexing into the
8483'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
8484= '``{ i32, double, %struct.RT }``' type, a structure. The second index
8485indexes into the third element of the structure, yielding a
8486'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
8487structure. The third index indexes into the second element of the
8488structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
8489dimensions of the array are subscripted into, yielding an '``i32``'
8490type. The '``getelementptr``' instruction returns a pointer to this
8491element, thus computing a value of '``i32*``' type.
8492
8493Note that it is perfectly legal to index partially through a structure,
8494returning a pointer to an inner element. Because of this, the LLVM code
8495for the given testcase is equivalent to:
8496
8497.. code-block:: llvm
8498
8499 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00008500 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
8501 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
8502 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
8503 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
8504 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00008505 ret i32* %t5
8506 }
8507
8508If the ``inbounds`` keyword is present, the result value of the
8509``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
8510pointer is not an *in bounds* address of an allocated object, or if any
8511of the addresses that would be formed by successive addition of the
8512offsets implied by the indices to the base address with infinitely
8513precise signed arithmetic are not an *in bounds* address of that
8514allocated object. The *in bounds* addresses for an allocated object are
8515all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00008516past the end. The only *in bounds* address for a null pointer in the
8517default address-space is the null pointer itself. In cases where the
8518base is a vector of pointers the ``inbounds`` keyword applies to each
8519of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00008520
8521If the ``inbounds`` keyword is not present, the offsets are added to the
8522base address with silently-wrapping two's complement arithmetic. If the
8523offsets have a different width from the pointer, they are sign-extended
8524or truncated to the width of the pointer. The result value of the
8525``getelementptr`` may be outside the object pointed to by the base
8526pointer. The result value may not necessarily be used to access memory
8527though, even if it happens to point into allocated storage. See the
8528:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
8529information.
8530
Peter Collingbourned93620b2016-11-10 22:34:55 +00008531If the ``inrange`` keyword is present before any index, loading from or
8532storing to any pointer derived from the ``getelementptr`` has undefined
8533behavior if the load or store would access memory outside of the bounds of
8534the element selected by the index marked as ``inrange``. The result of a
8535pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
8536involving memory) involving a pointer derived from a ``getelementptr`` with
8537the ``inrange`` keyword is undefined, with the exception of comparisons
8538in the case where both operands are in the range of the element selected
8539by the ``inrange`` keyword, inclusive of the address one past the end of
8540that element. Note that the ``inrange`` keyword is currently only allowed
8541in constant ``getelementptr`` expressions.
8542
Sean Silvab084af42012-12-07 10:36:55 +00008543The getelementptr instruction is often confusing. For some more insight
8544into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
8545
8546Example:
8547""""""""
8548
8549.. code-block:: llvm
8550
8551 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008552 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008553 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008554 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008555 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008556 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008557 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008558 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00008559
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008560Vector of pointers:
8561"""""""""""""""""""
8562
8563The ``getelementptr`` returns a vector of pointers, instead of a single address,
8564when one or more of its arguments is a vector. In such cases, all vector
8565arguments should have the same number of elements, and every scalar argument
8566will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00008567
8568.. code-block:: llvm
8569
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008570 ; All arguments are vectors:
8571 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
8572 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008573
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008574 ; Add the same scalar offset to each pointer of a vector:
8575 ; A[i] = ptrs[i] + offset*sizeof(i8)
8576 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00008577
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008578 ; Add distinct offsets to the same pointer:
8579 ; A[i] = ptr + offsets[i]*sizeof(i8)
8580 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008581
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008582 ; In all cases described above the type of the result is <4 x i8*>
8583
8584The two following instructions are equivalent:
8585
8586.. code-block:: llvm
8587
8588 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8589 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
8590 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
8591 <4 x i32> %ind4,
8592 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00008593
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008594 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8595 i32 2, i32 1, <4 x i32> %ind4, i64 13
8596
8597Let's look at the C code, where the vector version of ``getelementptr``
8598makes sense:
8599
8600.. code-block:: c
8601
8602 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00008603 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008604 for (int i = 0; i < size; ++i) {
8605 A[i] = B[C[i]];
8606 }
8607
8608.. code-block:: llvm
8609
8610 ; get pointers for 8 elements from array B
8611 %ptrs = getelementptr double, double* %B, <8 x i32> %C
8612 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00008613 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008614 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00008615
8616Conversion Operations
8617---------------------
8618
8619The instructions in this category are the conversion instructions
8620(casting) which all take a single operand and a type. They perform
8621various bit conversions on the operand.
8622
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008623.. _i_trunc:
8624
Sean Silvab084af42012-12-07 10:36:55 +00008625'``trunc .. to``' Instruction
8626^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8627
8628Syntax:
8629"""""""
8630
8631::
8632
8633 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8634
8635Overview:
8636"""""""""
8637
8638The '``trunc``' instruction truncates its operand to the type ``ty2``.
8639
8640Arguments:
8641""""""""""
8642
8643The '``trunc``' instruction takes a value to trunc, and a type to trunc
8644it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8645of the same number of integers. The bit size of the ``value`` must be
8646larger than the bit size of the destination type, ``ty2``. Equal sized
8647types are not allowed.
8648
8649Semantics:
8650""""""""""
8651
8652The '``trunc``' instruction truncates the high order bits in ``value``
8653and converts the remaining bits to ``ty2``. Since the source size must
8654be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8655It will always truncate bits.
8656
8657Example:
8658""""""""
8659
8660.. code-block:: llvm
8661
8662 %X = trunc i32 257 to i8 ; yields i8:1
8663 %Y = trunc i32 123 to i1 ; yields i1:true
8664 %Z = trunc i32 122 to i1 ; yields i1:false
8665 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
8666
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008667.. _i_zext:
8668
Sean Silvab084af42012-12-07 10:36:55 +00008669'``zext .. to``' Instruction
8670^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8671
8672Syntax:
8673"""""""
8674
8675::
8676
8677 <result> = zext <ty> <value> to <ty2> ; yields ty2
8678
8679Overview:
8680"""""""""
8681
8682The '``zext``' instruction zero extends its operand to type ``ty2``.
8683
8684Arguments:
8685""""""""""
8686
8687The '``zext``' instruction takes a value to cast, and a type to cast it
8688to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8689the same number of integers. The bit size of the ``value`` must be
8690smaller than the bit size of the destination type, ``ty2``.
8691
8692Semantics:
8693""""""""""
8694
8695The ``zext`` fills the high order bits of the ``value`` with zero bits
8696until it reaches the size of the destination type, ``ty2``.
8697
8698When zero extending from i1, the result will always be either 0 or 1.
8699
8700Example:
8701""""""""
8702
8703.. code-block:: llvm
8704
8705 %X = zext i32 257 to i64 ; yields i64:257
8706 %Y = zext i1 true to i32 ; yields i32:1
8707 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8708
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008709.. _i_sext:
8710
Sean Silvab084af42012-12-07 10:36:55 +00008711'``sext .. to``' Instruction
8712^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8713
8714Syntax:
8715"""""""
8716
8717::
8718
8719 <result> = sext <ty> <value> to <ty2> ; yields ty2
8720
8721Overview:
8722"""""""""
8723
8724The '``sext``' sign extends ``value`` to the type ``ty2``.
8725
8726Arguments:
8727""""""""""
8728
8729The '``sext``' instruction takes a value to cast, and a type to cast it
8730to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8731the same number of integers. The bit size of the ``value`` must be
8732smaller than the bit size of the destination type, ``ty2``.
8733
8734Semantics:
8735""""""""""
8736
8737The '``sext``' instruction performs a sign extension by copying the sign
8738bit (highest order bit) of the ``value`` until it reaches the bit size
8739of the type ``ty2``.
8740
8741When sign extending from i1, the extension always results in -1 or 0.
8742
8743Example:
8744""""""""
8745
8746.. code-block:: llvm
8747
8748 %X = sext i8 -1 to i16 ; yields i16 :65535
8749 %Y = sext i1 true to i32 ; yields i32:-1
8750 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8751
8752'``fptrunc .. to``' Instruction
8753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8754
8755Syntax:
8756"""""""
8757
8758::
8759
8760 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8761
8762Overview:
8763"""""""""
8764
8765The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8766
8767Arguments:
8768""""""""""
8769
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008770The '``fptrunc``' instruction takes a :ref:`floating-point <t_floating>`
8771value to cast and a :ref:`floating-point <t_floating>` type to cast it to.
Sean Silvab084af42012-12-07 10:36:55 +00008772The size of ``value`` must be larger than the size of ``ty2``. This
8773implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8774
8775Semantics:
8776""""""""""
8777
Dan Liew50456fb2015-09-03 18:43:56 +00008778The '``fptrunc``' instruction casts a ``value`` from a larger
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008779:ref:`floating-point <t_floating>` type to a smaller :ref:`floating-point
Sanjay Pateld96a3632018-04-03 13:05:20 +00008780<t_floating>` type.
8781This instruction is assumed to execute in the default :ref:`floating-point
8782environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00008783
8784Example:
8785""""""""
8786
8787.. code-block:: llvm
8788
Sanjay Pateld96a3632018-04-03 13:05:20 +00008789 %X = fptrunc double 16777217.0 to float ; yields float:16777216.0
8790 %Y = fptrunc double 1.0E+300 to half ; yields half:+infinity
Sean Silvab084af42012-12-07 10:36:55 +00008791
8792'``fpext .. to``' Instruction
8793^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8794
8795Syntax:
8796"""""""
8797
8798::
8799
8800 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8801
8802Overview:
8803"""""""""
8804
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008805The '``fpext``' extends a floating-point ``value`` to a larger floating-point
8806value.
Sean Silvab084af42012-12-07 10:36:55 +00008807
8808Arguments:
8809""""""""""
8810
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008811The '``fpext``' instruction takes a :ref:`floating-point <t_floating>`
8812``value`` to cast, and a :ref:`floating-point <t_floating>` type to cast it
Sean Silvab084af42012-12-07 10:36:55 +00008813to. The source type must be smaller than the destination type.
8814
8815Semantics:
8816""""""""""
8817
8818The '``fpext``' instruction extends the ``value`` from a smaller
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008819:ref:`floating-point <t_floating>` type to a larger :ref:`floating-point
8820<t_floating>` type. The ``fpext`` cannot be used to make a
Sean Silvab084af42012-12-07 10:36:55 +00008821*no-op cast* because it always changes bits. Use ``bitcast`` to make a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008822*no-op cast* for a floating-point cast.
Sean Silvab084af42012-12-07 10:36:55 +00008823
8824Example:
8825""""""""
8826
8827.. code-block:: llvm
8828
8829 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8830 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8831
8832'``fptoui .. to``' Instruction
8833^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8834
8835Syntax:
8836"""""""
8837
8838::
8839
8840 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8841
8842Overview:
8843"""""""""
8844
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008845The '``fptoui``' converts a floating-point ``value`` to its unsigned
Sean Silvab084af42012-12-07 10:36:55 +00008846integer equivalent of type ``ty2``.
8847
8848Arguments:
8849""""""""""
8850
8851The '``fptoui``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008852scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00008853cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008854``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00008855type with the same number of elements as ``ty``
8856
8857Semantics:
8858""""""""""
8859
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008860The '``fptoui``' instruction converts its :ref:`floating-point
8861<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00008862unsigned integer value. If the value cannot fit in ``ty2``, the result
8863is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008864
8865Example:
8866""""""""
8867
8868.. code-block:: llvm
8869
8870 %X = fptoui double 123.0 to i32 ; yields i32:123
8871 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8872 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8873
8874'``fptosi .. to``' Instruction
8875^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8876
8877Syntax:
8878"""""""
8879
8880::
8881
8882 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8883
8884Overview:
8885"""""""""
8886
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008887The '``fptosi``' instruction converts :ref:`floating-point <t_floating>`
Sean Silvab084af42012-12-07 10:36:55 +00008888``value`` to type ``ty2``.
8889
8890Arguments:
8891""""""""""
8892
8893The '``fptosi``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008894scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00008895cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008896``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00008897type with the same number of elements as ``ty``
8898
8899Semantics:
8900""""""""""
8901
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008902The '``fptosi``' instruction converts its :ref:`floating-point
8903<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00008904signed integer value. If the value cannot fit in ``ty2``, the result
8905is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008906
8907Example:
8908""""""""
8909
8910.. code-block:: llvm
8911
8912 %X = fptosi double -123.0 to i32 ; yields i32:-123
8913 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8914 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8915
8916'``uitofp .. to``' Instruction
8917^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8918
8919Syntax:
8920"""""""
8921
8922::
8923
8924 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8925
8926Overview:
8927"""""""""
8928
8929The '``uitofp``' instruction regards ``value`` as an unsigned integer
8930and converts that value to the ``ty2`` type.
8931
8932Arguments:
8933""""""""""
8934
8935The '``uitofp``' instruction takes a value to cast, which must be a
8936scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008937``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
8938``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00008939type with the same number of elements as ``ty``
8940
8941Semantics:
8942""""""""""
8943
8944The '``uitofp``' instruction interprets its operand as an unsigned
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008945integer quantity and converts it to the corresponding floating-point
Eli Friedman3f1ce092018-06-14 22:58:48 +00008946value. If the value cannot be exactly represented, it is rounded using
8947the default rounding mode.
8948
Sean Silvab084af42012-12-07 10:36:55 +00008949
8950Example:
8951""""""""
8952
8953.. code-block:: llvm
8954
8955 %X = uitofp i32 257 to float ; yields float:257.0
8956 %Y = uitofp i8 -1 to double ; yields double:255.0
8957
8958'``sitofp .. to``' Instruction
8959^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8960
8961Syntax:
8962"""""""
8963
8964::
8965
8966 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8967
8968Overview:
8969"""""""""
8970
8971The '``sitofp``' instruction regards ``value`` as a signed integer and
8972converts that value to the ``ty2`` type.
8973
8974Arguments:
8975""""""""""
8976
8977The '``sitofp``' instruction takes a value to cast, which must be a
8978scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008979``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
8980``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00008981type with the same number of elements as ``ty``
8982
8983Semantics:
8984""""""""""
8985
8986The '``sitofp``' instruction interprets its operand as a signed integer
Eli Friedman3f1ce092018-06-14 22:58:48 +00008987quantity and converts it to the corresponding floating-point value. If the
8988value cannot be exactly represented, it is rounded using the default rounding
8989mode.
Sean Silvab084af42012-12-07 10:36:55 +00008990
8991Example:
8992""""""""
8993
8994.. code-block:: llvm
8995
8996 %X = sitofp i32 257 to float ; yields float:257.0
8997 %Y = sitofp i8 -1 to double ; yields double:-1.0
8998
8999.. _i_ptrtoint:
9000
9001'``ptrtoint .. to``' Instruction
9002^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9003
9004Syntax:
9005"""""""
9006
9007::
9008
9009 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
9010
9011Overview:
9012"""""""""
9013
9014The '``ptrtoint``' instruction converts the pointer or a vector of
9015pointers ``value`` to the integer (or vector of integers) type ``ty2``.
9016
9017Arguments:
9018""""""""""
9019
9020The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00009021a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00009022type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
9023a vector of integers type.
9024
9025Semantics:
9026""""""""""
9027
9028The '``ptrtoint``' instruction converts ``value`` to integer type
9029``ty2`` by interpreting the pointer value as an integer and either
9030truncating or zero extending that value to the size of the integer type.
9031If ``value`` is smaller than ``ty2`` then a zero extension is done. If
9032``value`` is larger than ``ty2`` then a truncation is done. If they are
9033the same size, then nothing is done (*no-op cast*) other than a type
9034change.
9035
9036Example:
9037""""""""
9038
9039.. code-block:: llvm
9040
9041 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
9042 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
9043 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
9044
9045.. _i_inttoptr:
9046
9047'``inttoptr .. to``' Instruction
9048^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9049
9050Syntax:
9051"""""""
9052
9053::
9054
9055 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
9056
9057Overview:
9058"""""""""
9059
9060The '``inttoptr``' instruction converts an integer ``value`` to a
9061pointer type, ``ty2``.
9062
9063Arguments:
9064""""""""""
9065
9066The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
9067cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
9068type.
9069
9070Semantics:
9071""""""""""
9072
9073The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
9074applying either a zero extension or a truncation depending on the size
9075of the integer ``value``. If ``value`` is larger than the size of a
9076pointer then a truncation is done. If ``value`` is smaller than the size
9077of a pointer then a zero extension is done. If they are the same size,
9078nothing is done (*no-op cast*).
9079
9080Example:
9081""""""""
9082
9083.. code-block:: llvm
9084
9085 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
9086 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
9087 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
9088 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
9089
9090.. _i_bitcast:
9091
9092'``bitcast .. to``' Instruction
9093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9094
9095Syntax:
9096"""""""
9097
9098::
9099
9100 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
9101
9102Overview:
9103"""""""""
9104
9105The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
9106changing any bits.
9107
9108Arguments:
9109""""""""""
9110
9111The '``bitcast``' instruction takes a value to cast, which must be a
9112non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009113also be a non-aggregate :ref:`first class <t_firstclass>` type. The
9114bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00009115identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009116also be a pointer of the same size. This instruction supports bitwise
9117conversion of vectors to integers and to vectors of other types (as
9118long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00009119
9120Semantics:
9121""""""""""
9122
Matt Arsenault24b49c42013-07-31 17:49:08 +00009123The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
9124is always a *no-op cast* because no bits change with this
9125conversion. The conversion is done as if the ``value`` had been stored
9126to memory and read back as type ``ty2``. Pointer (or vector of
9127pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009128pointers) types with the same address space through this instruction.
9129To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
9130or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00009131
9132Example:
9133""""""""
9134
Renato Golin124f2592016-07-20 12:16:38 +00009135.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009136
9137 %X = bitcast i8 255 to i8 ; yields i8 :-1
9138 %Y = bitcast i32* %x to sint* ; yields sint*:%x
9139 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
9140 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
9141
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009142.. _i_addrspacecast:
9143
9144'``addrspacecast .. to``' Instruction
9145^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9146
9147Syntax:
9148"""""""
9149
9150::
9151
9152 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
9153
9154Overview:
9155"""""""""
9156
9157The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
9158address space ``n`` to type ``pty2`` in address space ``m``.
9159
9160Arguments:
9161""""""""""
9162
9163The '``addrspacecast``' instruction takes a pointer or vector of pointer value
9164to cast and a pointer type to cast it to, which must have a different
9165address space.
9166
9167Semantics:
9168""""""""""
9169
9170The '``addrspacecast``' instruction converts the pointer value
9171``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00009172value modification, depending on the target and the address space
9173pair. Pointer conversions within the same address space must be
9174performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009175conversion is legal then both result and operand refer to the same memory
9176location.
9177
9178Example:
9179""""""""
9180
9181.. code-block:: llvm
9182
Matt Arsenault9c13dd02013-11-15 22:43:50 +00009183 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
9184 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
9185 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009186
Sean Silvab084af42012-12-07 10:36:55 +00009187.. _otherops:
9188
9189Other Operations
9190----------------
9191
9192The instructions in this category are the "miscellaneous" instructions,
9193which defy better classification.
9194
9195.. _i_icmp:
9196
9197'``icmp``' Instruction
9198^^^^^^^^^^^^^^^^^^^^^^
9199
9200Syntax:
9201"""""""
9202
9203::
9204
Tim Northover675a0962014-06-13 14:24:23 +00009205 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009206
9207Overview:
9208"""""""""
9209
9210The '``icmp``' instruction returns a boolean value or a vector of
9211boolean values based on comparison of its two integer, integer vector,
9212pointer, or pointer vector operands.
9213
9214Arguments:
9215""""""""""
9216
9217The '``icmp``' instruction takes three operands. The first operand is
9218the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009219not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009220
9221#. ``eq``: equal
9222#. ``ne``: not equal
9223#. ``ugt``: unsigned greater than
9224#. ``uge``: unsigned greater or equal
9225#. ``ult``: unsigned less than
9226#. ``ule``: unsigned less or equal
9227#. ``sgt``: signed greater than
9228#. ``sge``: signed greater or equal
9229#. ``slt``: signed less than
9230#. ``sle``: signed less or equal
9231
9232The remaining two arguments must be :ref:`integer <t_integer>` or
9233:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
9234must also be identical types.
9235
9236Semantics:
9237""""""""""
9238
9239The '``icmp``' compares ``op1`` and ``op2`` according to the condition
9240code given as ``cond``. The comparison performed always yields either an
9241:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
9242
9243#. ``eq``: yields ``true`` if the operands are equal, ``false``
9244 otherwise. No sign interpretation is necessary or performed.
9245#. ``ne``: yields ``true`` if the operands are unequal, ``false``
9246 otherwise. No sign interpretation is necessary or performed.
9247#. ``ugt``: interprets the operands as unsigned values and yields
9248 ``true`` if ``op1`` is greater than ``op2``.
9249#. ``uge``: interprets the operands as unsigned values and yields
9250 ``true`` if ``op1`` is greater than or equal to ``op2``.
9251#. ``ult``: interprets the operands as unsigned values and yields
9252 ``true`` if ``op1`` is less than ``op2``.
9253#. ``ule``: interprets the operands as unsigned values and yields
9254 ``true`` if ``op1`` is less than or equal to ``op2``.
9255#. ``sgt``: interprets the operands as signed values and yields ``true``
9256 if ``op1`` is greater than ``op2``.
9257#. ``sge``: interprets the operands as signed values and yields ``true``
9258 if ``op1`` is greater than or equal to ``op2``.
9259#. ``slt``: interprets the operands as signed values and yields ``true``
9260 if ``op1`` is less than ``op2``.
9261#. ``sle``: interprets the operands as signed values and yields ``true``
9262 if ``op1`` is less than or equal to ``op2``.
9263
9264If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
9265are compared as if they were integers.
9266
9267If the operands are integer vectors, then they are compared element by
9268element. The result is an ``i1`` vector with the same number of elements
9269as the values being compared. Otherwise, the result is an ``i1``.
9270
9271Example:
9272""""""""
9273
Renato Golin124f2592016-07-20 12:16:38 +00009274.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009275
9276 <result> = icmp eq i32 4, 5 ; yields: result=false
9277 <result> = icmp ne float* %X, %X ; yields: result=false
9278 <result> = icmp ult i16 4, 5 ; yields: result=true
9279 <result> = icmp sgt i16 4, 5 ; yields: result=false
9280 <result> = icmp ule i16 -4, 5 ; yields: result=false
9281 <result> = icmp sge i16 4, 5 ; yields: result=false
9282
Sean Silvab084af42012-12-07 10:36:55 +00009283.. _i_fcmp:
9284
9285'``fcmp``' Instruction
9286^^^^^^^^^^^^^^^^^^^^^^
9287
9288Syntax:
9289"""""""
9290
9291::
9292
James Molloy88eb5352015-07-10 12:52:00 +00009293 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009294
9295Overview:
9296"""""""""
9297
9298The '``fcmp``' instruction returns a boolean value or vector of boolean
9299values based on comparison of its operands.
9300
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009301If the operands are floating-point scalars, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009302boolean (:ref:`i1 <t_integer>`).
9303
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009304If the operands are floating-point vectors, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009305vector of boolean with the same number of elements as the operands being
9306compared.
9307
9308Arguments:
9309""""""""""
9310
9311The '``fcmp``' instruction takes three operands. The first operand is
9312the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009313not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009314
9315#. ``false``: no comparison, always returns false
9316#. ``oeq``: ordered and equal
9317#. ``ogt``: ordered and greater than
9318#. ``oge``: ordered and greater than or equal
9319#. ``olt``: ordered and less than
9320#. ``ole``: ordered and less than or equal
9321#. ``one``: ordered and not equal
9322#. ``ord``: ordered (no nans)
9323#. ``ueq``: unordered or equal
9324#. ``ugt``: unordered or greater than
9325#. ``uge``: unordered or greater than or equal
9326#. ``ult``: unordered or less than
9327#. ``ule``: unordered or less than or equal
9328#. ``une``: unordered or not equal
9329#. ``uno``: unordered (either nans)
9330#. ``true``: no comparison, always returns true
9331
9332*Ordered* means that neither operand is a QNAN while *unordered* means
9333that either operand may be a QNAN.
9334
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009335Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating-point
9336<t_floating>` type or a :ref:`vector <t_vector>` of floating-point type.
9337They must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00009338
9339Semantics:
9340""""""""""
9341
9342The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
9343condition code given as ``cond``. If the operands are vectors, then the
9344vectors are compared element by element. Each comparison performed
9345always yields an :ref:`i1 <t_integer>` result, as follows:
9346
9347#. ``false``: always yields ``false``, regardless of operands.
9348#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
9349 is equal to ``op2``.
9350#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
9351 is greater than ``op2``.
9352#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
9353 is greater than or equal to ``op2``.
9354#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
9355 is less than ``op2``.
9356#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
9357 is less than or equal to ``op2``.
9358#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
9359 is not equal to ``op2``.
9360#. ``ord``: yields ``true`` if both operands are not a QNAN.
9361#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
9362 equal to ``op2``.
9363#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
9364 greater than ``op2``.
9365#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
9366 greater than or equal to ``op2``.
9367#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
9368 less than ``op2``.
9369#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
9370 less than or equal to ``op2``.
9371#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
9372 not equal to ``op2``.
9373#. ``uno``: yields ``true`` if either operand is a QNAN.
9374#. ``true``: always yields ``true``, regardless of operands.
9375
James Molloy88eb5352015-07-10 12:52:00 +00009376The ``fcmp`` instruction can also optionally take any number of
9377:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009378otherwise unsafe floating-point optimizations.
James Molloy88eb5352015-07-10 12:52:00 +00009379
9380Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
9381only flags that have any effect on its semantics are those that allow
9382assumptions to be made about the values of input arguments; namely
Eli Friedman8bb43262018-07-17 20:28:31 +00009383``nnan``, ``ninf``, and ``reassoc``. See :ref:`fastmath` for more information.
James Molloy88eb5352015-07-10 12:52:00 +00009384
Sean Silvab084af42012-12-07 10:36:55 +00009385Example:
9386""""""""
9387
Renato Golin124f2592016-07-20 12:16:38 +00009388.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009389
9390 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
9391 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
9392 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
9393 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
9394
Sean Silvab084af42012-12-07 10:36:55 +00009395.. _i_phi:
9396
9397'``phi``' Instruction
9398^^^^^^^^^^^^^^^^^^^^^
9399
9400Syntax:
9401"""""""
9402
9403::
9404
9405 <result> = phi <ty> [ <val0>, <label0>], ...
9406
9407Overview:
9408"""""""""
9409
9410The '``phi``' instruction is used to implement the φ node in the SSA
9411graph representing the function.
9412
9413Arguments:
9414""""""""""
9415
9416The type of the incoming values is specified with the first type field.
9417After this, the '``phi``' instruction takes a list of pairs as
9418arguments, with one pair for each predecessor basic block of the current
9419block. Only values of :ref:`first class <t_firstclass>` type may be used as
9420the value arguments to the PHI node. Only labels may be used as the
9421label arguments.
9422
9423There must be no non-phi instructions between the start of a basic block
9424and the PHI instructions: i.e. PHI instructions must be first in a basic
9425block.
9426
9427For the purposes of the SSA form, the use of each incoming value is
9428deemed to occur on the edge from the corresponding predecessor block to
9429the current block (but after any definition of an '``invoke``'
9430instruction's return value on the same edge).
9431
9432Semantics:
9433""""""""""
9434
9435At runtime, the '``phi``' instruction logically takes on the value
9436specified by the pair corresponding to the predecessor basic block that
9437executed just prior to the current block.
9438
9439Example:
9440""""""""
9441
9442.. code-block:: llvm
9443
9444 Loop: ; Infinite loop that counts from 0 on up...
9445 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
9446 %nextindvar = add i32 %indvar, 1
9447 br label %Loop
9448
9449.. _i_select:
9450
9451'``select``' Instruction
9452^^^^^^^^^^^^^^^^^^^^^^^^
9453
9454Syntax:
9455"""""""
9456
9457::
9458
9459 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
9460
9461 selty is either i1 or {<N x i1>}
9462
9463Overview:
9464"""""""""
9465
9466The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00009467condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00009468
9469Arguments:
9470""""""""""
9471
9472The '``select``' instruction requires an 'i1' value or a vector of 'i1'
9473values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00009474class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00009475
9476Semantics:
9477""""""""""
9478
9479If the condition is an i1 and it evaluates to 1, the instruction returns
9480the first value argument; otherwise, it returns the second value
9481argument.
9482
9483If the condition is a vector of i1, then the value arguments must be
9484vectors of the same size, and the selection is done element by element.
9485
David Majnemer40a0b592015-03-03 22:45:47 +00009486If the condition is an i1 and the value arguments are vectors of the
9487same size, then an entire vector is selected.
9488
Sean Silvab084af42012-12-07 10:36:55 +00009489Example:
9490""""""""
9491
9492.. code-block:: llvm
9493
9494 %X = select i1 true, i8 17, i8 42 ; yields i8:17
9495
9496.. _i_call:
9497
9498'``call``' Instruction
9499^^^^^^^^^^^^^^^^^^^^^^
9500
9501Syntax:
9502"""""""
9503
9504::
9505
David Blaikieb83cf102016-07-13 17:21:34 +00009506 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009507 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00009508
9509Overview:
9510"""""""""
9511
9512The '``call``' instruction represents a simple function call.
9513
9514Arguments:
9515""""""""""
9516
9517This instruction requires several arguments:
9518
Reid Kleckner5772b772014-04-24 20:14:34 +00009519#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00009520 should perform tail call optimization. The ``tail`` marker is a hint that
9521 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00009522 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00009523 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00009524
9525 #. The call will not cause unbounded stack growth if it is part of a
9526 recursive cycle in the call graph.
9527 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
9528 forwarded in place.
9529
Florian Hahnedae5a62018-01-17 23:29:25 +00009530 Both markers imply that the callee does not access allocas from the caller.
9531 The ``tail`` marker additionally implies that the callee does not access
9532 varargs from the caller, while ``musttail`` implies that varargs from the
9533 caller are passed to the callee. Calls marked ``musttail`` must obey the
9534 following additional rules:
Reid Kleckner5772b772014-04-24 20:14:34 +00009535
9536 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
9537 or a pointer bitcast followed by a ret instruction.
9538 - The ret instruction must return the (possibly bitcasted) value
9539 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00009540 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00009541 parameters or return types may differ in pointee type, but not
9542 in address space.
9543 - The calling conventions of the caller and callee must match.
9544 - All ABI-impacting function attributes, such as sret, byval, inreg,
9545 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00009546 - The callee must be varargs iff the caller is varargs. Bitcasting a
9547 non-varargs function to the appropriate varargs type is legal so
9548 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00009549
9550 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
9551 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00009552
9553 - Caller and callee both have the calling convention ``fastcc``.
9554 - The call is in tail position (ret immediately follows call and ret
9555 uses value of call or is void).
9556 - Option ``-tailcallopt`` is enabled, or
9557 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00009558 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00009559 met. <CodeGenerator.html#tailcallopt>`_
9560
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00009561#. The optional ``notail`` marker indicates that the optimizers should not add
9562 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
9563 call optimization from being performed on the call.
9564
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00009565#. The optional ``fast-math flags`` marker indicates that the call has one or more
Sanjay Patelfa54ace2015-12-14 21:59:03 +00009566 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
9567 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
9568 for calls that return a floating-point scalar or vector type.
9569
Sean Silvab084af42012-12-07 10:36:55 +00009570#. The optional "cconv" marker indicates which :ref:`calling
9571 convention <callingconv>` the call should use. If none is
9572 specified, the call defaults to using C calling conventions. The
9573 calling convention of the call must match the calling convention of
9574 the target function, or else the behavior is undefined.
9575#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
9576 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
9577 are valid here.
9578#. '``ty``': the type of the call instruction itself which is also the
9579 type of the return value. Functions that return no value are marked
9580 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00009581#. '``fnty``': shall be the signature of the function being called. The
9582 argument types must match the types implied by this signature. This
9583 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00009584#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00009585 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00009586 indirect ``call``'s are just as possible, calling an arbitrary pointer
9587 to function value.
9588#. '``function args``': argument list whose types match the function
9589 signature argument types and parameter attributes. All arguments must
9590 be of :ref:`first class <t_firstclass>` type. If the function signature
9591 indicates the function accepts a variable number of arguments, the
9592 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00009593#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009594#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00009595
9596Semantics:
9597""""""""""
9598
9599The '``call``' instruction is used to cause control flow to transfer to
9600a specified function, with its incoming arguments bound to the specified
9601values. Upon a '``ret``' instruction in the called function, control
9602flow continues with the instruction after the function call, and the
9603return value of the function is bound to the result argument.
9604
9605Example:
9606""""""""
9607
9608.. code-block:: llvm
9609
9610 %retval = call i32 @test(i32 %argc)
9611 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
9612 %X = tail call i32 @foo() ; yields i32
9613 %Y = tail call fastcc i32 @foo() ; yields i32
9614 call void %foo(i8 97 signext)
9615
9616 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00009617 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00009618 %gr = extractvalue %struct.A %r, 0 ; yields i32
9619 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
9620 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
9621 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
9622
9623llvm treats calls to some functions with names and arguments that match
9624the standard C99 library as being the C99 library functions, and may
9625perform optimizations or generate code for them under that assumption.
9626This is something we'd like to change in the future to provide better
9627support for freestanding environments and non-C-based languages.
9628
9629.. _i_va_arg:
9630
9631'``va_arg``' Instruction
9632^^^^^^^^^^^^^^^^^^^^^^^^
9633
9634Syntax:
9635"""""""
9636
9637::
9638
9639 <resultval> = va_arg <va_list*> <arglist>, <argty>
9640
9641Overview:
9642"""""""""
9643
9644The '``va_arg``' instruction is used to access arguments passed through
9645the "variable argument" area of a function call. It is used to implement
9646the ``va_arg`` macro in C.
9647
9648Arguments:
9649""""""""""
9650
9651This instruction takes a ``va_list*`` value and the type of the
9652argument. It returns a value of the specified argument type and
9653increments the ``va_list`` to point to the next argument. The actual
9654type of ``va_list`` is target specific.
9655
9656Semantics:
9657""""""""""
9658
9659The '``va_arg``' instruction loads an argument of the specified type
9660from the specified ``va_list`` and causes the ``va_list`` to point to
9661the next argument. For more information, see the variable argument
9662handling :ref:`Intrinsic Functions <int_varargs>`.
9663
9664It is legal for this instruction to be called in a function which does
9665not take a variable number of arguments, for example, the ``vfprintf``
9666function.
9667
9668``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
9669function <intrinsics>` because it takes a type as an argument.
9670
9671Example:
9672""""""""
9673
9674See the :ref:`variable argument processing <int_varargs>` section.
9675
9676Note that the code generator does not yet fully support va\_arg on many
9677targets. Also, it does not currently support va\_arg with aggregate
9678types on any target.
9679
9680.. _i_landingpad:
9681
9682'``landingpad``' Instruction
9683^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9684
9685Syntax:
9686"""""""
9687
9688::
9689
David Majnemer7fddecc2015-06-17 20:52:32 +00009690 <resultval> = landingpad <resultty> <clause>+
9691 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00009692
9693 <clause> := catch <type> <value>
9694 <clause> := filter <array constant type> <array constant>
9695
9696Overview:
9697"""""""""
9698
9699The '``landingpad``' instruction is used by `LLVM's exception handling
9700system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009701is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009702code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009703defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009704re-entry to the function. The ``resultval`` has the type ``resultty``.
9705
9706Arguments:
9707""""""""""
9708
David Majnemer7fddecc2015-06-17 20:52:32 +00009709The optional
Sean Silvab084af42012-12-07 10:36:55 +00009710``cleanup`` flag indicates that the landing pad block is a cleanup.
9711
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009712A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009713contains the global variable representing the "type" that may be caught
9714or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9715clause takes an array constant as its argument. Use
9716"``[0 x i8**] undef``" for a filter which cannot throw. The
9717'``landingpad``' instruction must contain *at least* one ``clause`` or
9718the ``cleanup`` flag.
9719
9720Semantics:
9721""""""""""
9722
9723The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009724:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009725therefore the "result type" of the ``landingpad`` instruction. As with
9726calling conventions, how the personality function results are
9727represented in LLVM IR is target specific.
9728
9729The clauses are applied in order from top to bottom. If two
9730``landingpad`` instructions are merged together through inlining, the
9731clauses from the calling function are appended to the list of clauses.
9732When the call stack is being unwound due to an exception being thrown,
9733the exception is compared against each ``clause`` in turn. If it doesn't
9734match any of the clauses, and the ``cleanup`` flag is not set, then
9735unwinding continues further up the call stack.
9736
9737The ``landingpad`` instruction has several restrictions:
9738
9739- A landing pad block is a basic block which is the unwind destination
9740 of an '``invoke``' instruction.
9741- A landing pad block must have a '``landingpad``' instruction as its
9742 first non-PHI instruction.
9743- There can be only one '``landingpad``' instruction within the landing
9744 pad block.
9745- A basic block that is not a landing pad block may not include a
9746 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009747
9748Example:
9749""""""""
9750
9751.. code-block:: llvm
9752
9753 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009754 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009755 catch i8** @_ZTIi
9756 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009757 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009758 cleanup
9759 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009760 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009761 catch i8** @_ZTIi
9762 filter [1 x i8**] [@_ZTId]
9763
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009764.. _i_catchpad:
9765
9766'``catchpad``' Instruction
9767^^^^^^^^^^^^^^^^^^^^^^^^^^
9768
9769Syntax:
9770"""""""
9771
9772::
9773
9774 <resultval> = catchpad within <catchswitch> [<args>*]
9775
9776Overview:
9777"""""""""
9778
9779The '``catchpad``' instruction is used by `LLVM's exception handling
9780system <ExceptionHandling.html#overview>`_ to specify that a basic block
9781begins a catch handler --- one where a personality routine attempts to transfer
9782control to catch an exception.
9783
9784Arguments:
9785""""""""""
9786
9787The ``catchswitch`` operand must always be a token produced by a
9788:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9789ensures that each ``catchpad`` has exactly one predecessor block, and it always
9790terminates in a ``catchswitch``.
9791
9792The ``args`` correspond to whatever information the personality routine
9793requires to know if this is an appropriate handler for the exception. Control
9794will transfer to the ``catchpad`` if this is the first appropriate handler for
9795the exception.
9796
9797The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9798``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9799pads.
9800
9801Semantics:
9802""""""""""
9803
9804When the call stack is being unwound due to an exception being thrown, the
9805exception is compared against the ``args``. If it doesn't match, control will
9806not reach the ``catchpad`` instruction. The representation of ``args`` is
9807entirely target and personality function-specific.
9808
9809Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9810instruction must be the first non-phi of its parent basic block.
9811
9812The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9813instructions is described in the
9814`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9815
9816When a ``catchpad`` has been "entered" but not yet "exited" (as
9817described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9818it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9819that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9820
9821Example:
9822""""""""
9823
Renato Golin124f2592016-07-20 12:16:38 +00009824.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009825
9826 dispatch:
9827 %cs = catchswitch within none [label %handler0] unwind to caller
9828 ;; A catch block which can catch an integer.
9829 handler0:
9830 %tok = catchpad within %cs [i8** @_ZTIi]
9831
David Majnemer654e1302015-07-31 17:58:14 +00009832.. _i_cleanuppad:
9833
9834'``cleanuppad``' Instruction
9835^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9836
9837Syntax:
9838"""""""
9839
9840::
9841
David Majnemer8a1c45d2015-12-12 05:38:55 +00009842 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009843
9844Overview:
9845"""""""""
9846
9847The '``cleanuppad``' instruction is used by `LLVM's exception handling
9848system <ExceptionHandling.html#overview>`_ to specify that a basic block
9849is a cleanup block --- one where a personality routine attempts to
9850transfer control to run cleanup actions.
9851The ``args`` correspond to whatever additional
9852information the :ref:`personality function <personalityfn>` requires to
9853execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009854The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009855match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9856The ``parent`` argument is the token of the funclet that contains the
9857``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9858this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009859
9860Arguments:
9861""""""""""
9862
9863The instruction takes a list of arbitrary values which are interpreted
9864by the :ref:`personality function <personalityfn>`.
9865
9866Semantics:
9867""""""""""
9868
David Majnemer654e1302015-07-31 17:58:14 +00009869When the call stack is being unwound due to an exception being thrown,
9870the :ref:`personality function <personalityfn>` transfers control to the
9871``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009872As with calling conventions, how the personality function results are
9873represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009874
9875The ``cleanuppad`` instruction has several restrictions:
9876
9877- A cleanup block is a basic block which is the unwind destination of
9878 an exceptional instruction.
9879- A cleanup block must have a '``cleanuppad``' instruction as its
9880 first non-PHI instruction.
9881- There can be only one '``cleanuppad``' instruction within the
9882 cleanup block.
9883- A basic block that is not a cleanup block may not include a
9884 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009885
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009886When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9887described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9888it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9889that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009890
David Majnemer654e1302015-07-31 17:58:14 +00009891Example:
9892""""""""
9893
Renato Golin124f2592016-07-20 12:16:38 +00009894.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009895
David Majnemer8a1c45d2015-12-12 05:38:55 +00009896 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009897
Sean Silvab084af42012-12-07 10:36:55 +00009898.. _intrinsics:
9899
9900Intrinsic Functions
9901===================
9902
9903LLVM supports the notion of an "intrinsic function". These functions
9904have well known names and semantics and are required to follow certain
9905restrictions. Overall, these intrinsics represent an extension mechanism
9906for the LLVM language that does not require changing all of the
9907transformations in LLVM when adding to the language (or the bitcode
9908reader/writer, the parser, etc...).
9909
9910Intrinsic function names must all start with an "``llvm.``" prefix. This
9911prefix is reserved in LLVM for intrinsic names; thus, function names may
9912not begin with this prefix. Intrinsic functions must always be external
9913functions: you cannot define the body of intrinsic functions. Intrinsic
9914functions may only be used in call or invoke instructions: it is illegal
9915to take the address of an intrinsic function. Additionally, because
9916intrinsic functions are part of the LLVM language, it is required if any
9917are added that they be documented here.
9918
9919Some intrinsic functions can be overloaded, i.e., the intrinsic
9920represents a family of functions that perform the same operation but on
9921different data types. Because LLVM can represent over 8 million
9922different integer types, overloading is used commonly to allow an
9923intrinsic function to operate on any integer type. One or more of the
9924argument types or the result type can be overloaded to accept any
9925integer type. Argument types may also be defined as exactly matching a
9926previous argument's type or the result type. This allows an intrinsic
9927function which accepts multiple arguments, but needs all of them to be
9928of the same type, to only be overloaded with respect to a single
9929argument or the result.
9930
9931Overloaded intrinsics will have the names of its overloaded argument
9932types encoded into its function name, each preceded by a period. Only
9933those types which are overloaded result in a name suffix. Arguments
9934whose type is matched against another type do not. For example, the
9935``llvm.ctpop`` function can take an integer of any width and returns an
9936integer of exactly the same integer width. This leads to a family of
9937functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9938``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9939overloaded, and only one type suffix is required. Because the argument's
9940type is matched against the return type, it does not require its own
9941name suffix.
9942
9943To learn how to add an intrinsic function, please see the `Extending
9944LLVM Guide <ExtendingLLVM.html>`_.
9945
9946.. _int_varargs:
9947
9948Variable Argument Handling Intrinsics
9949-------------------------------------
9950
9951Variable argument support is defined in LLVM with the
9952:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9953functions. These functions are related to the similarly named macros
9954defined in the ``<stdarg.h>`` header file.
9955
9956All of these functions operate on arguments that use a target-specific
9957value type "``va_list``". The LLVM assembly language reference manual
9958does not define what this type is, so all transformations should be
9959prepared to handle these functions regardless of the type used.
9960
9961This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9962variable argument handling intrinsic functions are used.
9963
9964.. code-block:: llvm
9965
Tim Northoverab60bb92014-11-02 01:21:51 +00009966 ; This struct is different for every platform. For most platforms,
9967 ; it is merely an i8*.
9968 %struct.va_list = type { i8* }
9969
9970 ; For Unix x86_64 platforms, va_list is the following struct:
9971 ; %struct.va_list = type { i32, i32, i8*, i8* }
9972
Sean Silvab084af42012-12-07 10:36:55 +00009973 define i32 @test(i32 %X, ...) {
9974 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00009975 %ap = alloca %struct.va_list
9976 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009977 call void @llvm.va_start(i8* %ap2)
9978
9979 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009980 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009981
9982 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9983 %aq = alloca i8*
9984 %aq2 = bitcast i8** %aq to i8*
9985 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9986 call void @llvm.va_end(i8* %aq2)
9987
9988 ; Stop processing of arguments.
9989 call void @llvm.va_end(i8* %ap2)
9990 ret i32 %tmp
9991 }
9992
9993 declare void @llvm.va_start(i8*)
9994 declare void @llvm.va_copy(i8*, i8*)
9995 declare void @llvm.va_end(i8*)
9996
9997.. _int_va_start:
9998
9999'``llvm.va_start``' Intrinsic
10000^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10001
10002Syntax:
10003"""""""
10004
10005::
10006
Nick Lewycky04f6de02013-09-11 22:04:52 +000010007 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +000010008
10009Overview:
10010"""""""""
10011
10012The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
10013subsequent use by ``va_arg``.
10014
10015Arguments:
10016""""""""""
10017
10018The argument is a pointer to a ``va_list`` element to initialize.
10019
10020Semantics:
10021""""""""""
10022
10023The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
10024available in C. In a target-dependent way, it initializes the
10025``va_list`` element to which the argument points, so that the next call
10026to ``va_arg`` will produce the first variable argument passed to the
10027function. Unlike the C ``va_start`` macro, this intrinsic does not need
10028to know the last argument of the function as the compiler can figure
10029that out.
10030
10031'``llvm.va_end``' Intrinsic
10032^^^^^^^^^^^^^^^^^^^^^^^^^^^
10033
10034Syntax:
10035"""""""
10036
10037::
10038
10039 declare void @llvm.va_end(i8* <arglist>)
10040
10041Overview:
10042"""""""""
10043
10044The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
10045initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
10046
10047Arguments:
10048""""""""""
10049
10050The argument is a pointer to a ``va_list`` to destroy.
10051
10052Semantics:
10053""""""""""
10054
10055The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
10056available in C. In a target-dependent way, it destroys the ``va_list``
10057element to which the argument points. Calls to
10058:ref:`llvm.va_start <int_va_start>` and
10059:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
10060``llvm.va_end``.
10061
10062.. _int_va_copy:
10063
10064'``llvm.va_copy``' Intrinsic
10065^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10066
10067Syntax:
10068"""""""
10069
10070::
10071
10072 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
10073
10074Overview:
10075"""""""""
10076
10077The '``llvm.va_copy``' intrinsic copies the current argument position
10078from the source argument list to the destination argument list.
10079
10080Arguments:
10081""""""""""
10082
10083The first argument is a pointer to a ``va_list`` element to initialize.
10084The second argument is a pointer to a ``va_list`` element to copy from.
10085
10086Semantics:
10087""""""""""
10088
10089The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
10090available in C. In a target-dependent way, it copies the source
10091``va_list`` element into the destination ``va_list`` element. This
10092intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
10093arbitrarily complex and require, for example, memory allocation.
10094
10095Accurate Garbage Collection Intrinsics
10096--------------------------------------
10097
Philip Reamesc5b0f562015-02-25 23:52:06 +000010098LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010099(GC) requires the frontend to generate code containing appropriate intrinsic
10100calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +000010101intrinsics in a manner which is appropriate for the target collector.
10102
Sean Silvab084af42012-12-07 10:36:55 +000010103These intrinsics allow identification of :ref:`GC roots on the
10104stack <int_gcroot>`, as well as garbage collector implementations that
10105require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +000010106Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +000010107these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +000010108details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +000010109
Philip Reamesf80bbff2015-02-25 23:45:20 +000010110Experimental Statepoint Intrinsics
10111^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10112
10113LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +000010114collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010115to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +000010116:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010117differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +000010118<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +000010119described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +000010120
10121.. _int_gcroot:
10122
10123'``llvm.gcroot``' Intrinsic
10124^^^^^^^^^^^^^^^^^^^^^^^^^^^
10125
10126Syntax:
10127"""""""
10128
10129::
10130
10131 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
10132
10133Overview:
10134"""""""""
10135
10136The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
10137the code generator, and allows some metadata to be associated with it.
10138
10139Arguments:
10140""""""""""
10141
10142The first argument specifies the address of a stack object that contains
10143the root pointer. The second pointer (which must be either a constant or
10144a global value address) contains the meta-data to be associated with the
10145root.
10146
10147Semantics:
10148""""""""""
10149
10150At runtime, a call to this intrinsic stores a null pointer into the
10151"ptrloc" location. At compile-time, the code generator generates
10152information to allow the runtime to find the pointer at GC safe points.
10153The '``llvm.gcroot``' intrinsic may only be used in a function which
10154:ref:`specifies a GC algorithm <gc>`.
10155
10156.. _int_gcread:
10157
10158'``llvm.gcread``' Intrinsic
10159^^^^^^^^^^^^^^^^^^^^^^^^^^^
10160
10161Syntax:
10162"""""""
10163
10164::
10165
10166 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
10167
10168Overview:
10169"""""""""
10170
10171The '``llvm.gcread``' intrinsic identifies reads of references from heap
10172locations, allowing garbage collector implementations that require read
10173barriers.
10174
10175Arguments:
10176""""""""""
10177
10178The second argument is the address to read from, which should be an
10179address allocated from the garbage collector. The first object is a
10180pointer to the start of the referenced object, if needed by the language
10181runtime (otherwise null).
10182
10183Semantics:
10184""""""""""
10185
10186The '``llvm.gcread``' intrinsic has the same semantics as a load
10187instruction, but may be replaced with substantially more complex code by
10188the garbage collector runtime, as needed. The '``llvm.gcread``'
10189intrinsic may only be used in a function which :ref:`specifies a GC
10190algorithm <gc>`.
10191
10192.. _int_gcwrite:
10193
10194'``llvm.gcwrite``' Intrinsic
10195^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10196
10197Syntax:
10198"""""""
10199
10200::
10201
10202 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
10203
10204Overview:
10205"""""""""
10206
10207The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
10208locations, allowing garbage collector implementations that require write
10209barriers (such as generational or reference counting collectors).
10210
10211Arguments:
10212""""""""""
10213
10214The first argument is the reference to store, the second is the start of
10215the object to store it to, and the third is the address of the field of
10216Obj to store to. If the runtime does not require a pointer to the
10217object, Obj may be null.
10218
10219Semantics:
10220""""""""""
10221
10222The '``llvm.gcwrite``' intrinsic has the same semantics as a store
10223instruction, but may be replaced with substantially more complex code by
10224the garbage collector runtime, as needed. The '``llvm.gcwrite``'
10225intrinsic may only be used in a function which :ref:`specifies a GC
10226algorithm <gc>`.
10227
10228Code Generator Intrinsics
10229-------------------------
10230
10231These intrinsics are provided by LLVM to expose special features that
10232may only be implemented with code generator support.
10233
10234'``llvm.returnaddress``' Intrinsic
10235^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10236
10237Syntax:
10238"""""""
10239
10240::
10241
George Burgess IVfbc34982017-05-20 04:52:29 +000010242 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +000010243
10244Overview:
10245"""""""""
10246
10247The '``llvm.returnaddress``' intrinsic attempts to compute a
10248target-specific value indicating the return address of the current
10249function or one of its callers.
10250
10251Arguments:
10252""""""""""
10253
10254The argument to this intrinsic indicates which function to return the
10255address for. Zero indicates the calling function, one indicates its
10256caller, etc. The argument is **required** to be a constant integer
10257value.
10258
10259Semantics:
10260""""""""""
10261
10262The '``llvm.returnaddress``' intrinsic either returns a pointer
10263indicating the return address of the specified call frame, or zero if it
10264cannot be identified. The value returned by this intrinsic is likely to
10265be incorrect or 0 for arguments other than zero, so it should only be
10266used for debugging purposes.
10267
10268Note that calling this intrinsic does not prevent function inlining or
10269other aggressive transformations, so the value returned may not be that
10270of the obvious source-language caller.
10271
Albert Gutowski795d7d62016-10-12 22:13:19 +000010272'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +000010273^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +000010274
10275Syntax:
10276"""""""
10277
10278::
10279
George Burgess IVfbc34982017-05-20 04:52:29 +000010280 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +000010281
10282Overview:
10283"""""""""
10284
10285The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
10286pointer to the place in the stack frame where the return address of the
10287current function is stored.
10288
10289Semantics:
10290""""""""""
10291
10292Note that calling this intrinsic does not prevent function inlining or
10293other aggressive transformations, so the value returned may not be that
10294of the obvious source-language caller.
10295
10296This intrinsic is only implemented for x86.
10297
Sean Silvab084af42012-12-07 10:36:55 +000010298'``llvm.frameaddress``' Intrinsic
10299^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10300
10301Syntax:
10302"""""""
10303
10304::
10305
10306 declare i8* @llvm.frameaddress(i32 <level>)
10307
10308Overview:
10309"""""""""
10310
10311The '``llvm.frameaddress``' intrinsic attempts to return the
10312target-specific frame pointer value for the specified stack frame.
10313
10314Arguments:
10315""""""""""
10316
10317The argument to this intrinsic indicates which function to return the
10318frame pointer for. Zero indicates the calling function, one indicates
10319its caller, etc. The argument is **required** to be a constant integer
10320value.
10321
10322Semantics:
10323""""""""""
10324
10325The '``llvm.frameaddress``' intrinsic either returns a pointer
10326indicating the frame address of the specified call frame, or zero if it
10327cannot be identified. The value returned by this intrinsic is likely to
10328be incorrect or 0 for arguments other than zero, so it should only be
10329used for debugging purposes.
10330
10331Note that calling this intrinsic does not prevent function inlining or
10332other aggressive transformations, so the value returned may not be that
10333of the obvious source-language caller.
10334
Reid Kleckner60381792015-07-07 22:25:32 +000010335'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +000010336^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10337
10338Syntax:
10339"""""""
10340
10341::
10342
Reid Kleckner60381792015-07-07 22:25:32 +000010343 declare void @llvm.localescape(...)
10344 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +000010345
10346Overview:
10347"""""""""
10348
Reid Kleckner60381792015-07-07 22:25:32 +000010349The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
10350allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010351live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +000010352computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +000010353
10354Arguments:
10355""""""""""
10356
Reid Kleckner60381792015-07-07 22:25:32 +000010357All arguments to '``llvm.localescape``' must be pointers to static allocas or
10358casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010359once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +000010360
Reid Kleckner60381792015-07-07 22:25:32 +000010361The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +000010362bitcasted pointer to a function defined in the current module. The code
10363generator cannot determine the frame allocation offset of functions defined in
10364other modules.
10365
Reid Klecknerd5afc62f2015-07-07 23:23:03 +000010366The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
10367call frame that is currently live. The return value of '``llvm.localaddress``'
10368is one way to produce such a value, but various runtimes also expose a suitable
10369pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +000010370
Reid Kleckner60381792015-07-07 22:25:32 +000010371The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
10372'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010373
Reid Klecknere9b89312015-01-13 00:48:10 +000010374Semantics:
10375""""""""""
10376
Reid Kleckner60381792015-07-07 22:25:32 +000010377These intrinsics allow a group of functions to share access to a set of local
10378stack allocations of a one parent function. The parent function may call the
10379'``llvm.localescape``' intrinsic once from the function entry block, and the
10380child functions can use '``llvm.localrecover``' to access the escaped allocas.
10381The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
10382the escaped allocas are allocated, which would break attempts to use
10383'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +000010384
Renato Golinc7aea402014-05-06 16:51:25 +000010385.. _int_read_register:
10386.. _int_write_register:
10387
10388'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
10389^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10390
10391Syntax:
10392"""""""
10393
10394::
10395
10396 declare i32 @llvm.read_register.i32(metadata)
10397 declare i64 @llvm.read_register.i64(metadata)
10398 declare void @llvm.write_register.i32(metadata, i32 @value)
10399 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +000010400 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +000010401
10402Overview:
10403"""""""""
10404
10405The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
10406provides access to the named register. The register must be valid on
10407the architecture being compiled to. The type needs to be compatible
10408with the register being read.
10409
10410Semantics:
10411""""""""""
10412
10413The '``llvm.read_register``' intrinsic returns the current value of the
10414register, where possible. The '``llvm.write_register``' intrinsic sets
10415the current value of the register, where possible.
10416
10417This is useful to implement named register global variables that need
10418to always be mapped to a specific register, as is common practice on
10419bare-metal programs including OS kernels.
10420
10421The compiler doesn't check for register availability or use of the used
10422register in surrounding code, including inline assembly. Because of that,
10423allocatable registers are not supported.
10424
10425Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +000010426architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +000010427work is needed to support other registers and even more so, allocatable
10428registers.
10429
Sean Silvab084af42012-12-07 10:36:55 +000010430.. _int_stacksave:
10431
10432'``llvm.stacksave``' Intrinsic
10433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10434
10435Syntax:
10436"""""""
10437
10438::
10439
10440 declare i8* @llvm.stacksave()
10441
10442Overview:
10443"""""""""
10444
10445The '``llvm.stacksave``' intrinsic is used to remember the current state
10446of the function stack, for use with
10447:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
10448implementing language features like scoped automatic variable sized
10449arrays in C99.
10450
10451Semantics:
10452""""""""""
10453
10454This intrinsic returns a opaque pointer value that can be passed to
10455:ref:`llvm.stackrestore <int_stackrestore>`. When an
10456``llvm.stackrestore`` intrinsic is executed with a value saved from
10457``llvm.stacksave``, it effectively restores the state of the stack to
10458the state it was in when the ``llvm.stacksave`` intrinsic executed. In
10459practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
10460were allocated after the ``llvm.stacksave`` was executed.
10461
10462.. _int_stackrestore:
10463
10464'``llvm.stackrestore``' Intrinsic
10465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10466
10467Syntax:
10468"""""""
10469
10470::
10471
10472 declare void @llvm.stackrestore(i8* %ptr)
10473
10474Overview:
10475"""""""""
10476
10477The '``llvm.stackrestore``' intrinsic is used to restore the state of
10478the function stack to the state it was in when the corresponding
10479:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
10480useful for implementing language features like scoped automatic variable
10481sized arrays in C99.
10482
10483Semantics:
10484""""""""""
10485
10486See the description for :ref:`llvm.stacksave <int_stacksave>`.
10487
Yury Gribovd7dbb662015-12-01 11:40:55 +000010488.. _int_get_dynamic_area_offset:
10489
10490'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +000010491^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +000010492
10493Syntax:
10494"""""""
10495
10496::
10497
10498 declare i32 @llvm.get.dynamic.area.offset.i32()
10499 declare i64 @llvm.get.dynamic.area.offset.i64()
10500
Lang Hames10239932016-10-08 00:20:42 +000010501Overview:
10502"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +000010503
10504 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
10505 get the offset from native stack pointer to the address of the most
10506 recent dynamic alloca on the caller's stack. These intrinsics are
10507 intendend for use in combination with
10508 :ref:`llvm.stacksave <int_stacksave>` to get a
10509 pointer to the most recent dynamic alloca. This is useful, for example,
10510 for AddressSanitizer's stack unpoisoning routines.
10511
10512Semantics:
10513""""""""""
10514
10515 These intrinsics return a non-negative integer value that can be used to
10516 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
10517 on the caller's stack. In particular, for targets where stack grows downwards,
10518 adding this offset to the native stack pointer would get the address of the most
10519 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +000010520 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +000010521 one past the end of the most recent dynamic alloca.
10522
10523 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
10524 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
10525 compile-time-known constant value.
10526
10527 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +000010528 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +000010529
Sean Silvab084af42012-12-07 10:36:55 +000010530'``llvm.prefetch``' Intrinsic
10531^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10532
10533Syntax:
10534"""""""
10535
10536::
10537
10538 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
10539
10540Overview:
10541"""""""""
10542
10543The '``llvm.prefetch``' intrinsic is a hint to the code generator to
10544insert a prefetch instruction if supported; otherwise, it is a noop.
10545Prefetches have no effect on the behavior of the program but can change
10546its performance characteristics.
10547
10548Arguments:
10549""""""""""
10550
10551``address`` is the address to be prefetched, ``rw`` is the specifier
10552determining if the fetch should be for a read (0) or write (1), and
10553``locality`` is a temporal locality specifier ranging from (0) - no
10554locality, to (3) - extremely local keep in cache. The ``cache type``
10555specifies whether the prefetch is performed on the data (1) or
10556instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
10557arguments must be constant integers.
10558
10559Semantics:
10560""""""""""
10561
10562This intrinsic does not modify the behavior of the program. In
10563particular, prefetches cannot trap and do not produce a value. On
10564targets that support this intrinsic, the prefetch can provide hints to
10565the processor cache for better performance.
10566
10567'``llvm.pcmarker``' Intrinsic
10568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10569
10570Syntax:
10571"""""""
10572
10573::
10574
10575 declare void @llvm.pcmarker(i32 <id>)
10576
10577Overview:
10578"""""""""
10579
10580The '``llvm.pcmarker``' intrinsic is a method to export a Program
10581Counter (PC) in a region of code to simulators and other tools. The
10582method is target specific, but it is expected that the marker will use
10583exported symbols to transmit the PC of the marker. The marker makes no
10584guarantees that it will remain with any specific instruction after
10585optimizations. It is possible that the presence of a marker will inhibit
10586optimizations. The intended use is to be inserted after optimizations to
10587allow correlations of simulation runs.
10588
10589Arguments:
10590""""""""""
10591
10592``id`` is a numerical id identifying the marker.
10593
10594Semantics:
10595""""""""""
10596
10597This intrinsic does not modify the behavior of the program. Backends
10598that do not support this intrinsic may ignore it.
10599
10600'``llvm.readcyclecounter``' Intrinsic
10601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10602
10603Syntax:
10604"""""""
10605
10606::
10607
10608 declare i64 @llvm.readcyclecounter()
10609
10610Overview:
10611"""""""""
10612
10613The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
10614counter register (or similar low latency, high accuracy clocks) on those
10615targets that support it. On X86, it should map to RDTSC. On Alpha, it
10616should map to RPCC. As the backing counters overflow quickly (on the
10617order of 9 seconds on alpha), this should only be used for small
10618timings.
10619
10620Semantics:
10621""""""""""
10622
10623When directly supported, reading the cycle counter should not modify any
10624memory. Implementations are allowed to either return a application
10625specific value or a system wide value. On backends without support, this
10626is lowered to a constant 0.
10627
Tim Northoverbc933082013-05-23 19:11:20 +000010628Note that runtime support may be conditional on the privilege-level code is
10629running at and the host platform.
10630
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010631'``llvm.clear_cache``' Intrinsic
10632^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10633
10634Syntax:
10635"""""""
10636
10637::
10638
10639 declare void @llvm.clear_cache(i8*, i8*)
10640
10641Overview:
10642"""""""""
10643
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010644The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
10645in the specified range to the execution unit of the processor. On
10646targets with non-unified instruction and data cache, the implementation
10647flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010648
10649Semantics:
10650""""""""""
10651
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010652On platforms with coherent instruction and data caches (e.g. x86), this
10653intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000010654cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010655instructions or a system call, if cache flushing requires special
10656privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010657
Sean Silvad02bf3e2014-04-07 22:29:53 +000010658The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010659time library.
Renato Golin93010e62014-03-26 14:01:32 +000010660
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010661This instrinsic does *not* empty the instruction pipeline. Modifications
10662of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010663
Vedant Kumar51ce6682018-01-26 23:54:25 +000010664'``llvm.instrprof.increment``' Intrinsic
Justin Bogner61ba2e32014-12-08 18:02:35 +000010665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10666
10667Syntax:
10668"""""""
10669
10670::
10671
Vedant Kumar51ce6682018-01-26 23:54:25 +000010672 declare void @llvm.instrprof.increment(i8* <name>, i64 <hash>,
Justin Bogner61ba2e32014-12-08 18:02:35 +000010673 i32 <num-counters>, i32 <index>)
10674
10675Overview:
10676"""""""""
10677
Vedant Kumar51ce6682018-01-26 23:54:25 +000010678The '``llvm.instrprof.increment``' intrinsic can be emitted by a
Justin Bogner61ba2e32014-12-08 18:02:35 +000010679frontend for use with instrumentation based profiling. These will be
10680lowered by the ``-instrprof`` pass to generate execution counts of a
10681program at runtime.
10682
10683Arguments:
10684""""""""""
10685
10686The first argument is a pointer to a global variable containing the
10687name of the entity being instrumented. This should generally be the
10688(mangled) function name for a set of counters.
10689
10690The second argument is a hash value that can be used by the consumer
10691of the profile data to detect changes to the instrumented source, and
10692the third is the number of counters associated with ``name``. It is an
10693error if ``hash`` or ``num-counters`` differ between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010694``instrprof.increment`` that refer to the same name.
Justin Bogner61ba2e32014-12-08 18:02:35 +000010695
10696The last argument refers to which of the counters for ``name`` should
10697be incremented. It should be a value between 0 and ``num-counters``.
10698
10699Semantics:
10700""""""""""
10701
10702This intrinsic represents an increment of a profiling counter. It will
10703cause the ``-instrprof`` pass to generate the appropriate data
10704structures and the code to increment the appropriate value, in a
10705format that can be written out by a compiler runtime and consumed via
10706the ``llvm-profdata`` tool.
10707
Vedant Kumar51ce6682018-01-26 23:54:25 +000010708'``llvm.instrprof.increment.step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010710
10711Syntax:
10712"""""""
10713
10714::
10715
Vedant Kumar51ce6682018-01-26 23:54:25 +000010716 declare void @llvm.instrprof.increment.step(i8* <name>, i64 <hash>,
Xinliang David Li4ca17332016-09-18 18:34:07 +000010717 i32 <num-counters>,
10718 i32 <index>, i64 <step>)
10719
10720Overview:
10721"""""""""
10722
Vedant Kumar51ce6682018-01-26 23:54:25 +000010723The '``llvm.instrprof.increment.step``' intrinsic is an extension to
10724the '``llvm.instrprof.increment``' intrinsic with an additional fifth
Xinliang David Li4ca17332016-09-18 18:34:07 +000010725argument to specify the step of the increment.
10726
10727Arguments:
10728""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010729The first four arguments are the same as '``llvm.instrprof.increment``'
Pete Couperused9569d2017-08-23 20:58:22 +000010730intrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010731
10732The last argument specifies the value of the increment of the counter variable.
10733
10734Semantics:
10735""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010736See description of '``llvm.instrprof.increment``' instrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010737
10738
Vedant Kumar51ce6682018-01-26 23:54:25 +000010739'``llvm.instrprof.value.profile``' Intrinsic
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010740^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10741
10742Syntax:
10743"""""""
10744
10745::
10746
Vedant Kumar51ce6682018-01-26 23:54:25 +000010747 declare void @llvm.instrprof.value.profile(i8* <name>, i64 <hash>,
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010748 i64 <value>, i32 <value_kind>,
10749 i32 <index>)
10750
10751Overview:
10752"""""""""
10753
Vedant Kumar51ce6682018-01-26 23:54:25 +000010754The '``llvm.instrprof.value.profile``' intrinsic can be emitted by a
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010755frontend for use with instrumentation based profiling. This will be
10756lowered by the ``-instrprof`` pass to find out the target values,
10757instrumented expressions take in a program at runtime.
10758
10759Arguments:
10760""""""""""
10761
10762The first argument is a pointer to a global variable containing the
10763name of the entity being instrumented. ``name`` should generally be the
10764(mangled) function name for a set of counters.
10765
10766The second argument is a hash value that can be used by the consumer
10767of the profile data to detect changes to the instrumented source. It
10768is an error if ``hash`` differs between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010769``llvm.instrprof.*`` that refer to the same name.
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010770
10771The third argument is the value of the expression being profiled. The profiled
10772expression's value should be representable as an unsigned 64-bit value. The
10773fourth argument represents the kind of value profiling that is being done. The
10774supported value profiling kinds are enumerated through the
10775``InstrProfValueKind`` type declared in the
10776``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10777index of the instrumented expression within ``name``. It should be >= 0.
10778
10779Semantics:
10780""""""""""
10781
10782This intrinsic represents the point where a call to a runtime routine
10783should be inserted for value profiling of target expressions. ``-instrprof``
10784pass will generate the appropriate data structures and replace the
Vedant Kumar51ce6682018-01-26 23:54:25 +000010785``llvm.instrprof.value.profile`` intrinsic with the call to the profile
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010786runtime library with proper arguments.
10787
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010788'``llvm.thread.pointer``' Intrinsic
10789^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10790
10791Syntax:
10792"""""""
10793
10794::
10795
10796 declare i8* @llvm.thread.pointer()
10797
10798Overview:
10799"""""""""
10800
10801The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10802pointer.
10803
10804Semantics:
10805""""""""""
10806
10807The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10808for the current thread. The exact semantics of this value are target
10809specific: it may point to the start of TLS area, to the end, or somewhere
10810in the middle. Depending on the target, this intrinsic may read a register,
10811call a helper function, read from an alternate memory space, or perform
10812other operations necessary to locate the TLS area. Not all targets support
10813this intrinsic.
10814
Sean Silvab084af42012-12-07 10:36:55 +000010815Standard C Library Intrinsics
10816-----------------------------
10817
10818LLVM provides intrinsics for a few important standard C library
10819functions. These intrinsics allow source-language front-ends to pass
10820information about the alignment of the pointer arguments to the code
10821generator, providing opportunity for more efficient code generation.
10822
10823.. _int_memcpy:
10824
10825'``llvm.memcpy``' Intrinsic
10826^^^^^^^^^^^^^^^^^^^^^^^^^^^
10827
10828Syntax:
10829"""""""
10830
10831This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10832integer bit width and for different address spaces. Not all targets
10833support all bit widths however.
10834
10835::
10836
10837 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010838 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010839 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010840 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010841
10842Overview:
10843"""""""""
10844
10845The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10846source location to the destination location.
10847
10848Note that, unlike the standard libc function, the ``llvm.memcpy.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010849intrinsics do not return a value, takes extra isvolatile
Sean Silvab084af42012-12-07 10:36:55 +000010850arguments and the pointers can be in specified address spaces.
10851
10852Arguments:
10853""""""""""
10854
10855The first argument is a pointer to the destination, the second is a
10856pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010857specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010858boolean indicating a volatile access.
10859
Daniel Neilson39eb6a52018-01-19 17:24:21 +000010860The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010861for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010862
10863If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10864a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10865very cleanly specified and it is unwise to depend on it.
10866
10867Semantics:
10868""""""""""
10869
10870The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10871source location to the destination location, which are not allowed to
10872overlap. It copies "len" bytes of memory over. If the argument is known
10873to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010874argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010875
Daniel Neilson57226ef2017-07-12 15:25:26 +000010876.. _int_memmove:
10877
Sean Silvab084af42012-12-07 10:36:55 +000010878'``llvm.memmove``' Intrinsic
10879^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10880
10881Syntax:
10882"""""""
10883
10884This is an overloaded intrinsic. You can use llvm.memmove on any integer
10885bit width and for different address space. Not all targets support all
10886bit widths however.
10887
10888::
10889
10890 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010891 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010892 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010893 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010894
10895Overview:
10896"""""""""
10897
10898The '``llvm.memmove.*``' intrinsics move a block of memory from the
10899source location to the destination location. It is similar to the
10900'``llvm.memcpy``' intrinsic but allows the two memory locations to
10901overlap.
10902
10903Note that, unlike the standard libc function, the ``llvm.memmove.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010904intrinsics do not return a value, takes an extra isvolatile
10905argument and the pointers can be in specified address spaces.
Sean Silvab084af42012-12-07 10:36:55 +000010906
10907Arguments:
10908""""""""""
10909
10910The first argument is a pointer to the destination, the second is a
10911pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010912specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010913boolean indicating a volatile access.
10914
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010915The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010916for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010917
10918If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10919is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10920not very cleanly specified and it is unwise to depend on it.
10921
10922Semantics:
10923""""""""""
10924
10925The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10926source location to the destination location, which may overlap. It
10927copies "len" bytes of memory over. If the argument is known to be
10928aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010929otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010930
Daniel Neilson965613e2017-07-12 21:57:23 +000010931.. _int_memset:
10932
Sean Silvab084af42012-12-07 10:36:55 +000010933'``llvm.memset.*``' Intrinsics
10934^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10935
10936Syntax:
10937"""""""
10938
10939This is an overloaded intrinsic. You can use llvm.memset on any integer
10940bit width and for different address spaces. However, not all targets
10941support all bit widths.
10942
10943::
10944
10945 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010946 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010947 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010948 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010949
10950Overview:
10951"""""""""
10952
10953The '``llvm.memset.*``' intrinsics fill a block of memory with a
10954particular byte value.
10955
10956Note that, unlike the standard libc function, the ``llvm.memset``
Daniel Neilson1e687242018-01-19 17:13:12 +000010957intrinsic does not return a value and takes an extra volatile
10958argument. Also, the destination can be in an arbitrary address space.
Sean Silvab084af42012-12-07 10:36:55 +000010959
10960Arguments:
10961""""""""""
10962
10963The first argument is a pointer to the destination to fill, the second
10964is the byte value with which to fill it, the third argument is an
10965integer argument specifying the number of bytes to fill, and the fourth
Daniel Neilson1e687242018-01-19 17:13:12 +000010966is a boolean indicating a volatile access.
Sean Silvab084af42012-12-07 10:36:55 +000010967
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010968The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010969for the first arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010970
10971If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
10972a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10973very cleanly specified and it is unwise to depend on it.
10974
10975Semantics:
10976""""""""""
10977
10978The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000010979at the destination location.
Sean Silvab084af42012-12-07 10:36:55 +000010980
10981'``llvm.sqrt.*``' Intrinsic
10982^^^^^^^^^^^^^^^^^^^^^^^^^^^
10983
10984Syntax:
10985"""""""
10986
10987This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000010988floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000010989all types however.
10990
10991::
10992
10993 declare float @llvm.sqrt.f32(float %Val)
10994 declare double @llvm.sqrt.f64(double %Val)
10995 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
10996 declare fp128 @llvm.sqrt.f128(fp128 %Val)
10997 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
10998
10999Overview:
11000"""""""""
11001
Sanjay Patel629c4112017-11-06 16:27:15 +000011002The '``llvm.sqrt``' intrinsics return the square root of the specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011003
11004Arguments:
11005""""""""""
11006
Sanjay Patel629c4112017-11-06 16:27:15 +000011007The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011008
11009Semantics:
11010""""""""""
11011
Sanjay Patel629c4112017-11-06 16:27:15 +000011012Return the same value as a corresponding libm '``sqrt``' function but without
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011013trapping or setting ``errno``. For types specified by IEEE-754, the result
Sanjay Patel629c4112017-11-06 16:27:15 +000011014matches a conforming libm implementation.
11015
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011016When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011017using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011018
11019'``llvm.powi.*``' Intrinsic
11020^^^^^^^^^^^^^^^^^^^^^^^^^^^
11021
11022Syntax:
11023"""""""
11024
11025This is an overloaded intrinsic. You can use ``llvm.powi`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011026floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011027all types however.
11028
11029::
11030
11031 declare float @llvm.powi.f32(float %Val, i32 %power)
11032 declare double @llvm.powi.f64(double %Val, i32 %power)
11033 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
11034 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
11035 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
11036
11037Overview:
11038"""""""""
11039
11040The '``llvm.powi.*``' intrinsics return the first operand raised to the
11041specified (positive or negative) power. The order of evaluation of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011042multiplications is not defined. When a vector of floating-point type is
Sean Silvab084af42012-12-07 10:36:55 +000011043used, the second argument remains a scalar integer value.
11044
11045Arguments:
11046""""""""""
11047
11048The second argument is an integer power, and the first is a value to
11049raise to that power.
11050
11051Semantics:
11052""""""""""
11053
11054This function returns the first value raised to the second power with an
11055unspecified sequence of rounding operations.
11056
11057'``llvm.sin.*``' Intrinsic
11058^^^^^^^^^^^^^^^^^^^^^^^^^^
11059
11060Syntax:
11061"""""""
11062
11063This is an overloaded intrinsic. You can use ``llvm.sin`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011064floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011065all types however.
11066
11067::
11068
11069 declare float @llvm.sin.f32(float %Val)
11070 declare double @llvm.sin.f64(double %Val)
11071 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
11072 declare fp128 @llvm.sin.f128(fp128 %Val)
11073 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
11074
11075Overview:
11076"""""""""
11077
11078The '``llvm.sin.*``' intrinsics return the sine of the operand.
11079
11080Arguments:
11081""""""""""
11082
Sanjay Patel629c4112017-11-06 16:27:15 +000011083The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011084
11085Semantics:
11086""""""""""
11087
Sanjay Patel629c4112017-11-06 16:27:15 +000011088Return the same value as a corresponding libm '``sin``' function but without
11089trapping or setting ``errno``.
11090
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011091When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011092using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011093
11094'``llvm.cos.*``' Intrinsic
11095^^^^^^^^^^^^^^^^^^^^^^^^^^
11096
11097Syntax:
11098"""""""
11099
11100This is an overloaded intrinsic. You can use ``llvm.cos`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011101floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011102all types however.
11103
11104::
11105
11106 declare float @llvm.cos.f32(float %Val)
11107 declare double @llvm.cos.f64(double %Val)
11108 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
11109 declare fp128 @llvm.cos.f128(fp128 %Val)
11110 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
11111
11112Overview:
11113"""""""""
11114
11115The '``llvm.cos.*``' intrinsics return the cosine of the operand.
11116
11117Arguments:
11118""""""""""
11119
Sanjay Patel629c4112017-11-06 16:27:15 +000011120The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011121
11122Semantics:
11123""""""""""
11124
Sanjay Patel629c4112017-11-06 16:27:15 +000011125Return the same value as a corresponding libm '``cos``' function but without
11126trapping or setting ``errno``.
11127
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011128When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011129using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011130
11131'``llvm.pow.*``' Intrinsic
11132^^^^^^^^^^^^^^^^^^^^^^^^^^
11133
11134Syntax:
11135"""""""
11136
11137This is an overloaded intrinsic. You can use ``llvm.pow`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011138floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011139all types however.
11140
11141::
11142
11143 declare float @llvm.pow.f32(float %Val, float %Power)
11144 declare double @llvm.pow.f64(double %Val, double %Power)
11145 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
11146 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
11147 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
11148
11149Overview:
11150"""""""""
11151
11152The '``llvm.pow.*``' intrinsics return the first operand raised to the
11153specified (positive or negative) power.
11154
11155Arguments:
11156""""""""""
11157
Sanjay Patel629c4112017-11-06 16:27:15 +000011158The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011159
11160Semantics:
11161""""""""""
11162
Sanjay Patel629c4112017-11-06 16:27:15 +000011163Return the same value as a corresponding libm '``pow``' function but without
11164trapping or setting ``errno``.
11165
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011166When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011167using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011168
11169'``llvm.exp.*``' Intrinsic
11170^^^^^^^^^^^^^^^^^^^^^^^^^^
11171
11172Syntax:
11173"""""""
11174
11175This is an overloaded intrinsic. You can use ``llvm.exp`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011176floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011177all types however.
11178
11179::
11180
11181 declare float @llvm.exp.f32(float %Val)
11182 declare double @llvm.exp.f64(double %Val)
11183 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
11184 declare fp128 @llvm.exp.f128(fp128 %Val)
11185 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
11186
11187Overview:
11188"""""""""
11189
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011190The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
11191value.
Sean Silvab084af42012-12-07 10:36:55 +000011192
11193Arguments:
11194""""""""""
11195
Sanjay Patel629c4112017-11-06 16:27:15 +000011196The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011197
11198Semantics:
11199""""""""""
11200
Sanjay Patel629c4112017-11-06 16:27:15 +000011201Return the same value as a corresponding libm '``exp``' function but without
11202trapping or setting ``errno``.
11203
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011204When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011205using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011206
11207'``llvm.exp2.*``' Intrinsic
11208^^^^^^^^^^^^^^^^^^^^^^^^^^^
11209
11210Syntax:
11211"""""""
11212
11213This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011214floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011215all types however.
11216
11217::
11218
11219 declare float @llvm.exp2.f32(float %Val)
11220 declare double @llvm.exp2.f64(double %Val)
11221 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
11222 declare fp128 @llvm.exp2.f128(fp128 %Val)
11223 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
11224
11225Overview:
11226"""""""""
11227
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011228The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
11229specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011230
11231Arguments:
11232""""""""""
11233
Sanjay Patel629c4112017-11-06 16:27:15 +000011234The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011235
11236Semantics:
11237""""""""""
11238
Sanjay Patel629c4112017-11-06 16:27:15 +000011239Return the same value as a corresponding libm '``exp2``' function but without
11240trapping or setting ``errno``.
11241
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011242When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011243using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011244
11245'``llvm.log.*``' Intrinsic
11246^^^^^^^^^^^^^^^^^^^^^^^^^^
11247
11248Syntax:
11249"""""""
11250
11251This is an overloaded intrinsic. You can use ``llvm.log`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011252floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011253all types however.
11254
11255::
11256
11257 declare float @llvm.log.f32(float %Val)
11258 declare double @llvm.log.f64(double %Val)
11259 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
11260 declare fp128 @llvm.log.f128(fp128 %Val)
11261 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
11262
11263Overview:
11264"""""""""
11265
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011266The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
11267value.
Sean Silvab084af42012-12-07 10:36:55 +000011268
11269Arguments:
11270""""""""""
11271
Sanjay Patel629c4112017-11-06 16:27:15 +000011272The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011273
11274Semantics:
11275""""""""""
11276
Sanjay Patel629c4112017-11-06 16:27:15 +000011277Return the same value as a corresponding libm '``log``' function but without
11278trapping or setting ``errno``.
11279
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011280When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011281using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011282
11283'``llvm.log10.*``' Intrinsic
11284^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11285
11286Syntax:
11287"""""""
11288
11289This is an overloaded intrinsic. You can use ``llvm.log10`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011290floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011291all types however.
11292
11293::
11294
11295 declare float @llvm.log10.f32(float %Val)
11296 declare double @llvm.log10.f64(double %Val)
11297 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
11298 declare fp128 @llvm.log10.f128(fp128 %Val)
11299 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
11300
11301Overview:
11302"""""""""
11303
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011304The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
11305specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011306
11307Arguments:
11308""""""""""
11309
Sanjay Patel629c4112017-11-06 16:27:15 +000011310The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011311
11312Semantics:
11313""""""""""
11314
Sanjay Patel629c4112017-11-06 16:27:15 +000011315Return the same value as a corresponding libm '``log10``' function but without
11316trapping or setting ``errno``.
11317
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011318When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011319using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011320
11321'``llvm.log2.*``' Intrinsic
11322^^^^^^^^^^^^^^^^^^^^^^^^^^^
11323
11324Syntax:
11325"""""""
11326
11327This is an overloaded intrinsic. You can use ``llvm.log2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011328floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011329all types however.
11330
11331::
11332
11333 declare float @llvm.log2.f32(float %Val)
11334 declare double @llvm.log2.f64(double %Val)
11335 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
11336 declare fp128 @llvm.log2.f128(fp128 %Val)
11337 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
11338
11339Overview:
11340"""""""""
11341
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011342The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
11343value.
Sean Silvab084af42012-12-07 10:36:55 +000011344
11345Arguments:
11346""""""""""
11347
Sanjay Patel629c4112017-11-06 16:27:15 +000011348The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011349
11350Semantics:
11351""""""""""
11352
Sanjay Patel629c4112017-11-06 16:27:15 +000011353Return the same value as a corresponding libm '``log2``' function but without
11354trapping or setting ``errno``.
11355
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011356When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011357using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011358
11359'``llvm.fma.*``' Intrinsic
11360^^^^^^^^^^^^^^^^^^^^^^^^^^
11361
11362Syntax:
11363"""""""
11364
11365This is an overloaded intrinsic. You can use ``llvm.fma`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011366floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011367all types however.
11368
11369::
11370
11371 declare float @llvm.fma.f32(float %a, float %b, float %c)
11372 declare double @llvm.fma.f64(double %a, double %b, double %c)
11373 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
11374 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
11375 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
11376
11377Overview:
11378"""""""""
11379
Sanjay Patel629c4112017-11-06 16:27:15 +000011380The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
Sean Silvab084af42012-12-07 10:36:55 +000011381
11382Arguments:
11383""""""""""
11384
Sanjay Patel629c4112017-11-06 16:27:15 +000011385The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011386
11387Semantics:
11388""""""""""
11389
Sanjay Patel629c4112017-11-06 16:27:15 +000011390Return the same value as a corresponding libm '``fma``' function but without
11391trapping or setting ``errno``.
11392
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011393When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011394using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011395
11396'``llvm.fabs.*``' Intrinsic
11397^^^^^^^^^^^^^^^^^^^^^^^^^^^
11398
11399Syntax:
11400"""""""
11401
11402This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011403floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011404all types however.
11405
11406::
11407
11408 declare float @llvm.fabs.f32(float %Val)
11409 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011410 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011411 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011412 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011413
11414Overview:
11415"""""""""
11416
11417The '``llvm.fabs.*``' intrinsics return the absolute value of the
11418operand.
11419
11420Arguments:
11421""""""""""
11422
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011423The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011424type.
11425
11426Semantics:
11427""""""""""
11428
11429This function returns the same values as the libm ``fabs`` functions
11430would, and handles error conditions in the same way.
11431
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011432'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011434
11435Syntax:
11436"""""""
11437
11438This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011439floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011440all types however.
11441
11442::
11443
Matt Arsenault64313c92014-10-22 18:25:02 +000011444 declare float @llvm.minnum.f32(float %Val0, float %Val1)
11445 declare double @llvm.minnum.f64(double %Val0, double %Val1)
11446 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11447 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
11448 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011449
11450Overview:
11451"""""""""
11452
11453The '``llvm.minnum.*``' intrinsics return the minimum of the two
11454arguments.
11455
11456
11457Arguments:
11458""""""""""
11459
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011460The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011461type.
11462
11463Semantics:
11464""""""""""
11465
11466Follows the IEEE-754 semantics for minNum, which also match for libm's
11467fmin.
11468
11469If either operand is a NaN, returns the other non-NaN operand. Returns
11470NaN only if both operands are NaN. If the operands compare equal,
11471returns a value that compares equal to both operands. This means that
11472fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11473
11474'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011476
11477Syntax:
11478"""""""
11479
11480This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011481floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011482all types however.
11483
11484::
11485
Matt Arsenault64313c92014-10-22 18:25:02 +000011486 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
11487 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
11488 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11489 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
11490 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011491
11492Overview:
11493"""""""""
11494
11495The '``llvm.maxnum.*``' intrinsics return the maximum of the two
11496arguments.
11497
11498
11499Arguments:
11500""""""""""
11501
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011502The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011503type.
11504
11505Semantics:
11506""""""""""
11507Follows the IEEE-754 semantics for maxNum, which also match for libm's
11508fmax.
11509
11510If either operand is a NaN, returns the other non-NaN operand. Returns
11511NaN only if both operands are NaN. If the operands compare equal,
11512returns a value that compares equal to both operands. This means that
11513fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
11514
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011515'``llvm.copysign.*``' Intrinsic
11516^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11517
11518Syntax:
11519"""""""
11520
11521This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011522floating-point or vector of floating-point type. Not all targets support
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011523all types however.
11524
11525::
11526
11527 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
11528 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
11529 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
11530 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
11531 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
11532
11533Overview:
11534"""""""""
11535
11536The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
11537first operand and the sign of the second operand.
11538
11539Arguments:
11540""""""""""
11541
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011542The arguments and return value are floating-point numbers of the same
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011543type.
11544
11545Semantics:
11546""""""""""
11547
11548This function returns the same values as the libm ``copysign``
11549functions would, and handles error conditions in the same way.
11550
Sean Silvab084af42012-12-07 10:36:55 +000011551'``llvm.floor.*``' Intrinsic
11552^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11553
11554Syntax:
11555"""""""
11556
11557This is an overloaded intrinsic. You can use ``llvm.floor`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011558floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011559all types however.
11560
11561::
11562
11563 declare float @llvm.floor.f32(float %Val)
11564 declare double @llvm.floor.f64(double %Val)
11565 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
11566 declare fp128 @llvm.floor.f128(fp128 %Val)
11567 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
11568
11569Overview:
11570"""""""""
11571
11572The '``llvm.floor.*``' intrinsics return the floor of the operand.
11573
11574Arguments:
11575""""""""""
11576
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011577The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011578type.
11579
11580Semantics:
11581""""""""""
11582
11583This function returns the same values as the libm ``floor`` functions
11584would, and handles error conditions in the same way.
11585
11586'``llvm.ceil.*``' Intrinsic
11587^^^^^^^^^^^^^^^^^^^^^^^^^^^
11588
11589Syntax:
11590"""""""
11591
11592This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011593floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011594all types however.
11595
11596::
11597
11598 declare float @llvm.ceil.f32(float %Val)
11599 declare double @llvm.ceil.f64(double %Val)
11600 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
11601 declare fp128 @llvm.ceil.f128(fp128 %Val)
11602 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
11603
11604Overview:
11605"""""""""
11606
11607The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
11608
11609Arguments:
11610""""""""""
11611
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011612The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011613type.
11614
11615Semantics:
11616""""""""""
11617
11618This function returns the same values as the libm ``ceil`` functions
11619would, and handles error conditions in the same way.
11620
11621'``llvm.trunc.*``' Intrinsic
11622^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11623
11624Syntax:
11625"""""""
11626
11627This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011628floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011629all types however.
11630
11631::
11632
11633 declare float @llvm.trunc.f32(float %Val)
11634 declare double @llvm.trunc.f64(double %Val)
11635 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
11636 declare fp128 @llvm.trunc.f128(fp128 %Val)
11637 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
11638
11639Overview:
11640"""""""""
11641
11642The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
11643nearest integer not larger in magnitude than the operand.
11644
11645Arguments:
11646""""""""""
11647
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011648The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011649type.
11650
11651Semantics:
11652""""""""""
11653
11654This function returns the same values as the libm ``trunc`` functions
11655would, and handles error conditions in the same way.
11656
11657'``llvm.rint.*``' Intrinsic
11658^^^^^^^^^^^^^^^^^^^^^^^^^^^
11659
11660Syntax:
11661"""""""
11662
11663This is an overloaded intrinsic. You can use ``llvm.rint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011664floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011665all types however.
11666
11667::
11668
11669 declare float @llvm.rint.f32(float %Val)
11670 declare double @llvm.rint.f64(double %Val)
11671 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
11672 declare fp128 @llvm.rint.f128(fp128 %Val)
11673 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
11674
11675Overview:
11676"""""""""
11677
11678The '``llvm.rint.*``' intrinsics returns the operand rounded to the
11679nearest integer. It may raise an inexact floating-point exception if the
11680operand isn't an integer.
11681
11682Arguments:
11683""""""""""
11684
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011685The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011686type.
11687
11688Semantics:
11689""""""""""
11690
11691This function returns the same values as the libm ``rint`` functions
11692would, and handles error conditions in the same way.
11693
11694'``llvm.nearbyint.*``' Intrinsic
11695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11696
11697Syntax:
11698"""""""
11699
11700This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011701floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011702all types however.
11703
11704::
11705
11706 declare float @llvm.nearbyint.f32(float %Val)
11707 declare double @llvm.nearbyint.f64(double %Val)
11708 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
11709 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
11710 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
11711
11712Overview:
11713"""""""""
11714
11715The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
11716nearest integer.
11717
11718Arguments:
11719""""""""""
11720
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011721The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011722type.
11723
11724Semantics:
11725""""""""""
11726
11727This function returns the same values as the libm ``nearbyint``
11728functions would, and handles error conditions in the same way.
11729
Hal Finkel171817e2013-08-07 22:49:12 +000011730'``llvm.round.*``' Intrinsic
11731^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11732
11733Syntax:
11734"""""""
11735
11736This is an overloaded intrinsic. You can use ``llvm.round`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011737floating-point or vector of floating-point type. Not all targets support
Hal Finkel171817e2013-08-07 22:49:12 +000011738all types however.
11739
11740::
11741
11742 declare float @llvm.round.f32(float %Val)
11743 declare double @llvm.round.f64(double %Val)
11744 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11745 declare fp128 @llvm.round.f128(fp128 %Val)
11746 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11747
11748Overview:
11749"""""""""
11750
11751The '``llvm.round.*``' intrinsics returns the operand rounded to the
11752nearest integer.
11753
11754Arguments:
11755""""""""""
11756
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011757The argument and return value are floating-point numbers of the same
Hal Finkel171817e2013-08-07 22:49:12 +000011758type.
11759
11760Semantics:
11761""""""""""
11762
11763This function returns the same values as the libm ``round``
11764functions would, and handles error conditions in the same way.
11765
Sean Silvab084af42012-12-07 10:36:55 +000011766Bit Manipulation Intrinsics
11767---------------------------
11768
11769LLVM provides intrinsics for a few important bit manipulation
11770operations. These allow efficient code generation for some algorithms.
11771
James Molloy90111f72015-11-12 12:29:09 +000011772'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011773^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011774
11775Syntax:
11776"""""""
11777
11778This is an overloaded intrinsic function. You can use bitreverse on any
11779integer type.
11780
11781::
11782
11783 declare i16 @llvm.bitreverse.i16(i16 <id>)
11784 declare i32 @llvm.bitreverse.i32(i32 <id>)
11785 declare i64 @llvm.bitreverse.i64(i64 <id>)
11786
11787Overview:
11788"""""""""
11789
11790The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011791bitpattern of an integer value; for example ``0b10110110`` becomes
11792``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011793
11794Semantics:
11795""""""""""
11796
Yichao Yu5abf14b2016-11-23 16:25:31 +000011797The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011798``M`` in the input moved to bit ``N-M`` in the output.
11799
Sean Silvab084af42012-12-07 10:36:55 +000011800'``llvm.bswap.*``' Intrinsics
11801^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11802
11803Syntax:
11804"""""""
11805
11806This is an overloaded intrinsic function. You can use bswap on any
11807integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11808
11809::
11810
11811 declare i16 @llvm.bswap.i16(i16 <id>)
11812 declare i32 @llvm.bswap.i32(i32 <id>)
11813 declare i64 @llvm.bswap.i64(i64 <id>)
11814
11815Overview:
11816"""""""""
11817
11818The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11819values with an even number of bytes (positive multiple of 16 bits).
11820These are useful for performing operations on data that is not in the
11821target's native byte order.
11822
11823Semantics:
11824""""""""""
11825
11826The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11827and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11828intrinsic returns an i32 value that has the four bytes of the input i32
11829swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11830returned i32 will have its bytes in 3, 2, 1, 0 order. The
11831``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11832concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11833respectively).
11834
11835'``llvm.ctpop.*``' Intrinsic
11836^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11837
11838Syntax:
11839"""""""
11840
11841This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11842bit width, or on any vector with integer elements. Not all targets
11843support all bit widths or vector types, however.
11844
11845::
11846
11847 declare i8 @llvm.ctpop.i8(i8 <src>)
11848 declare i16 @llvm.ctpop.i16(i16 <src>)
11849 declare i32 @llvm.ctpop.i32(i32 <src>)
11850 declare i64 @llvm.ctpop.i64(i64 <src>)
11851 declare i256 @llvm.ctpop.i256(i256 <src>)
11852 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11853
11854Overview:
11855"""""""""
11856
11857The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11858in a value.
11859
11860Arguments:
11861""""""""""
11862
11863The only argument is the value to be counted. The argument may be of any
11864integer type, or a vector with integer elements. The return type must
11865match the argument type.
11866
11867Semantics:
11868""""""""""
11869
11870The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11871each element of a vector.
11872
11873'``llvm.ctlz.*``' Intrinsic
11874^^^^^^^^^^^^^^^^^^^^^^^^^^^
11875
11876Syntax:
11877"""""""
11878
11879This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11880integer bit width, or any vector whose elements are integers. Not all
11881targets support all bit widths or vector types, however.
11882
11883::
11884
11885 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11886 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11887 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11888 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11889 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011890 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011891
11892Overview:
11893"""""""""
11894
11895The '``llvm.ctlz``' family of intrinsic functions counts the number of
11896leading zeros in a variable.
11897
11898Arguments:
11899""""""""""
11900
11901The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011902any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011903type must match the first argument type.
11904
11905The second argument must be a constant and is a flag to indicate whether
11906the intrinsic should ensure that a zero as the first argument produces a
11907defined result. Historically some architectures did not provide a
11908defined result for zero values as efficiently, and many algorithms are
11909now predicated on avoiding zero-value inputs.
11910
11911Semantics:
11912""""""""""
11913
11914The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11915zeros in a variable, or within each element of the vector. If
11916``src == 0`` then the result is the size in bits of the type of ``src``
11917if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11918``llvm.ctlz(i32 2) = 30``.
11919
11920'``llvm.cttz.*``' Intrinsic
11921^^^^^^^^^^^^^^^^^^^^^^^^^^^
11922
11923Syntax:
11924"""""""
11925
11926This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11927integer bit width, or any vector of integer elements. Not all targets
11928support all bit widths or vector types, however.
11929
11930::
11931
11932 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11933 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11934 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11935 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11936 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011937 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011938
11939Overview:
11940"""""""""
11941
11942The '``llvm.cttz``' family of intrinsic functions counts the number of
11943trailing zeros.
11944
11945Arguments:
11946""""""""""
11947
11948The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011949any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011950type must match the first argument type.
11951
11952The second argument must be a constant and is a flag to indicate whether
11953the intrinsic should ensure that a zero as the first argument produces a
11954defined result. Historically some architectures did not provide a
11955defined result for zero values as efficiently, and many algorithms are
11956now predicated on avoiding zero-value inputs.
11957
11958Semantics:
11959""""""""""
11960
11961The '``llvm.cttz``' intrinsic counts the trailing (least significant)
11962zeros in a variable, or within each element of a vector. If ``src == 0``
11963then the result is the size in bits of the type of ``src`` if
11964``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11965``llvm.cttz(2) = 1``.
11966
Philip Reames34843ae2015-03-05 05:55:55 +000011967.. _int_overflow:
11968
Sanjay Patelc71adc82018-07-16 22:59:31 +000011969'``llvm.fshl.*``' Intrinsic
11970^^^^^^^^^^^^^^^^^^^^^^^^^^^
11971
11972Syntax:
11973"""""""
11974
11975This is an overloaded intrinsic. You can use ``llvm.fshl`` on any
11976integer bit width or any vector of integer elements. Not all targets
11977support all bit widths or vector types, however.
11978
11979::
11980
11981 declare i8 @llvm.fshl.i8 (i8 %a, i8 %b, i8 %c)
11982 declare i67 @llvm.fshl.i67(i67 %a, i67 %b, i67 %c)
11983 declare <2 x i32> @llvm.fshl.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
11984
11985Overview:
11986"""""""""
11987
11988The '``llvm.fshl``' family of intrinsic functions performs a funnel shift left:
11989the first two values are concatenated as { %a : %b } (%a is the most significant
11990bits of the wide value), the combined value is shifted left, and the most
11991significant bits are extracted to produce a result that is the same size as the
11992original arguments. If the first 2 arguments are identical, this is equivalent
11993to a rotate left operation. For vector types, the operation occurs for each
11994element of the vector. The shift argument is treated as an unsigned amount
11995modulo the element size of the arguments.
11996
11997Arguments:
11998""""""""""
11999
12000The first two arguments are the values to be concatenated. The third
12001argument is the shift amount. The arguments may be any integer type or a
12002vector with integer element type. All arguments and the return value must
12003have the same type.
12004
12005Example:
12006""""""""
12007
12008.. code-block:: text
12009
12010 %r = call i8 @llvm.fshl.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: msb_extract((concat(x, y) << (z % 8)), 8)
12011 %r = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 15) ; %r = i8: 128 (0b10000000)
12012 %r = call i8 @llvm.fshl.i8(i8 15, i8 15, i8 11) ; %r = i8: 120 (0b01111000)
12013 %r = call i8 @llvm.fshl.i8(i8 0, i8 255, i8 8) ; %r = i8: 0 (0b00000000)
12014
12015'``llvm.fshr.*``' Intrinsic
12016^^^^^^^^^^^^^^^^^^^^^^^^^^^
12017
12018Syntax:
12019"""""""
12020
12021This is an overloaded intrinsic. You can use ``llvm.fshr`` on any
12022integer bit width or any vector of integer elements. Not all targets
12023support all bit widths or vector types, however.
12024
12025::
12026
12027 declare i8 @llvm.fshr.i8 (i8 %a, i8 %b, i8 %c)
12028 declare i67 @llvm.fshr.i67(i67 %a, i67 %b, i67 %c)
12029 declare <2 x i32> @llvm.fshr.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
12030
12031Overview:
12032"""""""""
12033
12034The '``llvm.fshr``' family of intrinsic functions performs a funnel shift right:
12035the first two values are concatenated as { %a : %b } (%a is the most significant
12036bits of the wide value), the combined value is shifted right, and the least
12037significant bits are extracted to produce a result that is the same size as the
12038original arguments. If the first 2 arguments are identical, this is equivalent
12039to a rotate right operation. For vector types, the operation occurs for each
12040element of the vector. The shift argument is treated as an unsigned amount
12041modulo the element size of the arguments.
12042
12043Arguments:
12044""""""""""
12045
12046The first two arguments are the values to be concatenated. The third
12047argument is the shift amount. The arguments may be any integer type or a
12048vector with integer element type. All arguments and the return value must
12049have the same type.
12050
12051Example:
12052""""""""
12053
12054.. code-block:: text
12055
12056 %r = call i8 @llvm.fshr.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: lsb_extract((concat(x, y) >> (z % 8)), 8)
12057 %r = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 15) ; %r = i8: 254 (0b11111110)
12058 %r = call i8 @llvm.fshr.i8(i8 15, i8 15, i8 11) ; %r = i8: 225 (0b11100001)
12059 %r = call i8 @llvm.fshr.i8(i8 0, i8 255, i8 8) ; %r = i8: 255 (0b11111111)
12060
Sean Silvab084af42012-12-07 10:36:55 +000012061Arithmetic with Overflow Intrinsics
12062-----------------------------------
12063
John Regehr6a493f22016-05-12 20:55:09 +000012064LLVM provides intrinsics for fast arithmetic overflow checking.
12065
12066Each of these intrinsics returns a two-element struct. The first
12067element of this struct contains the result of the corresponding
12068arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
12069the result. Therefore, for example, the first element of the struct
12070returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
12071result of a 32-bit ``add`` instruction with the same operands, where
12072the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
12073
12074The second element of the result is an ``i1`` that is 1 if the
12075arithmetic operation overflowed and 0 otherwise. An operation
12076overflows if, for any values of its operands ``A`` and ``B`` and for
12077any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
12078not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
12079``sext`` for signed overflow and ``zext`` for unsigned overflow, and
12080``op`` is the underlying arithmetic operation.
12081
12082The behavior of these intrinsics is well-defined for all argument
12083values.
Sean Silvab084af42012-12-07 10:36:55 +000012084
12085'``llvm.sadd.with.overflow.*``' Intrinsics
12086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12087
12088Syntax:
12089"""""""
12090
12091This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
12092on any integer bit width.
12093
12094::
12095
12096 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
12097 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12098 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
12099
12100Overview:
12101"""""""""
12102
12103The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
12104a signed addition of the two arguments, and indicate whether an overflow
12105occurred during the signed summation.
12106
12107Arguments:
12108""""""""""
12109
12110The arguments (%a and %b) and the first element of the result structure
12111may be of integer types of any bit width, but they must have the same
12112bit width. The second element of the result structure must be of type
12113``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12114addition.
12115
12116Semantics:
12117""""""""""
12118
12119The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012120a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012121first element of which is the signed summation, and the second element
12122of which is a bit specifying if the signed summation resulted in an
12123overflow.
12124
12125Examples:
12126"""""""""
12127
12128.. code-block:: llvm
12129
12130 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12131 %sum = extractvalue {i32, i1} %res, 0
12132 %obit = extractvalue {i32, i1} %res, 1
12133 br i1 %obit, label %overflow, label %normal
12134
12135'``llvm.uadd.with.overflow.*``' Intrinsics
12136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12137
12138Syntax:
12139"""""""
12140
12141This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
12142on any integer bit width.
12143
12144::
12145
12146 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
12147 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12148 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
12149
12150Overview:
12151"""""""""
12152
12153The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
12154an unsigned addition of the two arguments, and indicate whether a carry
12155occurred during the unsigned summation.
12156
12157Arguments:
12158""""""""""
12159
12160The arguments (%a and %b) and the first element of the result structure
12161may be of integer types of any bit width, but they must have the same
12162bit width. The second element of the result structure must be of type
12163``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12164addition.
12165
12166Semantics:
12167""""""""""
12168
12169The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012170an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012171first element of which is the sum, and the second element of which is a
12172bit specifying if the unsigned summation resulted in a carry.
12173
12174Examples:
12175"""""""""
12176
12177.. code-block:: llvm
12178
12179 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12180 %sum = extractvalue {i32, i1} %res, 0
12181 %obit = extractvalue {i32, i1} %res, 1
12182 br i1 %obit, label %carry, label %normal
12183
12184'``llvm.ssub.with.overflow.*``' Intrinsics
12185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12186
12187Syntax:
12188"""""""
12189
12190This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
12191on any integer bit width.
12192
12193::
12194
12195 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
12196 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12197 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
12198
12199Overview:
12200"""""""""
12201
12202The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
12203a signed subtraction of the two arguments, and indicate whether an
12204overflow occurred during the signed subtraction.
12205
12206Arguments:
12207""""""""""
12208
12209The arguments (%a and %b) and the first element of the result structure
12210may be of integer types of any bit width, but they must have the same
12211bit width. The second element of the result structure must be of type
12212``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12213subtraction.
12214
12215Semantics:
12216""""""""""
12217
12218The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012219a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012220first element of which is the subtraction, and the second element of
12221which is a bit specifying if the signed subtraction resulted in an
12222overflow.
12223
12224Examples:
12225"""""""""
12226
12227.. code-block:: llvm
12228
12229 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12230 %sum = extractvalue {i32, i1} %res, 0
12231 %obit = extractvalue {i32, i1} %res, 1
12232 br i1 %obit, label %overflow, label %normal
12233
12234'``llvm.usub.with.overflow.*``' Intrinsics
12235^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12236
12237Syntax:
12238"""""""
12239
12240This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
12241on any integer bit width.
12242
12243::
12244
12245 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
12246 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12247 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
12248
12249Overview:
12250"""""""""
12251
12252The '``llvm.usub.with.overflow``' family of intrinsic functions perform
12253an unsigned subtraction of the two arguments, and indicate whether an
12254overflow occurred during the unsigned subtraction.
12255
12256Arguments:
12257""""""""""
12258
12259The arguments (%a and %b) and the first element of the result structure
12260may be of integer types of any bit width, but they must have the same
12261bit width. The second element of the result structure must be of type
12262``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12263subtraction.
12264
12265Semantics:
12266""""""""""
12267
12268The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012269an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012270the first element of which is the subtraction, and the second element of
12271which is a bit specifying if the unsigned subtraction resulted in an
12272overflow.
12273
12274Examples:
12275"""""""""
12276
12277.. code-block:: llvm
12278
12279 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12280 %sum = extractvalue {i32, i1} %res, 0
12281 %obit = extractvalue {i32, i1} %res, 1
12282 br i1 %obit, label %overflow, label %normal
12283
12284'``llvm.smul.with.overflow.*``' Intrinsics
12285^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12286
12287Syntax:
12288"""""""
12289
12290This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
12291on any integer bit width.
12292
12293::
12294
12295 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
12296 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12297 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
12298
12299Overview:
12300"""""""""
12301
12302The '``llvm.smul.with.overflow``' family of intrinsic functions perform
12303a signed multiplication of the two arguments, and indicate whether an
12304overflow occurred during the signed multiplication.
12305
12306Arguments:
12307""""""""""
12308
12309The arguments (%a and %b) and the first element of the result structure
12310may be of integer types of any bit width, but they must have the same
12311bit width. The second element of the result structure must be of type
12312``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12313multiplication.
12314
12315Semantics:
12316""""""""""
12317
12318The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012319a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012320the first element of which is the multiplication, and the second element
12321of which is a bit specifying if the signed multiplication resulted in an
12322overflow.
12323
12324Examples:
12325"""""""""
12326
12327.. code-block:: llvm
12328
12329 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12330 %sum = extractvalue {i32, i1} %res, 0
12331 %obit = extractvalue {i32, i1} %res, 1
12332 br i1 %obit, label %overflow, label %normal
12333
12334'``llvm.umul.with.overflow.*``' Intrinsics
12335^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12336
12337Syntax:
12338"""""""
12339
12340This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
12341on any integer bit width.
12342
12343::
12344
12345 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
12346 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12347 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
12348
12349Overview:
12350"""""""""
12351
12352The '``llvm.umul.with.overflow``' family of intrinsic functions perform
12353a unsigned multiplication of the two arguments, and indicate whether an
12354overflow occurred during the unsigned multiplication.
12355
12356Arguments:
12357""""""""""
12358
12359The arguments (%a and %b) and the first element of the result structure
12360may be of integer types of any bit width, but they must have the same
12361bit width. The second element of the result structure must be of type
12362``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12363multiplication.
12364
12365Semantics:
12366""""""""""
12367
12368The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012369an unsigned multiplication of the two arguments. They return a structure ---
12370the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000012371element of which is a bit specifying if the unsigned multiplication
12372resulted in an overflow.
12373
12374Examples:
12375"""""""""
12376
12377.. code-block:: llvm
12378
12379 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12380 %sum = extractvalue {i32, i1} %res, 0
12381 %obit = extractvalue {i32, i1} %res, 1
12382 br i1 %obit, label %overflow, label %normal
12383
12384Specialised Arithmetic Intrinsics
12385---------------------------------
12386
Owen Anderson1056a922015-07-11 07:01:27 +000012387'``llvm.canonicalize.*``' Intrinsic
12388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12389
12390Syntax:
12391"""""""
12392
12393::
12394
12395 declare float @llvm.canonicalize.f32(float %a)
12396 declare double @llvm.canonicalize.f64(double %b)
12397
12398Overview:
12399"""""""""
12400
12401The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012402encoding of a floating-point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000012403implementing certain numeric primitives such as frexp. The canonical encoding is
12404defined by IEEE-754-2008 to be:
12405
12406::
12407
12408 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000012409 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000012410 numbers, infinities, and NaNs, especially in decimal formats.
12411
12412This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000012413conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000012414according to section 6.2.
12415
12416Examples of non-canonical encodings:
12417
Sean Silvaa1190322015-08-06 22:56:48 +000012418- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000012419 converted to a canonical representation per hardware-specific protocol.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012420- Many normal decimal floating-point numbers have non-canonical alternative
Owen Anderson1056a922015-07-11 07:01:27 +000012421 encodings.
12422- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000012423 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000012424 a zero of the same sign by this operation.
12425
12426Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
12427default exception handling must signal an invalid exception, and produce a
12428quiet NaN result.
12429
12430This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000012431that the compiler does not constant fold the operation. Likewise, division by
124321.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000012433-0.0 is also sufficient provided that the rounding mode is not -Infinity.
12434
Sean Silvaa1190322015-08-06 22:56:48 +000012435``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000012436
12437- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
12438- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
12439 to ``(x == y)``
12440
12441Additionally, the sign of zero must be conserved:
12442``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
12443
12444The payload bits of a NaN must be conserved, with two exceptions.
12445First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000012446must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000012447usual methods.
12448
12449The canonicalization operation may be optimized away if:
12450
Sean Silvaa1190322015-08-06 22:56:48 +000012451- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000012452 floating-point operation that is required by the standard to be canonical.
12453- The result is consumed only by (or fused with) other floating-point
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012454 operations. That is, the bits of the floating-point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000012455
Sean Silvab084af42012-12-07 10:36:55 +000012456'``llvm.fmuladd.*``' Intrinsic
12457^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12458
12459Syntax:
12460"""""""
12461
12462::
12463
12464 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
12465 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
12466
12467Overview:
12468"""""""""
12469
12470The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000012471expressions that can be fused if the code generator determines that (a) the
12472target instruction set has support for a fused operation, and (b) that the
12473fused operation is more efficient than the equivalent, separate pair of mul
12474and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000012475
12476Arguments:
12477""""""""""
12478
12479The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
12480multiplicands, a and b, and an addend c.
12481
12482Semantics:
12483""""""""""
12484
12485The expression:
12486
12487::
12488
12489 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
12490
12491is equivalent to the expression a \* b + c, except that rounding will
12492not be performed between the multiplication and addition steps if the
12493code generator fuses the operations. Fusion is not guaranteed, even if
12494the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000012495corresponding llvm.fma.\* intrinsic function should be used
12496instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000012497
12498Examples:
12499"""""""""
12500
12501.. code-block:: llvm
12502
Tim Northover675a0962014-06-13 14:24:23 +000012503 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000012504
Amara Emersoncf9daa32017-05-09 10:43:25 +000012505
12506Experimental Vector Reduction Intrinsics
12507----------------------------------------
12508
12509Horizontal reductions of vectors can be expressed using the following
12510intrinsics. Each one takes a vector operand as an input and applies its
12511respective operation across all elements of the vector, returning a single
12512scalar result of the same element type.
12513
12514
12515'``llvm.experimental.vector.reduce.add.*``' Intrinsic
12516^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12517
12518Syntax:
12519"""""""
12520
12521::
12522
12523 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
12524 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
12525
12526Overview:
12527"""""""""
12528
12529The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
12530reduction of a vector, returning the result as a scalar. The return type matches
12531the element-type of the vector input.
12532
12533Arguments:
12534""""""""""
12535The argument to this intrinsic must be a vector of integer values.
12536
12537'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
12538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12539
12540Syntax:
12541"""""""
12542
12543::
12544
12545 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
12546 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
12547
12548Overview:
12549"""""""""
12550
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012551The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012552``ADD`` reduction of a vector, returning the result as a scalar. The return type
12553matches the element-type of the vector input.
12554
12555If the intrinsic call has fast-math flags, then the reduction will not preserve
12556the associativity of an equivalent scalarized counterpart. If it does not have
12557fast-math flags, then the reduction will be *ordered*, implying that the
12558operation respects the associativity of a scalarized reduction.
12559
12560
12561Arguments:
12562""""""""""
12563The first argument to this intrinsic is a scalar accumulator value, which is
12564only used when there are no fast-math flags attached. This argument may be undef
12565when fast-math flags are used.
12566
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012567The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012568
12569Examples:
12570"""""""""
12571
12572.. code-block:: llvm
12573
12574 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12575 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12576
12577
12578'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
12579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12580
12581Syntax:
12582"""""""
12583
12584::
12585
12586 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
12587 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
12588
12589Overview:
12590"""""""""
12591
12592The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
12593reduction of a vector, returning the result as a scalar. The return type matches
12594the element-type of the vector input.
12595
12596Arguments:
12597""""""""""
12598The argument to this intrinsic must be a vector of integer values.
12599
12600'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
12601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12602
12603Syntax:
12604"""""""
12605
12606::
12607
12608 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
12609 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
12610
12611Overview:
12612"""""""""
12613
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012614The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012615``MUL`` reduction of a vector, returning the result as a scalar. The return type
12616matches the element-type of the vector input.
12617
12618If the intrinsic call has fast-math flags, then the reduction will not preserve
12619the associativity of an equivalent scalarized counterpart. If it does not have
12620fast-math flags, then the reduction will be *ordered*, implying that the
12621operation respects the associativity of a scalarized reduction.
12622
12623
12624Arguments:
12625""""""""""
12626The first argument to this intrinsic is a scalar accumulator value, which is
12627only used when there are no fast-math flags attached. This argument may be undef
12628when fast-math flags are used.
12629
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012630The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012631
12632Examples:
12633"""""""""
12634
12635.. code-block:: llvm
12636
12637 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12638 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12639
12640'``llvm.experimental.vector.reduce.and.*``' Intrinsic
12641^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12642
12643Syntax:
12644"""""""
12645
12646::
12647
12648 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
12649
12650Overview:
12651"""""""""
12652
12653The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
12654reduction of a vector, returning the result as a scalar. The return type matches
12655the element-type of the vector input.
12656
12657Arguments:
12658""""""""""
12659The argument to this intrinsic must be a vector of integer values.
12660
12661'``llvm.experimental.vector.reduce.or.*``' Intrinsic
12662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12663
12664Syntax:
12665"""""""
12666
12667::
12668
12669 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
12670
12671Overview:
12672"""""""""
12673
12674The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
12675of a vector, returning the result as a scalar. The return type matches the
12676element-type of the vector input.
12677
12678Arguments:
12679""""""""""
12680The argument to this intrinsic must be a vector of integer values.
12681
12682'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
12683^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12684
12685Syntax:
12686"""""""
12687
12688::
12689
12690 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
12691
12692Overview:
12693"""""""""
12694
12695The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
12696reduction of a vector, returning the result as a scalar. The return type matches
12697the element-type of the vector input.
12698
12699Arguments:
12700""""""""""
12701The argument to this intrinsic must be a vector of integer values.
12702
12703'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
12704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12705
12706Syntax:
12707"""""""
12708
12709::
12710
12711 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
12712
12713Overview:
12714"""""""""
12715
12716The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
12717``MAX`` reduction of a vector, returning the result as a scalar. The return type
12718matches the element-type of the vector input.
12719
12720Arguments:
12721""""""""""
12722The argument to this intrinsic must be a vector of integer values.
12723
12724'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
12725^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12726
12727Syntax:
12728"""""""
12729
12730::
12731
12732 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
12733
12734Overview:
12735"""""""""
12736
12737The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
12738``MIN`` reduction of a vector, returning the result as a scalar. The return type
12739matches the element-type of the vector input.
12740
12741Arguments:
12742""""""""""
12743The argument to this intrinsic must be a vector of integer values.
12744
12745'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
12746^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12747
12748Syntax:
12749"""""""
12750
12751::
12752
12753 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
12754
12755Overview:
12756"""""""""
12757
12758The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
12759integer ``MAX`` reduction of a vector, returning the result as a scalar. The
12760return type matches the element-type of the vector input.
12761
12762Arguments:
12763""""""""""
12764The argument to this intrinsic must be a vector of integer values.
12765
12766'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
12767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12768
12769Syntax:
12770"""""""
12771
12772::
12773
12774 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
12775
12776Overview:
12777"""""""""
12778
12779The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
12780integer ``MIN`` reduction of a vector, returning the result as a scalar. The
12781return type matches the element-type of the vector input.
12782
12783Arguments:
12784""""""""""
12785The argument to this intrinsic must be a vector of integer values.
12786
12787'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
12788^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12789
12790Syntax:
12791"""""""
12792
12793::
12794
12795 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
12796 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
12797
12798Overview:
12799"""""""""
12800
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012801The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012802``MAX`` reduction of a vector, returning the result as a scalar. The return type
12803matches the element-type of the vector input.
12804
12805If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12806assume that NaNs are not present in the input vector.
12807
12808Arguments:
12809""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012810The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012811
12812'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12813^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12814
12815Syntax:
12816"""""""
12817
12818::
12819
12820 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12821 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12822
12823Overview:
12824"""""""""
12825
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012826The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012827``MIN`` reduction of a vector, returning the result as a scalar. The return type
12828matches the element-type of the vector input.
12829
12830If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12831assume that NaNs are not present in the input vector.
12832
12833Arguments:
12834""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012835The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012836
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012837Half Precision Floating-Point Intrinsics
Sean Silvab084af42012-12-07 10:36:55 +000012838----------------------------------------
12839
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012840For most target platforms, half precision floating-point is a
Sean Silvab084af42012-12-07 10:36:55 +000012841storage-only format. This means that it is a dense encoding (in memory)
12842but does not support computation in the format.
12843
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012844This means that code must first load the half-precision floating-point
Sean Silvab084af42012-12-07 10:36:55 +000012845value as an i16, then convert it to float with
12846:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12847then be performed on the float value (including extending to double
12848etc). To store the value back to memory, it is first converted to float
12849if needed, then converted to i16 with
12850:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12851i16 value.
12852
12853.. _int_convert_to_fp16:
12854
12855'``llvm.convert.to.fp16``' Intrinsic
12856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12857
12858Syntax:
12859"""""""
12860
12861::
12862
Tim Northoverfd7e4242014-07-17 10:51:23 +000012863 declare i16 @llvm.convert.to.fp16.f32(float %a)
12864 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012865
12866Overview:
12867"""""""""
12868
Tim Northoverfd7e4242014-07-17 10:51:23 +000012869The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012870conventional floating-point type to half precision floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000012871
12872Arguments:
12873""""""""""
12874
12875The intrinsic function contains single argument - the value to be
12876converted.
12877
12878Semantics:
12879""""""""""
12880
Tim Northoverfd7e4242014-07-17 10:51:23 +000012881The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012882conventional floating-point format to half precision floating-point format. The
Tim Northoverfd7e4242014-07-17 10:51:23 +000012883return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012884
12885Examples:
12886"""""""""
12887
12888.. code-block:: llvm
12889
Tim Northoverfd7e4242014-07-17 10:51:23 +000012890 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012891 store i16 %res, i16* @x, align 2
12892
12893.. _int_convert_from_fp16:
12894
12895'``llvm.convert.from.fp16``' Intrinsic
12896^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12897
12898Syntax:
12899"""""""
12900
12901::
12902
Tim Northoverfd7e4242014-07-17 10:51:23 +000012903 declare float @llvm.convert.from.fp16.f32(i16 %a)
12904 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012905
12906Overview:
12907"""""""""
12908
12909The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012910conversion from half precision floating-point format to single precision
12911floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000012912
12913Arguments:
12914""""""""""
12915
12916The intrinsic function contains single argument - the value to be
12917converted.
12918
12919Semantics:
12920""""""""""
12921
12922The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012923conversion from half single precision floating-point format to single
12924precision floating-point format. The input half-float value is
Sean Silvab084af42012-12-07 10:36:55 +000012925represented by an ``i16`` value.
12926
12927Examples:
12928"""""""""
12929
12930.. code-block:: llvm
12931
David Blaikiec7aabbb2015-03-04 22:06:14 +000012932 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012933 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012934
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012935.. _dbg_intrinsics:
12936
Sean Silvab084af42012-12-07 10:36:55 +000012937Debugger Intrinsics
12938-------------------
12939
12940The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12941prefix), are described in the `LLVM Source Level
Hans Wennborg65195622017-09-28 15:16:37 +000012942Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
Sean Silvab084af42012-12-07 10:36:55 +000012943document.
12944
12945Exception Handling Intrinsics
12946-----------------------------
12947
12948The LLVM exception handling intrinsics (which all start with
12949``llvm.eh.`` prefix), are described in the `LLVM Exception
Hans Wennborg65195622017-09-28 15:16:37 +000012950Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
Sean Silvab084af42012-12-07 10:36:55 +000012951
12952.. _int_trampoline:
12953
12954Trampoline Intrinsics
12955---------------------
12956
12957These intrinsics make it possible to excise one parameter, marked with
12958the :ref:`nest <nest>` attribute, from a function. The result is a
12959callable function pointer lacking the nest parameter - the caller does
12960not need to provide a value for it. Instead, the value to use is stored
12961in advance in a "trampoline", a block of memory usually allocated on the
12962stack, which also contains code to splice the nest value into the
12963argument list. This is used to implement the GCC nested function address
12964extension.
12965
12966For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
12967then the resulting function pointer has signature ``i32 (i32, i32)*``.
12968It can be created as follows:
12969
12970.. code-block:: llvm
12971
12972 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000012973 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000012974 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
12975 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
12976 %fp = bitcast i8* %p to i32 (i32, i32)*
12977
12978The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
12979``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
12980
12981.. _int_it:
12982
12983'``llvm.init.trampoline``' Intrinsic
12984^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12985
12986Syntax:
12987"""""""
12988
12989::
12990
12991 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
12992
12993Overview:
12994"""""""""
12995
12996This fills the memory pointed to by ``tramp`` with executable code,
12997turning it into a trampoline.
12998
12999Arguments:
13000""""""""""
13001
13002The ``llvm.init.trampoline`` intrinsic takes three arguments, all
13003pointers. The ``tramp`` argument must point to a sufficiently large and
13004sufficiently aligned block of memory; this memory is written to by the
13005intrinsic. Note that the size and the alignment are target-specific -
13006LLVM currently provides no portable way of determining them, so a
13007front-end that generates this intrinsic needs to have some
13008target-specific knowledge. The ``func`` argument must hold a function
13009bitcast to an ``i8*``.
13010
13011Semantics:
13012""""""""""
13013
13014The block of memory pointed to by ``tramp`` is filled with target
13015dependent code, turning it into a function. Then ``tramp`` needs to be
13016passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
13017be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
13018function's signature is the same as that of ``func`` with any arguments
13019marked with the ``nest`` attribute removed. At most one such ``nest``
13020argument is allowed, and it must be of pointer type. Calling the new
13021function is equivalent to calling ``func`` with the same argument list,
13022but with ``nval`` used for the missing ``nest`` argument. If, after
13023calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
13024modified, then the effect of any later call to the returned function
13025pointer is undefined.
13026
13027.. _int_at:
13028
13029'``llvm.adjust.trampoline``' Intrinsic
13030^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13031
13032Syntax:
13033"""""""
13034
13035::
13036
13037 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
13038
13039Overview:
13040"""""""""
13041
13042This performs any required machine-specific adjustment to the address of
13043a trampoline (passed as ``tramp``).
13044
13045Arguments:
13046""""""""""
13047
13048``tramp`` must point to a block of memory which already has trampoline
13049code filled in by a previous call to
13050:ref:`llvm.init.trampoline <int_it>`.
13051
13052Semantics:
13053""""""""""
13054
13055On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000013056different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000013057intrinsic returns the executable address corresponding to ``tramp``
13058after performing the required machine specific adjustments. The pointer
13059returned can then be :ref:`bitcast and executed <int_trampoline>`.
13060
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013061.. _int_mload_mstore:
13062
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013063Masked Vector Load and Store Intrinsics
13064---------------------------------------
13065
13066LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
13067
13068.. _int_mload:
13069
13070'``llvm.masked.load.*``' Intrinsics
13071^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13072
13073Syntax:
13074"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013075This is an overloaded intrinsic. The loaded data is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013076
13077::
13078
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013079 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
13080 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013081 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013082 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013083 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013084 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013085
13086Overview:
13087"""""""""
13088
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013089Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013090
13091
13092Arguments:
13093""""""""""
13094
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013095The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013096
13097
13098Semantics:
13099""""""""""
13100
13101The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
13102The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
13103
13104
13105::
13106
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013107 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000013108
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013109 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000013110 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000013111 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013112
13113.. _int_mstore:
13114
13115'``llvm.masked.store.*``' Intrinsics
13116^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13117
13118Syntax:
13119"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013120This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013121
13122::
13123
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013124 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
13125 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013126 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013127 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013128 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013129 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013130
13131Overview:
13132"""""""""
13133
13134Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
13135
13136Arguments:
13137""""""""""
13138
13139The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
13140
13141
13142Semantics:
13143""""""""""
13144
13145The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
13146The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
13147
13148::
13149
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013150 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000013151
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000013152 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000013153 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013154 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
13155 store <16 x float> %res, <16 x float>* %ptr, align 4
13156
13157
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013158Masked Vector Gather and Scatter Intrinsics
13159-------------------------------------------
13160
13161LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
13162
13163.. _int_mgather:
13164
13165'``llvm.masked.gather.*``' Intrinsics
13166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13167
13168Syntax:
13169"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013170This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating-point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013171
13172::
13173
Elad Cohenef5798a2017-05-03 12:28:54 +000013174 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
13175 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
13176 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013177
13178Overview:
13179"""""""""
13180
13181Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
13182
13183
13184Arguments:
13185""""""""""
13186
13187The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
13188
13189
13190Semantics:
13191""""""""""
13192
13193The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
13194The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
13195
13196
13197::
13198
Elad Cohenef5798a2017-05-03 12:28:54 +000013199 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013200
13201 ;; The gather with all-true mask is equivalent to the following instruction sequence
13202 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
13203 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
13204 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
13205 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
13206
13207 %val0 = load double, double* %ptr0, align 8
13208 %val1 = load double, double* %ptr1, align 8
13209 %val2 = load double, double* %ptr2, align 8
13210 %val3 = load double, double* %ptr3, align 8
13211
13212 %vec0 = insertelement <4 x double>undef, %val0, 0
13213 %vec01 = insertelement <4 x double>%vec0, %val1, 1
13214 %vec012 = insertelement <4 x double>%vec01, %val2, 2
13215 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
13216
13217.. _int_mscatter:
13218
13219'``llvm.masked.scatter.*``' Intrinsics
13220^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13221
13222Syntax:
13223"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013224This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013225
13226::
13227
Elad Cohenef5798a2017-05-03 12:28:54 +000013228 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
13229 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
13230 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013231
13232Overview:
13233"""""""""
13234
13235Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
13236
13237Arguments:
13238""""""""""
13239
13240The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
13241
13242
13243Semantics:
13244""""""""""
13245
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000013246The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013247
13248::
13249
Sylvestre Ledru84666a12016-02-14 20:16:22 +000013250 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000013251 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013252
13253 ;; It is equivalent to a list of scalar stores
13254 %val0 = extractelement <8 x i32> %value, i32 0
13255 %val1 = extractelement <8 x i32> %value, i32 1
13256 ..
13257 %val7 = extractelement <8 x i32> %value, i32 7
13258 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
13259 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
13260 ..
13261 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
13262 ;; Note: the order of the following stores is important when they overlap:
13263 store i32 %val0, i32* %ptr0, align 4
13264 store i32 %val1, i32* %ptr1, align 4
13265 ..
13266 store i32 %val7, i32* %ptr7, align 4
13267
13268
Elena Demikhovsky0ef2ce32018-06-06 09:11:46 +000013269Masked Vector Expanding Load and Compressing Store Intrinsics
13270-------------------------------------------------------------
13271
13272LLVM provides intrinsics for expanding load and compressing store operations. Data selected from a vector according to a mask is stored in consecutive memory addresses (compressed store), and vice-versa (expanding load). These operations effective map to "if (cond.i) a[j++] = v.i" and "if (cond.i) v.i = a[j++]" patterns, respectively. Note that when the mask starts with '1' bits followed by '0' bits, these operations are identical to :ref:`llvm.masked.store <int_mstore>` and :ref:`llvm.masked.load <int_mload>`.
13273
13274.. _int_expandload:
13275
13276'``llvm.masked.expandload.*``' Intrinsics
13277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13278
13279Syntax:
13280"""""""
13281This is an overloaded intrinsic. Several values of integer, floating point or pointer data type are loaded from consecutive memory addresses and stored into the elements of a vector according to the mask.
13282
13283::
13284
13285 declare <16 x float> @llvm.masked.expandload.v16f32 (float* <ptr>, <16 x i1> <mask>, <16 x float> <passthru>)
13286 declare <2 x i64> @llvm.masked.expandload.v2i64 (i64* <ptr>, <2 x i1> <mask>, <2 x i64> <passthru>)
13287
13288Overview:
13289"""""""""
13290
13291Reads a number of scalar values sequentially from memory location provided in '``ptr``' and spreads them in a vector. The '``mask``' holds a bit for each vector lane. The number of elements read from memory is equal to the number of '1' bits in the mask. The loaded elements are positioned in the destination vector according to the sequence of '1' and '0' bits in the mask. E.g., if the mask vector is '10010001', "explandload" reads 3 values from memory addresses ptr, ptr+1, ptr+2 and places them in lanes 0, 3 and 7 accordingly. The masked-off lanes are filled by elements from the corresponding lanes of the '``passthru``' operand.
13292
13293
13294Arguments:
13295""""""""""
13296
13297The first operand is the base pointer for the load. It has the same underlying type as the element of the returned vector. The second operand, mask, is a vector of boolean values with the same number of elements as the return type. The third is a pass-through value that is used to fill the masked-off lanes of the result. The return type and the type of the '``passthru``' operand have the same vector type.
13298
13299Semantics:
13300""""""""""
13301
13302The '``llvm.masked.expandload``' intrinsic is designed for reading multiple scalar values from adjacent memory addresses into possibly non-adjacent vector lanes. It is useful for targets that support vector expanding loads and allows vectorizing loop with cross-iteration dependency like in the following example:
13303
13304.. code-block:: c
13305
13306 // In this loop we load from B and spread the elements into array A.
13307 double *A, B; int *C;
13308 for (int i = 0; i < size; ++i) {
13309 if (C[i] != 0)
13310 A[i] = B[j++];
13311 }
13312
13313
13314.. code-block:: llvm
13315
13316 ; Load several elements from array B and expand them in a vector.
13317 ; The number of loaded elements is equal to the number of '1' elements in the Mask.
13318 %Tmp = call <8 x double> @llvm.masked.expandload.v8f64(double* %Bptr, <8 x i1> %Mask, <8 x double> undef)
13319 ; Store the result in A
13320 call void @llvm.masked.store.v8f64.p0v8f64(<8 x double> %Tmp, <8 x double>* %Aptr, i32 8, <8 x i1> %Mask)
13321
13322 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
13323 %MaskI = bitcast <8 x i1> %Mask to i8
13324 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
13325 %MaskI64 = zext i8 %MaskIPopcnt to i64
13326 %BNextInd = add i64 %BInd, %MaskI64
13327
13328
13329Other targets may support this intrinsic differently, for example, by lowering it into a sequence of conditional scalar load operations and shuffles.
13330If all mask elements are '1', the intrinsic behavior is equivalent to the regular unmasked vector load.
13331
13332.. _int_compressstore:
13333
13334'``llvm.masked.compressstore.*``' Intrinsics
13335^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13336
13337Syntax:
13338"""""""
13339This is an overloaded intrinsic. A number of scalar values of integer, floating point or pointer data type are collected from an input vector and stored into adjacent memory addresses. A mask defines which elements to collect from the vector.
13340
13341::
13342
13343 declare void @llvm.masked.compressstore.v8i32 (<8 x i32> <value>, i32* <ptr>, <8 x i1> <mask>)
13344 declare void @llvm.masked.compressstore.v16f32 (<16 x float> <value>, float* <ptr>, <16 x i1> <mask>)
13345
13346Overview:
13347"""""""""
13348
13349Selects elements from input vector '``value``' according to the '``mask``'. All selected elements are written into adjacent memory addresses starting at address '`ptr`', from lower to higher. The mask holds a bit for each vector lane, and is used to select elements to be stored. The number of elements to be stored is equal to the number of active bits in the mask.
13350
13351Arguments:
13352""""""""""
13353
13354The first operand is the input vector, from which elements are collected and written to memory. The second operand is the base pointer for the store, it has the same underlying type as the element of the input vector operand. The third operand is the mask, a vector of boolean values. The mask and the input vector must have the same number of vector elements.
13355
13356
13357Semantics:
13358""""""""""
13359
13360The '``llvm.masked.compressstore``' intrinsic is designed for compressing data in memory. It allows to collect elements from possibly non-adjacent lanes of a vector and store them contiguously in memory in one IR operation. It is useful for targets that support compressing store operations and allows vectorizing loops with cross-iteration dependences like in the following example:
13361
13362.. code-block:: c
13363
13364 // In this loop we load elements from A and store them consecutively in B
13365 double *A, B; int *C;
13366 for (int i = 0; i < size; ++i) {
13367 if (C[i] != 0)
13368 B[j++] = A[i]
13369 }
13370
13371
13372.. code-block:: llvm
13373
13374 ; Load elements from A.
13375 %Tmp = call <8 x double> @llvm.masked.load.v8f64.p0v8f64(<8 x double>* %Aptr, i32 8, <8 x i1> %Mask, <8 x double> undef)
13376 ; Store all selected elements consecutively in array B
13377 call <void> @llvm.masked.compressstore.v8f64(<8 x double> %Tmp, double* %Bptr, <8 x i1> %Mask)
13378
13379 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
13380 %MaskI = bitcast <8 x i1> %Mask to i8
13381 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
13382 %MaskI64 = zext i8 %MaskIPopcnt to i64
13383 %BNextInd = add i64 %BInd, %MaskI64
13384
13385
13386Other targets may support this intrinsic differently, for example, by lowering it into a sequence of branches that guard scalar store operations.
13387
13388
Sean Silvab084af42012-12-07 10:36:55 +000013389Memory Use Markers
13390------------------
13391
Sanjay Patel69bf48e2014-07-04 19:40:43 +000013392This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000013393memory objects and ranges where variables are immutable.
13394
Reid Klecknera534a382013-12-19 02:14:12 +000013395.. _int_lifestart:
13396
Sean Silvab084af42012-12-07 10:36:55 +000013397'``llvm.lifetime.start``' Intrinsic
13398^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13399
13400Syntax:
13401"""""""
13402
13403::
13404
13405 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
13406
13407Overview:
13408"""""""""
13409
13410The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
13411object's lifetime.
13412
13413Arguments:
13414""""""""""
13415
13416The first argument is a constant integer representing the size of the
13417object, or -1 if it is variable sized. The second argument is a pointer
13418to the object.
13419
13420Semantics:
13421""""""""""
13422
13423This intrinsic indicates that before this point in the code, the value
13424of the memory pointed to by ``ptr`` is dead. This means that it is known
13425to never be used and has an undefined value. A load from the pointer
13426that precedes this intrinsic can be replaced with ``'undef'``.
13427
Reid Klecknera534a382013-12-19 02:14:12 +000013428.. _int_lifeend:
13429
Sean Silvab084af42012-12-07 10:36:55 +000013430'``llvm.lifetime.end``' Intrinsic
13431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13432
13433Syntax:
13434"""""""
13435
13436::
13437
13438 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
13439
13440Overview:
13441"""""""""
13442
13443The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
13444object's lifetime.
13445
13446Arguments:
13447""""""""""
13448
13449The first argument is a constant integer representing the size of the
13450object, or -1 if it is variable sized. The second argument is a pointer
13451to the object.
13452
13453Semantics:
13454""""""""""
13455
13456This intrinsic indicates that after this point in the code, the value of
13457the memory pointed to by ``ptr`` is dead. This means that it is known to
13458never be used and has an undefined value. Any stores into the memory
13459object following this intrinsic may be removed as dead.
13460
13461'``llvm.invariant.start``' Intrinsic
13462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13463
13464Syntax:
13465"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013466This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000013467
13468::
13469
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013470 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000013471
13472Overview:
13473"""""""""
13474
13475The '``llvm.invariant.start``' intrinsic specifies that the contents of
13476a memory object will not change.
13477
13478Arguments:
13479""""""""""
13480
13481The first argument is a constant integer representing the size of the
13482object, or -1 if it is variable sized. The second argument is a pointer
13483to the object.
13484
13485Semantics:
13486""""""""""
13487
13488This intrinsic indicates that until an ``llvm.invariant.end`` that uses
13489the return value, the referenced memory location is constant and
13490unchanging.
13491
13492'``llvm.invariant.end``' Intrinsic
13493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13494
13495Syntax:
13496"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013497This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000013498
13499::
13500
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013501 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000013502
13503Overview:
13504"""""""""
13505
13506The '``llvm.invariant.end``' intrinsic specifies that the contents of a
13507memory object are mutable.
13508
13509Arguments:
13510""""""""""
13511
13512The first argument is the matching ``llvm.invariant.start`` intrinsic.
13513The second argument is a constant integer representing the size of the
13514object, or -1 if it is variable sized and the third argument is a
13515pointer to the object.
13516
13517Semantics:
13518""""""""""
13519
13520This intrinsic indicates that the memory is mutable again.
13521
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013522'``llvm.launder.invariant.group``' Intrinsic
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13524
13525Syntax:
13526"""""""
Yaxun Liu407ca362017-11-16 16:32:16 +000013527This is an overloaded intrinsic. The memory object can belong to any address
13528space. The returned pointer must belong to the same address space as the
13529argument.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013530
13531::
13532
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013533 declare i8* @llvm.launder.invariant.group.p0i8(i8* <ptr>)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013534
13535Overview:
13536"""""""""
13537
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013538The '``llvm.launder.invariant.group``' intrinsic can be used when an invariant
Piotr Padlewski5b3db452018-07-02 04:49:30 +000013539established by ``invariant.group`` metadata no longer holds, to obtain a new
13540pointer value that carries fresh invariant group information. It is an
13541experimental intrinsic, which means that its semantics might change in the
13542future.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013543
13544
13545Arguments:
13546""""""""""
13547
Piotr Padlewski5b3db452018-07-02 04:49:30 +000013548The ``llvm.launder.invariant.group`` takes only one argument, which is a pointer
13549to the memory.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013550
13551Semantics:
13552""""""""""
13553
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013554Returns another pointer that aliases its argument but which is considered different
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013555for the purposes of ``load``/``store`` ``invariant.group`` metadata.
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013556It does not read any accessible memory and the execution can be speculated.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013557
Piotr Padlewski5b3db452018-07-02 04:49:30 +000013558'``llvm.strip.invariant.group``' Intrinsic
13559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13560
13561Syntax:
13562"""""""
13563This is an overloaded intrinsic. The memory object can belong to any address
13564space. The returned pointer must belong to the same address space as the
13565argument.
13566
13567::
13568
13569 declare i8* @llvm.strip.invariant.group.p0i8(i8* <ptr>)
13570
13571Overview:
13572"""""""""
13573
13574The '``llvm.strip.invariant.group``' intrinsic can be used when an invariant
13575established by ``invariant.group`` metadata no longer holds, to obtain a new pointer
13576value that does not carry the invariant information. It is an experimental
13577intrinsic, which means that its semantics might change in the future.
13578
13579
13580Arguments:
13581""""""""""
13582
13583The ``llvm.strip.invariant.group`` takes only one argument, which is a pointer
13584to the memory.
13585
13586Semantics:
13587""""""""""
13588
13589Returns another pointer that aliases its argument but which has no associated
13590``invariant.group`` metadata.
13591It does not read any memory and can be speculated.
13592
13593
13594
Sanjay Patel54b161e2018-03-20 16:38:22 +000013595.. _constrainedfp:
13596
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013597Constrained Floating-Point Intrinsics
Andrew Kaylora0a11642017-01-26 23:27:59 +000013598-------------------------------------
13599
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013600These intrinsics are used to provide special handling of floating-point
13601operations when specific rounding mode or floating-point exception behavior is
Andrew Kaylora0a11642017-01-26 23:27:59 +000013602required. By default, LLVM optimization passes assume that the rounding mode is
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013603round-to-nearest and that floating-point exceptions will not be monitored.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013604Constrained FP intrinsics are used to support non-default rounding modes and
13605accurately preserve exception behavior without compromising LLVM's ability to
13606optimize FP code when the default behavior is used.
13607
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013608Each of these intrinsics corresponds to a normal floating-point operation. The
Andrew Kaylora0a11642017-01-26 23:27:59 +000013609first two arguments and the return value are the same as the corresponding FP
13610operation.
13611
13612The third argument is a metadata argument specifying the rounding mode to be
13613assumed. This argument must be one of the following strings:
13614
13615::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000013616
Andrew Kaylora0a11642017-01-26 23:27:59 +000013617 "round.dynamic"
13618 "round.tonearest"
13619 "round.downward"
13620 "round.upward"
13621 "round.towardzero"
13622
13623If this argument is "round.dynamic" optimization passes must assume that the
13624rounding mode is unknown and may change at runtime. No transformations that
13625depend on rounding mode may be performed in this case.
13626
13627The other possible values for the rounding mode argument correspond to the
13628similarly named IEEE rounding modes. If the argument is any of these values
13629optimization passes may perform transformations as long as they are consistent
13630with the specified rounding mode.
13631
13632For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
13633"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
13634'x-0' should evaluate to '-0' when rounding downward. However, this
13635transformation is legal for all other rounding modes.
13636
13637For values other than "round.dynamic" optimization passes may assume that the
13638actual runtime rounding mode (as defined in a target-specific manner) matches
13639the specified rounding mode, but this is not guaranteed. Using a specific
13640non-dynamic rounding mode which does not match the actual rounding mode at
13641runtime results in undefined behavior.
13642
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013643The fourth argument to the constrained floating-point intrinsics specifies the
Andrew Kaylora0a11642017-01-26 23:27:59 +000013644required exception behavior. This argument must be one of the following
13645strings:
13646
13647::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000013648
Andrew Kaylora0a11642017-01-26 23:27:59 +000013649 "fpexcept.ignore"
13650 "fpexcept.maytrap"
13651 "fpexcept.strict"
13652
13653If this argument is "fpexcept.ignore" optimization passes may assume that the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013654exception status flags will not be read and that floating-point exceptions will
Andrew Kaylora0a11642017-01-26 23:27:59 +000013655be masked. This allows transformations to be performed that may change the
13656exception semantics of the original code. For example, FP operations may be
13657speculatively executed in this case whereas they must not be for either of the
13658other possible values of this argument.
13659
13660If the exception behavior argument is "fpexcept.maytrap" optimization passes
13661must avoid transformations that may raise exceptions that would not have been
13662raised by the original code (such as speculatively executing FP operations), but
13663passes are not required to preserve all exceptions that are implied by the
13664original code. For example, exceptions may be potentially hidden by constant
13665folding.
13666
13667If the exception behavior argument is "fpexcept.strict" all transformations must
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013668strictly preserve the floating-point exception semantics of the original code.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013669Any FP exception that would have been raised by the original code must be raised
13670by the transformed code, and the transformed code must not raise any FP
13671exceptions that would not have been raised by the original code. This is the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013672exception behavior argument that will be used if the code being compiled reads
Andrew Kaylora0a11642017-01-26 23:27:59 +000013673the FP exception status flags, but this mode can also be used with code that
13674unmasks FP exceptions.
13675
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013676The number and order of floating-point exceptions is NOT guaranteed. For
Andrew Kaylora0a11642017-01-26 23:27:59 +000013677example, a series of FP operations that each may raise exceptions may be
13678vectorized into a single instruction that raises each unique exception a single
13679time.
13680
13681
13682'``llvm.experimental.constrained.fadd``' Intrinsic
13683^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13684
13685Syntax:
13686"""""""
13687
13688::
13689
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013690 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013691 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
13692 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013693 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013694
13695Overview:
13696"""""""""
13697
13698The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
13699two operands.
13700
13701
13702Arguments:
13703""""""""""
13704
13705The first two arguments to the '``llvm.experimental.constrained.fadd``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013706intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13707of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013708
13709The third and fourth arguments specify the rounding mode and exception
13710behavior as described above.
13711
13712Semantics:
13713""""""""""
13714
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013715The value produced is the floating-point sum of the two value operands and has
Andrew Kaylora0a11642017-01-26 23:27:59 +000013716the same type as the operands.
13717
13718
13719'``llvm.experimental.constrained.fsub``' Intrinsic
13720^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13721
13722Syntax:
13723"""""""
13724
13725::
13726
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013727 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013728 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
13729 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013730 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013731
13732Overview:
13733"""""""""
13734
13735The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
13736of its two operands.
13737
13738
13739Arguments:
13740""""""""""
13741
13742The first two arguments to the '``llvm.experimental.constrained.fsub``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013743intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13744of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013745
13746The third and fourth arguments specify the rounding mode and exception
13747behavior as described above.
13748
13749Semantics:
13750""""""""""
13751
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013752The value produced is the floating-point difference of the two value operands
Andrew Kaylora0a11642017-01-26 23:27:59 +000013753and has the same type as the operands.
13754
13755
13756'``llvm.experimental.constrained.fmul``' Intrinsic
13757^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13758
13759Syntax:
13760"""""""
13761
13762::
13763
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013764 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013765 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
13766 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013767 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013768
13769Overview:
13770"""""""""
13771
13772The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
13773its two operands.
13774
13775
13776Arguments:
13777""""""""""
13778
13779The first two arguments to the '``llvm.experimental.constrained.fmul``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013780intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13781of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013782
13783The third and fourth arguments specify the rounding mode and exception
13784behavior as described above.
13785
13786Semantics:
13787""""""""""
13788
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013789The value produced is the floating-point product of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000013790has the same type as the operands.
13791
13792
13793'``llvm.experimental.constrained.fdiv``' Intrinsic
13794^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13795
13796Syntax:
13797"""""""
13798
13799::
13800
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013801 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013802 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
13803 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013804 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013805
13806Overview:
13807"""""""""
13808
13809The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
13810its two operands.
13811
13812
13813Arguments:
13814""""""""""
13815
13816The first two arguments to the '``llvm.experimental.constrained.fdiv``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013817intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13818of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013819
13820The third and fourth arguments specify the rounding mode and exception
13821behavior as described above.
13822
13823Semantics:
13824""""""""""
13825
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013826The value produced is the floating-point quotient of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000013827has the same type as the operands.
13828
13829
13830'``llvm.experimental.constrained.frem``' Intrinsic
13831^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13832
13833Syntax:
13834"""""""
13835
13836::
13837
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013838 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013839 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
13840 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013841 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013842
13843Overview:
13844"""""""""
13845
13846The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
13847from the division of its two operands.
13848
13849
13850Arguments:
13851""""""""""
13852
13853The first two arguments to the '``llvm.experimental.constrained.frem``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013854intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13855of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013856
13857The third and fourth arguments specify the rounding mode and exception
13858behavior as described above. The rounding mode argument has no effect, since
13859the result of frem is never rounded, but the argument is included for
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013860consistency with the other constrained floating-point intrinsics.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013861
13862Semantics:
13863""""""""""
13864
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013865The value produced is the floating-point remainder from the division of the two
Andrew Kaylora0a11642017-01-26 23:27:59 +000013866value operands and has the same type as the operands. The remainder has the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013867same sign as the dividend.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013868
Wei Dinga131d3f2017-08-24 04:18:24 +000013869'``llvm.experimental.constrained.fma``' Intrinsic
13870^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13871
13872Syntax:
13873"""""""
13874
13875::
13876
13877 declare <type>
13878 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
13879 metadata <rounding mode>,
13880 metadata <exception behavior>)
13881
13882Overview:
13883"""""""""
13884
13885The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
13886fused-multiply-add operation on its operands.
13887
13888Arguments:
13889""""""""""
13890
13891The first three arguments to the '``llvm.experimental.constrained.fma``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013892intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector
13893<t_vector>` of floating-point values. All arguments must have identical types.
Wei Dinga131d3f2017-08-24 04:18:24 +000013894
13895The fourth and fifth arguments specify the rounding mode and exception behavior
13896as described above.
13897
13898Semantics:
13899""""""""""
13900
13901The result produced is the product of the first two operands added to the third
13902operand computed with infinite precision, and then rounded to the target
13903precision.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013904
Andrew Kaylorf4660012017-05-25 21:31:00 +000013905Constrained libm-equivalent Intrinsics
13906--------------------------------------
13907
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013908In addition to the basic floating-point operations for which constrained
Andrew Kaylorf4660012017-05-25 21:31:00 +000013909intrinsics are described above, there are constrained versions of various
13910operations which provide equivalent behavior to a corresponding libm function.
13911These intrinsics allow the precise behavior of these operations with respect to
13912rounding mode and exception behavior to be controlled.
13913
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013914As with the basic constrained floating-point intrinsics, the rounding mode
Andrew Kaylorf4660012017-05-25 21:31:00 +000013915and exception behavior arguments only control the behavior of the optimizer.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013916They do not change the runtime floating-point environment.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013917
13918
13919'``llvm.experimental.constrained.sqrt``' Intrinsic
13920^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13921
13922Syntax:
13923"""""""
13924
13925::
13926
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013927 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013928 @llvm.experimental.constrained.sqrt(<type> <op1>,
13929 metadata <rounding mode>,
13930 metadata <exception behavior>)
13931
13932Overview:
13933"""""""""
13934
13935The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
13936of the specified value, returning the same value as the libm '``sqrt``'
13937functions would, but without setting ``errno``.
13938
13939Arguments:
13940""""""""""
13941
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013942The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013943type.
13944
13945The second and third arguments specify the rounding mode and exception
13946behavior as described above.
13947
13948Semantics:
13949""""""""""
13950
13951This function returns the nonnegative square root of the specified value.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013952If the value is less than negative zero, a floating-point exception occurs
Hiroshi Inoue760c0c92018-01-16 13:19:48 +000013953and the return value is architecture specific.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013954
13955
13956'``llvm.experimental.constrained.pow``' Intrinsic
13957^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13958
13959Syntax:
13960"""""""
13961
13962::
13963
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013964 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013965 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
13966 metadata <rounding mode>,
13967 metadata <exception behavior>)
13968
13969Overview:
13970"""""""""
13971
13972The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
13973raised to the (positive or negative) power specified by the second operand.
13974
13975Arguments:
13976""""""""""
13977
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013978The first two arguments and the return value are floating-point numbers of the
Andrew Kaylorf4660012017-05-25 21:31:00 +000013979same type. The second argument specifies the power to which the first argument
13980should be raised.
13981
13982The third and fourth arguments specify the rounding mode and exception
13983behavior as described above.
13984
13985Semantics:
13986""""""""""
13987
13988This function returns the first value raised to the second power,
13989returning the same values as the libm ``pow`` functions would, and
13990handles error conditions in the same way.
13991
13992
13993'``llvm.experimental.constrained.powi``' Intrinsic
13994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13995
13996Syntax:
13997"""""""
13998
13999::
14000
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014001 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014002 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
14003 metadata <rounding mode>,
14004 metadata <exception behavior>)
14005
14006Overview:
14007"""""""""
14008
14009The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
14010raised to the (positive or negative) power specified by the second operand. The
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014011order of evaluation of multiplications is not defined. When a vector of
14012floating-point type is used, the second argument remains a scalar integer value.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014013
14014
14015Arguments:
14016""""""""""
14017
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014018The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014019type. The second argument is a 32-bit signed integer specifying the power to
14020which the first argument should be raised.
14021
14022The third and fourth arguments specify the rounding mode and exception
14023behavior as described above.
14024
14025Semantics:
14026""""""""""
14027
14028This function returns the first value raised to the second power with an
14029unspecified sequence of rounding operations.
14030
14031
14032'``llvm.experimental.constrained.sin``' Intrinsic
14033^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14034
14035Syntax:
14036"""""""
14037
14038::
14039
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014040 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014041 @llvm.experimental.constrained.sin(<type> <op1>,
14042 metadata <rounding mode>,
14043 metadata <exception behavior>)
14044
14045Overview:
14046"""""""""
14047
14048The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
14049first operand.
14050
14051Arguments:
14052""""""""""
14053
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014054The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014055type.
14056
14057The second and third arguments specify the rounding mode and exception
14058behavior as described above.
14059
14060Semantics:
14061""""""""""
14062
14063This function returns the sine of the specified operand, returning the
14064same values as the libm ``sin`` functions would, and handles error
14065conditions in the same way.
14066
14067
14068'``llvm.experimental.constrained.cos``' Intrinsic
14069^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14070
14071Syntax:
14072"""""""
14073
14074::
14075
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014076 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014077 @llvm.experimental.constrained.cos(<type> <op1>,
14078 metadata <rounding mode>,
14079 metadata <exception behavior>)
14080
14081Overview:
14082"""""""""
14083
14084The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
14085first operand.
14086
14087Arguments:
14088""""""""""
14089
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014090The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014091type.
14092
14093The second and third arguments specify the rounding mode and exception
14094behavior as described above.
14095
14096Semantics:
14097""""""""""
14098
14099This function returns the cosine of the specified operand, returning the
14100same values as the libm ``cos`` functions would, and handles error
14101conditions in the same way.
14102
14103
14104'``llvm.experimental.constrained.exp``' Intrinsic
14105^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14106
14107Syntax:
14108"""""""
14109
14110::
14111
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014112 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014113 @llvm.experimental.constrained.exp(<type> <op1>,
14114 metadata <rounding mode>,
14115 metadata <exception behavior>)
14116
14117Overview:
14118"""""""""
14119
14120The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
14121exponential of the specified value.
14122
14123Arguments:
14124""""""""""
14125
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014126The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014127type.
14128
14129The second and third arguments specify the rounding mode and exception
14130behavior as described above.
14131
14132Semantics:
14133""""""""""
14134
14135This function returns the same values as the libm ``exp`` functions
14136would, and handles error conditions in the same way.
14137
14138
14139'``llvm.experimental.constrained.exp2``' Intrinsic
14140^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14141
14142Syntax:
14143"""""""
14144
14145::
14146
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014147 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014148 @llvm.experimental.constrained.exp2(<type> <op1>,
14149 metadata <rounding mode>,
14150 metadata <exception behavior>)
14151
14152Overview:
14153"""""""""
14154
14155The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
14156exponential of the specified value.
14157
14158
14159Arguments:
14160""""""""""
14161
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014162The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014163type.
14164
14165The second and third arguments specify the rounding mode and exception
14166behavior as described above.
14167
14168Semantics:
14169""""""""""
14170
14171This function returns the same values as the libm ``exp2`` functions
14172would, and handles error conditions in the same way.
14173
14174
14175'``llvm.experimental.constrained.log``' Intrinsic
14176^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14177
14178Syntax:
14179"""""""
14180
14181::
14182
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014183 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014184 @llvm.experimental.constrained.log(<type> <op1>,
14185 metadata <rounding mode>,
14186 metadata <exception behavior>)
14187
14188Overview:
14189"""""""""
14190
14191The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
14192logarithm of the specified value.
14193
14194Arguments:
14195""""""""""
14196
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014197The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014198type.
14199
14200The second and third arguments specify the rounding mode and exception
14201behavior as described above.
14202
14203
14204Semantics:
14205""""""""""
14206
14207This function returns the same values as the libm ``log`` functions
14208would, and handles error conditions in the same way.
14209
14210
14211'``llvm.experimental.constrained.log10``' Intrinsic
14212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14213
14214Syntax:
14215"""""""
14216
14217::
14218
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014219 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014220 @llvm.experimental.constrained.log10(<type> <op1>,
14221 metadata <rounding mode>,
14222 metadata <exception behavior>)
14223
14224Overview:
14225"""""""""
14226
14227The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
14228logarithm of the specified value.
14229
14230Arguments:
14231""""""""""
14232
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014233The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014234type.
14235
14236The second and third arguments specify the rounding mode and exception
14237behavior as described above.
14238
14239Semantics:
14240""""""""""
14241
14242This function returns the same values as the libm ``log10`` functions
14243would, and handles error conditions in the same way.
14244
14245
14246'``llvm.experimental.constrained.log2``' Intrinsic
14247^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14248
14249Syntax:
14250"""""""
14251
14252::
14253
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014254 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014255 @llvm.experimental.constrained.log2(<type> <op1>,
14256 metadata <rounding mode>,
14257 metadata <exception behavior>)
14258
14259Overview:
14260"""""""""
14261
14262The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
14263logarithm of the specified value.
14264
14265Arguments:
14266""""""""""
14267
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014268The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014269type.
14270
14271The second and third arguments specify the rounding mode and exception
14272behavior as described above.
14273
14274Semantics:
14275""""""""""
14276
14277This function returns the same values as the libm ``log2`` functions
14278would, and handles error conditions in the same way.
14279
14280
14281'``llvm.experimental.constrained.rint``' Intrinsic
14282^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14283
14284Syntax:
14285"""""""
14286
14287::
14288
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014289 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014290 @llvm.experimental.constrained.rint(<type> <op1>,
14291 metadata <rounding mode>,
14292 metadata <exception behavior>)
14293
14294Overview:
14295"""""""""
14296
14297The '``llvm.experimental.constrained.rint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014298operand rounded to the nearest integer. It may raise an inexact floating-point
Andrew Kaylorf4660012017-05-25 21:31:00 +000014299exception if the operand is not an integer.
14300
14301Arguments:
14302""""""""""
14303
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014304The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014305type.
14306
14307The second and third arguments specify the rounding mode and exception
14308behavior as described above.
14309
14310Semantics:
14311""""""""""
14312
14313This function returns the same values as the libm ``rint`` functions
14314would, and handles error conditions in the same way. The rounding mode is
14315described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014316mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000014317mode argument is only intended as information to the compiler.
14318
14319
14320'``llvm.experimental.constrained.nearbyint``' Intrinsic
14321^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14322
14323Syntax:
14324"""""""
14325
14326::
14327
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014328 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014329 @llvm.experimental.constrained.nearbyint(<type> <op1>,
14330 metadata <rounding mode>,
14331 metadata <exception behavior>)
14332
14333Overview:
14334"""""""""
14335
14336The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014337operand rounded to the nearest integer. It will not raise an inexact
14338floating-point exception if the operand is not an integer.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014339
14340
14341Arguments:
14342""""""""""
14343
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014344The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014345type.
14346
14347The second and third arguments specify the rounding mode and exception
14348behavior as described above.
14349
14350Semantics:
14351""""""""""
14352
14353This function returns the same values as the libm ``nearbyint`` functions
14354would, and handles error conditions in the same way. The rounding mode is
14355described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014356mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000014357mode argument is only intended as information to the compiler.
14358
14359
Sean Silvab084af42012-12-07 10:36:55 +000014360General Intrinsics
14361------------------
14362
14363This class of intrinsics is designed to be generic and has no specific
14364purpose.
14365
14366'``llvm.var.annotation``' Intrinsic
14367^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14368
14369Syntax:
14370"""""""
14371
14372::
14373
14374 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
14375
14376Overview:
14377"""""""""
14378
14379The '``llvm.var.annotation``' intrinsic.
14380
14381Arguments:
14382""""""""""
14383
14384The first argument is a pointer to a value, the second is a pointer to a
14385global string, the third is a pointer to a global string which is the
14386source file name, and the last argument is the line number.
14387
14388Semantics:
14389""""""""""
14390
14391This intrinsic allows annotation of local variables with arbitrary
14392strings. This can be useful for special purpose optimizations that want
14393to look for these annotations. These have no other defined use; they are
14394ignored by code generation and optimization.
14395
Michael Gottesman88d18832013-03-26 00:34:27 +000014396'``llvm.ptr.annotation.*``' Intrinsic
14397^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14398
14399Syntax:
14400"""""""
14401
14402This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
14403pointer to an integer of any width. *NOTE* you must specify an address space for
14404the pointer. The identifier for the default address space is the integer
14405'``0``'.
14406
14407::
14408
14409 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
14410 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
14411 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
14412 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
14413 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
14414
14415Overview:
14416"""""""""
14417
14418The '``llvm.ptr.annotation``' intrinsic.
14419
14420Arguments:
14421""""""""""
14422
14423The first argument is a pointer to an integer value of arbitrary bitwidth
14424(result of some expression), the second is a pointer to a global string, the
14425third is a pointer to a global string which is the source file name, and the
14426last argument is the line number. It returns the value of the first argument.
14427
14428Semantics:
14429""""""""""
14430
14431This intrinsic allows annotation of a pointer to an integer with arbitrary
14432strings. This can be useful for special purpose optimizations that want to look
14433for these annotations. These have no other defined use; they are ignored by code
14434generation and optimization.
14435
Sean Silvab084af42012-12-07 10:36:55 +000014436'``llvm.annotation.*``' Intrinsic
14437^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14438
14439Syntax:
14440"""""""
14441
14442This is an overloaded intrinsic. You can use '``llvm.annotation``' on
14443any integer bit width.
14444
14445::
14446
14447 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
14448 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
14449 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
14450 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
14451 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
14452
14453Overview:
14454"""""""""
14455
14456The '``llvm.annotation``' intrinsic.
14457
14458Arguments:
14459""""""""""
14460
14461The first argument is an integer value (result of some expression), the
14462second is a pointer to a global string, the third is a pointer to a
14463global string which is the source file name, and the last argument is
14464the line number. It returns the value of the first argument.
14465
14466Semantics:
14467""""""""""
14468
14469This intrinsic allows annotations to be put on arbitrary expressions
14470with arbitrary strings. This can be useful for special purpose
14471optimizations that want to look for these annotations. These have no
14472other defined use; they are ignored by code generation and optimization.
14473
Reid Klecknere33c94f2017-09-05 20:14:58 +000014474'``llvm.codeview.annotation``' Intrinsic
Reid Klecknerd4523682017-09-05 20:26:25 +000014475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknere33c94f2017-09-05 20:14:58 +000014476
14477Syntax:
14478"""""""
14479
14480This annotation emits a label at its program point and an associated
14481``S_ANNOTATION`` codeview record with some additional string metadata. This is
14482used to implement MSVC's ``__annotation`` intrinsic. It is marked
14483``noduplicate``, so calls to this intrinsic prevent inlining and should be
14484considered expensive.
14485
14486::
14487
14488 declare void @llvm.codeview.annotation(metadata)
14489
14490Arguments:
14491""""""""""
14492
14493The argument should be an MDTuple containing any number of MDStrings.
14494
Sean Silvab084af42012-12-07 10:36:55 +000014495'``llvm.trap``' Intrinsic
14496^^^^^^^^^^^^^^^^^^^^^^^^^
14497
14498Syntax:
14499"""""""
14500
14501::
14502
14503 declare void @llvm.trap() noreturn nounwind
14504
14505Overview:
14506"""""""""
14507
14508The '``llvm.trap``' intrinsic.
14509
14510Arguments:
14511""""""""""
14512
14513None.
14514
14515Semantics:
14516""""""""""
14517
14518This intrinsic is lowered to the target dependent trap instruction. If
14519the target does not have a trap instruction, this intrinsic will be
14520lowered to a call of the ``abort()`` function.
14521
14522'``llvm.debugtrap``' Intrinsic
14523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14524
14525Syntax:
14526"""""""
14527
14528::
14529
14530 declare void @llvm.debugtrap() nounwind
14531
14532Overview:
14533"""""""""
14534
14535The '``llvm.debugtrap``' intrinsic.
14536
14537Arguments:
14538""""""""""
14539
14540None.
14541
14542Semantics:
14543""""""""""
14544
14545This intrinsic is lowered to code which is intended to cause an
14546execution trap with the intention of requesting the attention of a
14547debugger.
14548
14549'``llvm.stackprotector``' Intrinsic
14550^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14551
14552Syntax:
14553"""""""
14554
14555::
14556
14557 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
14558
14559Overview:
14560"""""""""
14561
14562The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
14563onto the stack at ``slot``. The stack slot is adjusted to ensure that it
14564is placed on the stack before local variables.
14565
14566Arguments:
14567""""""""""
14568
14569The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
14570The first argument is the value loaded from the stack guard
14571``@__stack_chk_guard``. The second variable is an ``alloca`` that has
14572enough space to hold the value of the guard.
14573
14574Semantics:
14575""""""""""
14576
Michael Gottesmandafc7d92013-08-12 18:35:32 +000014577This intrinsic causes the prologue/epilogue inserter to force the position of
14578the ``AllocaInst`` stack slot to be before local variables on the stack. This is
14579to ensure that if a local variable on the stack is overwritten, it will destroy
14580the value of the guard. When the function exits, the guard on the stack is
14581checked against the original guard by ``llvm.stackprotectorcheck``. If they are
14582different, then ``llvm.stackprotectorcheck`` causes the program to abort by
14583calling the ``__stack_chk_fail()`` function.
14584
Tim Shene885d5e2016-04-19 19:40:37 +000014585'``llvm.stackguard``' Intrinsic
14586^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14587
14588Syntax:
14589"""""""
14590
14591::
14592
14593 declare i8* @llvm.stackguard()
14594
14595Overview:
14596"""""""""
14597
14598The ``llvm.stackguard`` intrinsic returns the system stack guard value.
14599
14600It should not be generated by frontends, since it is only for internal usage.
14601The reason why we create this intrinsic is that we still support IR form Stack
14602Protector in FastISel.
14603
14604Arguments:
14605""""""""""
14606
14607None.
14608
14609Semantics:
14610""""""""""
14611
14612On some platforms, the value returned by this intrinsic remains unchanged
14613between loads in the same thread. On other platforms, it returns the same
14614global variable value, if any, e.g. ``@__stack_chk_guard``.
14615
14616Currently some platforms have IR-level customized stack guard loading (e.g.
14617X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
14618in the future.
14619
Sean Silvab084af42012-12-07 10:36:55 +000014620'``llvm.objectsize``' Intrinsic
14621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14622
14623Syntax:
14624"""""""
14625
14626::
14627
George Burgess IV56c7e882017-03-21 20:08:59 +000014628 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
14629 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000014630
14631Overview:
14632"""""""""
14633
14634The ``llvm.objectsize`` intrinsic is designed to provide information to
14635the optimizers to determine at compile time whether a) an operation
14636(like memcpy) will overflow a buffer that corresponds to an object, or
14637b) that a runtime check for overflow isn't necessary. An object in this
14638context means an allocation of a specific class, structure, array, or
14639other object.
14640
14641Arguments:
14642""""""""""
14643
George Burgess IV56c7e882017-03-21 20:08:59 +000014644The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
14645a pointer to or into the ``object``. The second argument determines whether
14646``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
14647is unknown. The third argument controls how ``llvm.objectsize`` acts when
George Burgess IV3fbfa9c42018-07-09 22:21:16 +000014648``null`` in address space 0 is used as its pointer argument. If it's ``false``,
14649``llvm.objectsize`` reports 0 bytes available when given ``null``. Otherwise, if
14650the ``null`` is in a non-zero address space or if ``true`` is given for the
14651third argument of ``llvm.objectsize``, we assume its size is unknown.
George Burgess IV56c7e882017-03-21 20:08:59 +000014652
14653The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000014654
14655Semantics:
14656""""""""""
14657
14658The ``llvm.objectsize`` intrinsic is lowered to a constant representing
14659the size of the object concerned. If the size cannot be determined at
14660compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
14661on the ``min`` argument).
14662
14663'``llvm.expect``' Intrinsic
14664^^^^^^^^^^^^^^^^^^^^^^^^^^^
14665
14666Syntax:
14667"""""""
14668
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000014669This is an overloaded intrinsic. You can use ``llvm.expect`` on any
14670integer bit width.
14671
Sean Silvab084af42012-12-07 10:36:55 +000014672::
14673
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000014674 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000014675 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
14676 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
14677
14678Overview:
14679"""""""""
14680
14681The ``llvm.expect`` intrinsic provides information about expected (the
14682most probable) value of ``val``, which can be used by optimizers.
14683
14684Arguments:
14685""""""""""
14686
14687The ``llvm.expect`` intrinsic takes two arguments. The first argument is
14688a value. The second argument is an expected value, this needs to be a
14689constant value, variables are not allowed.
14690
14691Semantics:
14692""""""""""
14693
14694This intrinsic is lowered to the ``val``.
14695
Philip Reamese0e90832015-04-26 22:23:12 +000014696.. _int_assume:
14697
Hal Finkel93046912014-07-25 21:13:35 +000014698'``llvm.assume``' Intrinsic
14699^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14700
14701Syntax:
14702"""""""
14703
14704::
14705
14706 declare void @llvm.assume(i1 %cond)
14707
14708Overview:
14709"""""""""
14710
14711The ``llvm.assume`` allows the optimizer to assume that the provided
14712condition is true. This information can then be used in simplifying other parts
14713of the code.
14714
14715Arguments:
14716""""""""""
14717
14718The condition which the optimizer may assume is always true.
14719
14720Semantics:
14721""""""""""
14722
14723The intrinsic allows the optimizer to assume that the provided condition is
14724always true whenever the control flow reaches the intrinsic call. No code is
14725generated for this intrinsic, and instructions that contribute only to the
14726provided condition are not used for code generation. If the condition is
14727violated during execution, the behavior is undefined.
14728
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014729Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000014730used by the ``llvm.assume`` intrinsic in order to preserve the instructions
14731only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014732if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000014733sufficient overall improvement in code quality. For this reason,
14734``llvm.assume`` should not be used to document basic mathematical invariants
14735that the optimizer can otherwise deduce or facts that are of little use to the
14736optimizer.
14737
Daniel Berlin2c438a32017-02-07 19:29:25 +000014738.. _int_ssa_copy:
14739
14740'``llvm.ssa_copy``' Intrinsic
14741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14742
14743Syntax:
14744"""""""
14745
14746::
14747
14748 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
14749
14750Arguments:
14751""""""""""
14752
14753The first argument is an operand which is used as the returned value.
14754
14755Overview:
14756""""""""""
14757
14758The ``llvm.ssa_copy`` intrinsic can be used to attach information to
14759operations by copying them and giving them new names. For example,
14760the PredicateInfo utility uses it to build Extended SSA form, and
14761attach various forms of information to operands that dominate specific
14762uses. It is not meant for general use, only for building temporary
14763renaming forms that require value splits at certain points.
14764
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014765.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000014766
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014767'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000014768^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14769
14770Syntax:
14771"""""""
14772
14773::
14774
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014775 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000014776
14777
14778Arguments:
14779""""""""""
14780
14781The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014782metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014783
14784Overview:
14785"""""""""
14786
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014787The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
14788with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014789
Peter Collingbourne0312f612016-06-25 00:23:04 +000014790'``llvm.type.checked.load``' Intrinsic
14791^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14792
14793Syntax:
14794"""""""
14795
14796::
14797
14798 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
14799
14800
14801Arguments:
14802""""""""""
14803
14804The first argument is a pointer from which to load a function pointer. The
14805second argument is the byte offset from which to load the function pointer. The
14806third argument is a metadata object representing a :doc:`type identifier
14807<TypeMetadata>`.
14808
14809Overview:
14810"""""""""
14811
14812The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
14813virtual table pointer using type metadata. This intrinsic is used to implement
14814control flow integrity in conjunction with virtual call optimization. The
14815virtual call optimization pass will optimize away ``llvm.type.checked.load``
14816intrinsics associated with devirtualized calls, thereby removing the type
14817check in cases where it is not needed to enforce the control flow integrity
14818constraint.
14819
14820If the given pointer is associated with a type metadata identifier, this
14821function returns true as the second element of its return value. (Note that
14822the function may also return true if the given pointer is not associated
14823with a type metadata identifier.) If the function's return value's second
14824element is true, the following rules apply to the first element:
14825
14826- If the given pointer is associated with the given type metadata identifier,
14827 it is the function pointer loaded from the given byte offset from the given
14828 pointer.
14829
14830- If the given pointer is not associated with the given type metadata
14831 identifier, it is one of the following (the choice of which is unspecified):
14832
14833 1. The function pointer that would have been loaded from an arbitrarily chosen
14834 (through an unspecified mechanism) pointer associated with the type
14835 metadata.
14836
14837 2. If the function has a non-void return type, a pointer to a function that
14838 returns an unspecified value without causing side effects.
14839
14840If the function's return value's second element is false, the value of the
14841first element is undefined.
14842
14843
Sean Silvab084af42012-12-07 10:36:55 +000014844'``llvm.donothing``' Intrinsic
14845^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14846
14847Syntax:
14848"""""""
14849
14850::
14851
14852 declare void @llvm.donothing() nounwind readnone
14853
14854Overview:
14855"""""""""
14856
Juergen Ributzkac9161192014-10-23 22:36:13 +000014857The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000014858three intrinsics (besides ``llvm.experimental.patchpoint`` and
14859``llvm.experimental.gc.statepoint``) that can be called with an invoke
14860instruction.
Sean Silvab084af42012-12-07 10:36:55 +000014861
14862Arguments:
14863""""""""""
14864
14865None.
14866
14867Semantics:
14868""""""""""
14869
14870This intrinsic does nothing, and it's removed by optimizers and ignored
14871by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000014872
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014873'``llvm.experimental.deoptimize``' Intrinsic
14874^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14875
14876Syntax:
14877"""""""
14878
14879::
14880
14881 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
14882
14883Overview:
14884"""""""""
14885
14886This intrinsic, together with :ref:`deoptimization operand bundles
14887<deopt_opbundles>`, allow frontends to express transfer of control and
14888frame-local state from the currently executing (typically more specialized,
14889hence faster) version of a function into another (typically more generic, hence
14890slower) version.
14891
14892In languages with a fully integrated managed runtime like Java and JavaScript
14893this intrinsic can be used to implement "uncommon trap" or "side exit" like
14894functionality. In unmanaged languages like C and C++, this intrinsic can be
14895used to represent the slow paths of specialized functions.
14896
14897
14898Arguments:
14899""""""""""
14900
14901The intrinsic takes an arbitrary number of arguments, whose meaning is
14902decided by the :ref:`lowering strategy<deoptimize_lowering>`.
14903
14904Semantics:
14905""""""""""
14906
14907The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
14908deoptimization continuation (denoted using a :ref:`deoptimization
14909operand bundle <deopt_opbundles>`) and returns the value returned by
14910the deoptimization continuation. Defining the semantic properties of
14911the continuation itself is out of scope of the language reference --
14912as far as LLVM is concerned, the deoptimization continuation can
14913invoke arbitrary side effects, including reading from and writing to
14914the entire heap.
14915
14916Deoptimization continuations expressed using ``"deopt"`` operand bundles always
14917continue execution to the end of the physical frame containing them, so all
14918calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
14919
14920 - ``@llvm.experimental.deoptimize`` cannot be invoked.
14921 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
14922 - The ``ret`` instruction must return the value produced by the
14923 ``@llvm.experimental.deoptimize`` call if there is one, or void.
14924
14925Note that the above restrictions imply that the return type for a call to
14926``@llvm.experimental.deoptimize`` will match the return type of its immediate
14927caller.
14928
14929The inliner composes the ``"deopt"`` continuations of the caller into the
14930``"deopt"`` continuations present in the inlinee, and also updates calls to this
14931intrinsic to return directly from the frame of the function it inlined into.
14932
Sanjoy Dase0aa4142016-05-12 01:17:38 +000014933All declarations of ``@llvm.experimental.deoptimize`` must share the
14934same calling convention.
14935
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014936.. _deoptimize_lowering:
14937
14938Lowering:
14939"""""""""
14940
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000014941Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
14942symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
14943ensure that this symbol is defined). The call arguments to
14944``@llvm.experimental.deoptimize`` are lowered as if they were formal
14945arguments of the specified types, and not as varargs.
14946
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014947
Sanjoy Das021de052016-03-31 00:18:46 +000014948'``llvm.experimental.guard``' Intrinsic
14949^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14950
14951Syntax:
14952"""""""
14953
14954::
14955
14956 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
14957
14958Overview:
14959"""""""""
14960
14961This intrinsic, together with :ref:`deoptimization operand bundles
14962<deopt_opbundles>`, allows frontends to express guards or checks on
14963optimistic assumptions made during compilation. The semantics of
14964``@llvm.experimental.guard`` is defined in terms of
14965``@llvm.experimental.deoptimize`` -- its body is defined to be
14966equivalent to:
14967
Renato Golin124f2592016-07-20 12:16:38 +000014968.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000014969
Renato Golin124f2592016-07-20 12:16:38 +000014970 define void @llvm.experimental.guard(i1 %pred, <args...>) {
14971 %realPred = and i1 %pred, undef
14972 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000014973
Renato Golin124f2592016-07-20 12:16:38 +000014974 leave:
14975 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
14976 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000014977
Renato Golin124f2592016-07-20 12:16:38 +000014978 continue:
14979 ret void
14980 }
Sanjoy Das021de052016-03-31 00:18:46 +000014981
Sanjoy Das47cf2af2016-04-30 00:55:59 +000014982
14983with the optional ``[, !make.implicit !{}]`` present if and only if it
14984is present on the call site. For more details on ``!make.implicit``,
14985see :doc:`FaultMaps`.
14986
Sanjoy Das021de052016-03-31 00:18:46 +000014987In words, ``@llvm.experimental.guard`` executes the attached
14988``"deopt"`` continuation if (but **not** only if) its first argument
14989is ``false``. Since the optimizer is allowed to replace the ``undef``
14990with an arbitrary value, it can optimize guard to fail "spuriously",
14991i.e. without the original condition being false (hence the "not only
14992if"); and this allows for "check widening" type optimizations.
14993
14994``@llvm.experimental.guard`` cannot be invoked.
14995
14996
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000014997'``llvm.load.relative``' Intrinsic
14998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14999
15000Syntax:
15001"""""""
15002
15003::
15004
15005 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
15006
15007Overview:
15008"""""""""
15009
15010This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
15011adds ``%ptr`` to that value and returns it. The constant folder specifically
15012recognizes the form of this intrinsic and the constant initializers it may
15013load from; if a loaded constant initializer is known to have the form
15014``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
15015
15016LLVM provides that the calculation of such a constant initializer will
15017not overflow at link time under the medium code model if ``x`` is an
15018``unnamed_addr`` function. However, it does not provide this guarantee for
15019a constant initializer folded into a function body. This intrinsic can be
15020used to avoid the possibility of overflows when loading from such a constant.
15021
Dan Gohman2c74fe92017-11-08 21:59:51 +000015022'``llvm.sideeffect``' Intrinsic
15023^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15024
15025Syntax:
15026"""""""
15027
15028::
15029
15030 declare void @llvm.sideeffect() inaccessiblememonly nounwind
15031
15032Overview:
15033"""""""""
15034
15035The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
15036treat it as having side effects, so it can be inserted into a loop to
15037indicate that the loop shouldn't be assumed to terminate (which could
15038potentially lead to the loop being optimized away entirely), even if it's
15039an infinite loop with no other side effects.
15040
15041Arguments:
15042""""""""""
15043
15044None.
15045
15046Semantics:
15047""""""""""
15048
15049This intrinsic actually does nothing, but optimizers must assume that it
15050has externally observable side effects.
15051
Andrew Trick5e029ce2013-12-24 02:57:25 +000015052Stack Map Intrinsics
15053--------------------
15054
15055LLVM provides experimental intrinsics to support runtime patching
15056mechanisms commonly desired in dynamic language JITs. These intrinsics
15057are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015058
15059Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000015060-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000015061
15062These intrinsics are similar to the standard library memory intrinsics except
15063that they perform memory transfer as a sequence of atomic memory accesses.
15064
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015065.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000015066
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015067'``llvm.memcpy.element.unordered.atomic``' Intrinsic
15068^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000015069
15070Syntax:
15071"""""""
15072
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015073This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000015074any integer bit width and for different address spaces. Not all targets
15075support all bit widths however.
15076
15077::
15078
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015079 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
15080 i8* <src>,
15081 i32 <len>,
15082 i32 <element_size>)
15083 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
15084 i8* <src>,
15085 i64 <len>,
15086 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000015087
15088Overview:
15089"""""""""
15090
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015091The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
15092'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
15093as arrays with elements that are exactly ``element_size`` bytes, and the copy between
15094buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
15095that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015096
15097Arguments:
15098""""""""""
15099
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015100The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
15101intrinsic, with the added constraint that ``len`` is required to be a positive integer
15102multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
15103``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015104
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015105``element_size`` must be a compile-time constant positive power of two no greater than
15106target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015107
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015108For each of the input pointers ``align`` parameter attribute must be specified. It
15109must be a power of two no less than the ``element_size``. Caller guarantees that
15110both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015111
15112Semantics:
15113""""""""""
15114
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015115The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
15116memory from the source location to the destination location. These locations are not
15117allowed to overlap. The memory copy is performed as a sequence of load/store operations
15118where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015119aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015120
15121The order of the copy is unspecified. The same value may be read from the source
15122buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015123element. It is well defined to have concurrent reads and writes to both source and
15124destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015125
15126This intrinsic does not provide any additional ordering guarantees over those
15127provided by a set of unordered loads from the source location and stores to the
15128destination.
15129
15130Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000015131"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000015132
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015133In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
15134lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
15135is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015136
Daniel Neilson57226ef2017-07-12 15:25:26 +000015137Optimizer is allowed to inline memory copy when it's profitable to do so.
15138
15139'``llvm.memmove.element.unordered.atomic``' Intrinsic
15140^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15141
15142Syntax:
15143"""""""
15144
15145This is an overloaded intrinsic. You can use
15146``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
15147different address spaces. Not all targets support all bit widths however.
15148
15149::
15150
15151 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
15152 i8* <src>,
15153 i32 <len>,
15154 i32 <element_size>)
15155 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
15156 i8* <src>,
15157 i64 <len>,
15158 i32 <element_size>)
15159
15160Overview:
15161"""""""""
15162
15163The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
15164of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
15165``src`` are treated as arrays with elements that are exactly ``element_size``
15166bytes, and the copy between buffers uses a sequence of
15167:ref:`unordered atomic <ordering>` load/store operations that are a positive
15168integer multiple of the ``element_size`` in size.
15169
15170Arguments:
15171""""""""""
15172
15173The first three arguments are the same as they are in the
15174:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
15175``len`` is required to be a positive integer multiple of the ``element_size``.
15176If ``len`` is not a positive integer multiple of ``element_size``, then the
15177behaviour of the intrinsic is undefined.
15178
15179``element_size`` must be a compile-time constant positive power of two no
15180greater than a target-specific atomic access size limit.
15181
15182For each of the input pointers the ``align`` parameter attribute must be
15183specified. It must be a power of two no less than the ``element_size``. Caller
15184guarantees that both the source and destination pointers are aligned to that
15185boundary.
15186
15187Semantics:
15188""""""""""
15189
15190The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
15191of memory from the source location to the destination location. These locations
15192are allowed to overlap. The memory copy is performed as a sequence of load/store
15193operations where each access is guaranteed to be a multiple of ``element_size``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015194bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson57226ef2017-07-12 15:25:26 +000015195
15196The order of the copy is unspecified. The same value may be read from the source
15197buffer many times, but only one write is issued to the destination buffer per
15198element. It is well defined to have concurrent reads and writes to both source
15199and destination provided those reads and writes are unordered atomic when
15200specified.
15201
15202This intrinsic does not provide any additional ordering guarantees over those
15203provided by a set of unordered loads from the source location and stores to the
15204destination.
15205
15206Lowering:
15207"""""""""
15208
15209In the most general case call to the
15210'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
15211``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
15212actual element size.
15213
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015214The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000015215
15216.. _int_memset_element_unordered_atomic:
15217
15218'``llvm.memset.element.unordered.atomic``' Intrinsic
15219^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15220
15221Syntax:
15222"""""""
15223
15224This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
15225any integer bit width and for different address spaces. Not all targets
15226support all bit widths however.
15227
15228::
15229
15230 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
15231 i8 <value>,
15232 i32 <len>,
15233 i32 <element_size>)
15234 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
15235 i8 <value>,
15236 i64 <len>,
15237 i32 <element_size>)
15238
15239Overview:
15240"""""""""
15241
15242The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
15243'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
15244with elements that are exactly ``element_size`` bytes, and the assignment to that array
15245uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
15246that are a positive integer multiple of the ``element_size`` in size.
15247
15248Arguments:
15249""""""""""
15250
15251The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
15252intrinsic, with the added constraint that ``len`` is required to be a positive integer
15253multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
15254``element_size``, then the behaviour of the intrinsic is undefined.
15255
15256``element_size`` must be a compile-time constant positive power of two no greater than
15257target-specific atomic access size limit.
15258
15259The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
15260must be a power of two no less than the ``element_size``. Caller guarantees that
15261the destination pointer is aligned to that boundary.
15262
15263Semantics:
15264""""""""""
15265
15266The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
15267memory starting at the destination location to the given ``value``. The memory is
15268set with a sequence of store operations where each access is guaranteed to be a
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015269multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson965613e2017-07-12 21:57:23 +000015270
15271The order of the assignment is unspecified. Only one write is issued to the
15272destination buffer per element. It is well defined to have concurrent reads and
15273writes to the destination provided those reads and writes are unordered atomic
15274when specified.
15275
15276This intrinsic does not provide any additional ordering guarantees over those
15277provided by a set of unordered stores to the destination.
15278
15279Lowering:
15280"""""""""
15281
15282In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
15283lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
15284is replaced with an actual element size.
15285
15286The optimizer is allowed to inline the memory assignment when it's profitable to do so.