blob: 16cc068ce4f3892602b737d3881432676e04c176 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
Hans Wennborg2cfcc012018-05-22 10:14:07 +000083 can be used on global values to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000327 floating-point types are supported.
Sean Silvab084af42012-12-07 10:36:55 +0000328 - On *X86-64* only supports up to 10 bit type parameters and 6
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000329 floating-point parameters.
Sean Silvab084af42012-12-07 10:36:55 +0000330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Sean Fertilec70d28b2017-10-26 15:00:26 +0000530.. _runtime_preemption_model:
531
532Runtime Preemption Specifiers
533-----------------------------
534
535Global variables, functions and aliases may have an optional runtime preemption
536specifier. If a preemption specifier isn't given explicitly, then a
537symbol is assumed to be ``dso_preemptable``.
538
539``dso_preemptable``
540 Indicates that the function or variable may be replaced by a symbol from
541 outside the linkage unit at runtime.
542
543``dso_local``
544 The compiler may assume that a function or variable marked as ``dso_local``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000545 will resolve to a symbol within the same linkage unit. Direct access will
Sean Fertilec70d28b2017-10-26 15:00:26 +0000546 be generated even if the definition is not within this compilation unit.
547
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000548.. _namedtypes:
549
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000550Structure Types
551---------------
Sean Silvab084af42012-12-07 10:36:55 +0000552
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000553LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000554types <t_struct>`. Literal types are uniqued structurally, but identified types
555are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000556to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000557
Sean Silva706fba52015-08-06 22:56:24 +0000558An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000559
560.. code-block:: llvm
561
562 %mytype = type { %mytype*, i32 }
563
Sean Silvaa1190322015-08-06 22:56:48 +0000564Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000565literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000566
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000567.. _nointptrtype:
568
569Non-Integral Pointer Type
570-------------------------
571
572Note: non-integral pointer types are a work in progress, and they should be
573considered experimental at this time.
574
575LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000576spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
577Non-integral pointer types represent pointers that have an *unspecified* bitwise
578representation; that is, the integral representation may be target dependent or
579unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000580
581``inttoptr`` instructions converting integers to non-integral pointer types are
582ill-typed, and so are ``ptrtoint`` instructions converting values of
583non-integral pointer types to integers. Vector versions of said instructions
584are ill-typed as well.
585
Sean Silvab084af42012-12-07 10:36:55 +0000586.. _globalvars:
587
588Global Variables
589----------------
590
591Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000592instead of run-time.
593
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000594Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000595
596Global variables in other translation units can also be declared, in which
597case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000598
Bob Wilson85b24f22014-06-12 20:40:33 +0000599Either global variable definitions or declarations may have an explicit section
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000600to be placed in and may have an optional explicit alignment specified. If there
601is a mismatch between the explicit or inferred section information for the
602variable declaration and its definition the resulting behavior is undefined.
Bob Wilson85b24f22014-06-12 20:40:33 +0000603
Michael Gottesman006039c2013-01-31 05:48:48 +0000604A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000605the contents of the variable will **never** be modified (enabling better
606optimization, allowing the global data to be placed in the read-only
607section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000608initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000609variable.
610
611LLVM explicitly allows *declarations* of global variables to be marked
612constant, even if the final definition of the global is not. This
613capability can be used to enable slightly better optimization of the
614program, but requires the language definition to guarantee that
615optimizations based on the 'constantness' are valid for the translation
616units that do not include the definition.
617
618As SSA values, global variables define pointer values that are in scope
619(i.e. they dominate) all basic blocks in the program. Global variables
620always define a pointer to their "content" type because they describe a
621region of memory, and all memory objects in LLVM are accessed through
622pointers.
623
624Global variables can be marked with ``unnamed_addr`` which indicates
625that the address is not significant, only the content. Constants marked
626like this can be merged with other constants if they have the same
627initializer. Note that a constant with significant address *can* be
628merged with a ``unnamed_addr`` constant, the result being a constant
629whose address is significant.
630
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000631If the ``local_unnamed_addr`` attribute is given, the address is known to
632not be significant within the module.
633
Sean Silvab084af42012-12-07 10:36:55 +0000634A global variable may be declared to reside in a target-specific
635numbered address space. For targets that support them, address spaces
636may affect how optimizations are performed and/or what target
637instructions are used to access the variable. The default address space
638is zero. The address space qualifier must precede any other attributes.
639
640LLVM allows an explicit section to be specified for globals. If the
641target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000642Additionally, the global can placed in a comdat if the target has the necessary
643support.
Sean Silvab084af42012-12-07 10:36:55 +0000644
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000645External declarations may have an explicit section specified. Section
646information is retained in LLVM IR for targets that make use of this
647information. Attaching section information to an external declaration is an
648assertion that its definition is located in the specified section. If the
649definition is located in a different section, the behavior is undefined.
Erich Keane0343ef82017-08-22 15:30:43 +0000650
Michael Gottesmane743a302013-02-04 03:22:00 +0000651By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000652variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000653initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000654true even for variables potentially accessible from outside the
655module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000656``@llvm.used`` or dllexported variables. This assumption may be suppressed
657by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659An explicit alignment may be specified for a global, which must be a
660power of 2. If not present, or if the alignment is set to zero, the
661alignment of the global is set by the target to whatever it feels
662convenient. If an explicit alignment is specified, the global is forced
663to have exactly that alignment. Targets and optimizers are not allowed
664to over-align the global if the global has an assigned section. In this
665case, the extra alignment could be observable: for example, code could
666assume that the globals are densely packed in their section and try to
667iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000668iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000669
Javed Absarf3d79042017-05-11 12:28:08 +0000670Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
Sean Fertilec70d28b2017-10-26 15:00:26 +0000671an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
Javed Absarf3d79042017-05-11 12:28:08 +0000672an optional :ref:`global attributes <glattrs>` and
673an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000674
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000675Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000676:ref:`Thread Local Storage Model <tls_model>`.
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678Syntax::
679
Sean Fertilec70d28b2017-10-26 15:00:26 +0000680 @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
681 [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
683 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000684 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000686 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000687
Sean Silvab084af42012-12-07 10:36:55 +0000688For example, the following defines a global in a numbered address space
689with an initializer, section, and alignment:
690
691.. code-block:: llvm
692
693 @G = addrspace(5) constant float 1.0, section "foo", align 4
694
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000695The following example just declares a global variable
696
697.. code-block:: llvm
698
699 @G = external global i32
700
Sean Silvab084af42012-12-07 10:36:55 +0000701The following example defines a thread-local global with the
702``initialexec`` TLS model:
703
704.. code-block:: llvm
705
706 @G = thread_local(initialexec) global i32 0, align 4
707
708.. _functionstructure:
709
710Functions
711---------
712
713LLVM function definitions consist of the "``define``" keyword, an
Sean Fertilec70d28b2017-10-26 15:00:26 +0000714optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
715specifier <runtime_preemption_model>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000716style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
717an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000718an optional ``unnamed_addr`` attribute, a return type, an optional
719:ref:`parameter attribute <paramattrs>` for the return type, a function
720name, a (possibly empty) argument list (each with optional :ref:`parameter
721attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000722an optional address space, an optional section, an optional alignment,
David Majnemerdad0a642014-06-27 18:19:56 +0000723an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000724an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000725an optional :ref:`prologue <prologuedata>`,
726an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000727an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000728an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000731optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
732<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
733optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000734or ``local_unnamed_addr`` attribute, an optional address space, a return type,
735an optional :ref:`parameter attribute <paramattrs>` for the return type, a function name, a possibly
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000736empty list of arguments, an optional alignment, an optional :ref:`garbage
737collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
738:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000739
Bill Wendling6822ecb2013-10-27 05:09:12 +0000740A function definition contains a list of basic blocks, forming the CFG (Control
741Flow Graph) for the function. Each basic block may optionally start with a label
742(giving the basic block a symbol table entry), contains a list of instructions,
743and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
744function return). If an explicit label is not provided, a block is assigned an
745implicit numbered label, using the next value from the same counter as used for
746unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
747entry block does not have an explicit label, it will be assigned label "%0",
748then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000749
750The first basic block in a function is special in two ways: it is
751immediately executed on entrance to the function, and it is not allowed
752to have predecessor basic blocks (i.e. there can not be any branches to
753the entry block of a function). Because the block can have no
754predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
755
756LLVM allows an explicit section to be specified for functions. If the
757target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000758Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000759
760An explicit alignment may be specified for a function. If not present,
761or if the alignment is set to zero, the alignment of the function is set
762by the target to whatever it feels convenient. If an explicit alignment
763is specified, the function is forced to have at least that much
764alignment. All alignments must be a power of 2.
765
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000766If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000767be significant and two identical functions can be merged.
768
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000769If the ``local_unnamed_addr`` attribute is given, the address is known to
770not be significant within the module.
771
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000772If an explicit address space is not given, it will default to the program
773address space from the :ref:`datalayout string<langref_datalayout>`.
774
Sean Silvab084af42012-12-07 10:36:55 +0000775Syntax::
776
Sean Fertilec70d28b2017-10-26 15:00:26 +0000777 define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000778 [cconv] [ret attrs]
779 <ResultType> @<FunctionName> ([argument list])
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000780 [(unnamed_addr|local_unnamed_addr)] [AddrSpace] [fn Attrs]
781 [section "name"] [comdat [($name)]] [align N] [gc] [prefix Constant]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000782 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000783
Sean Silva706fba52015-08-06 22:56:24 +0000784The argument list is a comma separated sequence of arguments where each
785argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000786
787Syntax::
788
789 <type> [parameter Attrs] [name]
790
791
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000792.. _langref_aliases:
793
Sean Silvab084af42012-12-07 10:36:55 +0000794Aliases
795-------
796
Rafael Espindola64c1e182014-06-03 02:41:57 +0000797Aliases, unlike function or variables, don't create any new data. They
798are just a new symbol and metadata for an existing position.
799
800Aliases have a name and an aliasee that is either a global value or a
801constant expression.
802
Nico Rieck7157bb72014-01-14 15:22:47 +0000803Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Sean Fertilec70d28b2017-10-26 15:00:26 +0000804:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000805:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
806<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000807
808Syntax::
809
Sean Fertilec70d28b2017-10-26 15:00:26 +0000810 @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000811
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000812The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000813``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000814might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000815
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000816Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000817the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
818to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000819
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000820If the ``local_unnamed_addr`` attribute is given, the address is known to
821not be significant within the module.
822
Rafael Espindola64c1e182014-06-03 02:41:57 +0000823Since aliases are only a second name, some restrictions apply, of which
824some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000825
Rafael Espindola64c1e182014-06-03 02:41:57 +0000826* The expression defining the aliasee must be computable at assembly
827 time. Since it is just a name, no relocations can be used.
828
829* No alias in the expression can be weak as the possibility of the
830 intermediate alias being overridden cannot be represented in an
831 object file.
832
833* No global value in the expression can be a declaration, since that
834 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000835
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000836.. _langref_ifunc:
837
838IFuncs
839-------
840
841IFuncs, like as aliases, don't create any new data or func. They are just a new
842symbol that dynamic linker resolves at runtime by calling a resolver function.
843
844IFuncs have a name and a resolver that is a function called by dynamic linker
845that returns address of another function associated with the name.
846
847IFunc may have an optional :ref:`linkage type <linkage>` and an optional
848:ref:`visibility style <visibility>`.
849
850Syntax::
851
852 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
853
854
David Majnemerdad0a642014-06-27 18:19:56 +0000855.. _langref_comdats:
856
857Comdats
858-------
859
860Comdat IR provides access to COFF and ELF object file COMDAT functionality.
861
Sean Silvaa1190322015-08-06 22:56:48 +0000862Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000863specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000864that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000865aliasee computes to, if any.
866
867Comdats have a selection kind to provide input on how the linker should
868choose between keys in two different object files.
869
870Syntax::
871
872 $<Name> = comdat SelectionKind
873
874The selection kind must be one of the following:
875
876``any``
877 The linker may choose any COMDAT key, the choice is arbitrary.
878``exactmatch``
879 The linker may choose any COMDAT key but the sections must contain the
880 same data.
881``largest``
882 The linker will choose the section containing the largest COMDAT key.
883``noduplicates``
884 The linker requires that only section with this COMDAT key exist.
885``samesize``
886 The linker may choose any COMDAT key but the sections must contain the
887 same amount of data.
888
Sam Cleggea7cace2018-01-09 23:43:14 +0000889Note that the Mach-O platform doesn't support COMDATs, and ELF and WebAssembly
890only support ``any`` as a selection kind.
David Majnemerdad0a642014-06-27 18:19:56 +0000891
892Here is an example of a COMDAT group where a function will only be selected if
893the COMDAT key's section is the largest:
894
Renato Golin124f2592016-07-20 12:16:38 +0000895.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000896
897 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000898 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000899
Rafael Espindola83a362c2015-01-06 22:55:16 +0000900 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000901 ret void
902 }
903
Rafael Espindola83a362c2015-01-06 22:55:16 +0000904As a syntactic sugar the ``$name`` can be omitted if the name is the same as
905the global name:
906
Renato Golin124f2592016-07-20 12:16:38 +0000907.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000908
909 $foo = comdat any
910 @foo = global i32 2, comdat
911
912
David Majnemerdad0a642014-06-27 18:19:56 +0000913In a COFF object file, this will create a COMDAT section with selection kind
914``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
915and another COMDAT section with selection kind
916``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000917section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000918
919There are some restrictions on the properties of the global object.
920It, or an alias to it, must have the same name as the COMDAT group when
921targeting COFF.
922The contents and size of this object may be used during link-time to determine
923which COMDAT groups get selected depending on the selection kind.
924Because the name of the object must match the name of the COMDAT group, the
925linkage of the global object must not be local; local symbols can get renamed
926if a collision occurs in the symbol table.
927
928The combined use of COMDATS and section attributes may yield surprising results.
929For example:
930
Renato Golin124f2592016-07-20 12:16:38 +0000931.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000932
933 $foo = comdat any
934 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000935 @g1 = global i32 42, section "sec", comdat($foo)
936 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000937
938From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000939with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000940COMDAT groups and COMDATs, at the object file level, are represented by
941sections.
942
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000943Note that certain IR constructs like global variables and functions may
944create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000945COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000946in individual sections (e.g. when `-data-sections` or `-function-sections`
947is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000948
Sean Silvab084af42012-12-07 10:36:55 +0000949.. _namedmetadatastructure:
950
951Named Metadata
952--------------
953
954Named metadata is a collection of metadata. :ref:`Metadata
955nodes <metadata>` (but not metadata strings) are the only valid
956operands for a named metadata.
957
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000958#. Named metadata are represented as a string of characters with the
959 metadata prefix. The rules for metadata names are the same as for
960 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
961 are still valid, which allows any character to be part of a name.
962
Sean Silvab084af42012-12-07 10:36:55 +0000963Syntax::
964
965 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000966 !0 = !{!"zero"}
967 !1 = !{!"one"}
968 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000969 ; A named metadata.
970 !name = !{!0, !1, !2}
971
972.. _paramattrs:
973
974Parameter Attributes
975--------------------
976
977The return type and each parameter of a function type may have a set of
978*parameter attributes* associated with them. Parameter attributes are
979used to communicate additional information about the result or
980parameters of a function. Parameter attributes are considered to be part
981of the function, not of the function type, so functions with different
982parameter attributes can have the same function type.
983
984Parameter attributes are simple keywords that follow the type specified.
985If multiple parameter attributes are needed, they are space separated.
986For example:
987
988.. code-block:: llvm
989
990 declare i32 @printf(i8* noalias nocapture, ...)
991 declare i32 @atoi(i8 zeroext)
992 declare signext i8 @returns_signed_char()
993
994Note that any attributes for the function result (``nounwind``,
995``readonly``) come immediately after the argument list.
996
997Currently, only the following parameter attributes are defined:
998
999``zeroext``
1000 This indicates to the code generator that the parameter or return
1001 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +00001002 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +00001003``signext``
1004 This indicates to the code generator that the parameter or return
1005 value should be sign-extended to the extent required by the target's
1006 ABI (which is usually 32-bits) by the caller (for a parameter) or
1007 the callee (for a return value).
1008``inreg``
1009 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +00001010 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +00001011 a function call or return (usually, by putting it in a register as
1012 opposed to memory, though some targets use it to distinguish between
1013 two different kinds of registers). Use of this attribute is
1014 target-specific.
1015``byval``
1016 This indicates that the pointer parameter should really be passed by
1017 value to the function. The attribute implies that a hidden copy of
1018 the pointee is made between the caller and the callee, so the callee
1019 is unable to modify the value in the caller. This attribute is only
1020 valid on LLVM pointer arguments. It is generally used to pass
1021 structs and arrays by value, but is also valid on pointers to
1022 scalars. The copy is considered to belong to the caller not the
1023 callee (for example, ``readonly`` functions should not write to
1024 ``byval`` parameters). This is not a valid attribute for return
1025 values.
1026
1027 The byval attribute also supports specifying an alignment with the
1028 align attribute. It indicates the alignment of the stack slot to
1029 form and the known alignment of the pointer specified to the call
1030 site. If the alignment is not specified, then the code generator
1031 makes a target-specific assumption.
1032
Reid Klecknera534a382013-12-19 02:14:12 +00001033.. _attr_inalloca:
1034
1035``inalloca``
1036
Reid Kleckner60d3a832014-01-16 22:59:24 +00001037 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001038 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001039 be a pointer to stack memory produced by an ``alloca`` instruction.
1040 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001041 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001042 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001043
Reid Kleckner436c42e2014-01-17 23:58:17 +00001044 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001045 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001046 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001047 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001048 ``inalloca`` attribute also disables LLVM's implicit lowering of
1049 large aggregate return values, which means that frontend authors
1050 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001051
Reid Kleckner60d3a832014-01-16 22:59:24 +00001052 When the call site is reached, the argument allocation must have
1053 been the most recent stack allocation that is still live, or the
Eli Friedman0f522bd2018-07-25 18:26:38 +00001054 behavior is undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001055 space after an argument allocation and before its call site, but it
1056 must be cleared off with :ref:`llvm.stackrestore
1057 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001058
1059 See :doc:`InAlloca` for more information on how to use this
1060 attribute.
1061
Sean Silvab084af42012-12-07 10:36:55 +00001062``sret``
1063 This indicates that the pointer parameter specifies the address of a
1064 structure that is the return value of the function in the source
1065 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001066 loads and stores to the structure may be assumed by the callee not
1067 to trap and to be properly aligned. This is not a valid attribute
1068 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001069
Daniel Neilson1e687242018-01-19 17:13:12 +00001070.. _attr_align:
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001071
Hal Finkelccc70902014-07-22 16:58:55 +00001072``align <n>``
1073 This indicates that the pointer value may be assumed by the optimizer to
1074 have the specified alignment.
1075
1076 Note that this attribute has additional semantics when combined with the
1077 ``byval`` attribute.
1078
Sean Silva1703e702014-04-08 21:06:22 +00001079.. _noalias:
1080
Sean Silvab084af42012-12-07 10:36:55 +00001081``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001082 This indicates that objects accessed via pointer values
1083 :ref:`based <pointeraliasing>` on the argument or return value are not also
1084 accessed, during the execution of the function, via pointer values not
1085 *based* on the argument or return value. The attribute on a return value
1086 also has additional semantics described below. The caller shares the
1087 responsibility with the callee for ensuring that these requirements are met.
1088 For further details, please see the discussion of the NoAlias response in
1089 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001090
1091 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001092 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001093
1094 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001095 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1096 attribute on return values are stronger than the semantics of the attribute
1097 when used on function arguments. On function return values, the ``noalias``
1098 attribute indicates that the function acts like a system memory allocation
1099 function, returning a pointer to allocated storage disjoint from the
1100 storage for any other object accessible to the caller.
1101
Sean Silvab084af42012-12-07 10:36:55 +00001102``nocapture``
1103 This indicates that the callee does not make any copies of the
1104 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001105 attribute for return values. Addresses used in volatile operations
1106 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001107
1108.. _nest:
1109
1110``nest``
1111 This indicates that the pointer parameter can be excised using the
1112 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001113 attribute for return values and can only be applied to one parameter.
1114
1115``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001116 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001117 value. This is a hint to the optimizer and code generator used when
1118 generating the caller, allowing value propagation, tail call optimization,
1119 and omission of register saves and restores in some cases; it is not
1120 checked or enforced when generating the callee. The parameter and the
1121 function return type must be valid operands for the
1122 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1123 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001124
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001125``nonnull``
1126 This indicates that the parameter or return pointer is not null. This
1127 attribute may only be applied to pointer typed parameters. This is not
Eli Friedman0f522bd2018-07-25 18:26:38 +00001128 checked or enforced by LLVM; if the parameter or return pointer is null,
1129 the behavior is undefined.
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001130
Hal Finkelb0407ba2014-07-18 15:51:28 +00001131``dereferenceable(<n>)``
1132 This indicates that the parameter or return pointer is dereferenceable. This
1133 attribute may only be applied to pointer typed parameters. A pointer that
1134 is dereferenceable can be loaded from speculatively without a risk of
1135 trapping. The number of bytes known to be dereferenceable must be provided
1136 in parentheses. It is legal for the number of bytes to be less than the
1137 size of the pointee type. The ``nonnull`` attribute does not imply
1138 dereferenceability (consider a pointer to one element past the end of an
1139 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1140 ``addrspace(0)`` (which is the default address space).
1141
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001142``dereferenceable_or_null(<n>)``
1143 This indicates that the parameter or return value isn't both
1144 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001145 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001146 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1147 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1148 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1149 and in other address spaces ``dereferenceable_or_null(<n>)``
1150 implies that a pointer is at least one of ``dereferenceable(<n>)``
1151 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001152 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001153 pointer typed parameters.
1154
Manman Renf46262e2016-03-29 17:37:21 +00001155``swiftself``
1156 This indicates that the parameter is the self/context parameter. This is not
1157 a valid attribute for return values and can only be applied to one
1158 parameter.
1159
Manman Ren9bfd0d02016-04-01 21:41:15 +00001160``swifterror``
1161 This attribute is motivated to model and optimize Swift error handling. It
1162 can be applied to a parameter with pointer to pointer type or a
1163 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001164 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1165 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1166 the parameter or the alloca) can only be loaded and stored from, or used as
1167 a ``swifterror`` argument. This is not a valid attribute for return values
1168 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001169
1170 These constraints allow the calling convention to optimize access to
1171 ``swifterror`` variables by associating them with a specific register at
1172 call boundaries rather than placing them in memory. Since this does change
1173 the calling convention, a function which uses the ``swifterror`` attribute
1174 on a parameter is not ABI-compatible with one which does not.
1175
1176 These constraints also allow LLVM to assume that a ``swifterror`` argument
1177 does not alias any other memory visible within a function and that a
1178 ``swifterror`` alloca passed as an argument does not escape.
1179
Sean Silvab084af42012-12-07 10:36:55 +00001180.. _gc:
1181
Philip Reamesf80bbff2015-02-25 23:45:20 +00001182Garbage Collector Strategy Names
1183--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001184
Philip Reamesf80bbff2015-02-25 23:45:20 +00001185Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001186string:
1187
1188.. code-block:: llvm
1189
1190 define void @f() gc "name" { ... }
1191
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001192The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001193<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001194strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001195named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001196garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001197which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001198
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001199.. _prefixdata:
1200
1201Prefix Data
1202-----------
1203
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001204Prefix data is data associated with a function which the code
1205generator will emit immediately before the function's entrypoint.
1206The purpose of this feature is to allow frontends to associate
1207language-specific runtime metadata with specific functions and make it
1208available through the function pointer while still allowing the
1209function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001210
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001211To access the data for a given function, a program may bitcast the
1212function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001213index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001214the prefix data. For instance, take the example of a function annotated
1215with a single ``i32``,
1216
1217.. code-block:: llvm
1218
1219 define void @f() prefix i32 123 { ... }
1220
1221The prefix data can be referenced as,
1222
1223.. code-block:: llvm
1224
David Blaikie16a97eb2015-03-04 22:02:58 +00001225 %0 = bitcast void* () @f to i32*
1226 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001227 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001228
1229Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001230of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231beginning of the prefix data is aligned. This means that if the size
1232of the prefix data is not a multiple of the alignment size, the
1233function's entrypoint will not be aligned. If alignment of the
1234function's entrypoint is desired, padding must be added to the prefix
1235data.
1236
Sean Silvaa1190322015-08-06 22:56:48 +00001237A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001238to the ``available_externally`` linkage in that the data may be used by the
1239optimizers but will not be emitted in the object file.
1240
1241.. _prologuedata:
1242
1243Prologue Data
1244-------------
1245
1246The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1247be inserted prior to the function body. This can be used for enabling
1248function hot-patching and instrumentation.
1249
1250To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001251have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001252bytes which decode to a sequence of machine instructions, valid for the
1253module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001254the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001255the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001256definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001257makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001258
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001259A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001260which encodes the ``nop`` instruction:
1261
Renato Golin124f2592016-07-20 12:16:38 +00001262.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001263
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001264 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001265
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001266Generally prologue data can be formed by encoding a relative branch instruction
1267which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001268x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1269
Renato Golin124f2592016-07-20 12:16:38 +00001270.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001271
1272 %0 = type <{ i8, i8, i8* }>
1273
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001274 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001275
Sean Silvaa1190322015-08-06 22:56:48 +00001276A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001277to the ``available_externally`` linkage in that the data may be used by the
1278optimizers but will not be emitted in the object file.
1279
David Majnemer7fddecc2015-06-17 20:52:32 +00001280.. _personalityfn:
1281
1282Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001283--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001284
1285The ``personality`` attribute permits functions to specify what function
1286to use for exception handling.
1287
Bill Wendling63b88192013-02-06 06:52:58 +00001288.. _attrgrp:
1289
1290Attribute Groups
1291----------------
1292
1293Attribute groups are groups of attributes that are referenced by objects within
1294the IR. They are important for keeping ``.ll`` files readable, because a lot of
1295functions will use the same set of attributes. In the degenerative case of a
1296``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1297group will capture the important command line flags used to build that file.
1298
1299An attribute group is a module-level object. To use an attribute group, an
1300object references the attribute group's ID (e.g. ``#37``). An object may refer
1301to more than one attribute group. In that situation, the attributes from the
1302different groups are merged.
1303
1304Here is an example of attribute groups for a function that should always be
1305inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1306
1307.. code-block:: llvm
1308
1309 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001310 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001311
1312 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001313 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001314
1315 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1316 define void @f() #0 #1 { ... }
1317
Sean Silvab084af42012-12-07 10:36:55 +00001318.. _fnattrs:
1319
1320Function Attributes
1321-------------------
1322
1323Function attributes are set to communicate additional information about
1324a function. Function attributes are considered to be part of the
1325function, not of the function type, so functions with different function
1326attributes can have the same function type.
1327
1328Function attributes are simple keywords that follow the type specified.
1329If multiple attributes are needed, they are space separated. For
1330example:
1331
1332.. code-block:: llvm
1333
1334 define void @f() noinline { ... }
1335 define void @f() alwaysinline { ... }
1336 define void @f() alwaysinline optsize { ... }
1337 define void @f() optsize { ... }
1338
Sean Silvab084af42012-12-07 10:36:55 +00001339``alignstack(<n>)``
1340 This attribute indicates that, when emitting the prologue and
1341 epilogue, the backend should forcibly align the stack pointer.
1342 Specify the desired alignment, which must be a power of two, in
1343 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001344``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1345 This attribute indicates that the annotated function will always return at
1346 least a given number of bytes (or null). Its arguments are zero-indexed
1347 parameter numbers; if one argument is provided, then it's assumed that at
1348 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1349 returned pointer. If two are provided, then it's assumed that
1350 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1351 available. The referenced parameters must be integer types. No assumptions
1352 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001353``alwaysinline``
1354 This attribute indicates that the inliner should attempt to inline
1355 this function into callers whenever possible, ignoring any active
1356 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001357``builtin``
1358 This indicates that the callee function at a call site should be
1359 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001360 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001361 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001362 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001363``cold``
1364 This attribute indicates that this function is rarely called. When
1365 computing edge weights, basic blocks post-dominated by a cold
1366 function call are also considered to be cold; and, thus, given low
1367 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001368``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001369 In some parallel execution models, there exist operations that cannot be
1370 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001371 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001372
Justin Lebar58535b12016-02-17 17:46:41 +00001373 The ``convergent`` attribute may appear on functions or call/invoke
1374 instructions. When it appears on a function, it indicates that calls to
1375 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001376 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001377 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001378 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001379
Justin Lebar58535b12016-02-17 17:46:41 +00001380 When it appears on a call/invoke, the ``convergent`` attribute indicates
1381 that we should treat the call as though we're calling a convergent
1382 function. This is particularly useful on indirect calls; without this we
1383 may treat such calls as though the target is non-convergent.
1384
1385 The optimizer may remove the ``convergent`` attribute on functions when it
1386 can prove that the function does not execute any convergent operations.
1387 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1388 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001389``inaccessiblememonly``
1390 This attribute indicates that the function may only access memory that
1391 is not accessible by the module being compiled. This is a weaker form
Eli Friedman0f522bd2018-07-25 18:26:38 +00001392 of ``readnone``. If the function reads or writes other memory, the
1393 behavior is undefined.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001394``inaccessiblemem_or_argmemonly``
1395 This attribute indicates that the function may only access memory that is
1396 either not accessible by the module being compiled, or is pointed to
Eli Friedman0f522bd2018-07-25 18:26:38 +00001397 by its pointer arguments. This is a weaker form of ``argmemonly``. If the
1398 function reads or writes other memory, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001399``inlinehint``
1400 This attribute indicates that the source code contained a hint that
1401 inlining this function is desirable (such as the "inline" keyword in
1402 C/C++). It is just a hint; it imposes no requirements on the
1403 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001404``jumptable``
1405 This attribute indicates that the function should be added to a
1406 jump-instruction table at code-generation time, and that all address-taken
1407 references to this function should be replaced with a reference to the
1408 appropriate jump-instruction-table function pointer. Note that this creates
1409 a new pointer for the original function, which means that code that depends
1410 on function-pointer identity can break. So, any function annotated with
1411 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001412``minsize``
1413 This attribute suggests that optimization passes and code generator
1414 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001415 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001416 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001417``naked``
1418 This attribute disables prologue / epilogue emission for the
1419 function. This can have very system-specific consequences.
Sumanth Gundapaneni6af104e2017-07-28 22:26:22 +00001420``no-jump-tables``
1421 When this attribute is set to true, the jump tables and lookup tables that
1422 can be generated from a switch case lowering are disabled.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001423``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001424 This indicates that the callee function at a call site is not recognized as
1425 a built-in function. LLVM will retain the original call and not replace it
1426 with equivalent code based on the semantics of the built-in function, unless
1427 the call site uses the ``builtin`` attribute. This is valid at call sites
1428 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001429``noduplicate``
1430 This attribute indicates that calls to the function cannot be
1431 duplicated. A call to a ``noduplicate`` function may be moved
1432 within its parent function, but may not be duplicated within
1433 its parent function.
1434
1435 A function containing a ``noduplicate`` call may still
1436 be an inlining candidate, provided that the call is not
1437 duplicated by inlining. That implies that the function has
1438 internal linkage and only has one call site, so the original
1439 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001440``noimplicitfloat``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001441 This attributes disables implicit floating-point instructions.
Sean Silvab084af42012-12-07 10:36:55 +00001442``noinline``
1443 This attribute indicates that the inliner should never inline this
1444 function in any situation. This attribute may not be used together
1445 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001446``nonlazybind``
1447 This attribute suppresses lazy symbol binding for the function. This
1448 may make calls to the function faster, at the cost of extra program
1449 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001450``noredzone``
1451 This attribute indicates that the code generator should not use a
1452 red zone, even if the target-specific ABI normally permits it.
Kristina Brooks312fcc12018-10-18 03:14:37 +00001453``indirect-tls-seg-refs``
1454 This attribute indicates that the code generator should not use
1455 direct TLS access through segment registers, even if the
1456 target-specific ABI normally permits it.
Sean Silvab084af42012-12-07 10:36:55 +00001457``noreturn``
1458 This function attribute indicates that the function never returns
1459 normally. This produces undefined behavior at runtime if the
1460 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001461``norecurse``
1462 This function attribute indicates that the function does not call itself
1463 either directly or indirectly down any possible call path. This produces
1464 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001465``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001466 This function attribute indicates that the function never raises an
1467 exception. If the function does raise an exception, its runtime
1468 behavior is undefined. However, functions marked nounwind may still
1469 trap or generate asynchronous exceptions. Exception handling schemes
1470 that are recognized by LLVM to handle asynchronous exceptions, such
1471 as SEH, will still provide their implementation defined semantics.
Manoj Gupta77eeac32018-07-09 22:27:23 +00001472``"null-pointer-is-valid"``
1473 If ``"null-pointer-is-valid"`` is set to ``"true"``, then ``null`` address
1474 in address-space 0 is considered to be a valid address for memory loads and
1475 stores. Any analysis or optimization should not treat dereferencing a
1476 pointer to ``null`` as undefined behavior in this function.
1477 Note: Comparing address of a global variable to ``null`` may still
1478 evaluate to false because of a limitation in querying this attribute inside
1479 constant expressions.
Matt Morehouse31819412018-03-22 19:50:10 +00001480``optforfuzzing``
1481 This attribute indicates that this function should be optimized
1482 for maximum fuzzing signal.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001483``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001484 This function attribute indicates that most optimization passes will skip
1485 this function, with the exception of interprocedural optimization passes.
1486 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001487 This attribute cannot be used together with the ``alwaysinline``
1488 attribute; this attribute is also incompatible
1489 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001490
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001491 This attribute requires the ``noinline`` attribute to be specified on
1492 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001493 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001494 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001495``optsize``
1496 This attribute suggests that optimization passes and code generator
1497 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001498 and otherwise do optimizations specifically to reduce code size as
1499 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001500``"patchable-function"``
1501 This attribute tells the code generator that the code
1502 generated for this function needs to follow certain conventions that
1503 make it possible for a runtime function to patch over it later.
1504 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001505 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001506
1507 * ``"prologue-short-redirect"`` - This style of patchable
1508 function is intended to support patching a function prologue to
1509 redirect control away from the function in a thread safe
1510 manner. It guarantees that the first instruction of the
1511 function will be large enough to accommodate a short jump
1512 instruction, and will be sufficiently aligned to allow being
1513 fully changed via an atomic compare-and-swap instruction.
1514 While the first requirement can be satisfied by inserting large
1515 enough NOP, LLVM can and will try to re-purpose an existing
1516 instruction (i.e. one that would have to be emitted anyway) as
1517 the patchable instruction larger than a short jump.
1518
1519 ``"prologue-short-redirect"`` is currently only supported on
1520 x86-64.
1521
1522 This attribute by itself does not imply restrictions on
1523 inter-procedural optimizations. All of the semantic effects the
1524 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001525``"probe-stack"``
1526 This attribute indicates that the function will trigger a guard region
1527 in the end of the stack. It ensures that accesses to the stack must be
1528 no further apart than the size of the guard region to a previous
1529 access of the stack. It takes one required string value, the name of
1530 the stack probing function that will be called.
1531
1532 If a function that has a ``"probe-stack"`` attribute is inlined into
1533 a function with another ``"probe-stack"`` attribute, the resulting
1534 function has the ``"probe-stack"`` attribute of the caller. If a
1535 function that has a ``"probe-stack"`` attribute is inlined into a
1536 function that has no ``"probe-stack"`` attribute at all, the resulting
1537 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001538``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001539 On a function, this attribute indicates that the function computes its
1540 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001541 without dereferencing any pointer arguments or otherwise accessing
1542 any mutable state (e.g. memory, control registers, etc) visible to
1543 caller functions. It does not write through any pointer arguments
1544 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001545 to callers. This means while it cannot unwind exceptions by calling
1546 the ``C++`` exception throwing methods (since they write to memory), there may
1547 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1548 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001549
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001550 On an argument, this attribute indicates that the function does not
1551 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001552 memory that the pointer points to if accessed through other pointers.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001553
1554 If a readnone function reads or writes memory visible to the program, or
1555 has other side-effects, the behavior is undefined. If a function reads from
1556 or writes to a readnone pointer argument, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001557``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001558 On a function, this attribute indicates that the function does not write
1559 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001560 modify any state (e.g. memory, control registers, etc) visible to
1561 caller functions. It may dereference pointer arguments and read
1562 state that may be set in the caller. A readonly function always
1563 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001564 called with the same set of arguments and global state. This means while it
1565 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1566 (since they write to memory), there may be non-``C++`` mechanisms that throw
1567 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001568
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001569 On an argument, this attribute indicates that the function does not write
1570 through this pointer argument, even though it may write to the memory that
1571 the pointer points to.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001572
1573 If a readonly function writes memory visible to the program, or
1574 has other side-effects, the behavior is undefined. If a function writes to
1575 a readonly pointer argument, the behavior is undefined.
whitequark08b20352017-06-22 23:22:36 +00001576``"stack-probe-size"``
1577 This attribute controls the behavior of stack probes: either
1578 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1579 It defines the size of the guard region. It ensures that if the function
1580 may use more stack space than the size of the guard region, stack probing
1581 sequence will be emitted. It takes one required integer value, which
1582 is 4096 by default.
1583
1584 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1585 a function with another ``"stack-probe-size"`` attribute, the resulting
1586 function has the ``"stack-probe-size"`` attribute that has the lower
1587 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1588 inlined into a function that has no ``"stack-probe-size"`` attribute
1589 at all, the resulting function has the ``"stack-probe-size"`` attribute
1590 of the callee.
Hans Wennborg89c35fc2018-02-23 13:46:25 +00001591``"no-stack-arg-probe"``
1592 This attribute disables ABI-required stack probes, if any.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001593``writeonly``
1594 On a function, this attribute indicates that the function may write to but
1595 does not read from memory.
1596
1597 On an argument, this attribute indicates that the function may write to but
1598 does not read through this pointer argument (even though it may read from
1599 the memory that the pointer points to).
Eli Friedman0f522bd2018-07-25 18:26:38 +00001600
1601 If a writeonly function reads memory visible to the program, or
1602 has other side-effects, the behavior is undefined. If a function reads
1603 from a writeonly pointer argument, the behavior is undefined.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001604``argmemonly``
1605 This attribute indicates that the only memory accesses inside function are
1606 loads and stores from objects pointed to by its pointer-typed arguments,
1607 with arbitrary offsets. Or in other words, all memory operations in the
1608 function can refer to memory only using pointers based on its function
1609 arguments.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001610
Igor Laevsky39d662f2015-07-11 10:30:36 +00001611 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1612 in order to specify that function reads only from its arguments.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001613
1614 If an argmemonly function reads or writes memory other than the pointer
1615 arguments, or has other side-effects, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001616``returns_twice``
1617 This attribute indicates that this function can return twice. The C
1618 ``setjmp`` is an example of such a function. The compiler disables
1619 some optimizations (like tail calls) in the caller of these
1620 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001621``safestack``
1622 This attribute indicates that
1623 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1624 protection is enabled for this function.
1625
1626 If a function that has a ``safestack`` attribute is inlined into a
1627 function that doesn't have a ``safestack`` attribute or which has an
1628 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1629 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001630``sanitize_address``
1631 This attribute indicates that AddressSanitizer checks
1632 (dynamic address safety analysis) are enabled for this function.
1633``sanitize_memory``
1634 This attribute indicates that MemorySanitizer checks (dynamic detection
1635 of accesses to uninitialized memory) are enabled for this function.
1636``sanitize_thread``
1637 This attribute indicates that ThreadSanitizer checks
1638 (dynamic thread safety analysis) are enabled for this function.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00001639``sanitize_hwaddress``
1640 This attribute indicates that HWAddressSanitizer checks
1641 (dynamic address safety analysis based on tagged pointers) are enabled for
1642 this function.
Chandler Carruth664aa862018-09-04 12:38:00 +00001643``speculative_load_hardening``
1644 This attribute indicates that
1645 `Speculative Load Hardening <https://llvm.org/docs/SpeculativeLoadHardening.html>`_
Zola Bridgescbac3ad2018-11-27 19:56:46 +00001646 should be enabled for the function body.
1647
1648 Speculative Load Hardening is a best-effort mitigation against
1649 information leak attacks that make use of control flow
1650 miss-speculation - specifically miss-speculation of whether a branch
1651 is taken or not. Typically vulnerabilities enabling such attacks are
1652 classified as "Spectre variant #1". Notably, this does not attempt to
1653 mitigate against miss-speculation of branch target, classified as
1654 "Spectre variant #2" vulnerabilities.
Chandler Carruth664aa862018-09-04 12:38:00 +00001655
1656 When inlining, the attribute is sticky. Inlining a function that carries
1657 this attribute will cause the caller to gain the attribute. This is intended
1658 to provide a maximally conservative model where the code in a function
1659 annotated with this attribute will always (even after inlining) end up
1660 hardened.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001661``speculatable``
1662 This function attribute indicates that the function does not have any
1663 effects besides calculating its result and does not have undefined behavior.
1664 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001665 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001666 externally observable. This attribute is only valid on functions
1667 and declarations, not on individual call sites. If a function is
1668 incorrectly marked as speculatable and really does exhibit
1669 undefined behavior, the undefined behavior may be observed even
1670 if the call site is dead code.
1671
Sean Silvab084af42012-12-07 10:36:55 +00001672``ssp``
1673 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001674 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001675 placed on the stack before the local variables that's checked upon
1676 return from the function to see if it has been overwritten. A
1677 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001678 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001679
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001680 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1681 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1682 - Calls to alloca() with variable sizes or constant sizes greater than
1683 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001684
Josh Magee24c7f062014-02-01 01:36:16 +00001685 Variables that are identified as requiring a protector will be arranged
1686 on the stack such that they are adjacent to the stack protector guard.
1687
Sean Silvab084af42012-12-07 10:36:55 +00001688 If a function that has an ``ssp`` attribute is inlined into a
1689 function that doesn't have an ``ssp`` attribute, then the resulting
1690 function will have an ``ssp`` attribute.
1691``sspreq``
1692 This attribute indicates that the function should *always* emit a
1693 stack smashing protector. This overrides the ``ssp`` function
1694 attribute.
1695
Josh Magee24c7f062014-02-01 01:36:16 +00001696 Variables that are identified as requiring a protector will be arranged
1697 on the stack such that they are adjacent to the stack protector guard.
1698 The specific layout rules are:
1699
1700 #. Large arrays and structures containing large arrays
1701 (``>= ssp-buffer-size``) are closest to the stack protector.
1702 #. Small arrays and structures containing small arrays
1703 (``< ssp-buffer-size``) are 2nd closest to the protector.
1704 #. Variables that have had their address taken are 3rd closest to the
1705 protector.
1706
Sean Silvab084af42012-12-07 10:36:55 +00001707 If a function that has an ``sspreq`` attribute is inlined into a
1708 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001709 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1710 an ``sspreq`` attribute.
1711``sspstrong``
1712 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001713 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001714 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001715 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001716
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001717 - Arrays of any size and type
1718 - Aggregates containing an array of any size and type.
1719 - Calls to alloca().
1720 - Local variables that have had their address taken.
1721
Josh Magee24c7f062014-02-01 01:36:16 +00001722 Variables that are identified as requiring a protector will be arranged
1723 on the stack such that they are adjacent to the stack protector guard.
1724 The specific layout rules are:
1725
1726 #. Large arrays and structures containing large arrays
1727 (``>= ssp-buffer-size``) are closest to the stack protector.
1728 #. Small arrays and structures containing small arrays
1729 (``< ssp-buffer-size``) are 2nd closest to the protector.
1730 #. Variables that have had their address taken are 3rd closest to the
1731 protector.
1732
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001733 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001734
1735 If a function that has an ``sspstrong`` attribute is inlined into a
1736 function that doesn't have an ``sspstrong`` attribute, then the
1737 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001738``strictfp``
1739 This attribute indicates that the function was called from a scope that
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001740 requires strict floating-point semantics. LLVM will not attempt any
1741 optimizations that require assumptions about the floating-point rounding
1742 mode or that might alter the state of floating-point status flags that
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001743 might otherwise be set or cleared by calling this function.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001744``"thunk"``
1745 This attribute indicates that the function will delegate to some other
1746 function with a tail call. The prototype of a thunk should not be used for
1747 optimization purposes. The caller is expected to cast the thunk prototype to
1748 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001749``uwtable``
1750 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001751 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001752 show that no exceptions passes by it. This is normally the case for
1753 the ELF x86-64 abi, but it can be disabled for some compilation
1754 units.
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001755``nocf_check``
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001756 This attribute indicates that no control-flow check will be performed on
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001757 the attributed entity. It disables -fcf-protection=<> for a specific
1758 entity to fine grain the HW control flow protection mechanism. The flag
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001759 is target independent and currently appertains to a function or function
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001760 pointer.
Vlad Tsyrklevichd17f61e2018-04-03 20:10:40 +00001761``shadowcallstack``
1762 This attribute indicates that the ShadowCallStack checks are enabled for
1763 the function. The instrumentation checks that the return address for the
1764 function has not changed between the function prolog and eiplog. It is
1765 currently x86_64-specific.
Sean Silvab084af42012-12-07 10:36:55 +00001766
Javed Absarf3d79042017-05-11 12:28:08 +00001767.. _glattrs:
1768
1769Global Attributes
1770-----------------
1771
1772Attributes may be set to communicate additional information about a global variable.
1773Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1774are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001775
1776.. _opbundles:
1777
1778Operand Bundles
1779---------------
1780
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001781Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001782with certain LLVM instructions (currently only ``call`` s and
1783``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001784incorrect and will change program semantics.
1785
1786Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001787
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001788 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001789 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1790 bundle operand ::= SSA value
1791 tag ::= string constant
1792
1793Operand bundles are **not** part of a function's signature, and a
1794given function may be called from multiple places with different kinds
1795of operand bundles. This reflects the fact that the operand bundles
1796are conceptually a part of the ``call`` (or ``invoke``), not the
1797callee being dispatched to.
1798
1799Operand bundles are a generic mechanism intended to support
1800runtime-introspection-like functionality for managed languages. While
1801the exact semantics of an operand bundle depend on the bundle tag,
1802there are certain limitations to how much the presence of an operand
1803bundle can influence the semantics of a program. These restrictions
1804are described as the semantics of an "unknown" operand bundle. As
1805long as the behavior of an operand bundle is describable within these
1806restrictions, LLVM does not need to have special knowledge of the
1807operand bundle to not miscompile programs containing it.
1808
David Majnemer34cacb42015-10-22 01:46:38 +00001809- The bundle operands for an unknown operand bundle escape in unknown
1810 ways before control is transferred to the callee or invokee.
1811- Calls and invokes with operand bundles have unknown read / write
1812 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001813 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001814 callsite specific attributes.
1815- An operand bundle at a call site cannot change the implementation
1816 of the called function. Inter-procedural optimizations work as
1817 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001818
Sanjoy Dascdafd842015-11-11 21:38:02 +00001819More specific types of operand bundles are described below.
1820
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001821.. _deopt_opbundles:
1822
Sanjoy Dascdafd842015-11-11 21:38:02 +00001823Deoptimization Operand Bundles
1824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1825
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001826Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001827operand bundle tag. These operand bundles represent an alternate
1828"safe" continuation for the call site they're attached to, and can be
1829used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001830specified call site. There can be at most one ``"deopt"`` operand
1831bundle attached to a call site. Exact details of deoptimization is
1832out of scope for the language reference, but it usually involves
1833rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001834
1835From the compiler's perspective, deoptimization operand bundles make
1836the call sites they're attached to at least ``readonly``. They read
1837through all of their pointer typed operands (even if they're not
1838otherwise escaped) and the entire visible heap. Deoptimization
1839operand bundles do not capture their operands except during
1840deoptimization, in which case control will not be returned to the
1841compiled frame.
1842
Sanjoy Das2d161452015-11-18 06:23:38 +00001843The inliner knows how to inline through calls that have deoptimization
1844operand bundles. Just like inlining through a normal call site
1845involves composing the normal and exceptional continuations, inlining
1846through a call site with a deoptimization operand bundle needs to
1847appropriately compose the "safe" deoptimization continuation. The
1848inliner does this by prepending the parent's deoptimization
1849continuation to every deoptimization continuation in the inlined body.
1850E.g. inlining ``@f`` into ``@g`` in the following example
1851
1852.. code-block:: llvm
1853
1854 define void @f() {
1855 call void @x() ;; no deopt state
1856 call void @y() [ "deopt"(i32 10) ]
1857 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1858 ret void
1859 }
1860
1861 define void @g() {
1862 call void @f() [ "deopt"(i32 20) ]
1863 ret void
1864 }
1865
1866will result in
1867
1868.. code-block:: llvm
1869
1870 define void @g() {
1871 call void @x() ;; still no deopt state
1872 call void @y() [ "deopt"(i32 20, i32 10) ]
1873 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1874 ret void
1875 }
1876
1877It is the frontend's responsibility to structure or encode the
1878deoptimization state in a way that syntactically prepending the
1879caller's deoptimization state to the callee's deoptimization state is
1880semantically equivalent to composing the caller's deoptimization
1881continuation after the callee's deoptimization continuation.
1882
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001883.. _ob_funclet:
1884
David Majnemer3bb88c02015-12-15 21:27:27 +00001885Funclet Operand Bundles
1886^^^^^^^^^^^^^^^^^^^^^^^
1887
1888Funclet operand bundles are characterized by the ``"funclet"``
1889operand bundle tag. These operand bundles indicate that a call site
1890is within a particular funclet. There can be at most one
1891``"funclet"`` operand bundle attached to a call site and it must have
1892exactly one bundle operand.
1893
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001894If any funclet EH pads have been "entered" but not "exited" (per the
1895`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1896it is undefined behavior to execute a ``call`` or ``invoke`` which:
1897
1898* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1899 intrinsic, or
1900* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1901 not-yet-exited funclet EH pad.
1902
1903Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1904executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1905
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001906GC Transition Operand Bundles
1907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1908
1909GC transition operand bundles are characterized by the
1910``"gc-transition"`` operand bundle tag. These operand bundles mark a
1911call as a transition between a function with one GC strategy to a
1912function with a different GC strategy. If coordinating the transition
1913between GC strategies requires additional code generation at the call
1914site, these bundles may contain any values that are needed by the
1915generated code. For more details, see :ref:`GC Transitions
1916<gc_transition_args>`.
1917
Sean Silvab084af42012-12-07 10:36:55 +00001918.. _moduleasm:
1919
1920Module-Level Inline Assembly
1921----------------------------
1922
1923Modules may contain "module-level inline asm" blocks, which corresponds
1924to the GCC "file scope inline asm" blocks. These blocks are internally
1925concatenated by LLVM and treated as a single unit, but may be separated
1926in the ``.ll`` file if desired. The syntax is very simple:
1927
1928.. code-block:: llvm
1929
1930 module asm "inline asm code goes here"
1931 module asm "more can go here"
1932
1933The strings can contain any character by escaping non-printable
1934characters. The escape sequence used is simply "\\xx" where "xx" is the
1935two digit hex code for the number.
1936
James Y Knightbc832ed2015-07-08 18:08:36 +00001937Note that the assembly string *must* be parseable by LLVM's integrated assembler
1938(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001939
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001940.. _langref_datalayout:
1941
Sean Silvab084af42012-12-07 10:36:55 +00001942Data Layout
1943-----------
1944
1945A module may specify a target specific data layout string that specifies
1946how data is to be laid out in memory. The syntax for the data layout is
1947simply:
1948
1949.. code-block:: llvm
1950
1951 target datalayout = "layout specification"
1952
1953The *layout specification* consists of a list of specifications
1954separated by the minus sign character ('-'). Each specification starts
1955with a letter and may include other information after the letter to
1956define some aspect of the data layout. The specifications accepted are
1957as follows:
1958
1959``E``
1960 Specifies that the target lays out data in big-endian form. That is,
1961 the bits with the most significance have the lowest address
1962 location.
1963``e``
1964 Specifies that the target lays out data in little-endian form. That
1965 is, the bits with the least significance have the lowest address
1966 location.
1967``S<size>``
1968 Specifies the natural alignment of the stack in bits. Alignment
1969 promotion of stack variables is limited to the natural stack
1970 alignment to avoid dynamic stack realignment. The stack alignment
1971 must be a multiple of 8-bits. If omitted, the natural stack
1972 alignment defaults to "unspecified", which does not prevent any
1973 alignment promotions.
Dylan McKayced2fe62018-02-19 09:56:22 +00001974``P<address space>``
1975 Specifies the address space that corresponds to program memory.
1976 Harvard architectures can use this to specify what space LLVM
1977 should place things such as functions into. If omitted, the
1978 program memory space defaults to the default address space of 0,
1979 which corresponds to a Von Neumann architecture that has code
1980 and data in the same space.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001981``A<address space>``
Dylan McKayced2fe62018-02-19 09:56:22 +00001982 Specifies the address space of objects created by '``alloca``'.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001983 Defaults to the default address space of 0.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001984``p[n]:<size>:<abi>:<pref>:<idx>``
Sean Silvab084af42012-12-07 10:36:55 +00001985 This specifies the *size* of a pointer and its ``<abi>`` and
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001986 ``<pref>``\erred alignments for address space ``n``. The fourth parameter
1987 ``<idx>`` is a size of index that used for address calculation. If not
1988 specified, the default index size is equal to the pointer size. All sizes
1989 are in bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001990 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001991 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001992``i<size>:<abi>:<pref>``
1993 This specifies the alignment for an integer type of a given bit
1994 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1995``v<size>:<abi>:<pref>``
1996 This specifies the alignment for a vector type of a given bit
1997 ``<size>``.
1998``f<size>:<abi>:<pref>``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001999 This specifies the alignment for a floating-point type of a given bit
Sean Silvab084af42012-12-07 10:36:55 +00002000 ``<size>``. Only values of ``<size>`` that are supported by the target
2001 will work. 32 (float) and 64 (double) are supported on all targets; 80
2002 or 128 (different flavors of long double) are also supported on some
2003 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00002004``a:<abi>:<pref>``
2005 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00002006``m:<mangling>``
Reid Klecknerf8b51c52018-03-16 20:13:32 +00002007 If present, specifies that llvm names are mangled in the output. Symbols
2008 prefixed with the mangling escape character ``\01`` are passed through
2009 directly to the assembler without the escape character. The mangling style
Hans Wennborgd4245ac2014-01-15 02:49:17 +00002010 options are
2011
2012 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
2013 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
2014 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
2015 symbols get a ``_`` prefix.
Reid Klecknerf8b51c52018-03-16 20:13:32 +00002016 * ``x``: Windows x86 COFF mangling: Private symbols get the usual prefix.
2017 Regular C symbols get a ``_`` prefix. Functions with ``__stdcall``,
2018 ``__fastcall``, and ``__vectorcall`` have custom mangling that appends
2019 ``@N`` where N is the number of bytes used to pass parameters. C++ symbols
2020 starting with ``?`` are not mangled in any way.
2021 * ``w``: Windows COFF mangling: Similar to ``x``, except that normal C
2022 symbols do not receive a ``_`` prefix.
Sean Silvab084af42012-12-07 10:36:55 +00002023``n<size1>:<size2>:<size3>...``
2024 This specifies a set of native integer widths for the target CPU in
2025 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
2026 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
2027 this set are considered to support most general arithmetic operations
2028 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00002029``ni:<address space0>:<address space1>:<address space2>...``
2030 This specifies pointer types with the specified address spaces
2031 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
2032 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00002033
Rafael Espindolaabdd7262014-01-06 21:40:24 +00002034On every specification that takes a ``<abi>:<pref>``, specifying the
2035``<pref>`` alignment is optional. If omitted, the preceding ``:``
2036should be omitted too and ``<pref>`` will be equal to ``<abi>``.
2037
Sean Silvab084af42012-12-07 10:36:55 +00002038When constructing the data layout for a given target, LLVM starts with a
2039default set of specifications which are then (possibly) overridden by
2040the specifications in the ``datalayout`` keyword. The default
2041specifications are given in this list:
2042
2043- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00002044- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
2045- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
2046 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002047- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00002048- ``i1:8:8`` - i1 is 8-bit (byte) aligned
2049- ``i8:8:8`` - i8 is 8-bit (byte) aligned
2050- ``i16:16:16`` - i16 is 16-bit aligned
2051- ``i32:32:32`` - i32 is 32-bit aligned
2052- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
2053 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002054- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002055- ``f32:32:32`` - float is 32-bit aligned
2056- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002057- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002058- ``v64:64:64`` - 64-bit vector is 64-bit aligned
2059- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00002060- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002061
2062When LLVM is determining the alignment for a given type, it uses the
2063following rules:
2064
2065#. If the type sought is an exact match for one of the specifications,
2066 that specification is used.
2067#. If no match is found, and the type sought is an integer type, then
2068 the smallest integer type that is larger than the bitwidth of the
2069 sought type is used. If none of the specifications are larger than
2070 the bitwidth then the largest integer type is used. For example,
2071 given the default specifications above, the i7 type will use the
2072 alignment of i8 (next largest) while both i65 and i256 will use the
2073 alignment of i64 (largest specified).
2074#. If no match is found, and the type sought is a vector type, then the
2075 largest vector type that is smaller than the sought vector type will
2076 be used as a fall back. This happens because <128 x double> can be
2077 implemented in terms of 64 <2 x double>, for example.
2078
2079The function of the data layout string may not be what you expect.
2080Notably, this is not a specification from the frontend of what alignment
2081the code generator should use.
2082
2083Instead, if specified, the target data layout is required to match what
2084the ultimate *code generator* expects. This string is used by the
2085mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00002086what the ultimate code generator uses. There is no way to generate IR
2087that does not embed this target-specific detail into the IR. If you
2088don't specify the string, the default specifications will be used to
2089generate a Data Layout and the optimization phases will operate
2090accordingly and introduce target specificity into the IR with respect to
2091these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00002092
Bill Wendling5cc90842013-10-18 23:41:25 +00002093.. _langref_triple:
2094
2095Target Triple
2096-------------
2097
2098A module may specify a target triple string that describes the target
2099host. The syntax for the target triple is simply:
2100
2101.. code-block:: llvm
2102
2103 target triple = "x86_64-apple-macosx10.7.0"
2104
2105The *target triple* string consists of a series of identifiers delimited
2106by the minus sign character ('-'). The canonical forms are:
2107
2108::
2109
2110 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2111 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2112
2113This information is passed along to the backend so that it generates
2114code for the proper architecture. It's possible to override this on the
2115command line with the ``-mtriple`` command line option.
2116
Sean Silvab084af42012-12-07 10:36:55 +00002117.. _pointeraliasing:
2118
2119Pointer Aliasing Rules
2120----------------------
2121
2122Any memory access must be done through a pointer value associated with
2123an address range of the memory access, otherwise the behavior is
2124undefined. Pointer values are associated with address ranges according
2125to the following rules:
2126
2127- A pointer value is associated with the addresses associated with any
2128 value it is *based* on.
2129- An address of a global variable is associated with the address range
2130 of the variable's storage.
2131- The result value of an allocation instruction is associated with the
2132 address range of the allocated storage.
2133- A null pointer in the default address-space is associated with no
2134 address.
2135- An integer constant other than zero or a pointer value returned from
2136 a function not defined within LLVM may be associated with address
2137 ranges allocated through mechanisms other than those provided by
2138 LLVM. Such ranges shall not overlap with any ranges of addresses
2139 allocated by mechanisms provided by LLVM.
2140
2141A pointer value is *based* on another pointer value according to the
2142following rules:
2143
Sanjoy Das6d489492017-09-13 18:49:22 +00002144- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2145 the pointer-typed operand of the ``getelementptr``.
2146- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2147 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2148 of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002149- The result value of a ``bitcast`` is *based* on the operand of the
2150 ``bitcast``.
2151- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2152 values that contribute (directly or indirectly) to the computation of
2153 the pointer's value.
2154- The "*based* on" relationship is transitive.
2155
2156Note that this definition of *"based"* is intentionally similar to the
2157definition of *"based"* in C99, though it is slightly weaker.
2158
2159LLVM IR does not associate types with memory. The result type of a
2160``load`` merely indicates the size and alignment of the memory from
2161which to load, as well as the interpretation of the value. The first
2162operand type of a ``store`` similarly only indicates the size and
2163alignment of the store.
2164
2165Consequently, type-based alias analysis, aka TBAA, aka
2166``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2167:ref:`Metadata <metadata>` may be used to encode additional information
2168which specialized optimization passes may use to implement type-based
2169alias analysis.
2170
2171.. _volatile:
2172
2173Volatile Memory Accesses
2174------------------------
2175
2176Certain memory accesses, such as :ref:`load <i_load>`'s,
2177:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2178marked ``volatile``. The optimizers must not change the number of
2179volatile operations or change their order of execution relative to other
2180volatile operations. The optimizers *may* change the order of volatile
2181operations relative to non-volatile operations. This is not Java's
2182"volatile" and has no cross-thread synchronization behavior.
2183
Eli Friedman9ba16822019-01-22 00:42:20 +00002184A volatile load or store may have additional target-specific semantics.
2185Any volatile operation can have side effects, and any volatile operation
2186can read and/or modify state which is not accessible via a regular load
2187or store in this module. Volatile operations may use adresses which do
2188not point to memory (like MMIO registers). This means the compiler may
2189not use a volatile operation to prove a non-volatile access to that
2190address has defined behavior.
2191
2192The allowed side-effects for volatile accesses are limited. If a
2193non-volatile store to a given address would be legal, a volatile
2194operation may modify the memory at that address. A volatile operation
2195may not modify any other memory accessible by the module being compiled.
2196A volatile operation may not call any code in the current module.
2197
2198The compiler may assume execution will continue after a volatile operation,
2199so operations which modify memory or may have undefined behavior can be
2200hoisted past a volatile operation.
2201
Andrew Trick89fc5a62013-01-30 21:19:35 +00002202IR-level volatile loads and stores cannot safely be optimized into
2203llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2204flagged volatile. Likewise, the backend should never split or merge
2205target-legal volatile load/store instructions.
2206
Andrew Trick7e6f9282013-01-31 00:49:39 +00002207.. admonition:: Rationale
2208
2209 Platforms may rely on volatile loads and stores of natively supported
2210 data width to be executed as single instruction. For example, in C
2211 this holds for an l-value of volatile primitive type with native
2212 hardware support, but not necessarily for aggregate types. The
2213 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002214 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002215 do not violate the frontend's contract with the language.
2216
Sean Silvab084af42012-12-07 10:36:55 +00002217.. _memmodel:
2218
2219Memory Model for Concurrent Operations
2220--------------------------------------
2221
2222The LLVM IR does not define any way to start parallel threads of
2223execution or to register signal handlers. Nonetheless, there are
2224platform-specific ways to create them, and we define LLVM IR's behavior
2225in their presence. This model is inspired by the C++0x memory model.
2226
2227For a more informal introduction to this model, see the :doc:`Atomics`.
2228
2229We define a *happens-before* partial order as the least partial order
2230that
2231
2232- Is a superset of single-thread program order, and
2233- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2234 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2235 techniques, like pthread locks, thread creation, thread joining,
2236 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2237 Constraints <ordering>`).
2238
2239Note that program order does not introduce *happens-before* edges
2240between a thread and signals executing inside that thread.
2241
2242Every (defined) read operation (load instructions, memcpy, atomic
2243loads/read-modify-writes, etc.) R reads a series of bytes written by
2244(defined) write operations (store instructions, atomic
2245stores/read-modify-writes, memcpy, etc.). For the purposes of this
2246section, initialized globals are considered to have a write of the
2247initializer which is atomic and happens before any other read or write
2248of the memory in question. For each byte of a read R, R\ :sub:`byte`
2249may see any write to the same byte, except:
2250
2251- If write\ :sub:`1` happens before write\ :sub:`2`, and
2252 write\ :sub:`2` happens before R\ :sub:`byte`, then
2253 R\ :sub:`byte` does not see write\ :sub:`1`.
2254- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2255 R\ :sub:`byte` does not see write\ :sub:`3`.
2256
2257Given that definition, R\ :sub:`byte` is defined as follows:
2258
2259- If R is volatile, the result is target-dependent. (Volatile is
2260 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002261 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002262 like normal memory. It does not generally provide cross-thread
2263 synchronization.)
2264- Otherwise, if there is no write to the same byte that happens before
2265 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2266- Otherwise, if R\ :sub:`byte` may see exactly one write,
2267 R\ :sub:`byte` returns the value written by that write.
2268- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2269 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2270 Memory Ordering Constraints <ordering>` section for additional
2271 constraints on how the choice is made.
2272- Otherwise R\ :sub:`byte` returns ``undef``.
2273
2274R returns the value composed of the series of bytes it read. This
2275implies that some bytes within the value may be ``undef`` **without**
2276the entire value being ``undef``. Note that this only defines the
2277semantics of the operation; it doesn't mean that targets will emit more
2278than one instruction to read the series of bytes.
2279
2280Note that in cases where none of the atomic intrinsics are used, this
2281model places only one restriction on IR transformations on top of what
2282is required for single-threaded execution: introducing a store to a byte
2283which might not otherwise be stored is not allowed in general.
2284(Specifically, in the case where another thread might write to and read
2285from an address, introducing a store can change a load that may see
2286exactly one write into a load that may see multiple writes.)
2287
2288.. _ordering:
2289
2290Atomic Memory Ordering Constraints
2291----------------------------------
2292
2293Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2294:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2295:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002296ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002297the same address they *synchronize with*. These semantics are borrowed
2298from Java and C++0x, but are somewhat more colloquial. If these
2299descriptions aren't precise enough, check those specs (see spec
2300references in the :doc:`atomics guide <Atomics>`).
2301:ref:`fence <i_fence>` instructions treat these orderings somewhat
2302differently since they don't take an address. See that instruction's
2303documentation for details.
2304
2305For a simpler introduction to the ordering constraints, see the
2306:doc:`Atomics`.
2307
2308``unordered``
2309 The set of values that can be read is governed by the happens-before
2310 partial order. A value cannot be read unless some operation wrote
2311 it. This is intended to provide a guarantee strong enough to model
2312 Java's non-volatile shared variables. This ordering cannot be
2313 specified for read-modify-write operations; it is not strong enough
2314 to make them atomic in any interesting way.
2315``monotonic``
2316 In addition to the guarantees of ``unordered``, there is a single
2317 total order for modifications by ``monotonic`` operations on each
2318 address. All modification orders must be compatible with the
2319 happens-before order. There is no guarantee that the modification
2320 orders can be combined to a global total order for the whole program
2321 (and this often will not be possible). The read in an atomic
2322 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2323 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2324 order immediately before the value it writes. If one atomic read
2325 happens before another atomic read of the same address, the later
2326 read must see the same value or a later value in the address's
2327 modification order. This disallows reordering of ``monotonic`` (or
2328 stronger) operations on the same address. If an address is written
2329 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2330 read that address repeatedly, the other threads must eventually see
2331 the write. This corresponds to the C++0x/C1x
2332 ``memory_order_relaxed``.
2333``acquire``
2334 In addition to the guarantees of ``monotonic``, a
2335 *synchronizes-with* edge may be formed with a ``release`` operation.
2336 This is intended to model C++'s ``memory_order_acquire``.
2337``release``
2338 In addition to the guarantees of ``monotonic``, if this operation
2339 writes a value which is subsequently read by an ``acquire``
2340 operation, it *synchronizes-with* that operation. (This isn't a
2341 complete description; see the C++0x definition of a release
2342 sequence.) This corresponds to the C++0x/C1x
2343 ``memory_order_release``.
2344``acq_rel`` (acquire+release)
2345 Acts as both an ``acquire`` and ``release`` operation on its
2346 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2347``seq_cst`` (sequentially consistent)
2348 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002349 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002350 writes), there is a global total order on all
2351 sequentially-consistent operations on all addresses, which is
2352 consistent with the *happens-before* partial order and with the
2353 modification orders of all the affected addresses. Each
2354 sequentially-consistent read sees the last preceding write to the
2355 same address in this global order. This corresponds to the C++0x/C1x
2356 ``memory_order_seq_cst`` and Java volatile.
2357
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002358.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002359
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002360If an atomic operation is marked ``syncscope("singlethread")``, it only
2361*synchronizes with* and only participates in the seq\_cst total orderings of
2362other operations running in the same thread (for example, in signal handlers).
2363
2364If an atomic operation is marked ``syncscope("<target-scope>")``, where
2365``<target-scope>`` is a target specific synchronization scope, then it is target
2366dependent if it *synchronizes with* and participates in the seq\_cst total
2367orderings of other operations.
2368
2369Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2370or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2371seq\_cst total orderings of other operations that are not marked
2372``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002373
Sanjay Patel54b161e2018-03-20 16:38:22 +00002374.. _floatenv:
2375
2376Floating-Point Environment
2377--------------------------
2378
2379The default LLVM floating-point environment assumes that floating-point
2380instructions do not have side effects. Results assume the round-to-nearest
2381rounding mode. No floating-point exception state is maintained in this
2382environment. Therefore, there is no attempt to create or preserve invalid
Chandler Carruth297620d2018-08-06 02:02:09 +00002383operation (SNaN) or division-by-zero exceptions.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002384
2385The benefit of this exception-free assumption is that floating-point
2386operations may be speculated freely without any other fast-math relaxations
2387to the floating-point model.
2388
2389Code that requires different behavior than this should use the
Sanjay Patelec95e0e2018-03-20 17:05:19 +00002390:ref:`Constrained Floating-Point Intrinsics <constrainedfp>`.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002391
Sean Silvab084af42012-12-07 10:36:55 +00002392.. _fastmath:
2393
2394Fast-Math Flags
2395---------------
2396
Sanjay Patel629c4112017-11-06 16:27:15 +00002397LLVM IR floating-point operations (:ref:`fadd <i_fadd>`,
Sean Silvab084af42012-12-07 10:36:55 +00002398:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002399:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002400may use the following flags to enable otherwise unsafe
Sanjay Patel629c4112017-11-06 16:27:15 +00002401floating-point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002402
2403``nnan``
2404 No NaNs - Allow optimizations to assume the arguments and result are not
Eli Friedmand3a30872018-07-17 20:31:42 +00002405 NaN. If an argument is a nan, or the result would be a nan, it produces
2406 a :ref:`poison value <poisonvalues>` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002407
2408``ninf``
2409 No Infs - Allow optimizations to assume the arguments and result are not
Eli Friedmand3a30872018-07-17 20:31:42 +00002410 +/-Inf. If an argument is +/-Inf, or the result would be +/-Inf, it
2411 produces a :ref:`poison value <poisonvalues>` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002412
2413``nsz``
2414 No Signed Zeros - Allow optimizations to treat the sign of a zero
2415 argument or result as insignificant.
2416
2417``arcp``
2418 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2419 argument rather than perform division.
2420
Adam Nemetcd847a82017-03-28 20:11:52 +00002421``contract``
2422 Allow floating-point contraction (e.g. fusing a multiply followed by an
2423 addition into a fused multiply-and-add).
2424
Sanjay Patel629c4112017-11-06 16:27:15 +00002425``afn``
2426 Approximate functions - Allow substitution of approximate calculations for
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002427 functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2428 for places where this can apply to LLVM's intrinsic math functions.
Sanjay Patel629c4112017-11-06 16:27:15 +00002429
2430``reassoc``
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002431 Allow reassociation transformations for floating-point instructions.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002432 This may dramatically change results in floating-point.
Sanjay Patel629c4112017-11-06 16:27:15 +00002433
Sean Silvab084af42012-12-07 10:36:55 +00002434``fast``
Sanjay Patel629c4112017-11-06 16:27:15 +00002435 This flag implies all of the others.
Sean Silvab084af42012-12-07 10:36:55 +00002436
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002437.. _uselistorder:
2438
2439Use-list Order Directives
2440-------------------------
2441
2442Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002443order to be recreated. ``<order-indexes>`` is a comma-separated list of
2444indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002445value's use-list is immediately sorted by these indexes.
2446
Sean Silvaa1190322015-08-06 22:56:48 +00002447Use-list directives may appear at function scope or global scope. They are not
2448instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002449function scope, they must appear after the terminator of the final basic block.
2450
2451If basic blocks have their address taken via ``blockaddress()`` expressions,
2452``uselistorder_bb`` can be used to reorder their use-lists from outside their
2453function's scope.
2454
2455:Syntax:
2456
2457::
2458
2459 uselistorder <ty> <value>, { <order-indexes> }
2460 uselistorder_bb @function, %block { <order-indexes> }
2461
2462:Examples:
2463
2464::
2465
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002466 define void @foo(i32 %arg1, i32 %arg2) {
2467 entry:
2468 ; ... instructions ...
2469 bb:
2470 ; ... instructions ...
2471
2472 ; At function scope.
2473 uselistorder i32 %arg1, { 1, 0, 2 }
2474 uselistorder label %bb, { 1, 0 }
2475 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002476
2477 ; At global scope.
2478 uselistorder i32* @global, { 1, 2, 0 }
2479 uselistorder i32 7, { 1, 0 }
2480 uselistorder i32 (i32) @bar, { 1, 0 }
2481 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2482
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002483.. _source_filename:
2484
2485Source Filename
2486---------------
2487
2488The *source filename* string is set to the original module identifier,
2489which will be the name of the compiled source file when compiling from
2490source through the clang front end, for example. It is then preserved through
2491the IR and bitcode.
2492
2493This is currently necessary to generate a consistent unique global
2494identifier for local functions used in profile data, which prepends the
2495source file name to the local function name.
2496
2497The syntax for the source file name is simply:
2498
Renato Golin124f2592016-07-20 12:16:38 +00002499.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002500
2501 source_filename = "/path/to/source.c"
2502
Sean Silvab084af42012-12-07 10:36:55 +00002503.. _typesystem:
2504
2505Type System
2506===========
2507
2508The LLVM type system is one of the most important features of the
2509intermediate representation. Being typed enables a number of
2510optimizations to be performed on the intermediate representation
2511directly, without having to do extra analyses on the side before the
2512transformation. A strong type system makes it easier to read the
2513generated code and enables novel analyses and transformations that are
2514not feasible to perform on normal three address code representations.
2515
Rafael Espindola08013342013-12-07 19:34:20 +00002516.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002517
Rafael Espindola08013342013-12-07 19:34:20 +00002518Void Type
2519---------
Sean Silvab084af42012-12-07 10:36:55 +00002520
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002521:Overview:
2522
Rafael Espindola08013342013-12-07 19:34:20 +00002523
2524The void type does not represent any value and has no size.
2525
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002526:Syntax:
2527
Rafael Espindola08013342013-12-07 19:34:20 +00002528
2529::
2530
2531 void
Sean Silvab084af42012-12-07 10:36:55 +00002532
2533
Rafael Espindola08013342013-12-07 19:34:20 +00002534.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002535
Rafael Espindola08013342013-12-07 19:34:20 +00002536Function Type
2537-------------
Sean Silvab084af42012-12-07 10:36:55 +00002538
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002539:Overview:
2540
Sean Silvab084af42012-12-07 10:36:55 +00002541
Rafael Espindola08013342013-12-07 19:34:20 +00002542The function type can be thought of as a function signature. It consists of a
2543return type and a list of formal parameter types. The return type of a function
2544type is a void type or first class type --- except for :ref:`label <t_label>`
2545and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002546
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002547:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002548
Rafael Espindola08013342013-12-07 19:34:20 +00002549::
Sean Silvab084af42012-12-07 10:36:55 +00002550
Rafael Espindola08013342013-12-07 19:34:20 +00002551 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002552
Rafael Espindola08013342013-12-07 19:34:20 +00002553...where '``<parameter list>``' is a comma-separated list of type
2554specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002555indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002556argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002557handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002558except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002559
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002560:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002561
Rafael Espindola08013342013-12-07 19:34:20 +00002562+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2563| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2564+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2565| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2566+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2567| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2568+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2569| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2570+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2571
2572.. _t_firstclass:
2573
2574First Class Types
2575-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002576
2577The :ref:`first class <t_firstclass>` types are perhaps the most important.
2578Values of these types are the only ones which can be produced by
2579instructions.
2580
Rafael Espindola08013342013-12-07 19:34:20 +00002581.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002582
Rafael Espindola08013342013-12-07 19:34:20 +00002583Single Value Types
2584^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002585
Rafael Espindola08013342013-12-07 19:34:20 +00002586These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002587
2588.. _t_integer:
2589
2590Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002591""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002592
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002593:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002594
2595The integer type is a very simple type that simply specifies an
2596arbitrary bit width for the integer type desired. Any bit width from 1
2597bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2598
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002599:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002600
2601::
2602
2603 iN
2604
2605The number of bits the integer will occupy is specified by the ``N``
2606value.
2607
2608Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002609*********
Sean Silvab084af42012-12-07 10:36:55 +00002610
2611+----------------+------------------------------------------------+
2612| ``i1`` | a single-bit integer. |
2613+----------------+------------------------------------------------+
2614| ``i32`` | a 32-bit integer. |
2615+----------------+------------------------------------------------+
2616| ``i1942652`` | a really big integer of over 1 million bits. |
2617+----------------+------------------------------------------------+
2618
2619.. _t_floating:
2620
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002621Floating-Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002622""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002623
2624.. list-table::
2625 :header-rows: 1
2626
2627 * - Type
2628 - Description
2629
2630 * - ``half``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002631 - 16-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002632
2633 * - ``float``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002634 - 32-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002635
2636 * - ``double``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002637 - 64-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002638
2639 * - ``fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002640 - 128-bit floating-point value (112-bit mantissa)
Sean Silvab084af42012-12-07 10:36:55 +00002641
2642 * - ``x86_fp80``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002643 - 80-bit floating-point value (X87)
Sean Silvab084af42012-12-07 10:36:55 +00002644
2645 * - ``ppc_fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002646 - 128-bit floating-point value (two 64-bits)
Sean Silvab084af42012-12-07 10:36:55 +00002647
Sanjay Patelbab6ce02018-03-21 15:22:09 +00002648The binary format of half, float, double, and fp128 correspond to the
2649IEEE-754-2008 specifications for binary16, binary32, binary64, and binary128
2650respectively.
2651
Reid Kleckner9a16d082014-03-05 02:41:37 +00002652X86_mmx Type
2653""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002654
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002655:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002656
Reid Kleckner9a16d082014-03-05 02:41:37 +00002657The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002658machine. The operations allowed on it are quite limited: parameters and
2659return values, load and store, and bitcast. User-specified MMX
2660instructions are represented as intrinsic or asm calls with arguments
2661and/or results of this type. There are no arrays, vectors or constants
2662of this type.
2663
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002664:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002665
2666::
2667
Reid Kleckner9a16d082014-03-05 02:41:37 +00002668 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002669
Sean Silvab084af42012-12-07 10:36:55 +00002670
Rafael Espindola08013342013-12-07 19:34:20 +00002671.. _t_pointer:
2672
2673Pointer Type
2674""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002675
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002676:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002677
Rafael Espindola08013342013-12-07 19:34:20 +00002678The pointer type is used to specify memory locations. Pointers are
2679commonly used to reference objects in memory.
2680
2681Pointer types may have an optional address space attribute defining the
2682numbered address space where the pointed-to object resides. The default
2683address space is number zero. The semantics of non-zero address spaces
2684are target-specific.
2685
2686Note that LLVM does not permit pointers to void (``void*``) nor does it
2687permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002688
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002689:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002690
2691::
2692
Rafael Espindola08013342013-12-07 19:34:20 +00002693 <type> *
2694
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002695:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002696
2697+-------------------------+--------------------------------------------------------------------------------------------------------------+
2698| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2699+-------------------------+--------------------------------------------------------------------------------------------------------------+
2700| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2701+-------------------------+--------------------------------------------------------------------------------------------------------------+
2702| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2703+-------------------------+--------------------------------------------------------------------------------------------------------------+
2704
2705.. _t_vector:
2706
2707Vector Type
2708"""""""""""
2709
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002710:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002711
2712A vector type is a simple derived type that represents a vector of
2713elements. Vector types are used when multiple primitive data are
2714operated in parallel using a single instruction (SIMD). A vector type
2715requires a size (number of elements) and an underlying primitive data
2716type. Vector types are considered :ref:`first class <t_firstclass>`.
2717
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002718:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002719
2720::
2721
2722 < <# elements> x <elementtype> >
2723
2724The number of elements is a constant integer value larger than 0;
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002725elementtype may be any integer, floating-point or pointer type. Vectors
Manuel Jacob961f7872014-07-30 12:30:06 +00002726of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002727
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002728:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002729
2730+-------------------+--------------------------------------------------+
2731| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2732+-------------------+--------------------------------------------------+
2733| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2734+-------------------+--------------------------------------------------+
2735| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2736+-------------------+--------------------------------------------------+
2737| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2738+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002739
2740.. _t_label:
2741
2742Label Type
2743^^^^^^^^^^
2744
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002745:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002746
2747The label type represents code labels.
2748
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002749:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002750
2751::
2752
2753 label
2754
David Majnemerb611e3f2015-08-14 05:09:07 +00002755.. _t_token:
2756
2757Token Type
2758^^^^^^^^^^
2759
2760:Overview:
2761
2762The token type is used when a value is associated with an instruction
2763but all uses of the value must not attempt to introspect or obscure it.
2764As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2765:ref:`select <i_select>` of type token.
2766
2767:Syntax:
2768
2769::
2770
2771 token
2772
2773
2774
Sean Silvab084af42012-12-07 10:36:55 +00002775.. _t_metadata:
2776
2777Metadata Type
2778^^^^^^^^^^^^^
2779
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002780:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002781
2782The metadata type represents embedded metadata. No derived types may be
2783created from metadata except for :ref:`function <t_function>` arguments.
2784
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002785:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002786
2787::
2788
2789 metadata
2790
Sean Silvab084af42012-12-07 10:36:55 +00002791.. _t_aggregate:
2792
2793Aggregate Types
2794^^^^^^^^^^^^^^^
2795
2796Aggregate Types are a subset of derived types that can contain multiple
2797member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2798aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2799aggregate types.
2800
2801.. _t_array:
2802
2803Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002804""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002805
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002806:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002807
2808The array type is a very simple derived type that arranges elements
2809sequentially in memory. The array type requires a size (number of
2810elements) and an underlying data type.
2811
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002812:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002813
2814::
2815
2816 [<# elements> x <elementtype>]
2817
2818The number of elements is a constant integer value; ``elementtype`` may
2819be any type with a size.
2820
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002821:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002822
2823+------------------+--------------------------------------+
2824| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2825+------------------+--------------------------------------+
2826| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2827+------------------+--------------------------------------+
2828| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2829+------------------+--------------------------------------+
2830
2831Here are some examples of multidimensional arrays:
2832
2833+-----------------------------+----------------------------------------------------------+
2834| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2835+-----------------------------+----------------------------------------------------------+
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002836| ``[12 x [10 x float]]`` | 12x10 array of single precision floating-point values. |
Sean Silvab084af42012-12-07 10:36:55 +00002837+-----------------------------+----------------------------------------------------------+
2838| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2839+-----------------------------+----------------------------------------------------------+
2840
2841There is no restriction on indexing beyond the end of the array implied
2842by a static type (though there are restrictions on indexing beyond the
2843bounds of an allocated object in some cases). This means that
2844single-dimension 'variable sized array' addressing can be implemented in
2845LLVM with a zero length array type. An implementation of 'pascal style
2846arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2847example.
2848
Sean Silvab084af42012-12-07 10:36:55 +00002849.. _t_struct:
2850
2851Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002852""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002853
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002854:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002855
2856The structure type is used to represent a collection of data members
2857together in memory. The elements of a structure may be any type that has
2858a size.
2859
2860Structures in memory are accessed using '``load``' and '``store``' by
2861getting a pointer to a field with the '``getelementptr``' instruction.
2862Structures in registers are accessed using the '``extractvalue``' and
2863'``insertvalue``' instructions.
2864
2865Structures may optionally be "packed" structures, which indicate that
2866the alignment of the struct is one byte, and that there is no padding
2867between the elements. In non-packed structs, padding between field types
2868is inserted as defined by the DataLayout string in the module, which is
2869required to match what the underlying code generator expects.
2870
2871Structures can either be "literal" or "identified". A literal structure
2872is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2873identified types are always defined at the top level with a name.
2874Literal types are uniqued by their contents and can never be recursive
2875or opaque since there is no way to write one. Identified types can be
2876recursive, can be opaqued, and are never uniqued.
2877
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002878:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002879
2880::
2881
2882 %T1 = type { <type list> } ; Identified normal struct type
2883 %T2 = type <{ <type list> }> ; Identified packed struct type
2884
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002885:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002886
2887+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2888| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2889+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002890| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002891+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2892| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2893+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2894
2895.. _t_opaque:
2896
2897Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002898""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002899
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002900:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002901
2902Opaque structure types are used to represent named structure types that
2903do not have a body specified. This corresponds (for example) to the C
2904notion of a forward declared structure.
2905
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002906:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002907
2908::
2909
2910 %X = type opaque
2911 %52 = type opaque
2912
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002913:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002914
2915+--------------+-------------------+
2916| ``opaque`` | An opaque type. |
2917+--------------+-------------------+
2918
Sean Silva1703e702014-04-08 21:06:22 +00002919.. _constants:
2920
Sean Silvab084af42012-12-07 10:36:55 +00002921Constants
2922=========
2923
2924LLVM has several different basic types of constants. This section
2925describes them all and their syntax.
2926
2927Simple Constants
2928----------------
2929
2930**Boolean constants**
2931 The two strings '``true``' and '``false``' are both valid constants
2932 of the ``i1`` type.
2933**Integer constants**
2934 Standard integers (such as '4') are constants of the
2935 :ref:`integer <t_integer>` type. Negative numbers may be used with
2936 integer types.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002937**Floating-point constants**
2938 Floating-point constants use standard decimal notation (e.g.
Sean Silvab084af42012-12-07 10:36:55 +00002939 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2940 hexadecimal notation (see below). The assembler requires the exact
2941 decimal value of a floating-point constant. For example, the
2942 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00002943 decimal in binary. Floating-point constants must have a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002944 :ref:`floating-point <t_floating>` type.
Sean Silvab084af42012-12-07 10:36:55 +00002945**Null pointer constants**
2946 The identifier '``null``' is recognized as a null pointer constant
2947 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002948**Token constants**
2949 The identifier '``none``' is recognized as an empty token constant
2950 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002951
2952The one non-intuitive notation for constants is the hexadecimal form of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002953floating-point constants. For example, the form
Sean Silvab084af42012-12-07 10:36:55 +00002954'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002955than) '``double 4.5e+15``'. The only time hexadecimal floating-point
Sean Silvab084af42012-12-07 10:36:55 +00002956constants are required (and the only time that they are generated by the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002957disassembler) is when a floating-point constant must be emitted but it
2958cannot be represented as a decimal floating-point number in a reasonable
Sean Silvab084af42012-12-07 10:36:55 +00002959number of digits. For example, NaN's, infinities, and other special
2960values are represented in their IEEE hexadecimal format so that assembly
2961and disassembly do not cause any bits to change in the constants.
2962
2963When using the hexadecimal form, constants of types half, float, and
2964double are represented using the 16-digit form shown above (which
2965matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002966must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002967precision, respectively. Hexadecimal format is always used for long
2968double, and there are three forms of long double. The 80-bit format used
2969by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2970128-bit format used by PowerPC (two adjacent doubles) is represented by
2971``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002972represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2973will only work if they match the long double format on your target.
2974The IEEE 16-bit format (half precision) is represented by ``0xH``
2975followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2976(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002977
Reid Kleckner9a16d082014-03-05 02:41:37 +00002978There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002979
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002980.. _complexconstants:
2981
Sean Silvab084af42012-12-07 10:36:55 +00002982Complex Constants
2983-----------------
2984
2985Complex constants are a (potentially recursive) combination of simple
2986constants and smaller complex constants.
2987
2988**Structure constants**
2989 Structure constants are represented with notation similar to
2990 structure type definitions (a comma separated list of elements,
2991 surrounded by braces (``{}``)). For example:
2992 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2993 "``@G = external global i32``". Structure constants must have
2994 :ref:`structure type <t_struct>`, and the number and types of elements
2995 must match those specified by the type.
2996**Array constants**
2997 Array constants are represented with notation similar to array type
2998 definitions (a comma separated list of elements, surrounded by
2999 square brackets (``[]``)). For example:
3000 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
3001 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00003002 match those specified by the type. As a special case, character array
3003 constants may also be represented as a double-quoted string using the ``c``
3004 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00003005**Vector constants**
3006 Vector constants are represented with notation similar to vector
3007 type definitions (a comma separated list of elements, surrounded by
3008 less-than/greater-than's (``<>``)). For example:
3009 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
3010 must have :ref:`vector type <t_vector>`, and the number and types of
3011 elements must match those specified by the type.
3012**Zero initialization**
3013 The string '``zeroinitializer``' can be used to zero initialize a
3014 value to zero of *any* type, including scalar and
3015 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
3016 having to print large zero initializers (e.g. for large arrays) and
3017 is always exactly equivalent to using explicit zero initializers.
3018**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00003019 A metadata node is a constant tuple without types. For example:
3020 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003021 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
3022 Unlike other typed constants that are meant to be interpreted as part of
3023 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00003024 information such as debug info.
3025
3026Global Variable and Function Addresses
3027--------------------------------------
3028
3029The addresses of :ref:`global variables <globalvars>` and
3030:ref:`functions <functionstructure>` are always implicitly valid
3031(link-time) constants. These constants are explicitly referenced when
3032the :ref:`identifier for the global <identifiers>` is used and always have
3033:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
3034file:
3035
3036.. code-block:: llvm
3037
3038 @X = global i32 17
3039 @Y = global i32 42
3040 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
3041
3042.. _undefvalues:
3043
3044Undefined Values
3045----------------
3046
3047The string '``undef``' can be used anywhere a constant is expected, and
3048indicates that the user of the value may receive an unspecified
3049bit-pattern. Undefined values may be of any type (other than '``label``'
3050or '``void``') and be used anywhere a constant is permitted.
3051
3052Undefined values are useful because they indicate to the compiler that
3053the program is well defined no matter what value is used. This gives the
3054compiler more freedom to optimize. Here are some examples of
3055(potentially surprising) transformations that are valid (in pseudo IR):
3056
3057.. code-block:: llvm
3058
3059 %A = add %X, undef
3060 %B = sub %X, undef
3061 %C = xor %X, undef
3062 Safe:
3063 %A = undef
3064 %B = undef
3065 %C = undef
3066
3067This is safe because all of the output bits are affected by the undef
3068bits. Any output bit can have a zero or one depending on the input bits.
3069
3070.. code-block:: llvm
3071
3072 %A = or %X, undef
3073 %B = and %X, undef
3074 Safe:
3075 %A = -1
3076 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00003077 Safe:
3078 %A = %X ;; By choosing undef as 0
3079 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00003080 Unsafe:
3081 %A = undef
3082 %B = undef
3083
3084These logical operations have bits that are not always affected by the
3085input. For example, if ``%X`` has a zero bit, then the output of the
3086'``and``' operation will always be a zero for that bit, no matter what
3087the corresponding bit from the '``undef``' is. As such, it is unsafe to
3088optimize or assume that the result of the '``and``' is '``undef``'.
3089However, it is safe to assume that all bits of the '``undef``' could be
30900, and optimize the '``and``' to 0. Likewise, it is safe to assume that
3091all the bits of the '``undef``' operand to the '``or``' could be set,
3092allowing the '``or``' to be folded to -1.
3093
3094.. code-block:: llvm
3095
3096 %A = select undef, %X, %Y
3097 %B = select undef, 42, %Y
3098 %C = select %X, %Y, undef
3099 Safe:
3100 %A = %X (or %Y)
3101 %B = 42 (or %Y)
3102 %C = %Y
3103 Unsafe:
3104 %A = undef
3105 %B = undef
3106 %C = undef
3107
3108This set of examples shows that undefined '``select``' (and conditional
3109branch) conditions can go *either way*, but they have to come from one
3110of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
3111both known to have a clear low bit, then ``%A`` would have to have a
3112cleared low bit. However, in the ``%C`` example, the optimizer is
3113allowed to assume that the '``undef``' operand could be the same as
3114``%Y``, allowing the whole '``select``' to be eliminated.
3115
Renato Golin124f2592016-07-20 12:16:38 +00003116.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003117
3118 %A = xor undef, undef
3119
3120 %B = undef
3121 %C = xor %B, %B
3122
3123 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00003124 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00003125 %F = icmp gte %D, 4
3126
3127 Safe:
3128 %A = undef
3129 %B = undef
3130 %C = undef
3131 %D = undef
3132 %E = undef
3133 %F = undef
3134
3135This example points out that two '``undef``' operands are not
3136necessarily the same. This can be surprising to people (and also matches
3137C semantics) where they assume that "``X^X``" is always zero, even if
3138``X`` is undefined. This isn't true for a number of reasons, but the
3139short answer is that an '``undef``' "variable" can arbitrarily change
3140its value over its "live range". This is true because the variable
3141doesn't actually *have a live range*. Instead, the value is logically
3142read from arbitrary registers that happen to be around when needed, so
3143the value is not necessarily consistent over time. In fact, ``%A`` and
3144``%C`` need to have the same semantics or the core LLVM "replace all
3145uses with" concept would not hold.
3146
3147.. code-block:: llvm
3148
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003149 %A = sdiv undef, %X
3150 %B = sdiv %X, undef
Sean Silvab084af42012-12-07 10:36:55 +00003151 Safe:
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003152 %A = 0
Sean Silvab084af42012-12-07 10:36:55 +00003153 b: unreachable
3154
3155These examples show the crucial difference between an *undefined value*
3156and *undefined behavior*. An undefined value (like '``undef``') is
3157allowed to have an arbitrary bit-pattern. This means that the ``%A``
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003158operation can be constant folded to '``0``', because the '``undef``'
3159could be zero, and zero divided by any value is zero.
Sean Silvab084af42012-12-07 10:36:55 +00003160However, in the second example, we can make a more aggressive
3161assumption: because the ``undef`` is allowed to be an arbitrary value,
3162we are allowed to assume that it could be zero. Since a divide by zero
3163has *undefined behavior*, we are allowed to assume that the operation
3164does not execute at all. This allows us to delete the divide and all
3165code after it. Because the undefined operation "can't happen", the
3166optimizer can assume that it occurs in dead code.
3167
Renato Golin124f2592016-07-20 12:16:38 +00003168.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003169
3170 a: store undef -> %X
3171 b: store %X -> undef
3172 Safe:
3173 a: <deleted>
3174 b: unreachable
3175
Sanjay Patel7b722402018-03-07 17:18:22 +00003176A store *of* an undefined value can be assumed to not have any effect;
3177we can assume that the value is overwritten with bits that happen to
3178match what was already there. However, a store *to* an undefined
3179location could clobber arbitrary memory, therefore, it has undefined
3180behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003181
3182.. _poisonvalues:
3183
3184Poison Values
3185-------------
3186
3187Poison values are similar to :ref:`undef values <undefvalues>`, however
3188they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003189that cannot evoke side effects has nevertheless detected a condition
3190that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003191
3192There is currently no way of representing a poison value in the IR; they
3193only exist when produced by operations such as :ref:`add <i_add>` with
3194the ``nsw`` flag.
3195
3196Poison value behavior is defined in terms of value *dependence*:
3197
3198- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3199- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3200 their dynamic predecessor basic block.
3201- Function arguments depend on the corresponding actual argument values
3202 in the dynamic callers of their functions.
3203- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3204 instructions that dynamically transfer control back to them.
3205- :ref:`Invoke <i_invoke>` instructions depend on the
3206 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3207 call instructions that dynamically transfer control back to them.
3208- Non-volatile loads and stores depend on the most recent stores to all
3209 of the referenced memory addresses, following the order in the IR
3210 (including loads and stores implied by intrinsics such as
3211 :ref:`@llvm.memcpy <int_memcpy>`.)
3212- An instruction with externally visible side effects depends on the
3213 most recent preceding instruction with externally visible side
3214 effects, following the order in the IR. (This includes :ref:`volatile
3215 operations <volatile>`.)
3216- An instruction *control-depends* on a :ref:`terminator
3217 instruction <terminators>` if the terminator instruction has
3218 multiple successors and the instruction is always executed when
3219 control transfers to one of the successors, and may not be executed
3220 when control is transferred to another.
3221- Additionally, an instruction also *control-depends* on a terminator
3222 instruction if the set of instructions it otherwise depends on would
3223 be different if the terminator had transferred control to a different
3224 successor.
3225- Dependence is transitive.
3226
Richard Smith32dbdf62014-07-31 04:25:36 +00003227Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3228with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003229on a poison value has undefined behavior.
3230
3231Here are some examples:
3232
3233.. code-block:: llvm
3234
3235 entry:
3236 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3237 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003238 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003239 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3240
3241 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003242 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003243
3244 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3245
3246 %narrowaddr = bitcast i32* @g to i16*
3247 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003248 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3249 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003250
3251 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3252 br i1 %cmp, label %true, label %end ; Branch to either destination.
3253
3254 true:
3255 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3256 ; it has undefined behavior.
3257 br label %end
3258
3259 end:
3260 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3261 ; Both edges into this PHI are
3262 ; control-dependent on %cmp, so this
3263 ; always results in a poison value.
3264
3265 store volatile i32 0, i32* @g ; This would depend on the store in %true
3266 ; if %cmp is true, or the store in %entry
3267 ; otherwise, so this is undefined behavior.
3268
3269 br i1 %cmp, label %second_true, label %second_end
3270 ; The same branch again, but this time the
3271 ; true block doesn't have side effects.
3272
3273 second_true:
3274 ; No side effects!
3275 ret void
3276
3277 second_end:
3278 store volatile i32 0, i32* @g ; This time, the instruction always depends
3279 ; on the store in %end. Also, it is
3280 ; control-equivalent to %end, so this is
3281 ; well-defined (ignoring earlier undefined
3282 ; behavior in this example).
3283
3284.. _blockaddress:
3285
3286Addresses of Basic Blocks
3287-------------------------
3288
3289``blockaddress(@function, %block)``
3290
3291The '``blockaddress``' constant computes the address of the specified
3292basic block in the specified function, and always has an ``i8*`` type.
3293Taking the address of the entry block is illegal.
3294
3295This value only has defined behavior when used as an operand to the
3296':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3297against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003298undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003299no label is equal to the null pointer. This may be passed around as an
3300opaque pointer sized value as long as the bits are not inspected. This
3301allows ``ptrtoint`` and arithmetic to be performed on these values so
3302long as the original value is reconstituted before the ``indirectbr``
3303instruction.
3304
3305Finally, some targets may provide defined semantics when using the value
3306as the operand to an inline assembly, but that is target specific.
3307
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003308.. _constantexprs:
3309
Sean Silvab084af42012-12-07 10:36:55 +00003310Constant Expressions
3311--------------------
3312
3313Constant expressions are used to allow expressions involving other
3314constants to be used as constants. Constant expressions may be of any
3315:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3316that does not have side effects (e.g. load and call are not supported).
3317The following is the syntax for constant expressions:
3318
3319``trunc (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003320 Perform the :ref:`trunc operation <i_trunc>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003321``zext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003322 Perform the :ref:`zext operation <i_zext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003323``sext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003324 Perform the :ref:`sext operation <i_sext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003325``fptrunc (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003326 Truncate a floating-point constant to another floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003327 The size of CST must be larger than the size of TYPE. Both types
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003328 must be floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003329``fpext (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003330 Floating-point extend a constant to another type. The size of CST
Sean Silvab084af42012-12-07 10:36:55 +00003331 must be smaller or equal to the size of TYPE. Both types must be
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003332 floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003333``fptoui (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003334 Convert a floating-point constant to the corresponding unsigned
Sean Silvab084af42012-12-07 10:36:55 +00003335 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003336 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003337 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003338 value won't fit in the integer type, the result is a
3339 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003340``fptosi (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003341 Convert a floating-point constant to the corresponding signed
Sean Silvab084af42012-12-07 10:36:55 +00003342 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003343 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003344 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003345 value won't fit in the integer type, the result is a
3346 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003347``uitofp (CST to TYPE)``
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00003348 Convert an unsigned integer constant to the corresponding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003349 floating-point constant. TYPE must be a scalar or vector floating-point
3350 type. CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003351 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003352``sitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003353 Convert a signed integer constant to the corresponding floating-point
3354 constant. TYPE must be a scalar or vector floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003355 CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003356 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003357``ptrtoint (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003358 Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003359``inttoptr (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003360 Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003361 This one is *really* dangerous!
3362``bitcast (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003363 Convert a constant, CST, to another TYPE.
3364 The constraints of the operands are the same as those for the
3365 :ref:`bitcast instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003366``addrspacecast (CST to TYPE)``
3367 Convert a constant pointer or constant vector of pointer, CST, to another
3368 TYPE in a different address space. The constraints of the operands are the
3369 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003370``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003371 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3372 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003373 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003374 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003375``select (COND, VAL1, VAL2)``
3376 Perform the :ref:`select operation <i_select>` on constants.
3377``icmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003378 Perform the :ref:`icmp operation <i_icmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003379``fcmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003380 Perform the :ref:`fcmp operation <i_fcmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003381``extractelement (VAL, IDX)``
3382 Perform the :ref:`extractelement operation <i_extractelement>` on
3383 constants.
3384``insertelement (VAL, ELT, IDX)``
3385 Perform the :ref:`insertelement operation <i_insertelement>` on
3386 constants.
3387``shufflevector (VEC1, VEC2, IDXMASK)``
3388 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3389 constants.
3390``extractvalue (VAL, IDX0, IDX1, ...)``
3391 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3392 constants. The index list is interpreted in a similar manner as
3393 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3394 least one index value must be specified.
3395``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3396 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3397 The index list is interpreted in a similar manner as indices in a
3398 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3399 value must be specified.
3400``OPCODE (LHS, RHS)``
3401 Perform the specified operation of the LHS and RHS constants. OPCODE
3402 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3403 binary <bitwiseops>` operations. The constraints on operands are
3404 the same as those for the corresponding instruction (e.g. no bitwise
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003405 operations on floating-point values are allowed).
Sean Silvab084af42012-12-07 10:36:55 +00003406
3407Other Values
3408============
3409
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003410.. _inlineasmexprs:
3411
Sean Silvab084af42012-12-07 10:36:55 +00003412Inline Assembler Expressions
3413----------------------------
3414
3415LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003416Inline Assembly <moduleasm>`) through the use of a special value. This value
3417represents the inline assembler as a template string (containing the
3418instructions to emit), a list of operand constraints (stored as a string), a
3419flag that indicates whether or not the inline asm expression has side effects,
3420and a flag indicating whether the function containing the asm needs to align its
3421stack conservatively.
3422
3423The template string supports argument substitution of the operands using "``$``"
3424followed by a number, to indicate substitution of the given register/memory
3425location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3426be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3427operand (See :ref:`inline-asm-modifiers`).
3428
3429A literal "``$``" may be included by using "``$$``" in the template. To include
3430other special characters into the output, the usual "``\XX``" escapes may be
3431used, just as in other strings. Note that after template substitution, the
3432resulting assembly string is parsed by LLVM's integrated assembler unless it is
3433disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3434syntax known to LLVM.
3435
Reid Kleckner71cb1642017-02-06 18:08:45 +00003436LLVM also supports a few more substitions useful for writing inline assembly:
3437
3438- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3439 This substitution is useful when declaring a local label. Many standard
3440 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3441 Adding a blob-unique identifier ensures that the two labels will not conflict
3442 during assembly. This is used to implement `GCC's %= special format
3443 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3444- ``${:comment}``: Expands to the comment character of the current target's
3445 assembly dialect. This is usually ``#``, but many targets use other strings,
3446 such as ``;``, ``//``, or ``!``.
3447- ``${:private}``: Expands to the assembler private label prefix. Labels with
3448 this prefix will not appear in the symbol table of the assembled object.
3449 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3450 relatively popular.
3451
James Y Knightbc832ed2015-07-08 18:08:36 +00003452LLVM's support for inline asm is modeled closely on the requirements of Clang's
3453GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3454modifier codes listed here are similar or identical to those in GCC's inline asm
3455support. However, to be clear, the syntax of the template and constraint strings
3456described here is *not* the same as the syntax accepted by GCC and Clang, and,
3457while most constraint letters are passed through as-is by Clang, some get
3458translated to other codes when converting from the C source to the LLVM
3459assembly.
3460
3461An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003462
3463.. code-block:: llvm
3464
3465 i32 (i32) asm "bswap $0", "=r,r"
3466
3467Inline assembler expressions may **only** be used as the callee operand
3468of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3469Thus, typically we have:
3470
3471.. code-block:: llvm
3472
3473 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3474
3475Inline asms with side effects not visible in the constraint list must be
3476marked as having side effects. This is done through the use of the
3477'``sideeffect``' keyword, like so:
3478
3479.. code-block:: llvm
3480
3481 call void asm sideeffect "eieio", ""()
3482
3483In some cases inline asms will contain code that will not work unless
3484the stack is aligned in some way, such as calls or SSE instructions on
3485x86, yet will not contain code that does that alignment within the asm.
3486The compiler should make conservative assumptions about what the asm
3487might contain and should generate its usual stack alignment code in the
3488prologue if the '``alignstack``' keyword is present:
3489
3490.. code-block:: llvm
3491
3492 call void asm alignstack "eieio", ""()
3493
3494Inline asms also support using non-standard assembly dialects. The
3495assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3496the inline asm is using the Intel dialect. Currently, ATT and Intel are
3497the only supported dialects. An example is:
3498
3499.. code-block:: llvm
3500
3501 call void asm inteldialect "eieio", ""()
3502
3503If multiple keywords appear the '``sideeffect``' keyword must come
3504first, the '``alignstack``' keyword second and the '``inteldialect``'
3505keyword last.
3506
James Y Knightbc832ed2015-07-08 18:08:36 +00003507Inline Asm Constraint String
3508^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3509
3510The constraint list is a comma-separated string, each element containing one or
3511more constraint codes.
3512
3513For each element in the constraint list an appropriate register or memory
3514operand will be chosen, and it will be made available to assembly template
3515string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3516second, etc.
3517
3518There are three different types of constraints, which are distinguished by a
3519prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3520constraints must always be given in that order: outputs first, then inputs, then
3521clobbers. They cannot be intermingled.
3522
3523There are also three different categories of constraint codes:
3524
3525- Register constraint. This is either a register class, or a fixed physical
3526 register. This kind of constraint will allocate a register, and if necessary,
3527 bitcast the argument or result to the appropriate type.
3528- Memory constraint. This kind of constraint is for use with an instruction
3529 taking a memory operand. Different constraints allow for different addressing
3530 modes used by the target.
3531- Immediate value constraint. This kind of constraint is for an integer or other
3532 immediate value which can be rendered directly into an instruction. The
3533 various target-specific constraints allow the selection of a value in the
3534 proper range for the instruction you wish to use it with.
3535
3536Output constraints
3537""""""""""""""""""
3538
3539Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3540indicates that the assembly will write to this operand, and the operand will
3541then be made available as a return value of the ``asm`` expression. Output
3542constraints do not consume an argument from the call instruction. (Except, see
3543below about indirect outputs).
3544
3545Normally, it is expected that no output locations are written to by the assembly
3546expression until *all* of the inputs have been read. As such, LLVM may assign
3547the same register to an output and an input. If this is not safe (e.g. if the
3548assembly contains two instructions, where the first writes to one output, and
3549the second reads an input and writes to a second output), then the "``&``"
3550modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003551"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003552will not use the same register for any inputs (other than an input tied to this
3553output).
3554
3555Input constraints
3556"""""""""""""""""
3557
3558Input constraints do not have a prefix -- just the constraint codes. Each input
3559constraint will consume one argument from the call instruction. It is not
3560permitted for the asm to write to any input register or memory location (unless
3561that input is tied to an output). Note also that multiple inputs may all be
3562assigned to the same register, if LLVM can determine that they necessarily all
3563contain the same value.
3564
3565Instead of providing a Constraint Code, input constraints may also "tie"
3566themselves to an output constraint, by providing an integer as the constraint
3567string. Tied inputs still consume an argument from the call instruction, and
3568take up a position in the asm template numbering as is usual -- they will simply
3569be constrained to always use the same register as the output they've been tied
3570to. For example, a constraint string of "``=r,0``" says to assign a register for
3571output, and use that register as an input as well (it being the 0'th
3572constraint).
3573
3574It is permitted to tie an input to an "early-clobber" output. In that case, no
3575*other* input may share the same register as the input tied to the early-clobber
3576(even when the other input has the same value).
3577
3578You may only tie an input to an output which has a register constraint, not a
3579memory constraint. Only a single input may be tied to an output.
3580
3581There is also an "interesting" feature which deserves a bit of explanation: if a
3582register class constraint allocates a register which is too small for the value
3583type operand provided as input, the input value will be split into multiple
3584registers, and all of them passed to the inline asm.
3585
3586However, this feature is often not as useful as you might think.
3587
3588Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3589architectures that have instructions which operate on multiple consecutive
3590instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3591SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3592hardware then loads into both the named register, and the next register. This
3593feature of inline asm would not be useful to support that.)
3594
3595A few of the targets provide a template string modifier allowing explicit access
3596to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3597``D``). On such an architecture, you can actually access the second allocated
3598register (yet, still, not any subsequent ones). But, in that case, you're still
3599probably better off simply splitting the value into two separate operands, for
3600clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3601despite existing only for use with this feature, is not really a good idea to
3602use)
3603
3604Indirect inputs and outputs
3605"""""""""""""""""""""""""""
3606
3607Indirect output or input constraints can be specified by the "``*``" modifier
3608(which goes after the "``=``" in case of an output). This indicates that the asm
3609will write to or read from the contents of an *address* provided as an input
3610argument. (Note that in this way, indirect outputs act more like an *input* than
3611an output: just like an input, they consume an argument of the call expression,
3612rather than producing a return value. An indirect output constraint is an
3613"output" only in that the asm is expected to write to the contents of the input
3614memory location, instead of just read from it).
3615
3616This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3617address of a variable as a value.
3618
3619It is also possible to use an indirect *register* constraint, but only on output
3620(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3621value normally, and then, separately emit a store to the address provided as
3622input, after the provided inline asm. (It's not clear what value this
3623functionality provides, compared to writing the store explicitly after the asm
3624statement, and it can only produce worse code, since it bypasses many
3625optimization passes. I would recommend not using it.)
3626
3627
3628Clobber constraints
3629"""""""""""""""""""
3630
3631A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3632consume an input operand, nor generate an output. Clobbers cannot use any of the
3633general constraint code letters -- they may use only explicit register
3634constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3635"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3636memory locations -- not only the memory pointed to by a declared indirect
3637output.
3638
Peter Zotov00257232016-08-30 10:48:31 +00003639Note that clobbering named registers that are also present in output
3640constraints is not legal.
3641
James Y Knightbc832ed2015-07-08 18:08:36 +00003642
3643Constraint Codes
3644""""""""""""""""
3645After a potential prefix comes constraint code, or codes.
3646
3647A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3648followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3649(e.g. "``{eax}``").
3650
3651The one and two letter constraint codes are typically chosen to be the same as
3652GCC's constraint codes.
3653
3654A single constraint may include one or more than constraint code in it, leaving
3655it up to LLVM to choose which one to use. This is included mainly for
3656compatibility with the translation of GCC inline asm coming from clang.
3657
3658There are two ways to specify alternatives, and either or both may be used in an
3659inline asm constraint list:
3660
36611) Append the codes to each other, making a constraint code set. E.g. "``im``"
3662 or "``{eax}m``". This means "choose any of the options in the set". The
3663 choice of constraint is made independently for each constraint in the
3664 constraint list.
3665
36662) Use "``|``" between constraint code sets, creating alternatives. Every
3667 constraint in the constraint list must have the same number of alternative
3668 sets. With this syntax, the same alternative in *all* of the items in the
3669 constraint list will be chosen together.
3670
3671Putting those together, you might have a two operand constraint string like
3672``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3673operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3674may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3675
3676However, the use of either of the alternatives features is *NOT* recommended, as
3677LLVM is not able to make an intelligent choice about which one to use. (At the
3678point it currently needs to choose, not enough information is available to do so
3679in a smart way.) Thus, it simply tries to make a choice that's most likely to
3680compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3681always choose to use memory, not registers). And, if given multiple registers,
3682or multiple register classes, it will simply choose the first one. (In fact, it
3683doesn't currently even ensure explicitly specified physical registers are
3684unique, so specifying multiple physical registers as alternatives, like
3685``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3686intended.)
3687
3688Supported Constraint Code List
3689""""""""""""""""""""""""""""""
3690
3691The constraint codes are, in general, expected to behave the same way they do in
3692GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3693inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3694and GCC likely indicates a bug in LLVM.
3695
3696Some constraint codes are typically supported by all targets:
3697
3698- ``r``: A register in the target's general purpose register class.
3699- ``m``: A memory address operand. It is target-specific what addressing modes
3700 are supported, typical examples are register, or register + register offset,
3701 or register + immediate offset (of some target-specific size).
3702- ``i``: An integer constant (of target-specific width). Allows either a simple
3703 immediate, or a relocatable value.
3704- ``n``: An integer constant -- *not* including relocatable values.
3705- ``s``: An integer constant, but allowing *only* relocatable values.
3706- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3707 useful to pass a label for an asm branch or call.
3708
3709 .. FIXME: but that surely isn't actually okay to jump out of an asm
3710 block without telling llvm about the control transfer???)
3711
3712- ``{register-name}``: Requires exactly the named physical register.
3713
3714Other constraints are target-specific:
3715
3716AArch64:
3717
3718- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3719- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3720 i.e. 0 to 4095 with optional shift by 12.
3721- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3722 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3723- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3724 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3725- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3726 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3727- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3728 32-bit register. This is a superset of ``K``: in addition to the bitmask
3729 immediate, also allows immediate integers which can be loaded with a single
3730 ``MOVZ`` or ``MOVL`` instruction.
3731- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3732 64-bit register. This is a superset of ``L``.
3733- ``Q``: Memory address operand must be in a single register (no
3734 offsets). (However, LLVM currently does this for the ``m`` constraint as
3735 well.)
3736- ``r``: A 32 or 64-bit integer register (W* or X*).
3737- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3738- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3739
3740AMDGPU:
3741
3742- ``r``: A 32 or 64-bit integer register.
3743- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3744- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3745
3746
3747All ARM modes:
3748
3749- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3750 operand. Treated the same as operand ``m``, at the moment.
3751
3752ARM and ARM's Thumb2 mode:
3753
3754- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3755- ``I``: An immediate integer valid for a data-processing instruction.
3756- ``J``: An immediate integer between -4095 and 4095.
3757- ``K``: An immediate integer whose bitwise inverse is valid for a
3758 data-processing instruction. (Can be used with template modifier "``B``" to
3759 print the inverted value).
3760- ``L``: An immediate integer whose negation is valid for a data-processing
3761 instruction. (Can be used with template modifier "``n``" to print the negated
3762 value).
3763- ``M``: A power of two or a integer between 0 and 32.
3764- ``N``: Invalid immediate constraint.
3765- ``O``: Invalid immediate constraint.
3766- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3767- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3768 as ``r``.
3769- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3770 invalid.
3771- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3772 ``d0-d31``, or ``q0-q15``.
3773- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3774 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003775- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3776 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003777
3778ARM's Thumb1 mode:
3779
3780- ``I``: An immediate integer between 0 and 255.
3781- ``J``: An immediate integer between -255 and -1.
3782- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3783 some amount.
3784- ``L``: An immediate integer between -7 and 7.
3785- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3786- ``N``: An immediate integer between 0 and 31.
3787- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3788- ``r``: A low 32-bit GPR register (``r0-r7``).
3789- ``l``: A low 32-bit GPR register (``r0-r7``).
3790- ``h``: A high GPR register (``r0-r7``).
3791- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3792 ``d0-d31``, or ``q0-q15``.
3793- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3794 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003795- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3796 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003797
3798
3799Hexagon:
3800
3801- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3802 at the moment.
3803- ``r``: A 32 or 64-bit register.
3804
3805MSP430:
3806
3807- ``r``: An 8 or 16-bit register.
3808
3809MIPS:
3810
3811- ``I``: An immediate signed 16-bit integer.
3812- ``J``: An immediate integer zero.
3813- ``K``: An immediate unsigned 16-bit integer.
3814- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3815- ``N``: An immediate integer between -65535 and -1.
3816- ``O``: An immediate signed 15-bit integer.
3817- ``P``: An immediate integer between 1 and 65535.
3818- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3819 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3820- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3821 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3822 ``m``.
3823- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3824 ``sc`` instruction on the given subtarget (details vary).
3825- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3826- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003827 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3828 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003829- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3830 ``25``).
3831- ``l``: The ``lo`` register, 32 or 64-bit.
3832- ``x``: Invalid.
3833
3834NVPTX:
3835
3836- ``b``: A 1-bit integer register.
3837- ``c`` or ``h``: A 16-bit integer register.
3838- ``r``: A 32-bit integer register.
3839- ``l`` or ``N``: A 64-bit integer register.
3840- ``f``: A 32-bit float register.
3841- ``d``: A 64-bit float register.
3842
3843
3844PowerPC:
3845
3846- ``I``: An immediate signed 16-bit integer.
3847- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3848- ``K``: An immediate unsigned 16-bit integer.
3849- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3850- ``M``: An immediate integer greater than 31.
3851- ``N``: An immediate integer that is an exact power of 2.
3852- ``O``: The immediate integer constant 0.
3853- ``P``: An immediate integer constant whose negation is a signed 16-bit
3854 constant.
3855- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3856 treated the same as ``m``.
3857- ``r``: A 32 or 64-bit integer register.
3858- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3859 ``R1-R31``).
3860- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3861 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3862- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3863 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3864 altivec vector register (``V0-V31``).
3865
3866 .. FIXME: is this a bug that v accepts QPX registers? I think this
3867 is supposed to only use the altivec vector registers?
3868
3869- ``y``: Condition register (``CR0-CR7``).
3870- ``wc``: An individual CR bit in a CR register.
3871- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3872 register set (overlapping both the floating-point and vector register files).
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003873- ``ws``: A 32 or 64-bit floating-point register, from the full VSX register
James Y Knightbc832ed2015-07-08 18:08:36 +00003874 set.
3875
3876Sparc:
3877
3878- ``I``: An immediate 13-bit signed integer.
3879- ``r``: A 32-bit integer register.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003880- ``f``: Any floating-point register on SparcV8, or a floating-point
James Y Knightd4e1b002017-05-12 15:59:10 +00003881 register in the "low" half of the registers on SparcV9.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003882- ``e``: Any floating-point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003883
3884SystemZ:
3885
3886- ``I``: An immediate unsigned 8-bit integer.
3887- ``J``: An immediate unsigned 12-bit integer.
3888- ``K``: An immediate signed 16-bit integer.
3889- ``L``: An immediate signed 20-bit integer.
3890- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003891- ``Q``: A memory address operand with a base address and a 12-bit immediate
3892 unsigned displacement.
3893- ``R``: A memory address operand with a base address, a 12-bit immediate
3894 unsigned displacement, and an index register.
3895- ``S``: A memory address operand with a base address and a 20-bit immediate
3896 signed displacement.
3897- ``T``: A memory address operand with a base address, a 20-bit immediate
3898 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003899- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3900- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3901 address context evaluates as zero).
3902- ``h``: A 32-bit value in the high part of a 64bit data register
3903 (LLVM-specific)
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003904- ``f``: A 32, 64, or 128-bit floating-point register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003905
3906X86:
3907
3908- ``I``: An immediate integer between 0 and 31.
3909- ``J``: An immediate integer between 0 and 64.
3910- ``K``: An immediate signed 8-bit integer.
3911- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3912 0xffffffff.
3913- ``M``: An immediate integer between 0 and 3.
3914- ``N``: An immediate unsigned 8-bit integer.
3915- ``O``: An immediate integer between 0 and 127.
3916- ``e``: An immediate 32-bit signed integer.
3917- ``Z``: An immediate 32-bit unsigned integer.
3918- ``o``, ``v``: Treated the same as ``m``, at the moment.
3919- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3920 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3921 registers, and on X86-64, it is all of the integer registers.
3922- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3923 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3924- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3925- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3926 existed since i386, and can be accessed without the REX prefix.
3927- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3928- ``y``: A 64-bit MMX register, if MMX is enabled.
3929- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3930 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3931 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3932 512-bit vector operand in an AVX512 register, Otherwise, an error.
3933- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3934- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3935 32-bit mode, a 64-bit integer operand will get split into two registers). It
3936 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3937 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3938 you're better off splitting it yourself, before passing it to the asm
3939 statement.
3940
3941XCore:
3942
3943- ``r``: A 32-bit integer register.
3944
3945
3946.. _inline-asm-modifiers:
3947
3948Asm template argument modifiers
3949^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3950
3951In the asm template string, modifiers can be used on the operand reference, like
3952"``${0:n}``".
3953
3954The modifiers are, in general, expected to behave the same way they do in
3955GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3956inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3957and GCC likely indicates a bug in LLVM.
3958
3959Target-independent:
3960
Sean Silvaa1190322015-08-06 22:56:48 +00003961- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003962 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3963- ``n``: Negate and print immediate integer constant unadorned, without the
3964 target-specific immediate punctuation (e.g. no ``$`` prefix).
3965- ``l``: Print as an unadorned label, without the target-specific label
3966 punctuation (e.g. no ``$`` prefix).
3967
3968AArch64:
3969
3970- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3971 instead of ``x30``, print ``w30``.
3972- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3973- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3974 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3975 ``v*``.
3976
3977AMDGPU:
3978
3979- ``r``: No effect.
3980
3981ARM:
3982
3983- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3984 register).
3985- ``P``: No effect.
3986- ``q``: No effect.
3987- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3988 as ``d4[1]`` instead of ``s9``)
3989- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3990 prefix.
3991- ``L``: Print the low 16-bits of an immediate integer constant.
3992- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3993 register operands subsequent to the specified one (!), so use carefully.
3994- ``Q``: Print the low-order register of a register-pair, or the low-order
3995 register of a two-register operand.
3996- ``R``: Print the high-order register of a register-pair, or the high-order
3997 register of a two-register operand.
3998- ``H``: Print the second register of a register-pair. (On a big-endian system,
3999 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
4000 to ``R``.)
4001
4002 .. FIXME: H doesn't currently support printing the second register
4003 of a two-register operand.
4004
4005- ``e``: Print the low doubleword register of a NEON quad register.
4006- ``f``: Print the high doubleword register of a NEON quad register.
4007- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
4008 adornment.
4009
4010Hexagon:
4011
4012- ``L``: Print the second register of a two-register operand. Requires that it
4013 has been allocated consecutively to the first.
4014
4015 .. FIXME: why is it restricted to consecutive ones? And there's
4016 nothing that ensures that happens, is there?
4017
4018- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4019 nothing. Used to print 'addi' vs 'add' instructions.
4020
4021MSP430:
4022
4023No additional modifiers.
4024
4025MIPS:
4026
4027- ``X``: Print an immediate integer as hexadecimal
4028- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
4029- ``d``: Print an immediate integer as decimal.
4030- ``m``: Subtract one and print an immediate integer as decimal.
4031- ``z``: Print $0 if an immediate zero, otherwise print normally.
4032- ``L``: Print the low-order register of a two-register operand, or prints the
4033 address of the low-order word of a double-word memory operand.
4034
4035 .. FIXME: L seems to be missing memory operand support.
4036
4037- ``M``: Print the high-order register of a two-register operand, or prints the
4038 address of the high-order word of a double-word memory operand.
4039
4040 .. FIXME: M seems to be missing memory operand support.
4041
4042- ``D``: Print the second register of a two-register operand, or prints the
4043 second word of a double-word memory operand. (On a big-endian system, ``D`` is
4044 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
4045 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00004046- ``w``: No effect. Provided for compatibility with GCC which requires this
4047 modifier in order to print MSA registers (``W0-W31``) with the ``f``
4048 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00004049
4050NVPTX:
4051
4052- ``r``: No effect.
4053
4054PowerPC:
4055
4056- ``L``: Print the second register of a two-register operand. Requires that it
4057 has been allocated consecutively to the first.
4058
4059 .. FIXME: why is it restricted to consecutive ones? And there's
4060 nothing that ensures that happens, is there?
4061
4062- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4063 nothing. Used to print 'addi' vs 'add' instructions.
4064- ``y``: For a memory operand, prints formatter for a two-register X-form
4065 instruction. (Currently always prints ``r0,OPERAND``).
4066- ``U``: Prints 'u' if the memory operand is an update form, and nothing
4067 otherwise. (NOTE: LLVM does not support update form, so this will currently
4068 always print nothing)
4069- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
4070 not support indexed form, so this will currently always print nothing)
4071
4072Sparc:
4073
4074- ``r``: No effect.
4075
4076SystemZ:
4077
4078SystemZ implements only ``n``, and does *not* support any of the other
4079target-independent modifiers.
4080
4081X86:
4082
4083- ``c``: Print an unadorned integer or symbol name. (The latter is
4084 target-specific behavior for this typically target-independent modifier).
4085- ``A``: Print a register name with a '``*``' before it.
4086- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
4087 operand.
4088- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
4089 memory operand.
4090- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
4091 operand.
4092- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
4093 operand.
4094- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
4095 available, otherwise the 32-bit register name; do nothing on a memory operand.
4096- ``n``: Negate and print an unadorned integer, or, for operands other than an
4097 immediate integer (e.g. a relocatable symbol expression), print a '-' before
4098 the operand. (The behavior for relocatable symbol expressions is a
4099 target-specific behavior for this typically target-independent modifier)
4100- ``H``: Print a memory reference with additional offset +8.
4101- ``P``: Print a memory reference or operand for use as the argument of a call
4102 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
4103
4104XCore:
4105
4106No additional modifiers.
4107
4108
Sean Silvab084af42012-12-07 10:36:55 +00004109Inline Asm Metadata
4110^^^^^^^^^^^^^^^^^^^
4111
4112The call instructions that wrap inline asm nodes may have a
4113"``!srcloc``" MDNode attached to it that contains a list of constant
4114integers. If present, the code generator will use the integer as the
4115location cookie value when report errors through the ``LLVMContext``
4116error reporting mechanisms. This allows a front-end to correlate backend
4117errors that occur with inline asm back to the source code that produced
4118it. For example:
4119
4120.. code-block:: llvm
4121
4122 call void asm sideeffect "something bad", ""(), !srcloc !42
4123 ...
4124 !42 = !{ i32 1234567 }
4125
4126It is up to the front-end to make sense of the magic numbers it places
4127in the IR. If the MDNode contains multiple constants, the code generator
4128will use the one that corresponds to the line of the asm that the error
4129occurs on.
4130
4131.. _metadata:
4132
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004133Metadata
4134========
Sean Silvab084af42012-12-07 10:36:55 +00004135
4136LLVM IR allows metadata to be attached to instructions in the program
4137that can convey extra information about the code to the optimizers and
4138code generator. One example application of metadata is source-level
4139debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004140
Sean Silvaa1190322015-08-06 22:56:48 +00004141Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004142``call`` instruction, it uses the ``metadata`` type.
4143
4144All metadata are identified in syntax by a exclamation point ('``!``').
4145
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004146.. _metadata-string:
4147
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004148Metadata Nodes and Metadata Strings
4149-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00004150
4151A metadata string is a string surrounded by double quotes. It can
4152contain any character by escaping non-printable characters with
4153"``\xx``" where "``xx``" is the two digit hex code. For example:
4154"``!"test\00"``".
4155
4156Metadata nodes are represented with notation similar to structure
4157constants (a comma separated list of elements, surrounded by braces and
4158preceded by an exclamation point). Metadata nodes can have any values as
4159their operand. For example:
4160
4161.. code-block:: llvm
4162
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004163 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00004164
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004165Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4166
Renato Golin124f2592016-07-20 12:16:38 +00004167.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004168
4169 !0 = distinct !{!"test\00", i32 10}
4170
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004171``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004172content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004173when metadata operands change.
4174
Sean Silvab084af42012-12-07 10:36:55 +00004175A :ref:`named metadata <namedmetadatastructure>` is a collection of
4176metadata nodes, which can be looked up in the module symbol table. For
4177example:
4178
4179.. code-block:: llvm
4180
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004181 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004182
Adrian Prantl1b842da2017-07-28 20:44:29 +00004183Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4184intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004185
4186.. code-block:: llvm
4187
Adrian Prantlabe04752017-07-28 20:21:02 +00004188 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004189
Peter Collingbourne50108682015-11-06 02:41:02 +00004190Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4191to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004192
4193.. code-block:: llvm
4194
4195 %indvar.next = add i64 %indvar, 1, !dbg !21
4196
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004197Metadata can also be attached to a function or a global variable. Here metadata
4198``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4199and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004200
4201.. code-block:: llvm
4202
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004203 declare !dbg !22 void @f1()
4204 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004205 ret void
4206 }
4207
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004208 @g1 = global i32 0, !dbg !22
4209 @g2 = external global i32, !dbg !22
4210
4211A transformation is required to drop any metadata attachment that it does not
4212know or know it can't preserve. Currently there is an exception for metadata
4213attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4214unconditionally dropped unless the global is itself deleted.
4215
4216Metadata attached to a module using named metadata may not be dropped, with
4217the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4218
Sean Silvab084af42012-12-07 10:36:55 +00004219More information about specific metadata nodes recognized by the
4220optimizers and code generator is found below.
4221
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004222.. _specialized-metadata:
4223
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004224Specialized Metadata Nodes
4225^^^^^^^^^^^^^^^^^^^^^^^^^^
4226
4227Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004228to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004229order.
4230
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004231These aren't inherently debug info centric, but currently all the specialized
4232metadata nodes are related to debug info.
4233
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004234.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004235
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004236DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004237"""""""""""""
4238
Sean Silvaa1190322015-08-06 22:56:48 +00004239``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004240``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4241containing the debug info to be emitted along with the compile unit, regardless
4242of code optimizations (some nodes are only emitted if there are references to
4243them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4244indicating whether or not line-table discriminators are updated to provide
4245more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004246
Renato Golin124f2592016-07-20 12:16:38 +00004247.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004248
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004249 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004250 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004251 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004252 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4253 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004254
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004255Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004256specific compilation unit. File descriptors are defined using this scope. These
4257descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4258track of global variables, type information, and imported entities (declarations
4259and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004260
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004261.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004262
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004263DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004264""""""
4265
Sean Silvaa1190322015-08-06 22:56:48 +00004266``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004267
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004268.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004269
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004270 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4271 checksumkind: CSK_MD5,
4272 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004273
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004274Files are sometimes used in ``scope:`` fields, and are the only valid target
4275for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004276Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004277
Michael Kuperstein605308a2015-05-14 10:58:59 +00004278.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004279
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004280DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004281"""""""""""
4282
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004283``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004284``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004285
Renato Golin124f2592016-07-20 12:16:38 +00004286.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004287
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004288 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004289 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004290 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004291
Sean Silvaa1190322015-08-06 22:56:48 +00004292The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004293following:
4294
Renato Golin124f2592016-07-20 12:16:38 +00004295.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004296
4297 DW_ATE_address = 1
4298 DW_ATE_boolean = 2
4299 DW_ATE_float = 4
4300 DW_ATE_signed = 5
4301 DW_ATE_signed_char = 6
4302 DW_ATE_unsigned = 7
4303 DW_ATE_unsigned_char = 8
4304
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004305.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004306
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004307DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004308""""""""""""""""
4309
Sean Silvaa1190322015-08-06 22:56:48 +00004310``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004311refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004312types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004313represents a function with no return value (such as ``void foo() {}`` in C++).
4314
Renato Golin124f2592016-07-20 12:16:38 +00004315.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004316
4317 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4318 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004319 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004320
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004321.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004322
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004323DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004324"""""""""""""
4325
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004326``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004327qualified types.
4328
Renato Golin124f2592016-07-20 12:16:38 +00004329.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004330
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004331 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004332 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004333 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004334 align: 32)
4335
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004336The following ``tag:`` values are valid:
4337
Renato Golin124f2592016-07-20 12:16:38 +00004338.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004339
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004340 DW_TAG_member = 13
4341 DW_TAG_pointer_type = 15
4342 DW_TAG_reference_type = 16
4343 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004344 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004345 DW_TAG_ptr_to_member_type = 31
4346 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004347 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004348 DW_TAG_volatile_type = 53
4349 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004350 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004351
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004352.. _DIDerivedTypeMember:
4353
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004354``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004355<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004356``offset:`` is the member's bit offset. If the composite type has an ODR
4357``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4358uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004359
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004360``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4361field of :ref:`composite types <DICompositeType>` to describe parents and
4362friends.
4363
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004364``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4365
4366``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004367``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4368are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004369
4370Note that the ``void *`` type is expressed as a type derived from NULL.
4371
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004372.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004373
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004374DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004375"""""""""""""""
4376
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004377``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004378structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004379
4380If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004381identifier used for type merging between modules. When specified,
4382:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4383derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4384``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004385
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004386For a given ``identifier:``, there should only be a single composite type that
4387does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4388together will unique such definitions at parse time via the ``identifier:``
4389field, even if the nodes are ``distinct``.
4390
Renato Golin124f2592016-07-20 12:16:38 +00004391.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004392
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004393 !0 = !DIEnumerator(name: "SixKind", value: 7)
4394 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4395 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4396 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004397 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4398 elements: !{!0, !1, !2})
4399
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004400The following ``tag:`` values are valid:
4401
Renato Golin124f2592016-07-20 12:16:38 +00004402.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004403
4404 DW_TAG_array_type = 1
4405 DW_TAG_class_type = 2
4406 DW_TAG_enumeration_type = 4
4407 DW_TAG_structure_type = 19
4408 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004409
4410For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004411descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004412level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004413array type is a native packed vector.
4414
4415For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004416descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004417value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004418``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004419
4420For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4421``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004422<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4423``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4424``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004425
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004426.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004427
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004428DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004429""""""""""
4430
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004431``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sander de Smalen1cb94312018-01-24 10:30:23 +00004432:ref:`DICompositeType`.
4433
4434- ``count: -1`` indicates an empty array.
4435- ``count: !9`` describes the count with a :ref:`DILocalVariable`.
4436- ``count: !11`` describes the count with a :ref:`DIGlobalVariable`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004437
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004438.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004439
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004440 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4441 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4442 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004443
Sander de Smalenfdf40912018-01-24 09:56:07 +00004444 ; Scopes used in rest of example
4445 !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
Chandler Carruth24dd2112018-08-06 02:30:01 +00004446 !7 = distinct !DICompileUnit(language: DW_LANG_C99, file: !6)
4447 !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004448
4449 ; Use of local variable as count value
4450 !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
4451 !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
Chandler Carruth24dd2112018-08-06 02:30:01 +00004452 !11 = !DISubrange(count: !10, lowerBound: 0)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004453
4454 ; Use of global variable as count value
4455 !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
Chandler Carruth24dd2112018-08-06 02:30:01 +00004456 !13 = !DISubrange(count: !12, lowerBound: 0)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004457
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004458.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004459
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004460DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004461""""""""""""
4462
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004463``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4464variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004465
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004466.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004467
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004468 !0 = !DIEnumerator(name: "SixKind", value: 7)
4469 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4470 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004471
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004472DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004473"""""""""""""""""""""""
4474
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004475``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004476language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004477:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004478
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004479.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004480
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004481 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004482
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004483DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004484""""""""""""""""""""""""
4485
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004486``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004487language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004488but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004489``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004490:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004491
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004492.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004493
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004494 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004495
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004496DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004497"""""""""""
4498
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004499``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004500
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004501.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004502
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004503 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004504
Sander de Smalen1cb94312018-01-24 10:30:23 +00004505.. _DIGlobalVariable:
4506
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004507DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004508""""""""""""""""
4509
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004510``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004511
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004512.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004513
Adrian Prantl6f0ec692019-01-22 16:40:18 +00004514 @foo = global i32, !dbg !0
4515 !0 = !DIGlobalVariableExpression(var: !1, expr: !DIExpression())
4516 !1 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !2,
4517 file: !3, line: 7, type: !4, isLocal: true,
4518 isDefinition: false, declaration: !5)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004519
Adrian Prantl6f0ec692019-01-22 16:40:18 +00004520
4521DIGlobalVariableExpression
4522""""""""""""""""""""""""""
4523
4524``DIGlobalVariableExpression`` nodes tie a :ref:`DIGlobalVariable` together
4525with a :ref:`DIExpression`.
4526
4527.. code-block:: text
4528
4529 @lower = global i32, !dbg !0
4530 @upper = global i32, !dbg !1
4531 !0 = !DIGlobalVariableExpression(
4532 var: !2,
4533 expr: !DIExpression(DW_OP_LLVM_fragment, 0, 32)
4534 )
4535 !1 = !DIGlobalVariableExpression(
4536 var: !2,
4537 expr: !DIExpression(DW_OP_LLVM_fragment, 32, 32)
4538 )
4539 !2 = !DIGlobalVariable(name: "split64", linkageName: "split64", scope: !3,
4540 file: !4, line: 8, type: !5, declaration: !6)
4541
4542All global variable expressions should be referenced by the `globals:` field of
4543a :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004544
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004545.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004546
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004547DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004548""""""""""""
4549
Peter Collingbourne50108682015-11-06 02:41:02 +00004550``DISubprogram`` nodes represent functions from the source language. A
4551``DISubprogram`` may be attached to a function definition using ``!dbg``
4552metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4553that must be retained, even if their IR counterparts are optimized out of
4554the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004555
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004556.. _DISubprogramDeclaration:
4557
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004558When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004559tree as opposed to a definition of a function. If the scope is a composite
4560type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4561then the subprogram declaration is uniqued based only on its ``linkageName:``
4562and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004563
Renato Golin124f2592016-07-20 12:16:38 +00004564.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004565
Peter Collingbourne50108682015-11-06 02:41:02 +00004566 define void @_Z3foov() !dbg !0 {
4567 ...
4568 }
4569
4570 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4571 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004572 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004573 containingType: !4,
4574 virtuality: DW_VIRTUALITY_pure_virtual,
4575 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004576 isOptimized: true, unit: !5, templateParams: !6,
4577 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004578
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004579.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004580
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004581DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004582""""""""""""""
4583
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004584``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004585<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004586two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004587fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004588
Renato Golin124f2592016-07-20 12:16:38 +00004589.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004590
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004591 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004592
4593Usually lexical blocks are ``distinct`` to prevent node merging based on
4594operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004595
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004596.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004597
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004598DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004599""""""""""""""""""
4600
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004601``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004602:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004603indicate textual inclusion, or the ``discriminator:`` field can be used to
4604discriminate between control flow within a single block in the source language.
4605
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004606.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004607
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004608 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4609 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4610 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004611
Michael Kuperstein605308a2015-05-14 10:58:59 +00004612.. _DILocation:
4613
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004614DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004615""""""""""
4616
Sean Silvaa1190322015-08-06 22:56:48 +00004617``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004618mandatory, and points at an :ref:`DILexicalBlockFile`, an
4619:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004620
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004621.. code-block:: text
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004622
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004623 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004624
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004625.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004626
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004627DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004628"""""""""""""""
4629
Sean Silvaa1190322015-08-06 22:56:48 +00004630``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004631the ``arg:`` field is set to non-zero, then this variable is a subprogram
4632parameter, and it will be included in the ``variables:`` field of its
4633:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004634
Renato Golin124f2592016-07-20 12:16:38 +00004635.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004636
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004637 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4638 type: !3, flags: DIFlagArtificial)
4639 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4640 type: !3)
4641 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004642
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004643DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004644""""""""""""
4645
Adrian Prantlb44c7762017-03-22 18:01:01 +00004646``DIExpression`` nodes represent expressions that are inspired by the DWARF
4647expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4648(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
Vedant Kumar8a05b012018-07-28 00:33:47 +00004649referenced LLVM variable relates to the source language variable. Debug
4650intrinsics are interpreted left-to-right: start by pushing the value/address
4651operand of the intrinsic onto a stack, then repeatedly push and evaluate
4652opcodes from the DIExpression until the final variable description is produced.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004653
Vedant Kumar8a05b012018-07-28 00:33:47 +00004654The current supported opcode vocabulary is limited:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004655
Adrian Prantl6825fb62017-04-18 01:21:53 +00004656- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004657- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4658 them together and appends the result to the expression stack.
4659- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4660 the last entry from the second last entry and appends the result to the
4661 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004662- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004663- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4664 here, respectively) of the variable fragment from the working expression. Note
Hiroshi Inoue760c0c92018-01-16 13:19:48 +00004665 that contrary to DW_OP_bit_piece, the offset is describing the location
Adrian Prantlb44c7762017-03-22 18:01:01 +00004666 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004667- ``DW_OP_swap`` swaps top two stack entries.
4668- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4669 of the stack is treated as an address. The second stack entry is treated as an
4670 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004671- ``DW_OP_stack_value`` marks a constant value.
4672
Adrian Prantl6825fb62017-04-18 01:21:53 +00004673DWARF specifies three kinds of simple location descriptions: Register, memory,
Vedant Kumar8a05b012018-07-28 00:33:47 +00004674and implicit location descriptions. Note that a location description is
4675defined over certain ranges of a program, i.e the location of a variable may
4676change over the course of the program. Register and memory location
4677descriptions describe the *concrete location* of a source variable (in the
4678sense that a debugger might modify its value), whereas *implicit locations*
4679describe merely the actual *value* of a source variable which might not exist
4680in registers or in memory (see ``DW_OP_stack_value``).
4681
4682A ``llvm.dbg.addr`` or ``llvm.dbg.declare`` intrinsic describes an indirect
4683value (the address) of a source variable. The first operand of the intrinsic
4684must be an address of some kind. A DIExpression attached to the intrinsic
4685refines this address to produce a concrete location for the source variable.
4686
4687A ``llvm.dbg.value`` intrinsic describes the direct value of a source variable.
4688The first operand of the intrinsic may be a direct or indirect value. A
4689DIExpresion attached to the intrinsic refines the first operand to produce a
4690direct value. For example, if the first operand is an indirect value, it may be
4691necessary to insert ``DW_OP_deref`` into the DIExpresion in order to produce a
4692valid debug intrinsic.
4693
4694.. note::
4695
4696 A DIExpression is interpreted in the same way regardless of which kind of
4697 debug intrinsic it's attached to.
Adrian Prantl6825fb62017-04-18 01:21:53 +00004698
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004699.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004700
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004701 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004702 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004703 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004704 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004705 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004706 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004707 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004708
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004709DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004710""""""""""""""
4711
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004712``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004713
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004714.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004715
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004716 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004717 getter: "getFoo", attributes: 7, type: !2)
4718
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004719DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004720""""""""""""""""
4721
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004722``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004723compile unit.
4724
Renato Golin124f2592016-07-20 12:16:38 +00004725.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004726
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004727 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004728 entity: !1, line: 7)
4729
Amjad Abouda9bcf162015-12-10 12:56:35 +00004730DIMacro
4731"""""""
4732
4733``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4734The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004735defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004736used to expand the macro identifier.
4737
Renato Golin124f2592016-07-20 12:16:38 +00004738.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004739
4740 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4741 value: "((x) + 1)")
4742 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4743
4744DIMacroFile
4745"""""""""""
4746
4747``DIMacroFile`` nodes represent inclusion of source files.
4748The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4749appear in the included source file.
4750
Renato Golin124f2592016-07-20 12:16:38 +00004751.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004752
4753 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4754 nodes: !3)
4755
Sean Silvab084af42012-12-07 10:36:55 +00004756'``tbaa``' Metadata
4757^^^^^^^^^^^^^^^^^^^
4758
4759In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004760suitable for doing type based alias analysis (TBAA). Instead, metadata is
4761added to the IR to describe a type system of a higher level language. This
4762can be used to implement C/C++ strict type aliasing rules, but it can also
4763be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004764
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004765This description of LLVM's TBAA system is broken into two parts:
4766:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4767:ref:`Representation<tbaa_node_representation>` talks about the metadata
4768encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004769
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004770It is always possible to trace any TBAA node to a "root" TBAA node (details
4771in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4772nodes with different roots have an unknown aliasing relationship, and LLVM
4773conservatively infers ``MayAlias`` between them. The rules mentioned in
4774this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004775
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004776.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004777
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004778Semantics
4779"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004780
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004781The TBAA metadata system, referred to as "struct path TBAA" (not to be
4782confused with ``tbaa.struct``), consists of the following high level
4783concepts: *Type Descriptors*, further subdivided into scalar type
4784descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004785
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004786**Type descriptors** describe the type system of the higher level language
4787being compiled. **Scalar type descriptors** describe types that do not
4788contain other types. Each scalar type has a parent type, which must also
4789be a scalar type or the TBAA root. Via this parent relation, scalar types
4790within a TBAA root form a tree. **Struct type descriptors** denote types
4791that contain a sequence of other type descriptors, at known offsets. These
4792contained type descriptors can either be struct type descriptors themselves
4793or scalar type descriptors.
4794
4795**Access tags** are metadata nodes attached to load and store instructions.
4796Access tags use type descriptors to describe the *location* being accessed
4797in terms of the type system of the higher level language. Access tags are
4798tuples consisting of a base type, an access type and an offset. The base
4799type is a scalar type descriptor or a struct type descriptor, the access
4800type is a scalar type descriptor, and the offset is a constant integer.
4801
4802The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4803things:
4804
4805 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4806 or store) of a value of type ``AccessTy`` contained in the struct type
4807 ``BaseTy`` at offset ``Offset``.
4808
4809 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4810 ``AccessTy`` must be the same; and the access tag describes a scalar
4811 access with scalar type ``AccessTy``.
4812
4813We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4814tuples this way:
4815
4816 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4817 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4818 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4819 undefined if ``Offset`` is non-zero.
4820
4821 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4822 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4823 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4824 to be relative within that inner type.
4825
4826A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4827aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4828Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4829Offset2)`` via the ``Parent`` relation or vice versa.
4830
4831As a concrete example, the type descriptor graph for the following program
4832
4833.. code-block:: c
4834
4835 struct Inner {
4836 int i; // offset 0
4837 float f; // offset 4
4838 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004839
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004840 struct Outer {
4841 float f; // offset 0
4842 double d; // offset 4
4843 struct Inner inner_a; // offset 12
4844 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004845
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004846 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4847 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4848 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
Fangrui Song74d6a742018-05-29 05:38:05 +00004849 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, FloatScalarTy, 16)
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004850 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4851 }
4852
4853is (note that in C and C++, ``char`` can be used to access any arbitrary
4854type):
4855
4856.. code-block:: text
4857
4858 Root = "TBAA Root"
4859 CharScalarTy = ("char", Root, 0)
4860 FloatScalarTy = ("float", CharScalarTy, 0)
4861 DoubleScalarTy = ("double", CharScalarTy, 0)
4862 IntScalarTy = ("int", CharScalarTy, 0)
4863 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4864 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4865 (InnerStructTy, 12)}
4866
4867
4868with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
48690)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4870``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4871
4872.. _tbaa_node_representation:
4873
4874Representation
4875""""""""""""""
4876
4877The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4878with exactly one ``MDString`` operand.
4879
4880Scalar type descriptors are represented as an ``MDNode`` s with two
4881operands. The first operand is an ``MDString`` denoting the name of the
4882struct type. LLVM does not assign meaning to the value of this operand, it
4883only cares about it being an ``MDString``. The second operand is an
4884``MDNode`` which points to the parent for said scalar type descriptor,
4885which is either another scalar type descriptor or the TBAA root. Scalar
4886type descriptors can have an optional third argument, but that must be the
4887constant integer zero.
4888
4889Struct type descriptors are represented as ``MDNode`` s with an odd number
4890of operands greater than 1. The first operand is an ``MDString`` denoting
4891the name of the struct type. Like in scalar type descriptors the actual
4892value of this name operand is irrelevant to LLVM. After the name operand,
4893the struct type descriptors have a sequence of alternating ``MDNode`` and
4894``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4895an ``MDNode``, denotes a contained field, and the 2N th operand, a
4896``ConstantInt``, is the offset of the said contained field. The offsets
4897must be in non-decreasing order.
4898
4899Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4900The first operand is an ``MDNode`` pointing to the node representing the
4901base type. The second operand is an ``MDNode`` pointing to the node
4902representing the access type. The third operand is a ``ConstantInt`` that
4903states the offset of the access. If a fourth field is present, it must be
4904a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4905that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004906``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004907AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4908the access type and the base type of an access tag must be the same, and
4909that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004910
4911'``tbaa.struct``' Metadata
4912^^^^^^^^^^^^^^^^^^^^^^^^^^
4913
4914The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4915aggregate assignment operations in C and similar languages, however it
4916is defined to copy a contiguous region of memory, which is more than
4917strictly necessary for aggregate types which contain holes due to
4918padding. Also, it doesn't contain any TBAA information about the fields
4919of the aggregate.
4920
4921``!tbaa.struct`` metadata can describe which memory subregions in a
4922memcpy are padding and what the TBAA tags of the struct are.
4923
4924The current metadata format is very simple. ``!tbaa.struct`` metadata
4925nodes are a list of operands which are in conceptual groups of three.
4926For each group of three, the first operand gives the byte offset of a
4927field in bytes, the second gives its size in bytes, and the third gives
4928its tbaa tag. e.g.:
4929
4930.. code-block:: llvm
4931
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004932 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004933
4934This describes a struct with two fields. The first is at offset 0 bytes
4935with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4936and has size 4 bytes and has tbaa tag !2.
4937
4938Note that the fields need not be contiguous. In this example, there is a
49394 byte gap between the two fields. This gap represents padding which
4940does not carry useful data and need not be preserved.
4941
Hal Finkel94146652014-07-24 14:25:39 +00004942'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004943^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004944
4945``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4946noalias memory-access sets. This means that some collection of memory access
4947instructions (loads, stores, memory-accessing calls, etc.) that carry
4948``noalias`` metadata can specifically be specified not to alias with some other
4949collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004950Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004951a domain.
4952
4953When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004954of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004955subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004956instruction's ``noalias`` list, then the two memory accesses are assumed not to
4957alias.
Hal Finkel94146652014-07-24 14:25:39 +00004958
Adam Nemet569a5b32016-04-27 00:52:48 +00004959Because scopes in one domain don't affect scopes in other domains, separate
4960domains can be used to compose multiple independent noalias sets. This is
4961used for example during inlining. As the noalias function parameters are
4962turned into noalias scope metadata, a new domain is used every time the
4963function is inlined.
4964
Hal Finkel029cde62014-07-25 15:50:02 +00004965The metadata identifying each domain is itself a list containing one or two
4966entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004967string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004968self-reference can be used to create globally unique domain names. A
4969descriptive string may optionally be provided as a second list entry.
4970
4971The metadata identifying each scope is also itself a list containing two or
4972three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004973is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004974self-reference can be used to create globally unique scope names. A metadata
4975reference to the scope's domain is the second entry. A descriptive string may
4976optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004977
4978For example,
4979
4980.. code-block:: llvm
4981
Hal Finkel029cde62014-07-25 15:50:02 +00004982 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004983 !0 = !{!0}
4984 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004985
Hal Finkel029cde62014-07-25 15:50:02 +00004986 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004987 !2 = !{!2, !0}
4988 !3 = !{!3, !0}
4989 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004990
Hal Finkel029cde62014-07-25 15:50:02 +00004991 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004992 !5 = !{!4} ; A list containing only scope !4
4993 !6 = !{!4, !3, !2}
4994 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004995
4996 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004997 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004998 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004999
Hal Finkel029cde62014-07-25 15:50:02 +00005000 ; These two instructions also don't alias (for domain !1, the set of scopes
5001 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00005002 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00005003 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00005004
Adam Nemet0a8416f2015-05-11 08:30:28 +00005005 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00005006 ; the !noalias list is not a superset of, or equal to, the scopes in the
5007 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00005008 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00005009 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00005010
Sean Silvab084af42012-12-07 10:36:55 +00005011'``fpmath``' Metadata
5012^^^^^^^^^^^^^^^^^^^^^
5013
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00005014``fpmath`` metadata may be attached to any instruction of floating-point
Sean Silvab084af42012-12-07 10:36:55 +00005015type. It can be used to express the maximum acceptable error in the
5016result of that instruction, in ULPs, thus potentially allowing the
5017compiler to use a more efficient but less accurate method of computing
5018it. ULP is defined as follows:
5019
5020 If ``x`` is a real number that lies between two finite consecutive
5021 floating-point numbers ``a`` and ``b``, without being equal to one
5022 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
5023 distance between the two non-equal finite floating-point numbers
5024 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
5025
Matt Arsenault82f41512016-06-27 19:43:15 +00005026The metadata node shall consist of a single positive float type number
5027representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00005028
5029.. code-block:: llvm
5030
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005031 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00005032
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00005033.. _range-metadata:
5034
Sean Silvab084af42012-12-07 10:36:55 +00005035'``range``' Metadata
5036^^^^^^^^^^^^^^^^^^^^
5037
Jingyue Wu37fcb592014-06-19 16:50:16 +00005038``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
5039integer types. It expresses the possible ranges the loaded value or the value
Eli Friedmane15a1112018-07-17 20:38:11 +00005040returned by the called function at this call site is in. If the loaded or
5041returned value is not in the specified range, the behavior is undefined. The
5042ranges are represented with a flattened list of integers. The loaded value or
5043the value returned is known to be in the union of the ranges defined by each
5044consecutive pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00005045
5046- The type must match the type loaded by the instruction.
5047- The pair ``a,b`` represents the range ``[a,b)``.
5048- Both ``a`` and ``b`` are constants.
5049- The range is allowed to wrap.
5050- The range should not represent the full or empty set. That is,
5051 ``a!=b``.
5052
5053In addition, the pairs must be in signed order of the lower bound and
5054they must be non-contiguous.
5055
5056Examples:
5057
5058.. code-block:: llvm
5059
David Blaikiec7aabbb2015-03-04 22:06:14 +00005060 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
5061 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00005062 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
5063 %d = invoke i8 @bar() to label %cont
5064 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00005065 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005066 !0 = !{ i8 0, i8 2 }
5067 !1 = !{ i8 255, i8 2 }
5068 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
5069 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00005070
Peter Collingbourne235c2752016-12-08 19:01:00 +00005071'``absolute_symbol``' Metadata
5072^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5073
5074``absolute_symbol`` metadata may be attached to a global variable
5075declaration. It marks the declaration as a reference to an absolute symbol,
5076which causes the backend to use absolute relocations for the symbol even
5077in position independent code, and expresses the possible ranges that the
5078global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00005079``range`` metadata, with the extension that the pair ``all-ones,all-ones``
5080may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00005081
Peter Collingbourned88f9282017-01-20 21:56:37 +00005082Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00005083
5084.. code-block:: llvm
5085
5086 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00005087 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00005088
5089 ...
5090 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00005091 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00005092
Matthew Simpson36bbc8c2017-10-16 22:22:11 +00005093'``callees``' Metadata
5094^^^^^^^^^^^^^^^^^^^^^^
5095
5096``callees`` metadata may be attached to indirect call sites. If ``callees``
5097metadata is attached to a call site, and any callee is not among the set of
5098functions provided by the metadata, the behavior is undefined. The intent of
5099this metadata is to facilitate optimizations such as indirect-call promotion.
5100For example, in the code below, the call instruction may only target the
5101``add`` or ``sub`` functions:
5102
5103.. code-block:: llvm
5104
5105 %result = call i64 %binop(i64 %x, i64 %y), !callees !0
5106
5107 ...
5108 !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
5109
Johannes Doerfert18251842019-01-19 05:19:06 +00005110'``callback``' Metadata
Johannes Doerfert0b029072019-01-19 09:40:14 +00005111^^^^^^^^^^^^^^^^^^^^^^^
Johannes Doerfert18251842019-01-19 05:19:06 +00005112
5113``callback`` metadata may be attached to a function declaration, or definition.
5114(Call sites are excluded only due to the lack of a use case.) For ease of
5115exposition, we'll refer to the function annotated w/ metadata as a broker
5116function. The metadata describes how the arguments of a call to the broker are
5117in turn passed to the callback function specified by the metadata. Thus, the
5118``callback`` metadata provides a partial description of a call site inside the
5119broker function with regards to the arguments of a call to the broker. The only
5120semantic restriction on the broker function itself is that it is not allowed to
5121inspect or modify arguments referenced in the ``callback`` metadata as
5122pass-through to the callback function.
5123
5124The broker is not required to actually invoke the callback function at runtime.
5125However, the assumptions about not inspecting or modifying arguments that would
5126be passed to the specified callback function still hold, even if the callback
5127function is not dynamically invoked. The broker is allowed to invoke the
5128callback function more than once per invocation of the broker. The broker is
5129also allowed to invoke (directly or indirectly) the function passed as a
5130callback through another use. Finally, the broker is also allowed to relay the
5131callback callee invocation to a different thread.
5132
5133The metadata is structured as follows: At the outer level, ``callback``
5134metadata is a list of ``callback`` encodings. Each encoding starts with a
5135constant ``i64`` which describes the argument position of the callback function
5136in the call to the broker. The following elements, except the last, describe
5137what arguments are passed to the callback function. Each element is again an
5138``i64`` constant identifying the argument of the broker that is passed through,
5139or ``i64 -1`` to indicate an unknown or inspected argument. The order in which
5140they are listed has to be the same in which they are passed to the callback
5141callee. The last element of the encoding is a boolean which specifies how
5142variadic arguments of the broker are handled. If it is true, all variadic
5143arguments of the broker are passed through to the callback function *after* the
5144arguments encoded explicitly before.
5145
5146In the code below, the ``pthread_create`` function is marked as a broker
5147through the ``!callback !1`` metadata. In the example, there is only one
5148callback encoding, namely ``!2``, associated with the broker. This encoding
5149identifies the callback function as the second argument of the broker (``i64
51502``) and the sole argument of the callback function as the third one of the
5151broker function (``i64 3``).
5152
5153.. code-block:: llvm
5154
5155 declare !callback !1 dso_local i32 @pthread_create(i64*, %union.pthread_attr_t*, i8* (i8*)*, i8*)
5156
5157 ...
5158 !2 = !{i64 2, i64 3, i1 false}
5159 !1 = !{!2}
5160
5161Another example is shown below. The callback callee is the second argument of
5162the ``__kmpc_fork_call`` function (``i64 2``). The callee is given two unknown
5163values (each identified by a ``i64 -1``) and afterwards all
5164variadic arguments that are passed to the ``__kmpc_fork_call`` call (due to the
5165final ``i1 true``).
5166
5167.. code-block:: llvm
5168
5169 declare !callback !0 dso_local void @__kmpc_fork_call(%struct.ident_t*, i32, void (i32*, i32*, ...)*, ...)
5170
5171 ...
5172 !1 = !{i64 2, i64 -1, i64 -1, i1 true}
5173 !0 = !{!1}
5174
5175
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005176'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00005177^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005178
5179``unpredictable`` metadata may be attached to any branch or switch
5180instruction. It can be used to express the unpredictability of control
5181flow. Similar to the llvm.expect intrinsic, it may be used to alter
5182optimizations related to compare and branch instructions. The metadata
5183is treated as a boolean value; if it exists, it signals that the branch
5184or switch that it is attached to is completely unpredictable.
5185
Michael Kruse72448522018-12-12 17:32:52 +00005186.. _llvm.loop:
5187
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005188'``llvm.loop``'
5189^^^^^^^^^^^^^^^
5190
5191It is sometimes useful to attach information to loop constructs. Currently,
5192loop metadata is implemented as metadata attached to the branch instruction
5193in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00005194guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00005195specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005196
5197The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00005198itself to avoid merging it with any other identifier metadata, e.g.,
5199during module linkage or function inlining. That is, each loop should refer
5200to their own identification metadata even if they reside in separate functions.
5201The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005202constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005203
5204.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00005205
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005206 !0 = !{!0}
5207 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005208
Mark Heffernan893752a2014-07-18 19:24:51 +00005209The loop identifier metadata can be used to specify additional
5210per-loop metadata. Any operands after the first operand can be treated
5211as user-defined metadata. For example the ``llvm.loop.unroll.count``
5212suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005213
Paul Redmond5fdf8362013-05-28 20:00:34 +00005214.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005215
Paul Redmond5fdf8362013-05-28 20:00:34 +00005216 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
5217 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005218 !0 = !{!0, !1}
5219 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005220
Michael Kruse72448522018-12-12 17:32:52 +00005221'``llvm.loop.disable_nonforced``'
5222^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5223
5224This metadata disables all optional loop transformations unless
5225explicitly instructed using other transformation metdata such as
Michael Kruse82dd71e2018-12-12 17:59:01 +00005226``llvm.loop.unroll.enable``. That is, no heuristic will try to determine
Michael Kruse72448522018-12-12 17:32:52 +00005227whether a transformation is profitable. The purpose is to avoid that the
5228loop is transformed to a different loop before an explicitly requested
5229(forced) transformation is applied. For instance, loop fusion can make
5230other transformations impossible. Mandatory loop canonicalizations such
5231as loop rotation are still applied.
5232
5233It is recommended to use this metadata in addition to any llvm.loop.*
5234transformation directive. Also, any loop should have at most one
5235directive applied to it (and a sequence of transformations built using
5236followup-attributes). Otherwise, which transformation will be applied
5237depends on implementation details such as the pass pipeline order.
5238
5239See :ref:`transformation-metadata` for details.
5240
Mark Heffernan9d20e422014-07-21 23:11:03 +00005241'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
5242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00005243
Mark Heffernan9d20e422014-07-21 23:11:03 +00005244Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
5245used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00005246vectorization width and interleave count. These metadata should be used in
5247conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00005248``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
5249optimization hints and the optimizer will only interleave and vectorize loops if
Michael Kruse978ba612018-12-20 04:58:07 +00005250it believes it is safe to do so. The ``llvm.loop.parallel_accesses`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00005251which contains information about loop-carried memory dependencies can be helpful
5252in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00005253
Mark Heffernan9d20e422014-07-21 23:11:03 +00005254'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00005255^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5256
Mark Heffernan9d20e422014-07-21 23:11:03 +00005257This metadata suggests an interleave count to the loop interleaver.
5258The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00005259second operand is an integer specifying the interleave count. For
5260example:
5261
5262.. code-block:: llvm
5263
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005264 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005265
Mark Heffernan9d20e422014-07-21 23:11:03 +00005266Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00005267multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00005268then the interleave count will be determined automatically.
5269
5270'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00005271^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00005272
5273This metadata selectively enables or disables vectorization for the loop. The
5274first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00005275is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000052760 disables vectorization:
5277
5278.. code-block:: llvm
5279
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005280 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5281 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00005282
5283'``llvm.loop.vectorize.width``' Metadata
5284^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5285
5286This metadata sets the target width of the vectorizer. The first
5287operand is the string ``llvm.loop.vectorize.width`` and the second
5288operand is an integer specifying the width. For example:
5289
5290.. code-block:: llvm
5291
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005292 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005293
5294Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00005295vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000052960 or if the loop does not have this metadata the width will be
5297determined automatically.
5298
Michael Kruse72448522018-12-12 17:32:52 +00005299'``llvm.loop.vectorize.followup_vectorized``' Metadata
5300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5301
5302This metadata defines which loop attributes the vectorized loop will
5303have. See :ref:`transformation-metadata` for details.
5304
5305'``llvm.loop.vectorize.followup_epilogue``' Metadata
5306^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5307
5308This metadata defines which loop attributes the epilogue will have. The
5309epilogue is not vectorized and is executed when either the vectorized
5310loop is not known to preserve semantics (because e.g., it processes two
5311arrays that are found to alias by a runtime check) or for the last
5312iterations that do not fill a complete set of vector lanes. See
5313:ref:`Transformation Metadata <transformation-metadata>` for details.
5314
5315'``llvm.loop.vectorize.followup_all``' Metadata
5316^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5317
5318Attributes in the metadata will be added to both the vectorized and
5319epilogue loop.
5320See :ref:`Transformation Metadata <transformation-metadata>` for details.
5321
Mark Heffernan893752a2014-07-18 19:24:51 +00005322'``llvm.loop.unroll``'
5323^^^^^^^^^^^^^^^^^^^^^^
5324
5325Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5326optimization hints such as the unroll factor. ``llvm.loop.unroll``
5327metadata should be used in conjunction with ``llvm.loop`` loop
5328identification metadata. The ``llvm.loop.unroll`` metadata are only
5329optimization hints and the unrolling will only be performed if the
5330optimizer believes it is safe to do so.
5331
Mark Heffernan893752a2014-07-18 19:24:51 +00005332'``llvm.loop.unroll.count``' Metadata
5333^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5334
5335This metadata suggests an unroll factor to the loop unroller. The
5336first operand is the string ``llvm.loop.unroll.count`` and the second
5337operand is a positive integer specifying the unroll factor. For
5338example:
5339
5340.. code-block:: llvm
5341
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005342 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005343
5344If the trip count of the loop is less than the unroll count the loop
5345will be partially unrolled.
5346
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005347'``llvm.loop.unroll.disable``' Metadata
5348^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5349
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005350This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00005351which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005352
5353.. code-block:: llvm
5354
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005355 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005356
Kevin Qin715b01e2015-03-09 06:14:18 +00005357'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00005358^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00005359
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005360This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005361operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005362
5363.. code-block:: llvm
5364
5365 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5366
Mark Heffernan89391542015-08-10 17:28:08 +00005367'``llvm.loop.unroll.enable``' Metadata
5368^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5369
5370This metadata suggests that the loop should be fully unrolled if the trip count
5371is known at compile time and partially unrolled if the trip count is not known
5372at compile time. The metadata has a single operand which is the string
5373``llvm.loop.unroll.enable``. For example:
5374
5375.. code-block:: llvm
5376
5377 !0 = !{!"llvm.loop.unroll.enable"}
5378
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005379'``llvm.loop.unroll.full``' Metadata
5380^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5381
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005382This metadata suggests that the loop should be unrolled fully. The
5383metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005384For example:
5385
5386.. code-block:: llvm
5387
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005388 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005389
Michael Kruse72448522018-12-12 17:32:52 +00005390'``llvm.loop.unroll.followup``' Metadata
5391^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5392
5393This metadata defines which loop attributes the unrolled loop will have.
5394See :ref:`Transformation Metadata <transformation-metadata>` for details.
5395
5396'``llvm.loop.unroll.followup_remainder``' Metadata
5397^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5398
5399This metadata defines which loop attributes the remainder loop after
5400partial/runtime unrolling will have. See
5401:ref:`Transformation Metadata <transformation-metadata>` for details.
5402
David Green7fbf06c2018-07-19 12:37:00 +00005403'``llvm.loop.unroll_and_jam``'
5404^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5405
5406This metadata is treated very similarly to the ``llvm.loop.unroll`` metadata
5407above, but affect the unroll and jam pass. In addition any loop with
5408``llvm.loop.unroll`` metadata but no ``llvm.loop.unroll_and_jam`` metadata will
5409disable unroll and jam (so ``llvm.loop.unroll`` metadata will be left to the
5410unroller, plus ``llvm.loop.unroll.disable`` metadata will disable unroll and jam
5411too.)
5412
5413The metadata for unroll and jam otherwise is the same as for ``unroll``.
5414``llvm.loop.unroll_and_jam.enable``, ``llvm.loop.unroll_and_jam.disable`` and
5415``llvm.loop.unroll_and_jam.count`` do the same as for unroll.
5416``llvm.loop.unroll_and_jam.full`` is not supported. Again these are only hints
5417and the normal safety checks will still be performed.
5418
5419'``llvm.loop.unroll_and_jam.count``' Metadata
5420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5421
5422This metadata suggests an unroll and jam factor to use, similarly to
5423``llvm.loop.unroll.count``. The first operand is the string
5424``llvm.loop.unroll_and_jam.count`` and the second operand is a positive integer
5425specifying the unroll factor. For example:
5426
5427.. code-block:: llvm
5428
5429 !0 = !{!"llvm.loop.unroll_and_jam.count", i32 4}
5430
5431If the trip count of the loop is less than the unroll count the loop
5432will be partially unroll and jammed.
5433
5434'``llvm.loop.unroll_and_jam.disable``' Metadata
5435^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5436
5437This metadata disables loop unroll and jamming. The metadata has a single
5438operand which is the string ``llvm.loop.unroll_and_jam.disable``. For example:
5439
5440.. code-block:: llvm
5441
5442 !0 = !{!"llvm.loop.unroll_and_jam.disable"}
5443
5444'``llvm.loop.unroll_and_jam.enable``' Metadata
5445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5446
5447This metadata suggests that the loop should be fully unroll and jammed if the
5448trip count is known at compile time and partially unrolled if the trip count is
5449not known at compile time. The metadata has a single operand which is the
5450string ``llvm.loop.unroll_and_jam.enable``. For example:
5451
5452.. code-block:: llvm
5453
5454 !0 = !{!"llvm.loop.unroll_and_jam.enable"}
5455
Michael Kruse72448522018-12-12 17:32:52 +00005456'``llvm.loop.unroll_and_jam.followup_outer``' Metadata
5457^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5458
5459This metadata defines which loop attributes the outer unrolled loop will
5460have. See :ref:`Transformation Metadata <transformation-metadata>` for
5461details.
5462
5463'``llvm.loop.unroll_and_jam.followup_inner``' Metadata
5464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5465
5466This metadata defines which loop attributes the inner jammed loop will
5467have. See :ref:`Transformation Metadata <transformation-metadata>` for
5468details.
5469
5470'``llvm.loop.unroll_and_jam.followup_remainder_outer``' Metadata
5471^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5472
5473This metadata defines which attributes the epilogue of the outer loop
5474will have. This loop is usually unrolled, meaning there is no such
5475loop. This attribute will be ignored in this case. See
5476:ref:`Transformation Metadata <transformation-metadata>` for details.
5477
5478'``llvm.loop.unroll_and_jam.followup_remainder_inner``' Metadata
5479^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5480
5481This metadata defines which attributes the inner loop of the epilogue
5482will have. The outer epilogue will usually be unrolled, meaning there
5483can be multiple inner remainder loops. See
5484:ref:`Transformation Metadata <transformation-metadata>` for details.
5485
5486'``llvm.loop.unroll_and_jam.followup_all``' Metadata
5487^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5488
5489Attributes specified in the metadata is added to all
5490``llvm.loop.unroll_and_jam.*`` loops. See
5491:ref:`Transformation Metadata <transformation-metadata>` for details.
5492
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005493'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005495
5496This metadata indicates that the loop should not be versioned for the purpose
5497of enabling loop-invariant code motion (LICM). The metadata has a single operand
5498which is the string ``llvm.loop.licm_versioning.disable``. For example:
5499
5500.. code-block:: llvm
5501
5502 !0 = !{!"llvm.loop.licm_versioning.disable"}
5503
Adam Nemetd2fa4142016-04-27 05:28:18 +00005504'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005506
5507Loop distribution allows splitting a loop into multiple loops. Currently,
5508this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005509memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005510dependencies into their own loop.
5511
5512This metadata can be used to selectively enable or disable distribution of the
5513loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5514second operand is a bit. If the bit operand value is 1 distribution is
5515enabled. A value of 0 disables distribution:
5516
5517.. code-block:: llvm
5518
5519 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5520 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5521
5522This metadata should be used in conjunction with ``llvm.loop`` loop
5523identification metadata.
5524
Michael Kruse72448522018-12-12 17:32:52 +00005525'``llvm.loop.distribute.followup_coincident``' Metadata
5526^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5527
5528This metadata defines which attributes extracted loops with no cyclic
5529dependencies will have (i.e. can be vectorized). See
5530:ref:`Transformation Metadata <transformation-metadata>` for details.
5531
5532'``llvm.loop.distribute.followup_sequential``' Metadata
5533^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5534
5535This metadata defines which attributes the isolated loops with unsafe
5536memory dependencies will have. See
5537:ref:`Transformation Metadata <transformation-metadata>` for details.
5538
5539'``llvm.loop.distribute.followup_fallback``' Metadata
5540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5541
5542If loop versioning is necessary, this metadata defined the attributes
5543the non-distributed fallback version will have. See
5544:ref:`Transformation Metadata <transformation-metadata>` for details.
5545
5546'``llvm.loop.distribute.followup_all``' Metadata
5547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5548
5549Thes attributes in this metdata is added to all followup loops of the
5550loop distribution pass. See
5551:ref:`Transformation Metadata <transformation-metadata>` for details.
5552
Michael Kruse978ba612018-12-20 04:58:07 +00005553'``llvm.access.group``' Metadata
5554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005555
Michael Kruse978ba612018-12-20 04:58:07 +00005556``llvm.access.group`` metadata can be attached to any instruction that
5557potentially accesses memory. It can point to a single distinct metadata
5558node, which we call access group. This node represents all memory access
5559instructions referring to it via ``llvm.access.group``. When an
5560instruction belongs to multiple access groups, it can also point to a
5561list of accesses groups, illustrated by the following example.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005562
Michael Kruse978ba612018-12-20 04:58:07 +00005563.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005564
Michael Kruse978ba612018-12-20 04:58:07 +00005565 %val = load i32, i32* %arrayidx, !llvm.access.group !0
5566 ...
5567 !0 = !{!1, !2}
5568 !1 = distinct !{}
5569 !2 = distinct !{}
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005570
Michael Kruse978ba612018-12-20 04:58:07 +00005571It is illegal for the list node to be empty since it might be confused
5572with an access group.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005573
Michael Kruse978ba612018-12-20 04:58:07 +00005574The access group metadata node must be 'distinct' to avoid collapsing
5575multiple access groups by content. A access group metadata node must
5576always be empty which can be used to distinguish an access group
5577metadata node from a list of access groups. Being empty avoids the
5578situation that the content must be updated which, because metadata is
5579immutable by design, would required finding and updating all references
5580to the access group node.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005581
Michael Kruse978ba612018-12-20 04:58:07 +00005582The access group can be used to refer to a memory access instruction
5583without pointing to it directly (which is not possible in global
5584metadata). Currently, the only metadata making use of it is
5585``llvm.loop.parallel_accesses``.
5586
5587'``llvm.loop.parallel_accesses``' Metadata
5588^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5589
5590The ``llvm.loop.parallel_accesses`` metadata refers to one or more
5591access group metadata nodes (see ``llvm.access.group``). It denotes that
5592no loop-carried memory dependence exist between it and other instructions
5593in the loop with this metadata.
5594
5595Let ``m1`` and ``m2`` be two instructions that both have the
5596``llvm.access.group`` metadata to the access group ``g1``, respectively
5597``g2`` (which might be identical). If a loop contains both access groups
5598in its ``llvm.loop.parallel_accesses`` metadata, then the compiler can
5599assume that there is no dependency between ``m1`` and ``m2`` carried by
5600this loop. Instructions that belong to multiple access groups are
5601considered having this property if at least one of the access groups
5602matches the ``llvm.loop.parallel_accesses`` list.
5603
5604If all memory-accessing instructions in a loop have
5605``llvm.loop.parallel_accesses`` metadata that refers to that loop, then the
5606loop has no loop carried memory dependences and is considered to be a
5607parallel loop.
5608
5609Note that if not all memory access instructions belong to an access
5610group referred to by ``llvm.loop.parallel_accesses``, then the loop must
5611not be considered trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005612memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005613safe mechanism, this causes loops that were originally parallel to be considered
5614sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005615insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005616
5617Example of a loop that is considered parallel due to its correct use of
Michael Kruse978ba612018-12-20 04:58:07 +00005618both ``llvm.access.group`` and ``llvm.loop.parallel_accesses``
5619metadata types.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005620
5621.. code-block:: llvm
5622
5623 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005624 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005625 %val0 = load i32, i32* %arrayidx, !llvm.access.group !1
Paul Redmond5fdf8362013-05-28 20:00:34 +00005626 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005627 store i32 %val0, i32* %arrayidx1, !llvm.access.group !1
Paul Redmond5fdf8362013-05-28 20:00:34 +00005628 ...
5629 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005630
5631 for.end:
5632 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005633 !0 = distinct !{!0, !{!"llvm.loop.parallel_accesses", !1}}
5634 !1 = distinct !{}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005635
Michael Kruse978ba612018-12-20 04:58:07 +00005636It is also possible to have nested parallel loops:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005637
5638.. code-block:: llvm
5639
5640 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005641 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005642 %val1 = load i32, i32* %arrayidx3, !llvm.access.group !4
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005643 ...
5644 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005645
5646 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005647 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005648 %val0 = load i32, i32* %arrayidx1, !llvm.access.group !3
Paul Redmond5fdf8362013-05-28 20:00:34 +00005649 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005650 store i32 %val0, i32* %arrayidx2, !llvm.access.group !3
Paul Redmond5fdf8362013-05-28 20:00:34 +00005651 ...
5652 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005653
5654 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005655 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005656 store i32 %val1, i32* %arrayidx4, !llvm.access.group !4
Paul Redmond5fdf8362013-05-28 20:00:34 +00005657 ...
5658 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005659
5660 outer.for.end: ; preds = %for.body
5661 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005662 !1 = distinct !{!1, !{!"llvm.loop.parallel_accesses", !3}} ; metadata for the inner loop
5663 !2 = distinct !{!2, !{!"llvm.loop.parallel_accesses", !3, !4}} ; metadata for the outer loop
5664 !3 = distinct !{} ; access group for instructions in the inner loop (which are implicitly contained in outer loop as well)
5665 !4 = distinct !{} ; access group for instructions in the outer, but not the inner loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005666
Hiroshi Yamauchidce9def2017-11-02 22:26:51 +00005667'``irr_loop``' Metadata
5668^^^^^^^^^^^^^^^^^^^^^^^
5669
5670``irr_loop`` metadata may be attached to the terminator instruction of a basic
5671block that's an irreducible loop header (note that an irreducible loop has more
5672than once header basic blocks.) If ``irr_loop`` metadata is attached to the
5673terminator instruction of a basic block that is not really an irreducible loop
5674header, the behavior is undefined. The intent of this metadata is to improve the
5675accuracy of the block frequency propagation. For example, in the code below, the
5676block ``header0`` may have a loop header weight (relative to the other headers of
5677the irreducible loop) of 100:
5678
5679.. code-block:: llvm
5680
5681 header0:
5682 ...
5683 br i1 %cmp, label %t1, label %t2, !irr_loop !0
5684
5685 ...
5686 !0 = !{"loop_header_weight", i64 100}
5687
5688Irreducible loop header weights are typically based on profile data.
5689
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005690'``invariant.group``' Metadata
5691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5692
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00005693The experimental ``invariant.group`` metadata may be attached to
Piotr Padlewskice358262018-05-18 23:53:46 +00005694``load``/``store`` instructions referencing a single metadata with no entries.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005695The existence of the ``invariant.group`` metadata on the instruction tells
5696the optimizer that every ``load`` and ``store`` to the same pointer operand
Piotr Padlewskice358262018-05-18 23:53:46 +00005697can be assumed to load or store the same
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005698value (but see the ``llvm.launder.invariant.group`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005699when two pointers are considered the same). Pointers returned by bitcast or
5700getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005701
5702Examples:
5703
5704.. code-block:: llvm
5705
5706 @unknownPtr = external global i8
5707 ...
5708 %ptr = alloca i8
5709 store i8 42, i8* %ptr, !invariant.group !0
5710 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005711
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005712 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5713 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005714
5715 %newPtr = call i8* @getPointer(i8* %ptr)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005716 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005717
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005718 %unknownValue = load i8, i8* @unknownPtr
5719 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005720
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005721 call void @foo(i8* %ptr)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005722 %newPtr2 = call i8* @llvm.launder.invariant.group(i8* %ptr)
5723 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through launder.invariant.group to get value of %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005724
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005725 ...
5726 declare void @foo(i8*)
5727 declare i8* @getPointer(i8*)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005728 declare i8* @llvm.launder.invariant.group(i8*)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005729
Piotr Padlewskice358262018-05-18 23:53:46 +00005730 !0 = !{}
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005731
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005732The invariant.group metadata must be dropped when replacing one pointer by
5733another based on aliasing information. This is because invariant.group is tied
5734to the SSA value of the pointer operand.
5735
5736.. code-block:: llvm
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005737
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005738 %v = load i8, i8* %x, !invariant.group !0
5739 ; if %x mustalias %y then we can replace the above instruction with
5740 %v = load i8, i8* %y
5741
Piotr Padlewski74b155f2018-04-08 13:53:04 +00005742Note that this is an experimental feature, which means that its semantics might
5743change in the future.
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005744
Peter Collingbournea333db82016-07-26 22:31:30 +00005745'``type``' Metadata
5746^^^^^^^^^^^^^^^^^^^
5747
5748See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005749
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005750'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005751^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005752
5753The ``associated`` metadata may be attached to a global object
5754declaration with a single argument that references another global object.
5755
5756This metadata prevents discarding of the global object in linker GC
5757unless the referenced object is also discarded. The linker support for
5758this feature is spotty. For best compatibility, globals carrying this
5759metadata may also:
5760
5761- Be in a comdat with the referenced global.
5762- Be in @llvm.compiler.used.
5763- Have an explicit section with a name which is a valid C identifier.
5764
5765It does not have any effect on non-ELF targets.
5766
5767Example:
5768
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005769.. code-block:: text
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005770
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005771 $a = comdat any
5772 @a = global i32 1, comdat $a
5773 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5774 !0 = !{i32* @a}
5775
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005776
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005777'``prof``' Metadata
5778^^^^^^^^^^^^^^^^^^^
5779
5780The ``prof`` metadata is used to record profile data in the IR.
5781The first operand of the metadata node indicates the profile metadata
5782type. There are currently 3 types:
5783:ref:`branch_weights<prof_node_branch_weights>`,
5784:ref:`function_entry_count<prof_node_function_entry_count>`, and
5785:ref:`VP<prof_node_VP>`.
5786
5787.. _prof_node_branch_weights:
5788
5789branch_weights
5790""""""""""""""
5791
5792Branch weight metadata attached to a branch, select, switch or call instruction
5793represents the likeliness of the associated branch being taken.
5794For more information, see :doc:`BranchWeightMetadata`.
5795
5796.. _prof_node_function_entry_count:
5797
5798function_entry_count
5799""""""""""""""""""""
5800
5801Function entry count metadata can be attached to function definitions
5802to record the number of times the function is called. Used with BFI
5803information, it is also used to derive the basic block profile count.
5804For more information, see :doc:`BranchWeightMetadata`.
5805
5806.. _prof_node_VP:
5807
5808VP
5809""
5810
5811VP (value profile) metadata can be attached to instructions that have
5812value profile information. Currently this is indirect calls (where it
5813records the hottest callees) and calls to memory intrinsics such as memcpy,
5814memmove, and memset (where it records the hottest byte lengths).
5815
5816Each VP metadata node contains "VP" string, then a uint32_t value for the value
5817profiling kind, a uint64_t value for the total number of times the instruction
5818is executed, followed by uint64_t value and execution count pairs.
5819The value profiling kind is 0 for indirect call targets and 1 for memory
5820operations. For indirect call targets, each profile value is a hash
5821of the callee function name, and for memory operations each value is the
5822byte length.
5823
5824Note that the value counts do not need to add up to the total count
5825listed in the third operand (in practice only the top hottest values
5826are tracked and reported).
5827
5828Indirect call example:
5829
5830.. code-block:: llvm
5831
5832 call void %f(), !prof !1
5833 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5834
5835Note that the VP type is 0 (the second operand), which indicates this is
5836an indirect call value profile data. The third operand indicates that the
5837indirect call executed 1600 times. The 4th and 6th operands give the
5838hashes of the 2 hottest target functions' names (this is the same hash used
5839to represent function names in the profile database), and the 5th and 7th
5840operands give the execution count that each of the respective prior target
5841functions was called.
5842
Sean Silvab084af42012-12-07 10:36:55 +00005843Module Flags Metadata
5844=====================
5845
5846Information about the module as a whole is difficult to convey to LLVM's
5847subsystems. The LLVM IR isn't sufficient to transmit this information.
5848The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005849this. These flags are in the form of key / value pairs --- much like a
5850dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005851look it up.
5852
5853The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5854Each triplet has the following form:
5855
5856- The first element is a *behavior* flag, which specifies the behavior
5857 when two (or more) modules are merged together, and it encounters two
5858 (or more) metadata with the same ID. The supported behaviors are
5859 described below.
5860- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005861 metadata. Each module may only have one flag entry for each unique ID (not
5862 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005863- The third element is the value of the flag.
5864
5865When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005866``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5867each unique metadata ID string, there will be exactly one entry in the merged
5868modules ``llvm.module.flags`` metadata table, and the value for that entry will
5869be determined by the merge behavior flag, as described below. The only exception
5870is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005871
5872The following behaviors are supported:
5873
5874.. list-table::
5875 :header-rows: 1
5876 :widths: 10 90
5877
5878 * - Value
5879 - Behavior
5880
5881 * - 1
5882 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005883 Emits an error if two values disagree, otherwise the resulting value
5884 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005885
5886 * - 2
5887 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005888 Emits a warning if two values disagree. The result value will be the
5889 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005890
5891 * - 3
5892 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005893 Adds a requirement that another module flag be present and have a
5894 specified value after linking is performed. The value must be a
5895 metadata pair, where the first element of the pair is the ID of the
5896 module flag to be restricted, and the second element of the pair is
5897 the value the module flag should be restricted to. This behavior can
5898 be used to restrict the allowable results (via triggering of an
5899 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005900
5901 * - 4
5902 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005903 Uses the specified value, regardless of the behavior or value of the
5904 other module. If both modules specify **Override**, but the values
5905 differ, an error will be emitted.
5906
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005907 * - 5
5908 - **Append**
5909 Appends the two values, which are required to be metadata nodes.
5910
5911 * - 6
5912 - **AppendUnique**
5913 Appends the two values, which are required to be metadata
5914 nodes. However, duplicate entries in the second list are dropped
5915 during the append operation.
5916
Steven Wu86a511e2017-08-15 16:16:33 +00005917 * - 7
5918 - **Max**
5919 Takes the max of the two values, which are required to be integers.
5920
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005921It is an error for a particular unique flag ID to have multiple behaviors,
5922except in the case of **Require** (which adds restrictions on another metadata
5923value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005924
5925An example of module flags:
5926
5927.. code-block:: llvm
5928
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005929 !0 = !{ i32 1, !"foo", i32 1 }
5930 !1 = !{ i32 4, !"bar", i32 37 }
5931 !2 = !{ i32 2, !"qux", i32 42 }
5932 !3 = !{ i32 3, !"qux",
5933 !{
5934 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005935 }
5936 }
5937 !llvm.module.flags = !{ !0, !1, !2, !3 }
5938
5939- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5940 if two or more ``!"foo"`` flags are seen is to emit an error if their
5941 values are not equal.
5942
5943- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5944 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005945 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005946
5947- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5948 behavior if two or more ``!"qux"`` flags are seen is to emit a
5949 warning if their values are not equal.
5950
5951- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5952
5953 ::
5954
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005955 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005956
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005957 The behavior is to emit an error if the ``llvm.module.flags`` does not
5958 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5959 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005960
5961Objective-C Garbage Collection Module Flags Metadata
5962----------------------------------------------------
5963
5964On the Mach-O platform, Objective-C stores metadata about garbage
5965collection in a special section called "image info". The metadata
5966consists of a version number and a bitmask specifying what types of
5967garbage collection are supported (if any) by the file. If two or more
5968modules are linked together their garbage collection metadata needs to
5969be merged rather than appended together.
5970
5971The Objective-C garbage collection module flags metadata consists of the
5972following key-value pairs:
5973
5974.. list-table::
5975 :header-rows: 1
5976 :widths: 30 70
5977
5978 * - Key
5979 - Value
5980
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005981 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005982 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005983
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005984 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005985 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005986 always 0.
5987
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005988 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005989 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005990 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5991 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5992 Objective-C ABI version 2.
5993
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005994 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005995 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005996 not. Valid values are 0, for no garbage collection, and 2, for garbage
5997 collection supported.
5998
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005999 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006000 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00006001 If present, its value must be 6. This flag requires that the
6002 ``Objective-C Garbage Collection`` flag have the value 2.
6003
6004Some important flag interactions:
6005
6006- If a module with ``Objective-C Garbage Collection`` set to 0 is
6007 merged with a module with ``Objective-C Garbage Collection`` set to
6008 2, then the resulting module has the
6009 ``Objective-C Garbage Collection`` flag set to 0.
6010- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
6011 merged with a module with ``Objective-C GC Only`` set to 6.
6012
Oliver Stannard5dc29342014-06-20 10:08:11 +00006013C type width Module Flags Metadata
6014----------------------------------
6015
6016The ARM backend emits a section into each generated object file describing the
6017options that it was compiled with (in a compiler-independent way) to prevent
6018linking incompatible objects, and to allow automatic library selection. Some
6019of these options are not visible at the IR level, namely wchar_t width and enum
6020width.
6021
6022To pass this information to the backend, these options are encoded in module
6023flags metadata, using the following key-value pairs:
6024
6025.. list-table::
6026 :header-rows: 1
6027 :widths: 30 70
6028
6029 * - Key
6030 - Value
6031
6032 * - short_wchar
6033 - * 0 --- sizeof(wchar_t) == 4
6034 * 1 --- sizeof(wchar_t) == 2
6035
6036 * - short_enum
6037 - * 0 --- Enums are at least as large as an ``int``.
6038 * 1 --- Enums are stored in the smallest integer type which can
6039 represent all of its values.
6040
6041For example, the following metadata section specifies that the module was
6042compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
6043enum is the smallest type which can represent all of its values::
6044
6045 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00006046 !0 = !{i32 1, !"short_wchar", i32 1}
6047 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00006048
Peter Collingbourne89061b22017-06-12 20:10:48 +00006049Automatic Linker Flags Named Metadata
6050=====================================
6051
6052Some targets support embedding flags to the linker inside individual object
6053files. Typically this is used in conjunction with language extensions which
6054allow source files to explicitly declare the libraries they depend on, and have
6055these automatically be transmitted to the linker via object files.
6056
6057These flags are encoded in the IR using named metadata with the name
6058``!llvm.linker.options``. Each operand is expected to be a metadata node
6059which should be a list of other metadata nodes, each of which should be a
6060list of metadata strings defining linker options.
6061
6062For example, the following metadata section specifies two separate sets of
6063linker options, presumably to link against ``libz`` and the ``Cocoa``
6064framework::
6065
6066 !0 = !{ !"-lz" },
6067 !1 = !{ !"-framework", !"Cocoa" } } }
6068 !llvm.linker.options = !{ !0, !1 }
6069
6070The metadata encoding as lists of lists of options, as opposed to a collapsed
6071list of options, is chosen so that the IR encoding can use multiple option
6072strings to specify e.g., a single library, while still having that specifier be
6073preserved as an atomic element that can be recognized by a target specific
6074assembly writer or object file emitter.
6075
6076Each individual option is required to be either a valid option for the target's
6077linker, or an option that is reserved by the target specific assembly writer or
6078object file emitter. No other aspect of these options is defined by the IR.
6079
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006080.. _summary:
6081
6082ThinLTO Summary
6083===============
6084
6085Compiling with `ThinLTO <https://clang.llvm.org/docs/ThinLTO.html>`_
6086causes the building of a compact summary of the module that is emitted into
6087the bitcode. The summary is emitted into the LLVM assembly and identified
6088in syntax by a caret ('``^``').
6089
Teresa Johnsonab2a7f02018-09-18 13:44:13 +00006090The summary is parsed into a bitcode output, along with the Module
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006091IR, via the "``llvm-as``" tool. Tools that parse the Module IR for the purposes
6092of optimization (e.g. "``clang -x ir``" and "``opt``"), will ignore the
6093summary entries (just as they currently ignore summary entries in a bitcode
6094input file).
6095
Teresa Johnsonab2a7f02018-09-18 13:44:13 +00006096Eventually, the summary will be parsed into a ModuleSummaryIndex object under
6097the same conditions where summary index is currently built from bitcode.
6098Specifically, tools that test the Thin Link portion of a ThinLTO compile
6099(i.e. llvm-lto and llvm-lto2), or when parsing a combined index
6100for a distributed ThinLTO backend via clang's "``-fthinlto-index=<>``" flag
6101(this part is not yet implemented, use llvm-as to create a bitcode object
6102before feeding into thin link tools for now).
6103
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006104There are currently 3 types of summary entries in the LLVM assembly:
6105:ref:`module paths<module_path_summary>`,
6106:ref:`global values<gv_summary>`, and
6107:ref:`type identifiers<typeid_summary>`.
6108
6109.. _module_path_summary:
6110
6111Module Path Summary Entry
6112-------------------------
6113
6114Each module path summary entry lists a module containing global values included
6115in the summary. For a single IR module there will be one such entry, but
6116in a combined summary index produced during the thin link, there will be
6117one module path entry per linked module with summary.
6118
6119Example:
6120
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006121.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006122
6123 ^0 = module: (path: "/path/to/file.o", hash: (2468601609, 1329373163, 1565878005, 638838075, 3148790418))
6124
6125The ``path`` field is a string path to the bitcode file, and the ``hash``
6126field is the 160-bit SHA-1 hash of the IR bitcode contents, used for
6127incremental builds and caching.
6128
6129.. _gv_summary:
6130
6131Global Value Summary Entry
6132--------------------------
6133
6134Each global value summary entry corresponds to a global value defined or
6135referenced by a summarized module.
6136
6137Example:
6138
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006139.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006140
6141 ^4 = gv: (name: "f"[, summaries: (Summary)[, (Summary)]*]?) ; guid = 14740650423002898831
6142
6143For declarations, there will not be a summary list. For definitions, a
6144global value will contain a list of summaries, one per module containing
6145a definition. There can be multiple entries in a combined summary index
6146for symbols with weak linkage.
6147
6148Each ``Summary`` format will depend on whether the global value is a
6149:ref:`function<function_summary>`, :ref:`variable<variable_summary>`, or
6150:ref:`alias<alias_summary>`.
6151
6152.. _function_summary:
6153
6154Function Summary
6155^^^^^^^^^^^^^^^^
6156
6157If the global value is a function, the ``Summary`` entry will look like:
6158
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006159.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006160
6161 function: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), insts: 2[, FuncFlags]?[, Calls]?[, TypeIdInfo]?[, Refs]?
6162
6163The ``module`` field includes the summary entry id for the module containing
6164this definition, and the ``flags`` field contains information such as
6165the linkage type, a flag indicating whether it is legal to import the
6166definition, whether it is globally live and whether the linker resolved it
6167to a local definition (the latter two are populated during the thin link).
6168The ``insts`` field contains the number of IR instructions in the function.
6169Finally, there are several optional fields: :ref:`FuncFlags<funcflags_summary>`,
6170:ref:`Calls<calls_summary>`, :ref:`TypeIdInfo<typeidinfo_summary>`,
6171:ref:`Refs<refs_summary>`.
6172
6173.. _variable_summary:
6174
6175Global Variable Summary
6176^^^^^^^^^^^^^^^^^^^^^^^
6177
6178If the global value is a variable, the ``Summary`` entry will look like:
6179
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006180.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006181
6182 variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0)[, Refs]?
6183
6184The variable entry contains a subset of the fields in a
6185:ref:`function summary <function_summary>`, see the descriptions there.
6186
6187.. _alias_summary:
6188
6189Alias Summary
6190^^^^^^^^^^^^^
6191
6192If the global value is an alias, the ``Summary`` entry will look like:
6193
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006194.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006195
6196 alias: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), aliasee: ^2)
6197
6198The ``module`` and ``flags`` fields are as described for a
6199:ref:`function summary <function_summary>`. The ``aliasee`` field
6200contains a reference to the global value summary entry of the aliasee.
6201
6202.. _funcflags_summary:
6203
6204Function Flags
6205^^^^^^^^^^^^^^
6206
6207The optional ``FuncFlags`` field looks like:
6208
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006209.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006210
6211 funcFlags: (readNone: 0, readOnly: 0, noRecurse: 0, returnDoesNotAlias: 0)
6212
6213If unspecified, flags are assumed to hold the conservative ``false`` value of
6214``0``.
6215
6216.. _calls_summary:
6217
6218Calls
6219^^^^^
6220
6221The optional ``Calls`` field looks like:
6222
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006223.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006224
6225 calls: ((Callee)[, (Callee)]*)
6226
6227where each ``Callee`` looks like:
6228
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006229.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006230
6231 callee: ^1[, hotness: None]?[, relbf: 0]?
6232
6233The ``callee`` refers to the summary entry id of the callee. At most one
6234of ``hotness`` (which can take the values ``Unknown``, ``Cold``, ``None``,
6235``Hot``, and ``Critical``), and ``relbf`` (which holds the integer
6236branch frequency relative to the entry frequency, scaled down by 2^8)
6237may be specified. The defaults are ``Unknown`` and ``0``, respectively.
6238
6239.. _refs_summary:
6240
6241Refs
6242^^^^
6243
6244The optional ``Refs`` field looks like:
6245
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006246.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006247
6248 refs: ((Ref)[, (Ref)]*)
6249
6250where each ``Ref`` contains a reference to the summary id of the referenced
6251value (e.g. ``^1``).
6252
6253.. _typeidinfo_summary:
6254
6255TypeIdInfo
6256^^^^^^^^^^
6257
6258The optional ``TypeIdInfo`` field, used for
6259`Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
6260looks like:
6261
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006262.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006263
6264 typeIdInfo: [(TypeTests)]?[, (TypeTestAssumeVCalls)]?[, (TypeCheckedLoadVCalls)]?[, (TypeTestAssumeConstVCalls)]?[, (TypeCheckedLoadConstVCalls)]?
6265
6266These optional fields have the following forms:
6267
6268TypeTests
6269"""""""""
6270
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006271.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006272
6273 typeTests: (TypeIdRef[, TypeIdRef]*)
6274
6275Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
6276by summary id or ``GUID``.
6277
6278TypeTestAssumeVCalls
6279""""""""""""""""""""
6280
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006281.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006282
6283 typeTestAssumeVCalls: (VFuncId[, VFuncId]*)
6284
6285Where each VFuncId has the format:
6286
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006287.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006288
6289 vFuncId: (TypeIdRef, offset: 16)
6290
6291Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
6292by summary id or ``GUID`` preceeded by a ``guid:`` tag.
6293
6294TypeCheckedLoadVCalls
6295"""""""""""""""""""""
6296
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006297.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006298
6299 typeCheckedLoadVCalls: (VFuncId[, VFuncId]*)
6300
6301Where each VFuncId has the format described for ``TypeTestAssumeVCalls``.
6302
6303TypeTestAssumeConstVCalls
6304"""""""""""""""""""""""""
6305
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006306.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006307
6308 typeTestAssumeConstVCalls: (ConstVCall[, ConstVCall]*)
6309
6310Where each ConstVCall has the format:
6311
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006312.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006313
Teresa Johnsonab2a7f02018-09-18 13:44:13 +00006314 (VFuncId, args: (Arg[, Arg]*))
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006315
6316and where each VFuncId has the format described for ``TypeTestAssumeVCalls``,
6317and each Arg is an integer argument number.
6318
6319TypeCheckedLoadConstVCalls
6320""""""""""""""""""""""""""
6321
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006322.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006323
6324 typeCheckedLoadConstVCalls: (ConstVCall[, ConstVCall]*)
6325
6326Where each ConstVCall has the format described for
6327``TypeTestAssumeConstVCalls``.
6328
6329.. _typeid_summary:
6330
6331Type ID Summary Entry
6332---------------------
6333
6334Each type id summary entry corresponds to a type identifier resolution
6335which is generated during the LTO link portion of the compile when building
6336with `Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
6337so these are only present in a combined summary index.
6338
6339Example:
6340
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006341.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006342
6343 ^4 = typeid: (name: "_ZTS1A", summary: (typeTestRes: (kind: allOnes, sizeM1BitWidth: 7[, alignLog2: 0]?[, sizeM1: 0]?[, bitMask: 0]?[, inlineBits: 0]?)[, WpdResolutions]?)) ; guid = 7004155349499253778
6344
6345The ``typeTestRes`` gives the type test resolution ``kind`` (which may
6346be ``unsat``, ``byteArray``, ``inline``, ``single``, or ``allOnes``), and
6347the ``size-1`` bit width. It is followed by optional flags, which default to 0,
6348and an optional WpdResolutions (whole program devirtualization resolution)
6349field that looks like:
6350
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006351.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006352
6353 wpdResolutions: ((offset: 0, WpdRes)[, (offset: 1, WpdRes)]*
6354
6355where each entry is a mapping from the given byte offset to the whole-program
6356devirtualization resolution WpdRes, that has one of the following formats:
6357
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006358.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006359
6360 wpdRes: (kind: branchFunnel)
6361 wpdRes: (kind: singleImpl, singleImplName: "_ZN1A1nEi")
6362 wpdRes: (kind: indir)
6363
6364Additionally, each wpdRes has an optional ``resByArg`` field, which
6365describes the resolutions for calls with all constant integer arguments:
6366
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006367.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006368
6369 resByArg: (ResByArg[, ResByArg]*)
6370
6371where ResByArg is:
6372
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006373.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006374
6375 args: (Arg[, Arg]*), byArg: (kind: UniformRetVal[, info: 0][, byte: 0][, bit: 0])
6376
6377Where the ``kind`` can be ``Indir``, ``UniformRetVal``, ``UniqueRetVal``
6378or ``VirtualConstProp``. The ``info`` field is only used if the kind
6379is ``UniformRetVal`` (indicates the uniform return value), or
6380``UniqueRetVal`` (holds the return value associated with the unique vtable
6381(0 or 1)). The ``byte`` and ``bit`` fields are only used if the target does
6382not support the use of absolute symbols to store constants.
6383
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006384.. _intrinsicglobalvariables:
6385
Sean Silvab084af42012-12-07 10:36:55 +00006386Intrinsic Global Variables
6387==========================
6388
6389LLVM has a number of "magic" global variables that contain data that
6390affect code generation or other IR semantics. These are documented here.
6391All globals of this sort should have a section specified as
6392"``llvm.metadata``". This section and all globals that start with
6393"``llvm.``" are reserved for use by LLVM.
6394
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006395.. _gv_llvmused:
6396
Sean Silvab084af42012-12-07 10:36:55 +00006397The '``llvm.used``' Global Variable
6398-----------------------------------
6399
Rafael Espindola74f2e462013-04-22 14:58:02 +00006400The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00006401:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00006402pointers to named global variables, functions and aliases which may optionally
6403have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00006404use of it is:
6405
6406.. code-block:: llvm
6407
6408 @X = global i8 4
6409 @Y = global i32 123
6410
6411 @llvm.used = appending global [2 x i8*] [
6412 i8* @X,
6413 i8* bitcast (i32* @Y to i8*)
6414 ], section "llvm.metadata"
6415
Rafael Espindola74f2e462013-04-22 14:58:02 +00006416If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
6417and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00006418symbol that it cannot see (which is why they have to be named). For example, if
6419a variable has internal linkage and no references other than that from the
6420``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
6421references from inline asms and other things the compiler cannot "see", and
6422corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00006423
6424On some targets, the code generator must emit a directive to the
6425assembler or object file to prevent the assembler and linker from
6426molesting the symbol.
6427
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006428.. _gv_llvmcompilerused:
6429
Sean Silvab084af42012-12-07 10:36:55 +00006430The '``llvm.compiler.used``' Global Variable
6431--------------------------------------------
6432
6433The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
6434directive, except that it only prevents the compiler from touching the
6435symbol. On targets that support it, this allows an intelligent linker to
6436optimize references to the symbol without being impeded as it would be
6437by ``@llvm.used``.
6438
6439This is a rare construct that should only be used in rare circumstances,
6440and should not be exposed to source languages.
6441
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006442.. _gv_llvmglobalctors:
6443
Sean Silvab084af42012-12-07 10:36:55 +00006444The '``llvm.global_ctors``' Global Variable
6445-------------------------------------------
6446
6447.. code-block:: llvm
6448
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006449 %0 = type { i32, void ()*, i8* }
6450 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006451
6452The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006453functions, priorities, and an optional associated global or function.
6454The functions referenced by this array will be called in ascending order
6455of priority (i.e. lowest first) when the module is loaded. The order of
6456functions with the same priority is not defined.
6457
6458If the third field is present, non-null, and points to a global variable
6459or function, the initializer function will only run if the associated
6460data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006461
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006462.. _llvmglobaldtors:
6463
Sean Silvab084af42012-12-07 10:36:55 +00006464The '``llvm.global_dtors``' Global Variable
6465-------------------------------------------
6466
6467.. code-block:: llvm
6468
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006469 %0 = type { i32, void ()*, i8* }
6470 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006471
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006472The ``@llvm.global_dtors`` array contains a list of destructor
6473functions, priorities, and an optional associated global or function.
6474The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00006475order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006476order of functions with the same priority is not defined.
6477
6478If the third field is present, non-null, and points to a global variable
6479or function, the destructor function will only run if the associated
6480data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006481
6482Instruction Reference
6483=====================
6484
6485The LLVM instruction set consists of several different classifications
6486of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
6487instructions <binaryops>`, :ref:`bitwise binary
6488instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
6489:ref:`other instructions <otherops>`.
6490
6491.. _terminators:
6492
6493Terminator Instructions
6494-----------------------
6495
6496As mentioned :ref:`previously <functionstructure>`, every basic block in a
6497program ends with a "Terminator" instruction, which indicates which
6498block should be executed after the current block is finished. These
6499terminator instructions typically yield a '``void``' value: they produce
6500control flow, not values (the one exception being the
6501':ref:`invoke <i_invoke>`' instruction).
6502
6503The terminator instructions are: ':ref:`ret <i_ret>`',
6504':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
6505':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00006506':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00006507':ref:`catchret <i_catchret>`',
6508':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00006509and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00006510
6511.. _i_ret:
6512
6513'``ret``' Instruction
6514^^^^^^^^^^^^^^^^^^^^^
6515
6516Syntax:
6517"""""""
6518
6519::
6520
6521 ret <type> <value> ; Return a value from a non-void function
6522 ret void ; Return from void function
6523
6524Overview:
6525"""""""""
6526
6527The '``ret``' instruction is used to return control flow (and optionally
6528a value) from a function back to the caller.
6529
6530There are two forms of the '``ret``' instruction: one that returns a
6531value and then causes control flow, and one that just causes control
6532flow to occur.
6533
6534Arguments:
6535""""""""""
6536
6537The '``ret``' instruction optionally accepts a single argument, the
6538return value. The type of the return value must be a ':ref:`first
6539class <t_firstclass>`' type.
6540
Xing GUO454e51b2019-01-18 03:56:37 +00006541A function is not :ref:`well formed <wellformed>` if it has a non-void
Sean Silvab084af42012-12-07 10:36:55 +00006542return type and contains a '``ret``' instruction with no return value or
6543a return value with a type that does not match its type, or if it has a
6544void return type and contains a '``ret``' instruction with a return
6545value.
6546
6547Semantics:
6548""""""""""
6549
6550When the '``ret``' instruction is executed, control flow returns back to
6551the calling function's context. If the caller is a
6552":ref:`call <i_call>`" instruction, execution continues at the
6553instruction after the call. If the caller was an
6554":ref:`invoke <i_invoke>`" instruction, execution continues at the
6555beginning of the "normal" destination block. If the instruction returns
6556a value, that value shall set the call or invoke instruction's return
6557value.
6558
6559Example:
6560""""""""
6561
6562.. code-block:: llvm
6563
6564 ret i32 5 ; Return an integer value of 5
6565 ret void ; Return from a void function
6566 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
6567
6568.. _i_br:
6569
6570'``br``' Instruction
6571^^^^^^^^^^^^^^^^^^^^
6572
6573Syntax:
6574"""""""
6575
6576::
6577
6578 br i1 <cond>, label <iftrue>, label <iffalse>
6579 br label <dest> ; Unconditional branch
6580
6581Overview:
6582"""""""""
6583
6584The '``br``' instruction is used to cause control flow to transfer to a
6585different basic block in the current function. There are two forms of
6586this instruction, corresponding to a conditional branch and an
6587unconditional branch.
6588
6589Arguments:
6590""""""""""
6591
6592The conditional branch form of the '``br``' instruction takes a single
6593'``i1``' value and two '``label``' values. The unconditional form of the
6594'``br``' instruction takes a single '``label``' value as a target.
6595
6596Semantics:
6597""""""""""
6598
6599Upon execution of a conditional '``br``' instruction, the '``i1``'
6600argument is evaluated. If the value is ``true``, control flows to the
6601'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
6602to the '``iffalse``' ``label`` argument.
6603
6604Example:
6605""""""""
6606
6607.. code-block:: llvm
6608
6609 Test:
6610 %cond = icmp eq i32 %a, %b
6611 br i1 %cond, label %IfEqual, label %IfUnequal
6612 IfEqual:
6613 ret i32 1
6614 IfUnequal:
6615 ret i32 0
6616
6617.. _i_switch:
6618
6619'``switch``' Instruction
6620^^^^^^^^^^^^^^^^^^^^^^^^
6621
6622Syntax:
6623"""""""
6624
6625::
6626
6627 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
6628
6629Overview:
6630"""""""""
6631
6632The '``switch``' instruction is used to transfer control flow to one of
6633several different places. It is a generalization of the '``br``'
6634instruction, allowing a branch to occur to one of many possible
6635destinations.
6636
6637Arguments:
6638""""""""""
6639
6640The '``switch``' instruction uses three parameters: an integer
6641comparison value '``value``', a default '``label``' destination, and an
6642array of pairs of comparison value constants and '``label``'s. The table
6643is not allowed to contain duplicate constant entries.
6644
6645Semantics:
6646""""""""""
6647
6648The ``switch`` instruction specifies a table of values and destinations.
6649When the '``switch``' instruction is executed, this table is searched
6650for the given value. If the value is found, control flow is transferred
6651to the corresponding destination; otherwise, control flow is transferred
6652to the default destination.
6653
6654Implementation:
6655"""""""""""""""
6656
6657Depending on properties of the target machine and the particular
6658``switch`` instruction, this instruction may be code generated in
6659different ways. For example, it could be generated as a series of
6660chained conditional branches or with a lookup table.
6661
6662Example:
6663""""""""
6664
6665.. code-block:: llvm
6666
6667 ; Emulate a conditional br instruction
6668 %Val = zext i1 %value to i32
6669 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
6670
6671 ; Emulate an unconditional br instruction
6672 switch i32 0, label %dest [ ]
6673
6674 ; Implement a jump table:
6675 switch i32 %val, label %otherwise [ i32 0, label %onzero
6676 i32 1, label %onone
6677 i32 2, label %ontwo ]
6678
6679.. _i_indirectbr:
6680
6681'``indirectbr``' Instruction
6682^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6683
6684Syntax:
6685"""""""
6686
6687::
6688
6689 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
6690
6691Overview:
6692"""""""""
6693
6694The '``indirectbr``' instruction implements an indirect branch to a
6695label within the current function, whose address is specified by
6696"``address``". Address must be derived from a
6697:ref:`blockaddress <blockaddress>` constant.
6698
6699Arguments:
6700""""""""""
6701
6702The '``address``' argument is the address of the label to jump to. The
6703rest of the arguments indicate the full set of possible destinations
6704that the address may point to. Blocks are allowed to occur multiple
6705times in the destination list, though this isn't particularly useful.
6706
6707This destination list is required so that dataflow analysis has an
6708accurate understanding of the CFG.
6709
6710Semantics:
6711""""""""""
6712
6713Control transfers to the block specified in the address argument. All
6714possible destination blocks must be listed in the label list, otherwise
6715this instruction has undefined behavior. This implies that jumps to
6716labels defined in other functions have undefined behavior as well.
6717
6718Implementation:
6719"""""""""""""""
6720
6721This is typically implemented with a jump through a register.
6722
6723Example:
6724""""""""
6725
6726.. code-block:: llvm
6727
6728 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
6729
6730.. _i_invoke:
6731
6732'``invoke``' Instruction
6733^^^^^^^^^^^^^^^^^^^^^^^^
6734
6735Syntax:
6736"""""""
6737
6738::
6739
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00006740 <result> = invoke [cconv] [ret attrs] [addrspace(<num>)] [<ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006741 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00006742
6743Overview:
6744"""""""""
6745
6746The '``invoke``' instruction causes control to transfer to a specified
6747function, with the possibility of control flow transfer to either the
6748'``normal``' label or the '``exception``' label. If the callee function
6749returns with the "``ret``" instruction, control flow will return to the
6750"normal" label. If the callee (or any indirect callees) returns via the
6751":ref:`resume <i_resume>`" instruction or other exception handling
6752mechanism, control is interrupted and continued at the dynamically
6753nearest "exception" label.
6754
6755The '``exception``' label is a `landing
6756pad <ExceptionHandling.html#overview>`_ for the exception. As such,
6757'``exception``' label is required to have the
6758":ref:`landingpad <i_landingpad>`" instruction, which contains the
6759information about the behavior of the program after unwinding happens,
6760as its first non-PHI instruction. The restrictions on the
6761"``landingpad``" instruction's tightly couples it to the "``invoke``"
6762instruction, so that the important information contained within the
6763"``landingpad``" instruction can't be lost through normal code motion.
6764
6765Arguments:
6766""""""""""
6767
6768This instruction requires several arguments:
6769
6770#. The optional "cconv" marker indicates which :ref:`calling
6771 convention <callingconv>` the call should use. If none is
6772 specified, the call defaults to using C calling conventions.
6773#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6774 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6775 are valid here.
Craig Topper78e7fff2019-01-16 00:21:59 +00006776#. The optional addrspace attribute can be used to indicate the address space
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00006777 of the called function. If it is not specified, the program address space
6778 from the :ref:`datalayout string<langref_datalayout>` will be used.
David Blaikieb83cf102016-07-13 17:21:34 +00006779#. '``ty``': the type of the call instruction itself which is also the
6780 type of the return value. Functions that return no value are marked
6781 ``void``.
6782#. '``fnty``': shall be the signature of the function being invoked. The
6783 argument types must match the types implied by this signature. This
6784 type can be omitted if the function is not varargs.
6785#. '``fnptrval``': An LLVM value containing a pointer to a function to
6786 be invoked. In most cases, this is a direct function invocation, but
6787 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
6788 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00006789#. '``function args``': argument list whose types match the function
6790 signature argument types and parameter attributes. All arguments must
6791 be of :ref:`first class <t_firstclass>` type. If the function signature
6792 indicates the function accepts a variable number of arguments, the
6793 extra arguments can be specified.
6794#. '``normal label``': the label reached when the called function
6795 executes a '``ret``' instruction.
6796#. '``exception label``': the label reached when a callee returns via
6797 the :ref:`resume <i_resume>` instruction or other exception handling
6798 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00006799#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006800#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00006801
6802Semantics:
6803""""""""""
6804
6805This instruction is designed to operate as a standard '``call``'
6806instruction in most regards. The primary difference is that it
6807establishes an association with a label, which is used by the runtime
6808library to unwind the stack.
6809
6810This instruction is used in languages with destructors to ensure that
6811proper cleanup is performed in the case of either a ``longjmp`` or a
6812thrown exception. Additionally, this is important for implementation of
6813'``catch``' clauses in high-level languages that support them.
6814
6815For the purposes of the SSA form, the definition of the value returned
6816by the '``invoke``' instruction is deemed to occur on the edge from the
6817current block to the "normal" label. If the callee unwinds then no
6818return value is available.
6819
6820Example:
6821""""""""
6822
6823.. code-block:: llvm
6824
6825 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006826 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006827 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006828 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006829
6830.. _i_resume:
6831
6832'``resume``' Instruction
6833^^^^^^^^^^^^^^^^^^^^^^^^
6834
6835Syntax:
6836"""""""
6837
6838::
6839
6840 resume <type> <value>
6841
6842Overview:
6843"""""""""
6844
6845The '``resume``' instruction is a terminator instruction that has no
6846successors.
6847
6848Arguments:
6849""""""""""
6850
6851The '``resume``' instruction requires one argument, which must have the
6852same type as the result of any '``landingpad``' instruction in the same
6853function.
6854
6855Semantics:
6856""""""""""
6857
6858The '``resume``' instruction resumes propagation of an existing
6859(in-flight) exception whose unwinding was interrupted with a
6860:ref:`landingpad <i_landingpad>` instruction.
6861
6862Example:
6863""""""""
6864
6865.. code-block:: llvm
6866
6867 resume { i8*, i32 } %exn
6868
David Majnemer8a1c45d2015-12-12 05:38:55 +00006869.. _i_catchswitch:
6870
6871'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00006872^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00006873
6874Syntax:
6875"""""""
6876
6877::
6878
6879 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6880 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6881
6882Overview:
6883"""""""""
6884
6885The '``catchswitch``' instruction is used by `LLVM's exception handling system
6886<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6887that may be executed by the :ref:`EH personality routine <personalityfn>`.
6888
6889Arguments:
6890""""""""""
6891
6892The ``parent`` argument is the token of the funclet that contains the
6893``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6894this operand may be the token ``none``.
6895
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006896The ``default`` argument is the label of another basic block beginning with
6897either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6898must be a legal target with respect to the ``parent`` links, as described in
6899the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006900
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006901The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006902:ref:`catchpad <i_catchpad>` instruction.
6903
6904Semantics:
6905""""""""""
6906
6907Executing this instruction transfers control to one of the successors in
6908``handlers``, if appropriate, or continues to unwind via the unwind label if
6909present.
6910
6911The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6912it must be both the first non-phi instruction and last instruction in the basic
6913block. Therefore, it must be the only non-phi instruction in the block.
6914
6915Example:
6916""""""""
6917
Renato Golin124f2592016-07-20 12:16:38 +00006918.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00006919
6920 dispatch1:
6921 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6922 dispatch2:
6923 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6924
David Majnemer654e1302015-07-31 17:58:14 +00006925.. _i_catchret:
6926
6927'``catchret``' Instruction
6928^^^^^^^^^^^^^^^^^^^^^^^^^^
6929
6930Syntax:
6931"""""""
6932
6933::
6934
David Majnemer8a1c45d2015-12-12 05:38:55 +00006935 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00006936
6937Overview:
6938"""""""""
6939
6940The '``catchret``' instruction is a terminator instruction that has a
6941single successor.
6942
6943
6944Arguments:
6945""""""""""
6946
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006947The first argument to a '``catchret``' indicates which ``catchpad`` it
6948exits. It must be a :ref:`catchpad <i_catchpad>`.
6949The second argument to a '``catchret``' specifies where control will
6950transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00006951
6952Semantics:
6953""""""""""
6954
David Majnemer8a1c45d2015-12-12 05:38:55 +00006955The '``catchret``' instruction ends an existing (in-flight) exception whose
6956unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6957:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6958code to, for example, destroy the active exception. Control then transfers to
6959``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006960
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006961The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6962If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6963funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6964the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006965
6966Example:
6967""""""""
6968
Renato Golin124f2592016-07-20 12:16:38 +00006969.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006970
David Majnemer8a1c45d2015-12-12 05:38:55 +00006971 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006972
David Majnemer654e1302015-07-31 17:58:14 +00006973.. _i_cleanupret:
6974
6975'``cleanupret``' Instruction
6976^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6977
6978Syntax:
6979"""""""
6980
6981::
6982
David Majnemer8a1c45d2015-12-12 05:38:55 +00006983 cleanupret from <value> unwind label <continue>
6984 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006985
6986Overview:
6987"""""""""
6988
6989The '``cleanupret``' instruction is a terminator instruction that has
6990an optional successor.
6991
6992
6993Arguments:
6994""""""""""
6995
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006996The '``cleanupret``' instruction requires one argument, which indicates
6997which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006998If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6999funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
7000the ``cleanupret``'s behavior is undefined.
7001
7002The '``cleanupret``' instruction also has an optional successor, ``continue``,
7003which must be the label of another basic block beginning with either a
7004``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
7005be a legal target with respect to the ``parent`` links, as described in the
7006`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00007007
7008Semantics:
7009""""""""""
7010
7011The '``cleanupret``' instruction indicates to the
7012:ref:`personality function <personalityfn>` that one
7013:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
7014It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00007015
David Majnemer654e1302015-07-31 17:58:14 +00007016Example:
7017""""""""
7018
Renato Golin124f2592016-07-20 12:16:38 +00007019.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00007020
David Majnemer8a1c45d2015-12-12 05:38:55 +00007021 cleanupret from %cleanup unwind to caller
7022 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00007023
Sean Silvab084af42012-12-07 10:36:55 +00007024.. _i_unreachable:
7025
7026'``unreachable``' Instruction
7027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7028
7029Syntax:
7030"""""""
7031
7032::
7033
7034 unreachable
7035
7036Overview:
7037"""""""""
7038
7039The '``unreachable``' instruction has no defined semantics. This
7040instruction is used to inform the optimizer that a particular portion of
7041the code is not reachable. This can be used to indicate that the code
7042after a no-return function cannot be reached, and other facts.
7043
7044Semantics:
7045""""""""""
7046
7047The '``unreachable``' instruction has no defined semantics.
7048
Cameron McInallye4ee9842018-11-16 19:52:59 +00007049.. _unaryops:
7050
7051Unary Operations
7052-----------------
7053
7054Unary operators require a single operand, execute an operation on
7055it, and produce a single value. The operand might represent multiple
7056data, as is the case with the :ref:`vector <t_vector>` data type. The
7057result value has the same type as its operand.
7058
7059.. _i_fneg:
7060
7061'``fneg``' Instruction
7062^^^^^^^^^^^^^^^^^^^^^^
7063
7064Syntax:
7065"""""""
7066
7067::
7068
7069 <result> = fneg [fast-math flags]* <ty> <op1> ; yields ty:result
7070
7071Overview:
7072"""""""""
7073
7074The '``fneg``' instruction returns the negation of its operand.
7075
7076Arguments:
7077""""""""""
7078
7079The argument to the '``fneg``' instruction must be a
7080:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Michael Kruse978ba612018-12-20 04:58:07 +00007081floating-point values.
Cameron McInallye4ee9842018-11-16 19:52:59 +00007082
7083Semantics:
7084""""""""""
7085
7086The value produced is a copy of the operand with its sign bit flipped.
7087This instruction can also take any number of :ref:`fast-math
7088flags <fastmath>`, which are optimization hints to enable otherwise
7089unsafe floating-point optimizations:
7090
7091Example:
7092""""""""
7093
7094.. code-block:: text
7095
7096 <result> = fneg float %val ; yields float:result = -%var
7097
Sean Silvab084af42012-12-07 10:36:55 +00007098.. _binaryops:
7099
7100Binary Operations
7101-----------------
7102
7103Binary operators are used to do most of the computation in a program.
7104They require two operands of the same type, execute an operation on
7105them, and produce a single value. The operands might represent multiple
7106data, as is the case with the :ref:`vector <t_vector>` data type. The
7107result value has the same type as its operands.
7108
7109There are several different binary operators:
7110
7111.. _i_add:
7112
7113'``add``' Instruction
7114^^^^^^^^^^^^^^^^^^^^^
7115
7116Syntax:
7117"""""""
7118
7119::
7120
Tim Northover675a0962014-06-13 14:24:23 +00007121 <result> = add <ty> <op1>, <op2> ; yields ty:result
7122 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
7123 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
7124 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007125
7126Overview:
7127"""""""""
7128
7129The '``add``' instruction returns the sum of its two operands.
7130
7131Arguments:
7132""""""""""
7133
7134The two arguments to the '``add``' instruction must be
7135:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7136arguments must have identical types.
7137
7138Semantics:
7139""""""""""
7140
7141The value produced is the integer sum of the two operands.
7142
7143If the sum has unsigned overflow, the result returned is the
7144mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
7145the result.
7146
7147Because LLVM integers use a two's complement representation, this
7148instruction is appropriate for both signed and unsigned integers.
7149
7150``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7151respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7152result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
7153unsigned and/or signed overflow, respectively, occurs.
7154
7155Example:
7156""""""""
7157
Renato Golin124f2592016-07-20 12:16:38 +00007158.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007159
Tim Northover675a0962014-06-13 14:24:23 +00007160 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00007161
7162.. _i_fadd:
7163
7164'``fadd``' Instruction
7165^^^^^^^^^^^^^^^^^^^^^^
7166
7167Syntax:
7168"""""""
7169
7170::
7171
Tim Northover675a0962014-06-13 14:24:23 +00007172 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007173
7174Overview:
7175"""""""""
7176
7177The '``fadd``' instruction returns the sum of its two operands.
7178
7179Arguments:
7180""""""""""
7181
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007182The two arguments to the '``fadd``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007183:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007184floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007185
7186Semantics:
7187""""""""""
7188
Sanjay Patel7b722402018-03-07 17:18:22 +00007189The value produced is the floating-point sum of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007190This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007191environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00007192This instruction can also take any number of :ref:`fast-math
7193flags <fastmath>`, which are optimization hints to enable otherwise
7194unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007195
7196Example:
7197""""""""
7198
Renato Golin124f2592016-07-20 12:16:38 +00007199.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007200
Tim Northover675a0962014-06-13 14:24:23 +00007201 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00007202
7203'``sub``' Instruction
7204^^^^^^^^^^^^^^^^^^^^^
7205
7206Syntax:
7207"""""""
7208
7209::
7210
Tim Northover675a0962014-06-13 14:24:23 +00007211 <result> = sub <ty> <op1>, <op2> ; yields ty:result
7212 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
7213 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
7214 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007215
7216Overview:
7217"""""""""
7218
7219The '``sub``' instruction returns the difference of its two operands.
7220
7221Note that the '``sub``' instruction is used to represent the '``neg``'
7222instruction present in most other intermediate representations.
7223
7224Arguments:
7225""""""""""
7226
7227The two arguments to the '``sub``' instruction must be
7228:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7229arguments must have identical types.
7230
7231Semantics:
7232""""""""""
7233
7234The value produced is the integer difference of the two operands.
7235
7236If the difference has unsigned overflow, the result returned is the
7237mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
7238the result.
7239
7240Because LLVM integers use a two's complement representation, this
7241instruction is appropriate for both signed and unsigned integers.
7242
7243``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7244respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7245result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
7246unsigned and/or signed overflow, respectively, occurs.
7247
7248Example:
7249""""""""
7250
Renato Golin124f2592016-07-20 12:16:38 +00007251.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007252
Tim Northover675a0962014-06-13 14:24:23 +00007253 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
7254 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00007255
7256.. _i_fsub:
7257
7258'``fsub``' Instruction
7259^^^^^^^^^^^^^^^^^^^^^^
7260
7261Syntax:
7262"""""""
7263
7264::
7265
Tim Northover675a0962014-06-13 14:24:23 +00007266 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007267
7268Overview:
7269"""""""""
7270
7271The '``fsub``' instruction returns the difference of its two operands.
7272
Sean Silvab084af42012-12-07 10:36:55 +00007273Arguments:
7274""""""""""
7275
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007276The two arguments to the '``fsub``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007277:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007278floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007279
7280Semantics:
7281""""""""""
7282
Sanjay Patel7b722402018-03-07 17:18:22 +00007283The value produced is the floating-point difference of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007284This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007285environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007286This instruction can also take any number of :ref:`fast-math
7287flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007288unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007289
7290Example:
7291""""""""
7292
Renato Golin124f2592016-07-20 12:16:38 +00007293.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007294
Tim Northover675a0962014-06-13 14:24:23 +00007295 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
7296 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00007297
7298'``mul``' Instruction
7299^^^^^^^^^^^^^^^^^^^^^
7300
7301Syntax:
7302"""""""
7303
7304::
7305
Tim Northover675a0962014-06-13 14:24:23 +00007306 <result> = mul <ty> <op1>, <op2> ; yields ty:result
7307 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
7308 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
7309 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007310
7311Overview:
7312"""""""""
7313
7314The '``mul``' instruction returns the product of its two operands.
7315
7316Arguments:
7317""""""""""
7318
7319The two arguments to the '``mul``' instruction must be
7320:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7321arguments must have identical types.
7322
7323Semantics:
7324""""""""""
7325
7326The value produced is the integer product of the two operands.
7327
7328If the result of the multiplication has unsigned overflow, the result
7329returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
7330bit width of the result.
7331
7332Because LLVM integers use a two's complement representation, and the
7333result is the same width as the operands, this instruction returns the
7334correct result for both signed and unsigned integers. If a full product
7335(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
7336sign-extended or zero-extended as appropriate to the width of the full
7337product.
7338
7339``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7340respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7341result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
7342unsigned and/or signed overflow, respectively, occurs.
7343
7344Example:
7345""""""""
7346
Renato Golin124f2592016-07-20 12:16:38 +00007347.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007348
Tim Northover675a0962014-06-13 14:24:23 +00007349 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00007350
7351.. _i_fmul:
7352
7353'``fmul``' Instruction
7354^^^^^^^^^^^^^^^^^^^^^^
7355
7356Syntax:
7357"""""""
7358
7359::
7360
Tim Northover675a0962014-06-13 14:24:23 +00007361 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007362
7363Overview:
7364"""""""""
7365
7366The '``fmul``' instruction returns the product of its two operands.
7367
7368Arguments:
7369""""""""""
7370
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007371The two arguments to the '``fmul``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007372:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007373floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007374
7375Semantics:
7376""""""""""
7377
Sanjay Patel7b722402018-03-07 17:18:22 +00007378The value produced is the floating-point product of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007379This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007380environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007381This instruction can also take any number of :ref:`fast-math
7382flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007383unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007384
7385Example:
7386""""""""
7387
Renato Golin124f2592016-07-20 12:16:38 +00007388.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007389
Tim Northover675a0962014-06-13 14:24:23 +00007390 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00007391
7392'``udiv``' Instruction
7393^^^^^^^^^^^^^^^^^^^^^^
7394
7395Syntax:
7396"""""""
7397
7398::
7399
Tim Northover675a0962014-06-13 14:24:23 +00007400 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
7401 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007402
7403Overview:
7404"""""""""
7405
7406The '``udiv``' instruction returns the quotient of its two operands.
7407
7408Arguments:
7409""""""""""
7410
7411The two arguments to the '``udiv``' instruction must be
7412:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7413arguments must have identical types.
7414
7415Semantics:
7416""""""""""
7417
7418The value produced is the unsigned integer quotient of the two operands.
7419
7420Note that unsigned integer division and signed integer division are
7421distinct operations; for signed integer division, use '``sdiv``'.
7422
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007423Division by zero is undefined behavior. For vectors, if any element
7424of the divisor is zero, the operation has undefined behavior.
7425
Sean Silvab084af42012-12-07 10:36:55 +00007426
7427If the ``exact`` keyword is present, the result value of the ``udiv`` is
7428a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
7429such, "((a udiv exact b) mul b) == a").
7430
7431Example:
7432""""""""
7433
Renato Golin124f2592016-07-20 12:16:38 +00007434.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007435
Tim Northover675a0962014-06-13 14:24:23 +00007436 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007437
7438'``sdiv``' Instruction
7439^^^^^^^^^^^^^^^^^^^^^^
7440
7441Syntax:
7442"""""""
7443
7444::
7445
Tim Northover675a0962014-06-13 14:24:23 +00007446 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
7447 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007448
7449Overview:
7450"""""""""
7451
7452The '``sdiv``' instruction returns the quotient of its two operands.
7453
7454Arguments:
7455""""""""""
7456
7457The two arguments to the '``sdiv``' instruction must be
7458:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7459arguments must have identical types.
7460
7461Semantics:
7462""""""""""
7463
7464The value produced is the signed integer quotient of the two operands
7465rounded towards zero.
7466
7467Note that signed integer division and unsigned integer division are
7468distinct operations; for unsigned integer division, use '``udiv``'.
7469
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007470Division by zero is undefined behavior. For vectors, if any element
7471of the divisor is zero, the operation has undefined behavior.
7472Overflow also leads to undefined behavior; this is a rare case, but can
7473occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00007474
7475If the ``exact`` keyword is present, the result value of the ``sdiv`` is
7476a :ref:`poison value <poisonvalues>` if the result would be rounded.
7477
7478Example:
7479""""""""
7480
Renato Golin124f2592016-07-20 12:16:38 +00007481.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007482
Tim Northover675a0962014-06-13 14:24:23 +00007483 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007484
7485.. _i_fdiv:
7486
7487'``fdiv``' Instruction
7488^^^^^^^^^^^^^^^^^^^^^^
7489
7490Syntax:
7491"""""""
7492
7493::
7494
Tim Northover675a0962014-06-13 14:24:23 +00007495 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007496
7497Overview:
7498"""""""""
7499
7500The '``fdiv``' instruction returns the quotient of its two operands.
7501
7502Arguments:
7503""""""""""
7504
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007505The two arguments to the '``fdiv``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007506:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007507floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007508
7509Semantics:
7510""""""""""
7511
Sanjay Patel7b722402018-03-07 17:18:22 +00007512The value produced is the floating-point quotient of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007513This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007514environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007515This instruction can also take any number of :ref:`fast-math
7516flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007517unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007518
7519Example:
7520""""""""
7521
Renato Golin124f2592016-07-20 12:16:38 +00007522.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007523
Tim Northover675a0962014-06-13 14:24:23 +00007524 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007525
7526'``urem``' Instruction
7527^^^^^^^^^^^^^^^^^^^^^^
7528
7529Syntax:
7530"""""""
7531
7532::
7533
Tim Northover675a0962014-06-13 14:24:23 +00007534 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007535
7536Overview:
7537"""""""""
7538
7539The '``urem``' instruction returns the remainder from the unsigned
7540division of its two arguments.
7541
7542Arguments:
7543""""""""""
7544
7545The two arguments to the '``urem``' instruction must be
7546:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7547arguments must have identical types.
7548
7549Semantics:
7550""""""""""
7551
7552This instruction returns the unsigned integer *remainder* of a division.
7553This instruction always performs an unsigned division to get the
7554remainder.
7555
7556Note that unsigned integer remainder and signed integer remainder are
7557distinct operations; for signed integer remainder, use '``srem``'.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007558
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007559Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007560For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007561undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007562
7563Example:
7564""""""""
7565
Renato Golin124f2592016-07-20 12:16:38 +00007566.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007567
Tim Northover675a0962014-06-13 14:24:23 +00007568 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007569
7570'``srem``' Instruction
7571^^^^^^^^^^^^^^^^^^^^^^
7572
7573Syntax:
7574"""""""
7575
7576::
7577
Tim Northover675a0962014-06-13 14:24:23 +00007578 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007579
7580Overview:
7581"""""""""
7582
7583The '``srem``' instruction returns the remainder from the signed
7584division of its two operands. This instruction can also take
7585:ref:`vector <t_vector>` versions of the values in which case the elements
7586must be integers.
7587
7588Arguments:
7589""""""""""
7590
7591The two arguments to the '``srem``' instruction must be
7592:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7593arguments must have identical types.
7594
7595Semantics:
7596""""""""""
7597
7598This instruction returns the *remainder* of a division (where the result
7599is either zero or has the same sign as the dividend, ``op1``), not the
7600*modulo* operator (where the result is either zero or has the same sign
7601as the divisor, ``op2``) of a value. For more information about the
7602difference, see `The Math
7603Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
7604table of how this is implemented in various languages, please see
7605`Wikipedia: modulo
7606operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
7607
7608Note that signed integer remainder and unsigned integer remainder are
7609distinct operations; for unsigned integer remainder, use '``urem``'.
7610
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007611Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007612For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007613undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007614Overflow also leads to undefined behavior; this is a rare case, but can
7615occur, for example, by taking the remainder of a 32-bit division of
7616-2147483648 by -1. (The remainder doesn't actually overflow, but this
7617rule lets srem be implemented using instructions that return both the
7618result of the division and the remainder.)
7619
7620Example:
7621""""""""
7622
Renato Golin124f2592016-07-20 12:16:38 +00007623.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007624
Tim Northover675a0962014-06-13 14:24:23 +00007625 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007626
7627.. _i_frem:
7628
7629'``frem``' Instruction
7630^^^^^^^^^^^^^^^^^^^^^^
7631
7632Syntax:
7633"""""""
7634
7635::
7636
Tim Northover675a0962014-06-13 14:24:23 +00007637 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007638
7639Overview:
7640"""""""""
7641
7642The '``frem``' instruction returns the remainder from the division of
7643its two operands.
7644
7645Arguments:
7646""""""""""
7647
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007648The two arguments to the '``frem``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007649:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007650floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007651
7652Semantics:
7653""""""""""
7654
Sanjay Patel7b722402018-03-07 17:18:22 +00007655The value produced is the floating-point remainder of the two operands.
7656This is the same output as a libm '``fmod``' function, but without any
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007657possibility of setting ``errno``. The remainder has the same sign as the
Sanjay Patel7b722402018-03-07 17:18:22 +00007658dividend.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007659This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007660environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00007661This instruction can also take any number of :ref:`fast-math
7662flags <fastmath>`, which are optimization hints to enable otherwise
7663unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007664
7665Example:
7666""""""""
7667
Renato Golin124f2592016-07-20 12:16:38 +00007668.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007669
Tim Northover675a0962014-06-13 14:24:23 +00007670 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007671
7672.. _bitwiseops:
7673
7674Bitwise Binary Operations
7675-------------------------
7676
7677Bitwise binary operators are used to do various forms of bit-twiddling
7678in a program. They are generally very efficient instructions and can
7679commonly be strength reduced from other instructions. They require two
7680operands of the same type, execute an operation on them, and produce a
7681single value. The resulting value is the same type as its operands.
7682
7683'``shl``' Instruction
7684^^^^^^^^^^^^^^^^^^^^^
7685
7686Syntax:
7687"""""""
7688
7689::
7690
Tim Northover675a0962014-06-13 14:24:23 +00007691 <result> = shl <ty> <op1>, <op2> ; yields ty:result
7692 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
7693 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
7694 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007695
7696Overview:
7697"""""""""
7698
7699The '``shl``' instruction returns the first operand shifted to the left
7700a specified number of bits.
7701
7702Arguments:
7703""""""""""
7704
7705Both arguments to the '``shl``' instruction must be the same
7706:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7707'``op2``' is treated as an unsigned value.
7708
7709Semantics:
7710""""""""""
7711
7712The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
7713where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00007714dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007715``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
7716If the arguments are vectors, each vector element of ``op1`` is shifted
7717by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007718
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007719If the ``nuw`` keyword is present, then the shift produces a poison
7720value if it shifts out any non-zero bits.
7721If the ``nsw`` keyword is present, then the shift produces a poison
Sanjay Patel2896c772018-06-01 15:21:14 +00007722value if it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00007723
7724Example:
7725""""""""
7726
Renato Golin124f2592016-07-20 12:16:38 +00007727.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007728
Tim Northover675a0962014-06-13 14:24:23 +00007729 <result> = shl i32 4, %var ; yields i32: 4 << %var
7730 <result> = shl i32 4, 2 ; yields i32: 16
7731 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00007732 <result> = shl i32 1, 32 ; undefined
7733 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
7734
7735'``lshr``' Instruction
7736^^^^^^^^^^^^^^^^^^^^^^
7737
7738Syntax:
7739"""""""
7740
7741::
7742
Tim Northover675a0962014-06-13 14:24:23 +00007743 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
7744 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007745
7746Overview:
7747"""""""""
7748
7749The '``lshr``' instruction (logical shift right) returns the first
7750operand shifted to the right a specified number of bits with zero fill.
7751
7752Arguments:
7753""""""""""
7754
7755Both arguments to the '``lshr``' instruction must be the same
7756:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7757'``op2``' is treated as an unsigned value.
7758
7759Semantics:
7760""""""""""
7761
7762This instruction always performs a logical shift right operation. The
7763most significant bits of the result will be filled with zero bits after
7764the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007765than the number of bits in ``op1``, this instruction returns a :ref:`poison
7766value <poisonvalues>`. If the arguments are vectors, each vector element
7767of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007768
7769If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007770a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007771
7772Example:
7773""""""""
7774
Renato Golin124f2592016-07-20 12:16:38 +00007775.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007776
Tim Northover675a0962014-06-13 14:24:23 +00007777 <result> = lshr i32 4, 1 ; yields i32:result = 2
7778 <result> = lshr i32 4, 2 ; yields i32:result = 1
7779 <result> = lshr i8 4, 3 ; yields i8:result = 0
7780 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00007781 <result> = lshr i32 1, 32 ; undefined
7782 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
7783
7784'``ashr``' Instruction
7785^^^^^^^^^^^^^^^^^^^^^^
7786
7787Syntax:
7788"""""""
7789
7790::
7791
Tim Northover675a0962014-06-13 14:24:23 +00007792 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
7793 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007794
7795Overview:
7796"""""""""
7797
7798The '``ashr``' instruction (arithmetic shift right) returns the first
7799operand shifted to the right a specified number of bits with sign
7800extension.
7801
7802Arguments:
7803""""""""""
7804
7805Both arguments to the '``ashr``' instruction must be the same
7806:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7807'``op2``' is treated as an unsigned value.
7808
7809Semantics:
7810""""""""""
7811
7812This instruction always performs an arithmetic shift right operation,
7813The most significant bits of the result will be filled with the sign bit
7814of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007815than the number of bits in ``op1``, this instruction returns a :ref:`poison
7816value <poisonvalues>`. If the arguments are vectors, each vector element
7817of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007818
7819If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007820a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007821
7822Example:
7823""""""""
7824
Renato Golin124f2592016-07-20 12:16:38 +00007825.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007826
Tim Northover675a0962014-06-13 14:24:23 +00007827 <result> = ashr i32 4, 1 ; yields i32:result = 2
7828 <result> = ashr i32 4, 2 ; yields i32:result = 1
7829 <result> = ashr i8 4, 3 ; yields i8:result = 0
7830 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00007831 <result> = ashr i32 1, 32 ; undefined
7832 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
7833
7834'``and``' Instruction
7835^^^^^^^^^^^^^^^^^^^^^
7836
7837Syntax:
7838"""""""
7839
7840::
7841
Tim Northover675a0962014-06-13 14:24:23 +00007842 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007843
7844Overview:
7845"""""""""
7846
7847The '``and``' instruction returns the bitwise logical and of its two
7848operands.
7849
7850Arguments:
7851""""""""""
7852
7853The two arguments to the '``and``' instruction must be
7854:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7855arguments must have identical types.
7856
7857Semantics:
7858""""""""""
7859
7860The truth table used for the '``and``' instruction is:
7861
7862+-----+-----+-----+
7863| In0 | In1 | Out |
7864+-----+-----+-----+
7865| 0 | 0 | 0 |
7866+-----+-----+-----+
7867| 0 | 1 | 0 |
7868+-----+-----+-----+
7869| 1 | 0 | 0 |
7870+-----+-----+-----+
7871| 1 | 1 | 1 |
7872+-----+-----+-----+
7873
7874Example:
7875""""""""
7876
Renato Golin124f2592016-07-20 12:16:38 +00007877.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007878
Tim Northover675a0962014-06-13 14:24:23 +00007879 <result> = and i32 4, %var ; yields i32:result = 4 & %var
7880 <result> = and i32 15, 40 ; yields i32:result = 8
7881 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00007882
7883'``or``' Instruction
7884^^^^^^^^^^^^^^^^^^^^
7885
7886Syntax:
7887"""""""
7888
7889::
7890
Tim Northover675a0962014-06-13 14:24:23 +00007891 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007892
7893Overview:
7894"""""""""
7895
7896The '``or``' instruction returns the bitwise logical inclusive or of its
7897two operands.
7898
7899Arguments:
7900""""""""""
7901
7902The two arguments to the '``or``' instruction must be
7903:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7904arguments must have identical types.
7905
7906Semantics:
7907""""""""""
7908
7909The truth table used for the '``or``' instruction is:
7910
7911+-----+-----+-----+
7912| In0 | In1 | Out |
7913+-----+-----+-----+
7914| 0 | 0 | 0 |
7915+-----+-----+-----+
7916| 0 | 1 | 1 |
7917+-----+-----+-----+
7918| 1 | 0 | 1 |
7919+-----+-----+-----+
7920| 1 | 1 | 1 |
7921+-----+-----+-----+
7922
7923Example:
7924""""""""
7925
7926::
7927
Tim Northover675a0962014-06-13 14:24:23 +00007928 <result> = or i32 4, %var ; yields i32:result = 4 | %var
7929 <result> = or i32 15, 40 ; yields i32:result = 47
7930 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00007931
7932'``xor``' Instruction
7933^^^^^^^^^^^^^^^^^^^^^
7934
7935Syntax:
7936"""""""
7937
7938::
7939
Tim Northover675a0962014-06-13 14:24:23 +00007940 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007941
7942Overview:
7943"""""""""
7944
7945The '``xor``' instruction returns the bitwise logical exclusive or of
7946its two operands. The ``xor`` is used to implement the "one's
7947complement" operation, which is the "~" operator in C.
7948
7949Arguments:
7950""""""""""
7951
7952The two arguments to the '``xor``' instruction must be
7953:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7954arguments must have identical types.
7955
7956Semantics:
7957""""""""""
7958
7959The truth table used for the '``xor``' instruction is:
7960
7961+-----+-----+-----+
7962| In0 | In1 | Out |
7963+-----+-----+-----+
7964| 0 | 0 | 0 |
7965+-----+-----+-----+
7966| 0 | 1 | 1 |
7967+-----+-----+-----+
7968| 1 | 0 | 1 |
7969+-----+-----+-----+
7970| 1 | 1 | 0 |
7971+-----+-----+-----+
7972
7973Example:
7974""""""""
7975
Renato Golin124f2592016-07-20 12:16:38 +00007976.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007977
Tim Northover675a0962014-06-13 14:24:23 +00007978 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7979 <result> = xor i32 15, 40 ; yields i32:result = 39
7980 <result> = xor i32 4, 8 ; yields i32:result = 12
7981 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00007982
7983Vector Operations
7984-----------------
7985
7986LLVM supports several instructions to represent vector operations in a
7987target-independent manner. These instructions cover the element-access
7988and vector-specific operations needed to process vectors effectively.
7989While LLVM does directly support these vector operations, many
7990sophisticated algorithms will want to use target-specific intrinsics to
7991take full advantage of a specific target.
7992
7993.. _i_extractelement:
7994
7995'``extractelement``' Instruction
7996^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7997
7998Syntax:
7999"""""""
8000
8001::
8002
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00008003 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00008004
8005Overview:
8006"""""""""
8007
8008The '``extractelement``' instruction extracts a single scalar element
8009from a vector at a specified index.
8010
8011Arguments:
8012""""""""""
8013
8014The first operand of an '``extractelement``' instruction is a value of
8015:ref:`vector <t_vector>` type. The second operand is an index indicating
8016the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00008017variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00008018
8019Semantics:
8020""""""""""
8021
8022The result is a scalar of the same type as the element type of ``val``.
8023Its value is the value at position ``idx`` of ``val``. If ``idx``
Eli Friedman2c7a81b2018-06-08 21:23:09 +00008024exceeds the length of ``val``, the result is a
8025:ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008026
8027Example:
8028""""""""
8029
Renato Golin124f2592016-07-20 12:16:38 +00008030.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008031
8032 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
8033
8034.. _i_insertelement:
8035
8036'``insertelement``' Instruction
8037^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8038
8039Syntax:
8040"""""""
8041
8042::
8043
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00008044 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00008045
8046Overview:
8047"""""""""
8048
8049The '``insertelement``' instruction inserts a scalar element into a
8050vector at a specified index.
8051
8052Arguments:
8053""""""""""
8054
8055The first operand of an '``insertelement``' instruction is a value of
8056:ref:`vector <t_vector>` type. The second operand is a scalar value whose
8057type must equal the element type of the first operand. The third operand
8058is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00008059index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00008060
8061Semantics:
8062""""""""""
8063
8064The result is a vector of the same type as ``val``. Its element values
8065are those of ``val`` except at position ``idx``, where it gets the value
Eli Friedman2c7a81b2018-06-08 21:23:09 +00008066``elt``. If ``idx`` exceeds the length of ``val``, the result
8067is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008068
8069Example:
8070""""""""
8071
Renato Golin124f2592016-07-20 12:16:38 +00008072.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008073
8074 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
8075
8076.. _i_shufflevector:
8077
8078'``shufflevector``' Instruction
8079^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8080
8081Syntax:
8082"""""""
8083
8084::
8085
8086 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
8087
8088Overview:
8089"""""""""
8090
8091The '``shufflevector``' instruction constructs a permutation of elements
8092from two input vectors, returning a vector with the same element type as
8093the input and length that is the same as the shuffle mask.
8094
8095Arguments:
8096""""""""""
8097
8098The first two operands of a '``shufflevector``' instruction are vectors
8099with the same type. The third argument is a shuffle mask whose element
8100type is always 'i32'. The result of the instruction is a vector whose
8101length is the same as the shuffle mask and whose element type is the
8102same as the element type of the first two operands.
8103
8104The shuffle mask operand is required to be a constant vector with either
8105constant integer or undef values.
8106
8107Semantics:
8108""""""""""
8109
8110The elements of the two input vectors are numbered from left to right
8111across both of the vectors. The shuffle mask operand specifies, for each
8112element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00008113result element gets. If the shuffle mask is undef, the result vector is
8114undef. If any element of the mask operand is undef, that element of the
8115result is undef. If the shuffle mask selects an undef element from one
8116of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00008117
8118Example:
8119""""""""
8120
Renato Golin124f2592016-07-20 12:16:38 +00008121.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008122
8123 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
8124 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
8125 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
8126 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
8127 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
8128 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
8129 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
8130 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
8131
8132Aggregate Operations
8133--------------------
8134
8135LLVM supports several instructions for working with
8136:ref:`aggregate <t_aggregate>` values.
8137
8138.. _i_extractvalue:
8139
8140'``extractvalue``' Instruction
8141^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8142
8143Syntax:
8144"""""""
8145
8146::
8147
8148 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
8149
8150Overview:
8151"""""""""
8152
8153The '``extractvalue``' instruction extracts the value of a member field
8154from an :ref:`aggregate <t_aggregate>` value.
8155
8156Arguments:
8157""""""""""
8158
8159The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00008160:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00008161constant indices to specify which value to extract in a similar manner
8162as indices in a '``getelementptr``' instruction.
8163
8164The major differences to ``getelementptr`` indexing are:
8165
8166- Since the value being indexed is not a pointer, the first index is
8167 omitted and assumed to be zero.
8168- At least one index must be specified.
8169- Not only struct indices but also array indices must be in bounds.
8170
8171Semantics:
8172""""""""""
8173
8174The result is the value at the position in the aggregate specified by
8175the index operands.
8176
8177Example:
8178""""""""
8179
Renato Golin124f2592016-07-20 12:16:38 +00008180.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008181
8182 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
8183
8184.. _i_insertvalue:
8185
8186'``insertvalue``' Instruction
8187^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8188
8189Syntax:
8190"""""""
8191
8192::
8193
8194 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
8195
8196Overview:
8197"""""""""
8198
8199The '``insertvalue``' instruction inserts a value into a member field in
8200an :ref:`aggregate <t_aggregate>` value.
8201
8202Arguments:
8203""""""""""
8204
8205The first operand of an '``insertvalue``' instruction is a value of
8206:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
8207a first-class value to insert. The following operands are constant
8208indices indicating the position at which to insert the value in a
8209similar manner as indices in a '``extractvalue``' instruction. The value
8210to insert must have the same type as the value identified by the
8211indices.
8212
8213Semantics:
8214""""""""""
8215
8216The result is an aggregate of the same type as ``val``. Its value is
8217that of ``val`` except that the value at the position specified by the
8218indices is that of ``elt``.
8219
8220Example:
8221""""""""
8222
8223.. code-block:: llvm
8224
8225 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
8226 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00008227 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00008228
8229.. _memoryops:
8230
8231Memory Access and Addressing Operations
8232---------------------------------------
8233
8234A key design point of an SSA-based representation is how it represents
8235memory. In LLVM, no memory locations are in SSA form, which makes things
8236very simple. This section describes how to read, write, and allocate
8237memory in LLVM.
8238
8239.. _i_alloca:
8240
8241'``alloca``' Instruction
8242^^^^^^^^^^^^^^^^^^^^^^^^
8243
8244Syntax:
8245"""""""
8246
8247::
8248
Matt Arsenault3c1fc762017-04-10 22:27:50 +00008249 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00008250
8251Overview:
8252"""""""""
8253
8254The '``alloca``' instruction allocates memory on the stack frame of the
8255currently executing function, to be automatically released when this
8256function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00008257address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00008258
8259Arguments:
8260""""""""""
8261
8262The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
8263bytes of memory on the runtime stack, returning a pointer of the
8264appropriate type to the program. If "NumElements" is specified, it is
8265the number of elements allocated, otherwise "NumElements" is defaulted
8266to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00008267allocation is guaranteed to be aligned to at least that boundary. The
8268alignment may not be greater than ``1 << 29``. If not specified, or if
8269zero, the target can choose to align the allocation on any convenient
8270boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00008271
8272'``type``' may be any sized type.
8273
8274Semantics:
8275""""""""""
8276
8277Memory is allocated; a pointer is returned. The operation is undefined
8278if there is insufficient stack space for the allocation. '``alloca``'d
8279memory is automatically released when the function returns. The
8280'``alloca``' instruction is commonly used to represent automatic
8281variables that must have an address available. When the function returns
8282(either with the ``ret`` or ``resume`` instructions), the memory is
Eli Friedman18f882c2018-07-11 00:02:01 +00008283reclaimed. Allocating zero bytes is legal, but the returned pointer may not
8284be unique. The order in which memory is allocated (ie., which way the stack
8285grows) is not specified.
Sean Silvab084af42012-12-07 10:36:55 +00008286
8287Example:
8288""""""""
8289
8290.. code-block:: llvm
8291
Tim Northover675a0962014-06-13 14:24:23 +00008292 %ptr = alloca i32 ; yields i32*:ptr
8293 %ptr = alloca i32, i32 4 ; yields i32*:ptr
8294 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
8295 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00008296
8297.. _i_load:
8298
8299'``load``' Instruction
8300^^^^^^^^^^^^^^^^^^^^^^
8301
8302Syntax:
8303"""""""
8304
8305::
8306
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008307 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008308 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00008309 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008310 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008311 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00008312
8313Overview:
8314"""""""""
8315
8316The '``load``' instruction is used to read from memory.
8317
8318Arguments:
8319""""""""""
8320
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00008321The argument to the ``load`` instruction specifies the memory address from which
8322to load. The type specified must be a :ref:`first class <t_firstclass>` type of
8323known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
8324the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
8325modify the number or order of execution of this ``load`` with other
8326:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008327
JF Bastiend1fb5852015-12-17 22:09:19 +00008328If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008329<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8330``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
8331Atomic loads produce :ref:`defined <memmodel>` results when they may see
8332multiple atomic stores. The type of the pointee must be an integer, pointer, or
8333floating-point type whose bit width is a power of two greater than or equal to
8334eight and less than or equal to a target-specific size limit. ``align`` must be
8335explicitly specified on atomic loads, and the load has undefined behavior if the
8336alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00008337pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00008338
8339The optional constant ``align`` argument specifies the alignment of the
8340operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00008341or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00008342alignment for the target. It is the responsibility of the code emitter
8343to ensure that the alignment information is correct. Overestimating the
8344alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00008345may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00008346maximum possible alignment is ``1 << 29``. An alignment value higher
8347than the size of the loaded type implies memory up to the alignment
8348value bytes can be safely loaded without trapping in the default
8349address space. Access of the high bytes can interfere with debugging
8350tools, so should not be accessed if the function has the
8351``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00008352
8353The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008354metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00008355``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008356metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00008357that this load is not expected to be reused in the cache. The code
8358generator may select special instructions to save cache bandwidth, such
8359as the ``MOVNT`` instruction on x86.
8360
8361The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008362metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00008363entries. If a load instruction tagged with the ``!invariant.load``
8364metadata is executed, the optimizer may assume the memory location
8365referenced by the load contains the same value at all points in the
Eli Friedmane15a1112018-07-17 20:38:11 +00008366program where the memory location is known to be dereferenceable;
8367otherwise, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008368
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008369The optional ``!invariant.group`` metadata must reference a single metadata name
Piotr Padlewskice358262018-05-18 23:53:46 +00008370 ``<index>`` corresponding to a metadata node with no entries.
8371 See ``invariant.group`` metadata.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008372
Philip Reamescdb72f32014-10-20 22:40:55 +00008373The optional ``!nonnull`` metadata must reference a single
8374metadata name ``<index>`` corresponding to a metadata node with no
8375entries. The existence of the ``!nonnull`` metadata on the
8376instruction tells the optimizer that the value loaded is known to
Eli Friedmane15a1112018-07-17 20:38:11 +00008377never be null. If the value is null at runtime, the behavior is undefined.
8378This is analogous to the ``nonnull`` attribute on parameters and return
8379values. This metadata can only be applied to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00008380
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008381The optional ``!dereferenceable`` metadata must reference a single metadata
8382name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00008383entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00008384tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00008385The number of bytes known to be dereferenceable is specified by the integer
8386value in the metadata node. This is analogous to the ''dereferenceable''
8387attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00008388to loads of a pointer type.
8389
8390The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008391metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
8392``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00008393instruction tells the optimizer that the value loaded is known to be either
8394dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00008395The number of bytes known to be dereferenceable is specified by the integer
8396value in the metadata node. This is analogous to the ''dereferenceable_or_null''
8397attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00008398to loads of a pointer type.
8399
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008400The optional ``!align`` metadata must reference a single metadata name
8401``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
8402The existence of the ``!align`` metadata on the instruction tells the
8403optimizer that the value loaded is known to be aligned to a boundary specified
8404by the integer value in the metadata node. The alignment must be a power of 2.
8405This is analogous to the ''align'' attribute on parameters and return values.
Eli Friedmane15a1112018-07-17 20:38:11 +00008406This metadata can only be applied to loads of a pointer type. If the returned
8407value is not appropriately aligned at runtime, the behavior is undefined.
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008408
Sean Silvab084af42012-12-07 10:36:55 +00008409Semantics:
8410""""""""""
8411
8412The location of memory pointed to is loaded. If the value being loaded
8413is of scalar type then the number of bytes read does not exceed the
8414minimum number of bytes needed to hold all bits of the type. For
8415example, loading an ``i24`` reads at most three bytes. When loading a
8416value of a type like ``i20`` with a size that is not an integral number
8417of bytes, the result is undefined if the value was not originally
8418written using a store of the same type.
8419
8420Examples:
8421"""""""""
8422
8423.. code-block:: llvm
8424
Tim Northover675a0962014-06-13 14:24:23 +00008425 %ptr = alloca i32 ; yields i32*:ptr
8426 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00008427 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008428
8429.. _i_store:
8430
8431'``store``' Instruction
8432^^^^^^^^^^^^^^^^^^^^^^^
8433
8434Syntax:
8435"""""""
8436
8437::
8438
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008439 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008440 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008441
8442Overview:
8443"""""""""
8444
8445The '``store``' instruction is used to write to memory.
8446
8447Arguments:
8448""""""""""
8449
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00008450There are two arguments to the ``store`` instruction: a value to store and an
8451address at which to store it. The type of the ``<pointer>`` operand must be a
8452pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
8453operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
8454allowed to modify the number or order of execution of this ``store`` with other
8455:ref:`volatile operations <volatile>`. Only values of :ref:`first class
8456<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
8457structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00008458
JF Bastiend1fb5852015-12-17 22:09:19 +00008459If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008460<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8461``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
8462Atomic loads produce :ref:`defined <memmodel>` results when they may see
8463multiple atomic stores. The type of the pointee must be an integer, pointer, or
8464floating-point type whose bit width is a power of two greater than or equal to
8465eight and less than or equal to a target-specific size limit. ``align`` must be
8466explicitly specified on atomic stores, and the store has undefined behavior if
8467the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00008468pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00008469
Eli Benderskyca380842013-04-17 17:17:20 +00008470The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00008471operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00008472or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00008473alignment for the target. It is the responsibility of the code emitter
8474to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00008475alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00008476alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00008477safe. The maximum possible alignment is ``1 << 29``. An alignment
8478value higher than the size of the stored type implies memory up to the
8479alignment value bytes can be stored to without trapping in the default
8480address space. Storing to the higher bytes however may result in data
8481races if another thread can access the same address. Introducing a
8482data race is not allowed. Storing to the extra bytes is not allowed
8483even in situations where a data race is known to not exist if the
8484function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00008485
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008486The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00008487name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008488value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00008489tells the optimizer and code generator that this load is not expected to
8490be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00008491instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00008492x86.
8493
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008494The optional ``!invariant.group`` metadata must reference a
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008495single metadata name ``<index>``. See ``invariant.group`` metadata.
8496
Sean Silvab084af42012-12-07 10:36:55 +00008497Semantics:
8498""""""""""
8499
Eli Benderskyca380842013-04-17 17:17:20 +00008500The contents of memory are updated to contain ``<value>`` at the
8501location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00008502of scalar type then the number of bytes written does not exceed the
8503minimum number of bytes needed to hold all bits of the type. For
8504example, storing an ``i24`` writes at most three bytes. When writing a
8505value of a type like ``i20`` with a size that is not an integral number
8506of bytes, it is unspecified what happens to the extra bits that do not
8507belong to the type, but they will typically be overwritten.
8508
8509Example:
8510""""""""
8511
8512.. code-block:: llvm
8513
Tim Northover675a0962014-06-13 14:24:23 +00008514 %ptr = alloca i32 ; yields i32*:ptr
8515 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00008516 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008517
8518.. _i_fence:
8519
8520'``fence``' Instruction
8521^^^^^^^^^^^^^^^^^^^^^^^
8522
8523Syntax:
8524"""""""
8525
8526::
8527
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008528 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008529
8530Overview:
8531"""""""""
8532
8533The '``fence``' instruction is used to introduce happens-before edges
8534between operations.
8535
8536Arguments:
8537""""""""""
8538
8539'``fence``' instructions take an :ref:`ordering <ordering>` argument which
8540defines what *synchronizes-with* edges they add. They can only be given
8541``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
8542
8543Semantics:
8544""""""""""
8545
8546A fence A which has (at least) ``release`` ordering semantics
8547*synchronizes with* a fence B with (at least) ``acquire`` ordering
8548semantics if and only if there exist atomic operations X and Y, both
8549operating on some atomic object M, such that A is sequenced before X, X
8550modifies M (either directly or through some side effect of a sequence
8551headed by X), Y is sequenced before B, and Y observes M. This provides a
8552*happens-before* dependency between A and B. Rather than an explicit
8553``fence``, one (but not both) of the atomic operations X or Y might
8554provide a ``release`` or ``acquire`` (resp.) ordering constraint and
8555still *synchronize-with* the explicit ``fence`` and establish the
8556*happens-before* edge.
8557
8558A ``fence`` which has ``seq_cst`` ordering, in addition to having both
8559``acquire`` and ``release`` semantics specified above, participates in
8560the global program order of other ``seq_cst`` operations and/or fences.
8561
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008562A ``fence`` instruction can also take an optional
8563":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008564
8565Example:
8566""""""""
8567
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008568.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008569
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008570 fence acquire ; yields void
8571 fence syncscope("singlethread") seq_cst ; yields void
8572 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008573
8574.. _i_cmpxchg:
8575
8576'``cmpxchg``' Instruction
8577^^^^^^^^^^^^^^^^^^^^^^^^^
8578
8579Syntax:
8580"""""""
8581
8582::
8583
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008584 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00008585
8586Overview:
8587"""""""""
8588
8589The '``cmpxchg``' instruction is used to atomically modify memory. It
8590loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00008591equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00008592
8593Arguments:
8594""""""""""
8595
8596There are three arguments to the '``cmpxchg``' instruction: an address
8597to operate on, a value to compare to the value currently be at that
8598address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00008599are equal. The type of '<cmp>' must be an integer or pointer type whose
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008600bit width is a power of two greater than or equal to eight and less
Philip Reames1960cfd2016-02-19 00:06:41 +00008601than or equal to a target-specific size limit. '<cmp>' and '<new>' must
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008602have the same type, and the type of '<pointer>' must be a pointer to
8603that type. If the ``cmpxchg`` is marked as ``volatile``, then the
Philip Reames1960cfd2016-02-19 00:06:41 +00008604optimizer is not allowed to modify the number or order of execution of
8605this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008606
Tim Northovere94a5182014-03-11 10:48:52 +00008607The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00008608``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
8609must be at least ``monotonic``, the ordering constraint on failure must be no
8610stronger than that on success, and the failure ordering cannot be either
8611``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00008612
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008613A ``cmpxchg`` instruction can also take an optional
8614":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008615
8616The pointer passed into cmpxchg must have alignment greater than or
8617equal to the size in memory of the operand.
8618
8619Semantics:
8620""""""""""
8621
Tim Northover420a2162014-06-13 14:24:07 +00008622The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun93f2b4b2017-08-09 22:22:04 +00008623is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
8624written to the location. The original value at the location is returned,
8625together with a flag indicating success (true) or failure (false).
Tim Northover420a2162014-06-13 14:24:07 +00008626
8627If the cmpxchg operation is marked as ``weak`` then a spurious failure is
8628permitted: the operation may not write ``<new>`` even if the comparison
8629matched.
8630
8631If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
8632if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00008633
Tim Northovere94a5182014-03-11 10:48:52 +00008634A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
8635identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
8636load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00008637
8638Example:
8639""""""""
8640
8641.. code-block:: llvm
8642
8643 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008644 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008645 br label %loop
8646
8647 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008648 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00008649 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00008650 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00008651 %value_loaded = extractvalue { i32, i1 } %val_success, 0
8652 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00008653 br i1 %success, label %done, label %loop
8654
8655 done:
8656 ...
8657
8658.. _i_atomicrmw:
8659
8660'``atomicrmw``' Instruction
8661^^^^^^^^^^^^^^^^^^^^^^^^^^^
8662
8663Syntax:
8664"""""""
8665
8666::
8667
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008668 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00008669
8670Overview:
8671"""""""""
8672
8673The '``atomicrmw``' instruction is used to atomically modify memory.
8674
8675Arguments:
8676""""""""""
8677
8678There are three arguments to the '``atomicrmw``' instruction: an
8679operation to apply, an address whose value to modify, an argument to the
8680operation. The operation must be one of the following keywords:
8681
8682- xchg
8683- add
8684- sub
8685- and
8686- nand
8687- or
8688- xor
8689- max
8690- min
8691- umax
8692- umin
Matt Arsenault39508332019-01-22 18:18:02 +00008693- fadd
8694- fsub
Sean Silvab084af42012-12-07 10:36:55 +00008695
Matt Arsenault0cb08e42019-01-17 10:49:01 +00008696For most of these operations, the type of '<value>' must be an integer
8697type whose bit width is a power of two greater than or equal to eight
8698and less than or equal to a target-specific size limit. For xchg, this
8699may also be a floating point type with the same size constraints as
Matt Arsenault39508332019-01-22 18:18:02 +00008700integers. For fadd/fsub, this must be a floating point type. The
8701type of the '``<pointer>``' operand must be a pointer to that type. If
8702the ``atomicrmw`` is marked as ``volatile``, then the optimizer is not
8703allowed to modify the number or order of execution of this
8704``atomicrmw`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008705
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008706A ``atomicrmw`` instruction can also take an optional
8707":ref:`syncscope <syncscope>`" argument.
8708
Sean Silvab084af42012-12-07 10:36:55 +00008709Semantics:
8710""""""""""
8711
8712The contents of memory at the location specified by the '``<pointer>``'
8713operand are atomically read, modified, and written back. The original
8714value at the location is returned. The modification is specified by the
8715operation argument:
8716
8717- xchg: ``*ptr = val``
8718- add: ``*ptr = *ptr + val``
8719- sub: ``*ptr = *ptr - val``
8720- and: ``*ptr = *ptr & val``
8721- nand: ``*ptr = ~(*ptr & val)``
8722- or: ``*ptr = *ptr | val``
8723- xor: ``*ptr = *ptr ^ val``
8724- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
8725- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
8726- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
8727 comparison)
8728- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
8729 comparison)
Matt Arsenault39508332019-01-22 18:18:02 +00008730- fadd: ``*ptr = *ptr + val`` (using floating point arithmetic)
8731- fsub: ``*ptr = *ptr - val`` (using floating point arithmetic)
Sean Silvab084af42012-12-07 10:36:55 +00008732
8733Example:
8734""""""""
8735
8736.. code-block:: llvm
8737
Tim Northover675a0962014-06-13 14:24:23 +00008738 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008739
8740.. _i_getelementptr:
8741
8742'``getelementptr``' Instruction
8743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8744
8745Syntax:
8746"""""""
8747
8748::
8749
Peter Collingbourned93620b2016-11-10 22:34:55 +00008750 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8751 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8752 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00008753
8754Overview:
8755"""""""""
8756
8757The '``getelementptr``' instruction is used to get the address of a
8758subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008759address calculation only and does not access memory. The instruction can also
8760be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00008761
8762Arguments:
8763""""""""""
8764
David Blaikie16a97eb2015-03-04 22:02:58 +00008765The first argument is always a type used as the basis for the calculations.
8766The second argument is always a pointer or a vector of pointers, and is the
8767base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00008768that indicate which of the elements of the aggregate object are indexed.
8769The interpretation of each index is dependent on the type being indexed
8770into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00008771second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00008772(not necessarily the value directly pointed to, since the first index
8773can be non-zero), etc. The first type indexed into must be a pointer
8774value, subsequent types can be arrays, vectors, and structs. Note that
8775subsequent types being indexed into can never be pointers, since that
8776would require loading the pointer before continuing calculation.
8777
8778The type of each index argument depends on the type it is indexing into.
8779When indexing into a (optionally packed) structure, only ``i32`` integer
8780**constants** are allowed (when using a vector of indices they must all
8781be the **same** ``i32`` integer constant). When indexing into an array,
8782pointer or vector, integers of any width are allowed, and they are not
8783required to be constant. These integers are treated as signed values
8784where relevant.
8785
8786For example, let's consider a C code fragment and how it gets compiled
8787to LLVM:
8788
8789.. code-block:: c
8790
8791 struct RT {
8792 char A;
8793 int B[10][20];
8794 char C;
8795 };
8796 struct ST {
8797 int X;
8798 double Y;
8799 struct RT Z;
8800 };
8801
8802 int *foo(struct ST *s) {
8803 return &s[1].Z.B[5][13];
8804 }
8805
8806The LLVM code generated by Clang is:
8807
8808.. code-block:: llvm
8809
8810 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
8811 %struct.ST = type { i32, double, %struct.RT }
8812
8813 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
8814 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00008815 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00008816 ret i32* %arrayidx
8817 }
8818
8819Semantics:
8820""""""""""
8821
8822In the example above, the first index is indexing into the
8823'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
8824= '``{ i32, double, %struct.RT }``' type, a structure. The second index
8825indexes into the third element of the structure, yielding a
8826'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
8827structure. The third index indexes into the second element of the
8828structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
8829dimensions of the array are subscripted into, yielding an '``i32``'
8830type. The '``getelementptr``' instruction returns a pointer to this
8831element, thus computing a value of '``i32*``' type.
8832
8833Note that it is perfectly legal to index partially through a structure,
8834returning a pointer to an inner element. Because of this, the LLVM code
8835for the given testcase is equivalent to:
8836
8837.. code-block:: llvm
8838
8839 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00008840 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
8841 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
8842 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
8843 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
8844 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00008845 ret i32* %t5
8846 }
8847
8848If the ``inbounds`` keyword is present, the result value of the
8849``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
8850pointer is not an *in bounds* address of an allocated object, or if any
8851of the addresses that would be formed by successive addition of the
8852offsets implied by the indices to the base address with infinitely
8853precise signed arithmetic are not an *in bounds* address of that
8854allocated object. The *in bounds* addresses for an allocated object are
8855all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00008856past the end. The only *in bounds* address for a null pointer in the
8857default address-space is the null pointer itself. In cases where the
8858base is a vector of pointers the ``inbounds`` keyword applies to each
8859of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00008860
8861If the ``inbounds`` keyword is not present, the offsets are added to the
8862base address with silently-wrapping two's complement arithmetic. If the
8863offsets have a different width from the pointer, they are sign-extended
8864or truncated to the width of the pointer. The result value of the
8865``getelementptr`` may be outside the object pointed to by the base
8866pointer. The result value may not necessarily be used to access memory
8867though, even if it happens to point into allocated storage. See the
8868:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
8869information.
8870
Peter Collingbourned93620b2016-11-10 22:34:55 +00008871If the ``inrange`` keyword is present before any index, loading from or
8872storing to any pointer derived from the ``getelementptr`` has undefined
8873behavior if the load or store would access memory outside of the bounds of
8874the element selected by the index marked as ``inrange``. The result of a
8875pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
8876involving memory) involving a pointer derived from a ``getelementptr`` with
8877the ``inrange`` keyword is undefined, with the exception of comparisons
8878in the case where both operands are in the range of the element selected
8879by the ``inrange`` keyword, inclusive of the address one past the end of
8880that element. Note that the ``inrange`` keyword is currently only allowed
8881in constant ``getelementptr`` expressions.
8882
Sean Silvab084af42012-12-07 10:36:55 +00008883The getelementptr instruction is often confusing. For some more insight
8884into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
8885
8886Example:
8887""""""""
8888
8889.. code-block:: llvm
8890
8891 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008892 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008893 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008894 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008895 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008896 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008897 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008898 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00008899
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008900Vector of pointers:
8901"""""""""""""""""""
8902
8903The ``getelementptr`` returns a vector of pointers, instead of a single address,
8904when one or more of its arguments is a vector. In such cases, all vector
8905arguments should have the same number of elements, and every scalar argument
8906will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00008907
8908.. code-block:: llvm
8909
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008910 ; All arguments are vectors:
8911 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
8912 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008913
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008914 ; Add the same scalar offset to each pointer of a vector:
8915 ; A[i] = ptrs[i] + offset*sizeof(i8)
8916 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00008917
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008918 ; Add distinct offsets to the same pointer:
8919 ; A[i] = ptr + offsets[i]*sizeof(i8)
8920 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008921
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008922 ; In all cases described above the type of the result is <4 x i8*>
8923
8924The two following instructions are equivalent:
8925
8926.. code-block:: llvm
8927
8928 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8929 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
8930 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
8931 <4 x i32> %ind4,
8932 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00008933
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008934 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8935 i32 2, i32 1, <4 x i32> %ind4, i64 13
8936
8937Let's look at the C code, where the vector version of ``getelementptr``
8938makes sense:
8939
8940.. code-block:: c
8941
8942 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00008943 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008944 for (int i = 0; i < size; ++i) {
8945 A[i] = B[C[i]];
8946 }
8947
8948.. code-block:: llvm
8949
8950 ; get pointers for 8 elements from array B
8951 %ptrs = getelementptr double, double* %B, <8 x i32> %C
8952 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00008953 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008954 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00008955
8956Conversion Operations
8957---------------------
8958
8959The instructions in this category are the conversion instructions
8960(casting) which all take a single operand and a type. They perform
8961various bit conversions on the operand.
8962
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008963.. _i_trunc:
8964
Sean Silvab084af42012-12-07 10:36:55 +00008965'``trunc .. to``' Instruction
8966^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8967
8968Syntax:
8969"""""""
8970
8971::
8972
8973 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8974
8975Overview:
8976"""""""""
8977
8978The '``trunc``' instruction truncates its operand to the type ``ty2``.
8979
8980Arguments:
8981""""""""""
8982
8983The '``trunc``' instruction takes a value to trunc, and a type to trunc
8984it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8985of the same number of integers. The bit size of the ``value`` must be
8986larger than the bit size of the destination type, ``ty2``. Equal sized
8987types are not allowed.
8988
8989Semantics:
8990""""""""""
8991
8992The '``trunc``' instruction truncates the high order bits in ``value``
8993and converts the remaining bits to ``ty2``. Since the source size must
8994be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8995It will always truncate bits.
8996
8997Example:
8998""""""""
8999
9000.. code-block:: llvm
9001
9002 %X = trunc i32 257 to i8 ; yields i8:1
9003 %Y = trunc i32 123 to i1 ; yields i1:true
9004 %Z = trunc i32 122 to i1 ; yields i1:false
9005 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
9006
Bjorn Petterssone1285e32017-10-24 11:59:20 +00009007.. _i_zext:
9008
Sean Silvab084af42012-12-07 10:36:55 +00009009'``zext .. to``' Instruction
9010^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9011
9012Syntax:
9013"""""""
9014
9015::
9016
9017 <result> = zext <ty> <value> to <ty2> ; yields ty2
9018
9019Overview:
9020"""""""""
9021
9022The '``zext``' instruction zero extends its operand to type ``ty2``.
9023
9024Arguments:
9025""""""""""
9026
9027The '``zext``' instruction takes a value to cast, and a type to cast it
9028to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
9029the same number of integers. The bit size of the ``value`` must be
9030smaller than the bit size of the destination type, ``ty2``.
9031
9032Semantics:
9033""""""""""
9034
9035The ``zext`` fills the high order bits of the ``value`` with zero bits
9036until it reaches the size of the destination type, ``ty2``.
9037
9038When zero extending from i1, the result will always be either 0 or 1.
9039
9040Example:
9041""""""""
9042
9043.. code-block:: llvm
9044
9045 %X = zext i32 257 to i64 ; yields i64:257
9046 %Y = zext i1 true to i32 ; yields i32:1
9047 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
9048
Bjorn Petterssone1285e32017-10-24 11:59:20 +00009049.. _i_sext:
9050
Sean Silvab084af42012-12-07 10:36:55 +00009051'``sext .. to``' Instruction
9052^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9053
9054Syntax:
9055"""""""
9056
9057::
9058
9059 <result> = sext <ty> <value> to <ty2> ; yields ty2
9060
9061Overview:
9062"""""""""
9063
9064The '``sext``' sign extends ``value`` to the type ``ty2``.
9065
9066Arguments:
9067""""""""""
9068
9069The '``sext``' instruction takes a value to cast, and a type to cast it
9070to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
9071the same number of integers. The bit size of the ``value`` must be
9072smaller than the bit size of the destination type, ``ty2``.
9073
9074Semantics:
9075""""""""""
9076
9077The '``sext``' instruction performs a sign extension by copying the sign
9078bit (highest order bit) of the ``value`` until it reaches the bit size
9079of the type ``ty2``.
9080
9081When sign extending from i1, the extension always results in -1 or 0.
9082
9083Example:
9084""""""""
9085
9086.. code-block:: llvm
9087
9088 %X = sext i8 -1 to i16 ; yields i16 :65535
9089 %Y = sext i1 true to i32 ; yields i32:-1
9090 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
9091
9092'``fptrunc .. to``' Instruction
9093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9094
9095Syntax:
9096"""""""
9097
9098::
9099
9100 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
9101
9102Overview:
9103"""""""""
9104
9105The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
9106
9107Arguments:
9108""""""""""
9109
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009110The '``fptrunc``' instruction takes a :ref:`floating-point <t_floating>`
9111value to cast and a :ref:`floating-point <t_floating>` type to cast it to.
Sean Silvab084af42012-12-07 10:36:55 +00009112The size of ``value`` must be larger than the size of ``ty2``. This
9113implies that ``fptrunc`` cannot be used to make a *no-op cast*.
9114
9115Semantics:
9116""""""""""
9117
Dan Liew50456fb2015-09-03 18:43:56 +00009118The '``fptrunc``' instruction casts a ``value`` from a larger
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009119:ref:`floating-point <t_floating>` type to a smaller :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00009120<t_floating>` type.
Sanjay Pateld96a3632018-04-03 13:05:20 +00009121This instruction is assumed to execute in the default :ref:`floating-point
9122environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00009123
9124Example:
9125""""""""
9126
9127.. code-block:: llvm
9128
Sanjay Pateld96a3632018-04-03 13:05:20 +00009129 %X = fptrunc double 16777217.0 to float ; yields float:16777216.0
9130 %Y = fptrunc double 1.0E+300 to half ; yields half:+infinity
Sean Silvab084af42012-12-07 10:36:55 +00009131
9132'``fpext .. to``' Instruction
9133^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9134
9135Syntax:
9136"""""""
9137
9138::
9139
9140 <result> = fpext <ty> <value> to <ty2> ; yields ty2
9141
9142Overview:
9143"""""""""
9144
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009145The '``fpext``' extends a floating-point ``value`` to a larger floating-point
9146value.
Sean Silvab084af42012-12-07 10:36:55 +00009147
9148Arguments:
9149""""""""""
9150
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009151The '``fpext``' instruction takes a :ref:`floating-point <t_floating>`
9152``value`` to cast, and a :ref:`floating-point <t_floating>` type to cast it
Sean Silvab084af42012-12-07 10:36:55 +00009153to. The source type must be smaller than the destination type.
9154
9155Semantics:
9156""""""""""
9157
9158The '``fpext``' instruction extends the ``value`` from a smaller
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009159:ref:`floating-point <t_floating>` type to a larger :ref:`floating-point
9160<t_floating>` type. The ``fpext`` cannot be used to make a
Sean Silvab084af42012-12-07 10:36:55 +00009161*no-op cast* because it always changes bits. Use ``bitcast`` to make a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009162*no-op cast* for a floating-point cast.
Sean Silvab084af42012-12-07 10:36:55 +00009163
9164Example:
9165""""""""
9166
9167.. code-block:: llvm
9168
9169 %X = fpext float 3.125 to double ; yields double:3.125000e+00
9170 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
9171
9172'``fptoui .. to``' Instruction
9173^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9174
9175Syntax:
9176"""""""
9177
9178::
9179
9180 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
9181
9182Overview:
9183"""""""""
9184
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009185The '``fptoui``' converts a floating-point ``value`` to its unsigned
Sean Silvab084af42012-12-07 10:36:55 +00009186integer equivalent of type ``ty2``.
9187
9188Arguments:
9189""""""""""
9190
9191The '``fptoui``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009192scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00009193cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009194``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00009195type with the same number of elements as ``ty``
9196
9197Semantics:
9198""""""""""
9199
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009200The '``fptoui``' instruction converts its :ref:`floating-point
9201<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00009202unsigned integer value. If the value cannot fit in ``ty2``, the result
9203is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00009204
9205Example:
9206""""""""
9207
9208.. code-block:: llvm
9209
9210 %X = fptoui double 123.0 to i32 ; yields i32:123
9211 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
9212 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
9213
9214'``fptosi .. to``' Instruction
9215^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9216
9217Syntax:
9218"""""""
9219
9220::
9221
9222 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
9223
9224Overview:
9225"""""""""
9226
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009227The '``fptosi``' instruction converts :ref:`floating-point <t_floating>`
Sean Silvab084af42012-12-07 10:36:55 +00009228``value`` to type ``ty2``.
9229
9230Arguments:
9231""""""""""
9232
9233The '``fptosi``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009234scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00009235cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009236``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00009237type with the same number of elements as ``ty``
9238
9239Semantics:
9240""""""""""
9241
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009242The '``fptosi``' instruction converts its :ref:`floating-point
9243<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00009244signed integer value. If the value cannot fit in ``ty2``, the result
9245is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00009246
9247Example:
9248""""""""
9249
9250.. code-block:: llvm
9251
9252 %X = fptosi double -123.0 to i32 ; yields i32:-123
9253 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
9254 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
9255
9256'``uitofp .. to``' Instruction
9257^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9258
9259Syntax:
9260"""""""
9261
9262::
9263
9264 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
9265
9266Overview:
9267"""""""""
9268
9269The '``uitofp``' instruction regards ``value`` as an unsigned integer
9270and converts that value to the ``ty2`` type.
9271
9272Arguments:
9273""""""""""
9274
9275The '``uitofp``' instruction takes a value to cast, which must be a
9276scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009277``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
9278``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00009279type with the same number of elements as ``ty``
9280
9281Semantics:
9282""""""""""
9283
9284The '``uitofp``' instruction interprets its operand as an unsigned
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009285integer quantity and converts it to the corresponding floating-point
Eli Friedman3f1ce092018-06-14 22:58:48 +00009286value. If the value cannot be exactly represented, it is rounded using
9287the default rounding mode.
9288
Sean Silvab084af42012-12-07 10:36:55 +00009289
9290Example:
9291""""""""
9292
9293.. code-block:: llvm
9294
9295 %X = uitofp i32 257 to float ; yields float:257.0
9296 %Y = uitofp i8 -1 to double ; yields double:255.0
9297
9298'``sitofp .. to``' Instruction
9299^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9300
9301Syntax:
9302"""""""
9303
9304::
9305
9306 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
9307
9308Overview:
9309"""""""""
9310
9311The '``sitofp``' instruction regards ``value`` as a signed integer and
9312converts that value to the ``ty2`` type.
9313
9314Arguments:
9315""""""""""
9316
9317The '``sitofp``' instruction takes a value to cast, which must be a
9318scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009319``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
9320``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00009321type with the same number of elements as ``ty``
9322
9323Semantics:
9324""""""""""
9325
9326The '``sitofp``' instruction interprets its operand as a signed integer
Eli Friedman3f1ce092018-06-14 22:58:48 +00009327quantity and converts it to the corresponding floating-point value. If the
9328value cannot be exactly represented, it is rounded using the default rounding
9329mode.
Sean Silvab084af42012-12-07 10:36:55 +00009330
9331Example:
9332""""""""
9333
9334.. code-block:: llvm
9335
9336 %X = sitofp i32 257 to float ; yields float:257.0
9337 %Y = sitofp i8 -1 to double ; yields double:-1.0
9338
9339.. _i_ptrtoint:
9340
9341'``ptrtoint .. to``' Instruction
9342^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9343
9344Syntax:
9345"""""""
9346
9347::
9348
9349 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
9350
9351Overview:
9352"""""""""
9353
9354The '``ptrtoint``' instruction converts the pointer or a vector of
9355pointers ``value`` to the integer (or vector of integers) type ``ty2``.
9356
9357Arguments:
9358""""""""""
9359
9360The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00009361a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00009362type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
9363a vector of integers type.
9364
9365Semantics:
9366""""""""""
9367
9368The '``ptrtoint``' instruction converts ``value`` to integer type
9369``ty2`` by interpreting the pointer value as an integer and either
9370truncating or zero extending that value to the size of the integer type.
9371If ``value`` is smaller than ``ty2`` then a zero extension is done. If
9372``value`` is larger than ``ty2`` then a truncation is done. If they are
9373the same size, then nothing is done (*no-op cast*) other than a type
9374change.
9375
9376Example:
9377""""""""
9378
9379.. code-block:: llvm
9380
9381 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
9382 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
9383 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
9384
9385.. _i_inttoptr:
9386
9387'``inttoptr .. to``' Instruction
9388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9389
9390Syntax:
9391"""""""
9392
9393::
9394
9395 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
9396
9397Overview:
9398"""""""""
9399
9400The '``inttoptr``' instruction converts an integer ``value`` to a
9401pointer type, ``ty2``.
9402
9403Arguments:
9404""""""""""
9405
9406The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
9407cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
9408type.
9409
9410Semantics:
9411""""""""""
9412
9413The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
9414applying either a zero extension or a truncation depending on the size
9415of the integer ``value``. If ``value`` is larger than the size of a
9416pointer then a truncation is done. If ``value`` is smaller than the size
9417of a pointer then a zero extension is done. If they are the same size,
9418nothing is done (*no-op cast*).
9419
9420Example:
9421""""""""
9422
9423.. code-block:: llvm
9424
9425 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
9426 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
9427 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
9428 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
9429
9430.. _i_bitcast:
9431
9432'``bitcast .. to``' Instruction
9433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9434
9435Syntax:
9436"""""""
9437
9438::
9439
9440 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
9441
9442Overview:
9443"""""""""
9444
9445The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
9446changing any bits.
9447
9448Arguments:
9449""""""""""
9450
9451The '``bitcast``' instruction takes a value to cast, which must be a
9452non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009453also be a non-aggregate :ref:`first class <t_firstclass>` type. The
9454bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00009455identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009456also be a pointer of the same size. This instruction supports bitwise
9457conversion of vectors to integers and to vectors of other types (as
9458long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00009459
9460Semantics:
9461""""""""""
9462
Matt Arsenault24b49c42013-07-31 17:49:08 +00009463The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
9464is always a *no-op cast* because no bits change with this
9465conversion. The conversion is done as if the ``value`` had been stored
9466to memory and read back as type ``ty2``. Pointer (or vector of
9467pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009468pointers) types with the same address space through this instruction.
9469To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
9470or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00009471
9472Example:
9473""""""""
9474
Renato Golin124f2592016-07-20 12:16:38 +00009475.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009476
9477 %X = bitcast i8 255 to i8 ; yields i8 :-1
9478 %Y = bitcast i32* %x to sint* ; yields sint*:%x
9479 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
9480 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
9481
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009482.. _i_addrspacecast:
9483
9484'``addrspacecast .. to``' Instruction
9485^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9486
9487Syntax:
9488"""""""
9489
9490::
9491
9492 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
9493
9494Overview:
9495"""""""""
9496
9497The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
9498address space ``n`` to type ``pty2`` in address space ``m``.
9499
9500Arguments:
9501""""""""""
9502
9503The '``addrspacecast``' instruction takes a pointer or vector of pointer value
9504to cast and a pointer type to cast it to, which must have a different
9505address space.
9506
9507Semantics:
9508""""""""""
9509
9510The '``addrspacecast``' instruction converts the pointer value
9511``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00009512value modification, depending on the target and the address space
9513pair. Pointer conversions within the same address space must be
9514performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009515conversion is legal then both result and operand refer to the same memory
9516location.
9517
9518Example:
9519""""""""
9520
9521.. code-block:: llvm
9522
Matt Arsenault9c13dd02013-11-15 22:43:50 +00009523 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
9524 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
9525 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009526
Sean Silvab084af42012-12-07 10:36:55 +00009527.. _otherops:
9528
9529Other Operations
9530----------------
9531
9532The instructions in this category are the "miscellaneous" instructions,
9533which defy better classification.
9534
9535.. _i_icmp:
9536
9537'``icmp``' Instruction
9538^^^^^^^^^^^^^^^^^^^^^^
9539
9540Syntax:
9541"""""""
9542
9543::
9544
Tim Northover675a0962014-06-13 14:24:23 +00009545 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009546
9547Overview:
9548"""""""""
9549
9550The '``icmp``' instruction returns a boolean value or a vector of
9551boolean values based on comparison of its two integer, integer vector,
9552pointer, or pointer vector operands.
9553
9554Arguments:
9555""""""""""
9556
9557The '``icmp``' instruction takes three operands. The first operand is
9558the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009559not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009560
9561#. ``eq``: equal
9562#. ``ne``: not equal
9563#. ``ugt``: unsigned greater than
9564#. ``uge``: unsigned greater or equal
9565#. ``ult``: unsigned less than
9566#. ``ule``: unsigned less or equal
9567#. ``sgt``: signed greater than
9568#. ``sge``: signed greater or equal
9569#. ``slt``: signed less than
9570#. ``sle``: signed less or equal
9571
9572The remaining two arguments must be :ref:`integer <t_integer>` or
9573:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
9574must also be identical types.
9575
9576Semantics:
9577""""""""""
9578
9579The '``icmp``' compares ``op1`` and ``op2`` according to the condition
9580code given as ``cond``. The comparison performed always yields either an
9581:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
9582
9583#. ``eq``: yields ``true`` if the operands are equal, ``false``
9584 otherwise. No sign interpretation is necessary or performed.
9585#. ``ne``: yields ``true`` if the operands are unequal, ``false``
9586 otherwise. No sign interpretation is necessary or performed.
9587#. ``ugt``: interprets the operands as unsigned values and yields
9588 ``true`` if ``op1`` is greater than ``op2``.
9589#. ``uge``: interprets the operands as unsigned values and yields
9590 ``true`` if ``op1`` is greater than or equal to ``op2``.
9591#. ``ult``: interprets the operands as unsigned values and yields
9592 ``true`` if ``op1`` is less than ``op2``.
9593#. ``ule``: interprets the operands as unsigned values and yields
9594 ``true`` if ``op1`` is less than or equal to ``op2``.
9595#. ``sgt``: interprets the operands as signed values and yields ``true``
9596 if ``op1`` is greater than ``op2``.
9597#. ``sge``: interprets the operands as signed values and yields ``true``
9598 if ``op1`` is greater than or equal to ``op2``.
9599#. ``slt``: interprets the operands as signed values and yields ``true``
9600 if ``op1`` is less than ``op2``.
9601#. ``sle``: interprets the operands as signed values and yields ``true``
9602 if ``op1`` is less than or equal to ``op2``.
9603
9604If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
9605are compared as if they were integers.
9606
9607If the operands are integer vectors, then they are compared element by
9608element. The result is an ``i1`` vector with the same number of elements
9609as the values being compared. Otherwise, the result is an ``i1``.
9610
9611Example:
9612""""""""
9613
Renato Golin124f2592016-07-20 12:16:38 +00009614.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009615
9616 <result> = icmp eq i32 4, 5 ; yields: result=false
9617 <result> = icmp ne float* %X, %X ; yields: result=false
9618 <result> = icmp ult i16 4, 5 ; yields: result=true
9619 <result> = icmp sgt i16 4, 5 ; yields: result=false
9620 <result> = icmp ule i16 -4, 5 ; yields: result=false
9621 <result> = icmp sge i16 4, 5 ; yields: result=false
9622
Sean Silvab084af42012-12-07 10:36:55 +00009623.. _i_fcmp:
9624
9625'``fcmp``' Instruction
9626^^^^^^^^^^^^^^^^^^^^^^
9627
9628Syntax:
9629"""""""
9630
9631::
9632
James Molloy88eb5352015-07-10 12:52:00 +00009633 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009634
9635Overview:
9636"""""""""
9637
9638The '``fcmp``' instruction returns a boolean value or vector of boolean
9639values based on comparison of its operands.
9640
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009641If the operands are floating-point scalars, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009642boolean (:ref:`i1 <t_integer>`).
9643
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009644If the operands are floating-point vectors, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009645vector of boolean with the same number of elements as the operands being
9646compared.
9647
9648Arguments:
9649""""""""""
9650
9651The '``fcmp``' instruction takes three operands. The first operand is
9652the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009653not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009654
9655#. ``false``: no comparison, always returns false
9656#. ``oeq``: ordered and equal
9657#. ``ogt``: ordered and greater than
9658#. ``oge``: ordered and greater than or equal
9659#. ``olt``: ordered and less than
9660#. ``ole``: ordered and less than or equal
9661#. ``one``: ordered and not equal
9662#. ``ord``: ordered (no nans)
9663#. ``ueq``: unordered or equal
9664#. ``ugt``: unordered or greater than
9665#. ``uge``: unordered or greater than or equal
9666#. ``ult``: unordered or less than
9667#. ``ule``: unordered or less than or equal
9668#. ``une``: unordered or not equal
9669#. ``uno``: unordered (either nans)
9670#. ``true``: no comparison, always returns true
9671
9672*Ordered* means that neither operand is a QNAN while *unordered* means
9673that either operand may be a QNAN.
9674
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009675Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating-point
9676<t_floating>` type or a :ref:`vector <t_vector>` of floating-point type.
9677They must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00009678
9679Semantics:
9680""""""""""
9681
9682The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
9683condition code given as ``cond``. If the operands are vectors, then the
9684vectors are compared element by element. Each comparison performed
9685always yields an :ref:`i1 <t_integer>` result, as follows:
9686
9687#. ``false``: always yields ``false``, regardless of operands.
9688#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
9689 is equal to ``op2``.
9690#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
9691 is greater than ``op2``.
9692#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
9693 is greater than or equal to ``op2``.
9694#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
9695 is less than ``op2``.
9696#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
9697 is less than or equal to ``op2``.
9698#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
9699 is not equal to ``op2``.
9700#. ``ord``: yields ``true`` if both operands are not a QNAN.
9701#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
9702 equal to ``op2``.
9703#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
9704 greater than ``op2``.
9705#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
9706 greater than or equal to ``op2``.
9707#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
9708 less than ``op2``.
9709#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
9710 less than or equal to ``op2``.
9711#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
9712 not equal to ``op2``.
9713#. ``uno``: yields ``true`` if either operand is a QNAN.
9714#. ``true``: always yields ``true``, regardless of operands.
9715
James Molloy88eb5352015-07-10 12:52:00 +00009716The ``fcmp`` instruction can also optionally take any number of
9717:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009718otherwise unsafe floating-point optimizations.
James Molloy88eb5352015-07-10 12:52:00 +00009719
9720Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
9721only flags that have any effect on its semantics are those that allow
9722assumptions to be made about the values of input arguments; namely
Eli Friedman8bb43262018-07-17 20:28:31 +00009723``nnan``, ``ninf``, and ``reassoc``. See :ref:`fastmath` for more information.
James Molloy88eb5352015-07-10 12:52:00 +00009724
Sean Silvab084af42012-12-07 10:36:55 +00009725Example:
9726""""""""
9727
Renato Golin124f2592016-07-20 12:16:38 +00009728.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009729
9730 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
9731 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
9732 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
9733 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
9734
Sean Silvab084af42012-12-07 10:36:55 +00009735.. _i_phi:
9736
9737'``phi``' Instruction
9738^^^^^^^^^^^^^^^^^^^^^
9739
9740Syntax:
9741"""""""
9742
9743::
9744
9745 <result> = phi <ty> [ <val0>, <label0>], ...
9746
9747Overview:
9748"""""""""
9749
9750The '``phi``' instruction is used to implement the φ node in the SSA
9751graph representing the function.
9752
9753Arguments:
9754""""""""""
9755
9756The type of the incoming values is specified with the first type field.
9757After this, the '``phi``' instruction takes a list of pairs as
9758arguments, with one pair for each predecessor basic block of the current
9759block. Only values of :ref:`first class <t_firstclass>` type may be used as
9760the value arguments to the PHI node. Only labels may be used as the
9761label arguments.
9762
9763There must be no non-phi instructions between the start of a basic block
9764and the PHI instructions: i.e. PHI instructions must be first in a basic
9765block.
9766
9767For the purposes of the SSA form, the use of each incoming value is
9768deemed to occur on the edge from the corresponding predecessor block to
9769the current block (but after any definition of an '``invoke``'
9770instruction's return value on the same edge).
9771
9772Semantics:
9773""""""""""
9774
9775At runtime, the '``phi``' instruction logically takes on the value
9776specified by the pair corresponding to the predecessor basic block that
9777executed just prior to the current block.
9778
9779Example:
9780""""""""
9781
9782.. code-block:: llvm
9783
9784 Loop: ; Infinite loop that counts from 0 on up...
9785 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
9786 %nextindvar = add i32 %indvar, 1
9787 br label %Loop
9788
9789.. _i_select:
9790
9791'``select``' Instruction
9792^^^^^^^^^^^^^^^^^^^^^^^^
9793
9794Syntax:
9795"""""""
9796
9797::
9798
9799 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
9800
9801 selty is either i1 or {<N x i1>}
9802
9803Overview:
9804"""""""""
9805
9806The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00009807condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00009808
9809Arguments:
9810""""""""""
9811
9812The '``select``' instruction requires an 'i1' value or a vector of 'i1'
9813values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00009814class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00009815
9816Semantics:
9817""""""""""
9818
9819If the condition is an i1 and it evaluates to 1, the instruction returns
9820the first value argument; otherwise, it returns the second value
9821argument.
9822
9823If the condition is a vector of i1, then the value arguments must be
9824vectors of the same size, and the selection is done element by element.
9825
David Majnemer40a0b592015-03-03 22:45:47 +00009826If the condition is an i1 and the value arguments are vectors of the
9827same size, then an entire vector is selected.
9828
Sean Silvab084af42012-12-07 10:36:55 +00009829Example:
9830""""""""
9831
9832.. code-block:: llvm
9833
9834 %X = select i1 true, i8 17, i8 42 ; yields i8:17
9835
9836.. _i_call:
9837
9838'``call``' Instruction
9839^^^^^^^^^^^^^^^^^^^^^^
9840
9841Syntax:
9842"""""""
9843
9844::
9845
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00009846 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] [addrspace(<num>)]
9847 [<ty>|<fnty> <fnptrval>(<function args>) [fn attrs] [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00009848
9849Overview:
9850"""""""""
9851
9852The '``call``' instruction represents a simple function call.
9853
9854Arguments:
9855""""""""""
9856
9857This instruction requires several arguments:
9858
Reid Kleckner5772b772014-04-24 20:14:34 +00009859#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00009860 should perform tail call optimization. The ``tail`` marker is a hint that
9861 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00009862 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00009863 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00009864
9865 #. The call will not cause unbounded stack growth if it is part of a
9866 recursive cycle in the call graph.
9867 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
9868 forwarded in place.
9869
Florian Hahnedae5a62018-01-17 23:29:25 +00009870 Both markers imply that the callee does not access allocas from the caller.
9871 The ``tail`` marker additionally implies that the callee does not access
9872 varargs from the caller, while ``musttail`` implies that varargs from the
9873 caller are passed to the callee. Calls marked ``musttail`` must obey the
9874 following additional rules:
Reid Kleckner5772b772014-04-24 20:14:34 +00009875
9876 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
9877 or a pointer bitcast followed by a ret instruction.
9878 - The ret instruction must return the (possibly bitcasted) value
9879 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00009880 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00009881 parameters or return types may differ in pointee type, but not
9882 in address space.
9883 - The calling conventions of the caller and callee must match.
9884 - All ABI-impacting function attributes, such as sret, byval, inreg,
9885 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00009886 - The callee must be varargs iff the caller is varargs. Bitcasting a
9887 non-varargs function to the appropriate varargs type is legal so
9888 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00009889
9890 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
9891 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00009892
9893 - Caller and callee both have the calling convention ``fastcc``.
9894 - The call is in tail position (ret immediately follows call and ret
9895 uses value of call or is void).
9896 - Option ``-tailcallopt`` is enabled, or
9897 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00009898 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00009899 met. <CodeGenerator.html#tailcallopt>`_
9900
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00009901#. The optional ``notail`` marker indicates that the optimizers should not add
9902 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
9903 call optimization from being performed on the call.
9904
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00009905#. The optional ``fast-math flags`` marker indicates that the call has one or more
Sanjay Patelfa54ace2015-12-14 21:59:03 +00009906 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
9907 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
9908 for calls that return a floating-point scalar or vector type.
9909
Sean Silvab084af42012-12-07 10:36:55 +00009910#. The optional "cconv" marker indicates which :ref:`calling
9911 convention <callingconv>` the call should use. If none is
9912 specified, the call defaults to using C calling conventions. The
9913 calling convention of the call must match the calling convention of
9914 the target function, or else the behavior is undefined.
9915#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
9916 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
9917 are valid here.
Craig Topper78e7fff2019-01-16 00:21:59 +00009918#. The optional addrspace attribute can be used to indicate the address space
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00009919 of the called function. If it is not specified, the program address space
9920 from the :ref:`datalayout string<langref_datalayout>` will be used.
Sean Silvab084af42012-12-07 10:36:55 +00009921#. '``ty``': the type of the call instruction itself which is also the
9922 type of the return value. Functions that return no value are marked
9923 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00009924#. '``fnty``': shall be the signature of the function being called. The
9925 argument types must match the types implied by this signature. This
9926 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00009927#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00009928 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00009929 indirect ``call``'s are just as possible, calling an arbitrary pointer
9930 to function value.
9931#. '``function args``': argument list whose types match the function
9932 signature argument types and parameter attributes. All arguments must
9933 be of :ref:`first class <t_firstclass>` type. If the function signature
9934 indicates the function accepts a variable number of arguments, the
9935 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00009936#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009937#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00009938
9939Semantics:
9940""""""""""
9941
9942The '``call``' instruction is used to cause control flow to transfer to
9943a specified function, with its incoming arguments bound to the specified
9944values. Upon a '``ret``' instruction in the called function, control
9945flow continues with the instruction after the function call, and the
9946return value of the function is bound to the result argument.
9947
9948Example:
9949""""""""
9950
9951.. code-block:: llvm
9952
9953 %retval = call i32 @test(i32 %argc)
9954 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
9955 %X = tail call i32 @foo() ; yields i32
9956 %Y = tail call fastcc i32 @foo() ; yields i32
9957 call void %foo(i8 97 signext)
9958
9959 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00009960 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00009961 %gr = extractvalue %struct.A %r, 0 ; yields i32
9962 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
9963 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
9964 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
9965
9966llvm treats calls to some functions with names and arguments that match
9967the standard C99 library as being the C99 library functions, and may
9968perform optimizations or generate code for them under that assumption.
9969This is something we'd like to change in the future to provide better
9970support for freestanding environments and non-C-based languages.
9971
9972.. _i_va_arg:
9973
9974'``va_arg``' Instruction
9975^^^^^^^^^^^^^^^^^^^^^^^^
9976
9977Syntax:
9978"""""""
9979
9980::
9981
9982 <resultval> = va_arg <va_list*> <arglist>, <argty>
9983
9984Overview:
9985"""""""""
9986
9987The '``va_arg``' instruction is used to access arguments passed through
9988the "variable argument" area of a function call. It is used to implement
9989the ``va_arg`` macro in C.
9990
9991Arguments:
9992""""""""""
9993
9994This instruction takes a ``va_list*`` value and the type of the
9995argument. It returns a value of the specified argument type and
9996increments the ``va_list`` to point to the next argument. The actual
9997type of ``va_list`` is target specific.
9998
9999Semantics:
10000""""""""""
10001
10002The '``va_arg``' instruction loads an argument of the specified type
10003from the specified ``va_list`` and causes the ``va_list`` to point to
10004the next argument. For more information, see the variable argument
10005handling :ref:`Intrinsic Functions <int_varargs>`.
10006
10007It is legal for this instruction to be called in a function which does
10008not take a variable number of arguments, for example, the ``vfprintf``
10009function.
10010
10011``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
10012function <intrinsics>` because it takes a type as an argument.
10013
10014Example:
10015""""""""
10016
10017See the :ref:`variable argument processing <int_varargs>` section.
10018
10019Note that the code generator does not yet fully support va\_arg on many
10020targets. Also, it does not currently support va\_arg with aggregate
10021types on any target.
10022
10023.. _i_landingpad:
10024
10025'``landingpad``' Instruction
10026^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10027
10028Syntax:
10029"""""""
10030
10031::
10032
David Majnemer7fddecc2015-06-17 20:52:32 +000010033 <resultval> = landingpad <resultty> <clause>+
10034 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +000010035
10036 <clause> := catch <type> <value>
10037 <clause> := filter <array constant type> <array constant>
10038
10039Overview:
10040"""""""""
10041
10042The '``landingpad``' instruction is used by `LLVM's exception handling
10043system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010044is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +000010045code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +000010046defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +000010047re-entry to the function. The ``resultval`` has the type ``resultty``.
10048
10049Arguments:
10050""""""""""
10051
David Majnemer7fddecc2015-06-17 20:52:32 +000010052The optional
Sean Silvab084af42012-12-07 10:36:55 +000010053``cleanup`` flag indicates that the landing pad block is a cleanup.
10054
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010055A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +000010056contains the global variable representing the "type" that may be caught
10057or filtered respectively. Unlike the ``catch`` clause, the ``filter``
10058clause takes an array constant as its argument. Use
10059"``[0 x i8**] undef``" for a filter which cannot throw. The
10060'``landingpad``' instruction must contain *at least* one ``clause`` or
10061the ``cleanup`` flag.
10062
10063Semantics:
10064""""""""""
10065
10066The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +000010067:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +000010068therefore the "result type" of the ``landingpad`` instruction. As with
10069calling conventions, how the personality function results are
10070represented in LLVM IR is target specific.
10071
10072The clauses are applied in order from top to bottom. If two
10073``landingpad`` instructions are merged together through inlining, the
10074clauses from the calling function are appended to the list of clauses.
10075When the call stack is being unwound due to an exception being thrown,
10076the exception is compared against each ``clause`` in turn. If it doesn't
10077match any of the clauses, and the ``cleanup`` flag is not set, then
10078unwinding continues further up the call stack.
10079
10080The ``landingpad`` instruction has several restrictions:
10081
10082- A landing pad block is a basic block which is the unwind destination
10083 of an '``invoke``' instruction.
10084- A landing pad block must have a '``landingpad``' instruction as its
10085 first non-PHI instruction.
10086- There can be only one '``landingpad``' instruction within the landing
10087 pad block.
10088- A basic block that is not a landing pad block may not include a
10089 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +000010090
10091Example:
10092""""""""
10093
10094.. code-block:: llvm
10095
10096 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +000010097 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +000010098 catch i8** @_ZTIi
10099 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +000010100 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +000010101 cleanup
10102 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +000010103 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +000010104 catch i8** @_ZTIi
10105 filter [1 x i8**] [@_ZTId]
10106
Joseph Tremoulet2adaa982016-01-10 04:46:10 +000010107.. _i_catchpad:
10108
10109'``catchpad``' Instruction
10110^^^^^^^^^^^^^^^^^^^^^^^^^^
10111
10112Syntax:
10113"""""""
10114
10115::
10116
10117 <resultval> = catchpad within <catchswitch> [<args>*]
10118
10119Overview:
10120"""""""""
10121
10122The '``catchpad``' instruction is used by `LLVM's exception handling
10123system <ExceptionHandling.html#overview>`_ to specify that a basic block
10124begins a catch handler --- one where a personality routine attempts to transfer
10125control to catch an exception.
10126
10127Arguments:
10128""""""""""
10129
10130The ``catchswitch`` operand must always be a token produced by a
10131:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
10132ensures that each ``catchpad`` has exactly one predecessor block, and it always
10133terminates in a ``catchswitch``.
10134
10135The ``args`` correspond to whatever information the personality routine
10136requires to know if this is an appropriate handler for the exception. Control
10137will transfer to the ``catchpad`` if this is the first appropriate handler for
10138the exception.
10139
10140The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
10141``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
10142pads.
10143
10144Semantics:
10145""""""""""
10146
10147When the call stack is being unwound due to an exception being thrown, the
10148exception is compared against the ``args``. If it doesn't match, control will
10149not reach the ``catchpad`` instruction. The representation of ``args`` is
10150entirely target and personality function-specific.
10151
10152Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
10153instruction must be the first non-phi of its parent basic block.
10154
10155The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
10156instructions is described in the
10157`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
10158
10159When a ``catchpad`` has been "entered" but not yet "exited" (as
10160described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
10161it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
10162that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
10163
10164Example:
10165""""""""
10166
Renato Golin124f2592016-07-20 12:16:38 +000010167.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +000010168
10169 dispatch:
10170 %cs = catchswitch within none [label %handler0] unwind to caller
10171 ;; A catch block which can catch an integer.
10172 handler0:
10173 %tok = catchpad within %cs [i8** @_ZTIi]
10174
David Majnemer654e1302015-07-31 17:58:14 +000010175.. _i_cleanuppad:
10176
10177'``cleanuppad``' Instruction
10178^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10179
10180Syntax:
10181"""""""
10182
10183::
10184
David Majnemer8a1c45d2015-12-12 05:38:55 +000010185 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +000010186
10187Overview:
10188"""""""""
10189
10190The '``cleanuppad``' instruction is used by `LLVM's exception handling
10191system <ExceptionHandling.html#overview>`_ to specify that a basic block
10192is a cleanup block --- one where a personality routine attempts to
10193transfer control to run cleanup actions.
10194The ``args`` correspond to whatever additional
10195information the :ref:`personality function <personalityfn>` requires to
10196execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +000010197The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +000010198match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
10199The ``parent`` argument is the token of the funclet that contains the
10200``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
10201this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +000010202
10203Arguments:
10204""""""""""
10205
10206The instruction takes a list of arbitrary values which are interpreted
10207by the :ref:`personality function <personalityfn>`.
10208
10209Semantics:
10210""""""""""
10211
David Majnemer654e1302015-07-31 17:58:14 +000010212When the call stack is being unwound due to an exception being thrown,
10213the :ref:`personality function <personalityfn>` transfers control to the
10214``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +000010215As with calling conventions, how the personality function results are
10216represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +000010217
10218The ``cleanuppad`` instruction has several restrictions:
10219
10220- A cleanup block is a basic block which is the unwind destination of
10221 an exceptional instruction.
10222- A cleanup block must have a '``cleanuppad``' instruction as its
10223 first non-PHI instruction.
10224- There can be only one '``cleanuppad``' instruction within the
10225 cleanup block.
10226- A basic block that is not a cleanup block may not include a
10227 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +000010228
Joseph Tremoulete28885e2016-01-10 04:28:38 +000010229When a ``cleanuppad`` has been "entered" but not yet "exited" (as
10230described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
10231it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
10232that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +000010233
David Majnemer654e1302015-07-31 17:58:14 +000010234Example:
10235""""""""
10236
Renato Golin124f2592016-07-20 12:16:38 +000010237.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +000010238
David Majnemer8a1c45d2015-12-12 05:38:55 +000010239 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +000010240
Sean Silvab084af42012-12-07 10:36:55 +000010241.. _intrinsics:
10242
10243Intrinsic Functions
10244===================
10245
10246LLVM supports the notion of an "intrinsic function". These functions
10247have well known names and semantics and are required to follow certain
10248restrictions. Overall, these intrinsics represent an extension mechanism
10249for the LLVM language that does not require changing all of the
10250transformations in LLVM when adding to the language (or the bitcode
10251reader/writer, the parser, etc...).
10252
10253Intrinsic function names must all start with an "``llvm.``" prefix. This
10254prefix is reserved in LLVM for intrinsic names; thus, function names may
10255not begin with this prefix. Intrinsic functions must always be external
10256functions: you cannot define the body of intrinsic functions. Intrinsic
10257functions may only be used in call or invoke instructions: it is illegal
10258to take the address of an intrinsic function. Additionally, because
10259intrinsic functions are part of the LLVM language, it is required if any
10260are added that they be documented here.
10261
10262Some intrinsic functions can be overloaded, i.e., the intrinsic
10263represents a family of functions that perform the same operation but on
10264different data types. Because LLVM can represent over 8 million
10265different integer types, overloading is used commonly to allow an
10266intrinsic function to operate on any integer type. One or more of the
10267argument types or the result type can be overloaded to accept any
10268integer type. Argument types may also be defined as exactly matching a
10269previous argument's type or the result type. This allows an intrinsic
10270function which accepts multiple arguments, but needs all of them to be
10271of the same type, to only be overloaded with respect to a single
10272argument or the result.
10273
10274Overloaded intrinsics will have the names of its overloaded argument
10275types encoded into its function name, each preceded by a period. Only
10276those types which are overloaded result in a name suffix. Arguments
10277whose type is matched against another type do not. For example, the
10278``llvm.ctpop`` function can take an integer of any width and returns an
10279integer of exactly the same integer width. This leads to a family of
10280functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
10281``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
10282overloaded, and only one type suffix is required. Because the argument's
10283type is matched against the return type, it does not require its own
10284name suffix.
10285
10286To learn how to add an intrinsic function, please see the `Extending
10287LLVM Guide <ExtendingLLVM.html>`_.
10288
10289.. _int_varargs:
10290
10291Variable Argument Handling Intrinsics
10292-------------------------------------
10293
10294Variable argument support is defined in LLVM with the
10295:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
10296functions. These functions are related to the similarly named macros
10297defined in the ``<stdarg.h>`` header file.
10298
10299All of these functions operate on arguments that use a target-specific
10300value type "``va_list``". The LLVM assembly language reference manual
10301does not define what this type is, so all transformations should be
10302prepared to handle these functions regardless of the type used.
10303
10304This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
10305variable argument handling intrinsic functions are used.
10306
10307.. code-block:: llvm
10308
Tim Northoverab60bb92014-11-02 01:21:51 +000010309 ; This struct is different for every platform. For most platforms,
10310 ; it is merely an i8*.
10311 %struct.va_list = type { i8* }
10312
10313 ; For Unix x86_64 platforms, va_list is the following struct:
10314 ; %struct.va_list = type { i32, i32, i8*, i8* }
10315
Sean Silvab084af42012-12-07 10:36:55 +000010316 define i32 @test(i32 %X, ...) {
10317 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +000010318 %ap = alloca %struct.va_list
10319 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +000010320 call void @llvm.va_start(i8* %ap2)
10321
10322 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +000010323 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +000010324
10325 ; Demonstrate usage of llvm.va_copy and llvm.va_end
10326 %aq = alloca i8*
10327 %aq2 = bitcast i8** %aq to i8*
10328 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
10329 call void @llvm.va_end(i8* %aq2)
10330
10331 ; Stop processing of arguments.
10332 call void @llvm.va_end(i8* %ap2)
10333 ret i32 %tmp
10334 }
10335
10336 declare void @llvm.va_start(i8*)
10337 declare void @llvm.va_copy(i8*, i8*)
10338 declare void @llvm.va_end(i8*)
10339
10340.. _int_va_start:
10341
10342'``llvm.va_start``' Intrinsic
10343^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10344
10345Syntax:
10346"""""""
10347
10348::
10349
Nick Lewycky04f6de02013-09-11 22:04:52 +000010350 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +000010351
10352Overview:
10353"""""""""
10354
10355The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
10356subsequent use by ``va_arg``.
10357
10358Arguments:
10359""""""""""
10360
10361The argument is a pointer to a ``va_list`` element to initialize.
10362
10363Semantics:
10364""""""""""
10365
10366The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
10367available in C. In a target-dependent way, it initializes the
10368``va_list`` element to which the argument points, so that the next call
10369to ``va_arg`` will produce the first variable argument passed to the
10370function. Unlike the C ``va_start`` macro, this intrinsic does not need
10371to know the last argument of the function as the compiler can figure
10372that out.
10373
10374'``llvm.va_end``' Intrinsic
10375^^^^^^^^^^^^^^^^^^^^^^^^^^^
10376
10377Syntax:
10378"""""""
10379
10380::
10381
10382 declare void @llvm.va_end(i8* <arglist>)
10383
10384Overview:
10385"""""""""
10386
10387The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
10388initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
10389
10390Arguments:
10391""""""""""
10392
10393The argument is a pointer to a ``va_list`` to destroy.
10394
10395Semantics:
10396""""""""""
10397
10398The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
10399available in C. In a target-dependent way, it destroys the ``va_list``
10400element to which the argument points. Calls to
10401:ref:`llvm.va_start <int_va_start>` and
10402:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
10403``llvm.va_end``.
10404
10405.. _int_va_copy:
10406
10407'``llvm.va_copy``' Intrinsic
10408^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10409
10410Syntax:
10411"""""""
10412
10413::
10414
10415 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
10416
10417Overview:
10418"""""""""
10419
10420The '``llvm.va_copy``' intrinsic copies the current argument position
10421from the source argument list to the destination argument list.
10422
10423Arguments:
10424""""""""""
10425
10426The first argument is a pointer to a ``va_list`` element to initialize.
10427The second argument is a pointer to a ``va_list`` element to copy from.
10428
10429Semantics:
10430""""""""""
10431
10432The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
10433available in C. In a target-dependent way, it copies the source
10434``va_list`` element into the destination ``va_list`` element. This
10435intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
10436arbitrarily complex and require, for example, memory allocation.
10437
10438Accurate Garbage Collection Intrinsics
10439--------------------------------------
10440
Philip Reamesc5b0f562015-02-25 23:52:06 +000010441LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010442(GC) requires the frontend to generate code containing appropriate intrinsic
10443calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +000010444intrinsics in a manner which is appropriate for the target collector.
10445
Sean Silvab084af42012-12-07 10:36:55 +000010446These intrinsics allow identification of :ref:`GC roots on the
10447stack <int_gcroot>`, as well as garbage collector implementations that
10448require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +000010449Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +000010450these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +000010451details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +000010452
Philip Reamesf80bbff2015-02-25 23:45:20 +000010453Experimental Statepoint Intrinsics
10454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10455
10456LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +000010457collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010458to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +000010459:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010460differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +000010461<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +000010462described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +000010463
10464.. _int_gcroot:
10465
10466'``llvm.gcroot``' Intrinsic
10467^^^^^^^^^^^^^^^^^^^^^^^^^^^
10468
10469Syntax:
10470"""""""
10471
10472::
10473
10474 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
10475
10476Overview:
10477"""""""""
10478
10479The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
10480the code generator, and allows some metadata to be associated with it.
10481
10482Arguments:
10483""""""""""
10484
10485The first argument specifies the address of a stack object that contains
10486the root pointer. The second pointer (which must be either a constant or
10487a global value address) contains the meta-data to be associated with the
10488root.
10489
10490Semantics:
10491""""""""""
10492
10493At runtime, a call to this intrinsic stores a null pointer into the
10494"ptrloc" location. At compile-time, the code generator generates
10495information to allow the runtime to find the pointer at GC safe points.
10496The '``llvm.gcroot``' intrinsic may only be used in a function which
10497:ref:`specifies a GC algorithm <gc>`.
10498
10499.. _int_gcread:
10500
10501'``llvm.gcread``' Intrinsic
10502^^^^^^^^^^^^^^^^^^^^^^^^^^^
10503
10504Syntax:
10505"""""""
10506
10507::
10508
10509 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
10510
10511Overview:
10512"""""""""
10513
10514The '``llvm.gcread``' intrinsic identifies reads of references from heap
10515locations, allowing garbage collector implementations that require read
10516barriers.
10517
10518Arguments:
10519""""""""""
10520
10521The second argument is the address to read from, which should be an
10522address allocated from the garbage collector. The first object is a
10523pointer to the start of the referenced object, if needed by the language
10524runtime (otherwise null).
10525
10526Semantics:
10527""""""""""
10528
10529The '``llvm.gcread``' intrinsic has the same semantics as a load
10530instruction, but may be replaced with substantially more complex code by
10531the garbage collector runtime, as needed. The '``llvm.gcread``'
10532intrinsic may only be used in a function which :ref:`specifies a GC
10533algorithm <gc>`.
10534
10535.. _int_gcwrite:
10536
10537'``llvm.gcwrite``' Intrinsic
10538^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10539
10540Syntax:
10541"""""""
10542
10543::
10544
10545 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
10546
10547Overview:
10548"""""""""
10549
10550The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
10551locations, allowing garbage collector implementations that require write
10552barriers (such as generational or reference counting collectors).
10553
10554Arguments:
10555""""""""""
10556
10557The first argument is the reference to store, the second is the start of
10558the object to store it to, and the third is the address of the field of
10559Obj to store to. If the runtime does not require a pointer to the
10560object, Obj may be null.
10561
10562Semantics:
10563""""""""""
10564
10565The '``llvm.gcwrite``' intrinsic has the same semantics as a store
10566instruction, but may be replaced with substantially more complex code by
10567the garbage collector runtime, as needed. The '``llvm.gcwrite``'
10568intrinsic may only be used in a function which :ref:`specifies a GC
10569algorithm <gc>`.
10570
10571Code Generator Intrinsics
10572-------------------------
10573
10574These intrinsics are provided by LLVM to expose special features that
10575may only be implemented with code generator support.
10576
10577'``llvm.returnaddress``' Intrinsic
10578^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10579
10580Syntax:
10581"""""""
10582
10583::
10584
George Burgess IVfbc34982017-05-20 04:52:29 +000010585 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +000010586
10587Overview:
10588"""""""""
10589
10590The '``llvm.returnaddress``' intrinsic attempts to compute a
10591target-specific value indicating the return address of the current
10592function or one of its callers.
10593
10594Arguments:
10595""""""""""
10596
10597The argument to this intrinsic indicates which function to return the
10598address for. Zero indicates the calling function, one indicates its
10599caller, etc. The argument is **required** to be a constant integer
10600value.
10601
10602Semantics:
10603""""""""""
10604
10605The '``llvm.returnaddress``' intrinsic either returns a pointer
10606indicating the return address of the specified call frame, or zero if it
10607cannot be identified. The value returned by this intrinsic is likely to
10608be incorrect or 0 for arguments other than zero, so it should only be
10609used for debugging purposes.
10610
10611Note that calling this intrinsic does not prevent function inlining or
10612other aggressive transformations, so the value returned may not be that
10613of the obvious source-language caller.
10614
Albert Gutowski795d7d62016-10-12 22:13:19 +000010615'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +000010616^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +000010617
10618Syntax:
10619"""""""
10620
10621::
10622
George Burgess IVfbc34982017-05-20 04:52:29 +000010623 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +000010624
10625Overview:
10626"""""""""
10627
10628The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
10629pointer to the place in the stack frame where the return address of the
10630current function is stored.
10631
10632Semantics:
10633""""""""""
10634
10635Note that calling this intrinsic does not prevent function inlining or
10636other aggressive transformations, so the value returned may not be that
10637of the obvious source-language caller.
10638
Mandeep Singh Grangdf19e572018-11-01 21:23:47 +000010639This intrinsic is only implemented for x86 and aarch64.
Albert Gutowski795d7d62016-10-12 22:13:19 +000010640
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000010641'``llvm.sponentry``' Intrinsic
10642^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10643
10644Syntax:
10645"""""""
10646
10647::
10648
10649 declare i8* @llvm.sponentry()
10650
10651Overview:
10652"""""""""
10653
10654The '``llvm.sponentry``' intrinsic returns the stack pointer value at
10655the entry of the current function calling this intrinsic.
10656
10657Semantics:
10658""""""""""
10659
10660Note this intrinsic is only verified on AArch64.
10661
Sean Silvab084af42012-12-07 10:36:55 +000010662'``llvm.frameaddress``' Intrinsic
10663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10664
10665Syntax:
10666"""""""
10667
10668::
10669
10670 declare i8* @llvm.frameaddress(i32 <level>)
10671
10672Overview:
10673"""""""""
10674
10675The '``llvm.frameaddress``' intrinsic attempts to return the
10676target-specific frame pointer value for the specified stack frame.
10677
10678Arguments:
10679""""""""""
10680
10681The argument to this intrinsic indicates which function to return the
10682frame pointer for. Zero indicates the calling function, one indicates
10683its caller, etc. The argument is **required** to be a constant integer
10684value.
10685
10686Semantics:
10687""""""""""
10688
10689The '``llvm.frameaddress``' intrinsic either returns a pointer
10690indicating the frame address of the specified call frame, or zero if it
10691cannot be identified. The value returned by this intrinsic is likely to
10692be incorrect or 0 for arguments other than zero, so it should only be
10693used for debugging purposes.
10694
10695Note that calling this intrinsic does not prevent function inlining or
10696other aggressive transformations, so the value returned may not be that
10697of the obvious source-language caller.
10698
Reid Kleckner60381792015-07-07 22:25:32 +000010699'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +000010700^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10701
10702Syntax:
10703"""""""
10704
10705::
10706
Reid Kleckner60381792015-07-07 22:25:32 +000010707 declare void @llvm.localescape(...)
10708 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +000010709
10710Overview:
10711"""""""""
10712
Reid Kleckner60381792015-07-07 22:25:32 +000010713The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
10714allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010715live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +000010716computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +000010717
10718Arguments:
10719""""""""""
10720
Reid Kleckner60381792015-07-07 22:25:32 +000010721All arguments to '``llvm.localescape``' must be pointers to static allocas or
10722casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010723once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +000010724
Reid Kleckner60381792015-07-07 22:25:32 +000010725The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +000010726bitcasted pointer to a function defined in the current module. The code
10727generator cannot determine the frame allocation offset of functions defined in
10728other modules.
10729
Reid Klecknerd5afc62f2015-07-07 23:23:03 +000010730The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
10731call frame that is currently live. The return value of '``llvm.localaddress``'
10732is one way to produce such a value, but various runtimes also expose a suitable
10733pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +000010734
Reid Kleckner60381792015-07-07 22:25:32 +000010735The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
10736'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010737
Reid Klecknere9b89312015-01-13 00:48:10 +000010738Semantics:
10739""""""""""
10740
Reid Kleckner60381792015-07-07 22:25:32 +000010741These intrinsics allow a group of functions to share access to a set of local
10742stack allocations of a one parent function. The parent function may call the
10743'``llvm.localescape``' intrinsic once from the function entry block, and the
10744child functions can use '``llvm.localrecover``' to access the escaped allocas.
10745The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
10746the escaped allocas are allocated, which would break attempts to use
10747'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +000010748
Renato Golinc7aea402014-05-06 16:51:25 +000010749.. _int_read_register:
10750.. _int_write_register:
10751
10752'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
10753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10754
10755Syntax:
10756"""""""
10757
10758::
10759
10760 declare i32 @llvm.read_register.i32(metadata)
10761 declare i64 @llvm.read_register.i64(metadata)
10762 declare void @llvm.write_register.i32(metadata, i32 @value)
10763 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +000010764 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +000010765
10766Overview:
10767"""""""""
10768
10769The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
10770provides access to the named register. The register must be valid on
10771the architecture being compiled to. The type needs to be compatible
10772with the register being read.
10773
10774Semantics:
10775""""""""""
10776
10777The '``llvm.read_register``' intrinsic returns the current value of the
10778register, where possible. The '``llvm.write_register``' intrinsic sets
10779the current value of the register, where possible.
10780
10781This is useful to implement named register global variables that need
10782to always be mapped to a specific register, as is common practice on
10783bare-metal programs including OS kernels.
10784
10785The compiler doesn't check for register availability or use of the used
10786register in surrounding code, including inline assembly. Because of that,
10787allocatable registers are not supported.
10788
10789Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +000010790architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +000010791work is needed to support other registers and even more so, allocatable
10792registers.
10793
Sean Silvab084af42012-12-07 10:36:55 +000010794.. _int_stacksave:
10795
10796'``llvm.stacksave``' Intrinsic
10797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10798
10799Syntax:
10800"""""""
10801
10802::
10803
10804 declare i8* @llvm.stacksave()
10805
10806Overview:
10807"""""""""
10808
10809The '``llvm.stacksave``' intrinsic is used to remember the current state
10810of the function stack, for use with
10811:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
10812implementing language features like scoped automatic variable sized
10813arrays in C99.
10814
10815Semantics:
10816""""""""""
10817
10818This intrinsic returns a opaque pointer value that can be passed to
10819:ref:`llvm.stackrestore <int_stackrestore>`. When an
10820``llvm.stackrestore`` intrinsic is executed with a value saved from
10821``llvm.stacksave``, it effectively restores the state of the stack to
10822the state it was in when the ``llvm.stacksave`` intrinsic executed. In
10823practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
10824were allocated after the ``llvm.stacksave`` was executed.
10825
10826.. _int_stackrestore:
10827
10828'``llvm.stackrestore``' Intrinsic
10829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10830
10831Syntax:
10832"""""""
10833
10834::
10835
10836 declare void @llvm.stackrestore(i8* %ptr)
10837
10838Overview:
10839"""""""""
10840
10841The '``llvm.stackrestore``' intrinsic is used to restore the state of
10842the function stack to the state it was in when the corresponding
10843:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
10844useful for implementing language features like scoped automatic variable
10845sized arrays in C99.
10846
10847Semantics:
10848""""""""""
10849
10850See the description for :ref:`llvm.stacksave <int_stacksave>`.
10851
Yury Gribovd7dbb662015-12-01 11:40:55 +000010852.. _int_get_dynamic_area_offset:
10853
10854'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +000010855^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +000010856
10857Syntax:
10858"""""""
10859
10860::
10861
10862 declare i32 @llvm.get.dynamic.area.offset.i32()
10863 declare i64 @llvm.get.dynamic.area.offset.i64()
10864
Lang Hames10239932016-10-08 00:20:42 +000010865Overview:
10866"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +000010867
10868 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
10869 get the offset from native stack pointer to the address of the most
10870 recent dynamic alloca on the caller's stack. These intrinsics are
10871 intendend for use in combination with
10872 :ref:`llvm.stacksave <int_stacksave>` to get a
10873 pointer to the most recent dynamic alloca. This is useful, for example,
10874 for AddressSanitizer's stack unpoisoning routines.
10875
10876Semantics:
10877""""""""""
10878
10879 These intrinsics return a non-negative integer value that can be used to
10880 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
10881 on the caller's stack. In particular, for targets where stack grows downwards,
10882 adding this offset to the native stack pointer would get the address of the most
10883 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +000010884 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +000010885 one past the end of the most recent dynamic alloca.
10886
10887 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
10888 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
10889 compile-time-known constant value.
10890
10891 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +000010892 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +000010893
Sean Silvab084af42012-12-07 10:36:55 +000010894'``llvm.prefetch``' Intrinsic
10895^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10896
10897Syntax:
10898"""""""
10899
10900::
10901
10902 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
10903
10904Overview:
10905"""""""""
10906
10907The '``llvm.prefetch``' intrinsic is a hint to the code generator to
10908insert a prefetch instruction if supported; otherwise, it is a noop.
10909Prefetches have no effect on the behavior of the program but can change
10910its performance characteristics.
10911
10912Arguments:
10913""""""""""
10914
10915``address`` is the address to be prefetched, ``rw`` is the specifier
10916determining if the fetch should be for a read (0) or write (1), and
10917``locality`` is a temporal locality specifier ranging from (0) - no
10918locality, to (3) - extremely local keep in cache. The ``cache type``
10919specifies whether the prefetch is performed on the data (1) or
10920instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
10921arguments must be constant integers.
10922
10923Semantics:
10924""""""""""
10925
10926This intrinsic does not modify the behavior of the program. In
10927particular, prefetches cannot trap and do not produce a value. On
10928targets that support this intrinsic, the prefetch can provide hints to
10929the processor cache for better performance.
10930
10931'``llvm.pcmarker``' Intrinsic
10932^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10933
10934Syntax:
10935"""""""
10936
10937::
10938
10939 declare void @llvm.pcmarker(i32 <id>)
10940
10941Overview:
10942"""""""""
10943
10944The '``llvm.pcmarker``' intrinsic is a method to export a Program
10945Counter (PC) in a region of code to simulators and other tools. The
10946method is target specific, but it is expected that the marker will use
10947exported symbols to transmit the PC of the marker. The marker makes no
10948guarantees that it will remain with any specific instruction after
10949optimizations. It is possible that the presence of a marker will inhibit
10950optimizations. The intended use is to be inserted after optimizations to
10951allow correlations of simulation runs.
10952
10953Arguments:
10954""""""""""
10955
10956``id`` is a numerical id identifying the marker.
10957
10958Semantics:
10959""""""""""
10960
10961This intrinsic does not modify the behavior of the program. Backends
10962that do not support this intrinsic may ignore it.
10963
10964'``llvm.readcyclecounter``' Intrinsic
10965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10966
10967Syntax:
10968"""""""
10969
10970::
10971
10972 declare i64 @llvm.readcyclecounter()
10973
10974Overview:
10975"""""""""
10976
10977The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
10978counter register (or similar low latency, high accuracy clocks) on those
10979targets that support it. On X86, it should map to RDTSC. On Alpha, it
10980should map to RPCC. As the backing counters overflow quickly (on the
10981order of 9 seconds on alpha), this should only be used for small
10982timings.
10983
10984Semantics:
10985""""""""""
10986
10987When directly supported, reading the cycle counter should not modify any
10988memory. Implementations are allowed to either return a application
10989specific value or a system wide value. On backends without support, this
10990is lowered to a constant 0.
10991
Tim Northoverbc933082013-05-23 19:11:20 +000010992Note that runtime support may be conditional on the privilege-level code is
10993running at and the host platform.
10994
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010995'``llvm.clear_cache``' Intrinsic
10996^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10997
10998Syntax:
10999"""""""
11000
11001::
11002
11003 declare void @llvm.clear_cache(i8*, i8*)
11004
11005Overview:
11006"""""""""
11007
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011008The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
11009in the specified range to the execution unit of the processor. On
11010targets with non-unified instruction and data cache, the implementation
11011flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000011012
11013Semantics:
11014""""""""""
11015
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011016On platforms with coherent instruction and data caches (e.g. x86), this
11017intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000011018cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011019instructions or a system call, if cache flushing requires special
11020privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000011021
Sean Silvad02bf3e2014-04-07 22:29:53 +000011022The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011023time library.
Renato Golin93010e62014-03-26 14:01:32 +000011024
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011025This instrinsic does *not* empty the instruction pipeline. Modifications
11026of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000011027
Vedant Kumar51ce6682018-01-26 23:54:25 +000011028'``llvm.instrprof.increment``' Intrinsic
Justin Bogner61ba2e32014-12-08 18:02:35 +000011029^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11030
11031Syntax:
11032"""""""
11033
11034::
11035
Vedant Kumar51ce6682018-01-26 23:54:25 +000011036 declare void @llvm.instrprof.increment(i8* <name>, i64 <hash>,
Justin Bogner61ba2e32014-12-08 18:02:35 +000011037 i32 <num-counters>, i32 <index>)
11038
11039Overview:
11040"""""""""
11041
Vedant Kumar51ce6682018-01-26 23:54:25 +000011042The '``llvm.instrprof.increment``' intrinsic can be emitted by a
Justin Bogner61ba2e32014-12-08 18:02:35 +000011043frontend for use with instrumentation based profiling. These will be
11044lowered by the ``-instrprof`` pass to generate execution counts of a
11045program at runtime.
11046
11047Arguments:
11048""""""""""
11049
11050The first argument is a pointer to a global variable containing the
11051name of the entity being instrumented. This should generally be the
11052(mangled) function name for a set of counters.
11053
11054The second argument is a hash value that can be used by the consumer
11055of the profile data to detect changes to the instrumented source, and
11056the third is the number of counters associated with ``name``. It is an
11057error if ``hash`` or ``num-counters`` differ between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000011058``instrprof.increment`` that refer to the same name.
Justin Bogner61ba2e32014-12-08 18:02:35 +000011059
11060The last argument refers to which of the counters for ``name`` should
11061be incremented. It should be a value between 0 and ``num-counters``.
11062
11063Semantics:
11064""""""""""
11065
11066This intrinsic represents an increment of a profiling counter. It will
11067cause the ``-instrprof`` pass to generate the appropriate data
11068structures and the code to increment the appropriate value, in a
11069format that can be written out by a compiler runtime and consumed via
11070the ``llvm-profdata`` tool.
11071
Vedant Kumar51ce6682018-01-26 23:54:25 +000011072'``llvm.instrprof.increment.step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000011073^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000011074
11075Syntax:
11076"""""""
11077
11078::
11079
Vedant Kumar51ce6682018-01-26 23:54:25 +000011080 declare void @llvm.instrprof.increment.step(i8* <name>, i64 <hash>,
Xinliang David Li4ca17332016-09-18 18:34:07 +000011081 i32 <num-counters>,
11082 i32 <index>, i64 <step>)
11083
11084Overview:
11085"""""""""
11086
Vedant Kumar51ce6682018-01-26 23:54:25 +000011087The '``llvm.instrprof.increment.step``' intrinsic is an extension to
11088the '``llvm.instrprof.increment``' intrinsic with an additional fifth
Xinliang David Li4ca17332016-09-18 18:34:07 +000011089argument to specify the step of the increment.
11090
11091Arguments:
11092""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000011093The first four arguments are the same as '``llvm.instrprof.increment``'
Pete Couperused9569d2017-08-23 20:58:22 +000011094intrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000011095
11096The last argument specifies the value of the increment of the counter variable.
11097
11098Semantics:
11099""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000011100See description of '``llvm.instrprof.increment``' instrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000011101
11102
Vedant Kumar51ce6682018-01-26 23:54:25 +000011103'``llvm.instrprof.value.profile``' Intrinsic
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011104^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11105
11106Syntax:
11107"""""""
11108
11109::
11110
Vedant Kumar51ce6682018-01-26 23:54:25 +000011111 declare void @llvm.instrprof.value.profile(i8* <name>, i64 <hash>,
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011112 i64 <value>, i32 <value_kind>,
11113 i32 <index>)
11114
11115Overview:
11116"""""""""
11117
Vedant Kumar51ce6682018-01-26 23:54:25 +000011118The '``llvm.instrprof.value.profile``' intrinsic can be emitted by a
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011119frontend for use with instrumentation based profiling. This will be
11120lowered by the ``-instrprof`` pass to find out the target values,
11121instrumented expressions take in a program at runtime.
11122
11123Arguments:
11124""""""""""
11125
11126The first argument is a pointer to a global variable containing the
11127name of the entity being instrumented. ``name`` should generally be the
11128(mangled) function name for a set of counters.
11129
11130The second argument is a hash value that can be used by the consumer
11131of the profile data to detect changes to the instrumented source. It
11132is an error if ``hash`` differs between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000011133``llvm.instrprof.*`` that refer to the same name.
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011134
11135The third argument is the value of the expression being profiled. The profiled
11136expression's value should be representable as an unsigned 64-bit value. The
11137fourth argument represents the kind of value profiling that is being done. The
11138supported value profiling kinds are enumerated through the
11139``InstrProfValueKind`` type declared in the
11140``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
11141index of the instrumented expression within ``name``. It should be >= 0.
11142
11143Semantics:
11144""""""""""
11145
11146This intrinsic represents the point where a call to a runtime routine
11147should be inserted for value profiling of target expressions. ``-instrprof``
11148pass will generate the appropriate data structures and replace the
Vedant Kumar51ce6682018-01-26 23:54:25 +000011149``llvm.instrprof.value.profile`` intrinsic with the call to the profile
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011150runtime library with proper arguments.
11151
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000011152'``llvm.thread.pointer``' Intrinsic
11153^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11154
11155Syntax:
11156"""""""
11157
11158::
11159
11160 declare i8* @llvm.thread.pointer()
11161
11162Overview:
11163"""""""""
11164
11165The '``llvm.thread.pointer``' intrinsic returns the value of the thread
11166pointer.
11167
11168Semantics:
11169""""""""""
11170
11171The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
11172for the current thread. The exact semantics of this value are target
11173specific: it may point to the start of TLS area, to the end, or somewhere
11174in the middle. Depending on the target, this intrinsic may read a register,
11175call a helper function, read from an alternate memory space, or perform
11176other operations necessary to locate the TLS area. Not all targets support
11177this intrinsic.
11178
Sean Silvab084af42012-12-07 10:36:55 +000011179Standard C Library Intrinsics
11180-----------------------------
11181
11182LLVM provides intrinsics for a few important standard C library
11183functions. These intrinsics allow source-language front-ends to pass
11184information about the alignment of the pointer arguments to the code
11185generator, providing opportunity for more efficient code generation.
11186
11187.. _int_memcpy:
11188
11189'``llvm.memcpy``' Intrinsic
11190^^^^^^^^^^^^^^^^^^^^^^^^^^^
11191
11192Syntax:
11193"""""""
11194
11195This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
11196integer bit width and for different address spaces. Not all targets
11197support all bit widths however.
11198
11199::
11200
11201 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011202 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011203 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011204 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011205
11206Overview:
11207"""""""""
11208
11209The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
11210source location to the destination location.
11211
11212Note that, unlike the standard libc function, the ``llvm.memcpy.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000011213intrinsics do not return a value, takes extra isvolatile
Sean Silvab084af42012-12-07 10:36:55 +000011214arguments and the pointers can be in specified address spaces.
11215
11216Arguments:
11217""""""""""
11218
11219The first argument is a pointer to the destination, the second is a
11220pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000011221specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000011222boolean indicating a volatile access.
11223
Daniel Neilson39eb6a52018-01-19 17:24:21 +000011224The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000011225for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000011226
11227If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
11228a :ref:`volatile operation <volatile>`. The detailed access behavior is not
11229very cleanly specified and it is unwise to depend on it.
11230
11231Semantics:
11232""""""""""
11233
11234The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
11235source location to the destination location, which are not allowed to
11236overlap. It copies "len" bytes of memory over. If the argument is known
11237to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000011238argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000011239
Daniel Neilson57226ef2017-07-12 15:25:26 +000011240.. _int_memmove:
11241
Sean Silvab084af42012-12-07 10:36:55 +000011242'``llvm.memmove``' Intrinsic
11243^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11244
11245Syntax:
11246"""""""
11247
11248This is an overloaded intrinsic. You can use llvm.memmove on any integer
11249bit width and for different address space. Not all targets support all
11250bit widths however.
11251
11252::
11253
11254 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011255 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011256 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011257 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011258
11259Overview:
11260"""""""""
11261
11262The '``llvm.memmove.*``' intrinsics move a block of memory from the
11263source location to the destination location. It is similar to the
11264'``llvm.memcpy``' intrinsic but allows the two memory locations to
11265overlap.
11266
11267Note that, unlike the standard libc function, the ``llvm.memmove.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000011268intrinsics do not return a value, takes an extra isvolatile
11269argument and the pointers can be in specified address spaces.
Sean Silvab084af42012-12-07 10:36:55 +000011270
11271Arguments:
11272""""""""""
11273
11274The first argument is a pointer to the destination, the second is a
11275pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000011276specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000011277boolean indicating a volatile access.
11278
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000011279The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000011280for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000011281
11282If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
11283is a :ref:`volatile operation <volatile>`. The detailed access behavior is
11284not very cleanly specified and it is unwise to depend on it.
11285
11286Semantics:
11287""""""""""
11288
11289The '``llvm.memmove.*``' intrinsics copy a block of memory from the
11290source location to the destination location, which may overlap. It
11291copies "len" bytes of memory over. If the argument is known to be
11292aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000011293otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000011294
Daniel Neilson965613e2017-07-12 21:57:23 +000011295.. _int_memset:
11296
Sean Silvab084af42012-12-07 10:36:55 +000011297'``llvm.memset.*``' Intrinsics
11298^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11299
11300Syntax:
11301"""""""
11302
11303This is an overloaded intrinsic. You can use llvm.memset on any integer
11304bit width and for different address spaces. However, not all targets
11305support all bit widths.
11306
11307::
11308
11309 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011310 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011311 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011312 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011313
11314Overview:
11315"""""""""
11316
11317The '``llvm.memset.*``' intrinsics fill a block of memory with a
11318particular byte value.
11319
11320Note that, unlike the standard libc function, the ``llvm.memset``
Daniel Neilson1e687242018-01-19 17:13:12 +000011321intrinsic does not return a value and takes an extra volatile
11322argument. Also, the destination can be in an arbitrary address space.
Sean Silvab084af42012-12-07 10:36:55 +000011323
11324Arguments:
11325""""""""""
11326
11327The first argument is a pointer to the destination to fill, the second
11328is the byte value with which to fill it, the third argument is an
11329integer argument specifying the number of bytes to fill, and the fourth
Daniel Neilson1e687242018-01-19 17:13:12 +000011330is a boolean indicating a volatile access.
Sean Silvab084af42012-12-07 10:36:55 +000011331
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000011332The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000011333for the first arguments.
Sean Silvab084af42012-12-07 10:36:55 +000011334
11335If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
11336a :ref:`volatile operation <volatile>`. The detailed access behavior is not
11337very cleanly specified and it is unwise to depend on it.
11338
11339Semantics:
11340""""""""""
11341
11342The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011343at the destination location.
Sean Silvab084af42012-12-07 10:36:55 +000011344
11345'``llvm.sqrt.*``' Intrinsic
11346^^^^^^^^^^^^^^^^^^^^^^^^^^^
11347
11348Syntax:
11349"""""""
11350
11351This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011352floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011353all types however.
11354
11355::
11356
11357 declare float @llvm.sqrt.f32(float %Val)
11358 declare double @llvm.sqrt.f64(double %Val)
11359 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
11360 declare fp128 @llvm.sqrt.f128(fp128 %Val)
11361 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
11362
11363Overview:
11364"""""""""
11365
Sanjay Patel629c4112017-11-06 16:27:15 +000011366The '``llvm.sqrt``' intrinsics return the square root of the specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011367
11368Arguments:
11369""""""""""
11370
Sanjay Patel629c4112017-11-06 16:27:15 +000011371The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011372
11373Semantics:
11374""""""""""
11375
Sanjay Patel629c4112017-11-06 16:27:15 +000011376Return the same value as a corresponding libm '``sqrt``' function but without
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011377trapping or setting ``errno``. For types specified by IEEE-754, the result
Sanjay Patel629c4112017-11-06 16:27:15 +000011378matches a conforming libm implementation.
11379
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011380When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011381using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011382
11383'``llvm.powi.*``' Intrinsic
11384^^^^^^^^^^^^^^^^^^^^^^^^^^^
11385
11386Syntax:
11387"""""""
11388
11389This is an overloaded intrinsic. You can use ``llvm.powi`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011390floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011391all types however.
11392
11393::
11394
11395 declare float @llvm.powi.f32(float %Val, i32 %power)
11396 declare double @llvm.powi.f64(double %Val, i32 %power)
11397 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
11398 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
11399 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
11400
11401Overview:
11402"""""""""
11403
11404The '``llvm.powi.*``' intrinsics return the first operand raised to the
11405specified (positive or negative) power. The order of evaluation of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011406multiplications is not defined. When a vector of floating-point type is
Sean Silvab084af42012-12-07 10:36:55 +000011407used, the second argument remains a scalar integer value.
11408
11409Arguments:
11410""""""""""
11411
11412The second argument is an integer power, and the first is a value to
11413raise to that power.
11414
11415Semantics:
11416""""""""""
11417
11418This function returns the first value raised to the second power with an
11419unspecified sequence of rounding operations.
11420
11421'``llvm.sin.*``' Intrinsic
11422^^^^^^^^^^^^^^^^^^^^^^^^^^
11423
11424Syntax:
11425"""""""
11426
11427This is an overloaded intrinsic. You can use ``llvm.sin`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011428floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011429all types however.
11430
11431::
11432
11433 declare float @llvm.sin.f32(float %Val)
11434 declare double @llvm.sin.f64(double %Val)
11435 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
11436 declare fp128 @llvm.sin.f128(fp128 %Val)
11437 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
11438
11439Overview:
11440"""""""""
11441
11442The '``llvm.sin.*``' intrinsics return the sine of the operand.
11443
11444Arguments:
11445""""""""""
11446
Sanjay Patel629c4112017-11-06 16:27:15 +000011447The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011448
11449Semantics:
11450""""""""""
11451
Sanjay Patel629c4112017-11-06 16:27:15 +000011452Return the same value as a corresponding libm '``sin``' function but without
11453trapping or setting ``errno``.
11454
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011455When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011456using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011457
11458'``llvm.cos.*``' Intrinsic
11459^^^^^^^^^^^^^^^^^^^^^^^^^^
11460
11461Syntax:
11462"""""""
11463
11464This is an overloaded intrinsic. You can use ``llvm.cos`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011465floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011466all types however.
11467
11468::
11469
11470 declare float @llvm.cos.f32(float %Val)
11471 declare double @llvm.cos.f64(double %Val)
11472 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
11473 declare fp128 @llvm.cos.f128(fp128 %Val)
11474 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
11475
11476Overview:
11477"""""""""
11478
11479The '``llvm.cos.*``' intrinsics return the cosine of the operand.
11480
11481Arguments:
11482""""""""""
11483
Sanjay Patel629c4112017-11-06 16:27:15 +000011484The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011485
11486Semantics:
11487""""""""""
11488
Sanjay Patel629c4112017-11-06 16:27:15 +000011489Return the same value as a corresponding libm '``cos``' function but without
11490trapping or setting ``errno``.
11491
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011492When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011493using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011494
11495'``llvm.pow.*``' Intrinsic
11496^^^^^^^^^^^^^^^^^^^^^^^^^^
11497
11498Syntax:
11499"""""""
11500
11501This is an overloaded intrinsic. You can use ``llvm.pow`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011502floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011503all types however.
11504
11505::
11506
11507 declare float @llvm.pow.f32(float %Val, float %Power)
11508 declare double @llvm.pow.f64(double %Val, double %Power)
11509 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
11510 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
11511 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
11512
11513Overview:
11514"""""""""
11515
11516The '``llvm.pow.*``' intrinsics return the first operand raised to the
11517specified (positive or negative) power.
11518
11519Arguments:
11520""""""""""
11521
Sanjay Patel629c4112017-11-06 16:27:15 +000011522The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011523
11524Semantics:
11525""""""""""
11526
Sanjay Patel629c4112017-11-06 16:27:15 +000011527Return the same value as a corresponding libm '``pow``' function but without
11528trapping or setting ``errno``.
11529
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011530When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011531using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011532
11533'``llvm.exp.*``' Intrinsic
11534^^^^^^^^^^^^^^^^^^^^^^^^^^
11535
11536Syntax:
11537"""""""
11538
11539This is an overloaded intrinsic. You can use ``llvm.exp`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011540floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011541all types however.
11542
11543::
11544
11545 declare float @llvm.exp.f32(float %Val)
11546 declare double @llvm.exp.f64(double %Val)
11547 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
11548 declare fp128 @llvm.exp.f128(fp128 %Val)
11549 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
11550
11551Overview:
11552"""""""""
11553
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011554The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
11555value.
Sean Silvab084af42012-12-07 10:36:55 +000011556
11557Arguments:
11558""""""""""
11559
Sanjay Patel629c4112017-11-06 16:27:15 +000011560The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011561
11562Semantics:
11563""""""""""
11564
Sanjay Patel629c4112017-11-06 16:27:15 +000011565Return the same value as a corresponding libm '``exp``' function but without
11566trapping or setting ``errno``.
11567
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011568When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011569using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011570
11571'``llvm.exp2.*``' Intrinsic
11572^^^^^^^^^^^^^^^^^^^^^^^^^^^
11573
11574Syntax:
11575"""""""
11576
11577This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011578floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011579all types however.
11580
11581::
11582
11583 declare float @llvm.exp2.f32(float %Val)
11584 declare double @llvm.exp2.f64(double %Val)
11585 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
11586 declare fp128 @llvm.exp2.f128(fp128 %Val)
11587 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
11588
11589Overview:
11590"""""""""
11591
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011592The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
11593specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011594
11595Arguments:
11596""""""""""
11597
Sanjay Patel629c4112017-11-06 16:27:15 +000011598The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011599
11600Semantics:
11601""""""""""
11602
Sanjay Patel629c4112017-11-06 16:27:15 +000011603Return the same value as a corresponding libm '``exp2``' function but without
11604trapping or setting ``errno``.
11605
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011606When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011607using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011608
11609'``llvm.log.*``' Intrinsic
11610^^^^^^^^^^^^^^^^^^^^^^^^^^
11611
11612Syntax:
11613"""""""
11614
11615This is an overloaded intrinsic. You can use ``llvm.log`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011616floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011617all types however.
11618
11619::
11620
11621 declare float @llvm.log.f32(float %Val)
11622 declare double @llvm.log.f64(double %Val)
11623 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
11624 declare fp128 @llvm.log.f128(fp128 %Val)
11625 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
11626
11627Overview:
11628"""""""""
11629
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011630The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
11631value.
Sean Silvab084af42012-12-07 10:36:55 +000011632
11633Arguments:
11634""""""""""
11635
Sanjay Patel629c4112017-11-06 16:27:15 +000011636The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011637
11638Semantics:
11639""""""""""
11640
Sanjay Patel629c4112017-11-06 16:27:15 +000011641Return the same value as a corresponding libm '``log``' function but without
11642trapping or setting ``errno``.
11643
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011644When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011645using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011646
11647'``llvm.log10.*``' Intrinsic
11648^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11649
11650Syntax:
11651"""""""
11652
11653This is an overloaded intrinsic. You can use ``llvm.log10`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011654floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011655all types however.
11656
11657::
11658
11659 declare float @llvm.log10.f32(float %Val)
11660 declare double @llvm.log10.f64(double %Val)
11661 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
11662 declare fp128 @llvm.log10.f128(fp128 %Val)
11663 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
11664
11665Overview:
11666"""""""""
11667
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011668The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
11669specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011670
11671Arguments:
11672""""""""""
11673
Sanjay Patel629c4112017-11-06 16:27:15 +000011674The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011675
11676Semantics:
11677""""""""""
11678
Sanjay Patel629c4112017-11-06 16:27:15 +000011679Return the same value as a corresponding libm '``log10``' function but without
11680trapping or setting ``errno``.
11681
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011682When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011683using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011684
11685'``llvm.log2.*``' Intrinsic
11686^^^^^^^^^^^^^^^^^^^^^^^^^^^
11687
11688Syntax:
11689"""""""
11690
11691This is an overloaded intrinsic. You can use ``llvm.log2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011692floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011693all types however.
11694
11695::
11696
11697 declare float @llvm.log2.f32(float %Val)
11698 declare double @llvm.log2.f64(double %Val)
11699 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
11700 declare fp128 @llvm.log2.f128(fp128 %Val)
11701 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
11702
11703Overview:
11704"""""""""
11705
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011706The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
11707value.
Sean Silvab084af42012-12-07 10:36:55 +000011708
11709Arguments:
11710""""""""""
11711
Sanjay Patel629c4112017-11-06 16:27:15 +000011712The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011713
11714Semantics:
11715""""""""""
11716
Sanjay Patel629c4112017-11-06 16:27:15 +000011717Return the same value as a corresponding libm '``log2``' function but without
11718trapping or setting ``errno``.
11719
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011720When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011721using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011722
11723'``llvm.fma.*``' Intrinsic
11724^^^^^^^^^^^^^^^^^^^^^^^^^^
11725
11726Syntax:
11727"""""""
11728
11729This is an overloaded intrinsic. You can use ``llvm.fma`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011730floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011731all types however.
11732
11733::
11734
11735 declare float @llvm.fma.f32(float %a, float %b, float %c)
11736 declare double @llvm.fma.f64(double %a, double %b, double %c)
11737 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
11738 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
11739 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
11740
11741Overview:
11742"""""""""
11743
Sanjay Patel629c4112017-11-06 16:27:15 +000011744The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
Sean Silvab084af42012-12-07 10:36:55 +000011745
11746Arguments:
11747""""""""""
11748
Sanjay Patel629c4112017-11-06 16:27:15 +000011749The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011750
11751Semantics:
11752""""""""""
11753
Sanjay Patel629c4112017-11-06 16:27:15 +000011754Return the same value as a corresponding libm '``fma``' function but without
11755trapping or setting ``errno``.
11756
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011757When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011758using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011759
11760'``llvm.fabs.*``' Intrinsic
11761^^^^^^^^^^^^^^^^^^^^^^^^^^^
11762
11763Syntax:
11764"""""""
11765
11766This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011767floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011768all types however.
11769
11770::
11771
11772 declare float @llvm.fabs.f32(float %Val)
11773 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011774 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011775 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011776 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011777
11778Overview:
11779"""""""""
11780
11781The '``llvm.fabs.*``' intrinsics return the absolute value of the
11782operand.
11783
11784Arguments:
11785""""""""""
11786
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011787The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011788type.
11789
11790Semantics:
11791""""""""""
11792
11793This function returns the same values as the libm ``fabs`` functions
11794would, and handles error conditions in the same way.
11795
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011796'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011798
11799Syntax:
11800"""""""
11801
11802This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011803floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011804all types however.
11805
11806::
11807
Matt Arsenault64313c92014-10-22 18:25:02 +000011808 declare float @llvm.minnum.f32(float %Val0, float %Val1)
11809 declare double @llvm.minnum.f64(double %Val0, double %Val1)
11810 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11811 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
11812 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011813
11814Overview:
11815"""""""""
11816
11817The '``llvm.minnum.*``' intrinsics return the minimum of the two
11818arguments.
11819
11820
11821Arguments:
11822""""""""""
11823
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011824The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011825type.
11826
11827Semantics:
11828""""""""""
11829
Matt Arsenault937003c2018-08-27 17:40:07 +000011830Follows the IEEE-754 semantics for minNum, except for handling of
11831signaling NaNs. This match's the behavior of libm's fmin.
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011832
11833If either operand is a NaN, returns the other non-NaN operand. Returns
Matt Arsenault937003c2018-08-27 17:40:07 +000011834NaN only if both operands are NaN. The returned NaN is always
11835quiet. If the operands compare equal, returns a value that compares
11836equal to both operands. This means that fmin(+/-0.0, +/-0.0) could
11837return either -0.0 or 0.0.
11838
11839Unlike the IEEE-754 2008 behavior, this does not distinguish between
11840signaling and quiet NaN inputs. If a target's implementation follows
11841the standard and returns a quiet NaN if either input is a signaling
11842NaN, the intrinsic lowering is responsible for quieting the inputs to
11843correctly return the non-NaN input (e.g. by using the equivalent of
11844``llvm.canonicalize``).
11845
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011846
11847'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011848^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011849
11850Syntax:
11851"""""""
11852
11853This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011854floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011855all types however.
11856
11857::
11858
Matt Arsenault64313c92014-10-22 18:25:02 +000011859 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
11860 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
11861 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11862 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
11863 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011864
11865Overview:
11866"""""""""
11867
11868The '``llvm.maxnum.*``' intrinsics return the maximum of the two
11869arguments.
11870
11871
11872Arguments:
11873""""""""""
11874
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011875The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011876type.
11877
11878Semantics:
11879""""""""""
Matt Arsenault937003c2018-08-27 17:40:07 +000011880Follows the IEEE-754 semantics for maxNum except for the handling of
11881signaling NaNs. This matches the behavior of libm's fmax.
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011882
11883If either operand is a NaN, returns the other non-NaN operand. Returns
Matt Arsenault937003c2018-08-27 17:40:07 +000011884NaN only if both operands are NaN. The returned NaN is always
11885quiet. If the operands compare equal, returns a value that compares
11886equal to both operands. This means that fmax(+/-0.0, +/-0.0) could
11887return either -0.0 or 0.0.
11888
11889Unlike the IEEE-754 2008 behavior, this does not distinguish between
11890signaling and quiet NaN inputs. If a target's implementation follows
11891the standard and returns a quiet NaN if either input is a signaling
11892NaN, the intrinsic lowering is responsible for quieting the inputs to
11893correctly return the non-NaN input (e.g. by using the equivalent of
11894``llvm.canonicalize``).
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011895
Thomas Lively16c349d2018-10-13 07:21:44 +000011896'``llvm.minimum.*``' Intrinsic
11897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11898
11899Syntax:
11900"""""""
11901
11902This is an overloaded intrinsic. You can use ``llvm.minimum`` on any
11903floating-point or vector of floating-point type. Not all targets support
11904all types however.
11905
11906::
11907
11908 declare float @llvm.minimum.f32(float %Val0, float %Val1)
11909 declare double @llvm.minimum.f64(double %Val0, double %Val1)
11910 declare x86_fp80 @llvm.minimum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11911 declare fp128 @llvm.minimum.f128(fp128 %Val0, fp128 %Val1)
11912 declare ppc_fp128 @llvm.minimum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
11913
11914Overview:
11915"""""""""
11916
11917The '``llvm.minimum.*``' intrinsics return the minimum of the two
11918arguments, propagating NaNs and treating -0.0 as less than +0.0.
11919
11920
11921Arguments:
11922""""""""""
11923
11924The arguments and return value are floating-point numbers of the same
11925type.
11926
11927Semantics:
11928""""""""""
11929If either operand is a NaN, returns NaN. Otherwise returns the lesser
11930of the two arguments. -0.0 is considered to be less than +0.0 for this
11931intrinsic. Note that these are the semantics specified in the draft of
11932IEEE 754-2018.
11933
11934'``llvm.maximum.*``' Intrinsic
11935^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11936
11937Syntax:
11938"""""""
11939
11940This is an overloaded intrinsic. You can use ``llvm.maximum`` on any
11941floating-point or vector of floating-point type. Not all targets support
11942all types however.
11943
11944::
11945
11946 declare float @llvm.maximum.f32(float %Val0, float %Val1)
11947 declare double @llvm.maximum.f64(double %Val0, double %Val1)
11948 declare x86_fp80 @llvm.maximum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11949 declare fp128 @llvm.maximum.f128(fp128 %Val0, fp128 %Val1)
11950 declare ppc_fp128 @llvm.maximum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
11951
11952Overview:
11953"""""""""
11954
11955The '``llvm.maximum.*``' intrinsics return the maximum of the two
11956arguments, propagating NaNs and treating -0.0 as less than +0.0.
11957
11958
11959Arguments:
11960""""""""""
11961
11962The arguments and return value are floating-point numbers of the same
11963type.
11964
11965Semantics:
11966""""""""""
11967If either operand is a NaN, returns NaN. Otherwise returns the greater
11968of the two arguments. -0.0 is considered to be less than +0.0 for this
11969intrinsic. Note that these are the semantics specified in the draft of
11970IEEE 754-2018.
11971
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011972'``llvm.copysign.*``' Intrinsic
11973^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11974
11975Syntax:
11976"""""""
11977
11978This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011979floating-point or vector of floating-point type. Not all targets support
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011980all types however.
11981
11982::
11983
11984 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
11985 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
11986 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
11987 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
11988 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
11989
11990Overview:
11991"""""""""
11992
11993The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
11994first operand and the sign of the second operand.
11995
11996Arguments:
11997""""""""""
11998
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011999The arguments and return value are floating-point numbers of the same
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000012000type.
12001
12002Semantics:
12003""""""""""
12004
12005This function returns the same values as the libm ``copysign``
12006functions would, and handles error conditions in the same way.
12007
Sean Silvab084af42012-12-07 10:36:55 +000012008'``llvm.floor.*``' Intrinsic
12009^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12010
12011Syntax:
12012"""""""
12013
12014This is an overloaded intrinsic. You can use ``llvm.floor`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012015floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012016all types however.
12017
12018::
12019
12020 declare float @llvm.floor.f32(float %Val)
12021 declare double @llvm.floor.f64(double %Val)
12022 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
12023 declare fp128 @llvm.floor.f128(fp128 %Val)
12024 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
12025
12026Overview:
12027"""""""""
12028
12029The '``llvm.floor.*``' intrinsics return the floor of the operand.
12030
12031Arguments:
12032""""""""""
12033
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012034The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012035type.
12036
12037Semantics:
12038""""""""""
12039
12040This function returns the same values as the libm ``floor`` functions
12041would, and handles error conditions in the same way.
12042
12043'``llvm.ceil.*``' Intrinsic
12044^^^^^^^^^^^^^^^^^^^^^^^^^^^
12045
12046Syntax:
12047"""""""
12048
12049This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012050floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012051all types however.
12052
12053::
12054
12055 declare float @llvm.ceil.f32(float %Val)
12056 declare double @llvm.ceil.f64(double %Val)
12057 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
12058 declare fp128 @llvm.ceil.f128(fp128 %Val)
12059 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
12060
12061Overview:
12062"""""""""
12063
12064The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
12065
12066Arguments:
12067""""""""""
12068
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012069The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012070type.
12071
12072Semantics:
12073""""""""""
12074
12075This function returns the same values as the libm ``ceil`` functions
12076would, and handles error conditions in the same way.
12077
12078'``llvm.trunc.*``' Intrinsic
12079^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12080
12081Syntax:
12082"""""""
12083
12084This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012085floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012086all types however.
12087
12088::
12089
12090 declare float @llvm.trunc.f32(float %Val)
12091 declare double @llvm.trunc.f64(double %Val)
12092 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
12093 declare fp128 @llvm.trunc.f128(fp128 %Val)
12094 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
12095
12096Overview:
12097"""""""""
12098
12099The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
12100nearest integer not larger in magnitude than the operand.
12101
12102Arguments:
12103""""""""""
12104
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012105The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012106type.
12107
12108Semantics:
12109""""""""""
12110
12111This function returns the same values as the libm ``trunc`` functions
12112would, and handles error conditions in the same way.
12113
12114'``llvm.rint.*``' Intrinsic
12115^^^^^^^^^^^^^^^^^^^^^^^^^^^
12116
12117Syntax:
12118"""""""
12119
12120This is an overloaded intrinsic. You can use ``llvm.rint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012121floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012122all types however.
12123
12124::
12125
12126 declare float @llvm.rint.f32(float %Val)
12127 declare double @llvm.rint.f64(double %Val)
12128 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
12129 declare fp128 @llvm.rint.f128(fp128 %Val)
12130 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
12131
12132Overview:
12133"""""""""
12134
12135The '``llvm.rint.*``' intrinsics returns the operand rounded to the
12136nearest integer. It may raise an inexact floating-point exception if the
12137operand isn't an integer.
12138
12139Arguments:
12140""""""""""
12141
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012142The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012143type.
12144
12145Semantics:
12146""""""""""
12147
12148This function returns the same values as the libm ``rint`` functions
12149would, and handles error conditions in the same way.
12150
12151'``llvm.nearbyint.*``' Intrinsic
12152^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12153
12154Syntax:
12155"""""""
12156
12157This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012158floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012159all types however.
12160
12161::
12162
12163 declare float @llvm.nearbyint.f32(float %Val)
12164 declare double @llvm.nearbyint.f64(double %Val)
12165 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
12166 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
12167 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
12168
12169Overview:
12170"""""""""
12171
12172The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
12173nearest integer.
12174
12175Arguments:
12176""""""""""
12177
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012178The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012179type.
12180
12181Semantics:
12182""""""""""
12183
12184This function returns the same values as the libm ``nearbyint``
12185functions would, and handles error conditions in the same way.
12186
Hal Finkel171817e2013-08-07 22:49:12 +000012187'``llvm.round.*``' Intrinsic
12188^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12189
12190Syntax:
12191"""""""
12192
12193This is an overloaded intrinsic. You can use ``llvm.round`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012194floating-point or vector of floating-point type. Not all targets support
Hal Finkel171817e2013-08-07 22:49:12 +000012195all types however.
12196
12197::
12198
12199 declare float @llvm.round.f32(float %Val)
12200 declare double @llvm.round.f64(double %Val)
12201 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
12202 declare fp128 @llvm.round.f128(fp128 %Val)
12203 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
12204
12205Overview:
12206"""""""""
12207
12208The '``llvm.round.*``' intrinsics returns the operand rounded to the
12209nearest integer.
12210
12211Arguments:
12212""""""""""
12213
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012214The argument and return value are floating-point numbers of the same
Hal Finkel171817e2013-08-07 22:49:12 +000012215type.
12216
12217Semantics:
12218""""""""""
12219
12220This function returns the same values as the libm ``round``
12221functions would, and handles error conditions in the same way.
12222
Sean Silvab084af42012-12-07 10:36:55 +000012223Bit Manipulation Intrinsics
12224---------------------------
12225
12226LLVM provides intrinsics for a few important bit manipulation
12227operations. These allow efficient code generation for some algorithms.
12228
James Molloy90111f72015-11-12 12:29:09 +000012229'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000012230^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000012231
12232Syntax:
12233"""""""
12234
12235This is an overloaded intrinsic function. You can use bitreverse on any
12236integer type.
12237
12238::
12239
12240 declare i16 @llvm.bitreverse.i16(i16 <id>)
12241 declare i32 @llvm.bitreverse.i32(i32 <id>)
12242 declare i64 @llvm.bitreverse.i64(i64 <id>)
Simon Pilgrimf4268172019-01-28 16:56:38 +000012243 declare <4 x i32> @llvm.bitreverse.v4i32(<4 x i32> <id>)
James Molloy90111f72015-11-12 12:29:09 +000012244
12245Overview:
12246"""""""""
12247
12248The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Simon Pilgrimf4268172019-01-28 16:56:38 +000012249bitpattern of an integer value or vector of integer values; for example
12250``0b10110110`` becomes ``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000012251
12252Semantics:
12253""""""""""
12254
Yichao Yu5abf14b2016-11-23 16:25:31 +000012255The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
Simon Pilgrimf4268172019-01-28 16:56:38 +000012256``M`` in the input moved to bit ``N-M`` in the output. The vector
12257intrinsics, such as ``llvm.bitreverse.v4i32``, operate on a per-element
12258basis and the element order is not affected.
James Molloy90111f72015-11-12 12:29:09 +000012259
Sean Silvab084af42012-12-07 10:36:55 +000012260'``llvm.bswap.*``' Intrinsics
12261^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12262
12263Syntax:
12264"""""""
12265
12266This is an overloaded intrinsic function. You can use bswap on any
12267integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
12268
12269::
12270
12271 declare i16 @llvm.bswap.i16(i16 <id>)
12272 declare i32 @llvm.bswap.i32(i32 <id>)
12273 declare i64 @llvm.bswap.i64(i64 <id>)
Simon Pilgrimf4268172019-01-28 16:56:38 +000012274 declare <4 x i32> @llvm.bswap.v4i32(<4 x i32> <id>)
Sean Silvab084af42012-12-07 10:36:55 +000012275
12276Overview:
12277"""""""""
12278
Simon Pilgrimf4268172019-01-28 16:56:38 +000012279The '``llvm.bswap``' family of intrinsics is used to byte swap an integer
12280value or vector of integer values with an even number of bytes (positive
12281multiple of 16 bits).
Sean Silvab084af42012-12-07 10:36:55 +000012282
12283Semantics:
12284""""""""""
12285
12286The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
12287and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
12288intrinsic returns an i32 value that has the four bytes of the input i32
12289swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
12290returned i32 will have its bytes in 3, 2, 1, 0 order. The
12291``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
12292concept to additional even-byte lengths (6 bytes, 8 bytes and more,
Simon Pilgrimf4268172019-01-28 16:56:38 +000012293respectively). The vector intrinsics, such as ``llvm.bswap.v4i32``,
12294operate on a per-element basis and the element order is not affected.
Sean Silvab084af42012-12-07 10:36:55 +000012295
12296'``llvm.ctpop.*``' Intrinsic
12297^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12298
12299Syntax:
12300"""""""
12301
12302This is an overloaded intrinsic. You can use llvm.ctpop on any integer
12303bit width, or on any vector with integer elements. Not all targets
12304support all bit widths or vector types, however.
12305
12306::
12307
12308 declare i8 @llvm.ctpop.i8(i8 <src>)
12309 declare i16 @llvm.ctpop.i16(i16 <src>)
12310 declare i32 @llvm.ctpop.i32(i32 <src>)
12311 declare i64 @llvm.ctpop.i64(i64 <src>)
12312 declare i256 @llvm.ctpop.i256(i256 <src>)
12313 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
12314
12315Overview:
12316"""""""""
12317
12318The '``llvm.ctpop``' family of intrinsics counts the number of bits set
12319in a value.
12320
12321Arguments:
12322""""""""""
12323
12324The only argument is the value to be counted. The argument may be of any
12325integer type, or a vector with integer elements. The return type must
12326match the argument type.
12327
12328Semantics:
12329""""""""""
12330
12331The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
12332each element of a vector.
12333
12334'``llvm.ctlz.*``' Intrinsic
12335^^^^^^^^^^^^^^^^^^^^^^^^^^^
12336
12337Syntax:
12338"""""""
12339
12340This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
12341integer bit width, or any vector whose elements are integers. Not all
12342targets support all bit widths or vector types, however.
12343
12344::
12345
12346 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
12347 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
12348 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
12349 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
12350 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000012351 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000012352
12353Overview:
12354"""""""""
12355
12356The '``llvm.ctlz``' family of intrinsic functions counts the number of
12357leading zeros in a variable.
12358
12359Arguments:
12360""""""""""
12361
12362The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000012363any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000012364type must match the first argument type.
12365
12366The second argument must be a constant and is a flag to indicate whether
12367the intrinsic should ensure that a zero as the first argument produces a
12368defined result. Historically some architectures did not provide a
12369defined result for zero values as efficiently, and many algorithms are
12370now predicated on avoiding zero-value inputs.
12371
12372Semantics:
12373""""""""""
12374
12375The '``llvm.ctlz``' intrinsic counts the leading (most significant)
12376zeros in a variable, or within each element of the vector. If
12377``src == 0`` then the result is the size in bits of the type of ``src``
12378if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
12379``llvm.ctlz(i32 2) = 30``.
12380
12381'``llvm.cttz.*``' Intrinsic
12382^^^^^^^^^^^^^^^^^^^^^^^^^^^
12383
12384Syntax:
12385"""""""
12386
12387This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
12388integer bit width, or any vector of integer elements. Not all targets
12389support all bit widths or vector types, however.
12390
12391::
12392
12393 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
12394 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
12395 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
12396 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
12397 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000012398 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000012399
12400Overview:
12401"""""""""
12402
12403The '``llvm.cttz``' family of intrinsic functions counts the number of
12404trailing zeros.
12405
12406Arguments:
12407""""""""""
12408
12409The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000012410any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000012411type must match the first argument type.
12412
12413The second argument must be a constant and is a flag to indicate whether
12414the intrinsic should ensure that a zero as the first argument produces a
12415defined result. Historically some architectures did not provide a
12416defined result for zero values as efficiently, and many algorithms are
12417now predicated on avoiding zero-value inputs.
12418
12419Semantics:
12420""""""""""
12421
12422The '``llvm.cttz``' intrinsic counts the trailing (least significant)
12423zeros in a variable, or within each element of a vector. If ``src == 0``
12424then the result is the size in bits of the type of ``src`` if
12425``is_zero_undef == 0`` and ``undef`` otherwise. For example,
12426``llvm.cttz(2) = 1``.
12427
Philip Reames34843ae2015-03-05 05:55:55 +000012428.. _int_overflow:
12429
Sanjay Patelc71adc82018-07-16 22:59:31 +000012430'``llvm.fshl.*``' Intrinsic
12431^^^^^^^^^^^^^^^^^^^^^^^^^^^
12432
12433Syntax:
12434"""""""
12435
12436This is an overloaded intrinsic. You can use ``llvm.fshl`` on any
12437integer bit width or any vector of integer elements. Not all targets
12438support all bit widths or vector types, however.
12439
12440::
12441
12442 declare i8 @llvm.fshl.i8 (i8 %a, i8 %b, i8 %c)
12443 declare i67 @llvm.fshl.i67(i67 %a, i67 %b, i67 %c)
12444 declare <2 x i32> @llvm.fshl.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
12445
12446Overview:
12447"""""""""
12448
12449The '``llvm.fshl``' family of intrinsic functions performs a funnel shift left:
12450the first two values are concatenated as { %a : %b } (%a is the most significant
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000012451bits of the wide value), the combined value is shifted left, and the most
12452significant bits are extracted to produce a result that is the same size as the
12453original arguments. If the first 2 arguments are identical, this is equivalent
12454to a rotate left operation. For vector types, the operation occurs for each
12455element of the vector. The shift argument is treated as an unsigned amount
Sanjay Patelc71adc82018-07-16 22:59:31 +000012456modulo the element size of the arguments.
12457
12458Arguments:
12459""""""""""
12460
12461The first two arguments are the values to be concatenated. The third
12462argument is the shift amount. The arguments may be any integer type or a
12463vector with integer element type. All arguments and the return value must
12464have the same type.
12465
12466Example:
12467""""""""
12468
12469.. code-block:: text
12470
12471 %r = call i8 @llvm.fshl.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: msb_extract((concat(x, y) << (z % 8)), 8)
12472 %r = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 15) ; %r = i8: 128 (0b10000000)
12473 %r = call i8 @llvm.fshl.i8(i8 15, i8 15, i8 11) ; %r = i8: 120 (0b01111000)
12474 %r = call i8 @llvm.fshl.i8(i8 0, i8 255, i8 8) ; %r = i8: 0 (0b00000000)
12475
12476'``llvm.fshr.*``' Intrinsic
12477^^^^^^^^^^^^^^^^^^^^^^^^^^^
12478
12479Syntax:
12480"""""""
12481
12482This is an overloaded intrinsic. You can use ``llvm.fshr`` on any
12483integer bit width or any vector of integer elements. Not all targets
12484support all bit widths or vector types, however.
12485
12486::
12487
12488 declare i8 @llvm.fshr.i8 (i8 %a, i8 %b, i8 %c)
12489 declare i67 @llvm.fshr.i67(i67 %a, i67 %b, i67 %c)
12490 declare <2 x i32> @llvm.fshr.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
12491
12492Overview:
12493"""""""""
12494
12495The '``llvm.fshr``' family of intrinsic functions performs a funnel shift right:
12496the first two values are concatenated as { %a : %b } (%a is the most significant
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000012497bits of the wide value), the combined value is shifted right, and the least
12498significant bits are extracted to produce a result that is the same size as the
12499original arguments. If the first 2 arguments are identical, this is equivalent
12500to a rotate right operation. For vector types, the operation occurs for each
12501element of the vector. The shift argument is treated as an unsigned amount
Sanjay Patelc71adc82018-07-16 22:59:31 +000012502modulo the element size of the arguments.
12503
12504Arguments:
12505""""""""""
12506
12507The first two arguments are the values to be concatenated. The third
12508argument is the shift amount. The arguments may be any integer type or a
12509vector with integer element type. All arguments and the return value must
12510have the same type.
12511
12512Example:
12513""""""""
12514
12515.. code-block:: text
12516
12517 %r = call i8 @llvm.fshr.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: lsb_extract((concat(x, y) >> (z % 8)), 8)
12518 %r = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 15) ; %r = i8: 254 (0b11111110)
12519 %r = call i8 @llvm.fshr.i8(i8 15, i8 15, i8 11) ; %r = i8: 225 (0b11100001)
12520 %r = call i8 @llvm.fshr.i8(i8 0, i8 255, i8 8) ; %r = i8: 255 (0b11111111)
12521
Sean Silvab084af42012-12-07 10:36:55 +000012522Arithmetic with Overflow Intrinsics
12523-----------------------------------
12524
John Regehr6a493f22016-05-12 20:55:09 +000012525LLVM provides intrinsics for fast arithmetic overflow checking.
12526
12527Each of these intrinsics returns a two-element struct. The first
12528element of this struct contains the result of the corresponding
12529arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
12530the result. Therefore, for example, the first element of the struct
12531returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
12532result of a 32-bit ``add`` instruction with the same operands, where
12533the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
12534
12535The second element of the result is an ``i1`` that is 1 if the
12536arithmetic operation overflowed and 0 otherwise. An operation
12537overflows if, for any values of its operands ``A`` and ``B`` and for
12538any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
12539not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
12540``sext`` for signed overflow and ``zext`` for unsigned overflow, and
12541``op`` is the underlying arithmetic operation.
12542
12543The behavior of these intrinsics is well-defined for all argument
12544values.
Sean Silvab084af42012-12-07 10:36:55 +000012545
12546'``llvm.sadd.with.overflow.*``' Intrinsics
12547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12548
12549Syntax:
12550"""""""
12551
12552This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
12553on any integer bit width.
12554
12555::
12556
12557 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
12558 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12559 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
12560
12561Overview:
12562"""""""""
12563
12564The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
12565a signed addition of the two arguments, and indicate whether an overflow
12566occurred during the signed summation.
12567
12568Arguments:
12569""""""""""
12570
12571The arguments (%a and %b) and the first element of the result structure
12572may be of integer types of any bit width, but they must have the same
12573bit width. The second element of the result structure must be of type
12574``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12575addition.
12576
12577Semantics:
12578""""""""""
12579
12580The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012581a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012582first element of which is the signed summation, and the second element
12583of which is a bit specifying if the signed summation resulted in an
12584overflow.
12585
12586Examples:
12587"""""""""
12588
12589.. code-block:: llvm
12590
12591 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12592 %sum = extractvalue {i32, i1} %res, 0
12593 %obit = extractvalue {i32, i1} %res, 1
12594 br i1 %obit, label %overflow, label %normal
12595
12596'``llvm.uadd.with.overflow.*``' Intrinsics
12597^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12598
12599Syntax:
12600"""""""
12601
12602This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
12603on any integer bit width.
12604
12605::
12606
12607 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
12608 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12609 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
12610
12611Overview:
12612"""""""""
12613
12614The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
12615an unsigned addition of the two arguments, and indicate whether a carry
12616occurred during the unsigned summation.
12617
12618Arguments:
12619""""""""""
12620
12621The arguments (%a and %b) and the first element of the result structure
12622may be of integer types of any bit width, but they must have the same
12623bit width. The second element of the result structure must be of type
12624``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12625addition.
12626
12627Semantics:
12628""""""""""
12629
12630The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012631an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012632first element of which is the sum, and the second element of which is a
12633bit specifying if the unsigned summation resulted in a carry.
12634
12635Examples:
12636"""""""""
12637
12638.. code-block:: llvm
12639
12640 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12641 %sum = extractvalue {i32, i1} %res, 0
12642 %obit = extractvalue {i32, i1} %res, 1
12643 br i1 %obit, label %carry, label %normal
12644
12645'``llvm.ssub.with.overflow.*``' Intrinsics
12646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12647
12648Syntax:
12649"""""""
12650
12651This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
12652on any integer bit width.
12653
12654::
12655
12656 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
12657 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12658 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
12659
12660Overview:
12661"""""""""
12662
12663The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
12664a signed subtraction of the two arguments, and indicate whether an
12665overflow occurred during the signed subtraction.
12666
12667Arguments:
12668""""""""""
12669
12670The arguments (%a and %b) and the first element of the result structure
12671may be of integer types of any bit width, but they must have the same
12672bit width. The second element of the result structure must be of type
12673``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12674subtraction.
12675
12676Semantics:
12677""""""""""
12678
12679The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012680a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012681first element of which is the subtraction, and the second element of
12682which is a bit specifying if the signed subtraction resulted in an
12683overflow.
12684
12685Examples:
12686"""""""""
12687
12688.. code-block:: llvm
12689
12690 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12691 %sum = extractvalue {i32, i1} %res, 0
12692 %obit = extractvalue {i32, i1} %res, 1
12693 br i1 %obit, label %overflow, label %normal
12694
12695'``llvm.usub.with.overflow.*``' Intrinsics
12696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12697
12698Syntax:
12699"""""""
12700
12701This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
12702on any integer bit width.
12703
12704::
12705
12706 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
12707 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12708 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
12709
12710Overview:
12711"""""""""
12712
12713The '``llvm.usub.with.overflow``' family of intrinsic functions perform
12714an unsigned subtraction of the two arguments, and indicate whether an
12715overflow occurred during the unsigned subtraction.
12716
12717Arguments:
12718""""""""""
12719
12720The arguments (%a and %b) and the first element of the result structure
12721may be of integer types of any bit width, but they must have the same
12722bit width. The second element of the result structure must be of type
12723``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12724subtraction.
12725
12726Semantics:
12727""""""""""
12728
12729The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012730an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012731the first element of which is the subtraction, and the second element of
12732which is a bit specifying if the unsigned subtraction resulted in an
12733overflow.
12734
12735Examples:
12736"""""""""
12737
12738.. code-block:: llvm
12739
12740 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12741 %sum = extractvalue {i32, i1} %res, 0
12742 %obit = extractvalue {i32, i1} %res, 1
12743 br i1 %obit, label %overflow, label %normal
12744
12745'``llvm.smul.with.overflow.*``' Intrinsics
12746^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12747
12748Syntax:
12749"""""""
12750
12751This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
12752on any integer bit width.
12753
12754::
12755
12756 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
12757 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12758 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
12759
12760Overview:
12761"""""""""
12762
12763The '``llvm.smul.with.overflow``' family of intrinsic functions perform
12764a signed multiplication of the two arguments, and indicate whether an
12765overflow occurred during the signed multiplication.
12766
12767Arguments:
12768""""""""""
12769
12770The arguments (%a and %b) and the first element of the result structure
12771may be of integer types of any bit width, but they must have the same
12772bit width. The second element of the result structure must be of type
12773``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12774multiplication.
12775
12776Semantics:
12777""""""""""
12778
12779The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012780a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012781the first element of which is the multiplication, and the second element
12782of which is a bit specifying if the signed multiplication resulted in an
12783overflow.
12784
12785Examples:
12786"""""""""
12787
12788.. code-block:: llvm
12789
12790 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12791 %sum = extractvalue {i32, i1} %res, 0
12792 %obit = extractvalue {i32, i1} %res, 1
12793 br i1 %obit, label %overflow, label %normal
12794
12795'``llvm.umul.with.overflow.*``' Intrinsics
12796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12797
12798Syntax:
12799"""""""
12800
12801This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
12802on any integer bit width.
12803
12804::
12805
12806 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
12807 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12808 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
12809
12810Overview:
12811"""""""""
12812
12813The '``llvm.umul.with.overflow``' family of intrinsic functions perform
12814a unsigned multiplication of the two arguments, and indicate whether an
12815overflow occurred during the unsigned multiplication.
12816
12817Arguments:
12818""""""""""
12819
12820The arguments (%a and %b) and the first element of the result structure
12821may be of integer types of any bit width, but they must have the same
12822bit width. The second element of the result structure must be of type
12823``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12824multiplication.
12825
12826Semantics:
12827""""""""""
12828
12829The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012830an unsigned multiplication of the two arguments. They return a structure ---
12831the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000012832element of which is a bit specifying if the unsigned multiplication
12833resulted in an overflow.
12834
12835Examples:
12836"""""""""
12837
12838.. code-block:: llvm
12839
12840 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12841 %sum = extractvalue {i32, i1} %res, 0
12842 %obit = extractvalue {i32, i1} %res, 1
12843 br i1 %obit, label %overflow, label %normal
12844
Leonard Chan9ede9532018-11-20 18:01:24 +000012845Saturation Arithmetic Intrinsics
12846---------------------------------
12847
12848Saturation arithmetic is a version of arithmetic in which operations are
12849limited to a fixed range between a minimum and maximum value. If the result of
12850an operation is greater than the maximum value, the result is set (or
12851"clamped") to this maximum. If it is below the minimum, it is clamped to this
12852minimum.
12853
12854
12855'``llvm.sadd.sat.*``' Intrinsics
12856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12857
12858Syntax
12859"""""""
12860
12861This is an overloaded intrinsic. You can use ``llvm.sadd.sat``
12862on any integer bit width or vectors of integers.
12863
12864::
12865
12866 declare i16 @llvm.sadd.sat.i16(i16 %a, i16 %b)
12867 declare i32 @llvm.sadd.sat.i32(i32 %a, i32 %b)
12868 declare i64 @llvm.sadd.sat.i64(i64 %a, i64 %b)
12869 declare <4 x i32> @llvm.sadd.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
12870
12871Overview
12872"""""""""
12873
12874The '``llvm.sadd.sat``' family of intrinsic functions perform signed
12875saturation addition on the 2 arguments.
12876
12877Arguments
12878""""""""""
12879
12880The arguments (%a and %b) and the result may be of integer types of any bit
12881width, but they must have the same bit width. ``%a`` and ``%b`` are the two
12882values that will undergo signed addition.
12883
12884Semantics:
12885""""""""""
12886
12887The maximum value this operation can clamp to is the largest signed value
12888representable by the bit width of the arguments. The minimum value is the
12889smallest signed value representable by this bit width.
12890
12891
12892Examples
12893"""""""""
12894
12895.. code-block:: llvm
12896
12897 %res = call i4 @llvm.sadd.sat.i4(i4 1, i4 2) ; %res = 3
12898 %res = call i4 @llvm.sadd.sat.i4(i4 5, i4 6) ; %res = 7
12899 %res = call i4 @llvm.sadd.sat.i4(i4 -4, i4 2) ; %res = -2
12900 %res = call i4 @llvm.sadd.sat.i4(i4 -4, i4 -5) ; %res = -8
12901
12902
12903'``llvm.uadd.sat.*``' Intrinsics
12904^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12905
12906Syntax
12907"""""""
12908
12909This is an overloaded intrinsic. You can use ``llvm.uadd.sat``
12910on any integer bit width or vectors of integers.
12911
12912::
12913
12914 declare i16 @llvm.uadd.sat.i16(i16 %a, i16 %b)
12915 declare i32 @llvm.uadd.sat.i32(i32 %a, i32 %b)
12916 declare i64 @llvm.uadd.sat.i64(i64 %a, i64 %b)
12917 declare <4 x i32> @llvm.uadd.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
12918
12919Overview
12920"""""""""
12921
12922The '``llvm.uadd.sat``' family of intrinsic functions perform unsigned
12923saturation addition on the 2 arguments.
12924
12925Arguments
12926""""""""""
12927
12928The arguments (%a and %b) and the result may be of integer types of any bit
12929width, but they must have the same bit width. ``%a`` and ``%b`` are the two
12930values that will undergo unsigned addition.
12931
12932Semantics:
12933""""""""""
12934
12935The maximum value this operation can clamp to is the largest unsigned value
12936representable by the bit width of the arguments. Because this is an unsigned
12937operation, the result will never saturate towards zero.
12938
12939
12940Examples
12941"""""""""
12942
12943.. code-block:: llvm
12944
12945 %res = call i4 @llvm.uadd.sat.i4(i4 1, i4 2) ; %res = 3
12946 %res = call i4 @llvm.uadd.sat.i4(i4 5, i4 6) ; %res = 11
12947 %res = call i4 @llvm.uadd.sat.i4(i4 8, i4 8) ; %res = 15
12948
12949
12950'``llvm.ssub.sat.*``' Intrinsics
12951^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12952
12953Syntax
12954"""""""
12955
12956This is an overloaded intrinsic. You can use ``llvm.ssub.sat``
12957on any integer bit width or vectors of integers.
12958
12959::
12960
12961 declare i16 @llvm.ssub.sat.i16(i16 %a, i16 %b)
12962 declare i32 @llvm.ssub.sat.i32(i32 %a, i32 %b)
12963 declare i64 @llvm.ssub.sat.i64(i64 %a, i64 %b)
12964 declare <4 x i32> @llvm.ssub.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
12965
12966Overview
12967"""""""""
12968
12969The '``llvm.ssub.sat``' family of intrinsic functions perform signed
12970saturation subtraction on the 2 arguments.
12971
12972Arguments
12973""""""""""
12974
12975The arguments (%a and %b) and the result may be of integer types of any bit
12976width, but they must have the same bit width. ``%a`` and ``%b`` are the two
12977values that will undergo signed subtraction.
12978
12979Semantics:
12980""""""""""
12981
12982The maximum value this operation can clamp to is the largest signed value
12983representable by the bit width of the arguments. The minimum value is the
12984smallest signed value representable by this bit width.
12985
12986
12987Examples
12988"""""""""
12989
12990.. code-block:: llvm
12991
12992 %res = call i4 @llvm.ssub.sat.i4(i4 2, i4 1) ; %res = 1
12993 %res = call i4 @llvm.ssub.sat.i4(i4 2, i4 6) ; %res = -4
12994 %res = call i4 @llvm.ssub.sat.i4(i4 -4, i4 5) ; %res = -8
12995 %res = call i4 @llvm.ssub.sat.i4(i4 4, i4 -5) ; %res = 7
12996
12997
12998'``llvm.usub.sat.*``' Intrinsics
12999^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13000
13001Syntax
13002"""""""
13003
13004This is an overloaded intrinsic. You can use ``llvm.usub.sat``
13005on any integer bit width or vectors of integers.
13006
13007::
13008
13009 declare i16 @llvm.usub.sat.i16(i16 %a, i16 %b)
13010 declare i32 @llvm.usub.sat.i32(i32 %a, i32 %b)
13011 declare i64 @llvm.usub.sat.i64(i64 %a, i64 %b)
13012 declare <4 x i32> @llvm.usub.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
13013
13014Overview
13015"""""""""
13016
13017The '``llvm.usub.sat``' family of intrinsic functions perform unsigned
13018saturation subtraction on the 2 arguments.
13019
13020Arguments
13021""""""""""
13022
13023The arguments (%a and %b) and the result may be of integer types of any bit
13024width, but they must have the same bit width. ``%a`` and ``%b`` are the two
13025values that will undergo unsigned subtraction.
13026
13027Semantics:
13028""""""""""
13029
13030The minimum value this operation can clamp to is 0, which is the smallest
13031unsigned value representable by the bit width of the unsigned arguments.
13032Because this is an unsigned operation, the result will never saturate towards
13033the largest possible value representable by this bit width.
13034
13035
13036Examples
13037"""""""""
13038
13039.. code-block:: llvm
13040
13041 %res = call i4 @llvm.usub.sat.i4(i4 2, i4 1) ; %res = 1
13042 %res = call i4 @llvm.usub.sat.i4(i4 2, i4 6) ; %res = 0
13043
13044
Leonard Chan118e53f2018-12-12 06:29:14 +000013045Fixed Point Arithmetic Intrinsics
13046---------------------------------
13047
13048A fixed point number represents a real data type for a number that has a fixed
13049number of digits after a radix point (equivalent to the decimal point '.').
13050The number of digits after the radix point is referred as the ``scale``. These
13051are useful for representing fractional values to a specific precision. The
13052following intrinsics perform fixed point arithmetic operations on 2 operands
13053of the same scale, specified as the third argument.
13054
13055
13056'``llvm.smul.fix.*``' Intrinsics
13057^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13058
13059Syntax
13060"""""""
13061
13062This is an overloaded intrinsic. You can use ``llvm.smul.fix``
13063on any integer bit width or vectors of integers.
13064
13065::
13066
13067 declare i16 @llvm.smul.fix.i16(i16 %a, i16 %b, i32 %scale)
13068 declare i32 @llvm.smul.fix.i32(i32 %a, i32 %b, i32 %scale)
13069 declare i64 @llvm.smul.fix.i64(i64 %a, i64 %b, i32 %scale)
13070 declare <4 x i32> @llvm.smul.fix.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
13071
13072Overview
13073"""""""""
13074
13075The '``llvm.smul.fix``' family of intrinsic functions perform signed
13076fixed point multiplication on 2 arguments of the same scale.
13077
13078Arguments
13079""""""""""
13080
13081The arguments (%a and %b) and the result may be of integer types of any bit
13082width, but they must have the same bit width. ``%a`` and ``%b`` are the two
13083values that will undergo signed fixed point multiplication. The argument
13084``%scale`` represents the scale of both operands, and must be a constant
13085integer.
13086
13087Semantics:
13088""""""""""
13089
13090This operation performs fixed point multiplication on the 2 arguments of a
13091specified scale. The result will also be returned in the same scale specified
13092in the third argument.
13093
13094If the result value cannot be precisely represented in the given scale, the
13095value is rounded up or down to the closest representable value. The rounding
13096direction is unspecified.
13097
13098It is undefined behavior if the source value does not fit within the range of
13099the fixed point type.
13100
13101
13102Examples
13103"""""""""
13104
13105.. code-block:: llvm
13106
13107 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 2, i32 0) ; %res = 6 (2 x 3 = 6)
13108 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 2, i32 1) ; %res = 3 (1.5 x 1 = 1.5)
13109 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 -2, i32 1) ; %res = -3 (1.5 x -1 = -1.5)
13110
13111 ; The result in the following could be rounded up to -2 or down to -2.5
13112 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 -3, i32 1) ; %res = -5 (or -4) (1.5 x -1.5 = -2.25)
13113
13114
Sean Silvab084af42012-12-07 10:36:55 +000013115Specialised Arithmetic Intrinsics
13116---------------------------------
13117
Owen Anderson1056a922015-07-11 07:01:27 +000013118'``llvm.canonicalize.*``' Intrinsic
13119^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13120
13121Syntax:
13122"""""""
13123
13124::
13125
13126 declare float @llvm.canonicalize.f32(float %a)
13127 declare double @llvm.canonicalize.f64(double %b)
13128
13129Overview:
13130"""""""""
13131
13132The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013133encoding of a floating-point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000013134implementing certain numeric primitives such as frexp. The canonical encoding is
13135defined by IEEE-754-2008 to be:
13136
13137::
13138
13139 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000013140 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000013141 numbers, infinities, and NaNs, especially in decimal formats.
13142
13143This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000013144conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000013145according to section 6.2.
13146
13147Examples of non-canonical encodings:
13148
Sean Silvaa1190322015-08-06 22:56:48 +000013149- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000013150 converted to a canonical representation per hardware-specific protocol.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013151- Many normal decimal floating-point numbers have non-canonical alternative
Owen Anderson1056a922015-07-11 07:01:27 +000013152 encodings.
13153- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000013154 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000013155 a zero of the same sign by this operation.
13156
13157Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
13158default exception handling must signal an invalid exception, and produce a
13159quiet NaN result.
13160
13161This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000013162that the compiler does not constant fold the operation. Likewise, division by
131631.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000013164-0.0 is also sufficient provided that the rounding mode is not -Infinity.
13165
Sean Silvaa1190322015-08-06 22:56:48 +000013166``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000013167
13168- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
13169- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
13170 to ``(x == y)``
13171
13172Additionally, the sign of zero must be conserved:
13173``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
13174
13175The payload bits of a NaN must be conserved, with two exceptions.
13176First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000013177must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000013178usual methods.
13179
13180The canonicalization operation may be optimized away if:
13181
Sean Silvaa1190322015-08-06 22:56:48 +000013182- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000013183 floating-point operation that is required by the standard to be canonical.
13184- The result is consumed only by (or fused with) other floating-point
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013185 operations. That is, the bits of the floating-point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000013186
Sean Silvab084af42012-12-07 10:36:55 +000013187'``llvm.fmuladd.*``' Intrinsic
13188^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13189
13190Syntax:
13191"""""""
13192
13193::
13194
13195 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
13196 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
13197
13198Overview:
13199"""""""""
13200
13201The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000013202expressions that can be fused if the code generator determines that (a) the
13203target instruction set has support for a fused operation, and (b) that the
13204fused operation is more efficient than the equivalent, separate pair of mul
13205and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000013206
13207Arguments:
13208""""""""""
13209
13210The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
13211multiplicands, a and b, and an addend c.
13212
13213Semantics:
13214""""""""""
13215
13216The expression:
13217
13218::
13219
13220 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
13221
13222is equivalent to the expression a \* b + c, except that rounding will
13223not be performed between the multiplication and addition steps if the
13224code generator fuses the operations. Fusion is not guaranteed, even if
13225the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000013226corresponding llvm.fma.\* intrinsic function should be used
13227instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000013228
13229Examples:
13230"""""""""
13231
13232.. code-block:: llvm
13233
Tim Northover675a0962014-06-13 14:24:23 +000013234 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000013235
Amara Emersoncf9daa32017-05-09 10:43:25 +000013236
13237Experimental Vector Reduction Intrinsics
13238----------------------------------------
13239
13240Horizontal reductions of vectors can be expressed using the following
13241intrinsics. Each one takes a vector operand as an input and applies its
13242respective operation across all elements of the vector, returning a single
13243scalar result of the same element type.
13244
13245
13246'``llvm.experimental.vector.reduce.add.*``' Intrinsic
13247^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13248
13249Syntax:
13250"""""""
13251
13252::
13253
13254 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
13255 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
13256
13257Overview:
13258"""""""""
13259
13260The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
13261reduction of a vector, returning the result as a scalar. The return type matches
13262the element-type of the vector input.
13263
13264Arguments:
13265""""""""""
13266The argument to this intrinsic must be a vector of integer values.
13267
13268'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
13269^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13270
13271Syntax:
13272"""""""
13273
13274::
13275
13276 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
13277 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
13278
13279Overview:
13280"""""""""
13281
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013282The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000013283``ADD`` reduction of a vector, returning the result as a scalar. The return type
13284matches the element-type of the vector input.
13285
13286If the intrinsic call has fast-math flags, then the reduction will not preserve
13287the associativity of an equivalent scalarized counterpart. If it does not have
13288fast-math flags, then the reduction will be *ordered*, implying that the
13289operation respects the associativity of a scalarized reduction.
13290
13291
13292Arguments:
13293""""""""""
13294The first argument to this intrinsic is a scalar accumulator value, which is
13295only used when there are no fast-math flags attached. This argument may be undef
13296when fast-math flags are used.
13297
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013298The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000013299
13300Examples:
13301"""""""""
13302
13303.. code-block:: llvm
13304
13305 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
13306 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
13307
13308
13309'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
13310^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13311
13312Syntax:
13313"""""""
13314
13315::
13316
13317 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
13318 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
13319
13320Overview:
13321"""""""""
13322
13323The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
13324reduction of a vector, returning the result as a scalar. The return type matches
13325the element-type of the vector input.
13326
13327Arguments:
13328""""""""""
13329The argument to this intrinsic must be a vector of integer values.
13330
13331'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
13332^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13333
13334Syntax:
13335"""""""
13336
13337::
13338
13339 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
13340 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
13341
13342Overview:
13343"""""""""
13344
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013345The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000013346``MUL`` reduction of a vector, returning the result as a scalar. The return type
13347matches the element-type of the vector input.
13348
13349If the intrinsic call has fast-math flags, then the reduction will not preserve
13350the associativity of an equivalent scalarized counterpart. If it does not have
13351fast-math flags, then the reduction will be *ordered*, implying that the
13352operation respects the associativity of a scalarized reduction.
13353
13354
13355Arguments:
13356""""""""""
13357The first argument to this intrinsic is a scalar accumulator value, which is
13358only used when there are no fast-math flags attached. This argument may be undef
13359when fast-math flags are used.
13360
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013361The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000013362
13363Examples:
13364"""""""""
13365
13366.. code-block:: llvm
13367
13368 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
13369 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
13370
13371'``llvm.experimental.vector.reduce.and.*``' Intrinsic
13372^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13373
13374Syntax:
13375"""""""
13376
13377::
13378
13379 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
13380
13381Overview:
13382"""""""""
13383
13384The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
13385reduction of a vector, returning the result as a scalar. The return type matches
13386the element-type of the vector input.
13387
13388Arguments:
13389""""""""""
13390The argument to this intrinsic must be a vector of integer values.
13391
13392'``llvm.experimental.vector.reduce.or.*``' Intrinsic
13393^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13394
13395Syntax:
13396"""""""
13397
13398::
13399
13400 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
13401
13402Overview:
13403"""""""""
13404
13405The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
13406of a vector, returning the result as a scalar. The return type matches the
13407element-type of the vector input.
13408
13409Arguments:
13410""""""""""
13411The argument to this intrinsic must be a vector of integer values.
13412
13413'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
13414^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13415
13416Syntax:
13417"""""""
13418
13419::
13420
13421 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
13422
13423Overview:
13424"""""""""
13425
13426The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
13427reduction of a vector, returning the result as a scalar. The return type matches
13428the element-type of the vector input.
13429
13430Arguments:
13431""""""""""
13432The argument to this intrinsic must be a vector of integer values.
13433
13434'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
13435^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13436
13437Syntax:
13438"""""""
13439
13440::
13441
13442 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
13443
13444Overview:
13445"""""""""
13446
13447The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
13448``MAX`` reduction of a vector, returning the result as a scalar. The return type
13449matches the element-type of the vector input.
13450
13451Arguments:
13452""""""""""
13453The argument to this intrinsic must be a vector of integer values.
13454
13455'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
13456^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13457
13458Syntax:
13459"""""""
13460
13461::
13462
13463 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
13464
13465Overview:
13466"""""""""
13467
13468The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
13469``MIN`` reduction of a vector, returning the result as a scalar. The return type
13470matches the element-type of the vector input.
13471
13472Arguments:
13473""""""""""
13474The argument to this intrinsic must be a vector of integer values.
13475
13476'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
13477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13478
13479Syntax:
13480"""""""
13481
13482::
13483
13484 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
13485
13486Overview:
13487"""""""""
13488
13489The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
13490integer ``MAX`` reduction of a vector, returning the result as a scalar. The
13491return type matches the element-type of the vector input.
13492
13493Arguments:
13494""""""""""
13495The argument to this intrinsic must be a vector of integer values.
13496
13497'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
13498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13499
13500Syntax:
13501"""""""
13502
13503::
13504
13505 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
13506
13507Overview:
13508"""""""""
13509
13510The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
13511integer ``MIN`` reduction of a vector, returning the result as a scalar. The
13512return type matches the element-type of the vector input.
13513
13514Arguments:
13515""""""""""
13516The argument to this intrinsic must be a vector of integer values.
13517
13518'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
13519^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13520
13521Syntax:
13522"""""""
13523
13524::
13525
13526 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
13527 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
13528
13529Overview:
13530"""""""""
13531
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013532The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000013533``MAX`` reduction of a vector, returning the result as a scalar. The return type
13534matches the element-type of the vector input.
13535
13536If the intrinsic call has the ``nnan`` fast-math flag then the operation can
13537assume that NaNs are not present in the input vector.
13538
13539Arguments:
13540""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013541The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000013542
13543'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
13544^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13545
13546Syntax:
13547"""""""
13548
13549::
13550
13551 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
13552 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
13553
13554Overview:
13555"""""""""
13556
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013557The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000013558``MIN`` reduction of a vector, returning the result as a scalar. The return type
13559matches the element-type of the vector input.
13560
13561If the intrinsic call has the ``nnan`` fast-math flag then the operation can
13562assume that NaNs are not present in the input vector.
13563
13564Arguments:
13565""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013566The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000013567
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013568Half Precision Floating-Point Intrinsics
Sean Silvab084af42012-12-07 10:36:55 +000013569----------------------------------------
13570
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013571For most target platforms, half precision floating-point is a
Sean Silvab084af42012-12-07 10:36:55 +000013572storage-only format. This means that it is a dense encoding (in memory)
13573but does not support computation in the format.
13574
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013575This means that code must first load the half-precision floating-point
Sean Silvab084af42012-12-07 10:36:55 +000013576value as an i16, then convert it to float with
13577:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
13578then be performed on the float value (including extending to double
13579etc). To store the value back to memory, it is first converted to float
13580if needed, then converted to i16 with
13581:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
13582i16 value.
13583
13584.. _int_convert_to_fp16:
13585
13586'``llvm.convert.to.fp16``' Intrinsic
13587^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13588
13589Syntax:
13590"""""""
13591
13592::
13593
Tim Northoverfd7e4242014-07-17 10:51:23 +000013594 declare i16 @llvm.convert.to.fp16.f32(float %a)
13595 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000013596
13597Overview:
13598"""""""""
13599
Tim Northoverfd7e4242014-07-17 10:51:23 +000013600The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013601conventional floating-point type to half precision floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000013602
13603Arguments:
13604""""""""""
13605
13606The intrinsic function contains single argument - the value to be
13607converted.
13608
13609Semantics:
13610""""""""""
13611
Tim Northoverfd7e4242014-07-17 10:51:23 +000013612The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013613conventional floating-point format to half precision floating-point format. The
Tim Northoverfd7e4242014-07-17 10:51:23 +000013614return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000013615
13616Examples:
13617"""""""""
13618
13619.. code-block:: llvm
13620
Tim Northoverfd7e4242014-07-17 10:51:23 +000013621 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000013622 store i16 %res, i16* @x, align 2
13623
13624.. _int_convert_from_fp16:
13625
13626'``llvm.convert.from.fp16``' Intrinsic
13627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13628
13629Syntax:
13630"""""""
13631
13632::
13633
Tim Northoverfd7e4242014-07-17 10:51:23 +000013634 declare float @llvm.convert.from.fp16.f32(i16 %a)
13635 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000013636
13637Overview:
13638"""""""""
13639
13640The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013641conversion from half precision floating-point format to single precision
13642floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000013643
13644Arguments:
13645""""""""""
13646
13647The intrinsic function contains single argument - the value to be
13648converted.
13649
13650Semantics:
13651""""""""""
13652
13653The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013654conversion from half single precision floating-point format to single
13655precision floating-point format. The input half-float value is
Sean Silvab084af42012-12-07 10:36:55 +000013656represented by an ``i16`` value.
13657
13658Examples:
13659"""""""""
13660
13661.. code-block:: llvm
13662
David Blaikiec7aabbb2015-03-04 22:06:14 +000013663 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000013664 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000013665
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000013666.. _dbg_intrinsics:
13667
Sean Silvab084af42012-12-07 10:36:55 +000013668Debugger Intrinsics
13669-------------------
13670
13671The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
13672prefix), are described in the `LLVM Source Level
Hans Wennborg65195622017-09-28 15:16:37 +000013673Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
Sean Silvab084af42012-12-07 10:36:55 +000013674document.
13675
13676Exception Handling Intrinsics
13677-----------------------------
13678
13679The LLVM exception handling intrinsics (which all start with
13680``llvm.eh.`` prefix), are described in the `LLVM Exception
Hans Wennborg65195622017-09-28 15:16:37 +000013681Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
Sean Silvab084af42012-12-07 10:36:55 +000013682
13683.. _int_trampoline:
13684
13685Trampoline Intrinsics
13686---------------------
13687
13688These intrinsics make it possible to excise one parameter, marked with
13689the :ref:`nest <nest>` attribute, from a function. The result is a
13690callable function pointer lacking the nest parameter - the caller does
13691not need to provide a value for it. Instead, the value to use is stored
13692in advance in a "trampoline", a block of memory usually allocated on the
13693stack, which also contains code to splice the nest value into the
13694argument list. This is used to implement the GCC nested function address
13695extension.
13696
13697For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
13698then the resulting function pointer has signature ``i32 (i32, i32)*``.
13699It can be created as follows:
13700
13701.. code-block:: llvm
13702
13703 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000013704 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000013705 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
13706 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
13707 %fp = bitcast i8* %p to i32 (i32, i32)*
13708
13709The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
13710``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
13711
13712.. _int_it:
13713
13714'``llvm.init.trampoline``' Intrinsic
13715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13716
13717Syntax:
13718"""""""
13719
13720::
13721
13722 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
13723
13724Overview:
13725"""""""""
13726
13727This fills the memory pointed to by ``tramp`` with executable code,
13728turning it into a trampoline.
13729
13730Arguments:
13731""""""""""
13732
13733The ``llvm.init.trampoline`` intrinsic takes three arguments, all
13734pointers. The ``tramp`` argument must point to a sufficiently large and
13735sufficiently aligned block of memory; this memory is written to by the
13736intrinsic. Note that the size and the alignment are target-specific -
13737LLVM currently provides no portable way of determining them, so a
13738front-end that generates this intrinsic needs to have some
13739target-specific knowledge. The ``func`` argument must hold a function
13740bitcast to an ``i8*``.
13741
13742Semantics:
13743""""""""""
13744
13745The block of memory pointed to by ``tramp`` is filled with target
13746dependent code, turning it into a function. Then ``tramp`` needs to be
13747passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
13748be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
13749function's signature is the same as that of ``func`` with any arguments
13750marked with the ``nest`` attribute removed. At most one such ``nest``
13751argument is allowed, and it must be of pointer type. Calling the new
13752function is equivalent to calling ``func`` with the same argument list,
13753but with ``nval`` used for the missing ``nest`` argument. If, after
13754calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
13755modified, then the effect of any later call to the returned function
13756pointer is undefined.
13757
13758.. _int_at:
13759
13760'``llvm.adjust.trampoline``' Intrinsic
13761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13762
13763Syntax:
13764"""""""
13765
13766::
13767
13768 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
13769
13770Overview:
13771"""""""""
13772
13773This performs any required machine-specific adjustment to the address of
13774a trampoline (passed as ``tramp``).
13775
13776Arguments:
13777""""""""""
13778
13779``tramp`` must point to a block of memory which already has trampoline
13780code filled in by a previous call to
13781:ref:`llvm.init.trampoline <int_it>`.
13782
13783Semantics:
13784""""""""""
13785
13786On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000013787different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000013788intrinsic returns the executable address corresponding to ``tramp``
13789after performing the required machine specific adjustments. The pointer
13790returned can then be :ref:`bitcast and executed <int_trampoline>`.
13791
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013792.. _int_mload_mstore:
13793
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013794Masked Vector Load and Store Intrinsics
13795---------------------------------------
13796
13797LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
13798
13799.. _int_mload:
13800
13801'``llvm.masked.load.*``' Intrinsics
13802^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13803
13804Syntax:
13805"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013806This is an overloaded intrinsic. The loaded data is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013807
13808::
13809
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013810 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
13811 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013812 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013813 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013814 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013815 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013816
13817Overview:
13818"""""""""
13819
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013820Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013821
13822
13823Arguments:
13824""""""""""
13825
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013826The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013827
13828
13829Semantics:
13830""""""""""
13831
13832The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
13833The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
13834
13835
13836::
13837
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013838 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000013839
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013840 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000013841 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000013842 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013843
13844.. _int_mstore:
13845
13846'``llvm.masked.store.*``' Intrinsics
13847^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13848
13849Syntax:
13850"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013851This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013852
13853::
13854
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013855 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
13856 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013857 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013858 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013859 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013860 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013861
13862Overview:
13863"""""""""
13864
13865Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
13866
13867Arguments:
13868""""""""""
13869
13870The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
13871
13872
13873Semantics:
13874""""""""""
13875
13876The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
13877The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
13878
13879::
13880
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013881 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000013882
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000013883 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000013884 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013885 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
13886 store <16 x float> %res, <16 x float>* %ptr, align 4
13887
13888
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013889Masked Vector Gather and Scatter Intrinsics
13890-------------------------------------------
13891
13892LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
13893
13894.. _int_mgather:
13895
13896'``llvm.masked.gather.*``' Intrinsics
13897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13898
13899Syntax:
13900"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013901This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating-point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013902
13903::
13904
Elad Cohenef5798a2017-05-03 12:28:54 +000013905 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
13906 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
13907 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013908
13909Overview:
13910"""""""""
13911
13912Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
13913
13914
13915Arguments:
13916""""""""""
13917
13918The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
13919
13920
13921Semantics:
13922""""""""""
13923
13924The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
13925The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
13926
13927
13928::
13929
Elad Cohenef5798a2017-05-03 12:28:54 +000013930 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013931
13932 ;; The gather with all-true mask is equivalent to the following instruction sequence
13933 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
13934 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
13935 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
13936 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
13937
13938 %val0 = load double, double* %ptr0, align 8
13939 %val1 = load double, double* %ptr1, align 8
13940 %val2 = load double, double* %ptr2, align 8
13941 %val3 = load double, double* %ptr3, align 8
13942
13943 %vec0 = insertelement <4 x double>undef, %val0, 0
13944 %vec01 = insertelement <4 x double>%vec0, %val1, 1
13945 %vec012 = insertelement <4 x double>%vec01, %val2, 2
13946 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
13947
13948.. _int_mscatter:
13949
13950'``llvm.masked.scatter.*``' Intrinsics
13951^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13952
13953Syntax:
13954"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013955This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013956
13957::
13958
Elad Cohenef5798a2017-05-03 12:28:54 +000013959 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
13960 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
13961 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013962
13963Overview:
13964"""""""""
13965
13966Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
13967
13968Arguments:
13969""""""""""
13970
13971The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
13972
13973
13974Semantics:
13975""""""""""
13976
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000013977The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013978
13979::
13980
Sylvestre Ledru84666a12016-02-14 20:16:22 +000013981 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000013982 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013983
13984 ;; It is equivalent to a list of scalar stores
13985 %val0 = extractelement <8 x i32> %value, i32 0
13986 %val1 = extractelement <8 x i32> %value, i32 1
13987 ..
13988 %val7 = extractelement <8 x i32> %value, i32 7
13989 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
13990 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
13991 ..
13992 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
13993 ;; Note: the order of the following stores is important when they overlap:
13994 store i32 %val0, i32* %ptr0, align 4
13995 store i32 %val1, i32* %ptr1, align 4
13996 ..
13997 store i32 %val7, i32* %ptr7, align 4
13998
13999
Elena Demikhovsky0ef2ce32018-06-06 09:11:46 +000014000Masked Vector Expanding Load and Compressing Store Intrinsics
14001-------------------------------------------------------------
14002
14003LLVM provides intrinsics for expanding load and compressing store operations. Data selected from a vector according to a mask is stored in consecutive memory addresses (compressed store), and vice-versa (expanding load). These operations effective map to "if (cond.i) a[j++] = v.i" and "if (cond.i) v.i = a[j++]" patterns, respectively. Note that when the mask starts with '1' bits followed by '0' bits, these operations are identical to :ref:`llvm.masked.store <int_mstore>` and :ref:`llvm.masked.load <int_mload>`.
14004
14005.. _int_expandload:
14006
14007'``llvm.masked.expandload.*``' Intrinsics
14008^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14009
14010Syntax:
14011"""""""
14012This is an overloaded intrinsic. Several values of integer, floating point or pointer data type are loaded from consecutive memory addresses and stored into the elements of a vector according to the mask.
14013
14014::
14015
14016 declare <16 x float> @llvm.masked.expandload.v16f32 (float* <ptr>, <16 x i1> <mask>, <16 x float> <passthru>)
14017 declare <2 x i64> @llvm.masked.expandload.v2i64 (i64* <ptr>, <2 x i1> <mask>, <2 x i64> <passthru>)
14018
14019Overview:
14020"""""""""
14021
14022Reads a number of scalar values sequentially from memory location provided in '``ptr``' and spreads them in a vector. The '``mask``' holds a bit for each vector lane. The number of elements read from memory is equal to the number of '1' bits in the mask. The loaded elements are positioned in the destination vector according to the sequence of '1' and '0' bits in the mask. E.g., if the mask vector is '10010001', "explandload" reads 3 values from memory addresses ptr, ptr+1, ptr+2 and places them in lanes 0, 3 and 7 accordingly. The masked-off lanes are filled by elements from the corresponding lanes of the '``passthru``' operand.
14023
14024
14025Arguments:
14026""""""""""
14027
14028The first operand is the base pointer for the load. It has the same underlying type as the element of the returned vector. The second operand, mask, is a vector of boolean values with the same number of elements as the return type. The third is a pass-through value that is used to fill the masked-off lanes of the result. The return type and the type of the '``passthru``' operand have the same vector type.
14029
14030Semantics:
14031""""""""""
14032
14033The '``llvm.masked.expandload``' intrinsic is designed for reading multiple scalar values from adjacent memory addresses into possibly non-adjacent vector lanes. It is useful for targets that support vector expanding loads and allows vectorizing loop with cross-iteration dependency like in the following example:
14034
14035.. code-block:: c
14036
14037 // In this loop we load from B and spread the elements into array A.
14038 double *A, B; int *C;
14039 for (int i = 0; i < size; ++i) {
14040 if (C[i] != 0)
14041 A[i] = B[j++];
14042 }
14043
14044
14045.. code-block:: llvm
14046
14047 ; Load several elements from array B and expand them in a vector.
14048 ; The number of loaded elements is equal to the number of '1' elements in the Mask.
14049 %Tmp = call <8 x double> @llvm.masked.expandload.v8f64(double* %Bptr, <8 x i1> %Mask, <8 x double> undef)
14050 ; Store the result in A
14051 call void @llvm.masked.store.v8f64.p0v8f64(<8 x double> %Tmp, <8 x double>* %Aptr, i32 8, <8 x i1> %Mask)
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000014052
Elena Demikhovsky0ef2ce32018-06-06 09:11:46 +000014053 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
14054 %MaskI = bitcast <8 x i1> %Mask to i8
14055 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
14056 %MaskI64 = zext i8 %MaskIPopcnt to i64
14057 %BNextInd = add i64 %BInd, %MaskI64
14058
14059
14060Other targets may support this intrinsic differently, for example, by lowering it into a sequence of conditional scalar load operations and shuffles.
14061If all mask elements are '1', the intrinsic behavior is equivalent to the regular unmasked vector load.
14062
14063.. _int_compressstore:
14064
14065'``llvm.masked.compressstore.*``' Intrinsics
14066^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14067
14068Syntax:
14069"""""""
14070This is an overloaded intrinsic. A number of scalar values of integer, floating point or pointer data type are collected from an input vector and stored into adjacent memory addresses. A mask defines which elements to collect from the vector.
14071
14072::
14073
14074 declare void @llvm.masked.compressstore.v8i32 (<8 x i32> <value>, i32* <ptr>, <8 x i1> <mask>)
14075 declare void @llvm.masked.compressstore.v16f32 (<16 x float> <value>, float* <ptr>, <16 x i1> <mask>)
14076
14077Overview:
14078"""""""""
14079
14080Selects elements from input vector '``value``' according to the '``mask``'. All selected elements are written into adjacent memory addresses starting at address '`ptr`', from lower to higher. The mask holds a bit for each vector lane, and is used to select elements to be stored. The number of elements to be stored is equal to the number of active bits in the mask.
14081
14082Arguments:
14083""""""""""
14084
14085The first operand is the input vector, from which elements are collected and written to memory. The second operand is the base pointer for the store, it has the same underlying type as the element of the input vector operand. The third operand is the mask, a vector of boolean values. The mask and the input vector must have the same number of vector elements.
14086
14087
14088Semantics:
14089""""""""""
14090
14091The '``llvm.masked.compressstore``' intrinsic is designed for compressing data in memory. It allows to collect elements from possibly non-adjacent lanes of a vector and store them contiguously in memory in one IR operation. It is useful for targets that support compressing store operations and allows vectorizing loops with cross-iteration dependences like in the following example:
14092
14093.. code-block:: c
14094
14095 // In this loop we load elements from A and store them consecutively in B
14096 double *A, B; int *C;
14097 for (int i = 0; i < size; ++i) {
14098 if (C[i] != 0)
14099 B[j++] = A[i]
14100 }
14101
14102
14103.. code-block:: llvm
14104
14105 ; Load elements from A.
14106 %Tmp = call <8 x double> @llvm.masked.load.v8f64.p0v8f64(<8 x double>* %Aptr, i32 8, <8 x i1> %Mask, <8 x double> undef)
14107 ; Store all selected elements consecutively in array B
14108 call <void> @llvm.masked.compressstore.v8f64(<8 x double> %Tmp, double* %Bptr, <8 x i1> %Mask)
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000014109
Elena Demikhovsky0ef2ce32018-06-06 09:11:46 +000014110 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
14111 %MaskI = bitcast <8 x i1> %Mask to i8
14112 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
14113 %MaskI64 = zext i8 %MaskIPopcnt to i64
14114 %BNextInd = add i64 %BInd, %MaskI64
14115
14116
14117Other targets may support this intrinsic differently, for example, by lowering it into a sequence of branches that guard scalar store operations.
14118
14119
Sean Silvab084af42012-12-07 10:36:55 +000014120Memory Use Markers
14121------------------
14122
Sanjay Patel69bf48e2014-07-04 19:40:43 +000014123This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000014124memory objects and ranges where variables are immutable.
14125
Reid Klecknera534a382013-12-19 02:14:12 +000014126.. _int_lifestart:
14127
Sean Silvab084af42012-12-07 10:36:55 +000014128'``llvm.lifetime.start``' Intrinsic
14129^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14130
14131Syntax:
14132"""""""
14133
14134::
14135
14136 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
14137
14138Overview:
14139"""""""""
14140
14141The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
14142object's lifetime.
14143
14144Arguments:
14145""""""""""
14146
14147The first argument is a constant integer representing the size of the
14148object, or -1 if it is variable sized. The second argument is a pointer
14149to the object.
14150
14151Semantics:
14152""""""""""
14153
14154This intrinsic indicates that before this point in the code, the value
14155of the memory pointed to by ``ptr`` is dead. This means that it is known
14156to never be used and has an undefined value. A load from the pointer
14157that precedes this intrinsic can be replaced with ``'undef'``.
14158
Reid Klecknera534a382013-12-19 02:14:12 +000014159.. _int_lifeend:
14160
Sean Silvab084af42012-12-07 10:36:55 +000014161'``llvm.lifetime.end``' Intrinsic
14162^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14163
14164Syntax:
14165"""""""
14166
14167::
14168
14169 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
14170
14171Overview:
14172"""""""""
14173
14174The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
14175object's lifetime.
14176
14177Arguments:
14178""""""""""
14179
14180The first argument is a constant integer representing the size of the
14181object, or -1 if it is variable sized. The second argument is a pointer
14182to the object.
14183
14184Semantics:
14185""""""""""
14186
14187This intrinsic indicates that after this point in the code, the value of
14188the memory pointed to by ``ptr`` is dead. This means that it is known to
14189never be used and has an undefined value. Any stores into the memory
14190object following this intrinsic may be removed as dead.
14191
14192'``llvm.invariant.start``' Intrinsic
14193^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14194
14195Syntax:
14196"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000014197This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000014198
14199::
14200
Mehdi Amini8c629ec2016-08-13 23:31:24 +000014201 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000014202
14203Overview:
14204"""""""""
14205
14206The '``llvm.invariant.start``' intrinsic specifies that the contents of
14207a memory object will not change.
14208
14209Arguments:
14210""""""""""
14211
14212The first argument is a constant integer representing the size of the
14213object, or -1 if it is variable sized. The second argument is a pointer
14214to the object.
14215
14216Semantics:
14217""""""""""
14218
14219This intrinsic indicates that until an ``llvm.invariant.end`` that uses
14220the return value, the referenced memory location is constant and
14221unchanging.
14222
14223'``llvm.invariant.end``' Intrinsic
14224^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14225
14226Syntax:
14227"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000014228This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000014229
14230::
14231
Mehdi Amini8c629ec2016-08-13 23:31:24 +000014232 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000014233
14234Overview:
14235"""""""""
14236
14237The '``llvm.invariant.end``' intrinsic specifies that the contents of a
14238memory object are mutable.
14239
14240Arguments:
14241""""""""""
14242
14243The first argument is the matching ``llvm.invariant.start`` intrinsic.
14244The second argument is a constant integer representing the size of the
14245object, or -1 if it is variable sized and the third argument is a
14246pointer to the object.
14247
14248Semantics:
14249""""""""""
14250
14251This intrinsic indicates that the memory is mutable again.
14252
Piotr Padlewski5dde8092018-05-03 11:03:01 +000014253'``llvm.launder.invariant.group``' Intrinsic
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14255
14256Syntax:
14257"""""""
Yaxun Liu407ca362017-11-16 16:32:16 +000014258This is an overloaded intrinsic. The memory object can belong to any address
14259space. The returned pointer must belong to the same address space as the
14260argument.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014261
14262::
14263
Piotr Padlewski5dde8092018-05-03 11:03:01 +000014264 declare i8* @llvm.launder.invariant.group.p0i8(i8* <ptr>)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014265
14266Overview:
14267"""""""""
14268
Piotr Padlewski5dde8092018-05-03 11:03:01 +000014269The '``llvm.launder.invariant.group``' intrinsic can be used when an invariant
Piotr Padlewski5b3db452018-07-02 04:49:30 +000014270established by ``invariant.group`` metadata no longer holds, to obtain a new
14271pointer value that carries fresh invariant group information. It is an
14272experimental intrinsic, which means that its semantics might change in the
14273future.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014274
14275
14276Arguments:
14277""""""""""
14278
Piotr Padlewski5b3db452018-07-02 04:49:30 +000014279The ``llvm.launder.invariant.group`` takes only one argument, which is a pointer
14280to the memory.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014281
14282Semantics:
14283""""""""""
14284
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014285Returns another pointer that aliases its argument but which is considered different
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014286for the purposes of ``load``/``store`` ``invariant.group`` metadata.
Piotr Padlewski5dde8092018-05-03 11:03:01 +000014287It does not read any accessible memory and the execution can be speculated.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014288
Piotr Padlewski5b3db452018-07-02 04:49:30 +000014289'``llvm.strip.invariant.group``' Intrinsic
14290^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14291
14292Syntax:
14293"""""""
14294This is an overloaded intrinsic. The memory object can belong to any address
14295space. The returned pointer must belong to the same address space as the
14296argument.
14297
14298::
14299
14300 declare i8* @llvm.strip.invariant.group.p0i8(i8* <ptr>)
14301
14302Overview:
14303"""""""""
14304
14305The '``llvm.strip.invariant.group``' intrinsic can be used when an invariant
14306established by ``invariant.group`` metadata no longer holds, to obtain a new pointer
14307value that does not carry the invariant information. It is an experimental
14308intrinsic, which means that its semantics might change in the future.
14309
14310
14311Arguments:
14312""""""""""
14313
14314The ``llvm.strip.invariant.group`` takes only one argument, which is a pointer
14315to the memory.
14316
14317Semantics:
14318""""""""""
14319
14320Returns another pointer that aliases its argument but which has no associated
14321``invariant.group`` metadata.
14322It does not read any memory and can be speculated.
14323
14324
14325
Sanjay Patel54b161e2018-03-20 16:38:22 +000014326.. _constrainedfp:
14327
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014328Constrained Floating-Point Intrinsics
Andrew Kaylora0a11642017-01-26 23:27:59 +000014329-------------------------------------
14330
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014331These intrinsics are used to provide special handling of floating-point
14332operations when specific rounding mode or floating-point exception behavior is
Andrew Kaylora0a11642017-01-26 23:27:59 +000014333required. By default, LLVM optimization passes assume that the rounding mode is
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014334round-to-nearest and that floating-point exceptions will not be monitored.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014335Constrained FP intrinsics are used to support non-default rounding modes and
14336accurately preserve exception behavior without compromising LLVM's ability to
14337optimize FP code when the default behavior is used.
14338
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014339Each of these intrinsics corresponds to a normal floating-point operation. The
Andrew Kaylora0a11642017-01-26 23:27:59 +000014340first two arguments and the return value are the same as the corresponding FP
14341operation.
14342
14343The third argument is a metadata argument specifying the rounding mode to be
14344assumed. This argument must be one of the following strings:
14345
14346::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000014347
Andrew Kaylora0a11642017-01-26 23:27:59 +000014348 "round.dynamic"
14349 "round.tonearest"
14350 "round.downward"
14351 "round.upward"
14352 "round.towardzero"
14353
14354If this argument is "round.dynamic" optimization passes must assume that the
14355rounding mode is unknown and may change at runtime. No transformations that
14356depend on rounding mode may be performed in this case.
14357
14358The other possible values for the rounding mode argument correspond to the
14359similarly named IEEE rounding modes. If the argument is any of these values
14360optimization passes may perform transformations as long as they are consistent
14361with the specified rounding mode.
14362
14363For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
14364"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
14365'x-0' should evaluate to '-0' when rounding downward. However, this
14366transformation is legal for all other rounding modes.
14367
14368For values other than "round.dynamic" optimization passes may assume that the
14369actual runtime rounding mode (as defined in a target-specific manner) matches
14370the specified rounding mode, but this is not guaranteed. Using a specific
14371non-dynamic rounding mode which does not match the actual rounding mode at
14372runtime results in undefined behavior.
14373
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014374The fourth argument to the constrained floating-point intrinsics specifies the
Andrew Kaylora0a11642017-01-26 23:27:59 +000014375required exception behavior. This argument must be one of the following
14376strings:
14377
14378::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000014379
Andrew Kaylora0a11642017-01-26 23:27:59 +000014380 "fpexcept.ignore"
14381 "fpexcept.maytrap"
14382 "fpexcept.strict"
14383
14384If this argument is "fpexcept.ignore" optimization passes may assume that the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014385exception status flags will not be read and that floating-point exceptions will
Andrew Kaylora0a11642017-01-26 23:27:59 +000014386be masked. This allows transformations to be performed that may change the
14387exception semantics of the original code. For example, FP operations may be
14388speculatively executed in this case whereas they must not be for either of the
14389other possible values of this argument.
14390
14391If the exception behavior argument is "fpexcept.maytrap" optimization passes
14392must avoid transformations that may raise exceptions that would not have been
14393raised by the original code (such as speculatively executing FP operations), but
14394passes are not required to preserve all exceptions that are implied by the
14395original code. For example, exceptions may be potentially hidden by constant
14396folding.
14397
14398If the exception behavior argument is "fpexcept.strict" all transformations must
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014399strictly preserve the floating-point exception semantics of the original code.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014400Any FP exception that would have been raised by the original code must be raised
14401by the transformed code, and the transformed code must not raise any FP
14402exceptions that would not have been raised by the original code. This is the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014403exception behavior argument that will be used if the code being compiled reads
Andrew Kaylora0a11642017-01-26 23:27:59 +000014404the FP exception status flags, but this mode can also be used with code that
14405unmasks FP exceptions.
14406
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014407The number and order of floating-point exceptions is NOT guaranteed. For
Andrew Kaylora0a11642017-01-26 23:27:59 +000014408example, a series of FP operations that each may raise exceptions may be
14409vectorized into a single instruction that raises each unique exception a single
14410time.
14411
14412
14413'``llvm.experimental.constrained.fadd``' Intrinsic
14414^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14415
14416Syntax:
14417"""""""
14418
14419::
14420
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014421 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014422 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
14423 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014424 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014425
14426Overview:
14427"""""""""
14428
14429The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
14430two operands.
14431
14432
14433Arguments:
14434""""""""""
14435
14436The first two arguments to the '``llvm.experimental.constrained.fadd``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014437intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14438of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014439
14440The third and fourth arguments specify the rounding mode and exception
14441behavior as described above.
14442
14443Semantics:
14444""""""""""
14445
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014446The value produced is the floating-point sum of the two value operands and has
Andrew Kaylora0a11642017-01-26 23:27:59 +000014447the same type as the operands.
14448
14449
14450'``llvm.experimental.constrained.fsub``' Intrinsic
14451^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14452
14453Syntax:
14454"""""""
14455
14456::
14457
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014458 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014459 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
14460 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014461 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014462
14463Overview:
14464"""""""""
14465
14466The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
14467of its two operands.
14468
14469
14470Arguments:
14471""""""""""
14472
14473The first two arguments to the '``llvm.experimental.constrained.fsub``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014474intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14475of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014476
14477The third and fourth arguments specify the rounding mode and exception
14478behavior as described above.
14479
14480Semantics:
14481""""""""""
14482
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014483The value produced is the floating-point difference of the two value operands
Andrew Kaylora0a11642017-01-26 23:27:59 +000014484and has the same type as the operands.
14485
14486
14487'``llvm.experimental.constrained.fmul``' Intrinsic
14488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14489
14490Syntax:
14491"""""""
14492
14493::
14494
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014495 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014496 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
14497 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014498 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014499
14500Overview:
14501"""""""""
14502
14503The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
14504its two operands.
14505
14506
14507Arguments:
14508""""""""""
14509
14510The first two arguments to the '``llvm.experimental.constrained.fmul``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014511intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14512of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014513
14514The third and fourth arguments specify the rounding mode and exception
14515behavior as described above.
14516
14517Semantics:
14518""""""""""
14519
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014520The value produced is the floating-point product of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000014521has the same type as the operands.
14522
14523
14524'``llvm.experimental.constrained.fdiv``' Intrinsic
14525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14526
14527Syntax:
14528"""""""
14529
14530::
14531
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014532 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014533 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
14534 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014535 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014536
14537Overview:
14538"""""""""
14539
14540The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
14541its two operands.
14542
14543
14544Arguments:
14545""""""""""
14546
14547The first two arguments to the '``llvm.experimental.constrained.fdiv``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014548intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14549of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014550
14551The third and fourth arguments specify the rounding mode and exception
14552behavior as described above.
14553
14554Semantics:
14555""""""""""
14556
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014557The value produced is the floating-point quotient of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000014558has the same type as the operands.
14559
14560
14561'``llvm.experimental.constrained.frem``' Intrinsic
14562^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14563
14564Syntax:
14565"""""""
14566
14567::
14568
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014569 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014570 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
14571 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014572 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014573
14574Overview:
14575"""""""""
14576
14577The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
14578from the division of its two operands.
14579
14580
14581Arguments:
14582""""""""""
14583
14584The first two arguments to the '``llvm.experimental.constrained.frem``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014585intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14586of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014587
14588The third and fourth arguments specify the rounding mode and exception
14589behavior as described above. The rounding mode argument has no effect, since
14590the result of frem is never rounded, but the argument is included for
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014591consistency with the other constrained floating-point intrinsics.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014592
14593Semantics:
14594""""""""""
14595
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014596The value produced is the floating-point remainder from the division of the two
Andrew Kaylora0a11642017-01-26 23:27:59 +000014597value operands and has the same type as the operands. The remainder has the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014598same sign as the dividend.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014599
Wei Dinga131d3f2017-08-24 04:18:24 +000014600'``llvm.experimental.constrained.fma``' Intrinsic
Cameron McInally10056792018-11-02 15:51:43 +000014601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Wei Dinga131d3f2017-08-24 04:18:24 +000014602
14603Syntax:
14604"""""""
14605
14606::
14607
14608 declare <type>
14609 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
14610 metadata <rounding mode>,
14611 metadata <exception behavior>)
14612
14613Overview:
14614"""""""""
14615
14616The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
14617fused-multiply-add operation on its operands.
14618
14619Arguments:
14620""""""""""
14621
14622The first three arguments to the '``llvm.experimental.constrained.fma``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014623intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector
14624<t_vector>` of floating-point values. All arguments must have identical types.
Wei Dinga131d3f2017-08-24 04:18:24 +000014625
14626The fourth and fifth arguments specify the rounding mode and exception behavior
14627as described above.
14628
14629Semantics:
14630""""""""""
14631
14632The result produced is the product of the first two operands added to the third
14633operand computed with infinite precision, and then rounded to the target
14634precision.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014635
Andrew Kaylorf4660012017-05-25 21:31:00 +000014636Constrained libm-equivalent Intrinsics
14637--------------------------------------
14638
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014639In addition to the basic floating-point operations for which constrained
Andrew Kaylorf4660012017-05-25 21:31:00 +000014640intrinsics are described above, there are constrained versions of various
14641operations which provide equivalent behavior to a corresponding libm function.
14642These intrinsics allow the precise behavior of these operations with respect to
14643rounding mode and exception behavior to be controlled.
14644
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014645As with the basic constrained floating-point intrinsics, the rounding mode
Andrew Kaylorf4660012017-05-25 21:31:00 +000014646and exception behavior arguments only control the behavior of the optimizer.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014647They do not change the runtime floating-point environment.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014648
14649
14650'``llvm.experimental.constrained.sqrt``' Intrinsic
14651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14652
14653Syntax:
14654"""""""
14655
14656::
14657
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014658 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014659 @llvm.experimental.constrained.sqrt(<type> <op1>,
14660 metadata <rounding mode>,
14661 metadata <exception behavior>)
14662
14663Overview:
14664"""""""""
14665
14666The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
14667of the specified value, returning the same value as the libm '``sqrt``'
14668functions would, but without setting ``errno``.
14669
14670Arguments:
14671""""""""""
14672
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014673The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014674type.
14675
14676The second and third arguments specify the rounding mode and exception
14677behavior as described above.
14678
14679Semantics:
14680""""""""""
14681
14682This function returns the nonnegative square root of the specified value.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014683If the value is less than negative zero, a floating-point exception occurs
Hiroshi Inoue760c0c92018-01-16 13:19:48 +000014684and the return value is architecture specific.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014685
14686
14687'``llvm.experimental.constrained.pow``' Intrinsic
14688^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14689
14690Syntax:
14691"""""""
14692
14693::
14694
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014695 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014696 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
14697 metadata <rounding mode>,
14698 metadata <exception behavior>)
14699
14700Overview:
14701"""""""""
14702
14703The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
14704raised to the (positive or negative) power specified by the second operand.
14705
14706Arguments:
14707""""""""""
14708
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014709The first two arguments and the return value are floating-point numbers of the
Andrew Kaylorf4660012017-05-25 21:31:00 +000014710same type. The second argument specifies the power to which the first argument
14711should be raised.
14712
14713The third and fourth arguments specify the rounding mode and exception
14714behavior as described above.
14715
14716Semantics:
14717""""""""""
14718
14719This function returns the first value raised to the second power,
14720returning the same values as the libm ``pow`` functions would, and
14721handles error conditions in the same way.
14722
14723
14724'``llvm.experimental.constrained.powi``' Intrinsic
14725^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14726
14727Syntax:
14728"""""""
14729
14730::
14731
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014732 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014733 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
14734 metadata <rounding mode>,
14735 metadata <exception behavior>)
14736
14737Overview:
14738"""""""""
14739
14740The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
14741raised to the (positive or negative) power specified by the second operand. The
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000014742order of evaluation of multiplications is not defined. When a vector of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014743floating-point type is used, the second argument remains a scalar integer value.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014744
14745
14746Arguments:
14747""""""""""
14748
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014749The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014750type. The second argument is a 32-bit signed integer specifying the power to
14751which the first argument should be raised.
14752
14753The third and fourth arguments specify the rounding mode and exception
14754behavior as described above.
14755
14756Semantics:
14757""""""""""
14758
14759This function returns the first value raised to the second power with an
14760unspecified sequence of rounding operations.
14761
14762
14763'``llvm.experimental.constrained.sin``' Intrinsic
14764^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14765
14766Syntax:
14767"""""""
14768
14769::
14770
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014771 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014772 @llvm.experimental.constrained.sin(<type> <op1>,
14773 metadata <rounding mode>,
14774 metadata <exception behavior>)
14775
14776Overview:
14777"""""""""
14778
14779The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
14780first operand.
14781
14782Arguments:
14783""""""""""
14784
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014785The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014786type.
14787
14788The second and third arguments specify the rounding mode and exception
14789behavior as described above.
14790
14791Semantics:
14792""""""""""
14793
14794This function returns the sine of the specified operand, returning the
14795same values as the libm ``sin`` functions would, and handles error
14796conditions in the same way.
14797
14798
14799'``llvm.experimental.constrained.cos``' Intrinsic
14800^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14801
14802Syntax:
14803"""""""
14804
14805::
14806
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014807 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014808 @llvm.experimental.constrained.cos(<type> <op1>,
14809 metadata <rounding mode>,
14810 metadata <exception behavior>)
14811
14812Overview:
14813"""""""""
14814
14815The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
14816first operand.
14817
14818Arguments:
14819""""""""""
14820
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014821The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014822type.
14823
14824The second and third arguments specify the rounding mode and exception
14825behavior as described above.
14826
14827Semantics:
14828""""""""""
14829
14830This function returns the cosine of the specified operand, returning the
14831same values as the libm ``cos`` functions would, and handles error
14832conditions in the same way.
14833
14834
14835'``llvm.experimental.constrained.exp``' Intrinsic
14836^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14837
14838Syntax:
14839"""""""
14840
14841::
14842
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014843 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014844 @llvm.experimental.constrained.exp(<type> <op1>,
14845 metadata <rounding mode>,
14846 metadata <exception behavior>)
14847
14848Overview:
14849"""""""""
14850
14851The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
14852exponential of the specified value.
14853
14854Arguments:
14855""""""""""
14856
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014857The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014858type.
14859
14860The second and third arguments specify the rounding mode and exception
14861behavior as described above.
14862
14863Semantics:
14864""""""""""
14865
14866This function returns the same values as the libm ``exp`` functions
14867would, and handles error conditions in the same way.
14868
14869
14870'``llvm.experimental.constrained.exp2``' Intrinsic
14871^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14872
14873Syntax:
14874"""""""
14875
14876::
14877
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014878 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014879 @llvm.experimental.constrained.exp2(<type> <op1>,
14880 metadata <rounding mode>,
14881 metadata <exception behavior>)
14882
14883Overview:
14884"""""""""
14885
14886The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
14887exponential of the specified value.
14888
14889
14890Arguments:
14891""""""""""
14892
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014893The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014894type.
14895
14896The second and third arguments specify the rounding mode and exception
14897behavior as described above.
14898
14899Semantics:
14900""""""""""
14901
14902This function returns the same values as the libm ``exp2`` functions
14903would, and handles error conditions in the same way.
14904
14905
14906'``llvm.experimental.constrained.log``' Intrinsic
14907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14908
14909Syntax:
14910"""""""
14911
14912::
14913
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014914 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014915 @llvm.experimental.constrained.log(<type> <op1>,
14916 metadata <rounding mode>,
14917 metadata <exception behavior>)
14918
14919Overview:
14920"""""""""
14921
14922The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
14923logarithm of the specified value.
14924
14925Arguments:
14926""""""""""
14927
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014928The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014929type.
14930
14931The second and third arguments specify the rounding mode and exception
14932behavior as described above.
14933
14934
14935Semantics:
14936""""""""""
14937
14938This function returns the same values as the libm ``log`` functions
14939would, and handles error conditions in the same way.
14940
14941
14942'``llvm.experimental.constrained.log10``' Intrinsic
14943^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14944
14945Syntax:
14946"""""""
14947
14948::
14949
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014950 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014951 @llvm.experimental.constrained.log10(<type> <op1>,
14952 metadata <rounding mode>,
14953 metadata <exception behavior>)
14954
14955Overview:
14956"""""""""
14957
14958The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
14959logarithm of the specified value.
14960
14961Arguments:
14962""""""""""
14963
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014964The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014965type.
14966
14967The second and third arguments specify the rounding mode and exception
14968behavior as described above.
14969
14970Semantics:
14971""""""""""
14972
14973This function returns the same values as the libm ``log10`` functions
14974would, and handles error conditions in the same way.
14975
14976
14977'``llvm.experimental.constrained.log2``' Intrinsic
14978^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14979
14980Syntax:
14981"""""""
14982
14983::
14984
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014985 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014986 @llvm.experimental.constrained.log2(<type> <op1>,
14987 metadata <rounding mode>,
14988 metadata <exception behavior>)
14989
14990Overview:
14991"""""""""
14992
14993The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
14994logarithm of the specified value.
14995
14996Arguments:
14997""""""""""
14998
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014999The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015000type.
15001
15002The second and third arguments specify the rounding mode and exception
15003behavior as described above.
15004
15005Semantics:
15006""""""""""
15007
15008This function returns the same values as the libm ``log2`` functions
15009would, and handles error conditions in the same way.
15010
15011
15012'``llvm.experimental.constrained.rint``' Intrinsic
15013^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15014
15015Syntax:
15016"""""""
15017
15018::
15019
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015020 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015021 @llvm.experimental.constrained.rint(<type> <op1>,
15022 metadata <rounding mode>,
15023 metadata <exception behavior>)
15024
15025Overview:
15026"""""""""
15027
15028The '``llvm.experimental.constrained.rint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015029operand rounded to the nearest integer. It may raise an inexact floating-point
Andrew Kaylorf4660012017-05-25 21:31:00 +000015030exception if the operand is not an integer.
15031
15032Arguments:
15033""""""""""
15034
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015035The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015036type.
15037
15038The second and third arguments specify the rounding mode and exception
15039behavior as described above.
15040
15041Semantics:
15042""""""""""
15043
15044This function returns the same values as the libm ``rint`` functions
15045would, and handles error conditions in the same way. The rounding mode is
15046described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015047mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000015048mode argument is only intended as information to the compiler.
15049
15050
15051'``llvm.experimental.constrained.nearbyint``' Intrinsic
15052^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15053
15054Syntax:
15055"""""""
15056
15057::
15058
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015059 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015060 @llvm.experimental.constrained.nearbyint(<type> <op1>,
15061 metadata <rounding mode>,
15062 metadata <exception behavior>)
15063
15064Overview:
15065"""""""""
15066
15067The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000015068operand rounded to the nearest integer. It will not raise an inexact
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015069floating-point exception if the operand is not an integer.
Andrew Kaylorf4660012017-05-25 21:31:00 +000015070
15071
15072Arguments:
15073""""""""""
15074
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015075The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015076type.
15077
15078The second and third arguments specify the rounding mode and exception
15079behavior as described above.
15080
15081Semantics:
15082""""""""""
15083
15084This function returns the same values as the libm ``nearbyint`` functions
15085would, and handles error conditions in the same way. The rounding mode is
15086described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015087mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000015088mode argument is only intended as information to the compiler.
15089
15090
Cameron McInally2ad870e2018-10-30 21:01:29 +000015091'``llvm.experimental.constrained.maxnum``' Intrinsic
Cameron McInally10056792018-11-02 15:51:43 +000015092^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Cameron McInally2ad870e2018-10-30 21:01:29 +000015093
15094Syntax:
15095"""""""
15096
15097::
15098
15099 declare <type>
15100 @llvm.experimental.constrained.maxnum(<type> <op1>, <type> <op2>
15101 metadata <rounding mode>,
15102 metadata <exception behavior>)
15103
15104Overview:
15105"""""""""
15106
Michael Kruse978ba612018-12-20 04:58:07 +000015107The '``llvm.experimental.constrained.maxnum``' intrinsic returns the maximum
Cameron McInally2ad870e2018-10-30 21:01:29 +000015108of the two arguments.
15109
15110Arguments:
15111""""""""""
15112
Michael Kruse978ba612018-12-20 04:58:07 +000015113The first two arguments and the return value are floating-point numbers
Cameron McInally2ad870e2018-10-30 21:01:29 +000015114of the same type.
15115
15116The third and forth arguments specify the rounding mode and exception
15117behavior as described above.
15118
15119Semantics:
15120""""""""""
15121
15122This function follows the IEEE-754 semantics for maxNum. The rounding mode is
15123described, not determined, by the rounding mode argument. The actual rounding
15124mode is determined by the runtime floating-point environment. The rounding
15125mode argument is only intended as information to the compiler.
15126
15127
15128'``llvm.experimental.constrained.minnum``' Intrinsic
Cameron McInally10056792018-11-02 15:51:43 +000015129^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Cameron McInally2ad870e2018-10-30 21:01:29 +000015130
15131Syntax:
15132"""""""
15133
15134::
15135
15136 declare <type>
15137 @llvm.experimental.constrained.minnum(<type> <op1>, <type> <op2>
15138 metadata <rounding mode>,
15139 metadata <exception behavior>)
15140
15141Overview:
15142"""""""""
15143
15144The '``llvm.experimental.constrained.minnum``' intrinsic returns the minimum
15145of the two arguments.
15146
15147Arguments:
15148""""""""""
15149
15150The first two arguments and the return value are floating-point numbers
15151of the same type.
15152
15153The third and forth arguments specify the rounding mode and exception
15154behavior as described above.
15155
15156Semantics:
15157""""""""""
15158
15159This function follows the IEEE-754 semantics for minNum. The rounding mode is
15160described, not determined, by the rounding mode argument. The actual rounding
15161mode is determined by the runtime floating-point environment. The rounding
15162mode argument is only intended as information to the compiler.
15163
15164
Cameron McInally9757d5d2018-11-05 15:59:49 +000015165'``llvm.experimental.constrained.ceil``' Intrinsic
15166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15167
15168Syntax:
15169"""""""
15170
15171::
15172
15173 declare <type>
15174 @llvm.experimental.constrained.ceil(<type> <op1>,
15175 metadata <rounding mode>,
15176 metadata <exception behavior>)
15177
15178Overview:
15179"""""""""
15180
Michael Kruse978ba612018-12-20 04:58:07 +000015181The '``llvm.experimental.constrained.ceil``' intrinsic returns the ceiling of the
Cameron McInally9757d5d2018-11-05 15:59:49 +000015182first operand.
15183
15184Arguments:
15185""""""""""
15186
15187The first argument and the return value are floating-point numbers of the same
15188type.
15189
15190The second and third arguments specify the rounding mode and exception
15191behavior as described above. The rounding mode is currently unused for this
15192intrinsic.
15193
15194Semantics:
15195""""""""""
15196
15197This function returns the same values as the libm ``ceil`` functions
15198would and handles error conditions in the same way.
15199
15200
15201'``llvm.experimental.constrained.floor``' Intrinsic
15202^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15203
15204Syntax:
15205"""""""
15206
15207::
15208
15209 declare <type>
15210 @llvm.experimental.constrained.floor(<type> <op1>,
15211 metadata <rounding mode>,
15212 metadata <exception behavior>)
15213
15214Overview:
15215"""""""""
15216
Michael Kruse978ba612018-12-20 04:58:07 +000015217The '``llvm.experimental.constrained.floor``' intrinsic returns the floor of the
Cameron McInally9757d5d2018-11-05 15:59:49 +000015218first operand.
15219
15220Arguments:
15221""""""""""
15222
15223The first argument and the return value are floating-point numbers of the same
15224type.
15225
15226The second and third arguments specify the rounding mode and exception
15227behavior as described above. The rounding mode is currently unused for this
15228intrinsic.
15229
15230Semantics:
15231""""""""""
15232
15233This function returns the same values as the libm ``floor`` functions
Michael Kruse978ba612018-12-20 04:58:07 +000015234would and handles error conditions in the same way.
Cameron McInally9757d5d2018-11-05 15:59:49 +000015235
15236
15237'``llvm.experimental.constrained.round``' Intrinsic
15238^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15239
15240Syntax:
15241"""""""
15242
15243::
15244
15245 declare <type>
15246 @llvm.experimental.constrained.round(<type> <op1>,
15247 metadata <rounding mode>,
15248 metadata <exception behavior>)
15249
15250Overview:
15251"""""""""
15252
Michael Kruse978ba612018-12-20 04:58:07 +000015253The '``llvm.experimental.constrained.round``' intrinsic returns the first
Cameron McInally9757d5d2018-11-05 15:59:49 +000015254operand rounded to the nearest integer.
15255
15256Arguments:
15257""""""""""
15258
15259The first argument and the return value are floating-point numbers of the same
15260type.
15261
15262The second and third arguments specify the rounding mode and exception
15263behavior as described above. The rounding mode is currently unused for this
15264intrinsic.
15265
15266Semantics:
15267""""""""""
15268
15269This function returns the same values as the libm ``round`` functions
15270would and handles error conditions in the same way.
15271
15272
15273'``llvm.experimental.constrained.trunc``' Intrinsic
15274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15275
15276Syntax:
15277"""""""
15278
15279::
15280
15281 declare <type>
15282 @llvm.experimental.constrained.trunc(<type> <op1>,
15283 metadata <truncing mode>,
15284 metadata <exception behavior>)
15285
15286Overview:
15287"""""""""
15288
Michael Kruse978ba612018-12-20 04:58:07 +000015289The '``llvm.experimental.constrained.trunc``' intrinsic returns the first
15290operand rounded to the nearest integer not larger in magnitude than the
Cameron McInally9757d5d2018-11-05 15:59:49 +000015291operand.
15292
15293Arguments:
15294""""""""""
15295
15296The first argument and the return value are floating-point numbers of the same
15297type.
15298
15299The second and third arguments specify the truncing mode and exception
15300behavior as described above. The truncing mode is currently unused for this
15301intrinsic.
15302
15303Semantics:
15304""""""""""
15305
15306This function returns the same values as the libm ``trunc`` functions
15307would and handles error conditions in the same way.
15308
15309
Sean Silvab084af42012-12-07 10:36:55 +000015310General Intrinsics
15311------------------
15312
15313This class of intrinsics is designed to be generic and has no specific
15314purpose.
15315
15316'``llvm.var.annotation``' Intrinsic
15317^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15318
15319Syntax:
15320"""""""
15321
15322::
15323
15324 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
15325
15326Overview:
15327"""""""""
15328
15329The '``llvm.var.annotation``' intrinsic.
15330
15331Arguments:
15332""""""""""
15333
15334The first argument is a pointer to a value, the second is a pointer to a
15335global string, the third is a pointer to a global string which is the
15336source file name, and the last argument is the line number.
15337
15338Semantics:
15339""""""""""
15340
15341This intrinsic allows annotation of local variables with arbitrary
15342strings. This can be useful for special purpose optimizations that want
15343to look for these annotations. These have no other defined use; they are
15344ignored by code generation and optimization.
15345
Michael Gottesman88d18832013-03-26 00:34:27 +000015346'``llvm.ptr.annotation.*``' Intrinsic
15347^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15348
15349Syntax:
15350"""""""
15351
15352This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
15353pointer to an integer of any width. *NOTE* you must specify an address space for
15354the pointer. The identifier for the default address space is the integer
15355'``0``'.
15356
15357::
15358
15359 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
15360 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
15361 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
15362 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
15363 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
15364
15365Overview:
15366"""""""""
15367
15368The '``llvm.ptr.annotation``' intrinsic.
15369
15370Arguments:
15371""""""""""
15372
15373The first argument is a pointer to an integer value of arbitrary bitwidth
15374(result of some expression), the second is a pointer to a global string, the
15375third is a pointer to a global string which is the source file name, and the
15376last argument is the line number. It returns the value of the first argument.
15377
15378Semantics:
15379""""""""""
15380
15381This intrinsic allows annotation of a pointer to an integer with arbitrary
15382strings. This can be useful for special purpose optimizations that want to look
15383for these annotations. These have no other defined use; they are ignored by code
15384generation and optimization.
15385
Sean Silvab084af42012-12-07 10:36:55 +000015386'``llvm.annotation.*``' Intrinsic
15387^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15388
15389Syntax:
15390"""""""
15391
15392This is an overloaded intrinsic. You can use '``llvm.annotation``' on
15393any integer bit width.
15394
15395::
15396
15397 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
15398 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
15399 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
15400 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
15401 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
15402
15403Overview:
15404"""""""""
15405
15406The '``llvm.annotation``' intrinsic.
15407
15408Arguments:
15409""""""""""
15410
15411The first argument is an integer value (result of some expression), the
15412second is a pointer to a global string, the third is a pointer to a
15413global string which is the source file name, and the last argument is
15414the line number. It returns the value of the first argument.
15415
15416Semantics:
15417""""""""""
15418
15419This intrinsic allows annotations to be put on arbitrary expressions
15420with arbitrary strings. This can be useful for special purpose
15421optimizations that want to look for these annotations. These have no
15422other defined use; they are ignored by code generation and optimization.
15423
Reid Klecknere33c94f2017-09-05 20:14:58 +000015424'``llvm.codeview.annotation``' Intrinsic
Reid Klecknerd4523682017-09-05 20:26:25 +000015425^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknere33c94f2017-09-05 20:14:58 +000015426
15427Syntax:
15428"""""""
15429
15430This annotation emits a label at its program point and an associated
15431``S_ANNOTATION`` codeview record with some additional string metadata. This is
15432used to implement MSVC's ``__annotation`` intrinsic. It is marked
15433``noduplicate``, so calls to this intrinsic prevent inlining and should be
15434considered expensive.
15435
15436::
15437
15438 declare void @llvm.codeview.annotation(metadata)
15439
15440Arguments:
15441""""""""""
15442
15443The argument should be an MDTuple containing any number of MDStrings.
15444
Sean Silvab084af42012-12-07 10:36:55 +000015445'``llvm.trap``' Intrinsic
15446^^^^^^^^^^^^^^^^^^^^^^^^^
15447
15448Syntax:
15449"""""""
15450
15451::
15452
Vedant Kumar808e1572018-11-14 19:53:41 +000015453 declare void @llvm.trap() cold noreturn nounwind
Sean Silvab084af42012-12-07 10:36:55 +000015454
15455Overview:
15456"""""""""
15457
15458The '``llvm.trap``' intrinsic.
15459
15460Arguments:
15461""""""""""
15462
15463None.
15464
15465Semantics:
15466""""""""""
15467
15468This intrinsic is lowered to the target dependent trap instruction. If
15469the target does not have a trap instruction, this intrinsic will be
15470lowered to a call of the ``abort()`` function.
15471
15472'``llvm.debugtrap``' Intrinsic
15473^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15474
15475Syntax:
15476"""""""
15477
15478::
15479
15480 declare void @llvm.debugtrap() nounwind
15481
15482Overview:
15483"""""""""
15484
15485The '``llvm.debugtrap``' intrinsic.
15486
15487Arguments:
15488""""""""""
15489
15490None.
15491
15492Semantics:
15493""""""""""
15494
15495This intrinsic is lowered to code which is intended to cause an
15496execution trap with the intention of requesting the attention of a
15497debugger.
15498
15499'``llvm.stackprotector``' Intrinsic
15500^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15501
15502Syntax:
15503"""""""
15504
15505::
15506
15507 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
15508
15509Overview:
15510"""""""""
15511
15512The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
15513onto the stack at ``slot``. The stack slot is adjusted to ensure that it
15514is placed on the stack before local variables.
15515
15516Arguments:
15517""""""""""
15518
15519The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
15520The first argument is the value loaded from the stack guard
15521``@__stack_chk_guard``. The second variable is an ``alloca`` that has
15522enough space to hold the value of the guard.
15523
15524Semantics:
15525""""""""""
15526
Michael Gottesmandafc7d92013-08-12 18:35:32 +000015527This intrinsic causes the prologue/epilogue inserter to force the position of
15528the ``AllocaInst`` stack slot to be before local variables on the stack. This is
15529to ensure that if a local variable on the stack is overwritten, it will destroy
15530the value of the guard. When the function exits, the guard on the stack is
15531checked against the original guard by ``llvm.stackprotectorcheck``. If they are
15532different, then ``llvm.stackprotectorcheck`` causes the program to abort by
15533calling the ``__stack_chk_fail()`` function.
15534
Tim Shene885d5e2016-04-19 19:40:37 +000015535'``llvm.stackguard``' Intrinsic
15536^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15537
15538Syntax:
15539"""""""
15540
15541::
15542
15543 declare i8* @llvm.stackguard()
15544
15545Overview:
15546"""""""""
15547
15548The ``llvm.stackguard`` intrinsic returns the system stack guard value.
15549
15550It should not be generated by frontends, since it is only for internal usage.
15551The reason why we create this intrinsic is that we still support IR form Stack
15552Protector in FastISel.
15553
15554Arguments:
15555""""""""""
15556
15557None.
15558
15559Semantics:
15560""""""""""
15561
15562On some platforms, the value returned by this intrinsic remains unchanged
15563between loads in the same thread. On other platforms, it returns the same
15564global variable value, if any, e.g. ``@__stack_chk_guard``.
15565
15566Currently some platforms have IR-level customized stack guard loading (e.g.
15567X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
15568in the future.
15569
Sean Silvab084af42012-12-07 10:36:55 +000015570'``llvm.objectsize``' Intrinsic
15571^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15572
15573Syntax:
15574"""""""
15575
15576::
15577
George Burgess IV56c7e882017-03-21 20:08:59 +000015578 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
15579 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000015580
15581Overview:
15582"""""""""
15583
15584The ``llvm.objectsize`` intrinsic is designed to provide information to
15585the optimizers to determine at compile time whether a) an operation
15586(like memcpy) will overflow a buffer that corresponds to an object, or
15587b) that a runtime check for overflow isn't necessary. An object in this
15588context means an allocation of a specific class, structure, array, or
15589other object.
15590
15591Arguments:
15592""""""""""
15593
George Burgess IV56c7e882017-03-21 20:08:59 +000015594The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
15595a pointer to or into the ``object``. The second argument determines whether
15596``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
15597is unknown. The third argument controls how ``llvm.objectsize`` acts when
George Burgess IV3fbfa9c42018-07-09 22:21:16 +000015598``null`` in address space 0 is used as its pointer argument. If it's ``false``,
15599``llvm.objectsize`` reports 0 bytes available when given ``null``. Otherwise, if
15600the ``null`` is in a non-zero address space or if ``true`` is given for the
15601third argument of ``llvm.objectsize``, we assume its size is unknown.
George Burgess IV56c7e882017-03-21 20:08:59 +000015602
15603The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000015604
15605Semantics:
15606""""""""""
15607
15608The ``llvm.objectsize`` intrinsic is lowered to a constant representing
15609the size of the object concerned. If the size cannot be determined at
15610compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
15611on the ``min`` argument).
15612
15613'``llvm.expect``' Intrinsic
15614^^^^^^^^^^^^^^^^^^^^^^^^^^^
15615
15616Syntax:
15617"""""""
15618
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000015619This is an overloaded intrinsic. You can use ``llvm.expect`` on any
15620integer bit width.
15621
Sean Silvab084af42012-12-07 10:36:55 +000015622::
15623
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000015624 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000015625 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
15626 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
15627
15628Overview:
15629"""""""""
15630
15631The ``llvm.expect`` intrinsic provides information about expected (the
15632most probable) value of ``val``, which can be used by optimizers.
15633
15634Arguments:
15635""""""""""
15636
15637The ``llvm.expect`` intrinsic takes two arguments. The first argument is
15638a value. The second argument is an expected value, this needs to be a
15639constant value, variables are not allowed.
15640
15641Semantics:
15642""""""""""
15643
15644This intrinsic is lowered to the ``val``.
15645
Philip Reamese0e90832015-04-26 22:23:12 +000015646.. _int_assume:
15647
Hal Finkel93046912014-07-25 21:13:35 +000015648'``llvm.assume``' Intrinsic
15649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15650
15651Syntax:
15652"""""""
15653
15654::
15655
15656 declare void @llvm.assume(i1 %cond)
15657
15658Overview:
15659"""""""""
15660
15661The ``llvm.assume`` allows the optimizer to assume that the provided
15662condition is true. This information can then be used in simplifying other parts
15663of the code.
15664
15665Arguments:
15666""""""""""
15667
15668The condition which the optimizer may assume is always true.
15669
15670Semantics:
15671""""""""""
15672
15673The intrinsic allows the optimizer to assume that the provided condition is
15674always true whenever the control flow reaches the intrinsic call. No code is
15675generated for this intrinsic, and instructions that contribute only to the
15676provided condition are not used for code generation. If the condition is
15677violated during execution, the behavior is undefined.
15678
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000015679Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000015680used by the ``llvm.assume`` intrinsic in order to preserve the instructions
15681only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000015682if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000015683sufficient overall improvement in code quality. For this reason,
15684``llvm.assume`` should not be used to document basic mathematical invariants
15685that the optimizer can otherwise deduce or facts that are of little use to the
15686optimizer.
15687
Daniel Berlin2c438a32017-02-07 19:29:25 +000015688.. _int_ssa_copy:
15689
15690'``llvm.ssa_copy``' Intrinsic
15691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15692
15693Syntax:
15694"""""""
15695
15696::
15697
15698 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
15699
15700Arguments:
15701""""""""""
15702
15703The first argument is an operand which is used as the returned value.
15704
15705Overview:
15706""""""""""
15707
15708The ``llvm.ssa_copy`` intrinsic can be used to attach information to
15709operations by copying them and giving them new names. For example,
15710the PredicateInfo utility uses it to build Extended SSA form, and
15711attach various forms of information to operands that dominate specific
15712uses. It is not meant for general use, only for building temporary
15713renaming forms that require value splits at certain points.
15714
Peter Collingbourne7efd7502016-06-24 21:21:32 +000015715.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000015716
Peter Collingbourne7efd7502016-06-24 21:21:32 +000015717'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000015718^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15719
15720Syntax:
15721"""""""
15722
15723::
15724
Peter Collingbourne7efd7502016-06-24 21:21:32 +000015725 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000015726
15727
15728Arguments:
15729""""""""""
15730
15731The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000015732metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000015733
15734Overview:
15735"""""""""
15736
Peter Collingbourne7efd7502016-06-24 21:21:32 +000015737The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
15738with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000015739
Peter Collingbourne0312f612016-06-25 00:23:04 +000015740'``llvm.type.checked.load``' Intrinsic
15741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15742
15743Syntax:
15744"""""""
15745
15746::
15747
15748 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
15749
15750
15751Arguments:
15752""""""""""
15753
15754The first argument is a pointer from which to load a function pointer. The
15755second argument is the byte offset from which to load the function pointer. The
15756third argument is a metadata object representing a :doc:`type identifier
15757<TypeMetadata>`.
15758
15759Overview:
15760"""""""""
15761
15762The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
15763virtual table pointer using type metadata. This intrinsic is used to implement
15764control flow integrity in conjunction with virtual call optimization. The
15765virtual call optimization pass will optimize away ``llvm.type.checked.load``
15766intrinsics associated with devirtualized calls, thereby removing the type
15767check in cases where it is not needed to enforce the control flow integrity
15768constraint.
15769
15770If the given pointer is associated with a type metadata identifier, this
15771function returns true as the second element of its return value. (Note that
15772the function may also return true if the given pointer is not associated
15773with a type metadata identifier.) If the function's return value's second
15774element is true, the following rules apply to the first element:
15775
15776- If the given pointer is associated with the given type metadata identifier,
15777 it is the function pointer loaded from the given byte offset from the given
15778 pointer.
15779
15780- If the given pointer is not associated with the given type metadata
15781 identifier, it is one of the following (the choice of which is unspecified):
15782
15783 1. The function pointer that would have been loaded from an arbitrarily chosen
15784 (through an unspecified mechanism) pointer associated with the type
15785 metadata.
15786
15787 2. If the function has a non-void return type, a pointer to a function that
15788 returns an unspecified value without causing side effects.
15789
15790If the function's return value's second element is false, the value of the
15791first element is undefined.
15792
15793
Sean Silvab084af42012-12-07 10:36:55 +000015794'``llvm.donothing``' Intrinsic
15795^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15796
15797Syntax:
15798"""""""
15799
15800::
15801
15802 declare void @llvm.donothing() nounwind readnone
15803
15804Overview:
15805"""""""""
15806
Juergen Ributzkac9161192014-10-23 22:36:13 +000015807The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000015808three intrinsics (besides ``llvm.experimental.patchpoint`` and
15809``llvm.experimental.gc.statepoint``) that can be called with an invoke
15810instruction.
Sean Silvab084af42012-12-07 10:36:55 +000015811
15812Arguments:
15813""""""""""
15814
15815None.
15816
15817Semantics:
15818""""""""""
15819
15820This intrinsic does nothing, and it's removed by optimizers and ignored
15821by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000015822
Sanjoy Dasb51325d2016-03-11 19:08:34 +000015823'``llvm.experimental.deoptimize``' Intrinsic
15824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15825
15826Syntax:
15827"""""""
15828
15829::
15830
15831 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
15832
15833Overview:
15834"""""""""
15835
15836This intrinsic, together with :ref:`deoptimization operand bundles
15837<deopt_opbundles>`, allow frontends to express transfer of control and
15838frame-local state from the currently executing (typically more specialized,
15839hence faster) version of a function into another (typically more generic, hence
15840slower) version.
15841
15842In languages with a fully integrated managed runtime like Java and JavaScript
15843this intrinsic can be used to implement "uncommon trap" or "side exit" like
15844functionality. In unmanaged languages like C and C++, this intrinsic can be
15845used to represent the slow paths of specialized functions.
15846
15847
15848Arguments:
15849""""""""""
15850
15851The intrinsic takes an arbitrary number of arguments, whose meaning is
15852decided by the :ref:`lowering strategy<deoptimize_lowering>`.
15853
15854Semantics:
15855""""""""""
15856
15857The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
15858deoptimization continuation (denoted using a :ref:`deoptimization
15859operand bundle <deopt_opbundles>`) and returns the value returned by
15860the deoptimization continuation. Defining the semantic properties of
15861the continuation itself is out of scope of the language reference --
15862as far as LLVM is concerned, the deoptimization continuation can
15863invoke arbitrary side effects, including reading from and writing to
15864the entire heap.
15865
15866Deoptimization continuations expressed using ``"deopt"`` operand bundles always
15867continue execution to the end of the physical frame containing them, so all
15868calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
15869
15870 - ``@llvm.experimental.deoptimize`` cannot be invoked.
15871 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
15872 - The ``ret`` instruction must return the value produced by the
15873 ``@llvm.experimental.deoptimize`` call if there is one, or void.
15874
15875Note that the above restrictions imply that the return type for a call to
15876``@llvm.experimental.deoptimize`` will match the return type of its immediate
15877caller.
15878
15879The inliner composes the ``"deopt"`` continuations of the caller into the
15880``"deopt"`` continuations present in the inlinee, and also updates calls to this
15881intrinsic to return directly from the frame of the function it inlined into.
15882
Sanjoy Dase0aa4142016-05-12 01:17:38 +000015883All declarations of ``@llvm.experimental.deoptimize`` must share the
15884same calling convention.
15885
Sanjoy Dasb51325d2016-03-11 19:08:34 +000015886.. _deoptimize_lowering:
15887
15888Lowering:
15889"""""""""
15890
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000015891Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
15892symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
15893ensure that this symbol is defined). The call arguments to
15894``@llvm.experimental.deoptimize`` are lowered as if they were formal
15895arguments of the specified types, and not as varargs.
15896
Sanjoy Dasb51325d2016-03-11 19:08:34 +000015897
Sanjoy Das021de052016-03-31 00:18:46 +000015898'``llvm.experimental.guard``' Intrinsic
15899^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15900
15901Syntax:
15902"""""""
15903
15904::
15905
15906 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
15907
15908Overview:
15909"""""""""
15910
15911This intrinsic, together with :ref:`deoptimization operand bundles
15912<deopt_opbundles>`, allows frontends to express guards or checks on
15913optimistic assumptions made during compilation. The semantics of
15914``@llvm.experimental.guard`` is defined in terms of
15915``@llvm.experimental.deoptimize`` -- its body is defined to be
15916equivalent to:
15917
Renato Golin124f2592016-07-20 12:16:38 +000015918.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000015919
Renato Golin124f2592016-07-20 12:16:38 +000015920 define void @llvm.experimental.guard(i1 %pred, <args...>) {
15921 %realPred = and i1 %pred, undef
15922 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000015923
Renato Golin124f2592016-07-20 12:16:38 +000015924 leave:
15925 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
15926 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000015927
Renato Golin124f2592016-07-20 12:16:38 +000015928 continue:
15929 ret void
15930 }
Sanjoy Das021de052016-03-31 00:18:46 +000015931
Sanjoy Das47cf2af2016-04-30 00:55:59 +000015932
15933with the optional ``[, !make.implicit !{}]`` present if and only if it
15934is present on the call site. For more details on ``!make.implicit``,
15935see :doc:`FaultMaps`.
15936
Sanjoy Das021de052016-03-31 00:18:46 +000015937In words, ``@llvm.experimental.guard`` executes the attached
15938``"deopt"`` continuation if (but **not** only if) its first argument
15939is ``false``. Since the optimizer is allowed to replace the ``undef``
15940with an arbitrary value, it can optimize guard to fail "spuriously",
15941i.e. without the original condition being false (hence the "not only
15942if"); and this allows for "check widening" type optimizations.
15943
15944``@llvm.experimental.guard`` cannot be invoked.
15945
15946
Max Kazantsevb9e65cb2018-12-07 14:39:46 +000015947'``llvm.experimental.widenable.condition``' Intrinsic
15948^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15949
15950Syntax:
15951"""""""
15952
15953::
15954
15955 declare i1 @llvm.experimental.widenable.condition()
15956
15957Overview:
15958"""""""""
15959
15960This intrinsic represents a "widenable condition" which is
15961boolean expressions with the following property: whether this
15962expression is `true` or `false`, the program is correct and
15963well-defined.
15964
15965Together with :ref:`deoptimization operand bundles <deopt_opbundles>`,
15966``@llvm.experimental.widenable.condition`` allows frontends to
15967express guards or checks on optimistic assumptions made during
15968compilation and represent them as branch instructions on special
15969conditions.
15970
15971While this may appear similar in semantics to `undef`, it is very
15972different in that an invocation produces a particular, singular
15973value. It is also intended to be lowered late, and remain available
15974for specific optimizations and transforms that can benefit from its
15975special properties.
15976
15977Arguments:
15978""""""""""
15979
15980None.
15981
15982Semantics:
15983""""""""""
15984
15985The intrinsic ``@llvm.experimental.widenable.condition()``
15986returns either `true` or `false`. For each evaluation of a call
15987to this intrinsic, the program must be valid and correct both if
15988it returns `true` and if it returns `false`. This allows
15989transformation passes to replace evaluations of this intrinsic
15990with either value whenever one is beneficial.
15991
15992When used in a branch condition, it allows us to choose between
15993two alternative correct solutions for the same problem, like
15994in example below:
15995
15996.. code-block:: text
15997
15998 %cond = call i1 @llvm.experimental.widenable.condition()
15999 br i1 %cond, label %solution_1, label %solution_2
16000
16001 label %fast_path:
16002 ; Apply memory-consuming but fast solution for a task.
16003
16004 label %slow_path:
16005 ; Cheap in memory but slow solution.
16006
16007Whether the result of intrinsic's call is `true` or `false`,
16008it should be correct to pick either solution. We can switch
16009between them by replacing the result of
16010``@llvm.experimental.widenable.condition`` with different
16011`i1` expressions.
16012
16013This is how it can be used to represent guards as widenable branches:
16014
16015.. code-block:: text
16016
16017 block:
16018 ; Unguarded instructions
16019 call void @llvm.experimental.guard(i1 %cond, <args...>) ["deopt"(<deopt_args...>)]
16020 ; Guarded instructions
16021
16022Can be expressed in an alternative equivalent form of explicit branch using
16023``@llvm.experimental.widenable.condition``:
16024
16025.. code-block:: text
16026
16027 block:
16028 ; Unguarded instructions
16029 %widenable_condition = call i1 @llvm.experimental.widenable.condition()
16030 %guard_condition = and i1 %cond, %widenable_condition
16031 br i1 %guard_condition, label %guarded, label %deopt
16032
16033 guarded:
16034 ; Guarded instructions
16035
16036 deopt:
16037 call type @llvm.experimental.deoptimize(<args...>) [ "deopt"(<deopt_args...>) ]
16038
16039So the block `guarded` is only reachable when `%cond` is `true`,
16040and it should be valid to go to the block `deopt` whenever `%cond`
16041is `true` or `false`.
16042
16043``@llvm.experimental.widenable.condition`` will never throw, thus
16044it cannot be invoked.
16045
16046Guard widening:
16047"""""""""""""""
16048
16049When ``@llvm.experimental.widenable.condition()`` is used in
16050condition of a guard represented as explicit branch, it is
16051legal to widen the guard's condition with any additional
16052conditions.
16053
16054Guard widening looks like replacement of
16055
16056.. code-block:: text
16057
16058 %widenable_cond = call i1 @llvm.experimental.widenable.condition()
16059 %guard_cond = and i1 %cond, %widenable_cond
16060 br i1 %guard_cond, label %guarded, label %deopt
16061
16062with
16063
16064.. code-block:: text
16065
16066 %widenable_cond = call i1 @llvm.experimental.widenable.condition()
16067 %new_cond = and i1 %any_other_cond, %widenable_cond
16068 %new_guard_cond = and i1 %cond, %new_cond
16069 br i1 %new_guard_cond, label %guarded, label %deopt
16070
16071for this branch. Here `%any_other_cond` is an arbitrarily chosen
16072well-defined `i1` value. By making guard widening, we may
16073impose stricter conditions on `guarded` block and bail to the
16074deopt when the new condition is not met.
16075
16076Lowering:
16077"""""""""
16078
16079Default lowering strategy is replacing the result of
16080call of ``@llvm.experimental.widenable.condition`` with
16081constant `true`. However it is always correct to replace
16082it with any other `i1` value. Any pass can
16083freely do it if it can benefit from non-default lowering.
16084
16085
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000016086'``llvm.load.relative``' Intrinsic
16087^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16088
16089Syntax:
16090"""""""
16091
16092::
16093
16094 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
16095
16096Overview:
16097"""""""""
16098
16099This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
16100adds ``%ptr`` to that value and returns it. The constant folder specifically
16101recognizes the form of this intrinsic and the constant initializers it may
16102load from; if a loaded constant initializer is known to have the form
16103``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
16104
16105LLVM provides that the calculation of such a constant initializer will
16106not overflow at link time under the medium code model if ``x`` is an
16107``unnamed_addr`` function. However, it does not provide this guarantee for
16108a constant initializer folded into a function body. This intrinsic can be
16109used to avoid the possibility of overflows when loading from such a constant.
16110
Dan Gohman2c74fe92017-11-08 21:59:51 +000016111'``llvm.sideeffect``' Intrinsic
16112^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16113
16114Syntax:
16115"""""""
16116
16117::
16118
16119 declare void @llvm.sideeffect() inaccessiblememonly nounwind
16120
16121Overview:
16122"""""""""
16123
16124The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
16125treat it as having side effects, so it can be inserted into a loop to
16126indicate that the loop shouldn't be assumed to terminate (which could
16127potentially lead to the loop being optimized away entirely), even if it's
16128an infinite loop with no other side effects.
16129
16130Arguments:
16131""""""""""
16132
16133None.
16134
16135Semantics:
16136""""""""""
16137
16138This intrinsic actually does nothing, but optimizers must assume that it
16139has externally observable side effects.
16140
James Y Knight72f76bf2018-11-07 15:24:12 +000016141'``llvm.is.constant.*``' Intrinsic
16142^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16143
16144Syntax:
16145"""""""
16146
16147This is an overloaded intrinsic. You can use llvm.is.constant with any argument type.
16148
16149::
16150
16151 declare i1 @llvm.is.constant.i32(i32 %operand) nounwind readnone
16152 declare i1 @llvm.is.constant.f32(float %operand) nounwind readnone
16153 declare i1 @llvm.is.constant.TYPENAME(TYPE %operand) nounwind readnone
16154
16155Overview:
16156"""""""""
16157
16158The '``llvm.is.constant``' intrinsic will return true if the argument
16159is known to be a manifest compile-time constant. It is guaranteed to
16160fold to either true or false before generating machine code.
16161
16162Semantics:
16163""""""""""
16164
16165This intrinsic generates no code. If its argument is known to be a
16166manifest compile-time constant value, then the intrinsic will be
16167converted to a constant true value. Otherwise, it will be converted to
16168a constant false value.
16169
16170In particular, note that if the argument is a constant expression
16171which refers to a global (the address of which _is_ a constant, but
16172not manifest during the compile), then the intrinsic evaluates to
16173false.
16174
16175The result also intentionally depends on the result of optimization
16176passes -- e.g., the result can change depending on whether a
16177function gets inlined or not. A function's parameters are
16178obviously not constant. However, a call like
16179``llvm.is.constant.i32(i32 %param)`` *can* return true after the
16180function is inlined, if the value passed to the function parameter was
16181a constant.
16182
16183On the other hand, if constant folding is not run, it will never
16184evaluate to true, even in simple cases.
16185
Andrew Trick5e029ce2013-12-24 02:57:25 +000016186Stack Map Intrinsics
16187--------------------
16188
16189LLVM provides experimental intrinsics to support runtime patching
16190mechanisms commonly desired in dynamic language JITs. These intrinsics
16191are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016192
16193Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000016194-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000016195
16196These intrinsics are similar to the standard library memory intrinsics except
16197that they perform memory transfer as a sequence of atomic memory accesses.
16198
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016199.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000016200
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016201'``llvm.memcpy.element.unordered.atomic``' Intrinsic
16202^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000016203
16204Syntax:
16205"""""""
16206
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016207This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000016208any integer bit width and for different address spaces. Not all targets
16209support all bit widths however.
16210
16211::
16212
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016213 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
16214 i8* <src>,
16215 i32 <len>,
16216 i32 <element_size>)
16217 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
16218 i8* <src>,
16219 i64 <len>,
16220 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000016221
16222Overview:
16223"""""""""
16224
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016225The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
16226'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
16227as arrays with elements that are exactly ``element_size`` bytes, and the copy between
16228buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
16229that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016230
16231Arguments:
16232""""""""""
16233
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016234The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
16235intrinsic, with the added constraint that ``len`` is required to be a positive integer
16236multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
16237``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016238
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016239``element_size`` must be a compile-time constant positive power of two no greater than
16240target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016241
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016242For each of the input pointers ``align`` parameter attribute must be specified. It
16243must be a power of two no less than the ``element_size``. Caller guarantees that
16244both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016245
16246Semantics:
16247""""""""""
16248
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016249The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
16250memory from the source location to the destination location. These locations are not
16251allowed to overlap. The memory copy is performed as a sequence of load/store operations
16252where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000016253aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016254
16255The order of the copy is unspecified. The same value may be read from the source
16256buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016257element. It is well defined to have concurrent reads and writes to both source and
16258destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016259
16260This intrinsic does not provide any additional ordering guarantees over those
16261provided by a set of unordered loads from the source location and stores to the
16262destination.
16263
16264Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000016265"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000016266
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016267In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
16268lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
16269is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016270
Daniel Neilson57226ef2017-07-12 15:25:26 +000016271Optimizer is allowed to inline memory copy when it's profitable to do so.
16272
16273'``llvm.memmove.element.unordered.atomic``' Intrinsic
16274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16275
16276Syntax:
16277"""""""
16278
16279This is an overloaded intrinsic. You can use
16280``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
16281different address spaces. Not all targets support all bit widths however.
16282
16283::
16284
16285 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
16286 i8* <src>,
16287 i32 <len>,
16288 i32 <element_size>)
16289 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
16290 i8* <src>,
16291 i64 <len>,
16292 i32 <element_size>)
16293
16294Overview:
16295"""""""""
16296
16297The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
16298of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
16299``src`` are treated as arrays with elements that are exactly ``element_size``
16300bytes, and the copy between buffers uses a sequence of
16301:ref:`unordered atomic <ordering>` load/store operations that are a positive
16302integer multiple of the ``element_size`` in size.
16303
16304Arguments:
16305""""""""""
16306
16307The first three arguments are the same as they are in the
16308:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
16309``len`` is required to be a positive integer multiple of the ``element_size``.
16310If ``len`` is not a positive integer multiple of ``element_size``, then the
16311behaviour of the intrinsic is undefined.
16312
16313``element_size`` must be a compile-time constant positive power of two no
16314greater than a target-specific atomic access size limit.
16315
16316For each of the input pointers the ``align`` parameter attribute must be
16317specified. It must be a power of two no less than the ``element_size``. Caller
16318guarantees that both the source and destination pointers are aligned to that
16319boundary.
16320
16321Semantics:
16322""""""""""
16323
16324The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
16325of memory from the source location to the destination location. These locations
16326are allowed to overlap. The memory copy is performed as a sequence of load/store
16327operations where each access is guaranteed to be a multiple of ``element_size``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000016328bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson57226ef2017-07-12 15:25:26 +000016329
16330The order of the copy is unspecified. The same value may be read from the source
16331buffer many times, but only one write is issued to the destination buffer per
16332element. It is well defined to have concurrent reads and writes to both source
16333and destination provided those reads and writes are unordered atomic when
16334specified.
16335
16336This intrinsic does not provide any additional ordering guarantees over those
16337provided by a set of unordered loads from the source location and stores to the
16338destination.
16339
16340Lowering:
16341"""""""""
16342
16343In the most general case call to the
16344'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
16345``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
16346actual element size.
16347
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016348The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000016349
16350.. _int_memset_element_unordered_atomic:
16351
16352'``llvm.memset.element.unordered.atomic``' Intrinsic
16353^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16354
16355Syntax:
16356"""""""
16357
16358This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
16359any integer bit width and for different address spaces. Not all targets
16360support all bit widths however.
16361
16362::
16363
16364 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
16365 i8 <value>,
16366 i32 <len>,
16367 i32 <element_size>)
16368 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
16369 i8 <value>,
16370 i64 <len>,
16371 i32 <element_size>)
16372
16373Overview:
16374"""""""""
16375
16376The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
16377'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
16378with elements that are exactly ``element_size`` bytes, and the assignment to that array
16379uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
16380that are a positive integer multiple of the ``element_size`` in size.
16381
16382Arguments:
16383""""""""""
16384
16385The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
16386intrinsic, with the added constraint that ``len`` is required to be a positive integer
16387multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
16388``element_size``, then the behaviour of the intrinsic is undefined.
16389
16390``element_size`` must be a compile-time constant positive power of two no greater than
16391target-specific atomic access size limit.
16392
16393The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
16394must be a power of two no less than the ``element_size``. Caller guarantees that
16395the destination pointer is aligned to that boundary.
16396
16397Semantics:
16398""""""""""
16399
16400The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
16401memory starting at the destination location to the given ``value``. The memory is
16402set with a sequence of store operations where each access is guaranteed to be a
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000016403multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson965613e2017-07-12 21:57:23 +000016404
16405The order of the assignment is unspecified. Only one write is issued to the
16406destination buffer per element. It is well defined to have concurrent reads and
16407writes to the destination provided those reads and writes are unordered atomic
16408when specified.
16409
16410This intrinsic does not provide any additional ordering guarantees over those
16411provided by a set of unordered stores to the destination.
16412
16413Lowering:
16414"""""""""
16415
16416In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
16417lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
16418is replaced with an actual element size.
16419
16420The optimizer is allowed to inline the memory assignment when it's profitable to do so.
Erik Pilkingtonbdad92a2018-12-10 18:19:43 +000016421
16422Objective-C ARC Runtime Intrinsics
16423----------------------------------
16424
16425LLVM provides intrinsics that lower to Objective-C ARC runtime entry points.
16426LLVM is aware of the semantics of these functions, and optimizes based on that
16427knowledge. You can read more about the details of Objective-C ARC `here
16428<https://clang.llvm.org/docs/AutomaticReferenceCounting.html>`_.
16429
16430'``llvm.objc.autorelease``' Intrinsic
16431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16432
16433Syntax:
16434"""""""
16435::
16436
16437 declare i8* @llvm.objc.autorelease(i8*)
16438
16439Lowering:
16440"""""""""
16441
16442Lowers to a call to `objc_autorelease <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autorelease>`_.
16443
16444'``llvm.objc.autoreleasePoolPop``' Intrinsic
16445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16446
16447Syntax:
16448"""""""
16449::
16450
16451 declare void @llvm.objc.autoreleasePoolPop(i8*)
16452
16453Lowering:
16454"""""""""
16455
16456Lowers to a call to `objc_autoreleasePoolPop <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-autoreleasepoolpop-void-pool>`_.
16457
16458'``llvm.objc.autoreleasePoolPush``' Intrinsic
16459^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16460
16461Syntax:
16462"""""""
16463::
16464
16465 declare i8* @llvm.objc.autoreleasePoolPush()
16466
16467Lowering:
16468"""""""""
16469
16470Lowers to a call to `objc_autoreleasePoolPush <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-autoreleasepoolpush-void>`_.
16471
16472'``llvm.objc.autoreleaseReturnValue``' Intrinsic
16473^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16474
16475Syntax:
16476"""""""
16477::
16478
16479 declare i8* @llvm.objc.autoreleaseReturnValue(i8*)
16480
16481Lowering:
16482"""""""""
16483
16484Lowers to a call to `objc_autoreleaseReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue>`_.
16485
16486'``llvm.objc.copyWeak``' Intrinsic
16487^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16488
16489Syntax:
16490"""""""
16491::
16492
16493 declare void @llvm.objc.copyWeak(i8**, i8**)
16494
16495Lowering:
16496"""""""""
16497
16498Lowers to a call to `objc_copyWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-copyweak-id-dest-id-src>`_.
16499
16500'``llvm.objc.destroyWeak``' Intrinsic
16501^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16502
16503Syntax:
16504"""""""
16505::
16506
16507 declare void @llvm.objc.destroyWeak(i8**)
16508
16509Lowering:
16510"""""""""
16511
16512Lowers to a call to `objc_destroyWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-destroyweak-id-object>`_.
16513
16514'``llvm.objc.initWeak``' Intrinsic
16515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16516
16517Syntax:
16518"""""""
16519::
16520
16521 declare i8* @llvm.objc.initWeak(i8**, i8*)
16522
16523Lowering:
16524"""""""""
16525
16526Lowers to a call to `objc_initWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-initweak>`_.
16527
16528'``llvm.objc.loadWeak``' Intrinsic
16529^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16530
16531Syntax:
16532"""""""
16533::
16534
16535 declare i8* @llvm.objc.loadWeak(i8**)
16536
16537Lowering:
16538"""""""""
16539
16540Lowers to a call to `objc_loadWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-loadweak>`_.
16541
16542'``llvm.objc.loadWeakRetained``' Intrinsic
16543^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16544
16545Syntax:
16546"""""""
16547::
16548
16549 declare i8* @llvm.objc.loadWeakRetained(i8**)
16550
16551Lowering:
16552"""""""""
16553
16554Lowers to a call to `objc_loadWeakRetained <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-loadweakretained>`_.
16555
16556'``llvm.objc.moveWeak``' Intrinsic
16557^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16558
16559Syntax:
16560"""""""
16561::
16562
16563 declare void @llvm.objc.moveWeak(i8**, i8**)
16564
16565Lowering:
16566"""""""""
16567
16568Lowers to a call to `objc_moveWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-moveweak-id-dest-id-src>`_.
16569
16570'``llvm.objc.release``' Intrinsic
16571^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16572
16573Syntax:
16574"""""""
16575::
16576
16577 declare void @llvm.objc.release(i8*)
16578
16579Lowering:
16580"""""""""
16581
16582Lowers to a call to `objc_release <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-release-id-value>`_.
16583
16584'``llvm.objc.retain``' Intrinsic
16585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16586
16587Syntax:
16588"""""""
16589::
16590
16591 declare i8* @llvm.objc.retain(i8*)
16592
16593Lowering:
16594"""""""""
16595
16596Lowers to a call to `objc_retain <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retain>`_.
16597
16598'``llvm.objc.retainAutorelease``' Intrinsic
16599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16600
16601Syntax:
16602"""""""
16603::
16604
16605 declare i8* @llvm.objc.retainAutorelease(i8*)
16606
16607Lowering:
16608"""""""""
16609
16610Lowers to a call to `objc_retainAutorelease <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautorelease>`_.
16611
16612'``llvm.objc.retainAutoreleaseReturnValue``' Intrinsic
16613^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16614
16615Syntax:
16616"""""""
16617::
16618
16619 declare i8* @llvm.objc.retainAutoreleaseReturnValue(i8*)
16620
16621Lowering:
16622"""""""""
16623
16624Lowers to a call to `objc_retainAutoreleaseReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautoreleasereturnvalue>`_.
16625
16626'``llvm.objc.retainAutoreleasedReturnValue``' Intrinsic
16627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16628
16629Syntax:
16630"""""""
16631::
16632
16633 declare i8* @llvm.objc.retainAutoreleasedReturnValue(i8*)
16634
16635Lowering:
16636"""""""""
16637
16638Lowers to a call to `objc_retainAutoreleasedReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautoreleasedreturnvalue>`_.
16639
16640'``llvm.objc.retainBlock``' Intrinsic
16641^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16642
16643Syntax:
16644"""""""
16645::
16646
16647 declare i8* @llvm.objc.retainBlock(i8*)
16648
16649Lowering:
16650"""""""""
16651
16652Lowers to a call to `objc_retainBlock <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainblock>`_.
16653
16654'``llvm.objc.storeStrong``' Intrinsic
16655^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16656
16657Syntax:
16658"""""""
16659::
16660
16661 declare void @llvm.objc.storeStrong(i8**, i8*)
16662
16663Lowering:
16664"""""""""
16665
16666Lowers to a call to `objc_storeStrong <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-storestrong-id-object-id-value>`_.
16667
16668'``llvm.objc.storeWeak``' Intrinsic
16669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16670
16671Syntax:
16672"""""""
16673::
16674
16675 declare i8* @llvm.objc.storeWeak(i8**, i8*)
16676
16677Lowering:
16678"""""""""
16679
16680Lowers to a call to `objc_storeWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-storeweak>`_.