blob: 2aba2077653f8891d34698f5c0f8818eb50045ae [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
Hans Wennborg2cfcc012018-05-22 10:14:07 +000083 can be used on global values to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000327 floating-point types are supported.
Sean Silvab084af42012-12-07 10:36:55 +0000328 - On *X86-64* only supports up to 10 bit type parameters and 6
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000329 floating-point parameters.
Sean Silvab084af42012-12-07 10:36:55 +0000330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Sean Fertilec70d28b2017-10-26 15:00:26 +0000530.. _runtime_preemption_model:
531
532Runtime Preemption Specifiers
533-----------------------------
534
535Global variables, functions and aliases may have an optional runtime preemption
536specifier. If a preemption specifier isn't given explicitly, then a
537symbol is assumed to be ``dso_preemptable``.
538
539``dso_preemptable``
540 Indicates that the function or variable may be replaced by a symbol from
541 outside the linkage unit at runtime.
542
543``dso_local``
544 The compiler may assume that a function or variable marked as ``dso_local``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000545 will resolve to a symbol within the same linkage unit. Direct access will
Sean Fertilec70d28b2017-10-26 15:00:26 +0000546 be generated even if the definition is not within this compilation unit.
547
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000548.. _namedtypes:
549
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000550Structure Types
551---------------
Sean Silvab084af42012-12-07 10:36:55 +0000552
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000553LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000554types <t_struct>`. Literal types are uniqued structurally, but identified types
555are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000556to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000557
Sean Silva706fba52015-08-06 22:56:24 +0000558An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000559
560.. code-block:: llvm
561
562 %mytype = type { %mytype*, i32 }
563
Sean Silvaa1190322015-08-06 22:56:48 +0000564Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000565literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000566
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000567.. _nointptrtype:
568
569Non-Integral Pointer Type
570-------------------------
571
572Note: non-integral pointer types are a work in progress, and they should be
573considered experimental at this time.
574
575LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000576spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
577Non-integral pointer types represent pointers that have an *unspecified* bitwise
578representation; that is, the integral representation may be target dependent or
579unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000580
581``inttoptr`` instructions converting integers to non-integral pointer types are
582ill-typed, and so are ``ptrtoint`` instructions converting values of
583non-integral pointer types to integers. Vector versions of said instructions
584are ill-typed as well.
585
Sean Silvab084af42012-12-07 10:36:55 +0000586.. _globalvars:
587
588Global Variables
589----------------
590
591Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000592instead of run-time.
593
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000594Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000595
596Global variables in other translation units can also be declared, in which
597case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000598
Bob Wilson85b24f22014-06-12 20:40:33 +0000599Either global variable definitions or declarations may have an explicit section
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000600to be placed in and may have an optional explicit alignment specified. If there
601is a mismatch between the explicit or inferred section information for the
602variable declaration and its definition the resulting behavior is undefined.
Bob Wilson85b24f22014-06-12 20:40:33 +0000603
Michael Gottesman006039c2013-01-31 05:48:48 +0000604A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000605the contents of the variable will **never** be modified (enabling better
606optimization, allowing the global data to be placed in the read-only
607section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000608initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000609variable.
610
611LLVM explicitly allows *declarations* of global variables to be marked
612constant, even if the final definition of the global is not. This
613capability can be used to enable slightly better optimization of the
614program, but requires the language definition to guarantee that
615optimizations based on the 'constantness' are valid for the translation
616units that do not include the definition.
617
618As SSA values, global variables define pointer values that are in scope
619(i.e. they dominate) all basic blocks in the program. Global variables
620always define a pointer to their "content" type because they describe a
621region of memory, and all memory objects in LLVM are accessed through
622pointers.
623
624Global variables can be marked with ``unnamed_addr`` which indicates
625that the address is not significant, only the content. Constants marked
626like this can be merged with other constants if they have the same
627initializer. Note that a constant with significant address *can* be
628merged with a ``unnamed_addr`` constant, the result being a constant
629whose address is significant.
630
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000631If the ``local_unnamed_addr`` attribute is given, the address is known to
632not be significant within the module.
633
Sean Silvab084af42012-12-07 10:36:55 +0000634A global variable may be declared to reside in a target-specific
635numbered address space. For targets that support them, address spaces
636may affect how optimizations are performed and/or what target
637instructions are used to access the variable. The default address space
638is zero. The address space qualifier must precede any other attributes.
639
640LLVM allows an explicit section to be specified for globals. If the
641target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000642Additionally, the global can placed in a comdat if the target has the necessary
643support.
Sean Silvab084af42012-12-07 10:36:55 +0000644
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000645External declarations may have an explicit section specified. Section
646information is retained in LLVM IR for targets that make use of this
647information. Attaching section information to an external declaration is an
648assertion that its definition is located in the specified section. If the
649definition is located in a different section, the behavior is undefined.
Erich Keane0343ef82017-08-22 15:30:43 +0000650
Michael Gottesmane743a302013-02-04 03:22:00 +0000651By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000652variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000653initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000654true even for variables potentially accessible from outside the
655module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000656``@llvm.used`` or dllexported variables. This assumption may be suppressed
657by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659An explicit alignment may be specified for a global, which must be a
660power of 2. If not present, or if the alignment is set to zero, the
661alignment of the global is set by the target to whatever it feels
662convenient. If an explicit alignment is specified, the global is forced
663to have exactly that alignment. Targets and optimizers are not allowed
664to over-align the global if the global has an assigned section. In this
665case, the extra alignment could be observable: for example, code could
666assume that the globals are densely packed in their section and try to
667iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000668iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000669
Javed Absarf3d79042017-05-11 12:28:08 +0000670Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
Sean Fertilec70d28b2017-10-26 15:00:26 +0000671an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
Javed Absarf3d79042017-05-11 12:28:08 +0000672an optional :ref:`global attributes <glattrs>` and
673an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000674
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000675Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000676:ref:`Thread Local Storage Model <tls_model>`.
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678Syntax::
679
Sean Fertilec70d28b2017-10-26 15:00:26 +0000680 @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
681 [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
683 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000684 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000686 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000687
Sean Silvab084af42012-12-07 10:36:55 +0000688For example, the following defines a global in a numbered address space
689with an initializer, section, and alignment:
690
691.. code-block:: llvm
692
693 @G = addrspace(5) constant float 1.0, section "foo", align 4
694
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000695The following example just declares a global variable
696
697.. code-block:: llvm
698
699 @G = external global i32
700
Sean Silvab084af42012-12-07 10:36:55 +0000701The following example defines a thread-local global with the
702``initialexec`` TLS model:
703
704.. code-block:: llvm
705
706 @G = thread_local(initialexec) global i32 0, align 4
707
708.. _functionstructure:
709
710Functions
711---------
712
713LLVM function definitions consist of the "``define``" keyword, an
Sean Fertilec70d28b2017-10-26 15:00:26 +0000714optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
715specifier <runtime_preemption_model>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000716style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
717an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000718an optional ``unnamed_addr`` attribute, a return type, an optional
719:ref:`parameter attribute <paramattrs>` for the return type, a function
720name, a (possibly empty) argument list (each with optional :ref:`parameter
721attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000722an optional address space, an optional section, an optional alignment,
David Majnemerdad0a642014-06-27 18:19:56 +0000723an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000724an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000725an optional :ref:`prologue <prologuedata>`,
726an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000727an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000728an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000731optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
732<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
733optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000734or ``local_unnamed_addr`` attribute, an optional address space, a return type,
735an optional :ref:`parameter attribute <paramattrs>` for the return type, a function name, a possibly
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000736empty list of arguments, an optional alignment, an optional :ref:`garbage
737collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
738:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000739
Bill Wendling6822ecb2013-10-27 05:09:12 +0000740A function definition contains a list of basic blocks, forming the CFG (Control
741Flow Graph) for the function. Each basic block may optionally start with a label
742(giving the basic block a symbol table entry), contains a list of instructions,
743and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
744function return). If an explicit label is not provided, a block is assigned an
745implicit numbered label, using the next value from the same counter as used for
746unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
747entry block does not have an explicit label, it will be assigned label "%0",
748then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000749
750The first basic block in a function is special in two ways: it is
751immediately executed on entrance to the function, and it is not allowed
752to have predecessor basic blocks (i.e. there can not be any branches to
753the entry block of a function). Because the block can have no
754predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
755
756LLVM allows an explicit section to be specified for functions. If the
757target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000758Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000759
760An explicit alignment may be specified for a function. If not present,
761or if the alignment is set to zero, the alignment of the function is set
762by the target to whatever it feels convenient. If an explicit alignment
763is specified, the function is forced to have at least that much
764alignment. All alignments must be a power of 2.
765
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000766If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000767be significant and two identical functions can be merged.
768
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000769If the ``local_unnamed_addr`` attribute is given, the address is known to
770not be significant within the module.
771
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000772If an explicit address space is not given, it will default to the program
773address space from the :ref:`datalayout string<langref_datalayout>`.
774
Sean Silvab084af42012-12-07 10:36:55 +0000775Syntax::
776
Sean Fertilec70d28b2017-10-26 15:00:26 +0000777 define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000778 [cconv] [ret attrs]
779 <ResultType> @<FunctionName> ([argument list])
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000780 [(unnamed_addr|local_unnamed_addr)] [AddrSpace] [fn Attrs]
781 [section "name"] [comdat [($name)]] [align N] [gc] [prefix Constant]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000782 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000783
Sean Silva706fba52015-08-06 22:56:24 +0000784The argument list is a comma separated sequence of arguments where each
785argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000786
787Syntax::
788
789 <type> [parameter Attrs] [name]
790
791
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000792.. _langref_aliases:
793
Sean Silvab084af42012-12-07 10:36:55 +0000794Aliases
795-------
796
Rafael Espindola64c1e182014-06-03 02:41:57 +0000797Aliases, unlike function or variables, don't create any new data. They
798are just a new symbol and metadata for an existing position.
799
800Aliases have a name and an aliasee that is either a global value or a
801constant expression.
802
Nico Rieck7157bb72014-01-14 15:22:47 +0000803Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Sean Fertilec70d28b2017-10-26 15:00:26 +0000804:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000805:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
806<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000807
808Syntax::
809
Sean Fertilec70d28b2017-10-26 15:00:26 +0000810 @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000811
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000812The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000813``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000814might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000815
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000816Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000817the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
818to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000819
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000820If the ``local_unnamed_addr`` attribute is given, the address is known to
821not be significant within the module.
822
Rafael Espindola64c1e182014-06-03 02:41:57 +0000823Since aliases are only a second name, some restrictions apply, of which
824some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000825
Rafael Espindola64c1e182014-06-03 02:41:57 +0000826* The expression defining the aliasee must be computable at assembly
827 time. Since it is just a name, no relocations can be used.
828
829* No alias in the expression can be weak as the possibility of the
830 intermediate alias being overridden cannot be represented in an
831 object file.
832
833* No global value in the expression can be a declaration, since that
834 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000835
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000836.. _langref_ifunc:
837
838IFuncs
839-------
840
841IFuncs, like as aliases, don't create any new data or func. They are just a new
842symbol that dynamic linker resolves at runtime by calling a resolver function.
843
844IFuncs have a name and a resolver that is a function called by dynamic linker
845that returns address of another function associated with the name.
846
847IFunc may have an optional :ref:`linkage type <linkage>` and an optional
848:ref:`visibility style <visibility>`.
849
850Syntax::
851
852 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
853
854
David Majnemerdad0a642014-06-27 18:19:56 +0000855.. _langref_comdats:
856
857Comdats
858-------
859
860Comdat IR provides access to COFF and ELF object file COMDAT functionality.
861
Sean Silvaa1190322015-08-06 22:56:48 +0000862Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000863specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000864that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000865aliasee computes to, if any.
866
867Comdats have a selection kind to provide input on how the linker should
868choose between keys in two different object files.
869
870Syntax::
871
872 $<Name> = comdat SelectionKind
873
874The selection kind must be one of the following:
875
876``any``
877 The linker may choose any COMDAT key, the choice is arbitrary.
878``exactmatch``
879 The linker may choose any COMDAT key but the sections must contain the
880 same data.
881``largest``
882 The linker will choose the section containing the largest COMDAT key.
883``noduplicates``
884 The linker requires that only section with this COMDAT key exist.
885``samesize``
886 The linker may choose any COMDAT key but the sections must contain the
887 same amount of data.
888
Sam Cleggea7cace2018-01-09 23:43:14 +0000889Note that the Mach-O platform doesn't support COMDATs, and ELF and WebAssembly
890only support ``any`` as a selection kind.
David Majnemerdad0a642014-06-27 18:19:56 +0000891
892Here is an example of a COMDAT group where a function will only be selected if
893the COMDAT key's section is the largest:
894
Renato Golin124f2592016-07-20 12:16:38 +0000895.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000896
897 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000898 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000899
Rafael Espindola83a362c2015-01-06 22:55:16 +0000900 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000901 ret void
902 }
903
Rafael Espindola83a362c2015-01-06 22:55:16 +0000904As a syntactic sugar the ``$name`` can be omitted if the name is the same as
905the global name:
906
Renato Golin124f2592016-07-20 12:16:38 +0000907.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000908
909 $foo = comdat any
910 @foo = global i32 2, comdat
911
912
David Majnemerdad0a642014-06-27 18:19:56 +0000913In a COFF object file, this will create a COMDAT section with selection kind
914``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
915and another COMDAT section with selection kind
916``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000917section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000918
919There are some restrictions on the properties of the global object.
920It, or an alias to it, must have the same name as the COMDAT group when
921targeting COFF.
922The contents and size of this object may be used during link-time to determine
923which COMDAT groups get selected depending on the selection kind.
924Because the name of the object must match the name of the COMDAT group, the
925linkage of the global object must not be local; local symbols can get renamed
926if a collision occurs in the symbol table.
927
928The combined use of COMDATS and section attributes may yield surprising results.
929For example:
930
Renato Golin124f2592016-07-20 12:16:38 +0000931.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000932
933 $foo = comdat any
934 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000935 @g1 = global i32 42, section "sec", comdat($foo)
936 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000937
938From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000939with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000940COMDAT groups and COMDATs, at the object file level, are represented by
941sections.
942
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000943Note that certain IR constructs like global variables and functions may
944create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000945COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000946in individual sections (e.g. when `-data-sections` or `-function-sections`
947is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000948
Sean Silvab084af42012-12-07 10:36:55 +0000949.. _namedmetadatastructure:
950
951Named Metadata
952--------------
953
954Named metadata is a collection of metadata. :ref:`Metadata
955nodes <metadata>` (but not metadata strings) are the only valid
956operands for a named metadata.
957
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000958#. Named metadata are represented as a string of characters with the
959 metadata prefix. The rules for metadata names are the same as for
960 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
961 are still valid, which allows any character to be part of a name.
962
Sean Silvab084af42012-12-07 10:36:55 +0000963Syntax::
964
965 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000966 !0 = !{!"zero"}
967 !1 = !{!"one"}
968 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000969 ; A named metadata.
970 !name = !{!0, !1, !2}
971
972.. _paramattrs:
973
974Parameter Attributes
975--------------------
976
977The return type and each parameter of a function type may have a set of
978*parameter attributes* associated with them. Parameter attributes are
979used to communicate additional information about the result or
980parameters of a function. Parameter attributes are considered to be part
981of the function, not of the function type, so functions with different
982parameter attributes can have the same function type.
983
984Parameter attributes are simple keywords that follow the type specified.
985If multiple parameter attributes are needed, they are space separated.
986For example:
987
988.. code-block:: llvm
989
990 declare i32 @printf(i8* noalias nocapture, ...)
991 declare i32 @atoi(i8 zeroext)
992 declare signext i8 @returns_signed_char()
993
994Note that any attributes for the function result (``nounwind``,
995``readonly``) come immediately after the argument list.
996
997Currently, only the following parameter attributes are defined:
998
999``zeroext``
1000 This indicates to the code generator that the parameter or return
1001 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +00001002 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +00001003``signext``
1004 This indicates to the code generator that the parameter or return
1005 value should be sign-extended to the extent required by the target's
1006 ABI (which is usually 32-bits) by the caller (for a parameter) or
1007 the callee (for a return value).
1008``inreg``
1009 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +00001010 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +00001011 a function call or return (usually, by putting it in a register as
1012 opposed to memory, though some targets use it to distinguish between
1013 two different kinds of registers). Use of this attribute is
1014 target-specific.
1015``byval``
1016 This indicates that the pointer parameter should really be passed by
1017 value to the function. The attribute implies that a hidden copy of
1018 the pointee is made between the caller and the callee, so the callee
1019 is unable to modify the value in the caller. This attribute is only
1020 valid on LLVM pointer arguments. It is generally used to pass
1021 structs and arrays by value, but is also valid on pointers to
1022 scalars. The copy is considered to belong to the caller not the
1023 callee (for example, ``readonly`` functions should not write to
1024 ``byval`` parameters). This is not a valid attribute for return
1025 values.
1026
1027 The byval attribute also supports specifying an alignment with the
1028 align attribute. It indicates the alignment of the stack slot to
1029 form and the known alignment of the pointer specified to the call
1030 site. If the alignment is not specified, then the code generator
1031 makes a target-specific assumption.
1032
Reid Klecknera534a382013-12-19 02:14:12 +00001033.. _attr_inalloca:
1034
1035``inalloca``
1036
Reid Kleckner60d3a832014-01-16 22:59:24 +00001037 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001038 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001039 be a pointer to stack memory produced by an ``alloca`` instruction.
1040 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001041 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001042 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001043
Reid Kleckner436c42e2014-01-17 23:58:17 +00001044 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001045 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001046 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001047 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001048 ``inalloca`` attribute also disables LLVM's implicit lowering of
1049 large aggregate return values, which means that frontend authors
1050 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001051
Reid Kleckner60d3a832014-01-16 22:59:24 +00001052 When the call site is reached, the argument allocation must have
1053 been the most recent stack allocation that is still live, or the
Eli Friedman0f522bd2018-07-25 18:26:38 +00001054 behavior is undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001055 space after an argument allocation and before its call site, but it
1056 must be cleared off with :ref:`llvm.stackrestore
1057 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001058
1059 See :doc:`InAlloca` for more information on how to use this
1060 attribute.
1061
Sean Silvab084af42012-12-07 10:36:55 +00001062``sret``
1063 This indicates that the pointer parameter specifies the address of a
1064 structure that is the return value of the function in the source
1065 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001066 loads and stores to the structure may be assumed by the callee not
1067 to trap and to be properly aligned. This is not a valid attribute
1068 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001069
Daniel Neilson1e687242018-01-19 17:13:12 +00001070.. _attr_align:
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001071
Hal Finkelccc70902014-07-22 16:58:55 +00001072``align <n>``
1073 This indicates that the pointer value may be assumed by the optimizer to
1074 have the specified alignment.
1075
1076 Note that this attribute has additional semantics when combined with the
1077 ``byval`` attribute.
1078
Sean Silva1703e702014-04-08 21:06:22 +00001079.. _noalias:
1080
Sean Silvab084af42012-12-07 10:36:55 +00001081``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001082 This indicates that objects accessed via pointer values
1083 :ref:`based <pointeraliasing>` on the argument or return value are not also
1084 accessed, during the execution of the function, via pointer values not
1085 *based* on the argument or return value. The attribute on a return value
1086 also has additional semantics described below. The caller shares the
1087 responsibility with the callee for ensuring that these requirements are met.
1088 For further details, please see the discussion of the NoAlias response in
1089 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001090
1091 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001092 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001093
1094 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001095 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1096 attribute on return values are stronger than the semantics of the attribute
1097 when used on function arguments. On function return values, the ``noalias``
1098 attribute indicates that the function acts like a system memory allocation
1099 function, returning a pointer to allocated storage disjoint from the
1100 storage for any other object accessible to the caller.
1101
Sean Silvab084af42012-12-07 10:36:55 +00001102``nocapture``
1103 This indicates that the callee does not make any copies of the
1104 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001105 attribute for return values. Addresses used in volatile operations
1106 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001107
1108.. _nest:
1109
1110``nest``
1111 This indicates that the pointer parameter can be excised using the
1112 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001113 attribute for return values and can only be applied to one parameter.
1114
1115``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001116 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001117 value. This is a hint to the optimizer and code generator used when
1118 generating the caller, allowing value propagation, tail call optimization,
1119 and omission of register saves and restores in some cases; it is not
1120 checked or enforced when generating the callee. The parameter and the
1121 function return type must be valid operands for the
1122 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1123 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001124
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001125``nonnull``
1126 This indicates that the parameter or return pointer is not null. This
1127 attribute may only be applied to pointer typed parameters. This is not
Eli Friedman0f522bd2018-07-25 18:26:38 +00001128 checked or enforced by LLVM; if the parameter or return pointer is null,
1129 the behavior is undefined.
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001130
Hal Finkelb0407ba2014-07-18 15:51:28 +00001131``dereferenceable(<n>)``
1132 This indicates that the parameter or return pointer is dereferenceable. This
1133 attribute may only be applied to pointer typed parameters. A pointer that
1134 is dereferenceable can be loaded from speculatively without a risk of
1135 trapping. The number of bytes known to be dereferenceable must be provided
1136 in parentheses. It is legal for the number of bytes to be less than the
1137 size of the pointee type. The ``nonnull`` attribute does not imply
1138 dereferenceability (consider a pointer to one element past the end of an
1139 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1140 ``addrspace(0)`` (which is the default address space).
1141
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001142``dereferenceable_or_null(<n>)``
1143 This indicates that the parameter or return value isn't both
1144 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001145 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001146 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1147 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1148 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1149 and in other address spaces ``dereferenceable_or_null(<n>)``
1150 implies that a pointer is at least one of ``dereferenceable(<n>)``
1151 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001152 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001153 pointer typed parameters.
1154
Manman Renf46262e2016-03-29 17:37:21 +00001155``swiftself``
1156 This indicates that the parameter is the self/context parameter. This is not
1157 a valid attribute for return values and can only be applied to one
1158 parameter.
1159
Manman Ren9bfd0d02016-04-01 21:41:15 +00001160``swifterror``
1161 This attribute is motivated to model and optimize Swift error handling. It
1162 can be applied to a parameter with pointer to pointer type or a
1163 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001164 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1165 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1166 the parameter or the alloca) can only be loaded and stored from, or used as
1167 a ``swifterror`` argument. This is not a valid attribute for return values
1168 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001169
1170 These constraints allow the calling convention to optimize access to
1171 ``swifterror`` variables by associating them with a specific register at
1172 call boundaries rather than placing them in memory. Since this does change
1173 the calling convention, a function which uses the ``swifterror`` attribute
1174 on a parameter is not ABI-compatible with one which does not.
1175
1176 These constraints also allow LLVM to assume that a ``swifterror`` argument
1177 does not alias any other memory visible within a function and that a
1178 ``swifterror`` alloca passed as an argument does not escape.
1179
Sean Silvab084af42012-12-07 10:36:55 +00001180.. _gc:
1181
Philip Reamesf80bbff2015-02-25 23:45:20 +00001182Garbage Collector Strategy Names
1183--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001184
Philip Reamesf80bbff2015-02-25 23:45:20 +00001185Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001186string:
1187
1188.. code-block:: llvm
1189
1190 define void @f() gc "name" { ... }
1191
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001192The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001193<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001194strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001195named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001196garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001197which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001198
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001199.. _prefixdata:
1200
1201Prefix Data
1202-----------
1203
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001204Prefix data is data associated with a function which the code
1205generator will emit immediately before the function's entrypoint.
1206The purpose of this feature is to allow frontends to associate
1207language-specific runtime metadata with specific functions and make it
1208available through the function pointer while still allowing the
1209function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001210
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001211To access the data for a given function, a program may bitcast the
1212function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001213index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001214the prefix data. For instance, take the example of a function annotated
1215with a single ``i32``,
1216
1217.. code-block:: llvm
1218
1219 define void @f() prefix i32 123 { ... }
1220
1221The prefix data can be referenced as,
1222
1223.. code-block:: llvm
1224
David Blaikie16a97eb2015-03-04 22:02:58 +00001225 %0 = bitcast void* () @f to i32*
1226 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001227 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001228
1229Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001230of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231beginning of the prefix data is aligned. This means that if the size
1232of the prefix data is not a multiple of the alignment size, the
1233function's entrypoint will not be aligned. If alignment of the
1234function's entrypoint is desired, padding must be added to the prefix
1235data.
1236
Sean Silvaa1190322015-08-06 22:56:48 +00001237A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001238to the ``available_externally`` linkage in that the data may be used by the
1239optimizers but will not be emitted in the object file.
1240
1241.. _prologuedata:
1242
1243Prologue Data
1244-------------
1245
1246The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1247be inserted prior to the function body. This can be used for enabling
1248function hot-patching and instrumentation.
1249
1250To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001251have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001252bytes which decode to a sequence of machine instructions, valid for the
1253module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001254the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001255the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001256definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001257makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001258
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001259A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001260which encodes the ``nop`` instruction:
1261
Renato Golin124f2592016-07-20 12:16:38 +00001262.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001263
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001264 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001265
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001266Generally prologue data can be formed by encoding a relative branch instruction
1267which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001268x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1269
Renato Golin124f2592016-07-20 12:16:38 +00001270.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001271
1272 %0 = type <{ i8, i8, i8* }>
1273
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001274 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001275
Sean Silvaa1190322015-08-06 22:56:48 +00001276A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001277to the ``available_externally`` linkage in that the data may be used by the
1278optimizers but will not be emitted in the object file.
1279
David Majnemer7fddecc2015-06-17 20:52:32 +00001280.. _personalityfn:
1281
1282Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001283--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001284
1285The ``personality`` attribute permits functions to specify what function
1286to use for exception handling.
1287
Bill Wendling63b88192013-02-06 06:52:58 +00001288.. _attrgrp:
1289
1290Attribute Groups
1291----------------
1292
1293Attribute groups are groups of attributes that are referenced by objects within
1294the IR. They are important for keeping ``.ll`` files readable, because a lot of
1295functions will use the same set of attributes. In the degenerative case of a
1296``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1297group will capture the important command line flags used to build that file.
1298
1299An attribute group is a module-level object. To use an attribute group, an
1300object references the attribute group's ID (e.g. ``#37``). An object may refer
1301to more than one attribute group. In that situation, the attributes from the
1302different groups are merged.
1303
1304Here is an example of attribute groups for a function that should always be
1305inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1306
1307.. code-block:: llvm
1308
1309 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001310 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001311
1312 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001313 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001314
1315 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1316 define void @f() #0 #1 { ... }
1317
Sean Silvab084af42012-12-07 10:36:55 +00001318.. _fnattrs:
1319
1320Function Attributes
1321-------------------
1322
1323Function attributes are set to communicate additional information about
1324a function. Function attributes are considered to be part of the
1325function, not of the function type, so functions with different function
1326attributes can have the same function type.
1327
1328Function attributes are simple keywords that follow the type specified.
1329If multiple attributes are needed, they are space separated. For
1330example:
1331
1332.. code-block:: llvm
1333
1334 define void @f() noinline { ... }
1335 define void @f() alwaysinline { ... }
1336 define void @f() alwaysinline optsize { ... }
1337 define void @f() optsize { ... }
1338
Sean Silvab084af42012-12-07 10:36:55 +00001339``alignstack(<n>)``
1340 This attribute indicates that, when emitting the prologue and
1341 epilogue, the backend should forcibly align the stack pointer.
1342 Specify the desired alignment, which must be a power of two, in
1343 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001344``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1345 This attribute indicates that the annotated function will always return at
1346 least a given number of bytes (or null). Its arguments are zero-indexed
1347 parameter numbers; if one argument is provided, then it's assumed that at
1348 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1349 returned pointer. If two are provided, then it's assumed that
1350 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1351 available. The referenced parameters must be integer types. No assumptions
1352 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001353``alwaysinline``
1354 This attribute indicates that the inliner should attempt to inline
1355 this function into callers whenever possible, ignoring any active
1356 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001357``builtin``
1358 This indicates that the callee function at a call site should be
1359 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001360 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001361 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001362 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001363``cold``
1364 This attribute indicates that this function is rarely called. When
1365 computing edge weights, basic blocks post-dominated by a cold
1366 function call are also considered to be cold; and, thus, given low
1367 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001368``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001369 In some parallel execution models, there exist operations that cannot be
1370 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001371 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001372
Justin Lebar58535b12016-02-17 17:46:41 +00001373 The ``convergent`` attribute may appear on functions or call/invoke
1374 instructions. When it appears on a function, it indicates that calls to
1375 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001376 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001377 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001378 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001379
Justin Lebar58535b12016-02-17 17:46:41 +00001380 When it appears on a call/invoke, the ``convergent`` attribute indicates
1381 that we should treat the call as though we're calling a convergent
1382 function. This is particularly useful on indirect calls; without this we
1383 may treat such calls as though the target is non-convergent.
1384
1385 The optimizer may remove the ``convergent`` attribute on functions when it
1386 can prove that the function does not execute any convergent operations.
1387 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1388 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001389``inaccessiblememonly``
1390 This attribute indicates that the function may only access memory that
1391 is not accessible by the module being compiled. This is a weaker form
Eli Friedman0f522bd2018-07-25 18:26:38 +00001392 of ``readnone``. If the function reads or writes other memory, the
1393 behavior is undefined.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001394``inaccessiblemem_or_argmemonly``
1395 This attribute indicates that the function may only access memory that is
1396 either not accessible by the module being compiled, or is pointed to
Eli Friedman0f522bd2018-07-25 18:26:38 +00001397 by its pointer arguments. This is a weaker form of ``argmemonly``. If the
1398 function reads or writes other memory, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001399``inlinehint``
1400 This attribute indicates that the source code contained a hint that
1401 inlining this function is desirable (such as the "inline" keyword in
1402 C/C++). It is just a hint; it imposes no requirements on the
1403 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001404``jumptable``
1405 This attribute indicates that the function should be added to a
1406 jump-instruction table at code-generation time, and that all address-taken
1407 references to this function should be replaced with a reference to the
1408 appropriate jump-instruction-table function pointer. Note that this creates
1409 a new pointer for the original function, which means that code that depends
1410 on function-pointer identity can break. So, any function annotated with
1411 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001412``minsize``
1413 This attribute suggests that optimization passes and code generator
1414 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001415 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001416 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001417``naked``
1418 This attribute disables prologue / epilogue emission for the
1419 function. This can have very system-specific consequences.
Sumanth Gundapaneni6af104e2017-07-28 22:26:22 +00001420``no-jump-tables``
1421 When this attribute is set to true, the jump tables and lookup tables that
1422 can be generated from a switch case lowering are disabled.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001423``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001424 This indicates that the callee function at a call site is not recognized as
1425 a built-in function. LLVM will retain the original call and not replace it
1426 with equivalent code based on the semantics of the built-in function, unless
1427 the call site uses the ``builtin`` attribute. This is valid at call sites
1428 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001429``noduplicate``
1430 This attribute indicates that calls to the function cannot be
1431 duplicated. A call to a ``noduplicate`` function may be moved
1432 within its parent function, but may not be duplicated within
1433 its parent function.
1434
1435 A function containing a ``noduplicate`` call may still
1436 be an inlining candidate, provided that the call is not
1437 duplicated by inlining. That implies that the function has
1438 internal linkage and only has one call site, so the original
1439 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001440``noimplicitfloat``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001441 This attributes disables implicit floating-point instructions.
Sean Silvab084af42012-12-07 10:36:55 +00001442``noinline``
1443 This attribute indicates that the inliner should never inline this
1444 function in any situation. This attribute may not be used together
1445 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001446``nonlazybind``
1447 This attribute suppresses lazy symbol binding for the function. This
1448 may make calls to the function faster, at the cost of extra program
1449 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001450``noredzone``
1451 This attribute indicates that the code generator should not use a
1452 red zone, even if the target-specific ABI normally permits it.
1453``noreturn``
1454 This function attribute indicates that the function never returns
1455 normally. This produces undefined behavior at runtime if the
1456 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001457``norecurse``
1458 This function attribute indicates that the function does not call itself
1459 either directly or indirectly down any possible call path. This produces
1460 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001461``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001462 This function attribute indicates that the function never raises an
1463 exception. If the function does raise an exception, its runtime
1464 behavior is undefined. However, functions marked nounwind may still
1465 trap or generate asynchronous exceptions. Exception handling schemes
1466 that are recognized by LLVM to handle asynchronous exceptions, such
1467 as SEH, will still provide their implementation defined semantics.
Manoj Gupta77eeac32018-07-09 22:27:23 +00001468``"null-pointer-is-valid"``
1469 If ``"null-pointer-is-valid"`` is set to ``"true"``, then ``null`` address
1470 in address-space 0 is considered to be a valid address for memory loads and
1471 stores. Any analysis or optimization should not treat dereferencing a
1472 pointer to ``null`` as undefined behavior in this function.
1473 Note: Comparing address of a global variable to ``null`` may still
1474 evaluate to false because of a limitation in querying this attribute inside
1475 constant expressions.
Matt Morehouse31819412018-03-22 19:50:10 +00001476``optforfuzzing``
1477 This attribute indicates that this function should be optimized
1478 for maximum fuzzing signal.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001479``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001480 This function attribute indicates that most optimization passes will skip
1481 this function, with the exception of interprocedural optimization passes.
1482 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001483 This attribute cannot be used together with the ``alwaysinline``
1484 attribute; this attribute is also incompatible
1485 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001486
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001487 This attribute requires the ``noinline`` attribute to be specified on
1488 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001489 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001490 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001491``optsize``
1492 This attribute suggests that optimization passes and code generator
1493 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001494 and otherwise do optimizations specifically to reduce code size as
1495 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001496``"patchable-function"``
1497 This attribute tells the code generator that the code
1498 generated for this function needs to follow certain conventions that
1499 make it possible for a runtime function to patch over it later.
1500 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001501 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001502
1503 * ``"prologue-short-redirect"`` - This style of patchable
1504 function is intended to support patching a function prologue to
1505 redirect control away from the function in a thread safe
1506 manner. It guarantees that the first instruction of the
1507 function will be large enough to accommodate a short jump
1508 instruction, and will be sufficiently aligned to allow being
1509 fully changed via an atomic compare-and-swap instruction.
1510 While the first requirement can be satisfied by inserting large
1511 enough NOP, LLVM can and will try to re-purpose an existing
1512 instruction (i.e. one that would have to be emitted anyway) as
1513 the patchable instruction larger than a short jump.
1514
1515 ``"prologue-short-redirect"`` is currently only supported on
1516 x86-64.
1517
1518 This attribute by itself does not imply restrictions on
1519 inter-procedural optimizations. All of the semantic effects the
1520 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001521``"probe-stack"``
1522 This attribute indicates that the function will trigger a guard region
1523 in the end of the stack. It ensures that accesses to the stack must be
1524 no further apart than the size of the guard region to a previous
1525 access of the stack. It takes one required string value, the name of
1526 the stack probing function that will be called.
1527
1528 If a function that has a ``"probe-stack"`` attribute is inlined into
1529 a function with another ``"probe-stack"`` attribute, the resulting
1530 function has the ``"probe-stack"`` attribute of the caller. If a
1531 function that has a ``"probe-stack"`` attribute is inlined into a
1532 function that has no ``"probe-stack"`` attribute at all, the resulting
1533 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001534``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001535 On a function, this attribute indicates that the function computes its
1536 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001537 without dereferencing any pointer arguments or otherwise accessing
1538 any mutable state (e.g. memory, control registers, etc) visible to
1539 caller functions. It does not write through any pointer arguments
1540 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001541 to callers. This means while it cannot unwind exceptions by calling
1542 the ``C++`` exception throwing methods (since they write to memory), there may
1543 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1544 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001545
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001546 On an argument, this attribute indicates that the function does not
1547 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001548 memory that the pointer points to if accessed through other pointers.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001549
1550 If a readnone function reads or writes memory visible to the program, or
1551 has other side-effects, the behavior is undefined. If a function reads from
1552 or writes to a readnone pointer argument, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001553``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001554 On a function, this attribute indicates that the function does not write
1555 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001556 modify any state (e.g. memory, control registers, etc) visible to
1557 caller functions. It may dereference pointer arguments and read
1558 state that may be set in the caller. A readonly function always
1559 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001560 called with the same set of arguments and global state. This means while it
1561 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1562 (since they write to memory), there may be non-``C++`` mechanisms that throw
1563 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001564
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001565 On an argument, this attribute indicates that the function does not write
1566 through this pointer argument, even though it may write to the memory that
1567 the pointer points to.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001568
1569 If a readonly function writes memory visible to the program, or
1570 has other side-effects, the behavior is undefined. If a function writes to
1571 a readonly pointer argument, the behavior is undefined.
whitequark08b20352017-06-22 23:22:36 +00001572``"stack-probe-size"``
1573 This attribute controls the behavior of stack probes: either
1574 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1575 It defines the size of the guard region. It ensures that if the function
1576 may use more stack space than the size of the guard region, stack probing
1577 sequence will be emitted. It takes one required integer value, which
1578 is 4096 by default.
1579
1580 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1581 a function with another ``"stack-probe-size"`` attribute, the resulting
1582 function has the ``"stack-probe-size"`` attribute that has the lower
1583 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1584 inlined into a function that has no ``"stack-probe-size"`` attribute
1585 at all, the resulting function has the ``"stack-probe-size"`` attribute
1586 of the callee.
Hans Wennborg89c35fc2018-02-23 13:46:25 +00001587``"no-stack-arg-probe"``
1588 This attribute disables ABI-required stack probes, if any.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001589``writeonly``
1590 On a function, this attribute indicates that the function may write to but
1591 does not read from memory.
1592
1593 On an argument, this attribute indicates that the function may write to but
1594 does not read through this pointer argument (even though it may read from
1595 the memory that the pointer points to).
Eli Friedman0f522bd2018-07-25 18:26:38 +00001596
1597 If a writeonly function reads memory visible to the program, or
1598 has other side-effects, the behavior is undefined. If a function reads
1599 from a writeonly pointer argument, the behavior is undefined.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001600``argmemonly``
1601 This attribute indicates that the only memory accesses inside function are
1602 loads and stores from objects pointed to by its pointer-typed arguments,
1603 with arbitrary offsets. Or in other words, all memory operations in the
1604 function can refer to memory only using pointers based on its function
1605 arguments.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001606
Igor Laevsky39d662f2015-07-11 10:30:36 +00001607 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1608 in order to specify that function reads only from its arguments.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001609
1610 If an argmemonly function reads or writes memory other than the pointer
1611 arguments, or has other side-effects, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001612``returns_twice``
1613 This attribute indicates that this function can return twice. The C
1614 ``setjmp`` is an example of such a function. The compiler disables
1615 some optimizations (like tail calls) in the caller of these
1616 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001617``safestack``
1618 This attribute indicates that
1619 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1620 protection is enabled for this function.
1621
1622 If a function that has a ``safestack`` attribute is inlined into a
1623 function that doesn't have a ``safestack`` attribute or which has an
1624 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1625 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001626``sanitize_address``
1627 This attribute indicates that AddressSanitizer checks
1628 (dynamic address safety analysis) are enabled for this function.
1629``sanitize_memory``
1630 This attribute indicates that MemorySanitizer checks (dynamic detection
1631 of accesses to uninitialized memory) are enabled for this function.
1632``sanitize_thread``
1633 This attribute indicates that ThreadSanitizer checks
1634 (dynamic thread safety analysis) are enabled for this function.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00001635``sanitize_hwaddress``
1636 This attribute indicates that HWAddressSanitizer checks
1637 (dynamic address safety analysis based on tagged pointers) are enabled for
1638 this function.
Chandler Carruth664aa862018-09-04 12:38:00 +00001639``speculative_load_hardening``
1640 This attribute indicates that
1641 `Speculative Load Hardening <https://llvm.org/docs/SpeculativeLoadHardening.html>`_
1642 should be enabled for the function body. This is a best-effort attempt to
1643 mitigate all known speculative execution information leak vulnerabilities
1644 that are based on the fundamental principles of modern processors'
1645 speculative execution. These vulnerabilities are classified as "Spectre
1646 variant #1" vulnerabilities typically. Notably, this does not attempt to
1647 mitigate any vulnerabilities where the speculative execution and/or
1648 prediction devices of specific processors can be *completely* undermined
1649 (such as "Branch Target Injection", a.k.a, "Spectre variant #2"). Instead,
1650 this is a target-independent request to harden against the completely
1651 generic risk posed by speculative execution to incorrectly load secret data,
1652 making it available to some micro-architectural side-channel for information
1653 leak. For a processor without any speculative execution or predictors, this
1654 is expected to be a no-op.
1655
1656 When inlining, the attribute is sticky. Inlining a function that carries
1657 this attribute will cause the caller to gain the attribute. This is intended
1658 to provide a maximally conservative model where the code in a function
1659 annotated with this attribute will always (even after inlining) end up
1660 hardened.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001661``speculatable``
1662 This function attribute indicates that the function does not have any
1663 effects besides calculating its result and does not have undefined behavior.
1664 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001665 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001666 externally observable. This attribute is only valid on functions
1667 and declarations, not on individual call sites. If a function is
1668 incorrectly marked as speculatable and really does exhibit
1669 undefined behavior, the undefined behavior may be observed even
1670 if the call site is dead code.
1671
Sean Silvab084af42012-12-07 10:36:55 +00001672``ssp``
1673 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001674 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001675 placed on the stack before the local variables that's checked upon
1676 return from the function to see if it has been overwritten. A
1677 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001678 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001679
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001680 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1681 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1682 - Calls to alloca() with variable sizes or constant sizes greater than
1683 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001684
Josh Magee24c7f062014-02-01 01:36:16 +00001685 Variables that are identified as requiring a protector will be arranged
1686 on the stack such that they are adjacent to the stack protector guard.
1687
Sean Silvab084af42012-12-07 10:36:55 +00001688 If a function that has an ``ssp`` attribute is inlined into a
1689 function that doesn't have an ``ssp`` attribute, then the resulting
1690 function will have an ``ssp`` attribute.
1691``sspreq``
1692 This attribute indicates that the function should *always* emit a
1693 stack smashing protector. This overrides the ``ssp`` function
1694 attribute.
1695
Josh Magee24c7f062014-02-01 01:36:16 +00001696 Variables that are identified as requiring a protector will be arranged
1697 on the stack such that they are adjacent to the stack protector guard.
1698 The specific layout rules are:
1699
1700 #. Large arrays and structures containing large arrays
1701 (``>= ssp-buffer-size``) are closest to the stack protector.
1702 #. Small arrays and structures containing small arrays
1703 (``< ssp-buffer-size``) are 2nd closest to the protector.
1704 #. Variables that have had their address taken are 3rd closest to the
1705 protector.
1706
Sean Silvab084af42012-12-07 10:36:55 +00001707 If a function that has an ``sspreq`` attribute is inlined into a
1708 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001709 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1710 an ``sspreq`` attribute.
1711``sspstrong``
1712 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001713 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001714 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001715 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001716
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001717 - Arrays of any size and type
1718 - Aggregates containing an array of any size and type.
1719 - Calls to alloca().
1720 - Local variables that have had their address taken.
1721
Josh Magee24c7f062014-02-01 01:36:16 +00001722 Variables that are identified as requiring a protector will be arranged
1723 on the stack such that they are adjacent to the stack protector guard.
1724 The specific layout rules are:
1725
1726 #. Large arrays and structures containing large arrays
1727 (``>= ssp-buffer-size``) are closest to the stack protector.
1728 #. Small arrays and structures containing small arrays
1729 (``< ssp-buffer-size``) are 2nd closest to the protector.
1730 #. Variables that have had their address taken are 3rd closest to the
1731 protector.
1732
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001733 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001734
1735 If a function that has an ``sspstrong`` attribute is inlined into a
1736 function that doesn't have an ``sspstrong`` attribute, then the
1737 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001738``strictfp``
1739 This attribute indicates that the function was called from a scope that
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001740 requires strict floating-point semantics. LLVM will not attempt any
1741 optimizations that require assumptions about the floating-point rounding
1742 mode or that might alter the state of floating-point status flags that
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001743 might otherwise be set or cleared by calling this function.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001744``"thunk"``
1745 This attribute indicates that the function will delegate to some other
1746 function with a tail call. The prototype of a thunk should not be used for
1747 optimization purposes. The caller is expected to cast the thunk prototype to
1748 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001749``uwtable``
1750 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001751 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001752 show that no exceptions passes by it. This is normally the case for
1753 the ELF x86-64 abi, but it can be disabled for some compilation
1754 units.
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001755``nocf_check``
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001756 This attribute indicates that no control-flow check will be performed on
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001757 the attributed entity. It disables -fcf-protection=<> for a specific
1758 entity to fine grain the HW control flow protection mechanism. The flag
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001759 is target independent and currently appertains to a function or function
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001760 pointer.
Vlad Tsyrklevichd17f61e2018-04-03 20:10:40 +00001761``shadowcallstack``
1762 This attribute indicates that the ShadowCallStack checks are enabled for
1763 the function. The instrumentation checks that the return address for the
1764 function has not changed between the function prolog and eiplog. It is
1765 currently x86_64-specific.
Sean Silvab084af42012-12-07 10:36:55 +00001766
Javed Absarf3d79042017-05-11 12:28:08 +00001767.. _glattrs:
1768
1769Global Attributes
1770-----------------
1771
1772Attributes may be set to communicate additional information about a global variable.
1773Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1774are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001775
1776.. _opbundles:
1777
1778Operand Bundles
1779---------------
1780
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001781Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001782with certain LLVM instructions (currently only ``call`` s and
1783``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001784incorrect and will change program semantics.
1785
1786Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001787
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001788 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001789 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1790 bundle operand ::= SSA value
1791 tag ::= string constant
1792
1793Operand bundles are **not** part of a function's signature, and a
1794given function may be called from multiple places with different kinds
1795of operand bundles. This reflects the fact that the operand bundles
1796are conceptually a part of the ``call`` (or ``invoke``), not the
1797callee being dispatched to.
1798
1799Operand bundles are a generic mechanism intended to support
1800runtime-introspection-like functionality for managed languages. While
1801the exact semantics of an operand bundle depend on the bundle tag,
1802there are certain limitations to how much the presence of an operand
1803bundle can influence the semantics of a program. These restrictions
1804are described as the semantics of an "unknown" operand bundle. As
1805long as the behavior of an operand bundle is describable within these
1806restrictions, LLVM does not need to have special knowledge of the
1807operand bundle to not miscompile programs containing it.
1808
David Majnemer34cacb42015-10-22 01:46:38 +00001809- The bundle operands for an unknown operand bundle escape in unknown
1810 ways before control is transferred to the callee or invokee.
1811- Calls and invokes with operand bundles have unknown read / write
1812 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001813 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001814 callsite specific attributes.
1815- An operand bundle at a call site cannot change the implementation
1816 of the called function. Inter-procedural optimizations work as
1817 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001818
Sanjoy Dascdafd842015-11-11 21:38:02 +00001819More specific types of operand bundles are described below.
1820
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001821.. _deopt_opbundles:
1822
Sanjoy Dascdafd842015-11-11 21:38:02 +00001823Deoptimization Operand Bundles
1824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1825
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001826Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001827operand bundle tag. These operand bundles represent an alternate
1828"safe" continuation for the call site they're attached to, and can be
1829used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001830specified call site. There can be at most one ``"deopt"`` operand
1831bundle attached to a call site. Exact details of deoptimization is
1832out of scope for the language reference, but it usually involves
1833rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001834
1835From the compiler's perspective, deoptimization operand bundles make
1836the call sites they're attached to at least ``readonly``. They read
1837through all of their pointer typed operands (even if they're not
1838otherwise escaped) and the entire visible heap. Deoptimization
1839operand bundles do not capture their operands except during
1840deoptimization, in which case control will not be returned to the
1841compiled frame.
1842
Sanjoy Das2d161452015-11-18 06:23:38 +00001843The inliner knows how to inline through calls that have deoptimization
1844operand bundles. Just like inlining through a normal call site
1845involves composing the normal and exceptional continuations, inlining
1846through a call site with a deoptimization operand bundle needs to
1847appropriately compose the "safe" deoptimization continuation. The
1848inliner does this by prepending the parent's deoptimization
1849continuation to every deoptimization continuation in the inlined body.
1850E.g. inlining ``@f`` into ``@g`` in the following example
1851
1852.. code-block:: llvm
1853
1854 define void @f() {
1855 call void @x() ;; no deopt state
1856 call void @y() [ "deopt"(i32 10) ]
1857 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1858 ret void
1859 }
1860
1861 define void @g() {
1862 call void @f() [ "deopt"(i32 20) ]
1863 ret void
1864 }
1865
1866will result in
1867
1868.. code-block:: llvm
1869
1870 define void @g() {
1871 call void @x() ;; still no deopt state
1872 call void @y() [ "deopt"(i32 20, i32 10) ]
1873 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1874 ret void
1875 }
1876
1877It is the frontend's responsibility to structure or encode the
1878deoptimization state in a way that syntactically prepending the
1879caller's deoptimization state to the callee's deoptimization state is
1880semantically equivalent to composing the caller's deoptimization
1881continuation after the callee's deoptimization continuation.
1882
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001883.. _ob_funclet:
1884
David Majnemer3bb88c02015-12-15 21:27:27 +00001885Funclet Operand Bundles
1886^^^^^^^^^^^^^^^^^^^^^^^
1887
1888Funclet operand bundles are characterized by the ``"funclet"``
1889operand bundle tag. These operand bundles indicate that a call site
1890is within a particular funclet. There can be at most one
1891``"funclet"`` operand bundle attached to a call site and it must have
1892exactly one bundle operand.
1893
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001894If any funclet EH pads have been "entered" but not "exited" (per the
1895`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1896it is undefined behavior to execute a ``call`` or ``invoke`` which:
1897
1898* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1899 intrinsic, or
1900* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1901 not-yet-exited funclet EH pad.
1902
1903Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1904executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1905
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001906GC Transition Operand Bundles
1907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1908
1909GC transition operand bundles are characterized by the
1910``"gc-transition"`` operand bundle tag. These operand bundles mark a
1911call as a transition between a function with one GC strategy to a
1912function with a different GC strategy. If coordinating the transition
1913between GC strategies requires additional code generation at the call
1914site, these bundles may contain any values that are needed by the
1915generated code. For more details, see :ref:`GC Transitions
1916<gc_transition_args>`.
1917
Sean Silvab084af42012-12-07 10:36:55 +00001918.. _moduleasm:
1919
1920Module-Level Inline Assembly
1921----------------------------
1922
1923Modules may contain "module-level inline asm" blocks, which corresponds
1924to the GCC "file scope inline asm" blocks. These blocks are internally
1925concatenated by LLVM and treated as a single unit, but may be separated
1926in the ``.ll`` file if desired. The syntax is very simple:
1927
1928.. code-block:: llvm
1929
1930 module asm "inline asm code goes here"
1931 module asm "more can go here"
1932
1933The strings can contain any character by escaping non-printable
1934characters. The escape sequence used is simply "\\xx" where "xx" is the
1935two digit hex code for the number.
1936
James Y Knightbc832ed2015-07-08 18:08:36 +00001937Note that the assembly string *must* be parseable by LLVM's integrated assembler
1938(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001939
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001940.. _langref_datalayout:
1941
Sean Silvab084af42012-12-07 10:36:55 +00001942Data Layout
1943-----------
1944
1945A module may specify a target specific data layout string that specifies
1946how data is to be laid out in memory. The syntax for the data layout is
1947simply:
1948
1949.. code-block:: llvm
1950
1951 target datalayout = "layout specification"
1952
1953The *layout specification* consists of a list of specifications
1954separated by the minus sign character ('-'). Each specification starts
1955with a letter and may include other information after the letter to
1956define some aspect of the data layout. The specifications accepted are
1957as follows:
1958
1959``E``
1960 Specifies that the target lays out data in big-endian form. That is,
1961 the bits with the most significance have the lowest address
1962 location.
1963``e``
1964 Specifies that the target lays out data in little-endian form. That
1965 is, the bits with the least significance have the lowest address
1966 location.
1967``S<size>``
1968 Specifies the natural alignment of the stack in bits. Alignment
1969 promotion of stack variables is limited to the natural stack
1970 alignment to avoid dynamic stack realignment. The stack alignment
1971 must be a multiple of 8-bits. If omitted, the natural stack
1972 alignment defaults to "unspecified", which does not prevent any
1973 alignment promotions.
Dylan McKayced2fe62018-02-19 09:56:22 +00001974``P<address space>``
1975 Specifies the address space that corresponds to program memory.
1976 Harvard architectures can use this to specify what space LLVM
1977 should place things such as functions into. If omitted, the
1978 program memory space defaults to the default address space of 0,
1979 which corresponds to a Von Neumann architecture that has code
1980 and data in the same space.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001981``A<address space>``
Dylan McKayced2fe62018-02-19 09:56:22 +00001982 Specifies the address space of objects created by '``alloca``'.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001983 Defaults to the default address space of 0.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001984``p[n]:<size>:<abi>:<pref>:<idx>``
Sean Silvab084af42012-12-07 10:36:55 +00001985 This specifies the *size* of a pointer and its ``<abi>`` and
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001986 ``<pref>``\erred alignments for address space ``n``. The fourth parameter
1987 ``<idx>`` is a size of index that used for address calculation. If not
1988 specified, the default index size is equal to the pointer size. All sizes
1989 are in bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001990 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001991 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001992``i<size>:<abi>:<pref>``
1993 This specifies the alignment for an integer type of a given bit
1994 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1995``v<size>:<abi>:<pref>``
1996 This specifies the alignment for a vector type of a given bit
1997 ``<size>``.
1998``f<size>:<abi>:<pref>``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001999 This specifies the alignment for a floating-point type of a given bit
Sean Silvab084af42012-12-07 10:36:55 +00002000 ``<size>``. Only values of ``<size>`` that are supported by the target
2001 will work. 32 (float) and 64 (double) are supported on all targets; 80
2002 or 128 (different flavors of long double) are also supported on some
2003 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00002004``a:<abi>:<pref>``
2005 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00002006``m:<mangling>``
Reid Klecknerf8b51c52018-03-16 20:13:32 +00002007 If present, specifies that llvm names are mangled in the output. Symbols
2008 prefixed with the mangling escape character ``\01`` are passed through
2009 directly to the assembler without the escape character. The mangling style
Hans Wennborgd4245ac2014-01-15 02:49:17 +00002010 options are
2011
2012 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
2013 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
2014 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
2015 symbols get a ``_`` prefix.
Reid Klecknerf8b51c52018-03-16 20:13:32 +00002016 * ``x``: Windows x86 COFF mangling: Private symbols get the usual prefix.
2017 Regular C symbols get a ``_`` prefix. Functions with ``__stdcall``,
2018 ``__fastcall``, and ``__vectorcall`` have custom mangling that appends
2019 ``@N`` where N is the number of bytes used to pass parameters. C++ symbols
2020 starting with ``?`` are not mangled in any way.
2021 * ``w``: Windows COFF mangling: Similar to ``x``, except that normal C
2022 symbols do not receive a ``_`` prefix.
Sean Silvab084af42012-12-07 10:36:55 +00002023``n<size1>:<size2>:<size3>...``
2024 This specifies a set of native integer widths for the target CPU in
2025 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
2026 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
2027 this set are considered to support most general arithmetic operations
2028 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00002029``ni:<address space0>:<address space1>:<address space2>...``
2030 This specifies pointer types with the specified address spaces
2031 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
2032 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00002033
Rafael Espindolaabdd7262014-01-06 21:40:24 +00002034On every specification that takes a ``<abi>:<pref>``, specifying the
2035``<pref>`` alignment is optional. If omitted, the preceding ``:``
2036should be omitted too and ``<pref>`` will be equal to ``<abi>``.
2037
Sean Silvab084af42012-12-07 10:36:55 +00002038When constructing the data layout for a given target, LLVM starts with a
2039default set of specifications which are then (possibly) overridden by
2040the specifications in the ``datalayout`` keyword. The default
2041specifications are given in this list:
2042
2043- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00002044- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
2045- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
2046 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002047- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00002048- ``i1:8:8`` - i1 is 8-bit (byte) aligned
2049- ``i8:8:8`` - i8 is 8-bit (byte) aligned
2050- ``i16:16:16`` - i16 is 16-bit aligned
2051- ``i32:32:32`` - i32 is 32-bit aligned
2052- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
2053 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002054- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002055- ``f32:32:32`` - float is 32-bit aligned
2056- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002057- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002058- ``v64:64:64`` - 64-bit vector is 64-bit aligned
2059- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00002060- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002061
2062When LLVM is determining the alignment for a given type, it uses the
2063following rules:
2064
2065#. If the type sought is an exact match for one of the specifications,
2066 that specification is used.
2067#. If no match is found, and the type sought is an integer type, then
2068 the smallest integer type that is larger than the bitwidth of the
2069 sought type is used. If none of the specifications are larger than
2070 the bitwidth then the largest integer type is used. For example,
2071 given the default specifications above, the i7 type will use the
2072 alignment of i8 (next largest) while both i65 and i256 will use the
2073 alignment of i64 (largest specified).
2074#. If no match is found, and the type sought is a vector type, then the
2075 largest vector type that is smaller than the sought vector type will
2076 be used as a fall back. This happens because <128 x double> can be
2077 implemented in terms of 64 <2 x double>, for example.
2078
2079The function of the data layout string may not be what you expect.
2080Notably, this is not a specification from the frontend of what alignment
2081the code generator should use.
2082
2083Instead, if specified, the target data layout is required to match what
2084the ultimate *code generator* expects. This string is used by the
2085mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00002086what the ultimate code generator uses. There is no way to generate IR
2087that does not embed this target-specific detail into the IR. If you
2088don't specify the string, the default specifications will be used to
2089generate a Data Layout and the optimization phases will operate
2090accordingly and introduce target specificity into the IR with respect to
2091these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00002092
Bill Wendling5cc90842013-10-18 23:41:25 +00002093.. _langref_triple:
2094
2095Target Triple
2096-------------
2097
2098A module may specify a target triple string that describes the target
2099host. The syntax for the target triple is simply:
2100
2101.. code-block:: llvm
2102
2103 target triple = "x86_64-apple-macosx10.7.0"
2104
2105The *target triple* string consists of a series of identifiers delimited
2106by the minus sign character ('-'). The canonical forms are:
2107
2108::
2109
2110 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2111 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2112
2113This information is passed along to the backend so that it generates
2114code for the proper architecture. It's possible to override this on the
2115command line with the ``-mtriple`` command line option.
2116
Sean Silvab084af42012-12-07 10:36:55 +00002117.. _pointeraliasing:
2118
2119Pointer Aliasing Rules
2120----------------------
2121
2122Any memory access must be done through a pointer value associated with
2123an address range of the memory access, otherwise the behavior is
2124undefined. Pointer values are associated with address ranges according
2125to the following rules:
2126
2127- A pointer value is associated with the addresses associated with any
2128 value it is *based* on.
2129- An address of a global variable is associated with the address range
2130 of the variable's storage.
2131- The result value of an allocation instruction is associated with the
2132 address range of the allocated storage.
2133- A null pointer in the default address-space is associated with no
2134 address.
2135- An integer constant other than zero or a pointer value returned from
2136 a function not defined within LLVM may be associated with address
2137 ranges allocated through mechanisms other than those provided by
2138 LLVM. Such ranges shall not overlap with any ranges of addresses
2139 allocated by mechanisms provided by LLVM.
2140
2141A pointer value is *based* on another pointer value according to the
2142following rules:
2143
Sanjoy Das6d489492017-09-13 18:49:22 +00002144- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2145 the pointer-typed operand of the ``getelementptr``.
2146- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2147 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2148 of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002149- The result value of a ``bitcast`` is *based* on the operand of the
2150 ``bitcast``.
2151- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2152 values that contribute (directly or indirectly) to the computation of
2153 the pointer's value.
2154- The "*based* on" relationship is transitive.
2155
2156Note that this definition of *"based"* is intentionally similar to the
2157definition of *"based"* in C99, though it is slightly weaker.
2158
2159LLVM IR does not associate types with memory. The result type of a
2160``load`` merely indicates the size and alignment of the memory from
2161which to load, as well as the interpretation of the value. The first
2162operand type of a ``store`` similarly only indicates the size and
2163alignment of the store.
2164
2165Consequently, type-based alias analysis, aka TBAA, aka
2166``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2167:ref:`Metadata <metadata>` may be used to encode additional information
2168which specialized optimization passes may use to implement type-based
2169alias analysis.
2170
2171.. _volatile:
2172
2173Volatile Memory Accesses
2174------------------------
2175
2176Certain memory accesses, such as :ref:`load <i_load>`'s,
2177:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2178marked ``volatile``. The optimizers must not change the number of
2179volatile operations or change their order of execution relative to other
2180volatile operations. The optimizers *may* change the order of volatile
2181operations relative to non-volatile operations. This is not Java's
2182"volatile" and has no cross-thread synchronization behavior.
2183
Andrew Trick89fc5a62013-01-30 21:19:35 +00002184IR-level volatile loads and stores cannot safely be optimized into
2185llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2186flagged volatile. Likewise, the backend should never split or merge
2187target-legal volatile load/store instructions.
2188
Andrew Trick7e6f9282013-01-31 00:49:39 +00002189.. admonition:: Rationale
2190
2191 Platforms may rely on volatile loads and stores of natively supported
2192 data width to be executed as single instruction. For example, in C
2193 this holds for an l-value of volatile primitive type with native
2194 hardware support, but not necessarily for aggregate types. The
2195 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002196 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002197 do not violate the frontend's contract with the language.
2198
Sean Silvab084af42012-12-07 10:36:55 +00002199.. _memmodel:
2200
2201Memory Model for Concurrent Operations
2202--------------------------------------
2203
2204The LLVM IR does not define any way to start parallel threads of
2205execution or to register signal handlers. Nonetheless, there are
2206platform-specific ways to create them, and we define LLVM IR's behavior
2207in their presence. This model is inspired by the C++0x memory model.
2208
2209For a more informal introduction to this model, see the :doc:`Atomics`.
2210
2211We define a *happens-before* partial order as the least partial order
2212that
2213
2214- Is a superset of single-thread program order, and
2215- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2216 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2217 techniques, like pthread locks, thread creation, thread joining,
2218 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2219 Constraints <ordering>`).
2220
2221Note that program order does not introduce *happens-before* edges
2222between a thread and signals executing inside that thread.
2223
2224Every (defined) read operation (load instructions, memcpy, atomic
2225loads/read-modify-writes, etc.) R reads a series of bytes written by
2226(defined) write operations (store instructions, atomic
2227stores/read-modify-writes, memcpy, etc.). For the purposes of this
2228section, initialized globals are considered to have a write of the
2229initializer which is atomic and happens before any other read or write
2230of the memory in question. For each byte of a read R, R\ :sub:`byte`
2231may see any write to the same byte, except:
2232
2233- If write\ :sub:`1` happens before write\ :sub:`2`, and
2234 write\ :sub:`2` happens before R\ :sub:`byte`, then
2235 R\ :sub:`byte` does not see write\ :sub:`1`.
2236- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2237 R\ :sub:`byte` does not see write\ :sub:`3`.
2238
2239Given that definition, R\ :sub:`byte` is defined as follows:
2240
2241- If R is volatile, the result is target-dependent. (Volatile is
2242 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002243 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002244 like normal memory. It does not generally provide cross-thread
2245 synchronization.)
2246- Otherwise, if there is no write to the same byte that happens before
2247 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2248- Otherwise, if R\ :sub:`byte` may see exactly one write,
2249 R\ :sub:`byte` returns the value written by that write.
2250- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2251 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2252 Memory Ordering Constraints <ordering>` section for additional
2253 constraints on how the choice is made.
2254- Otherwise R\ :sub:`byte` returns ``undef``.
2255
2256R returns the value composed of the series of bytes it read. This
2257implies that some bytes within the value may be ``undef`` **without**
2258the entire value being ``undef``. Note that this only defines the
2259semantics of the operation; it doesn't mean that targets will emit more
2260than one instruction to read the series of bytes.
2261
2262Note that in cases where none of the atomic intrinsics are used, this
2263model places only one restriction on IR transformations on top of what
2264is required for single-threaded execution: introducing a store to a byte
2265which might not otherwise be stored is not allowed in general.
2266(Specifically, in the case where another thread might write to and read
2267from an address, introducing a store can change a load that may see
2268exactly one write into a load that may see multiple writes.)
2269
2270.. _ordering:
2271
2272Atomic Memory Ordering Constraints
2273----------------------------------
2274
2275Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2276:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2277:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002278ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002279the same address they *synchronize with*. These semantics are borrowed
2280from Java and C++0x, but are somewhat more colloquial. If these
2281descriptions aren't precise enough, check those specs (see spec
2282references in the :doc:`atomics guide <Atomics>`).
2283:ref:`fence <i_fence>` instructions treat these orderings somewhat
2284differently since they don't take an address. See that instruction's
2285documentation for details.
2286
2287For a simpler introduction to the ordering constraints, see the
2288:doc:`Atomics`.
2289
2290``unordered``
2291 The set of values that can be read is governed by the happens-before
2292 partial order. A value cannot be read unless some operation wrote
2293 it. This is intended to provide a guarantee strong enough to model
2294 Java's non-volatile shared variables. This ordering cannot be
2295 specified for read-modify-write operations; it is not strong enough
2296 to make them atomic in any interesting way.
2297``monotonic``
2298 In addition to the guarantees of ``unordered``, there is a single
2299 total order for modifications by ``monotonic`` operations on each
2300 address. All modification orders must be compatible with the
2301 happens-before order. There is no guarantee that the modification
2302 orders can be combined to a global total order for the whole program
2303 (and this often will not be possible). The read in an atomic
2304 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2305 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2306 order immediately before the value it writes. If one atomic read
2307 happens before another atomic read of the same address, the later
2308 read must see the same value or a later value in the address's
2309 modification order. This disallows reordering of ``monotonic`` (or
2310 stronger) operations on the same address. If an address is written
2311 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2312 read that address repeatedly, the other threads must eventually see
2313 the write. This corresponds to the C++0x/C1x
2314 ``memory_order_relaxed``.
2315``acquire``
2316 In addition to the guarantees of ``monotonic``, a
2317 *synchronizes-with* edge may be formed with a ``release`` operation.
2318 This is intended to model C++'s ``memory_order_acquire``.
2319``release``
2320 In addition to the guarantees of ``monotonic``, if this operation
2321 writes a value which is subsequently read by an ``acquire``
2322 operation, it *synchronizes-with* that operation. (This isn't a
2323 complete description; see the C++0x definition of a release
2324 sequence.) This corresponds to the C++0x/C1x
2325 ``memory_order_release``.
2326``acq_rel`` (acquire+release)
2327 Acts as both an ``acquire`` and ``release`` operation on its
2328 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2329``seq_cst`` (sequentially consistent)
2330 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002331 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002332 writes), there is a global total order on all
2333 sequentially-consistent operations on all addresses, which is
2334 consistent with the *happens-before* partial order and with the
2335 modification orders of all the affected addresses. Each
2336 sequentially-consistent read sees the last preceding write to the
2337 same address in this global order. This corresponds to the C++0x/C1x
2338 ``memory_order_seq_cst`` and Java volatile.
2339
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002340.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002341
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002342If an atomic operation is marked ``syncscope("singlethread")``, it only
2343*synchronizes with* and only participates in the seq\_cst total orderings of
2344other operations running in the same thread (for example, in signal handlers).
2345
2346If an atomic operation is marked ``syncscope("<target-scope>")``, where
2347``<target-scope>`` is a target specific synchronization scope, then it is target
2348dependent if it *synchronizes with* and participates in the seq\_cst total
2349orderings of other operations.
2350
2351Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2352or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2353seq\_cst total orderings of other operations that are not marked
2354``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002355
Sanjay Patel54b161e2018-03-20 16:38:22 +00002356.. _floatenv:
2357
2358Floating-Point Environment
2359--------------------------
2360
2361The default LLVM floating-point environment assumes that floating-point
2362instructions do not have side effects. Results assume the round-to-nearest
2363rounding mode. No floating-point exception state is maintained in this
2364environment. Therefore, there is no attempt to create or preserve invalid
Chandler Carruth297620d2018-08-06 02:02:09 +00002365operation (SNaN) or division-by-zero exceptions.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002366
2367The benefit of this exception-free assumption is that floating-point
2368operations may be speculated freely without any other fast-math relaxations
2369to the floating-point model.
2370
2371Code that requires different behavior than this should use the
Sanjay Patelec95e0e2018-03-20 17:05:19 +00002372:ref:`Constrained Floating-Point Intrinsics <constrainedfp>`.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002373
Sean Silvab084af42012-12-07 10:36:55 +00002374.. _fastmath:
2375
2376Fast-Math Flags
2377---------------
2378
Sanjay Patel629c4112017-11-06 16:27:15 +00002379LLVM IR floating-point operations (:ref:`fadd <i_fadd>`,
Sean Silvab084af42012-12-07 10:36:55 +00002380:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002381:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002382may use the following flags to enable otherwise unsafe
Sanjay Patel629c4112017-11-06 16:27:15 +00002383floating-point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002384
2385``nnan``
2386 No NaNs - Allow optimizations to assume the arguments and result are not
Eli Friedmand3a30872018-07-17 20:31:42 +00002387 NaN. If an argument is a nan, or the result would be a nan, it produces
2388 a :ref:`poison value <poisonvalues>` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002389
2390``ninf``
2391 No Infs - Allow optimizations to assume the arguments and result are not
Eli Friedmand3a30872018-07-17 20:31:42 +00002392 +/-Inf. If an argument is +/-Inf, or the result would be +/-Inf, it
2393 produces a :ref:`poison value <poisonvalues>` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002394
2395``nsz``
2396 No Signed Zeros - Allow optimizations to treat the sign of a zero
2397 argument or result as insignificant.
2398
2399``arcp``
2400 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2401 argument rather than perform division.
2402
Adam Nemetcd847a82017-03-28 20:11:52 +00002403``contract``
2404 Allow floating-point contraction (e.g. fusing a multiply followed by an
2405 addition into a fused multiply-and-add).
2406
Sanjay Patel629c4112017-11-06 16:27:15 +00002407``afn``
2408 Approximate functions - Allow substitution of approximate calculations for
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002409 functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2410 for places where this can apply to LLVM's intrinsic math functions.
Sanjay Patel629c4112017-11-06 16:27:15 +00002411
2412``reassoc``
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002413 Allow reassociation transformations for floating-point instructions.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002414 This may dramatically change results in floating-point.
Sanjay Patel629c4112017-11-06 16:27:15 +00002415
Sean Silvab084af42012-12-07 10:36:55 +00002416``fast``
Sanjay Patel629c4112017-11-06 16:27:15 +00002417 This flag implies all of the others.
Sean Silvab084af42012-12-07 10:36:55 +00002418
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002419.. _uselistorder:
2420
2421Use-list Order Directives
2422-------------------------
2423
2424Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002425order to be recreated. ``<order-indexes>`` is a comma-separated list of
2426indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002427value's use-list is immediately sorted by these indexes.
2428
Sean Silvaa1190322015-08-06 22:56:48 +00002429Use-list directives may appear at function scope or global scope. They are not
2430instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002431function scope, they must appear after the terminator of the final basic block.
2432
2433If basic blocks have their address taken via ``blockaddress()`` expressions,
2434``uselistorder_bb`` can be used to reorder their use-lists from outside their
2435function's scope.
2436
2437:Syntax:
2438
2439::
2440
2441 uselistorder <ty> <value>, { <order-indexes> }
2442 uselistorder_bb @function, %block { <order-indexes> }
2443
2444:Examples:
2445
2446::
2447
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002448 define void @foo(i32 %arg1, i32 %arg2) {
2449 entry:
2450 ; ... instructions ...
2451 bb:
2452 ; ... instructions ...
2453
2454 ; At function scope.
2455 uselistorder i32 %arg1, { 1, 0, 2 }
2456 uselistorder label %bb, { 1, 0 }
2457 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002458
2459 ; At global scope.
2460 uselistorder i32* @global, { 1, 2, 0 }
2461 uselistorder i32 7, { 1, 0 }
2462 uselistorder i32 (i32) @bar, { 1, 0 }
2463 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2464
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002465.. _source_filename:
2466
2467Source Filename
2468---------------
2469
2470The *source filename* string is set to the original module identifier,
2471which will be the name of the compiled source file when compiling from
2472source through the clang front end, for example. It is then preserved through
2473the IR and bitcode.
2474
2475This is currently necessary to generate a consistent unique global
2476identifier for local functions used in profile data, which prepends the
2477source file name to the local function name.
2478
2479The syntax for the source file name is simply:
2480
Renato Golin124f2592016-07-20 12:16:38 +00002481.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002482
2483 source_filename = "/path/to/source.c"
2484
Sean Silvab084af42012-12-07 10:36:55 +00002485.. _typesystem:
2486
2487Type System
2488===========
2489
2490The LLVM type system is one of the most important features of the
2491intermediate representation. Being typed enables a number of
2492optimizations to be performed on the intermediate representation
2493directly, without having to do extra analyses on the side before the
2494transformation. A strong type system makes it easier to read the
2495generated code and enables novel analyses and transformations that are
2496not feasible to perform on normal three address code representations.
2497
Rafael Espindola08013342013-12-07 19:34:20 +00002498.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002499
Rafael Espindola08013342013-12-07 19:34:20 +00002500Void Type
2501---------
Sean Silvab084af42012-12-07 10:36:55 +00002502
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002503:Overview:
2504
Rafael Espindola08013342013-12-07 19:34:20 +00002505
2506The void type does not represent any value and has no size.
2507
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002508:Syntax:
2509
Rafael Espindola08013342013-12-07 19:34:20 +00002510
2511::
2512
2513 void
Sean Silvab084af42012-12-07 10:36:55 +00002514
2515
Rafael Espindola08013342013-12-07 19:34:20 +00002516.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002517
Rafael Espindola08013342013-12-07 19:34:20 +00002518Function Type
2519-------------
Sean Silvab084af42012-12-07 10:36:55 +00002520
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002521:Overview:
2522
Sean Silvab084af42012-12-07 10:36:55 +00002523
Rafael Espindola08013342013-12-07 19:34:20 +00002524The function type can be thought of as a function signature. It consists of a
2525return type and a list of formal parameter types. The return type of a function
2526type is a void type or first class type --- except for :ref:`label <t_label>`
2527and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002528
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002529:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002530
Rafael Espindola08013342013-12-07 19:34:20 +00002531::
Sean Silvab084af42012-12-07 10:36:55 +00002532
Rafael Espindola08013342013-12-07 19:34:20 +00002533 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002534
Rafael Espindola08013342013-12-07 19:34:20 +00002535...where '``<parameter list>``' is a comma-separated list of type
2536specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002537indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002538argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002539handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002540except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002541
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002542:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002543
Rafael Espindola08013342013-12-07 19:34:20 +00002544+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2545| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2546+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2547| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2548+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2549| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2550+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2551| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2552+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2553
2554.. _t_firstclass:
2555
2556First Class Types
2557-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002558
2559The :ref:`first class <t_firstclass>` types are perhaps the most important.
2560Values of these types are the only ones which can be produced by
2561instructions.
2562
Rafael Espindola08013342013-12-07 19:34:20 +00002563.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002564
Rafael Espindola08013342013-12-07 19:34:20 +00002565Single Value Types
2566^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002567
Rafael Espindola08013342013-12-07 19:34:20 +00002568These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002569
2570.. _t_integer:
2571
2572Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002573""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002574
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002575:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002576
2577The integer type is a very simple type that simply specifies an
2578arbitrary bit width for the integer type desired. Any bit width from 1
2579bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2580
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002581:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002582
2583::
2584
2585 iN
2586
2587The number of bits the integer will occupy is specified by the ``N``
2588value.
2589
2590Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002591*********
Sean Silvab084af42012-12-07 10:36:55 +00002592
2593+----------------+------------------------------------------------+
2594| ``i1`` | a single-bit integer. |
2595+----------------+------------------------------------------------+
2596| ``i32`` | a 32-bit integer. |
2597+----------------+------------------------------------------------+
2598| ``i1942652`` | a really big integer of over 1 million bits. |
2599+----------------+------------------------------------------------+
2600
2601.. _t_floating:
2602
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002603Floating-Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002604""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002605
2606.. list-table::
2607 :header-rows: 1
2608
2609 * - Type
2610 - Description
2611
2612 * - ``half``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002613 - 16-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002614
2615 * - ``float``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002616 - 32-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002617
2618 * - ``double``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002619 - 64-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002620
2621 * - ``fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002622 - 128-bit floating-point value (112-bit mantissa)
Sean Silvab084af42012-12-07 10:36:55 +00002623
2624 * - ``x86_fp80``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002625 - 80-bit floating-point value (X87)
Sean Silvab084af42012-12-07 10:36:55 +00002626
2627 * - ``ppc_fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002628 - 128-bit floating-point value (two 64-bits)
Sean Silvab084af42012-12-07 10:36:55 +00002629
Sanjay Patelbab6ce02018-03-21 15:22:09 +00002630The binary format of half, float, double, and fp128 correspond to the
2631IEEE-754-2008 specifications for binary16, binary32, binary64, and binary128
2632respectively.
2633
Reid Kleckner9a16d082014-03-05 02:41:37 +00002634X86_mmx Type
2635""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002636
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002637:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002638
Reid Kleckner9a16d082014-03-05 02:41:37 +00002639The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002640machine. The operations allowed on it are quite limited: parameters and
2641return values, load and store, and bitcast. User-specified MMX
2642instructions are represented as intrinsic or asm calls with arguments
2643and/or results of this type. There are no arrays, vectors or constants
2644of this type.
2645
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002646:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002647
2648::
2649
Reid Kleckner9a16d082014-03-05 02:41:37 +00002650 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002651
Sean Silvab084af42012-12-07 10:36:55 +00002652
Rafael Espindola08013342013-12-07 19:34:20 +00002653.. _t_pointer:
2654
2655Pointer Type
2656""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002657
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002658:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002659
Rafael Espindola08013342013-12-07 19:34:20 +00002660The pointer type is used to specify memory locations. Pointers are
2661commonly used to reference objects in memory.
2662
2663Pointer types may have an optional address space attribute defining the
2664numbered address space where the pointed-to object resides. The default
2665address space is number zero. The semantics of non-zero address spaces
2666are target-specific.
2667
2668Note that LLVM does not permit pointers to void (``void*``) nor does it
2669permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002670
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002671:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002672
2673::
2674
Rafael Espindola08013342013-12-07 19:34:20 +00002675 <type> *
2676
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002677:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002678
2679+-------------------------+--------------------------------------------------------------------------------------------------------------+
2680| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2681+-------------------------+--------------------------------------------------------------------------------------------------------------+
2682| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2683+-------------------------+--------------------------------------------------------------------------------------------------------------+
2684| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2685+-------------------------+--------------------------------------------------------------------------------------------------------------+
2686
2687.. _t_vector:
2688
2689Vector Type
2690"""""""""""
2691
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002692:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002693
2694A vector type is a simple derived type that represents a vector of
2695elements. Vector types are used when multiple primitive data are
2696operated in parallel using a single instruction (SIMD). A vector type
2697requires a size (number of elements) and an underlying primitive data
2698type. Vector types are considered :ref:`first class <t_firstclass>`.
2699
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002700:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002701
2702::
2703
2704 < <# elements> x <elementtype> >
2705
2706The number of elements is a constant integer value larger than 0;
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002707elementtype may be any integer, floating-point or pointer type. Vectors
Manuel Jacob961f7872014-07-30 12:30:06 +00002708of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002709
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002710:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002711
2712+-------------------+--------------------------------------------------+
2713| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2714+-------------------+--------------------------------------------------+
2715| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2716+-------------------+--------------------------------------------------+
2717| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2718+-------------------+--------------------------------------------------+
2719| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2720+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002721
2722.. _t_label:
2723
2724Label Type
2725^^^^^^^^^^
2726
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002727:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002728
2729The label type represents code labels.
2730
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002731:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002732
2733::
2734
2735 label
2736
David Majnemerb611e3f2015-08-14 05:09:07 +00002737.. _t_token:
2738
2739Token Type
2740^^^^^^^^^^
2741
2742:Overview:
2743
2744The token type is used when a value is associated with an instruction
2745but all uses of the value must not attempt to introspect or obscure it.
2746As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2747:ref:`select <i_select>` of type token.
2748
2749:Syntax:
2750
2751::
2752
2753 token
2754
2755
2756
Sean Silvab084af42012-12-07 10:36:55 +00002757.. _t_metadata:
2758
2759Metadata Type
2760^^^^^^^^^^^^^
2761
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002762:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002763
2764The metadata type represents embedded metadata. No derived types may be
2765created from metadata except for :ref:`function <t_function>` arguments.
2766
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002767:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002768
2769::
2770
2771 metadata
2772
Sean Silvab084af42012-12-07 10:36:55 +00002773.. _t_aggregate:
2774
2775Aggregate Types
2776^^^^^^^^^^^^^^^
2777
2778Aggregate Types are a subset of derived types that can contain multiple
2779member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2780aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2781aggregate types.
2782
2783.. _t_array:
2784
2785Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002786""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002787
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002788:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002789
2790The array type is a very simple derived type that arranges elements
2791sequentially in memory. The array type requires a size (number of
2792elements) and an underlying data type.
2793
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002794:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002795
2796::
2797
2798 [<# elements> x <elementtype>]
2799
2800The number of elements is a constant integer value; ``elementtype`` may
2801be any type with a size.
2802
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002803:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002804
2805+------------------+--------------------------------------+
2806| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2807+------------------+--------------------------------------+
2808| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2809+------------------+--------------------------------------+
2810| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2811+------------------+--------------------------------------+
2812
2813Here are some examples of multidimensional arrays:
2814
2815+-----------------------------+----------------------------------------------------------+
2816| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2817+-----------------------------+----------------------------------------------------------+
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002818| ``[12 x [10 x float]]`` | 12x10 array of single precision floating-point values. |
Sean Silvab084af42012-12-07 10:36:55 +00002819+-----------------------------+----------------------------------------------------------+
2820| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2821+-----------------------------+----------------------------------------------------------+
2822
2823There is no restriction on indexing beyond the end of the array implied
2824by a static type (though there are restrictions on indexing beyond the
2825bounds of an allocated object in some cases). This means that
2826single-dimension 'variable sized array' addressing can be implemented in
2827LLVM with a zero length array type. An implementation of 'pascal style
2828arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2829example.
2830
Sean Silvab084af42012-12-07 10:36:55 +00002831.. _t_struct:
2832
2833Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002834""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002835
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002836:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002837
2838The structure type is used to represent a collection of data members
2839together in memory. The elements of a structure may be any type that has
2840a size.
2841
2842Structures in memory are accessed using '``load``' and '``store``' by
2843getting a pointer to a field with the '``getelementptr``' instruction.
2844Structures in registers are accessed using the '``extractvalue``' and
2845'``insertvalue``' instructions.
2846
2847Structures may optionally be "packed" structures, which indicate that
2848the alignment of the struct is one byte, and that there is no padding
2849between the elements. In non-packed structs, padding between field types
2850is inserted as defined by the DataLayout string in the module, which is
2851required to match what the underlying code generator expects.
2852
2853Structures can either be "literal" or "identified". A literal structure
2854is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2855identified types are always defined at the top level with a name.
2856Literal types are uniqued by their contents and can never be recursive
2857or opaque since there is no way to write one. Identified types can be
2858recursive, can be opaqued, and are never uniqued.
2859
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002860:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002861
2862::
2863
2864 %T1 = type { <type list> } ; Identified normal struct type
2865 %T2 = type <{ <type list> }> ; Identified packed struct type
2866
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002867:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002868
2869+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2870| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2871+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002872| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002873+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2874| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2875+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2876
2877.. _t_opaque:
2878
2879Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002880""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002881
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002882:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002883
2884Opaque structure types are used to represent named structure types that
2885do not have a body specified. This corresponds (for example) to the C
2886notion of a forward declared structure.
2887
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002888:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002889
2890::
2891
2892 %X = type opaque
2893 %52 = type opaque
2894
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002895:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002896
2897+--------------+-------------------+
2898| ``opaque`` | An opaque type. |
2899+--------------+-------------------+
2900
Sean Silva1703e702014-04-08 21:06:22 +00002901.. _constants:
2902
Sean Silvab084af42012-12-07 10:36:55 +00002903Constants
2904=========
2905
2906LLVM has several different basic types of constants. This section
2907describes them all and their syntax.
2908
2909Simple Constants
2910----------------
2911
2912**Boolean constants**
2913 The two strings '``true``' and '``false``' are both valid constants
2914 of the ``i1`` type.
2915**Integer constants**
2916 Standard integers (such as '4') are constants of the
2917 :ref:`integer <t_integer>` type. Negative numbers may be used with
2918 integer types.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002919**Floating-point constants**
2920 Floating-point constants use standard decimal notation (e.g.
Sean Silvab084af42012-12-07 10:36:55 +00002921 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2922 hexadecimal notation (see below). The assembler requires the exact
2923 decimal value of a floating-point constant. For example, the
2924 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002925 decimal in binary. Floating-point constants must have a
2926 :ref:`floating-point <t_floating>` type.
Sean Silvab084af42012-12-07 10:36:55 +00002927**Null pointer constants**
2928 The identifier '``null``' is recognized as a null pointer constant
2929 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002930**Token constants**
2931 The identifier '``none``' is recognized as an empty token constant
2932 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002933
2934The one non-intuitive notation for constants is the hexadecimal form of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002935floating-point constants. For example, the form
Sean Silvab084af42012-12-07 10:36:55 +00002936'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002937than) '``double 4.5e+15``'. The only time hexadecimal floating-point
Sean Silvab084af42012-12-07 10:36:55 +00002938constants are required (and the only time that they are generated by the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002939disassembler) is when a floating-point constant must be emitted but it
2940cannot be represented as a decimal floating-point number in a reasonable
Sean Silvab084af42012-12-07 10:36:55 +00002941number of digits. For example, NaN's, infinities, and other special
2942values are represented in their IEEE hexadecimal format so that assembly
2943and disassembly do not cause any bits to change in the constants.
2944
2945When using the hexadecimal form, constants of types half, float, and
2946double are represented using the 16-digit form shown above (which
2947matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002948must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002949precision, respectively. Hexadecimal format is always used for long
2950double, and there are three forms of long double. The 80-bit format used
2951by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2952128-bit format used by PowerPC (two adjacent doubles) is represented by
2953``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002954represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2955will only work if they match the long double format on your target.
2956The IEEE 16-bit format (half precision) is represented by ``0xH``
2957followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2958(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002959
Reid Kleckner9a16d082014-03-05 02:41:37 +00002960There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002961
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002962.. _complexconstants:
2963
Sean Silvab084af42012-12-07 10:36:55 +00002964Complex Constants
2965-----------------
2966
2967Complex constants are a (potentially recursive) combination of simple
2968constants and smaller complex constants.
2969
2970**Structure constants**
2971 Structure constants are represented with notation similar to
2972 structure type definitions (a comma separated list of elements,
2973 surrounded by braces (``{}``)). For example:
2974 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2975 "``@G = external global i32``". Structure constants must have
2976 :ref:`structure type <t_struct>`, and the number and types of elements
2977 must match those specified by the type.
2978**Array constants**
2979 Array constants are represented with notation similar to array type
2980 definitions (a comma separated list of elements, surrounded by
2981 square brackets (``[]``)). For example:
2982 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2983 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002984 match those specified by the type. As a special case, character array
2985 constants may also be represented as a double-quoted string using the ``c``
2986 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002987**Vector constants**
2988 Vector constants are represented with notation similar to vector
2989 type definitions (a comma separated list of elements, surrounded by
2990 less-than/greater-than's (``<>``)). For example:
2991 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2992 must have :ref:`vector type <t_vector>`, and the number and types of
2993 elements must match those specified by the type.
2994**Zero initialization**
2995 The string '``zeroinitializer``' can be used to zero initialize a
2996 value to zero of *any* type, including scalar and
2997 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2998 having to print large zero initializers (e.g. for large arrays) and
2999 is always exactly equivalent to using explicit zero initializers.
3000**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00003001 A metadata node is a constant tuple without types. For example:
3002 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003003 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
3004 Unlike other typed constants that are meant to be interpreted as part of
3005 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00003006 information such as debug info.
3007
3008Global Variable and Function Addresses
3009--------------------------------------
3010
3011The addresses of :ref:`global variables <globalvars>` and
3012:ref:`functions <functionstructure>` are always implicitly valid
3013(link-time) constants. These constants are explicitly referenced when
3014the :ref:`identifier for the global <identifiers>` is used and always have
3015:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
3016file:
3017
3018.. code-block:: llvm
3019
3020 @X = global i32 17
3021 @Y = global i32 42
3022 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
3023
3024.. _undefvalues:
3025
3026Undefined Values
3027----------------
3028
3029The string '``undef``' can be used anywhere a constant is expected, and
3030indicates that the user of the value may receive an unspecified
3031bit-pattern. Undefined values may be of any type (other than '``label``'
3032or '``void``') and be used anywhere a constant is permitted.
3033
3034Undefined values are useful because they indicate to the compiler that
3035the program is well defined no matter what value is used. This gives the
3036compiler more freedom to optimize. Here are some examples of
3037(potentially surprising) transformations that are valid (in pseudo IR):
3038
3039.. code-block:: llvm
3040
3041 %A = add %X, undef
3042 %B = sub %X, undef
3043 %C = xor %X, undef
3044 Safe:
3045 %A = undef
3046 %B = undef
3047 %C = undef
3048
3049This is safe because all of the output bits are affected by the undef
3050bits. Any output bit can have a zero or one depending on the input bits.
3051
3052.. code-block:: llvm
3053
3054 %A = or %X, undef
3055 %B = and %X, undef
3056 Safe:
3057 %A = -1
3058 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00003059 Safe:
3060 %A = %X ;; By choosing undef as 0
3061 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00003062 Unsafe:
3063 %A = undef
3064 %B = undef
3065
3066These logical operations have bits that are not always affected by the
3067input. For example, if ``%X`` has a zero bit, then the output of the
3068'``and``' operation will always be a zero for that bit, no matter what
3069the corresponding bit from the '``undef``' is. As such, it is unsafe to
3070optimize or assume that the result of the '``and``' is '``undef``'.
3071However, it is safe to assume that all bits of the '``undef``' could be
30720, and optimize the '``and``' to 0. Likewise, it is safe to assume that
3073all the bits of the '``undef``' operand to the '``or``' could be set,
3074allowing the '``or``' to be folded to -1.
3075
3076.. code-block:: llvm
3077
3078 %A = select undef, %X, %Y
3079 %B = select undef, 42, %Y
3080 %C = select %X, %Y, undef
3081 Safe:
3082 %A = %X (or %Y)
3083 %B = 42 (or %Y)
3084 %C = %Y
3085 Unsafe:
3086 %A = undef
3087 %B = undef
3088 %C = undef
3089
3090This set of examples shows that undefined '``select``' (and conditional
3091branch) conditions can go *either way*, but they have to come from one
3092of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
3093both known to have a clear low bit, then ``%A`` would have to have a
3094cleared low bit. However, in the ``%C`` example, the optimizer is
3095allowed to assume that the '``undef``' operand could be the same as
3096``%Y``, allowing the whole '``select``' to be eliminated.
3097
Renato Golin124f2592016-07-20 12:16:38 +00003098.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003099
3100 %A = xor undef, undef
3101
3102 %B = undef
3103 %C = xor %B, %B
3104
3105 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00003106 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00003107 %F = icmp gte %D, 4
3108
3109 Safe:
3110 %A = undef
3111 %B = undef
3112 %C = undef
3113 %D = undef
3114 %E = undef
3115 %F = undef
3116
3117This example points out that two '``undef``' operands are not
3118necessarily the same. This can be surprising to people (and also matches
3119C semantics) where they assume that "``X^X``" is always zero, even if
3120``X`` is undefined. This isn't true for a number of reasons, but the
3121short answer is that an '``undef``' "variable" can arbitrarily change
3122its value over its "live range". This is true because the variable
3123doesn't actually *have a live range*. Instead, the value is logically
3124read from arbitrary registers that happen to be around when needed, so
3125the value is not necessarily consistent over time. In fact, ``%A`` and
3126``%C`` need to have the same semantics or the core LLVM "replace all
3127uses with" concept would not hold.
3128
3129.. code-block:: llvm
3130
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003131 %A = sdiv undef, %X
3132 %B = sdiv %X, undef
Sean Silvab084af42012-12-07 10:36:55 +00003133 Safe:
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003134 %A = 0
Sean Silvab084af42012-12-07 10:36:55 +00003135 b: unreachable
3136
3137These examples show the crucial difference between an *undefined value*
3138and *undefined behavior*. An undefined value (like '``undef``') is
3139allowed to have an arbitrary bit-pattern. This means that the ``%A``
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003140operation can be constant folded to '``0``', because the '``undef``'
3141could be zero, and zero divided by any value is zero.
Sean Silvab084af42012-12-07 10:36:55 +00003142However, in the second example, we can make a more aggressive
3143assumption: because the ``undef`` is allowed to be an arbitrary value,
3144we are allowed to assume that it could be zero. Since a divide by zero
3145has *undefined behavior*, we are allowed to assume that the operation
3146does not execute at all. This allows us to delete the divide and all
3147code after it. Because the undefined operation "can't happen", the
3148optimizer can assume that it occurs in dead code.
3149
Renato Golin124f2592016-07-20 12:16:38 +00003150.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003151
3152 a: store undef -> %X
3153 b: store %X -> undef
3154 Safe:
3155 a: <deleted>
3156 b: unreachable
3157
Sanjay Patel7b722402018-03-07 17:18:22 +00003158A store *of* an undefined value can be assumed to not have any effect;
3159we can assume that the value is overwritten with bits that happen to
3160match what was already there. However, a store *to* an undefined
3161location could clobber arbitrary memory, therefore, it has undefined
3162behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003163
3164.. _poisonvalues:
3165
3166Poison Values
3167-------------
3168
3169Poison values are similar to :ref:`undef values <undefvalues>`, however
3170they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003171that cannot evoke side effects has nevertheless detected a condition
3172that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003173
3174There is currently no way of representing a poison value in the IR; they
3175only exist when produced by operations such as :ref:`add <i_add>` with
3176the ``nsw`` flag.
3177
3178Poison value behavior is defined in terms of value *dependence*:
3179
3180- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3181- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3182 their dynamic predecessor basic block.
3183- Function arguments depend on the corresponding actual argument values
3184 in the dynamic callers of their functions.
3185- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3186 instructions that dynamically transfer control back to them.
3187- :ref:`Invoke <i_invoke>` instructions depend on the
3188 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3189 call instructions that dynamically transfer control back to them.
3190- Non-volatile loads and stores depend on the most recent stores to all
3191 of the referenced memory addresses, following the order in the IR
3192 (including loads and stores implied by intrinsics such as
3193 :ref:`@llvm.memcpy <int_memcpy>`.)
3194- An instruction with externally visible side effects depends on the
3195 most recent preceding instruction with externally visible side
3196 effects, following the order in the IR. (This includes :ref:`volatile
3197 operations <volatile>`.)
3198- An instruction *control-depends* on a :ref:`terminator
3199 instruction <terminators>` if the terminator instruction has
3200 multiple successors and the instruction is always executed when
3201 control transfers to one of the successors, and may not be executed
3202 when control is transferred to another.
3203- Additionally, an instruction also *control-depends* on a terminator
3204 instruction if the set of instructions it otherwise depends on would
3205 be different if the terminator had transferred control to a different
3206 successor.
3207- Dependence is transitive.
3208
Richard Smith32dbdf62014-07-31 04:25:36 +00003209Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3210with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003211on a poison value has undefined behavior.
3212
3213Here are some examples:
3214
3215.. code-block:: llvm
3216
3217 entry:
3218 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3219 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003220 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003221 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3222
3223 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003224 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003225
3226 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3227
3228 %narrowaddr = bitcast i32* @g to i16*
3229 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003230 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3231 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003232
3233 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3234 br i1 %cmp, label %true, label %end ; Branch to either destination.
3235
3236 true:
3237 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3238 ; it has undefined behavior.
3239 br label %end
3240
3241 end:
3242 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3243 ; Both edges into this PHI are
3244 ; control-dependent on %cmp, so this
3245 ; always results in a poison value.
3246
3247 store volatile i32 0, i32* @g ; This would depend on the store in %true
3248 ; if %cmp is true, or the store in %entry
3249 ; otherwise, so this is undefined behavior.
3250
3251 br i1 %cmp, label %second_true, label %second_end
3252 ; The same branch again, but this time the
3253 ; true block doesn't have side effects.
3254
3255 second_true:
3256 ; No side effects!
3257 ret void
3258
3259 second_end:
3260 store volatile i32 0, i32* @g ; This time, the instruction always depends
3261 ; on the store in %end. Also, it is
3262 ; control-equivalent to %end, so this is
3263 ; well-defined (ignoring earlier undefined
3264 ; behavior in this example).
3265
3266.. _blockaddress:
3267
3268Addresses of Basic Blocks
3269-------------------------
3270
3271``blockaddress(@function, %block)``
3272
3273The '``blockaddress``' constant computes the address of the specified
3274basic block in the specified function, and always has an ``i8*`` type.
3275Taking the address of the entry block is illegal.
3276
3277This value only has defined behavior when used as an operand to the
3278':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3279against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003280undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003281no label is equal to the null pointer. This may be passed around as an
3282opaque pointer sized value as long as the bits are not inspected. This
3283allows ``ptrtoint`` and arithmetic to be performed on these values so
3284long as the original value is reconstituted before the ``indirectbr``
3285instruction.
3286
3287Finally, some targets may provide defined semantics when using the value
3288as the operand to an inline assembly, but that is target specific.
3289
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003290.. _constantexprs:
3291
Sean Silvab084af42012-12-07 10:36:55 +00003292Constant Expressions
3293--------------------
3294
3295Constant expressions are used to allow expressions involving other
3296constants to be used as constants. Constant expressions may be of any
3297:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3298that does not have side effects (e.g. load and call are not supported).
3299The following is the syntax for constant expressions:
3300
3301``trunc (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003302 Perform the :ref:`trunc operation <i_trunc>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003303``zext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003304 Perform the :ref:`zext operation <i_zext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003305``sext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003306 Perform the :ref:`sext operation <i_sext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003307``fptrunc (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003308 Truncate a floating-point constant to another floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003309 The size of CST must be larger than the size of TYPE. Both types
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003310 must be floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003311``fpext (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003312 Floating-point extend a constant to another type. The size of CST
Sean Silvab084af42012-12-07 10:36:55 +00003313 must be smaller or equal to the size of TYPE. Both types must be
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003314 floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003315``fptoui (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003316 Convert a floating-point constant to the corresponding unsigned
Sean Silvab084af42012-12-07 10:36:55 +00003317 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003318 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003319 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003320 value won't fit in the integer type, the result is a
3321 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003322``fptosi (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003323 Convert a floating-point constant to the corresponding signed
Sean Silvab084af42012-12-07 10:36:55 +00003324 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003325 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003326 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003327 value won't fit in the integer type, the result is a
3328 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003329``uitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003330 Convert an unsigned integer constant to the corresponding
3331 floating-point constant. TYPE must be a scalar or vector floating-point
3332 type. CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003333 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003334``sitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003335 Convert a signed integer constant to the corresponding floating-point
3336 constant. TYPE must be a scalar or vector floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003337 CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003338 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003339``ptrtoint (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003340 Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003341``inttoptr (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003342 Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003343 This one is *really* dangerous!
3344``bitcast (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003345 Convert a constant, CST, to another TYPE.
3346 The constraints of the operands are the same as those for the
3347 :ref:`bitcast instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003348``addrspacecast (CST to TYPE)``
3349 Convert a constant pointer or constant vector of pointer, CST, to another
3350 TYPE in a different address space. The constraints of the operands are the
3351 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003352``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003353 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3354 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003355 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003356 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003357``select (COND, VAL1, VAL2)``
3358 Perform the :ref:`select operation <i_select>` on constants.
3359``icmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003360 Perform the :ref:`icmp operation <i_icmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003361``fcmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003362 Perform the :ref:`fcmp operation <i_fcmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003363``extractelement (VAL, IDX)``
3364 Perform the :ref:`extractelement operation <i_extractelement>` on
3365 constants.
3366``insertelement (VAL, ELT, IDX)``
3367 Perform the :ref:`insertelement operation <i_insertelement>` on
3368 constants.
3369``shufflevector (VEC1, VEC2, IDXMASK)``
3370 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3371 constants.
3372``extractvalue (VAL, IDX0, IDX1, ...)``
3373 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3374 constants. The index list is interpreted in a similar manner as
3375 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3376 least one index value must be specified.
3377``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3378 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3379 The index list is interpreted in a similar manner as indices in a
3380 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3381 value must be specified.
3382``OPCODE (LHS, RHS)``
3383 Perform the specified operation of the LHS and RHS constants. OPCODE
3384 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3385 binary <bitwiseops>` operations. The constraints on operands are
3386 the same as those for the corresponding instruction (e.g. no bitwise
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003387 operations on floating-point values are allowed).
Sean Silvab084af42012-12-07 10:36:55 +00003388
3389Other Values
3390============
3391
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003392.. _inlineasmexprs:
3393
Sean Silvab084af42012-12-07 10:36:55 +00003394Inline Assembler Expressions
3395----------------------------
3396
3397LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003398Inline Assembly <moduleasm>`) through the use of a special value. This value
3399represents the inline assembler as a template string (containing the
3400instructions to emit), a list of operand constraints (stored as a string), a
3401flag that indicates whether or not the inline asm expression has side effects,
3402and a flag indicating whether the function containing the asm needs to align its
3403stack conservatively.
3404
3405The template string supports argument substitution of the operands using "``$``"
3406followed by a number, to indicate substitution of the given register/memory
3407location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3408be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3409operand (See :ref:`inline-asm-modifiers`).
3410
3411A literal "``$``" may be included by using "``$$``" in the template. To include
3412other special characters into the output, the usual "``\XX``" escapes may be
3413used, just as in other strings. Note that after template substitution, the
3414resulting assembly string is parsed by LLVM's integrated assembler unless it is
3415disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3416syntax known to LLVM.
3417
Reid Kleckner71cb1642017-02-06 18:08:45 +00003418LLVM also supports a few more substitions useful for writing inline assembly:
3419
3420- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3421 This substitution is useful when declaring a local label. Many standard
3422 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3423 Adding a blob-unique identifier ensures that the two labels will not conflict
3424 during assembly. This is used to implement `GCC's %= special format
3425 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3426- ``${:comment}``: Expands to the comment character of the current target's
3427 assembly dialect. This is usually ``#``, but many targets use other strings,
3428 such as ``;``, ``//``, or ``!``.
3429- ``${:private}``: Expands to the assembler private label prefix. Labels with
3430 this prefix will not appear in the symbol table of the assembled object.
3431 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3432 relatively popular.
3433
James Y Knightbc832ed2015-07-08 18:08:36 +00003434LLVM's support for inline asm is modeled closely on the requirements of Clang's
3435GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3436modifier codes listed here are similar or identical to those in GCC's inline asm
3437support. However, to be clear, the syntax of the template and constraint strings
3438described here is *not* the same as the syntax accepted by GCC and Clang, and,
3439while most constraint letters are passed through as-is by Clang, some get
3440translated to other codes when converting from the C source to the LLVM
3441assembly.
3442
3443An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003444
3445.. code-block:: llvm
3446
3447 i32 (i32) asm "bswap $0", "=r,r"
3448
3449Inline assembler expressions may **only** be used as the callee operand
3450of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3451Thus, typically we have:
3452
3453.. code-block:: llvm
3454
3455 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3456
3457Inline asms with side effects not visible in the constraint list must be
3458marked as having side effects. This is done through the use of the
3459'``sideeffect``' keyword, like so:
3460
3461.. code-block:: llvm
3462
3463 call void asm sideeffect "eieio", ""()
3464
3465In some cases inline asms will contain code that will not work unless
3466the stack is aligned in some way, such as calls or SSE instructions on
3467x86, yet will not contain code that does that alignment within the asm.
3468The compiler should make conservative assumptions about what the asm
3469might contain and should generate its usual stack alignment code in the
3470prologue if the '``alignstack``' keyword is present:
3471
3472.. code-block:: llvm
3473
3474 call void asm alignstack "eieio", ""()
3475
3476Inline asms also support using non-standard assembly dialects. The
3477assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3478the inline asm is using the Intel dialect. Currently, ATT and Intel are
3479the only supported dialects. An example is:
3480
3481.. code-block:: llvm
3482
3483 call void asm inteldialect "eieio", ""()
3484
3485If multiple keywords appear the '``sideeffect``' keyword must come
3486first, the '``alignstack``' keyword second and the '``inteldialect``'
3487keyword last.
3488
James Y Knightbc832ed2015-07-08 18:08:36 +00003489Inline Asm Constraint String
3490^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3491
3492The constraint list is a comma-separated string, each element containing one or
3493more constraint codes.
3494
3495For each element in the constraint list an appropriate register or memory
3496operand will be chosen, and it will be made available to assembly template
3497string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3498second, etc.
3499
3500There are three different types of constraints, which are distinguished by a
3501prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3502constraints must always be given in that order: outputs first, then inputs, then
3503clobbers. They cannot be intermingled.
3504
3505There are also three different categories of constraint codes:
3506
3507- Register constraint. This is either a register class, or a fixed physical
3508 register. This kind of constraint will allocate a register, and if necessary,
3509 bitcast the argument or result to the appropriate type.
3510- Memory constraint. This kind of constraint is for use with an instruction
3511 taking a memory operand. Different constraints allow for different addressing
3512 modes used by the target.
3513- Immediate value constraint. This kind of constraint is for an integer or other
3514 immediate value which can be rendered directly into an instruction. The
3515 various target-specific constraints allow the selection of a value in the
3516 proper range for the instruction you wish to use it with.
3517
3518Output constraints
3519""""""""""""""""""
3520
3521Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3522indicates that the assembly will write to this operand, and the operand will
3523then be made available as a return value of the ``asm`` expression. Output
3524constraints do not consume an argument from the call instruction. (Except, see
3525below about indirect outputs).
3526
3527Normally, it is expected that no output locations are written to by the assembly
3528expression until *all* of the inputs have been read. As such, LLVM may assign
3529the same register to an output and an input. If this is not safe (e.g. if the
3530assembly contains two instructions, where the first writes to one output, and
3531the second reads an input and writes to a second output), then the "``&``"
3532modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003533"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003534will not use the same register for any inputs (other than an input tied to this
3535output).
3536
3537Input constraints
3538"""""""""""""""""
3539
3540Input constraints do not have a prefix -- just the constraint codes. Each input
3541constraint will consume one argument from the call instruction. It is not
3542permitted for the asm to write to any input register or memory location (unless
3543that input is tied to an output). Note also that multiple inputs may all be
3544assigned to the same register, if LLVM can determine that they necessarily all
3545contain the same value.
3546
3547Instead of providing a Constraint Code, input constraints may also "tie"
3548themselves to an output constraint, by providing an integer as the constraint
3549string. Tied inputs still consume an argument from the call instruction, and
3550take up a position in the asm template numbering as is usual -- they will simply
3551be constrained to always use the same register as the output they've been tied
3552to. For example, a constraint string of "``=r,0``" says to assign a register for
3553output, and use that register as an input as well (it being the 0'th
3554constraint).
3555
3556It is permitted to tie an input to an "early-clobber" output. In that case, no
3557*other* input may share the same register as the input tied to the early-clobber
3558(even when the other input has the same value).
3559
3560You may only tie an input to an output which has a register constraint, not a
3561memory constraint. Only a single input may be tied to an output.
3562
3563There is also an "interesting" feature which deserves a bit of explanation: if a
3564register class constraint allocates a register which is too small for the value
3565type operand provided as input, the input value will be split into multiple
3566registers, and all of them passed to the inline asm.
3567
3568However, this feature is often not as useful as you might think.
3569
3570Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3571architectures that have instructions which operate on multiple consecutive
3572instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3573SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3574hardware then loads into both the named register, and the next register. This
3575feature of inline asm would not be useful to support that.)
3576
3577A few of the targets provide a template string modifier allowing explicit access
3578to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3579``D``). On such an architecture, you can actually access the second allocated
3580register (yet, still, not any subsequent ones). But, in that case, you're still
3581probably better off simply splitting the value into two separate operands, for
3582clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3583despite existing only for use with this feature, is not really a good idea to
3584use)
3585
3586Indirect inputs and outputs
3587"""""""""""""""""""""""""""
3588
3589Indirect output or input constraints can be specified by the "``*``" modifier
3590(which goes after the "``=``" in case of an output). This indicates that the asm
3591will write to or read from the contents of an *address* provided as an input
3592argument. (Note that in this way, indirect outputs act more like an *input* than
3593an output: just like an input, they consume an argument of the call expression,
3594rather than producing a return value. An indirect output constraint is an
3595"output" only in that the asm is expected to write to the contents of the input
3596memory location, instead of just read from it).
3597
3598This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3599address of a variable as a value.
3600
3601It is also possible to use an indirect *register* constraint, but only on output
3602(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3603value normally, and then, separately emit a store to the address provided as
3604input, after the provided inline asm. (It's not clear what value this
3605functionality provides, compared to writing the store explicitly after the asm
3606statement, and it can only produce worse code, since it bypasses many
3607optimization passes. I would recommend not using it.)
3608
3609
3610Clobber constraints
3611"""""""""""""""""""
3612
3613A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3614consume an input operand, nor generate an output. Clobbers cannot use any of the
3615general constraint code letters -- they may use only explicit register
3616constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3617"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3618memory locations -- not only the memory pointed to by a declared indirect
3619output.
3620
Peter Zotov00257232016-08-30 10:48:31 +00003621Note that clobbering named registers that are also present in output
3622constraints is not legal.
3623
James Y Knightbc832ed2015-07-08 18:08:36 +00003624
3625Constraint Codes
3626""""""""""""""""
3627After a potential prefix comes constraint code, or codes.
3628
3629A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3630followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3631(e.g. "``{eax}``").
3632
3633The one and two letter constraint codes are typically chosen to be the same as
3634GCC's constraint codes.
3635
3636A single constraint may include one or more than constraint code in it, leaving
3637it up to LLVM to choose which one to use. This is included mainly for
3638compatibility with the translation of GCC inline asm coming from clang.
3639
3640There are two ways to specify alternatives, and either or both may be used in an
3641inline asm constraint list:
3642
36431) Append the codes to each other, making a constraint code set. E.g. "``im``"
3644 or "``{eax}m``". This means "choose any of the options in the set". The
3645 choice of constraint is made independently for each constraint in the
3646 constraint list.
3647
36482) Use "``|``" between constraint code sets, creating alternatives. Every
3649 constraint in the constraint list must have the same number of alternative
3650 sets. With this syntax, the same alternative in *all* of the items in the
3651 constraint list will be chosen together.
3652
3653Putting those together, you might have a two operand constraint string like
3654``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3655operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3656may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3657
3658However, the use of either of the alternatives features is *NOT* recommended, as
3659LLVM is not able to make an intelligent choice about which one to use. (At the
3660point it currently needs to choose, not enough information is available to do so
3661in a smart way.) Thus, it simply tries to make a choice that's most likely to
3662compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3663always choose to use memory, not registers). And, if given multiple registers,
3664or multiple register classes, it will simply choose the first one. (In fact, it
3665doesn't currently even ensure explicitly specified physical registers are
3666unique, so specifying multiple physical registers as alternatives, like
3667``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3668intended.)
3669
3670Supported Constraint Code List
3671""""""""""""""""""""""""""""""
3672
3673The constraint codes are, in general, expected to behave the same way they do in
3674GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3675inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3676and GCC likely indicates a bug in LLVM.
3677
3678Some constraint codes are typically supported by all targets:
3679
3680- ``r``: A register in the target's general purpose register class.
3681- ``m``: A memory address operand. It is target-specific what addressing modes
3682 are supported, typical examples are register, or register + register offset,
3683 or register + immediate offset (of some target-specific size).
3684- ``i``: An integer constant (of target-specific width). Allows either a simple
3685 immediate, or a relocatable value.
3686- ``n``: An integer constant -- *not* including relocatable values.
3687- ``s``: An integer constant, but allowing *only* relocatable values.
3688- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3689 useful to pass a label for an asm branch or call.
3690
3691 .. FIXME: but that surely isn't actually okay to jump out of an asm
3692 block without telling llvm about the control transfer???)
3693
3694- ``{register-name}``: Requires exactly the named physical register.
3695
3696Other constraints are target-specific:
3697
3698AArch64:
3699
3700- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3701- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3702 i.e. 0 to 4095 with optional shift by 12.
3703- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3704 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3705- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3706 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3707- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3708 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3709- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3710 32-bit register. This is a superset of ``K``: in addition to the bitmask
3711 immediate, also allows immediate integers which can be loaded with a single
3712 ``MOVZ`` or ``MOVL`` instruction.
3713- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3714 64-bit register. This is a superset of ``L``.
3715- ``Q``: Memory address operand must be in a single register (no
3716 offsets). (However, LLVM currently does this for the ``m`` constraint as
3717 well.)
3718- ``r``: A 32 or 64-bit integer register (W* or X*).
3719- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3720- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3721
3722AMDGPU:
3723
3724- ``r``: A 32 or 64-bit integer register.
3725- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3726- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3727
3728
3729All ARM modes:
3730
3731- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3732 operand. Treated the same as operand ``m``, at the moment.
3733
3734ARM and ARM's Thumb2 mode:
3735
3736- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3737- ``I``: An immediate integer valid for a data-processing instruction.
3738- ``J``: An immediate integer between -4095 and 4095.
3739- ``K``: An immediate integer whose bitwise inverse is valid for a
3740 data-processing instruction. (Can be used with template modifier "``B``" to
3741 print the inverted value).
3742- ``L``: An immediate integer whose negation is valid for a data-processing
3743 instruction. (Can be used with template modifier "``n``" to print the negated
3744 value).
3745- ``M``: A power of two or a integer between 0 and 32.
3746- ``N``: Invalid immediate constraint.
3747- ``O``: Invalid immediate constraint.
3748- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3749- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3750 as ``r``.
3751- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3752 invalid.
3753- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3754 ``d0-d31``, or ``q0-q15``.
3755- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3756 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003757- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3758 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003759
3760ARM's Thumb1 mode:
3761
3762- ``I``: An immediate integer between 0 and 255.
3763- ``J``: An immediate integer between -255 and -1.
3764- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3765 some amount.
3766- ``L``: An immediate integer between -7 and 7.
3767- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3768- ``N``: An immediate integer between 0 and 31.
3769- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3770- ``r``: A low 32-bit GPR register (``r0-r7``).
3771- ``l``: A low 32-bit GPR register (``r0-r7``).
3772- ``h``: A high GPR register (``r0-r7``).
3773- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3774 ``d0-d31``, or ``q0-q15``.
3775- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3776 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003777- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3778 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003779
3780
3781Hexagon:
3782
3783- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3784 at the moment.
3785- ``r``: A 32 or 64-bit register.
3786
3787MSP430:
3788
3789- ``r``: An 8 or 16-bit register.
3790
3791MIPS:
3792
3793- ``I``: An immediate signed 16-bit integer.
3794- ``J``: An immediate integer zero.
3795- ``K``: An immediate unsigned 16-bit integer.
3796- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3797- ``N``: An immediate integer between -65535 and -1.
3798- ``O``: An immediate signed 15-bit integer.
3799- ``P``: An immediate integer between 1 and 65535.
3800- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3801 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3802- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3803 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3804 ``m``.
3805- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3806 ``sc`` instruction on the given subtarget (details vary).
3807- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3808- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003809 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3810 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003811- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3812 ``25``).
3813- ``l``: The ``lo`` register, 32 or 64-bit.
3814- ``x``: Invalid.
3815
3816NVPTX:
3817
3818- ``b``: A 1-bit integer register.
3819- ``c`` or ``h``: A 16-bit integer register.
3820- ``r``: A 32-bit integer register.
3821- ``l`` or ``N``: A 64-bit integer register.
3822- ``f``: A 32-bit float register.
3823- ``d``: A 64-bit float register.
3824
3825
3826PowerPC:
3827
3828- ``I``: An immediate signed 16-bit integer.
3829- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3830- ``K``: An immediate unsigned 16-bit integer.
3831- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3832- ``M``: An immediate integer greater than 31.
3833- ``N``: An immediate integer that is an exact power of 2.
3834- ``O``: The immediate integer constant 0.
3835- ``P``: An immediate integer constant whose negation is a signed 16-bit
3836 constant.
3837- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3838 treated the same as ``m``.
3839- ``r``: A 32 or 64-bit integer register.
3840- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3841 ``R1-R31``).
3842- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3843 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3844- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3845 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3846 altivec vector register (``V0-V31``).
3847
3848 .. FIXME: is this a bug that v accepts QPX registers? I think this
3849 is supposed to only use the altivec vector registers?
3850
3851- ``y``: Condition register (``CR0-CR7``).
3852- ``wc``: An individual CR bit in a CR register.
3853- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3854 register set (overlapping both the floating-point and vector register files).
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003855- ``ws``: A 32 or 64-bit floating-point register, from the full VSX register
James Y Knightbc832ed2015-07-08 18:08:36 +00003856 set.
3857
3858Sparc:
3859
3860- ``I``: An immediate 13-bit signed integer.
3861- ``r``: A 32-bit integer register.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003862- ``f``: Any floating-point register on SparcV8, or a floating-point
James Y Knightd4e1b002017-05-12 15:59:10 +00003863 register in the "low" half of the registers on SparcV9.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003864- ``e``: Any floating-point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003865
3866SystemZ:
3867
3868- ``I``: An immediate unsigned 8-bit integer.
3869- ``J``: An immediate unsigned 12-bit integer.
3870- ``K``: An immediate signed 16-bit integer.
3871- ``L``: An immediate signed 20-bit integer.
3872- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003873- ``Q``: A memory address operand with a base address and a 12-bit immediate
3874 unsigned displacement.
3875- ``R``: A memory address operand with a base address, a 12-bit immediate
3876 unsigned displacement, and an index register.
3877- ``S``: A memory address operand with a base address and a 20-bit immediate
3878 signed displacement.
3879- ``T``: A memory address operand with a base address, a 20-bit immediate
3880 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003881- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3882- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3883 address context evaluates as zero).
3884- ``h``: A 32-bit value in the high part of a 64bit data register
3885 (LLVM-specific)
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003886- ``f``: A 32, 64, or 128-bit floating-point register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003887
3888X86:
3889
3890- ``I``: An immediate integer between 0 and 31.
3891- ``J``: An immediate integer between 0 and 64.
3892- ``K``: An immediate signed 8-bit integer.
3893- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3894 0xffffffff.
3895- ``M``: An immediate integer between 0 and 3.
3896- ``N``: An immediate unsigned 8-bit integer.
3897- ``O``: An immediate integer between 0 and 127.
3898- ``e``: An immediate 32-bit signed integer.
3899- ``Z``: An immediate 32-bit unsigned integer.
3900- ``o``, ``v``: Treated the same as ``m``, at the moment.
3901- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3902 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3903 registers, and on X86-64, it is all of the integer registers.
3904- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3905 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3906- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3907- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3908 existed since i386, and can be accessed without the REX prefix.
3909- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3910- ``y``: A 64-bit MMX register, if MMX is enabled.
3911- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3912 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3913 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3914 512-bit vector operand in an AVX512 register, Otherwise, an error.
3915- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3916- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3917 32-bit mode, a 64-bit integer operand will get split into two registers). It
3918 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3919 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3920 you're better off splitting it yourself, before passing it to the asm
3921 statement.
3922
3923XCore:
3924
3925- ``r``: A 32-bit integer register.
3926
3927
3928.. _inline-asm-modifiers:
3929
3930Asm template argument modifiers
3931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3932
3933In the asm template string, modifiers can be used on the operand reference, like
3934"``${0:n}``".
3935
3936The modifiers are, in general, expected to behave the same way they do in
3937GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3938inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3939and GCC likely indicates a bug in LLVM.
3940
3941Target-independent:
3942
Sean Silvaa1190322015-08-06 22:56:48 +00003943- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003944 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3945- ``n``: Negate and print immediate integer constant unadorned, without the
3946 target-specific immediate punctuation (e.g. no ``$`` prefix).
3947- ``l``: Print as an unadorned label, without the target-specific label
3948 punctuation (e.g. no ``$`` prefix).
3949
3950AArch64:
3951
3952- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3953 instead of ``x30``, print ``w30``.
3954- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3955- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3956 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3957 ``v*``.
3958
3959AMDGPU:
3960
3961- ``r``: No effect.
3962
3963ARM:
3964
3965- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3966 register).
3967- ``P``: No effect.
3968- ``q``: No effect.
3969- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3970 as ``d4[1]`` instead of ``s9``)
3971- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3972 prefix.
3973- ``L``: Print the low 16-bits of an immediate integer constant.
3974- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3975 register operands subsequent to the specified one (!), so use carefully.
3976- ``Q``: Print the low-order register of a register-pair, or the low-order
3977 register of a two-register operand.
3978- ``R``: Print the high-order register of a register-pair, or the high-order
3979 register of a two-register operand.
3980- ``H``: Print the second register of a register-pair. (On a big-endian system,
3981 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3982 to ``R``.)
3983
3984 .. FIXME: H doesn't currently support printing the second register
3985 of a two-register operand.
3986
3987- ``e``: Print the low doubleword register of a NEON quad register.
3988- ``f``: Print the high doubleword register of a NEON quad register.
3989- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3990 adornment.
3991
3992Hexagon:
3993
3994- ``L``: Print the second register of a two-register operand. Requires that it
3995 has been allocated consecutively to the first.
3996
3997 .. FIXME: why is it restricted to consecutive ones? And there's
3998 nothing that ensures that happens, is there?
3999
4000- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4001 nothing. Used to print 'addi' vs 'add' instructions.
4002
4003MSP430:
4004
4005No additional modifiers.
4006
4007MIPS:
4008
4009- ``X``: Print an immediate integer as hexadecimal
4010- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
4011- ``d``: Print an immediate integer as decimal.
4012- ``m``: Subtract one and print an immediate integer as decimal.
4013- ``z``: Print $0 if an immediate zero, otherwise print normally.
4014- ``L``: Print the low-order register of a two-register operand, or prints the
4015 address of the low-order word of a double-word memory operand.
4016
4017 .. FIXME: L seems to be missing memory operand support.
4018
4019- ``M``: Print the high-order register of a two-register operand, or prints the
4020 address of the high-order word of a double-word memory operand.
4021
4022 .. FIXME: M seems to be missing memory operand support.
4023
4024- ``D``: Print the second register of a two-register operand, or prints the
4025 second word of a double-word memory operand. (On a big-endian system, ``D`` is
4026 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
4027 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00004028- ``w``: No effect. Provided for compatibility with GCC which requires this
4029 modifier in order to print MSA registers (``W0-W31``) with the ``f``
4030 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00004031
4032NVPTX:
4033
4034- ``r``: No effect.
4035
4036PowerPC:
4037
4038- ``L``: Print the second register of a two-register operand. Requires that it
4039 has been allocated consecutively to the first.
4040
4041 .. FIXME: why is it restricted to consecutive ones? And there's
4042 nothing that ensures that happens, is there?
4043
4044- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4045 nothing. Used to print 'addi' vs 'add' instructions.
4046- ``y``: For a memory operand, prints formatter for a two-register X-form
4047 instruction. (Currently always prints ``r0,OPERAND``).
4048- ``U``: Prints 'u' if the memory operand is an update form, and nothing
4049 otherwise. (NOTE: LLVM does not support update form, so this will currently
4050 always print nothing)
4051- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
4052 not support indexed form, so this will currently always print nothing)
4053
4054Sparc:
4055
4056- ``r``: No effect.
4057
4058SystemZ:
4059
4060SystemZ implements only ``n``, and does *not* support any of the other
4061target-independent modifiers.
4062
4063X86:
4064
4065- ``c``: Print an unadorned integer or symbol name. (The latter is
4066 target-specific behavior for this typically target-independent modifier).
4067- ``A``: Print a register name with a '``*``' before it.
4068- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
4069 operand.
4070- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
4071 memory operand.
4072- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
4073 operand.
4074- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
4075 operand.
4076- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
4077 available, otherwise the 32-bit register name; do nothing on a memory operand.
4078- ``n``: Negate and print an unadorned integer, or, for operands other than an
4079 immediate integer (e.g. a relocatable symbol expression), print a '-' before
4080 the operand. (The behavior for relocatable symbol expressions is a
4081 target-specific behavior for this typically target-independent modifier)
4082- ``H``: Print a memory reference with additional offset +8.
4083- ``P``: Print a memory reference or operand for use as the argument of a call
4084 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
4085
4086XCore:
4087
4088No additional modifiers.
4089
4090
Sean Silvab084af42012-12-07 10:36:55 +00004091Inline Asm Metadata
4092^^^^^^^^^^^^^^^^^^^
4093
4094The call instructions that wrap inline asm nodes may have a
4095"``!srcloc``" MDNode attached to it that contains a list of constant
4096integers. If present, the code generator will use the integer as the
4097location cookie value when report errors through the ``LLVMContext``
4098error reporting mechanisms. This allows a front-end to correlate backend
4099errors that occur with inline asm back to the source code that produced
4100it. For example:
4101
4102.. code-block:: llvm
4103
4104 call void asm sideeffect "something bad", ""(), !srcloc !42
4105 ...
4106 !42 = !{ i32 1234567 }
4107
4108It is up to the front-end to make sense of the magic numbers it places
4109in the IR. If the MDNode contains multiple constants, the code generator
4110will use the one that corresponds to the line of the asm that the error
4111occurs on.
4112
4113.. _metadata:
4114
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004115Metadata
4116========
Sean Silvab084af42012-12-07 10:36:55 +00004117
4118LLVM IR allows metadata to be attached to instructions in the program
4119that can convey extra information about the code to the optimizers and
4120code generator. One example application of metadata is source-level
4121debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004122
Sean Silvaa1190322015-08-06 22:56:48 +00004123Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004124``call`` instruction, it uses the ``metadata`` type.
4125
4126All metadata are identified in syntax by a exclamation point ('``!``').
4127
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004128.. _metadata-string:
4129
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004130Metadata Nodes and Metadata Strings
4131-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00004132
4133A metadata string is a string surrounded by double quotes. It can
4134contain any character by escaping non-printable characters with
4135"``\xx``" where "``xx``" is the two digit hex code. For example:
4136"``!"test\00"``".
4137
4138Metadata nodes are represented with notation similar to structure
4139constants (a comma separated list of elements, surrounded by braces and
4140preceded by an exclamation point). Metadata nodes can have any values as
4141their operand. For example:
4142
4143.. code-block:: llvm
4144
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004145 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00004146
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004147Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4148
Renato Golin124f2592016-07-20 12:16:38 +00004149.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004150
4151 !0 = distinct !{!"test\00", i32 10}
4152
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004153``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004154content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004155when metadata operands change.
4156
Sean Silvab084af42012-12-07 10:36:55 +00004157A :ref:`named metadata <namedmetadatastructure>` is a collection of
4158metadata nodes, which can be looked up in the module symbol table. For
4159example:
4160
4161.. code-block:: llvm
4162
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004163 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004164
Adrian Prantl1b842da2017-07-28 20:44:29 +00004165Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4166intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004167
4168.. code-block:: llvm
4169
Adrian Prantlabe04752017-07-28 20:21:02 +00004170 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004171
Peter Collingbourne50108682015-11-06 02:41:02 +00004172Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4173to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004174
4175.. code-block:: llvm
4176
4177 %indvar.next = add i64 %indvar, 1, !dbg !21
4178
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004179Metadata can also be attached to a function or a global variable. Here metadata
4180``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4181and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004182
4183.. code-block:: llvm
4184
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004185 declare !dbg !22 void @f1()
4186 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004187 ret void
4188 }
4189
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004190 @g1 = global i32 0, !dbg !22
4191 @g2 = external global i32, !dbg !22
4192
4193A transformation is required to drop any metadata attachment that it does not
4194know or know it can't preserve. Currently there is an exception for metadata
4195attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4196unconditionally dropped unless the global is itself deleted.
4197
4198Metadata attached to a module using named metadata may not be dropped, with
4199the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4200
Sean Silvab084af42012-12-07 10:36:55 +00004201More information about specific metadata nodes recognized by the
4202optimizers and code generator is found below.
4203
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004204.. _specialized-metadata:
4205
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004206Specialized Metadata Nodes
4207^^^^^^^^^^^^^^^^^^^^^^^^^^
4208
4209Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004210to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004211order.
4212
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004213These aren't inherently debug info centric, but currently all the specialized
4214metadata nodes are related to debug info.
4215
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004216.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004217
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004218DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004219"""""""""""""
4220
Sean Silvaa1190322015-08-06 22:56:48 +00004221``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004222``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4223containing the debug info to be emitted along with the compile unit, regardless
4224of code optimizations (some nodes are only emitted if there are references to
4225them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4226indicating whether or not line-table discriminators are updated to provide
4227more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004228
Renato Golin124f2592016-07-20 12:16:38 +00004229.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004230
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004231 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004232 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004233 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004234 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4235 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004236
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004237Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004238specific compilation unit. File descriptors are defined using this scope. These
4239descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4240track of global variables, type information, and imported entities (declarations
4241and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004242
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004243.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004244
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004245DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004246""""""
4247
Sean Silvaa1190322015-08-06 22:56:48 +00004248``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004249
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004250.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004251
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004252 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4253 checksumkind: CSK_MD5,
4254 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004255
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004256Files are sometimes used in ``scope:`` fields, and are the only valid target
4257for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004258Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004259
Michael Kuperstein605308a2015-05-14 10:58:59 +00004260.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004261
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004262DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004263"""""""""""
4264
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004265``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004266``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004267
Renato Golin124f2592016-07-20 12:16:38 +00004268.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004269
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004270 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004271 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004272 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004273
Sean Silvaa1190322015-08-06 22:56:48 +00004274The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004275following:
4276
Renato Golin124f2592016-07-20 12:16:38 +00004277.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004278
4279 DW_ATE_address = 1
4280 DW_ATE_boolean = 2
4281 DW_ATE_float = 4
4282 DW_ATE_signed = 5
4283 DW_ATE_signed_char = 6
4284 DW_ATE_unsigned = 7
4285 DW_ATE_unsigned_char = 8
4286
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004287.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004288
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004289DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004290""""""""""""""""
4291
Sean Silvaa1190322015-08-06 22:56:48 +00004292``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004293refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004294types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004295represents a function with no return value (such as ``void foo() {}`` in C++).
4296
Renato Golin124f2592016-07-20 12:16:38 +00004297.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004298
4299 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4300 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004301 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004302
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004303.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004304
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004305DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004306"""""""""""""
4307
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004308``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004309qualified types.
4310
Renato Golin124f2592016-07-20 12:16:38 +00004311.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004312
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004313 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004314 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004315 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004316 align: 32)
4317
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004318The following ``tag:`` values are valid:
4319
Renato Golin124f2592016-07-20 12:16:38 +00004320.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004321
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004322 DW_TAG_member = 13
4323 DW_TAG_pointer_type = 15
4324 DW_TAG_reference_type = 16
4325 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004326 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004327 DW_TAG_ptr_to_member_type = 31
4328 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004329 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004330 DW_TAG_volatile_type = 53
4331 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004332 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004333
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004334.. _DIDerivedTypeMember:
4335
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004336``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004337<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004338``offset:`` is the member's bit offset. If the composite type has an ODR
4339``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4340uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004341
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004342``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4343field of :ref:`composite types <DICompositeType>` to describe parents and
4344friends.
4345
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004346``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4347
4348``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004349``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4350are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004351
4352Note that the ``void *`` type is expressed as a type derived from NULL.
4353
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004354.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004355
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004356DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004357"""""""""""""""
4358
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004359``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004360structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004361
4362If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004363identifier used for type merging between modules. When specified,
4364:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4365derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4366``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004367
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004368For a given ``identifier:``, there should only be a single composite type that
4369does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4370together will unique such definitions at parse time via the ``identifier:``
4371field, even if the nodes are ``distinct``.
4372
Renato Golin124f2592016-07-20 12:16:38 +00004373.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004374
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004375 !0 = !DIEnumerator(name: "SixKind", value: 7)
4376 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4377 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4378 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004379 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4380 elements: !{!0, !1, !2})
4381
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004382The following ``tag:`` values are valid:
4383
Renato Golin124f2592016-07-20 12:16:38 +00004384.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004385
4386 DW_TAG_array_type = 1
4387 DW_TAG_class_type = 2
4388 DW_TAG_enumeration_type = 4
4389 DW_TAG_structure_type = 19
4390 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004391
4392For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004393descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004394level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004395array type is a native packed vector.
4396
4397For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004398descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004399value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004400``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004401
4402For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4403``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004404<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4405``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4406``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004407
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004408.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004409
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004410DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004411""""""""""
4412
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004413``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sander de Smalen1cb94312018-01-24 10:30:23 +00004414:ref:`DICompositeType`.
4415
4416- ``count: -1`` indicates an empty array.
4417- ``count: !9`` describes the count with a :ref:`DILocalVariable`.
4418- ``count: !11`` describes the count with a :ref:`DIGlobalVariable`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004419
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004420.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004421
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004422 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4423 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4424 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004425
Sander de Smalenfdf40912018-01-24 09:56:07 +00004426 ; Scopes used in rest of example
4427 !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
Chandler Carruth24dd2112018-08-06 02:30:01 +00004428 !7 = distinct !DICompileUnit(language: DW_LANG_C99, file: !6)
4429 !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004430
4431 ; Use of local variable as count value
4432 !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
4433 !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
Chandler Carruth24dd2112018-08-06 02:30:01 +00004434 !11 = !DISubrange(count: !10, lowerBound: 0)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004435
4436 ; Use of global variable as count value
4437 !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
Chandler Carruth24dd2112018-08-06 02:30:01 +00004438 !13 = !DISubrange(count: !12, lowerBound: 0)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004439
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004440.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004441
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004442DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004443""""""""""""
4444
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004445``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4446variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004447
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004448.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004449
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004450 !0 = !DIEnumerator(name: "SixKind", value: 7)
4451 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4452 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004453
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004454DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004455"""""""""""""""""""""""
4456
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004457``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004458language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004459:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004460
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004461.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004462
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004463 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004464
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004465DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004466""""""""""""""""""""""""
4467
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004468``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004469language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004470but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004471``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004472:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004473
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004474.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004475
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004476 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004477
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004478DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004479"""""""""""
4480
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004481``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004482
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004483.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004484
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004485 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004486
Sander de Smalen1cb94312018-01-24 10:30:23 +00004487.. _DIGlobalVariable:
4488
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004489DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004490""""""""""""""""
4491
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004492``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004493
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004494.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004495
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004496 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004497 file: !2, line: 7, type: !3, isLocal: true,
4498 isDefinition: false, variable: i32* @foo,
4499 declaration: !4)
4500
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004501All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004502:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004503
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004504.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004505
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004506DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004507""""""""""""
4508
Peter Collingbourne50108682015-11-06 02:41:02 +00004509``DISubprogram`` nodes represent functions from the source language. A
4510``DISubprogram`` may be attached to a function definition using ``!dbg``
4511metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4512that must be retained, even if their IR counterparts are optimized out of
4513the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004514
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004515.. _DISubprogramDeclaration:
4516
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004517When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004518tree as opposed to a definition of a function. If the scope is a composite
4519type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4520then the subprogram declaration is uniqued based only on its ``linkageName:``
4521and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004522
Renato Golin124f2592016-07-20 12:16:38 +00004523.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004524
Peter Collingbourne50108682015-11-06 02:41:02 +00004525 define void @_Z3foov() !dbg !0 {
4526 ...
4527 }
4528
4529 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4530 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004531 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004532 containingType: !4,
4533 virtuality: DW_VIRTUALITY_pure_virtual,
4534 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004535 isOptimized: true, unit: !5, templateParams: !6,
4536 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004537
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004538.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004539
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004540DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004541""""""""""""""
4542
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004543``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004544<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004545two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004546fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004547
Renato Golin124f2592016-07-20 12:16:38 +00004548.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004549
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004550 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004551
4552Usually lexical blocks are ``distinct`` to prevent node merging based on
4553operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004554
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004555.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004556
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004557DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004558""""""""""""""""""
4559
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004560``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004561:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004562indicate textual inclusion, or the ``discriminator:`` field can be used to
4563discriminate between control flow within a single block in the source language.
4564
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004565.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004566
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004567 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4568 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4569 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004570
Michael Kuperstein605308a2015-05-14 10:58:59 +00004571.. _DILocation:
4572
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004573DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004574""""""""""
4575
Sean Silvaa1190322015-08-06 22:56:48 +00004576``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004577mandatory, and points at an :ref:`DILexicalBlockFile`, an
4578:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004579
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004580.. code-block:: text
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004581
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004582 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004583
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004584.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004585
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004586DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004587"""""""""""""""
4588
Sean Silvaa1190322015-08-06 22:56:48 +00004589``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004590the ``arg:`` field is set to non-zero, then this variable is a subprogram
4591parameter, and it will be included in the ``variables:`` field of its
4592:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004593
Renato Golin124f2592016-07-20 12:16:38 +00004594.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004595
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004596 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4597 type: !3, flags: DIFlagArtificial)
4598 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4599 type: !3)
4600 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004601
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004602DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004603""""""""""""
4604
Adrian Prantlb44c7762017-03-22 18:01:01 +00004605``DIExpression`` nodes represent expressions that are inspired by the DWARF
4606expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4607(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
Vedant Kumar8a05b012018-07-28 00:33:47 +00004608referenced LLVM variable relates to the source language variable. Debug
4609intrinsics are interpreted left-to-right: start by pushing the value/address
4610operand of the intrinsic onto a stack, then repeatedly push and evaluate
4611opcodes from the DIExpression until the final variable description is produced.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004612
Vedant Kumar8a05b012018-07-28 00:33:47 +00004613The current supported opcode vocabulary is limited:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004614
Adrian Prantl6825fb62017-04-18 01:21:53 +00004615- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004616- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4617 them together and appends the result to the expression stack.
4618- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4619 the last entry from the second last entry and appends the result to the
4620 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004621- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004622- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4623 here, respectively) of the variable fragment from the working expression. Note
Hiroshi Inoue760c0c92018-01-16 13:19:48 +00004624 that contrary to DW_OP_bit_piece, the offset is describing the location
Adrian Prantlb44c7762017-03-22 18:01:01 +00004625 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004626- ``DW_OP_swap`` swaps top two stack entries.
4627- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4628 of the stack is treated as an address. The second stack entry is treated as an
4629 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004630- ``DW_OP_stack_value`` marks a constant value.
4631
Adrian Prantl6825fb62017-04-18 01:21:53 +00004632DWARF specifies three kinds of simple location descriptions: Register, memory,
Vedant Kumar8a05b012018-07-28 00:33:47 +00004633and implicit location descriptions. Note that a location description is
4634defined over certain ranges of a program, i.e the location of a variable may
4635change over the course of the program. Register and memory location
4636descriptions describe the *concrete location* of a source variable (in the
4637sense that a debugger might modify its value), whereas *implicit locations*
4638describe merely the actual *value* of a source variable which might not exist
4639in registers or in memory (see ``DW_OP_stack_value``).
4640
4641A ``llvm.dbg.addr`` or ``llvm.dbg.declare`` intrinsic describes an indirect
4642value (the address) of a source variable. The first operand of the intrinsic
4643must be an address of some kind. A DIExpression attached to the intrinsic
4644refines this address to produce a concrete location for the source variable.
4645
4646A ``llvm.dbg.value`` intrinsic describes the direct value of a source variable.
4647The first operand of the intrinsic may be a direct or indirect value. A
4648DIExpresion attached to the intrinsic refines the first operand to produce a
4649direct value. For example, if the first operand is an indirect value, it may be
4650necessary to insert ``DW_OP_deref`` into the DIExpresion in order to produce a
4651valid debug intrinsic.
4652
4653.. note::
4654
4655 A DIExpression is interpreted in the same way regardless of which kind of
4656 debug intrinsic it's attached to.
Adrian Prantl6825fb62017-04-18 01:21:53 +00004657
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004658.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004659
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004660 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004661 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004662 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004663 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004664 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004665 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004666 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004667
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004668DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004669""""""""""""""
4670
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004671``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004672
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004673.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004674
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004675 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004676 getter: "getFoo", attributes: 7, type: !2)
4677
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004678DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004679""""""""""""""""
4680
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004681``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004682compile unit.
4683
Renato Golin124f2592016-07-20 12:16:38 +00004684.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004685
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004686 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004687 entity: !1, line: 7)
4688
Amjad Abouda9bcf162015-12-10 12:56:35 +00004689DIMacro
4690"""""""
4691
4692``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4693The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004694defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004695used to expand the macro identifier.
4696
Renato Golin124f2592016-07-20 12:16:38 +00004697.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004698
4699 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4700 value: "((x) + 1)")
4701 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4702
4703DIMacroFile
4704"""""""""""
4705
4706``DIMacroFile`` nodes represent inclusion of source files.
4707The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4708appear in the included source file.
4709
Renato Golin124f2592016-07-20 12:16:38 +00004710.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004711
4712 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4713 nodes: !3)
4714
Sean Silvab084af42012-12-07 10:36:55 +00004715'``tbaa``' Metadata
4716^^^^^^^^^^^^^^^^^^^
4717
4718In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004719suitable for doing type based alias analysis (TBAA). Instead, metadata is
4720added to the IR to describe a type system of a higher level language. This
4721can be used to implement C/C++ strict type aliasing rules, but it can also
4722be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004723
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004724This description of LLVM's TBAA system is broken into two parts:
4725:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4726:ref:`Representation<tbaa_node_representation>` talks about the metadata
4727encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004728
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004729It is always possible to trace any TBAA node to a "root" TBAA node (details
4730in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4731nodes with different roots have an unknown aliasing relationship, and LLVM
4732conservatively infers ``MayAlias`` between them. The rules mentioned in
4733this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004734
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004735.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004736
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004737Semantics
4738"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004739
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004740The TBAA metadata system, referred to as "struct path TBAA" (not to be
4741confused with ``tbaa.struct``), consists of the following high level
4742concepts: *Type Descriptors*, further subdivided into scalar type
4743descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004744
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004745**Type descriptors** describe the type system of the higher level language
4746being compiled. **Scalar type descriptors** describe types that do not
4747contain other types. Each scalar type has a parent type, which must also
4748be a scalar type or the TBAA root. Via this parent relation, scalar types
4749within a TBAA root form a tree. **Struct type descriptors** denote types
4750that contain a sequence of other type descriptors, at known offsets. These
4751contained type descriptors can either be struct type descriptors themselves
4752or scalar type descriptors.
4753
4754**Access tags** are metadata nodes attached to load and store instructions.
4755Access tags use type descriptors to describe the *location* being accessed
4756in terms of the type system of the higher level language. Access tags are
4757tuples consisting of a base type, an access type and an offset. The base
4758type is a scalar type descriptor or a struct type descriptor, the access
4759type is a scalar type descriptor, and the offset is a constant integer.
4760
4761The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4762things:
4763
4764 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4765 or store) of a value of type ``AccessTy`` contained in the struct type
4766 ``BaseTy`` at offset ``Offset``.
4767
4768 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4769 ``AccessTy`` must be the same; and the access tag describes a scalar
4770 access with scalar type ``AccessTy``.
4771
4772We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4773tuples this way:
4774
4775 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4776 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4777 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4778 undefined if ``Offset`` is non-zero.
4779
4780 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4781 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4782 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4783 to be relative within that inner type.
4784
4785A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4786aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4787Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4788Offset2)`` via the ``Parent`` relation or vice versa.
4789
4790As a concrete example, the type descriptor graph for the following program
4791
4792.. code-block:: c
4793
4794 struct Inner {
4795 int i; // offset 0
4796 float f; // offset 4
4797 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004798
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004799 struct Outer {
4800 float f; // offset 0
4801 double d; // offset 4
4802 struct Inner inner_a; // offset 12
4803 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004804
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004805 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4806 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4807 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
Fangrui Song74d6a742018-05-29 05:38:05 +00004808 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, FloatScalarTy, 16)
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004809 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4810 }
4811
4812is (note that in C and C++, ``char`` can be used to access any arbitrary
4813type):
4814
4815.. code-block:: text
4816
4817 Root = "TBAA Root"
4818 CharScalarTy = ("char", Root, 0)
4819 FloatScalarTy = ("float", CharScalarTy, 0)
4820 DoubleScalarTy = ("double", CharScalarTy, 0)
4821 IntScalarTy = ("int", CharScalarTy, 0)
4822 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4823 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4824 (InnerStructTy, 12)}
4825
4826
4827with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
48280)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4829``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4830
4831.. _tbaa_node_representation:
4832
4833Representation
4834""""""""""""""
4835
4836The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4837with exactly one ``MDString`` operand.
4838
4839Scalar type descriptors are represented as an ``MDNode`` s with two
4840operands. The first operand is an ``MDString`` denoting the name of the
4841struct type. LLVM does not assign meaning to the value of this operand, it
4842only cares about it being an ``MDString``. The second operand is an
4843``MDNode`` which points to the parent for said scalar type descriptor,
4844which is either another scalar type descriptor or the TBAA root. Scalar
4845type descriptors can have an optional third argument, but that must be the
4846constant integer zero.
4847
4848Struct type descriptors are represented as ``MDNode`` s with an odd number
4849of operands greater than 1. The first operand is an ``MDString`` denoting
4850the name of the struct type. Like in scalar type descriptors the actual
4851value of this name operand is irrelevant to LLVM. After the name operand,
4852the struct type descriptors have a sequence of alternating ``MDNode`` and
4853``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4854an ``MDNode``, denotes a contained field, and the 2N th operand, a
4855``ConstantInt``, is the offset of the said contained field. The offsets
4856must be in non-decreasing order.
4857
4858Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4859The first operand is an ``MDNode`` pointing to the node representing the
4860base type. The second operand is an ``MDNode`` pointing to the node
4861representing the access type. The third operand is a ``ConstantInt`` that
4862states the offset of the access. If a fourth field is present, it must be
4863a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4864that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004865``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004866AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4867the access type and the base type of an access tag must be the same, and
4868that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004869
4870'``tbaa.struct``' Metadata
4871^^^^^^^^^^^^^^^^^^^^^^^^^^
4872
4873The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4874aggregate assignment operations in C and similar languages, however it
4875is defined to copy a contiguous region of memory, which is more than
4876strictly necessary for aggregate types which contain holes due to
4877padding. Also, it doesn't contain any TBAA information about the fields
4878of the aggregate.
4879
4880``!tbaa.struct`` metadata can describe which memory subregions in a
4881memcpy are padding and what the TBAA tags of the struct are.
4882
4883The current metadata format is very simple. ``!tbaa.struct`` metadata
4884nodes are a list of operands which are in conceptual groups of three.
4885For each group of three, the first operand gives the byte offset of a
4886field in bytes, the second gives its size in bytes, and the third gives
4887its tbaa tag. e.g.:
4888
4889.. code-block:: llvm
4890
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004891 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004892
4893This describes a struct with two fields. The first is at offset 0 bytes
4894with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4895and has size 4 bytes and has tbaa tag !2.
4896
4897Note that the fields need not be contiguous. In this example, there is a
48984 byte gap between the two fields. This gap represents padding which
4899does not carry useful data and need not be preserved.
4900
Hal Finkel94146652014-07-24 14:25:39 +00004901'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004902^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004903
4904``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4905noalias memory-access sets. This means that some collection of memory access
4906instructions (loads, stores, memory-accessing calls, etc.) that carry
4907``noalias`` metadata can specifically be specified not to alias with some other
4908collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004909Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004910a domain.
4911
4912When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004913of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004914subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004915instruction's ``noalias`` list, then the two memory accesses are assumed not to
4916alias.
Hal Finkel94146652014-07-24 14:25:39 +00004917
Adam Nemet569a5b32016-04-27 00:52:48 +00004918Because scopes in one domain don't affect scopes in other domains, separate
4919domains can be used to compose multiple independent noalias sets. This is
4920used for example during inlining. As the noalias function parameters are
4921turned into noalias scope metadata, a new domain is used every time the
4922function is inlined.
4923
Hal Finkel029cde62014-07-25 15:50:02 +00004924The metadata identifying each domain is itself a list containing one or two
4925entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004926string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004927self-reference can be used to create globally unique domain names. A
4928descriptive string may optionally be provided as a second list entry.
4929
4930The metadata identifying each scope is also itself a list containing two or
4931three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004932is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004933self-reference can be used to create globally unique scope names. A metadata
4934reference to the scope's domain is the second entry. A descriptive string may
4935optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004936
4937For example,
4938
4939.. code-block:: llvm
4940
Hal Finkel029cde62014-07-25 15:50:02 +00004941 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004942 !0 = !{!0}
4943 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004944
Hal Finkel029cde62014-07-25 15:50:02 +00004945 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004946 !2 = !{!2, !0}
4947 !3 = !{!3, !0}
4948 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004949
Hal Finkel029cde62014-07-25 15:50:02 +00004950 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004951 !5 = !{!4} ; A list containing only scope !4
4952 !6 = !{!4, !3, !2}
4953 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004954
4955 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004956 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004957 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004958
Hal Finkel029cde62014-07-25 15:50:02 +00004959 ; These two instructions also don't alias (for domain !1, the set of scopes
4960 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004961 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004962 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004963
Adam Nemet0a8416f2015-05-11 08:30:28 +00004964 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004965 ; the !noalias list is not a superset of, or equal to, the scopes in the
4966 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004967 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004968 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004969
Sean Silvab084af42012-12-07 10:36:55 +00004970'``fpmath``' Metadata
4971^^^^^^^^^^^^^^^^^^^^^
4972
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00004973``fpmath`` metadata may be attached to any instruction of floating-point
Sean Silvab084af42012-12-07 10:36:55 +00004974type. It can be used to express the maximum acceptable error in the
4975result of that instruction, in ULPs, thus potentially allowing the
4976compiler to use a more efficient but less accurate method of computing
4977it. ULP is defined as follows:
4978
4979 If ``x`` is a real number that lies between two finite consecutive
4980 floating-point numbers ``a`` and ``b``, without being equal to one
4981 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4982 distance between the two non-equal finite floating-point numbers
4983 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4984
Matt Arsenault82f41512016-06-27 19:43:15 +00004985The metadata node shall consist of a single positive float type number
4986representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004987
4988.. code-block:: llvm
4989
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004990 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004991
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004992.. _range-metadata:
4993
Sean Silvab084af42012-12-07 10:36:55 +00004994'``range``' Metadata
4995^^^^^^^^^^^^^^^^^^^^
4996
Jingyue Wu37fcb592014-06-19 16:50:16 +00004997``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4998integer types. It expresses the possible ranges the loaded value or the value
Eli Friedmane15a1112018-07-17 20:38:11 +00004999returned by the called function at this call site is in. If the loaded or
5000returned value is not in the specified range, the behavior is undefined. The
5001ranges are represented with a flattened list of integers. The loaded value or
5002the value returned is known to be in the union of the ranges defined by each
5003consecutive pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00005004
5005- The type must match the type loaded by the instruction.
5006- The pair ``a,b`` represents the range ``[a,b)``.
5007- Both ``a`` and ``b`` are constants.
5008- The range is allowed to wrap.
5009- The range should not represent the full or empty set. That is,
5010 ``a!=b``.
5011
5012In addition, the pairs must be in signed order of the lower bound and
5013they must be non-contiguous.
5014
5015Examples:
5016
5017.. code-block:: llvm
5018
David Blaikiec7aabbb2015-03-04 22:06:14 +00005019 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
5020 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00005021 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
5022 %d = invoke i8 @bar() to label %cont
5023 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00005024 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005025 !0 = !{ i8 0, i8 2 }
5026 !1 = !{ i8 255, i8 2 }
5027 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
5028 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00005029
Peter Collingbourne235c2752016-12-08 19:01:00 +00005030'``absolute_symbol``' Metadata
5031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5032
5033``absolute_symbol`` metadata may be attached to a global variable
5034declaration. It marks the declaration as a reference to an absolute symbol,
5035which causes the backend to use absolute relocations for the symbol even
5036in position independent code, and expresses the possible ranges that the
5037global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00005038``range`` metadata, with the extension that the pair ``all-ones,all-ones``
5039may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00005040
Peter Collingbourned88f9282017-01-20 21:56:37 +00005041Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00005042
5043.. code-block:: llvm
5044
5045 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00005046 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00005047
5048 ...
5049 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00005050 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00005051
Matthew Simpson36bbc8c2017-10-16 22:22:11 +00005052'``callees``' Metadata
5053^^^^^^^^^^^^^^^^^^^^^^
5054
5055``callees`` metadata may be attached to indirect call sites. If ``callees``
5056metadata is attached to a call site, and any callee is not among the set of
5057functions provided by the metadata, the behavior is undefined. The intent of
5058this metadata is to facilitate optimizations such as indirect-call promotion.
5059For example, in the code below, the call instruction may only target the
5060``add`` or ``sub`` functions:
5061
5062.. code-block:: llvm
5063
5064 %result = call i64 %binop(i64 %x, i64 %y), !callees !0
5065
5066 ...
5067 !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
5068
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005069'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00005070^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005071
5072``unpredictable`` metadata may be attached to any branch or switch
5073instruction. It can be used to express the unpredictability of control
5074flow. Similar to the llvm.expect intrinsic, it may be used to alter
5075optimizations related to compare and branch instructions. The metadata
5076is treated as a boolean value; if it exists, it signals that the branch
5077or switch that it is attached to is completely unpredictable.
5078
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005079'``llvm.loop``'
5080^^^^^^^^^^^^^^^
5081
5082It is sometimes useful to attach information to loop constructs. Currently,
5083loop metadata is implemented as metadata attached to the branch instruction
5084in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00005085guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00005086specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005087
5088The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00005089itself to avoid merging it with any other identifier metadata, e.g.,
5090during module linkage or function inlining. That is, each loop should refer
5091to their own identification metadata even if they reside in separate functions.
5092The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005093constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005094
5095.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00005096
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005097 !0 = !{!0}
5098 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005099
Mark Heffernan893752a2014-07-18 19:24:51 +00005100The loop identifier metadata can be used to specify additional
5101per-loop metadata. Any operands after the first operand can be treated
5102as user-defined metadata. For example the ``llvm.loop.unroll.count``
5103suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005104
Paul Redmond5fdf8362013-05-28 20:00:34 +00005105.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005106
Paul Redmond5fdf8362013-05-28 20:00:34 +00005107 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
5108 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005109 !0 = !{!0, !1}
5110 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005111
Mark Heffernan9d20e422014-07-21 23:11:03 +00005112'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
5113^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00005114
Mark Heffernan9d20e422014-07-21 23:11:03 +00005115Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
5116used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00005117vectorization width and interleave count. These metadata should be used in
5118conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00005119``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
5120optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00005121it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00005122which contains information about loop-carried memory dependencies can be helpful
5123in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00005124
Mark Heffernan9d20e422014-07-21 23:11:03 +00005125'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00005126^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5127
Mark Heffernan9d20e422014-07-21 23:11:03 +00005128This metadata suggests an interleave count to the loop interleaver.
5129The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00005130second operand is an integer specifying the interleave count. For
5131example:
5132
5133.. code-block:: llvm
5134
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005135 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005136
Mark Heffernan9d20e422014-07-21 23:11:03 +00005137Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00005138multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00005139then the interleave count will be determined automatically.
5140
5141'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00005142^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00005143
5144This metadata selectively enables or disables vectorization for the loop. The
5145first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00005146is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000051470 disables vectorization:
5148
5149.. code-block:: llvm
5150
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005151 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5152 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00005153
5154'``llvm.loop.vectorize.width``' Metadata
5155^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5156
5157This metadata sets the target width of the vectorizer. The first
5158operand is the string ``llvm.loop.vectorize.width`` and the second
5159operand is an integer specifying the width. For example:
5160
5161.. code-block:: llvm
5162
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005163 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005164
5165Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00005166vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000051670 or if the loop does not have this metadata the width will be
5168determined automatically.
5169
5170'``llvm.loop.unroll``'
5171^^^^^^^^^^^^^^^^^^^^^^
5172
5173Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5174optimization hints such as the unroll factor. ``llvm.loop.unroll``
5175metadata should be used in conjunction with ``llvm.loop`` loop
5176identification metadata. The ``llvm.loop.unroll`` metadata are only
5177optimization hints and the unrolling will only be performed if the
5178optimizer believes it is safe to do so.
5179
Mark Heffernan893752a2014-07-18 19:24:51 +00005180'``llvm.loop.unroll.count``' Metadata
5181^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5182
5183This metadata suggests an unroll factor to the loop unroller. The
5184first operand is the string ``llvm.loop.unroll.count`` and the second
5185operand is a positive integer specifying the unroll factor. For
5186example:
5187
5188.. code-block:: llvm
5189
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005190 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005191
5192If the trip count of the loop is less than the unroll count the loop
5193will be partially unrolled.
5194
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005195'``llvm.loop.unroll.disable``' Metadata
5196^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5197
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005198This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00005199which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005200
5201.. code-block:: llvm
5202
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005203 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005204
Kevin Qin715b01e2015-03-09 06:14:18 +00005205'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00005206^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00005207
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005208This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005209operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005210
5211.. code-block:: llvm
5212
5213 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5214
Mark Heffernan89391542015-08-10 17:28:08 +00005215'``llvm.loop.unroll.enable``' Metadata
5216^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5217
5218This metadata suggests that the loop should be fully unrolled if the trip count
5219is known at compile time and partially unrolled if the trip count is not known
5220at compile time. The metadata has a single operand which is the string
5221``llvm.loop.unroll.enable``. For example:
5222
5223.. code-block:: llvm
5224
5225 !0 = !{!"llvm.loop.unroll.enable"}
5226
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005227'``llvm.loop.unroll.full``' Metadata
5228^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5229
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005230This metadata suggests that the loop should be unrolled fully. The
5231metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005232For example:
5233
5234.. code-block:: llvm
5235
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005236 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005237
David Green7fbf06c2018-07-19 12:37:00 +00005238'``llvm.loop.unroll_and_jam``'
5239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5240
5241This metadata is treated very similarly to the ``llvm.loop.unroll`` metadata
5242above, but affect the unroll and jam pass. In addition any loop with
5243``llvm.loop.unroll`` metadata but no ``llvm.loop.unroll_and_jam`` metadata will
5244disable unroll and jam (so ``llvm.loop.unroll`` metadata will be left to the
5245unroller, plus ``llvm.loop.unroll.disable`` metadata will disable unroll and jam
5246too.)
5247
5248The metadata for unroll and jam otherwise is the same as for ``unroll``.
5249``llvm.loop.unroll_and_jam.enable``, ``llvm.loop.unroll_and_jam.disable`` and
5250``llvm.loop.unroll_and_jam.count`` do the same as for unroll.
5251``llvm.loop.unroll_and_jam.full`` is not supported. Again these are only hints
5252and the normal safety checks will still be performed.
5253
5254'``llvm.loop.unroll_and_jam.count``' Metadata
5255^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5256
5257This metadata suggests an unroll and jam factor to use, similarly to
5258``llvm.loop.unroll.count``. The first operand is the string
5259``llvm.loop.unroll_and_jam.count`` and the second operand is a positive integer
5260specifying the unroll factor. For example:
5261
5262.. code-block:: llvm
5263
5264 !0 = !{!"llvm.loop.unroll_and_jam.count", i32 4}
5265
5266If the trip count of the loop is less than the unroll count the loop
5267will be partially unroll and jammed.
5268
5269'``llvm.loop.unroll_and_jam.disable``' Metadata
5270^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5271
5272This metadata disables loop unroll and jamming. The metadata has a single
5273operand which is the string ``llvm.loop.unroll_and_jam.disable``. For example:
5274
5275.. code-block:: llvm
5276
5277 !0 = !{!"llvm.loop.unroll_and_jam.disable"}
5278
5279'``llvm.loop.unroll_and_jam.enable``' Metadata
5280^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5281
5282This metadata suggests that the loop should be fully unroll and jammed if the
5283trip count is known at compile time and partially unrolled if the trip count is
5284not known at compile time. The metadata has a single operand which is the
5285string ``llvm.loop.unroll_and_jam.enable``. For example:
5286
5287.. code-block:: llvm
5288
5289 !0 = !{!"llvm.loop.unroll_and_jam.enable"}
5290
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005291'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005292^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005293
5294This metadata indicates that the loop should not be versioned for the purpose
5295of enabling loop-invariant code motion (LICM). The metadata has a single operand
5296which is the string ``llvm.loop.licm_versioning.disable``. For example:
5297
5298.. code-block:: llvm
5299
5300 !0 = !{!"llvm.loop.licm_versioning.disable"}
5301
Adam Nemetd2fa4142016-04-27 05:28:18 +00005302'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005304
5305Loop distribution allows splitting a loop into multiple loops. Currently,
5306this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005307memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005308dependencies into their own loop.
5309
5310This metadata can be used to selectively enable or disable distribution of the
5311loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5312second operand is a bit. If the bit operand value is 1 distribution is
5313enabled. A value of 0 disables distribution:
5314
5315.. code-block:: llvm
5316
5317 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5318 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5319
5320This metadata should be used in conjunction with ``llvm.loop`` loop
5321identification metadata.
5322
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005323'``llvm.mem``'
5324^^^^^^^^^^^^^^^
5325
5326Metadata types used to annotate memory accesses with information helpful
5327for optimizations are prefixed with ``llvm.mem``.
5328
5329'``llvm.mem.parallel_loop_access``' Metadata
5330^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5331
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005332The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5333or metadata containing a list of loop identifiers for nested loops.
5334The metadata is attached to memory accessing instructions and denotes that
5335no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005336with the same loop identifier. The metadata on memory reads also implies that
5337if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005338
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005339Precisely, given two instructions ``m1`` and ``m2`` that both have the
5340``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5341set of loops associated with that metadata, respectively, then there is no loop
5342carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005343``L2``.
5344
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005345As a special case, if all memory accessing instructions in a loop have
5346``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5347loop has no loop carried memory dependences and is considered to be a parallel
5348loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005349
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005350Note that if not all memory access instructions have such metadata referring to
5351the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005352memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005353safe mechanism, this causes loops that were originally parallel to be considered
5354sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005355insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005356
5357Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005358both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005359metadata types that refer to the same loop identifier metadata.
5360
5361.. code-block:: llvm
5362
5363 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005364 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005365 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005366 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005367 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005368 ...
5369 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005370
5371 for.end:
5372 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005373 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005374
5375It is also possible to have nested parallel loops. In that case the
5376memory accesses refer to a list of loop identifier metadata nodes instead of
5377the loop identifier metadata node directly:
5378
5379.. code-block:: llvm
5380
5381 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005382 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005383 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005384 ...
5385 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005386
5387 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005388 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005389 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005390 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005391 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005392 ...
5393 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005394
5395 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005396 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005397 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005398 ...
5399 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005400
5401 outer.for.end: ; preds = %for.body
5402 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005403 !0 = !{!1, !2} ; a list of loop identifiers
5404 !1 = !{!1} ; an identifier for the inner loop
5405 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005406
Hiroshi Yamauchidce9def2017-11-02 22:26:51 +00005407'``irr_loop``' Metadata
5408^^^^^^^^^^^^^^^^^^^^^^^
5409
5410``irr_loop`` metadata may be attached to the terminator instruction of a basic
5411block that's an irreducible loop header (note that an irreducible loop has more
5412than once header basic blocks.) If ``irr_loop`` metadata is attached to the
5413terminator instruction of a basic block that is not really an irreducible loop
5414header, the behavior is undefined. The intent of this metadata is to improve the
5415accuracy of the block frequency propagation. For example, in the code below, the
5416block ``header0`` may have a loop header weight (relative to the other headers of
5417the irreducible loop) of 100:
5418
5419.. code-block:: llvm
5420
5421 header0:
5422 ...
5423 br i1 %cmp, label %t1, label %t2, !irr_loop !0
5424
5425 ...
5426 !0 = !{"loop_header_weight", i64 100}
5427
5428Irreducible loop header weights are typically based on profile data.
5429
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005430'``invariant.group``' Metadata
5431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5432
Piotr Padlewski74b155f2018-04-08 13:53:04 +00005433The experimental ``invariant.group`` metadata may be attached to
Piotr Padlewskice358262018-05-18 23:53:46 +00005434``load``/``store`` instructions referencing a single metadata with no entries.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005435The existence of the ``invariant.group`` metadata on the instruction tells
5436the optimizer that every ``load`` and ``store`` to the same pointer operand
Piotr Padlewskice358262018-05-18 23:53:46 +00005437can be assumed to load or store the same
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005438value (but see the ``llvm.launder.invariant.group`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005439when two pointers are considered the same). Pointers returned by bitcast or
5440getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005441
5442Examples:
5443
5444.. code-block:: llvm
5445
5446 @unknownPtr = external global i8
5447 ...
5448 %ptr = alloca i8
5449 store i8 42, i8* %ptr, !invariant.group !0
5450 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005451
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005452 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5453 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005454
5455 %newPtr = call i8* @getPointer(i8* %ptr)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005456 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005457
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005458 %unknownValue = load i8, i8* @unknownPtr
5459 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005460
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005461 call void @foo(i8* %ptr)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005462 %newPtr2 = call i8* @llvm.launder.invariant.group(i8* %ptr)
5463 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through launder.invariant.group to get value of %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005464
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005465 ...
5466 declare void @foo(i8*)
5467 declare i8* @getPointer(i8*)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005468 declare i8* @llvm.launder.invariant.group(i8*)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005469
Piotr Padlewskice358262018-05-18 23:53:46 +00005470 !0 = !{}
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005471
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005472The invariant.group metadata must be dropped when replacing one pointer by
5473another based on aliasing information. This is because invariant.group is tied
5474to the SSA value of the pointer operand.
5475
5476.. code-block:: llvm
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005477
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005478 %v = load i8, i8* %x, !invariant.group !0
5479 ; if %x mustalias %y then we can replace the above instruction with
5480 %v = load i8, i8* %y
5481
Piotr Padlewski74b155f2018-04-08 13:53:04 +00005482Note that this is an experimental feature, which means that its semantics might
5483change in the future.
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005484
Peter Collingbournea333db82016-07-26 22:31:30 +00005485'``type``' Metadata
5486^^^^^^^^^^^^^^^^^^^
5487
5488See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005489
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005490'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005491^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005492
5493The ``associated`` metadata may be attached to a global object
5494declaration with a single argument that references another global object.
5495
5496This metadata prevents discarding of the global object in linker GC
5497unless the referenced object is also discarded. The linker support for
5498this feature is spotty. For best compatibility, globals carrying this
5499metadata may also:
5500
5501- Be in a comdat with the referenced global.
5502- Be in @llvm.compiler.used.
5503- Have an explicit section with a name which is a valid C identifier.
5504
5505It does not have any effect on non-ELF targets.
5506
5507Example:
5508
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005509.. code-block:: text
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005510
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005511 $a = comdat any
5512 @a = global i32 1, comdat $a
5513 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5514 !0 = !{i32* @a}
5515
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005516
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005517'``prof``' Metadata
5518^^^^^^^^^^^^^^^^^^^
5519
5520The ``prof`` metadata is used to record profile data in the IR.
5521The first operand of the metadata node indicates the profile metadata
5522type. There are currently 3 types:
5523:ref:`branch_weights<prof_node_branch_weights>`,
5524:ref:`function_entry_count<prof_node_function_entry_count>`, and
5525:ref:`VP<prof_node_VP>`.
5526
5527.. _prof_node_branch_weights:
5528
5529branch_weights
5530""""""""""""""
5531
5532Branch weight metadata attached to a branch, select, switch or call instruction
5533represents the likeliness of the associated branch being taken.
5534For more information, see :doc:`BranchWeightMetadata`.
5535
5536.. _prof_node_function_entry_count:
5537
5538function_entry_count
5539""""""""""""""""""""
5540
5541Function entry count metadata can be attached to function definitions
5542to record the number of times the function is called. Used with BFI
5543information, it is also used to derive the basic block profile count.
5544For more information, see :doc:`BranchWeightMetadata`.
5545
5546.. _prof_node_VP:
5547
5548VP
5549""
5550
5551VP (value profile) metadata can be attached to instructions that have
5552value profile information. Currently this is indirect calls (where it
5553records the hottest callees) and calls to memory intrinsics such as memcpy,
5554memmove, and memset (where it records the hottest byte lengths).
5555
5556Each VP metadata node contains "VP" string, then a uint32_t value for the value
5557profiling kind, a uint64_t value for the total number of times the instruction
5558is executed, followed by uint64_t value and execution count pairs.
5559The value profiling kind is 0 for indirect call targets and 1 for memory
5560operations. For indirect call targets, each profile value is a hash
5561of the callee function name, and for memory operations each value is the
5562byte length.
5563
5564Note that the value counts do not need to add up to the total count
5565listed in the third operand (in practice only the top hottest values
5566are tracked and reported).
5567
5568Indirect call example:
5569
5570.. code-block:: llvm
5571
5572 call void %f(), !prof !1
5573 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5574
5575Note that the VP type is 0 (the second operand), which indicates this is
5576an indirect call value profile data. The third operand indicates that the
5577indirect call executed 1600 times. The 4th and 6th operands give the
5578hashes of the 2 hottest target functions' names (this is the same hash used
5579to represent function names in the profile database), and the 5th and 7th
5580operands give the execution count that each of the respective prior target
5581functions was called.
5582
Sean Silvab084af42012-12-07 10:36:55 +00005583Module Flags Metadata
5584=====================
5585
5586Information about the module as a whole is difficult to convey to LLVM's
5587subsystems. The LLVM IR isn't sufficient to transmit this information.
5588The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005589this. These flags are in the form of key / value pairs --- much like a
5590dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005591look it up.
5592
5593The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5594Each triplet has the following form:
5595
5596- The first element is a *behavior* flag, which specifies the behavior
5597 when two (or more) modules are merged together, and it encounters two
5598 (or more) metadata with the same ID. The supported behaviors are
5599 described below.
5600- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005601 metadata. Each module may only have one flag entry for each unique ID (not
5602 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005603- The third element is the value of the flag.
5604
5605When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005606``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5607each unique metadata ID string, there will be exactly one entry in the merged
5608modules ``llvm.module.flags`` metadata table, and the value for that entry will
5609be determined by the merge behavior flag, as described below. The only exception
5610is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005611
5612The following behaviors are supported:
5613
5614.. list-table::
5615 :header-rows: 1
5616 :widths: 10 90
5617
5618 * - Value
5619 - Behavior
5620
5621 * - 1
5622 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005623 Emits an error if two values disagree, otherwise the resulting value
5624 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005625
5626 * - 2
5627 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005628 Emits a warning if two values disagree. The result value will be the
5629 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005630
5631 * - 3
5632 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005633 Adds a requirement that another module flag be present and have a
5634 specified value after linking is performed. The value must be a
5635 metadata pair, where the first element of the pair is the ID of the
5636 module flag to be restricted, and the second element of the pair is
5637 the value the module flag should be restricted to. This behavior can
5638 be used to restrict the allowable results (via triggering of an
5639 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005640
5641 * - 4
5642 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005643 Uses the specified value, regardless of the behavior or value of the
5644 other module. If both modules specify **Override**, but the values
5645 differ, an error will be emitted.
5646
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005647 * - 5
5648 - **Append**
5649 Appends the two values, which are required to be metadata nodes.
5650
5651 * - 6
5652 - **AppendUnique**
5653 Appends the two values, which are required to be metadata
5654 nodes. However, duplicate entries in the second list are dropped
5655 during the append operation.
5656
Steven Wu86a511e2017-08-15 16:16:33 +00005657 * - 7
5658 - **Max**
5659 Takes the max of the two values, which are required to be integers.
5660
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005661It is an error for a particular unique flag ID to have multiple behaviors,
5662except in the case of **Require** (which adds restrictions on another metadata
5663value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005664
5665An example of module flags:
5666
5667.. code-block:: llvm
5668
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005669 !0 = !{ i32 1, !"foo", i32 1 }
5670 !1 = !{ i32 4, !"bar", i32 37 }
5671 !2 = !{ i32 2, !"qux", i32 42 }
5672 !3 = !{ i32 3, !"qux",
5673 !{
5674 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005675 }
5676 }
5677 !llvm.module.flags = !{ !0, !1, !2, !3 }
5678
5679- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5680 if two or more ``!"foo"`` flags are seen is to emit an error if their
5681 values are not equal.
5682
5683- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5684 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005685 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005686
5687- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5688 behavior if two or more ``!"qux"`` flags are seen is to emit a
5689 warning if their values are not equal.
5690
5691- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5692
5693 ::
5694
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005695 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005696
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005697 The behavior is to emit an error if the ``llvm.module.flags`` does not
5698 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5699 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005700
5701Objective-C Garbage Collection Module Flags Metadata
5702----------------------------------------------------
5703
5704On the Mach-O platform, Objective-C stores metadata about garbage
5705collection in a special section called "image info". The metadata
5706consists of a version number and a bitmask specifying what types of
5707garbage collection are supported (if any) by the file. If two or more
5708modules are linked together their garbage collection metadata needs to
5709be merged rather than appended together.
5710
5711The Objective-C garbage collection module flags metadata consists of the
5712following key-value pairs:
5713
5714.. list-table::
5715 :header-rows: 1
5716 :widths: 30 70
5717
5718 * - Key
5719 - Value
5720
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005721 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005722 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005723
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005724 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005725 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005726 always 0.
5727
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005728 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005729 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005730 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5731 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5732 Objective-C ABI version 2.
5733
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005734 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005735 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005736 not. Valid values are 0, for no garbage collection, and 2, for garbage
5737 collection supported.
5738
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005739 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005740 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005741 If present, its value must be 6. This flag requires that the
5742 ``Objective-C Garbage Collection`` flag have the value 2.
5743
5744Some important flag interactions:
5745
5746- If a module with ``Objective-C Garbage Collection`` set to 0 is
5747 merged with a module with ``Objective-C Garbage Collection`` set to
5748 2, then the resulting module has the
5749 ``Objective-C Garbage Collection`` flag set to 0.
5750- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5751 merged with a module with ``Objective-C GC Only`` set to 6.
5752
Oliver Stannard5dc29342014-06-20 10:08:11 +00005753C type width Module Flags Metadata
5754----------------------------------
5755
5756The ARM backend emits a section into each generated object file describing the
5757options that it was compiled with (in a compiler-independent way) to prevent
5758linking incompatible objects, and to allow automatic library selection. Some
5759of these options are not visible at the IR level, namely wchar_t width and enum
5760width.
5761
5762To pass this information to the backend, these options are encoded in module
5763flags metadata, using the following key-value pairs:
5764
5765.. list-table::
5766 :header-rows: 1
5767 :widths: 30 70
5768
5769 * - Key
5770 - Value
5771
5772 * - short_wchar
5773 - * 0 --- sizeof(wchar_t) == 4
5774 * 1 --- sizeof(wchar_t) == 2
5775
5776 * - short_enum
5777 - * 0 --- Enums are at least as large as an ``int``.
5778 * 1 --- Enums are stored in the smallest integer type which can
5779 represent all of its values.
5780
5781For example, the following metadata section specifies that the module was
5782compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5783enum is the smallest type which can represent all of its values::
5784
5785 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005786 !0 = !{i32 1, !"short_wchar", i32 1}
5787 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005788
Peter Collingbourne89061b22017-06-12 20:10:48 +00005789Automatic Linker Flags Named Metadata
5790=====================================
5791
5792Some targets support embedding flags to the linker inside individual object
5793files. Typically this is used in conjunction with language extensions which
5794allow source files to explicitly declare the libraries they depend on, and have
5795these automatically be transmitted to the linker via object files.
5796
5797These flags are encoded in the IR using named metadata with the name
5798``!llvm.linker.options``. Each operand is expected to be a metadata node
5799which should be a list of other metadata nodes, each of which should be a
5800list of metadata strings defining linker options.
5801
5802For example, the following metadata section specifies two separate sets of
5803linker options, presumably to link against ``libz`` and the ``Cocoa``
5804framework::
5805
5806 !0 = !{ !"-lz" },
5807 !1 = !{ !"-framework", !"Cocoa" } } }
5808 !llvm.linker.options = !{ !0, !1 }
5809
5810The metadata encoding as lists of lists of options, as opposed to a collapsed
5811list of options, is chosen so that the IR encoding can use multiple option
5812strings to specify e.g., a single library, while still having that specifier be
5813preserved as an atomic element that can be recognized by a target specific
5814assembly writer or object file emitter.
5815
5816Each individual option is required to be either a valid option for the target's
5817linker, or an option that is reserved by the target specific assembly writer or
5818object file emitter. No other aspect of these options is defined by the IR.
5819
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005820.. _summary:
5821
5822ThinLTO Summary
5823===============
5824
5825Compiling with `ThinLTO <https://clang.llvm.org/docs/ThinLTO.html>`_
5826causes the building of a compact summary of the module that is emitted into
5827the bitcode. The summary is emitted into the LLVM assembly and identified
5828in syntax by a caret ('``^``').
5829
5830*Note that temporarily the summary entries are skipped when parsing the
5831assembly, although the parsing support is actively being implemented. The
5832following describes when the summary entries will be parsed once implemented.*
5833The summary will be parsed into a ModuleSummaryIndex object under the
5834same conditions where summary index is currently built from bitcode.
5835Specifically, tools that test the Thin Link portion of a ThinLTO compile
5836(i.e. llvm-lto and llvm-lto2), or when parsing a combined index
5837for a distributed ThinLTO backend via clang's "``-fthinlto-index=<>``" flag.
5838Additionally, it will be parsed into a bitcode output, along with the Module
5839IR, via the "``llvm-as``" tool. Tools that parse the Module IR for the purposes
5840of optimization (e.g. "``clang -x ir``" and "``opt``"), will ignore the
5841summary entries (just as they currently ignore summary entries in a bitcode
5842input file).
5843
5844There are currently 3 types of summary entries in the LLVM assembly:
5845:ref:`module paths<module_path_summary>`,
5846:ref:`global values<gv_summary>`, and
5847:ref:`type identifiers<typeid_summary>`.
5848
5849.. _module_path_summary:
5850
5851Module Path Summary Entry
5852-------------------------
5853
5854Each module path summary entry lists a module containing global values included
5855in the summary. For a single IR module there will be one such entry, but
5856in a combined summary index produced during the thin link, there will be
5857one module path entry per linked module with summary.
5858
5859Example:
5860
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005861.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005862
5863 ^0 = module: (path: "/path/to/file.o", hash: (2468601609, 1329373163, 1565878005, 638838075, 3148790418))
5864
5865The ``path`` field is a string path to the bitcode file, and the ``hash``
5866field is the 160-bit SHA-1 hash of the IR bitcode contents, used for
5867incremental builds and caching.
5868
5869.. _gv_summary:
5870
5871Global Value Summary Entry
5872--------------------------
5873
5874Each global value summary entry corresponds to a global value defined or
5875referenced by a summarized module.
5876
5877Example:
5878
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005879.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005880
5881 ^4 = gv: (name: "f"[, summaries: (Summary)[, (Summary)]*]?) ; guid = 14740650423002898831
5882
5883For declarations, there will not be a summary list. For definitions, a
5884global value will contain a list of summaries, one per module containing
5885a definition. There can be multiple entries in a combined summary index
5886for symbols with weak linkage.
5887
5888Each ``Summary`` format will depend on whether the global value is a
5889:ref:`function<function_summary>`, :ref:`variable<variable_summary>`, or
5890:ref:`alias<alias_summary>`.
5891
5892.. _function_summary:
5893
5894Function Summary
5895^^^^^^^^^^^^^^^^
5896
5897If the global value is a function, the ``Summary`` entry will look like:
5898
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005899.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005900
5901 function: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), insts: 2[, FuncFlags]?[, Calls]?[, TypeIdInfo]?[, Refs]?
5902
5903The ``module`` field includes the summary entry id for the module containing
5904this definition, and the ``flags`` field contains information such as
5905the linkage type, a flag indicating whether it is legal to import the
5906definition, whether it is globally live and whether the linker resolved it
5907to a local definition (the latter two are populated during the thin link).
5908The ``insts`` field contains the number of IR instructions in the function.
5909Finally, there are several optional fields: :ref:`FuncFlags<funcflags_summary>`,
5910:ref:`Calls<calls_summary>`, :ref:`TypeIdInfo<typeidinfo_summary>`,
5911:ref:`Refs<refs_summary>`.
5912
5913.. _variable_summary:
5914
5915Global Variable Summary
5916^^^^^^^^^^^^^^^^^^^^^^^
5917
5918If the global value is a variable, the ``Summary`` entry will look like:
5919
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005920.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005921
5922 variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0)[, Refs]?
5923
5924The variable entry contains a subset of the fields in a
5925:ref:`function summary <function_summary>`, see the descriptions there.
5926
5927.. _alias_summary:
5928
5929Alias Summary
5930^^^^^^^^^^^^^
5931
5932If the global value is an alias, the ``Summary`` entry will look like:
5933
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005934.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005935
5936 alias: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), aliasee: ^2)
5937
5938The ``module`` and ``flags`` fields are as described for a
5939:ref:`function summary <function_summary>`. The ``aliasee`` field
5940contains a reference to the global value summary entry of the aliasee.
5941
5942.. _funcflags_summary:
5943
5944Function Flags
5945^^^^^^^^^^^^^^
5946
5947The optional ``FuncFlags`` field looks like:
5948
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005949.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005950
5951 funcFlags: (readNone: 0, readOnly: 0, noRecurse: 0, returnDoesNotAlias: 0)
5952
5953If unspecified, flags are assumed to hold the conservative ``false`` value of
5954``0``.
5955
5956.. _calls_summary:
5957
5958Calls
5959^^^^^
5960
5961The optional ``Calls`` field looks like:
5962
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005963.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005964
5965 calls: ((Callee)[, (Callee)]*)
5966
5967where each ``Callee`` looks like:
5968
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005969.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005970
5971 callee: ^1[, hotness: None]?[, relbf: 0]?
5972
5973The ``callee`` refers to the summary entry id of the callee. At most one
5974of ``hotness`` (which can take the values ``Unknown``, ``Cold``, ``None``,
5975``Hot``, and ``Critical``), and ``relbf`` (which holds the integer
5976branch frequency relative to the entry frequency, scaled down by 2^8)
5977may be specified. The defaults are ``Unknown`` and ``0``, respectively.
5978
5979.. _refs_summary:
5980
5981Refs
5982^^^^
5983
5984The optional ``Refs`` field looks like:
5985
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005986.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005987
5988 refs: ((Ref)[, (Ref)]*)
5989
5990where each ``Ref`` contains a reference to the summary id of the referenced
5991value (e.g. ``^1``).
5992
5993.. _typeidinfo_summary:
5994
5995TypeIdInfo
5996^^^^^^^^^^
5997
5998The optional ``TypeIdInfo`` field, used for
5999`Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
6000looks like:
6001
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006002.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006003
6004 typeIdInfo: [(TypeTests)]?[, (TypeTestAssumeVCalls)]?[, (TypeCheckedLoadVCalls)]?[, (TypeTestAssumeConstVCalls)]?[, (TypeCheckedLoadConstVCalls)]?
6005
6006These optional fields have the following forms:
6007
6008TypeTests
6009"""""""""
6010
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006011.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006012
6013 typeTests: (TypeIdRef[, TypeIdRef]*)
6014
6015Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
6016by summary id or ``GUID``.
6017
6018TypeTestAssumeVCalls
6019""""""""""""""""""""
6020
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006021.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006022
6023 typeTestAssumeVCalls: (VFuncId[, VFuncId]*)
6024
6025Where each VFuncId has the format:
6026
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006027.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006028
6029 vFuncId: (TypeIdRef, offset: 16)
6030
6031Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
6032by summary id or ``GUID`` preceeded by a ``guid:`` tag.
6033
6034TypeCheckedLoadVCalls
6035"""""""""""""""""""""
6036
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006037.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006038
6039 typeCheckedLoadVCalls: (VFuncId[, VFuncId]*)
6040
6041Where each VFuncId has the format described for ``TypeTestAssumeVCalls``.
6042
6043TypeTestAssumeConstVCalls
6044"""""""""""""""""""""""""
6045
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006046.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006047
6048 typeTestAssumeConstVCalls: (ConstVCall[, ConstVCall]*)
6049
6050Where each ConstVCall has the format:
6051
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006052.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006053
6054 VFuncId, args: (Arg[, Arg]*)
6055
6056and where each VFuncId has the format described for ``TypeTestAssumeVCalls``,
6057and each Arg is an integer argument number.
6058
6059TypeCheckedLoadConstVCalls
6060""""""""""""""""""""""""""
6061
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006062.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006063
6064 typeCheckedLoadConstVCalls: (ConstVCall[, ConstVCall]*)
6065
6066Where each ConstVCall has the format described for
6067``TypeTestAssumeConstVCalls``.
6068
6069.. _typeid_summary:
6070
6071Type ID Summary Entry
6072---------------------
6073
6074Each type id summary entry corresponds to a type identifier resolution
6075which is generated during the LTO link portion of the compile when building
6076with `Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
6077so these are only present in a combined summary index.
6078
6079Example:
6080
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006081.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006082
6083 ^4 = typeid: (name: "_ZTS1A", summary: (typeTestRes: (kind: allOnes, sizeM1BitWidth: 7[, alignLog2: 0]?[, sizeM1: 0]?[, bitMask: 0]?[, inlineBits: 0]?)[, WpdResolutions]?)) ; guid = 7004155349499253778
6084
6085The ``typeTestRes`` gives the type test resolution ``kind`` (which may
6086be ``unsat``, ``byteArray``, ``inline``, ``single``, or ``allOnes``), and
6087the ``size-1`` bit width. It is followed by optional flags, which default to 0,
6088and an optional WpdResolutions (whole program devirtualization resolution)
6089field that looks like:
6090
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006091.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006092
6093 wpdResolutions: ((offset: 0, WpdRes)[, (offset: 1, WpdRes)]*
6094
6095where each entry is a mapping from the given byte offset to the whole-program
6096devirtualization resolution WpdRes, that has one of the following formats:
6097
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006098.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006099
6100 wpdRes: (kind: branchFunnel)
6101 wpdRes: (kind: singleImpl, singleImplName: "_ZN1A1nEi")
6102 wpdRes: (kind: indir)
6103
6104Additionally, each wpdRes has an optional ``resByArg`` field, which
6105describes the resolutions for calls with all constant integer arguments:
6106
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006107.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006108
6109 resByArg: (ResByArg[, ResByArg]*)
6110
6111where ResByArg is:
6112
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006113.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006114
6115 args: (Arg[, Arg]*), byArg: (kind: UniformRetVal[, info: 0][, byte: 0][, bit: 0])
6116
6117Where the ``kind`` can be ``Indir``, ``UniformRetVal``, ``UniqueRetVal``
6118or ``VirtualConstProp``. The ``info`` field is only used if the kind
6119is ``UniformRetVal`` (indicates the uniform return value), or
6120``UniqueRetVal`` (holds the return value associated with the unique vtable
6121(0 or 1)). The ``byte`` and ``bit`` fields are only used if the target does
6122not support the use of absolute symbols to store constants.
6123
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006124.. _intrinsicglobalvariables:
6125
Sean Silvab084af42012-12-07 10:36:55 +00006126Intrinsic Global Variables
6127==========================
6128
6129LLVM has a number of "magic" global variables that contain data that
6130affect code generation or other IR semantics. These are documented here.
6131All globals of this sort should have a section specified as
6132"``llvm.metadata``". This section and all globals that start with
6133"``llvm.``" are reserved for use by LLVM.
6134
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006135.. _gv_llvmused:
6136
Sean Silvab084af42012-12-07 10:36:55 +00006137The '``llvm.used``' Global Variable
6138-----------------------------------
6139
Rafael Espindola74f2e462013-04-22 14:58:02 +00006140The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00006141:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00006142pointers to named global variables, functions and aliases which may optionally
6143have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00006144use of it is:
6145
6146.. code-block:: llvm
6147
6148 @X = global i8 4
6149 @Y = global i32 123
6150
6151 @llvm.used = appending global [2 x i8*] [
6152 i8* @X,
6153 i8* bitcast (i32* @Y to i8*)
6154 ], section "llvm.metadata"
6155
Rafael Espindola74f2e462013-04-22 14:58:02 +00006156If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
6157and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00006158symbol that it cannot see (which is why they have to be named). For example, if
6159a variable has internal linkage and no references other than that from the
6160``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
6161references from inline asms and other things the compiler cannot "see", and
6162corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00006163
6164On some targets, the code generator must emit a directive to the
6165assembler or object file to prevent the assembler and linker from
6166molesting the symbol.
6167
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006168.. _gv_llvmcompilerused:
6169
Sean Silvab084af42012-12-07 10:36:55 +00006170The '``llvm.compiler.used``' Global Variable
6171--------------------------------------------
6172
6173The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
6174directive, except that it only prevents the compiler from touching the
6175symbol. On targets that support it, this allows an intelligent linker to
6176optimize references to the symbol without being impeded as it would be
6177by ``@llvm.used``.
6178
6179This is a rare construct that should only be used in rare circumstances,
6180and should not be exposed to source languages.
6181
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006182.. _gv_llvmglobalctors:
6183
Sean Silvab084af42012-12-07 10:36:55 +00006184The '``llvm.global_ctors``' Global Variable
6185-------------------------------------------
6186
6187.. code-block:: llvm
6188
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006189 %0 = type { i32, void ()*, i8* }
6190 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006191
6192The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006193functions, priorities, and an optional associated global or function.
6194The functions referenced by this array will be called in ascending order
6195of priority (i.e. lowest first) when the module is loaded. The order of
6196functions with the same priority is not defined.
6197
6198If the third field is present, non-null, and points to a global variable
6199or function, the initializer function will only run if the associated
6200data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006201
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006202.. _llvmglobaldtors:
6203
Sean Silvab084af42012-12-07 10:36:55 +00006204The '``llvm.global_dtors``' Global Variable
6205-------------------------------------------
6206
6207.. code-block:: llvm
6208
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006209 %0 = type { i32, void ()*, i8* }
6210 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006211
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006212The ``@llvm.global_dtors`` array contains a list of destructor
6213functions, priorities, and an optional associated global or function.
6214The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00006215order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006216order of functions with the same priority is not defined.
6217
6218If the third field is present, non-null, and points to a global variable
6219or function, the destructor function will only run if the associated
6220data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006221
6222Instruction Reference
6223=====================
6224
6225The LLVM instruction set consists of several different classifications
6226of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
6227instructions <binaryops>`, :ref:`bitwise binary
6228instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
6229:ref:`other instructions <otherops>`.
6230
6231.. _terminators:
6232
6233Terminator Instructions
6234-----------------------
6235
6236As mentioned :ref:`previously <functionstructure>`, every basic block in a
6237program ends with a "Terminator" instruction, which indicates which
6238block should be executed after the current block is finished. These
6239terminator instructions typically yield a '``void``' value: they produce
6240control flow, not values (the one exception being the
6241':ref:`invoke <i_invoke>`' instruction).
6242
6243The terminator instructions are: ':ref:`ret <i_ret>`',
6244':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
6245':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00006246':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00006247':ref:`catchret <i_catchret>`',
6248':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00006249and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00006250
6251.. _i_ret:
6252
6253'``ret``' Instruction
6254^^^^^^^^^^^^^^^^^^^^^
6255
6256Syntax:
6257"""""""
6258
6259::
6260
6261 ret <type> <value> ; Return a value from a non-void function
6262 ret void ; Return from void function
6263
6264Overview:
6265"""""""""
6266
6267The '``ret``' instruction is used to return control flow (and optionally
6268a value) from a function back to the caller.
6269
6270There are two forms of the '``ret``' instruction: one that returns a
6271value and then causes control flow, and one that just causes control
6272flow to occur.
6273
6274Arguments:
6275""""""""""
6276
6277The '``ret``' instruction optionally accepts a single argument, the
6278return value. The type of the return value must be a ':ref:`first
6279class <t_firstclass>`' type.
6280
6281A function is not :ref:`well formed <wellformed>` if it it has a non-void
6282return type and contains a '``ret``' instruction with no return value or
6283a return value with a type that does not match its type, or if it has a
6284void return type and contains a '``ret``' instruction with a return
6285value.
6286
6287Semantics:
6288""""""""""
6289
6290When the '``ret``' instruction is executed, control flow returns back to
6291the calling function's context. If the caller is a
6292":ref:`call <i_call>`" instruction, execution continues at the
6293instruction after the call. If the caller was an
6294":ref:`invoke <i_invoke>`" instruction, execution continues at the
6295beginning of the "normal" destination block. If the instruction returns
6296a value, that value shall set the call or invoke instruction's return
6297value.
6298
6299Example:
6300""""""""
6301
6302.. code-block:: llvm
6303
6304 ret i32 5 ; Return an integer value of 5
6305 ret void ; Return from a void function
6306 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
6307
6308.. _i_br:
6309
6310'``br``' Instruction
6311^^^^^^^^^^^^^^^^^^^^
6312
6313Syntax:
6314"""""""
6315
6316::
6317
6318 br i1 <cond>, label <iftrue>, label <iffalse>
6319 br label <dest> ; Unconditional branch
6320
6321Overview:
6322"""""""""
6323
6324The '``br``' instruction is used to cause control flow to transfer to a
6325different basic block in the current function. There are two forms of
6326this instruction, corresponding to a conditional branch and an
6327unconditional branch.
6328
6329Arguments:
6330""""""""""
6331
6332The conditional branch form of the '``br``' instruction takes a single
6333'``i1``' value and two '``label``' values. The unconditional form of the
6334'``br``' instruction takes a single '``label``' value as a target.
6335
6336Semantics:
6337""""""""""
6338
6339Upon execution of a conditional '``br``' instruction, the '``i1``'
6340argument is evaluated. If the value is ``true``, control flows to the
6341'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
6342to the '``iffalse``' ``label`` argument.
6343
6344Example:
6345""""""""
6346
6347.. code-block:: llvm
6348
6349 Test:
6350 %cond = icmp eq i32 %a, %b
6351 br i1 %cond, label %IfEqual, label %IfUnequal
6352 IfEqual:
6353 ret i32 1
6354 IfUnequal:
6355 ret i32 0
6356
6357.. _i_switch:
6358
6359'``switch``' Instruction
6360^^^^^^^^^^^^^^^^^^^^^^^^
6361
6362Syntax:
6363"""""""
6364
6365::
6366
6367 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
6368
6369Overview:
6370"""""""""
6371
6372The '``switch``' instruction is used to transfer control flow to one of
6373several different places. It is a generalization of the '``br``'
6374instruction, allowing a branch to occur to one of many possible
6375destinations.
6376
6377Arguments:
6378""""""""""
6379
6380The '``switch``' instruction uses three parameters: an integer
6381comparison value '``value``', a default '``label``' destination, and an
6382array of pairs of comparison value constants and '``label``'s. The table
6383is not allowed to contain duplicate constant entries.
6384
6385Semantics:
6386""""""""""
6387
6388The ``switch`` instruction specifies a table of values and destinations.
6389When the '``switch``' instruction is executed, this table is searched
6390for the given value. If the value is found, control flow is transferred
6391to the corresponding destination; otherwise, control flow is transferred
6392to the default destination.
6393
6394Implementation:
6395"""""""""""""""
6396
6397Depending on properties of the target machine and the particular
6398``switch`` instruction, this instruction may be code generated in
6399different ways. For example, it could be generated as a series of
6400chained conditional branches or with a lookup table.
6401
6402Example:
6403""""""""
6404
6405.. code-block:: llvm
6406
6407 ; Emulate a conditional br instruction
6408 %Val = zext i1 %value to i32
6409 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
6410
6411 ; Emulate an unconditional br instruction
6412 switch i32 0, label %dest [ ]
6413
6414 ; Implement a jump table:
6415 switch i32 %val, label %otherwise [ i32 0, label %onzero
6416 i32 1, label %onone
6417 i32 2, label %ontwo ]
6418
6419.. _i_indirectbr:
6420
6421'``indirectbr``' Instruction
6422^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6423
6424Syntax:
6425"""""""
6426
6427::
6428
6429 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
6430
6431Overview:
6432"""""""""
6433
6434The '``indirectbr``' instruction implements an indirect branch to a
6435label within the current function, whose address is specified by
6436"``address``". Address must be derived from a
6437:ref:`blockaddress <blockaddress>` constant.
6438
6439Arguments:
6440""""""""""
6441
6442The '``address``' argument is the address of the label to jump to. The
6443rest of the arguments indicate the full set of possible destinations
6444that the address may point to. Blocks are allowed to occur multiple
6445times in the destination list, though this isn't particularly useful.
6446
6447This destination list is required so that dataflow analysis has an
6448accurate understanding of the CFG.
6449
6450Semantics:
6451""""""""""
6452
6453Control transfers to the block specified in the address argument. All
6454possible destination blocks must be listed in the label list, otherwise
6455this instruction has undefined behavior. This implies that jumps to
6456labels defined in other functions have undefined behavior as well.
6457
6458Implementation:
6459"""""""""""""""
6460
6461This is typically implemented with a jump through a register.
6462
6463Example:
6464""""""""
6465
6466.. code-block:: llvm
6467
6468 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
6469
6470.. _i_invoke:
6471
6472'``invoke``' Instruction
6473^^^^^^^^^^^^^^^^^^^^^^^^
6474
6475Syntax:
6476"""""""
6477
6478::
6479
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00006480 <result> = invoke [cconv] [ret attrs] [addrspace(<num>)] [<ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006481 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00006482
6483Overview:
6484"""""""""
6485
6486The '``invoke``' instruction causes control to transfer to a specified
6487function, with the possibility of control flow transfer to either the
6488'``normal``' label or the '``exception``' label. If the callee function
6489returns with the "``ret``" instruction, control flow will return to the
6490"normal" label. If the callee (or any indirect callees) returns via the
6491":ref:`resume <i_resume>`" instruction or other exception handling
6492mechanism, control is interrupted and continued at the dynamically
6493nearest "exception" label.
6494
6495The '``exception``' label is a `landing
6496pad <ExceptionHandling.html#overview>`_ for the exception. As such,
6497'``exception``' label is required to have the
6498":ref:`landingpad <i_landingpad>`" instruction, which contains the
6499information about the behavior of the program after unwinding happens,
6500as its first non-PHI instruction. The restrictions on the
6501"``landingpad``" instruction's tightly couples it to the "``invoke``"
6502instruction, so that the important information contained within the
6503"``landingpad``" instruction can't be lost through normal code motion.
6504
6505Arguments:
6506""""""""""
6507
6508This instruction requires several arguments:
6509
6510#. The optional "cconv" marker indicates which :ref:`calling
6511 convention <callingconv>` the call should use. If none is
6512 specified, the call defaults to using C calling conventions.
6513#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6514 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6515 are valid here.
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00006516#. The optional addrspace attribute can be used to indicate the adress space
6517 of the called function. If it is not specified, the program address space
6518 from the :ref:`datalayout string<langref_datalayout>` will be used.
David Blaikieb83cf102016-07-13 17:21:34 +00006519#. '``ty``': the type of the call instruction itself which is also the
6520 type of the return value. Functions that return no value are marked
6521 ``void``.
6522#. '``fnty``': shall be the signature of the function being invoked. The
6523 argument types must match the types implied by this signature. This
6524 type can be omitted if the function is not varargs.
6525#. '``fnptrval``': An LLVM value containing a pointer to a function to
6526 be invoked. In most cases, this is a direct function invocation, but
6527 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
6528 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00006529#. '``function args``': argument list whose types match the function
6530 signature argument types and parameter attributes. All arguments must
6531 be of :ref:`first class <t_firstclass>` type. If the function signature
6532 indicates the function accepts a variable number of arguments, the
6533 extra arguments can be specified.
6534#. '``normal label``': the label reached when the called function
6535 executes a '``ret``' instruction.
6536#. '``exception label``': the label reached when a callee returns via
6537 the :ref:`resume <i_resume>` instruction or other exception handling
6538 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00006539#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006540#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00006541
6542Semantics:
6543""""""""""
6544
6545This instruction is designed to operate as a standard '``call``'
6546instruction in most regards. The primary difference is that it
6547establishes an association with a label, which is used by the runtime
6548library to unwind the stack.
6549
6550This instruction is used in languages with destructors to ensure that
6551proper cleanup is performed in the case of either a ``longjmp`` or a
6552thrown exception. Additionally, this is important for implementation of
6553'``catch``' clauses in high-level languages that support them.
6554
6555For the purposes of the SSA form, the definition of the value returned
6556by the '``invoke``' instruction is deemed to occur on the edge from the
6557current block to the "normal" label. If the callee unwinds then no
6558return value is available.
6559
6560Example:
6561""""""""
6562
6563.. code-block:: llvm
6564
6565 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006566 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006567 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006568 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006569
6570.. _i_resume:
6571
6572'``resume``' Instruction
6573^^^^^^^^^^^^^^^^^^^^^^^^
6574
6575Syntax:
6576"""""""
6577
6578::
6579
6580 resume <type> <value>
6581
6582Overview:
6583"""""""""
6584
6585The '``resume``' instruction is a terminator instruction that has no
6586successors.
6587
6588Arguments:
6589""""""""""
6590
6591The '``resume``' instruction requires one argument, which must have the
6592same type as the result of any '``landingpad``' instruction in the same
6593function.
6594
6595Semantics:
6596""""""""""
6597
6598The '``resume``' instruction resumes propagation of an existing
6599(in-flight) exception whose unwinding was interrupted with a
6600:ref:`landingpad <i_landingpad>` instruction.
6601
6602Example:
6603""""""""
6604
6605.. code-block:: llvm
6606
6607 resume { i8*, i32 } %exn
6608
David Majnemer8a1c45d2015-12-12 05:38:55 +00006609.. _i_catchswitch:
6610
6611'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00006612^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00006613
6614Syntax:
6615"""""""
6616
6617::
6618
6619 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6620 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6621
6622Overview:
6623"""""""""
6624
6625The '``catchswitch``' instruction is used by `LLVM's exception handling system
6626<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6627that may be executed by the :ref:`EH personality routine <personalityfn>`.
6628
6629Arguments:
6630""""""""""
6631
6632The ``parent`` argument is the token of the funclet that contains the
6633``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6634this operand may be the token ``none``.
6635
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006636The ``default`` argument is the label of another basic block beginning with
6637either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6638must be a legal target with respect to the ``parent`` links, as described in
6639the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006640
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006641The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006642:ref:`catchpad <i_catchpad>` instruction.
6643
6644Semantics:
6645""""""""""
6646
6647Executing this instruction transfers control to one of the successors in
6648``handlers``, if appropriate, or continues to unwind via the unwind label if
6649present.
6650
6651The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6652it must be both the first non-phi instruction and last instruction in the basic
6653block. Therefore, it must be the only non-phi instruction in the block.
6654
6655Example:
6656""""""""
6657
Renato Golin124f2592016-07-20 12:16:38 +00006658.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00006659
6660 dispatch1:
6661 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6662 dispatch2:
6663 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6664
David Majnemer654e1302015-07-31 17:58:14 +00006665.. _i_catchret:
6666
6667'``catchret``' Instruction
6668^^^^^^^^^^^^^^^^^^^^^^^^^^
6669
6670Syntax:
6671"""""""
6672
6673::
6674
David Majnemer8a1c45d2015-12-12 05:38:55 +00006675 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00006676
6677Overview:
6678"""""""""
6679
6680The '``catchret``' instruction is a terminator instruction that has a
6681single successor.
6682
6683
6684Arguments:
6685""""""""""
6686
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006687The first argument to a '``catchret``' indicates which ``catchpad`` it
6688exits. It must be a :ref:`catchpad <i_catchpad>`.
6689The second argument to a '``catchret``' specifies where control will
6690transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00006691
6692Semantics:
6693""""""""""
6694
David Majnemer8a1c45d2015-12-12 05:38:55 +00006695The '``catchret``' instruction ends an existing (in-flight) exception whose
6696unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6697:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6698code to, for example, destroy the active exception. Control then transfers to
6699``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006700
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006701The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6702If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6703funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6704the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006705
6706Example:
6707""""""""
6708
Renato Golin124f2592016-07-20 12:16:38 +00006709.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006710
David Majnemer8a1c45d2015-12-12 05:38:55 +00006711 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006712
David Majnemer654e1302015-07-31 17:58:14 +00006713.. _i_cleanupret:
6714
6715'``cleanupret``' Instruction
6716^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6717
6718Syntax:
6719"""""""
6720
6721::
6722
David Majnemer8a1c45d2015-12-12 05:38:55 +00006723 cleanupret from <value> unwind label <continue>
6724 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006725
6726Overview:
6727"""""""""
6728
6729The '``cleanupret``' instruction is a terminator instruction that has
6730an optional successor.
6731
6732
6733Arguments:
6734""""""""""
6735
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006736The '``cleanupret``' instruction requires one argument, which indicates
6737which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006738If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6739funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6740the ``cleanupret``'s behavior is undefined.
6741
6742The '``cleanupret``' instruction also has an optional successor, ``continue``,
6743which must be the label of another basic block beginning with either a
6744``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6745be a legal target with respect to the ``parent`` links, as described in the
6746`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006747
6748Semantics:
6749""""""""""
6750
6751The '``cleanupret``' instruction indicates to the
6752:ref:`personality function <personalityfn>` that one
6753:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6754It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006755
David Majnemer654e1302015-07-31 17:58:14 +00006756Example:
6757""""""""
6758
Renato Golin124f2592016-07-20 12:16:38 +00006759.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006760
David Majnemer8a1c45d2015-12-12 05:38:55 +00006761 cleanupret from %cleanup unwind to caller
6762 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006763
Sean Silvab084af42012-12-07 10:36:55 +00006764.. _i_unreachable:
6765
6766'``unreachable``' Instruction
6767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6768
6769Syntax:
6770"""""""
6771
6772::
6773
6774 unreachable
6775
6776Overview:
6777"""""""""
6778
6779The '``unreachable``' instruction has no defined semantics. This
6780instruction is used to inform the optimizer that a particular portion of
6781the code is not reachable. This can be used to indicate that the code
6782after a no-return function cannot be reached, and other facts.
6783
6784Semantics:
6785""""""""""
6786
6787The '``unreachable``' instruction has no defined semantics.
6788
6789.. _binaryops:
6790
6791Binary Operations
6792-----------------
6793
6794Binary operators are used to do most of the computation in a program.
6795They require two operands of the same type, execute an operation on
6796them, and produce a single value. The operands might represent multiple
6797data, as is the case with the :ref:`vector <t_vector>` data type. The
6798result value has the same type as its operands.
6799
6800There are several different binary operators:
6801
6802.. _i_add:
6803
6804'``add``' Instruction
6805^^^^^^^^^^^^^^^^^^^^^
6806
6807Syntax:
6808"""""""
6809
6810::
6811
Tim Northover675a0962014-06-13 14:24:23 +00006812 <result> = add <ty> <op1>, <op2> ; yields ty:result
6813 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6814 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6815 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006816
6817Overview:
6818"""""""""
6819
6820The '``add``' instruction returns the sum of its two operands.
6821
6822Arguments:
6823""""""""""
6824
6825The two arguments to the '``add``' instruction must be
6826:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6827arguments must have identical types.
6828
6829Semantics:
6830""""""""""
6831
6832The value produced is the integer sum of the two operands.
6833
6834If the sum has unsigned overflow, the result returned is the
6835mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6836the result.
6837
6838Because LLVM integers use a two's complement representation, this
6839instruction is appropriate for both signed and unsigned integers.
6840
6841``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6842respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6843result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6844unsigned and/or signed overflow, respectively, occurs.
6845
6846Example:
6847""""""""
6848
Renato Golin124f2592016-07-20 12:16:38 +00006849.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006850
Tim Northover675a0962014-06-13 14:24:23 +00006851 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006852
6853.. _i_fadd:
6854
6855'``fadd``' Instruction
6856^^^^^^^^^^^^^^^^^^^^^^
6857
6858Syntax:
6859"""""""
6860
6861::
6862
Tim Northover675a0962014-06-13 14:24:23 +00006863 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006864
6865Overview:
6866"""""""""
6867
6868The '``fadd``' instruction returns the sum of its two operands.
6869
6870Arguments:
6871""""""""""
6872
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006873The two arguments to the '``fadd``' instruction must be
6874:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6875floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006876
6877Semantics:
6878""""""""""
6879
Sanjay Patel7b722402018-03-07 17:18:22 +00006880The value produced is the floating-point sum of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006881This instruction is assumed to execute in the default :ref:`floating-point
6882environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00006883This instruction can also take any number of :ref:`fast-math
6884flags <fastmath>`, which are optimization hints to enable otherwise
6885unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006886
6887Example:
6888""""""""
6889
Renato Golin124f2592016-07-20 12:16:38 +00006890.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006891
Tim Northover675a0962014-06-13 14:24:23 +00006892 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006893
6894'``sub``' Instruction
6895^^^^^^^^^^^^^^^^^^^^^
6896
6897Syntax:
6898"""""""
6899
6900::
6901
Tim Northover675a0962014-06-13 14:24:23 +00006902 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6903 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6904 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6905 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006906
6907Overview:
6908"""""""""
6909
6910The '``sub``' instruction returns the difference of its two operands.
6911
6912Note that the '``sub``' instruction is used to represent the '``neg``'
6913instruction present in most other intermediate representations.
6914
6915Arguments:
6916""""""""""
6917
6918The two arguments to the '``sub``' instruction must be
6919:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6920arguments must have identical types.
6921
6922Semantics:
6923""""""""""
6924
6925The value produced is the integer difference of the two operands.
6926
6927If the difference has unsigned overflow, the result returned is the
6928mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6929the result.
6930
6931Because LLVM integers use a two's complement representation, this
6932instruction is appropriate for both signed and unsigned integers.
6933
6934``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6935respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6936result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6937unsigned and/or signed overflow, respectively, occurs.
6938
6939Example:
6940""""""""
6941
Renato Golin124f2592016-07-20 12:16:38 +00006942.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006943
Tim Northover675a0962014-06-13 14:24:23 +00006944 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6945 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006946
6947.. _i_fsub:
6948
6949'``fsub``' Instruction
6950^^^^^^^^^^^^^^^^^^^^^^
6951
6952Syntax:
6953"""""""
6954
6955::
6956
Tim Northover675a0962014-06-13 14:24:23 +00006957 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006958
6959Overview:
6960"""""""""
6961
6962The '``fsub``' instruction returns the difference of its two operands.
6963
6964Note that the '``fsub``' instruction is used to represent the '``fneg``'
6965instruction present in most other intermediate representations.
6966
6967Arguments:
6968""""""""""
6969
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006970The two arguments to the '``fsub``' instruction must be
6971:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6972floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006973
6974Semantics:
6975""""""""""
6976
Sanjay Patel7b722402018-03-07 17:18:22 +00006977The value produced is the floating-point difference of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006978This instruction is assumed to execute in the default :ref:`floating-point
6979environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00006980This instruction can also take any number of :ref:`fast-math
6981flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006982unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006983
6984Example:
6985""""""""
6986
Renato Golin124f2592016-07-20 12:16:38 +00006987.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006988
Tim Northover675a0962014-06-13 14:24:23 +00006989 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6990 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006991
6992'``mul``' Instruction
6993^^^^^^^^^^^^^^^^^^^^^
6994
6995Syntax:
6996"""""""
6997
6998::
6999
Tim Northover675a0962014-06-13 14:24:23 +00007000 <result> = mul <ty> <op1>, <op2> ; yields ty:result
7001 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
7002 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
7003 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007004
7005Overview:
7006"""""""""
7007
7008The '``mul``' instruction returns the product of its two operands.
7009
7010Arguments:
7011""""""""""
7012
7013The two arguments to the '``mul``' instruction must be
7014:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7015arguments must have identical types.
7016
7017Semantics:
7018""""""""""
7019
7020The value produced is the integer product of the two operands.
7021
7022If the result of the multiplication has unsigned overflow, the result
7023returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
7024bit width of the result.
7025
7026Because LLVM integers use a two's complement representation, and the
7027result is the same width as the operands, this instruction returns the
7028correct result for both signed and unsigned integers. If a full product
7029(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
7030sign-extended or zero-extended as appropriate to the width of the full
7031product.
7032
7033``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7034respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7035result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
7036unsigned and/or signed overflow, respectively, occurs.
7037
7038Example:
7039""""""""
7040
Renato Golin124f2592016-07-20 12:16:38 +00007041.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007042
Tim Northover675a0962014-06-13 14:24:23 +00007043 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00007044
7045.. _i_fmul:
7046
7047'``fmul``' Instruction
7048^^^^^^^^^^^^^^^^^^^^^^
7049
7050Syntax:
7051"""""""
7052
7053::
7054
Tim Northover675a0962014-06-13 14:24:23 +00007055 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007056
7057Overview:
7058"""""""""
7059
7060The '``fmul``' instruction returns the product of its two operands.
7061
7062Arguments:
7063""""""""""
7064
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007065The two arguments to the '``fmul``' instruction must be
7066:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
7067floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007068
7069Semantics:
7070""""""""""
7071
Sanjay Patel7b722402018-03-07 17:18:22 +00007072The value produced is the floating-point product of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007073This instruction is assumed to execute in the default :ref:`floating-point
7074environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007075This instruction can also take any number of :ref:`fast-math
7076flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007077unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007078
7079Example:
7080""""""""
7081
Renato Golin124f2592016-07-20 12:16:38 +00007082.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007083
Tim Northover675a0962014-06-13 14:24:23 +00007084 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00007085
7086'``udiv``' Instruction
7087^^^^^^^^^^^^^^^^^^^^^^
7088
7089Syntax:
7090"""""""
7091
7092::
7093
Tim Northover675a0962014-06-13 14:24:23 +00007094 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
7095 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007096
7097Overview:
7098"""""""""
7099
7100The '``udiv``' instruction returns the quotient of its two operands.
7101
7102Arguments:
7103""""""""""
7104
7105The two arguments to the '``udiv``' instruction must be
7106:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7107arguments must have identical types.
7108
7109Semantics:
7110""""""""""
7111
7112The value produced is the unsigned integer quotient of the two operands.
7113
7114Note that unsigned integer division and signed integer division are
7115distinct operations; for signed integer division, use '``sdiv``'.
7116
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007117Division by zero is undefined behavior. For vectors, if any element
7118of the divisor is zero, the operation has undefined behavior.
7119
Sean Silvab084af42012-12-07 10:36:55 +00007120
7121If the ``exact`` keyword is present, the result value of the ``udiv`` is
7122a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
7123such, "((a udiv exact b) mul b) == a").
7124
7125Example:
7126""""""""
7127
Renato Golin124f2592016-07-20 12:16:38 +00007128.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007129
Tim Northover675a0962014-06-13 14:24:23 +00007130 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007131
7132'``sdiv``' Instruction
7133^^^^^^^^^^^^^^^^^^^^^^
7134
7135Syntax:
7136"""""""
7137
7138::
7139
Tim Northover675a0962014-06-13 14:24:23 +00007140 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
7141 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007142
7143Overview:
7144"""""""""
7145
7146The '``sdiv``' instruction returns the quotient of its two operands.
7147
7148Arguments:
7149""""""""""
7150
7151The two arguments to the '``sdiv``' instruction must be
7152:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7153arguments must have identical types.
7154
7155Semantics:
7156""""""""""
7157
7158The value produced is the signed integer quotient of the two operands
7159rounded towards zero.
7160
7161Note that signed integer division and unsigned integer division are
7162distinct operations; for unsigned integer division, use '``udiv``'.
7163
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007164Division by zero is undefined behavior. For vectors, if any element
7165of the divisor is zero, the operation has undefined behavior.
7166Overflow also leads to undefined behavior; this is a rare case, but can
7167occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00007168
7169If the ``exact`` keyword is present, the result value of the ``sdiv`` is
7170a :ref:`poison value <poisonvalues>` if the result would be rounded.
7171
7172Example:
7173""""""""
7174
Renato Golin124f2592016-07-20 12:16:38 +00007175.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007176
Tim Northover675a0962014-06-13 14:24:23 +00007177 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007178
7179.. _i_fdiv:
7180
7181'``fdiv``' Instruction
7182^^^^^^^^^^^^^^^^^^^^^^
7183
7184Syntax:
7185"""""""
7186
7187::
7188
Tim Northover675a0962014-06-13 14:24:23 +00007189 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007190
7191Overview:
7192"""""""""
7193
7194The '``fdiv``' instruction returns the quotient of its two operands.
7195
7196Arguments:
7197""""""""""
7198
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007199The two arguments to the '``fdiv``' instruction must be
7200:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
7201floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007202
7203Semantics:
7204""""""""""
7205
Sanjay Patel7b722402018-03-07 17:18:22 +00007206The value produced is the floating-point quotient of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007207This instruction is assumed to execute in the default :ref:`floating-point
7208environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007209This instruction can also take any number of :ref:`fast-math
7210flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007211unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007212
7213Example:
7214""""""""
7215
Renato Golin124f2592016-07-20 12:16:38 +00007216.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007217
Tim Northover675a0962014-06-13 14:24:23 +00007218 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007219
7220'``urem``' Instruction
7221^^^^^^^^^^^^^^^^^^^^^^
7222
7223Syntax:
7224"""""""
7225
7226::
7227
Tim Northover675a0962014-06-13 14:24:23 +00007228 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007229
7230Overview:
7231"""""""""
7232
7233The '``urem``' instruction returns the remainder from the unsigned
7234division of its two arguments.
7235
7236Arguments:
7237""""""""""
7238
7239The two arguments to the '``urem``' instruction must be
7240:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7241arguments must have identical types.
7242
7243Semantics:
7244""""""""""
7245
7246This instruction returns the unsigned integer *remainder* of a division.
7247This instruction always performs an unsigned division to get the
7248remainder.
7249
7250Note that unsigned integer remainder and signed integer remainder are
7251distinct operations; for signed integer remainder, use '``srem``'.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007252
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007253Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007254For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007255undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007256
7257Example:
7258""""""""
7259
Renato Golin124f2592016-07-20 12:16:38 +00007260.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007261
Tim Northover675a0962014-06-13 14:24:23 +00007262 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007263
7264'``srem``' Instruction
7265^^^^^^^^^^^^^^^^^^^^^^
7266
7267Syntax:
7268"""""""
7269
7270::
7271
Tim Northover675a0962014-06-13 14:24:23 +00007272 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007273
7274Overview:
7275"""""""""
7276
7277The '``srem``' instruction returns the remainder from the signed
7278division of its two operands. This instruction can also take
7279:ref:`vector <t_vector>` versions of the values in which case the elements
7280must be integers.
7281
7282Arguments:
7283""""""""""
7284
7285The two arguments to the '``srem``' instruction must be
7286:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7287arguments must have identical types.
7288
7289Semantics:
7290""""""""""
7291
7292This instruction returns the *remainder* of a division (where the result
7293is either zero or has the same sign as the dividend, ``op1``), not the
7294*modulo* operator (where the result is either zero or has the same sign
7295as the divisor, ``op2``) of a value. For more information about the
7296difference, see `The Math
7297Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
7298table of how this is implemented in various languages, please see
7299`Wikipedia: modulo
7300operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
7301
7302Note that signed integer remainder and unsigned integer remainder are
7303distinct operations; for unsigned integer remainder, use '``urem``'.
7304
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007305Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007306For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007307undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007308Overflow also leads to undefined behavior; this is a rare case, but can
7309occur, for example, by taking the remainder of a 32-bit division of
7310-2147483648 by -1. (The remainder doesn't actually overflow, but this
7311rule lets srem be implemented using instructions that return both the
7312result of the division and the remainder.)
7313
7314Example:
7315""""""""
7316
Renato Golin124f2592016-07-20 12:16:38 +00007317.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007318
Tim Northover675a0962014-06-13 14:24:23 +00007319 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007320
7321.. _i_frem:
7322
7323'``frem``' Instruction
7324^^^^^^^^^^^^^^^^^^^^^^
7325
7326Syntax:
7327"""""""
7328
7329::
7330
Tim Northover675a0962014-06-13 14:24:23 +00007331 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007332
7333Overview:
7334"""""""""
7335
7336The '``frem``' instruction returns the remainder from the division of
7337its two operands.
7338
7339Arguments:
7340""""""""""
7341
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007342The two arguments to the '``frem``' instruction must be
7343:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
7344floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007345
7346Semantics:
7347""""""""""
7348
Sanjay Patel7b722402018-03-07 17:18:22 +00007349The value produced is the floating-point remainder of the two operands.
7350This is the same output as a libm '``fmod``' function, but without any
7351possibility of setting ``errno``. The remainder has the same sign as the
7352dividend.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007353This instruction is assumed to execute in the default :ref:`floating-point
7354environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00007355This instruction can also take any number of :ref:`fast-math
7356flags <fastmath>`, which are optimization hints to enable otherwise
7357unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007358
7359Example:
7360""""""""
7361
Renato Golin124f2592016-07-20 12:16:38 +00007362.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007363
Tim Northover675a0962014-06-13 14:24:23 +00007364 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007365
7366.. _bitwiseops:
7367
7368Bitwise Binary Operations
7369-------------------------
7370
7371Bitwise binary operators are used to do various forms of bit-twiddling
7372in a program. They are generally very efficient instructions and can
7373commonly be strength reduced from other instructions. They require two
7374operands of the same type, execute an operation on them, and produce a
7375single value. The resulting value is the same type as its operands.
7376
7377'``shl``' Instruction
7378^^^^^^^^^^^^^^^^^^^^^
7379
7380Syntax:
7381"""""""
7382
7383::
7384
Tim Northover675a0962014-06-13 14:24:23 +00007385 <result> = shl <ty> <op1>, <op2> ; yields ty:result
7386 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
7387 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
7388 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007389
7390Overview:
7391"""""""""
7392
7393The '``shl``' instruction returns the first operand shifted to the left
7394a specified number of bits.
7395
7396Arguments:
7397""""""""""
7398
7399Both arguments to the '``shl``' instruction must be the same
7400:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7401'``op2``' is treated as an unsigned value.
7402
7403Semantics:
7404""""""""""
7405
7406The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
7407where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00007408dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007409``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
7410If the arguments are vectors, each vector element of ``op1`` is shifted
7411by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007412
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007413If the ``nuw`` keyword is present, then the shift produces a poison
7414value if it shifts out any non-zero bits.
7415If the ``nsw`` keyword is present, then the shift produces a poison
Sanjay Patel2896c772018-06-01 15:21:14 +00007416value if it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00007417
7418Example:
7419""""""""
7420
Renato Golin124f2592016-07-20 12:16:38 +00007421.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007422
Tim Northover675a0962014-06-13 14:24:23 +00007423 <result> = shl i32 4, %var ; yields i32: 4 << %var
7424 <result> = shl i32 4, 2 ; yields i32: 16
7425 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00007426 <result> = shl i32 1, 32 ; undefined
7427 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
7428
7429'``lshr``' Instruction
7430^^^^^^^^^^^^^^^^^^^^^^
7431
7432Syntax:
7433"""""""
7434
7435::
7436
Tim Northover675a0962014-06-13 14:24:23 +00007437 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
7438 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007439
7440Overview:
7441"""""""""
7442
7443The '``lshr``' instruction (logical shift right) returns the first
7444operand shifted to the right a specified number of bits with zero fill.
7445
7446Arguments:
7447""""""""""
7448
7449Both arguments to the '``lshr``' instruction must be the same
7450:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7451'``op2``' is treated as an unsigned value.
7452
7453Semantics:
7454""""""""""
7455
7456This instruction always performs a logical shift right operation. The
7457most significant bits of the result will be filled with zero bits after
7458the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007459than the number of bits in ``op1``, this instruction returns a :ref:`poison
7460value <poisonvalues>`. If the arguments are vectors, each vector element
7461of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007462
7463If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007464a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007465
7466Example:
7467""""""""
7468
Renato Golin124f2592016-07-20 12:16:38 +00007469.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007470
Tim Northover675a0962014-06-13 14:24:23 +00007471 <result> = lshr i32 4, 1 ; yields i32:result = 2
7472 <result> = lshr i32 4, 2 ; yields i32:result = 1
7473 <result> = lshr i8 4, 3 ; yields i8:result = 0
7474 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00007475 <result> = lshr i32 1, 32 ; undefined
7476 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
7477
7478'``ashr``' Instruction
7479^^^^^^^^^^^^^^^^^^^^^^
7480
7481Syntax:
7482"""""""
7483
7484::
7485
Tim Northover675a0962014-06-13 14:24:23 +00007486 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
7487 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007488
7489Overview:
7490"""""""""
7491
7492The '``ashr``' instruction (arithmetic shift right) returns the first
7493operand shifted to the right a specified number of bits with sign
7494extension.
7495
7496Arguments:
7497""""""""""
7498
7499Both arguments to the '``ashr``' instruction must be the same
7500:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7501'``op2``' is treated as an unsigned value.
7502
7503Semantics:
7504""""""""""
7505
7506This instruction always performs an arithmetic shift right operation,
7507The most significant bits of the result will be filled with the sign bit
7508of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007509than the number of bits in ``op1``, this instruction returns a :ref:`poison
7510value <poisonvalues>`. If the arguments are vectors, each vector element
7511of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007512
7513If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007514a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007515
7516Example:
7517""""""""
7518
Renato Golin124f2592016-07-20 12:16:38 +00007519.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007520
Tim Northover675a0962014-06-13 14:24:23 +00007521 <result> = ashr i32 4, 1 ; yields i32:result = 2
7522 <result> = ashr i32 4, 2 ; yields i32:result = 1
7523 <result> = ashr i8 4, 3 ; yields i8:result = 0
7524 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00007525 <result> = ashr i32 1, 32 ; undefined
7526 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
7527
7528'``and``' Instruction
7529^^^^^^^^^^^^^^^^^^^^^
7530
7531Syntax:
7532"""""""
7533
7534::
7535
Tim Northover675a0962014-06-13 14:24:23 +00007536 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007537
7538Overview:
7539"""""""""
7540
7541The '``and``' instruction returns the bitwise logical and of its two
7542operands.
7543
7544Arguments:
7545""""""""""
7546
7547The two arguments to the '``and``' instruction must be
7548:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7549arguments must have identical types.
7550
7551Semantics:
7552""""""""""
7553
7554The truth table used for the '``and``' instruction is:
7555
7556+-----+-----+-----+
7557| In0 | In1 | Out |
7558+-----+-----+-----+
7559| 0 | 0 | 0 |
7560+-----+-----+-----+
7561| 0 | 1 | 0 |
7562+-----+-----+-----+
7563| 1 | 0 | 0 |
7564+-----+-----+-----+
7565| 1 | 1 | 1 |
7566+-----+-----+-----+
7567
7568Example:
7569""""""""
7570
Renato Golin124f2592016-07-20 12:16:38 +00007571.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007572
Tim Northover675a0962014-06-13 14:24:23 +00007573 <result> = and i32 4, %var ; yields i32:result = 4 & %var
7574 <result> = and i32 15, 40 ; yields i32:result = 8
7575 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00007576
7577'``or``' Instruction
7578^^^^^^^^^^^^^^^^^^^^
7579
7580Syntax:
7581"""""""
7582
7583::
7584
Tim Northover675a0962014-06-13 14:24:23 +00007585 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007586
7587Overview:
7588"""""""""
7589
7590The '``or``' instruction returns the bitwise logical inclusive or of its
7591two operands.
7592
7593Arguments:
7594""""""""""
7595
7596The two arguments to the '``or``' instruction must be
7597:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7598arguments must have identical types.
7599
7600Semantics:
7601""""""""""
7602
7603The truth table used for the '``or``' instruction is:
7604
7605+-----+-----+-----+
7606| In0 | In1 | Out |
7607+-----+-----+-----+
7608| 0 | 0 | 0 |
7609+-----+-----+-----+
7610| 0 | 1 | 1 |
7611+-----+-----+-----+
7612| 1 | 0 | 1 |
7613+-----+-----+-----+
7614| 1 | 1 | 1 |
7615+-----+-----+-----+
7616
7617Example:
7618""""""""
7619
7620::
7621
Tim Northover675a0962014-06-13 14:24:23 +00007622 <result> = or i32 4, %var ; yields i32:result = 4 | %var
7623 <result> = or i32 15, 40 ; yields i32:result = 47
7624 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00007625
7626'``xor``' Instruction
7627^^^^^^^^^^^^^^^^^^^^^
7628
7629Syntax:
7630"""""""
7631
7632::
7633
Tim Northover675a0962014-06-13 14:24:23 +00007634 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007635
7636Overview:
7637"""""""""
7638
7639The '``xor``' instruction returns the bitwise logical exclusive or of
7640its two operands. The ``xor`` is used to implement the "one's
7641complement" operation, which is the "~" operator in C.
7642
7643Arguments:
7644""""""""""
7645
7646The two arguments to the '``xor``' instruction must be
7647:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7648arguments must have identical types.
7649
7650Semantics:
7651""""""""""
7652
7653The truth table used for the '``xor``' instruction is:
7654
7655+-----+-----+-----+
7656| In0 | In1 | Out |
7657+-----+-----+-----+
7658| 0 | 0 | 0 |
7659+-----+-----+-----+
7660| 0 | 1 | 1 |
7661+-----+-----+-----+
7662| 1 | 0 | 1 |
7663+-----+-----+-----+
7664| 1 | 1 | 0 |
7665+-----+-----+-----+
7666
7667Example:
7668""""""""
7669
Renato Golin124f2592016-07-20 12:16:38 +00007670.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007671
Tim Northover675a0962014-06-13 14:24:23 +00007672 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7673 <result> = xor i32 15, 40 ; yields i32:result = 39
7674 <result> = xor i32 4, 8 ; yields i32:result = 12
7675 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00007676
7677Vector Operations
7678-----------------
7679
7680LLVM supports several instructions to represent vector operations in a
7681target-independent manner. These instructions cover the element-access
7682and vector-specific operations needed to process vectors effectively.
7683While LLVM does directly support these vector operations, many
7684sophisticated algorithms will want to use target-specific intrinsics to
7685take full advantage of a specific target.
7686
7687.. _i_extractelement:
7688
7689'``extractelement``' Instruction
7690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7691
7692Syntax:
7693"""""""
7694
7695::
7696
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007697 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00007698
7699Overview:
7700"""""""""
7701
7702The '``extractelement``' instruction extracts a single scalar element
7703from a vector at a specified index.
7704
7705Arguments:
7706""""""""""
7707
7708The first operand of an '``extractelement``' instruction is a value of
7709:ref:`vector <t_vector>` type. The second operand is an index indicating
7710the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007711variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007712
7713Semantics:
7714""""""""""
7715
7716The result is a scalar of the same type as the element type of ``val``.
7717Its value is the value at position ``idx`` of ``val``. If ``idx``
Eli Friedman2c7a81b2018-06-08 21:23:09 +00007718exceeds the length of ``val``, the result is a
7719:ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00007720
7721Example:
7722""""""""
7723
Renato Golin124f2592016-07-20 12:16:38 +00007724.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007725
7726 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7727
7728.. _i_insertelement:
7729
7730'``insertelement``' Instruction
7731^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7732
7733Syntax:
7734"""""""
7735
7736::
7737
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007738 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007739
7740Overview:
7741"""""""""
7742
7743The '``insertelement``' instruction inserts a scalar element into a
7744vector at a specified index.
7745
7746Arguments:
7747""""""""""
7748
7749The first operand of an '``insertelement``' instruction is a value of
7750:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7751type must equal the element type of the first operand. The third operand
7752is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007753index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007754
7755Semantics:
7756""""""""""
7757
7758The result is a vector of the same type as ``val``. Its element values
7759are those of ``val`` except at position ``idx``, where it gets the value
Eli Friedman2c7a81b2018-06-08 21:23:09 +00007760``elt``. If ``idx`` exceeds the length of ``val``, the result
7761is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00007762
7763Example:
7764""""""""
7765
Renato Golin124f2592016-07-20 12:16:38 +00007766.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007767
7768 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7769
7770.. _i_shufflevector:
7771
7772'``shufflevector``' Instruction
7773^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7774
7775Syntax:
7776"""""""
7777
7778::
7779
7780 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7781
7782Overview:
7783"""""""""
7784
7785The '``shufflevector``' instruction constructs a permutation of elements
7786from two input vectors, returning a vector with the same element type as
7787the input and length that is the same as the shuffle mask.
7788
7789Arguments:
7790""""""""""
7791
7792The first two operands of a '``shufflevector``' instruction are vectors
7793with the same type. The third argument is a shuffle mask whose element
7794type is always 'i32'. The result of the instruction is a vector whose
7795length is the same as the shuffle mask and whose element type is the
7796same as the element type of the first two operands.
7797
7798The shuffle mask operand is required to be a constant vector with either
7799constant integer or undef values.
7800
7801Semantics:
7802""""""""""
7803
7804The elements of the two input vectors are numbered from left to right
7805across both of the vectors. The shuffle mask operand specifies, for each
7806element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007807result element gets. If the shuffle mask is undef, the result vector is
7808undef. If any element of the mask operand is undef, that element of the
7809result is undef. If the shuffle mask selects an undef element from one
7810of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007811
7812Example:
7813""""""""
7814
Renato Golin124f2592016-07-20 12:16:38 +00007815.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007816
7817 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7818 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7819 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7820 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7821 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7822 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7823 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7824 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7825
7826Aggregate Operations
7827--------------------
7828
7829LLVM supports several instructions for working with
7830:ref:`aggregate <t_aggregate>` values.
7831
7832.. _i_extractvalue:
7833
7834'``extractvalue``' Instruction
7835^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7836
7837Syntax:
7838"""""""
7839
7840::
7841
7842 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7843
7844Overview:
7845"""""""""
7846
7847The '``extractvalue``' instruction extracts the value of a member field
7848from an :ref:`aggregate <t_aggregate>` value.
7849
7850Arguments:
7851""""""""""
7852
7853The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007854:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007855constant indices to specify which value to extract in a similar manner
7856as indices in a '``getelementptr``' instruction.
7857
7858The major differences to ``getelementptr`` indexing are:
7859
7860- Since the value being indexed is not a pointer, the first index is
7861 omitted and assumed to be zero.
7862- At least one index must be specified.
7863- Not only struct indices but also array indices must be in bounds.
7864
7865Semantics:
7866""""""""""
7867
7868The result is the value at the position in the aggregate specified by
7869the index operands.
7870
7871Example:
7872""""""""
7873
Renato Golin124f2592016-07-20 12:16:38 +00007874.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007875
7876 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7877
7878.. _i_insertvalue:
7879
7880'``insertvalue``' Instruction
7881^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7882
7883Syntax:
7884"""""""
7885
7886::
7887
7888 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7889
7890Overview:
7891"""""""""
7892
7893The '``insertvalue``' instruction inserts a value into a member field in
7894an :ref:`aggregate <t_aggregate>` value.
7895
7896Arguments:
7897""""""""""
7898
7899The first operand of an '``insertvalue``' instruction is a value of
7900:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7901a first-class value to insert. The following operands are constant
7902indices indicating the position at which to insert the value in a
7903similar manner as indices in a '``extractvalue``' instruction. The value
7904to insert must have the same type as the value identified by the
7905indices.
7906
7907Semantics:
7908""""""""""
7909
7910The result is an aggregate of the same type as ``val``. Its value is
7911that of ``val`` except that the value at the position specified by the
7912indices is that of ``elt``.
7913
7914Example:
7915""""""""
7916
7917.. code-block:: llvm
7918
7919 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7920 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007921 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007922
7923.. _memoryops:
7924
7925Memory Access and Addressing Operations
7926---------------------------------------
7927
7928A key design point of an SSA-based representation is how it represents
7929memory. In LLVM, no memory locations are in SSA form, which makes things
7930very simple. This section describes how to read, write, and allocate
7931memory in LLVM.
7932
7933.. _i_alloca:
7934
7935'``alloca``' Instruction
7936^^^^^^^^^^^^^^^^^^^^^^^^
7937
7938Syntax:
7939"""""""
7940
7941::
7942
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007943 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007944
7945Overview:
7946"""""""""
7947
7948The '``alloca``' instruction allocates memory on the stack frame of the
7949currently executing function, to be automatically released when this
7950function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007951address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007952
7953Arguments:
7954""""""""""
7955
7956The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7957bytes of memory on the runtime stack, returning a pointer of the
7958appropriate type to the program. If "NumElements" is specified, it is
7959the number of elements allocated, otherwise "NumElements" is defaulted
7960to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007961allocation is guaranteed to be aligned to at least that boundary. The
7962alignment may not be greater than ``1 << 29``. If not specified, or if
7963zero, the target can choose to align the allocation on any convenient
7964boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007965
7966'``type``' may be any sized type.
7967
7968Semantics:
7969""""""""""
7970
7971Memory is allocated; a pointer is returned. The operation is undefined
7972if there is insufficient stack space for the allocation. '``alloca``'d
7973memory is automatically released when the function returns. The
7974'``alloca``' instruction is commonly used to represent automatic
7975variables that must have an address available. When the function returns
7976(either with the ``ret`` or ``resume`` instructions), the memory is
Eli Friedman18f882c2018-07-11 00:02:01 +00007977reclaimed. Allocating zero bytes is legal, but the returned pointer may not
7978be unique. The order in which memory is allocated (ie., which way the stack
7979grows) is not specified.
Sean Silvab084af42012-12-07 10:36:55 +00007980
7981Example:
7982""""""""
7983
7984.. code-block:: llvm
7985
Tim Northover675a0962014-06-13 14:24:23 +00007986 %ptr = alloca i32 ; yields i32*:ptr
7987 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7988 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7989 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007990
7991.. _i_load:
7992
7993'``load``' Instruction
7994^^^^^^^^^^^^^^^^^^^^^^
7995
7996Syntax:
7997"""""""
7998
7999::
8000
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008001 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008002 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00008003 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008004 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008005 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00008006
8007Overview:
8008"""""""""
8009
8010The '``load``' instruction is used to read from memory.
8011
8012Arguments:
8013""""""""""
8014
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00008015The argument to the ``load`` instruction specifies the memory address from which
8016to load. The type specified must be a :ref:`first class <t_firstclass>` type of
8017known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
8018the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
8019modify the number or order of execution of this ``load`` with other
8020:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008021
JF Bastiend1fb5852015-12-17 22:09:19 +00008022If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008023<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8024``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
8025Atomic loads produce :ref:`defined <memmodel>` results when they may see
8026multiple atomic stores. The type of the pointee must be an integer, pointer, or
8027floating-point type whose bit width is a power of two greater than or equal to
8028eight and less than or equal to a target-specific size limit. ``align`` must be
8029explicitly specified on atomic loads, and the load has undefined behavior if the
8030alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00008031pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00008032
8033The optional constant ``align`` argument specifies the alignment of the
8034operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00008035or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00008036alignment for the target. It is the responsibility of the code emitter
8037to ensure that the alignment information is correct. Overestimating the
8038alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00008039may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00008040maximum possible alignment is ``1 << 29``. An alignment value higher
8041than the size of the loaded type implies memory up to the alignment
8042value bytes can be safely loaded without trapping in the default
8043address space. Access of the high bytes can interfere with debugging
8044tools, so should not be accessed if the function has the
8045``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00008046
8047The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008048metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00008049``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008050metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00008051that this load is not expected to be reused in the cache. The code
8052generator may select special instructions to save cache bandwidth, such
8053as the ``MOVNT`` instruction on x86.
8054
8055The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008056metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00008057entries. If a load instruction tagged with the ``!invariant.load``
8058metadata is executed, the optimizer may assume the memory location
8059referenced by the load contains the same value at all points in the
Eli Friedmane15a1112018-07-17 20:38:11 +00008060program where the memory location is known to be dereferenceable;
8061otherwise, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008062
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008063The optional ``!invariant.group`` metadata must reference a single metadata name
Piotr Padlewskice358262018-05-18 23:53:46 +00008064 ``<index>`` corresponding to a metadata node with no entries.
8065 See ``invariant.group`` metadata.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008066
Philip Reamescdb72f32014-10-20 22:40:55 +00008067The optional ``!nonnull`` metadata must reference a single
8068metadata name ``<index>`` corresponding to a metadata node with no
8069entries. The existence of the ``!nonnull`` metadata on the
8070instruction tells the optimizer that the value loaded is known to
Eli Friedmane15a1112018-07-17 20:38:11 +00008071never be null. If the value is null at runtime, the behavior is undefined.
8072This is analogous to the ``nonnull`` attribute on parameters and return
8073values. This metadata can only be applied to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00008074
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008075The optional ``!dereferenceable`` metadata must reference a single metadata
8076name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00008077entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00008078tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00008079The number of bytes known to be dereferenceable is specified by the integer
8080value in the metadata node. This is analogous to the ''dereferenceable''
8081attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00008082to loads of a pointer type.
8083
8084The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008085metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
8086``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00008087instruction tells the optimizer that the value loaded is known to be either
8088dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00008089The number of bytes known to be dereferenceable is specified by the integer
8090value in the metadata node. This is analogous to the ''dereferenceable_or_null''
8091attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00008092to loads of a pointer type.
8093
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008094The optional ``!align`` metadata must reference a single metadata name
8095``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
8096The existence of the ``!align`` metadata on the instruction tells the
8097optimizer that the value loaded is known to be aligned to a boundary specified
8098by the integer value in the metadata node. The alignment must be a power of 2.
8099This is analogous to the ''align'' attribute on parameters and return values.
Eli Friedmane15a1112018-07-17 20:38:11 +00008100This metadata can only be applied to loads of a pointer type. If the returned
8101value is not appropriately aligned at runtime, the behavior is undefined.
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008102
Sean Silvab084af42012-12-07 10:36:55 +00008103Semantics:
8104""""""""""
8105
8106The location of memory pointed to is loaded. If the value being loaded
8107is of scalar type then the number of bytes read does not exceed the
8108minimum number of bytes needed to hold all bits of the type. For
8109example, loading an ``i24`` reads at most three bytes. When loading a
8110value of a type like ``i20`` with a size that is not an integral number
8111of bytes, the result is undefined if the value was not originally
8112written using a store of the same type.
8113
8114Examples:
8115"""""""""
8116
8117.. code-block:: llvm
8118
Tim Northover675a0962014-06-13 14:24:23 +00008119 %ptr = alloca i32 ; yields i32*:ptr
8120 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00008121 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008122
8123.. _i_store:
8124
8125'``store``' Instruction
8126^^^^^^^^^^^^^^^^^^^^^^^
8127
8128Syntax:
8129"""""""
8130
8131::
8132
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008133 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008134 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008135
8136Overview:
8137"""""""""
8138
8139The '``store``' instruction is used to write to memory.
8140
8141Arguments:
8142""""""""""
8143
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00008144There are two arguments to the ``store`` instruction: a value to store and an
8145address at which to store it. The type of the ``<pointer>`` operand must be a
8146pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
8147operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
8148allowed to modify the number or order of execution of this ``store`` with other
8149:ref:`volatile operations <volatile>`. Only values of :ref:`first class
8150<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
8151structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00008152
JF Bastiend1fb5852015-12-17 22:09:19 +00008153If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008154<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8155``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
8156Atomic loads produce :ref:`defined <memmodel>` results when they may see
8157multiple atomic stores. The type of the pointee must be an integer, pointer, or
8158floating-point type whose bit width is a power of two greater than or equal to
8159eight and less than or equal to a target-specific size limit. ``align`` must be
8160explicitly specified on atomic stores, and the store has undefined behavior if
8161the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00008162pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00008163
Eli Benderskyca380842013-04-17 17:17:20 +00008164The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00008165operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00008166or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00008167alignment for the target. It is the responsibility of the code emitter
8168to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00008169alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00008170alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00008171safe. The maximum possible alignment is ``1 << 29``. An alignment
8172value higher than the size of the stored type implies memory up to the
8173alignment value bytes can be stored to without trapping in the default
8174address space. Storing to the higher bytes however may result in data
8175races if another thread can access the same address. Introducing a
8176data race is not allowed. Storing to the extra bytes is not allowed
8177even in situations where a data race is known to not exist if the
8178function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00008179
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008180The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00008181name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008182value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00008183tells the optimizer and code generator that this load is not expected to
8184be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00008185instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00008186x86.
8187
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008188The optional ``!invariant.group`` metadata must reference a
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008189single metadata name ``<index>``. See ``invariant.group`` metadata.
8190
Sean Silvab084af42012-12-07 10:36:55 +00008191Semantics:
8192""""""""""
8193
Eli Benderskyca380842013-04-17 17:17:20 +00008194The contents of memory are updated to contain ``<value>`` at the
8195location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00008196of scalar type then the number of bytes written does not exceed the
8197minimum number of bytes needed to hold all bits of the type. For
8198example, storing an ``i24`` writes at most three bytes. When writing a
8199value of a type like ``i20`` with a size that is not an integral number
8200of bytes, it is unspecified what happens to the extra bits that do not
8201belong to the type, but they will typically be overwritten.
8202
8203Example:
8204""""""""
8205
8206.. code-block:: llvm
8207
Tim Northover675a0962014-06-13 14:24:23 +00008208 %ptr = alloca i32 ; yields i32*:ptr
8209 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00008210 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008211
8212.. _i_fence:
8213
8214'``fence``' Instruction
8215^^^^^^^^^^^^^^^^^^^^^^^
8216
8217Syntax:
8218"""""""
8219
8220::
8221
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008222 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008223
8224Overview:
8225"""""""""
8226
8227The '``fence``' instruction is used to introduce happens-before edges
8228between operations.
8229
8230Arguments:
8231""""""""""
8232
8233'``fence``' instructions take an :ref:`ordering <ordering>` argument which
8234defines what *synchronizes-with* edges they add. They can only be given
8235``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
8236
8237Semantics:
8238""""""""""
8239
8240A fence A which has (at least) ``release`` ordering semantics
8241*synchronizes with* a fence B with (at least) ``acquire`` ordering
8242semantics if and only if there exist atomic operations X and Y, both
8243operating on some atomic object M, such that A is sequenced before X, X
8244modifies M (either directly or through some side effect of a sequence
8245headed by X), Y is sequenced before B, and Y observes M. This provides a
8246*happens-before* dependency between A and B. Rather than an explicit
8247``fence``, one (but not both) of the atomic operations X or Y might
8248provide a ``release`` or ``acquire`` (resp.) ordering constraint and
8249still *synchronize-with* the explicit ``fence`` and establish the
8250*happens-before* edge.
8251
8252A ``fence`` which has ``seq_cst`` ordering, in addition to having both
8253``acquire`` and ``release`` semantics specified above, participates in
8254the global program order of other ``seq_cst`` operations and/or fences.
8255
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008256A ``fence`` instruction can also take an optional
8257":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008258
8259Example:
8260""""""""
8261
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008262.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008263
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008264 fence acquire ; yields void
8265 fence syncscope("singlethread") seq_cst ; yields void
8266 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008267
8268.. _i_cmpxchg:
8269
8270'``cmpxchg``' Instruction
8271^^^^^^^^^^^^^^^^^^^^^^^^^
8272
8273Syntax:
8274"""""""
8275
8276::
8277
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008278 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00008279
8280Overview:
8281"""""""""
8282
8283The '``cmpxchg``' instruction is used to atomically modify memory. It
8284loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00008285equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00008286
8287Arguments:
8288""""""""""
8289
8290There are three arguments to the '``cmpxchg``' instruction: an address
8291to operate on, a value to compare to the value currently be at that
8292address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00008293are equal. The type of '<cmp>' must be an integer or pointer type whose
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008294bit width is a power of two greater than or equal to eight and less
Philip Reames1960cfd2016-02-19 00:06:41 +00008295than or equal to a target-specific size limit. '<cmp>' and '<new>' must
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008296have the same type, and the type of '<pointer>' must be a pointer to
8297that type. If the ``cmpxchg`` is marked as ``volatile``, then the
Philip Reames1960cfd2016-02-19 00:06:41 +00008298optimizer is not allowed to modify the number or order of execution of
8299this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008300
Tim Northovere94a5182014-03-11 10:48:52 +00008301The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00008302``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
8303must be at least ``monotonic``, the ordering constraint on failure must be no
8304stronger than that on success, and the failure ordering cannot be either
8305``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00008306
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008307A ``cmpxchg`` instruction can also take an optional
8308":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008309
8310The pointer passed into cmpxchg must have alignment greater than or
8311equal to the size in memory of the operand.
8312
8313Semantics:
8314""""""""""
8315
Tim Northover420a2162014-06-13 14:24:07 +00008316The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun93f2b4b2017-08-09 22:22:04 +00008317is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
8318written to the location. The original value at the location is returned,
8319together with a flag indicating success (true) or failure (false).
Tim Northover420a2162014-06-13 14:24:07 +00008320
8321If the cmpxchg operation is marked as ``weak`` then a spurious failure is
8322permitted: the operation may not write ``<new>`` even if the comparison
8323matched.
8324
8325If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
8326if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00008327
Tim Northovere94a5182014-03-11 10:48:52 +00008328A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
8329identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
8330load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00008331
8332Example:
8333""""""""
8334
8335.. code-block:: llvm
8336
8337 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008338 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008339 br label %loop
8340
8341 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008342 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00008343 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00008344 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00008345 %value_loaded = extractvalue { i32, i1 } %val_success, 0
8346 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00008347 br i1 %success, label %done, label %loop
8348
8349 done:
8350 ...
8351
8352.. _i_atomicrmw:
8353
8354'``atomicrmw``' Instruction
8355^^^^^^^^^^^^^^^^^^^^^^^^^^^
8356
8357Syntax:
8358"""""""
8359
8360::
8361
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008362 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00008363
8364Overview:
8365"""""""""
8366
8367The '``atomicrmw``' instruction is used to atomically modify memory.
8368
8369Arguments:
8370""""""""""
8371
8372There are three arguments to the '``atomicrmw``' instruction: an
8373operation to apply, an address whose value to modify, an argument to the
8374operation. The operation must be one of the following keywords:
8375
8376- xchg
8377- add
8378- sub
8379- and
8380- nand
8381- or
8382- xor
8383- max
8384- min
8385- umax
8386- umin
8387
8388The type of '<value>' must be an integer type whose bit width is a power
8389of two greater than or equal to eight and less than or equal to a
8390target-specific size limit. The type of the '``<pointer>``' operand must
8391be a pointer to that type. If the ``atomicrmw`` is marked as
8392``volatile``, then the optimizer is not allowed to modify the number or
8393order of execution of this ``atomicrmw`` with other :ref:`volatile
8394operations <volatile>`.
8395
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008396A ``atomicrmw`` instruction can also take an optional
8397":ref:`syncscope <syncscope>`" argument.
8398
Sean Silvab084af42012-12-07 10:36:55 +00008399Semantics:
8400""""""""""
8401
8402The contents of memory at the location specified by the '``<pointer>``'
8403operand are atomically read, modified, and written back. The original
8404value at the location is returned. The modification is specified by the
8405operation argument:
8406
8407- xchg: ``*ptr = val``
8408- add: ``*ptr = *ptr + val``
8409- sub: ``*ptr = *ptr - val``
8410- and: ``*ptr = *ptr & val``
8411- nand: ``*ptr = ~(*ptr & val)``
8412- or: ``*ptr = *ptr | val``
8413- xor: ``*ptr = *ptr ^ val``
8414- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
8415- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
8416- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
8417 comparison)
8418- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
8419 comparison)
8420
8421Example:
8422""""""""
8423
8424.. code-block:: llvm
8425
Tim Northover675a0962014-06-13 14:24:23 +00008426 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008427
8428.. _i_getelementptr:
8429
8430'``getelementptr``' Instruction
8431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8432
8433Syntax:
8434"""""""
8435
8436::
8437
Peter Collingbourned93620b2016-11-10 22:34:55 +00008438 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8439 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8440 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00008441
8442Overview:
8443"""""""""
8444
8445The '``getelementptr``' instruction is used to get the address of a
8446subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008447address calculation only and does not access memory. The instruction can also
8448be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00008449
8450Arguments:
8451""""""""""
8452
David Blaikie16a97eb2015-03-04 22:02:58 +00008453The first argument is always a type used as the basis for the calculations.
8454The second argument is always a pointer or a vector of pointers, and is the
8455base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00008456that indicate which of the elements of the aggregate object are indexed.
8457The interpretation of each index is dependent on the type being indexed
8458into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00008459second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00008460(not necessarily the value directly pointed to, since the first index
8461can be non-zero), etc. The first type indexed into must be a pointer
8462value, subsequent types can be arrays, vectors, and structs. Note that
8463subsequent types being indexed into can never be pointers, since that
8464would require loading the pointer before continuing calculation.
8465
8466The type of each index argument depends on the type it is indexing into.
8467When indexing into a (optionally packed) structure, only ``i32`` integer
8468**constants** are allowed (when using a vector of indices they must all
8469be the **same** ``i32`` integer constant). When indexing into an array,
8470pointer or vector, integers of any width are allowed, and they are not
8471required to be constant. These integers are treated as signed values
8472where relevant.
8473
8474For example, let's consider a C code fragment and how it gets compiled
8475to LLVM:
8476
8477.. code-block:: c
8478
8479 struct RT {
8480 char A;
8481 int B[10][20];
8482 char C;
8483 };
8484 struct ST {
8485 int X;
8486 double Y;
8487 struct RT Z;
8488 };
8489
8490 int *foo(struct ST *s) {
8491 return &s[1].Z.B[5][13];
8492 }
8493
8494The LLVM code generated by Clang is:
8495
8496.. code-block:: llvm
8497
8498 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
8499 %struct.ST = type { i32, double, %struct.RT }
8500
8501 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
8502 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00008503 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00008504 ret i32* %arrayidx
8505 }
8506
8507Semantics:
8508""""""""""
8509
8510In the example above, the first index is indexing into the
8511'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
8512= '``{ i32, double, %struct.RT }``' type, a structure. The second index
8513indexes into the third element of the structure, yielding a
8514'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
8515structure. The third index indexes into the second element of the
8516structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
8517dimensions of the array are subscripted into, yielding an '``i32``'
8518type. The '``getelementptr``' instruction returns a pointer to this
8519element, thus computing a value of '``i32*``' type.
8520
8521Note that it is perfectly legal to index partially through a structure,
8522returning a pointer to an inner element. Because of this, the LLVM code
8523for the given testcase is equivalent to:
8524
8525.. code-block:: llvm
8526
8527 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00008528 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
8529 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
8530 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
8531 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
8532 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00008533 ret i32* %t5
8534 }
8535
8536If the ``inbounds`` keyword is present, the result value of the
8537``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
8538pointer is not an *in bounds* address of an allocated object, or if any
8539of the addresses that would be formed by successive addition of the
8540offsets implied by the indices to the base address with infinitely
8541precise signed arithmetic are not an *in bounds* address of that
8542allocated object. The *in bounds* addresses for an allocated object are
8543all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00008544past the end. The only *in bounds* address for a null pointer in the
8545default address-space is the null pointer itself. In cases where the
8546base is a vector of pointers the ``inbounds`` keyword applies to each
8547of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00008548
8549If the ``inbounds`` keyword is not present, the offsets are added to the
8550base address with silently-wrapping two's complement arithmetic. If the
8551offsets have a different width from the pointer, they are sign-extended
8552or truncated to the width of the pointer. The result value of the
8553``getelementptr`` may be outside the object pointed to by the base
8554pointer. The result value may not necessarily be used to access memory
8555though, even if it happens to point into allocated storage. See the
8556:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
8557information.
8558
Peter Collingbourned93620b2016-11-10 22:34:55 +00008559If the ``inrange`` keyword is present before any index, loading from or
8560storing to any pointer derived from the ``getelementptr`` has undefined
8561behavior if the load or store would access memory outside of the bounds of
8562the element selected by the index marked as ``inrange``. The result of a
8563pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
8564involving memory) involving a pointer derived from a ``getelementptr`` with
8565the ``inrange`` keyword is undefined, with the exception of comparisons
8566in the case where both operands are in the range of the element selected
8567by the ``inrange`` keyword, inclusive of the address one past the end of
8568that element. Note that the ``inrange`` keyword is currently only allowed
8569in constant ``getelementptr`` expressions.
8570
Sean Silvab084af42012-12-07 10:36:55 +00008571The getelementptr instruction is often confusing. For some more insight
8572into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
8573
8574Example:
8575""""""""
8576
8577.. code-block:: llvm
8578
8579 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008580 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008581 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008582 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008583 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008584 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008585 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008586 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00008587
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008588Vector of pointers:
8589"""""""""""""""""""
8590
8591The ``getelementptr`` returns a vector of pointers, instead of a single address,
8592when one or more of its arguments is a vector. In such cases, all vector
8593arguments should have the same number of elements, and every scalar argument
8594will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00008595
8596.. code-block:: llvm
8597
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008598 ; All arguments are vectors:
8599 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
8600 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008601
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008602 ; Add the same scalar offset to each pointer of a vector:
8603 ; A[i] = ptrs[i] + offset*sizeof(i8)
8604 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00008605
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008606 ; Add distinct offsets to the same pointer:
8607 ; A[i] = ptr + offsets[i]*sizeof(i8)
8608 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008609
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008610 ; In all cases described above the type of the result is <4 x i8*>
8611
8612The two following instructions are equivalent:
8613
8614.. code-block:: llvm
8615
8616 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8617 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
8618 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
8619 <4 x i32> %ind4,
8620 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00008621
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008622 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8623 i32 2, i32 1, <4 x i32> %ind4, i64 13
8624
8625Let's look at the C code, where the vector version of ``getelementptr``
8626makes sense:
8627
8628.. code-block:: c
8629
8630 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00008631 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008632 for (int i = 0; i < size; ++i) {
8633 A[i] = B[C[i]];
8634 }
8635
8636.. code-block:: llvm
8637
8638 ; get pointers for 8 elements from array B
8639 %ptrs = getelementptr double, double* %B, <8 x i32> %C
8640 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00008641 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008642 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00008643
8644Conversion Operations
8645---------------------
8646
8647The instructions in this category are the conversion instructions
8648(casting) which all take a single operand and a type. They perform
8649various bit conversions on the operand.
8650
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008651.. _i_trunc:
8652
Sean Silvab084af42012-12-07 10:36:55 +00008653'``trunc .. to``' Instruction
8654^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8655
8656Syntax:
8657"""""""
8658
8659::
8660
8661 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8662
8663Overview:
8664"""""""""
8665
8666The '``trunc``' instruction truncates its operand to the type ``ty2``.
8667
8668Arguments:
8669""""""""""
8670
8671The '``trunc``' instruction takes a value to trunc, and a type to trunc
8672it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8673of the same number of integers. The bit size of the ``value`` must be
8674larger than the bit size of the destination type, ``ty2``. Equal sized
8675types are not allowed.
8676
8677Semantics:
8678""""""""""
8679
8680The '``trunc``' instruction truncates the high order bits in ``value``
8681and converts the remaining bits to ``ty2``. Since the source size must
8682be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8683It will always truncate bits.
8684
8685Example:
8686""""""""
8687
8688.. code-block:: llvm
8689
8690 %X = trunc i32 257 to i8 ; yields i8:1
8691 %Y = trunc i32 123 to i1 ; yields i1:true
8692 %Z = trunc i32 122 to i1 ; yields i1:false
8693 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
8694
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008695.. _i_zext:
8696
Sean Silvab084af42012-12-07 10:36:55 +00008697'``zext .. to``' Instruction
8698^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8699
8700Syntax:
8701"""""""
8702
8703::
8704
8705 <result> = zext <ty> <value> to <ty2> ; yields ty2
8706
8707Overview:
8708"""""""""
8709
8710The '``zext``' instruction zero extends its operand to type ``ty2``.
8711
8712Arguments:
8713""""""""""
8714
8715The '``zext``' instruction takes a value to cast, and a type to cast it
8716to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8717the same number of integers. The bit size of the ``value`` must be
8718smaller than the bit size of the destination type, ``ty2``.
8719
8720Semantics:
8721""""""""""
8722
8723The ``zext`` fills the high order bits of the ``value`` with zero bits
8724until it reaches the size of the destination type, ``ty2``.
8725
8726When zero extending from i1, the result will always be either 0 or 1.
8727
8728Example:
8729""""""""
8730
8731.. code-block:: llvm
8732
8733 %X = zext i32 257 to i64 ; yields i64:257
8734 %Y = zext i1 true to i32 ; yields i32:1
8735 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8736
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008737.. _i_sext:
8738
Sean Silvab084af42012-12-07 10:36:55 +00008739'``sext .. to``' Instruction
8740^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8741
8742Syntax:
8743"""""""
8744
8745::
8746
8747 <result> = sext <ty> <value> to <ty2> ; yields ty2
8748
8749Overview:
8750"""""""""
8751
8752The '``sext``' sign extends ``value`` to the type ``ty2``.
8753
8754Arguments:
8755""""""""""
8756
8757The '``sext``' instruction takes a value to cast, and a type to cast it
8758to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8759the same number of integers. The bit size of the ``value`` must be
8760smaller than the bit size of the destination type, ``ty2``.
8761
8762Semantics:
8763""""""""""
8764
8765The '``sext``' instruction performs a sign extension by copying the sign
8766bit (highest order bit) of the ``value`` until it reaches the bit size
8767of the type ``ty2``.
8768
8769When sign extending from i1, the extension always results in -1 or 0.
8770
8771Example:
8772""""""""
8773
8774.. code-block:: llvm
8775
8776 %X = sext i8 -1 to i16 ; yields i16 :65535
8777 %Y = sext i1 true to i32 ; yields i32:-1
8778 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8779
8780'``fptrunc .. to``' Instruction
8781^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8782
8783Syntax:
8784"""""""
8785
8786::
8787
8788 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8789
8790Overview:
8791"""""""""
8792
8793The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8794
8795Arguments:
8796""""""""""
8797
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008798The '``fptrunc``' instruction takes a :ref:`floating-point <t_floating>`
8799value to cast and a :ref:`floating-point <t_floating>` type to cast it to.
Sean Silvab084af42012-12-07 10:36:55 +00008800The size of ``value`` must be larger than the size of ``ty2``. This
8801implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8802
8803Semantics:
8804""""""""""
8805
Dan Liew50456fb2015-09-03 18:43:56 +00008806The '``fptrunc``' instruction casts a ``value`` from a larger
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008807:ref:`floating-point <t_floating>` type to a smaller :ref:`floating-point
Sanjay Pateld96a3632018-04-03 13:05:20 +00008808<t_floating>` type.
8809This instruction is assumed to execute in the default :ref:`floating-point
8810environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00008811
8812Example:
8813""""""""
8814
8815.. code-block:: llvm
8816
Sanjay Pateld96a3632018-04-03 13:05:20 +00008817 %X = fptrunc double 16777217.0 to float ; yields float:16777216.0
8818 %Y = fptrunc double 1.0E+300 to half ; yields half:+infinity
Sean Silvab084af42012-12-07 10:36:55 +00008819
8820'``fpext .. to``' Instruction
8821^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8822
8823Syntax:
8824"""""""
8825
8826::
8827
8828 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8829
8830Overview:
8831"""""""""
8832
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008833The '``fpext``' extends a floating-point ``value`` to a larger floating-point
8834value.
Sean Silvab084af42012-12-07 10:36:55 +00008835
8836Arguments:
8837""""""""""
8838
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008839The '``fpext``' instruction takes a :ref:`floating-point <t_floating>`
8840``value`` to cast, and a :ref:`floating-point <t_floating>` type to cast it
Sean Silvab084af42012-12-07 10:36:55 +00008841to. The source type must be smaller than the destination type.
8842
8843Semantics:
8844""""""""""
8845
8846The '``fpext``' instruction extends the ``value`` from a smaller
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008847:ref:`floating-point <t_floating>` type to a larger :ref:`floating-point
8848<t_floating>` type. The ``fpext`` cannot be used to make a
Sean Silvab084af42012-12-07 10:36:55 +00008849*no-op cast* because it always changes bits. Use ``bitcast`` to make a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008850*no-op cast* for a floating-point cast.
Sean Silvab084af42012-12-07 10:36:55 +00008851
8852Example:
8853""""""""
8854
8855.. code-block:: llvm
8856
8857 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8858 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8859
8860'``fptoui .. to``' Instruction
8861^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8862
8863Syntax:
8864"""""""
8865
8866::
8867
8868 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8869
8870Overview:
8871"""""""""
8872
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008873The '``fptoui``' converts a floating-point ``value`` to its unsigned
Sean Silvab084af42012-12-07 10:36:55 +00008874integer equivalent of type ``ty2``.
8875
8876Arguments:
8877""""""""""
8878
8879The '``fptoui``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008880scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00008881cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008882``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00008883type with the same number of elements as ``ty``
8884
8885Semantics:
8886""""""""""
8887
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008888The '``fptoui``' instruction converts its :ref:`floating-point
8889<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00008890unsigned integer value. If the value cannot fit in ``ty2``, the result
8891is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008892
8893Example:
8894""""""""
8895
8896.. code-block:: llvm
8897
8898 %X = fptoui double 123.0 to i32 ; yields i32:123
8899 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8900 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8901
8902'``fptosi .. to``' Instruction
8903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8904
8905Syntax:
8906"""""""
8907
8908::
8909
8910 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8911
8912Overview:
8913"""""""""
8914
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008915The '``fptosi``' instruction converts :ref:`floating-point <t_floating>`
Sean Silvab084af42012-12-07 10:36:55 +00008916``value`` to type ``ty2``.
8917
8918Arguments:
8919""""""""""
8920
8921The '``fptosi``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008922scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00008923cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008924``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00008925type with the same number of elements as ``ty``
8926
8927Semantics:
8928""""""""""
8929
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008930The '``fptosi``' instruction converts its :ref:`floating-point
8931<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00008932signed integer value. If the value cannot fit in ``ty2``, the result
8933is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008934
8935Example:
8936""""""""
8937
8938.. code-block:: llvm
8939
8940 %X = fptosi double -123.0 to i32 ; yields i32:-123
8941 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8942 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8943
8944'``uitofp .. to``' Instruction
8945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8946
8947Syntax:
8948"""""""
8949
8950::
8951
8952 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8953
8954Overview:
8955"""""""""
8956
8957The '``uitofp``' instruction regards ``value`` as an unsigned integer
8958and converts that value to the ``ty2`` type.
8959
8960Arguments:
8961""""""""""
8962
8963The '``uitofp``' instruction takes a value to cast, which must be a
8964scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008965``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
8966``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00008967type with the same number of elements as ``ty``
8968
8969Semantics:
8970""""""""""
8971
8972The '``uitofp``' instruction interprets its operand as an unsigned
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008973integer quantity and converts it to the corresponding floating-point
Eli Friedman3f1ce092018-06-14 22:58:48 +00008974value. If the value cannot be exactly represented, it is rounded using
8975the default rounding mode.
8976
Sean Silvab084af42012-12-07 10:36:55 +00008977
8978Example:
8979""""""""
8980
8981.. code-block:: llvm
8982
8983 %X = uitofp i32 257 to float ; yields float:257.0
8984 %Y = uitofp i8 -1 to double ; yields double:255.0
8985
8986'``sitofp .. to``' Instruction
8987^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8988
8989Syntax:
8990"""""""
8991
8992::
8993
8994 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8995
8996Overview:
8997"""""""""
8998
8999The '``sitofp``' instruction regards ``value`` as a signed integer and
9000converts that value to the ``ty2`` type.
9001
9002Arguments:
9003""""""""""
9004
9005The '``sitofp``' instruction takes a value to cast, which must be a
9006scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009007``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
9008``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00009009type with the same number of elements as ``ty``
9010
9011Semantics:
9012""""""""""
9013
9014The '``sitofp``' instruction interprets its operand as a signed integer
Eli Friedman3f1ce092018-06-14 22:58:48 +00009015quantity and converts it to the corresponding floating-point value. If the
9016value cannot be exactly represented, it is rounded using the default rounding
9017mode.
Sean Silvab084af42012-12-07 10:36:55 +00009018
9019Example:
9020""""""""
9021
9022.. code-block:: llvm
9023
9024 %X = sitofp i32 257 to float ; yields float:257.0
9025 %Y = sitofp i8 -1 to double ; yields double:-1.0
9026
9027.. _i_ptrtoint:
9028
9029'``ptrtoint .. to``' Instruction
9030^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9031
9032Syntax:
9033"""""""
9034
9035::
9036
9037 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
9038
9039Overview:
9040"""""""""
9041
9042The '``ptrtoint``' instruction converts the pointer or a vector of
9043pointers ``value`` to the integer (or vector of integers) type ``ty2``.
9044
9045Arguments:
9046""""""""""
9047
9048The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00009049a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00009050type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
9051a vector of integers type.
9052
9053Semantics:
9054""""""""""
9055
9056The '``ptrtoint``' instruction converts ``value`` to integer type
9057``ty2`` by interpreting the pointer value as an integer and either
9058truncating or zero extending that value to the size of the integer type.
9059If ``value`` is smaller than ``ty2`` then a zero extension is done. If
9060``value`` is larger than ``ty2`` then a truncation is done. If they are
9061the same size, then nothing is done (*no-op cast*) other than a type
9062change.
9063
9064Example:
9065""""""""
9066
9067.. code-block:: llvm
9068
9069 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
9070 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
9071 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
9072
9073.. _i_inttoptr:
9074
9075'``inttoptr .. to``' Instruction
9076^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9077
9078Syntax:
9079"""""""
9080
9081::
9082
9083 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
9084
9085Overview:
9086"""""""""
9087
9088The '``inttoptr``' instruction converts an integer ``value`` to a
9089pointer type, ``ty2``.
9090
9091Arguments:
9092""""""""""
9093
9094The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
9095cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
9096type.
9097
9098Semantics:
9099""""""""""
9100
9101The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
9102applying either a zero extension or a truncation depending on the size
9103of the integer ``value``. If ``value`` is larger than the size of a
9104pointer then a truncation is done. If ``value`` is smaller than the size
9105of a pointer then a zero extension is done. If they are the same size,
9106nothing is done (*no-op cast*).
9107
9108Example:
9109""""""""
9110
9111.. code-block:: llvm
9112
9113 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
9114 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
9115 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
9116 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
9117
9118.. _i_bitcast:
9119
9120'``bitcast .. to``' Instruction
9121^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9122
9123Syntax:
9124"""""""
9125
9126::
9127
9128 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
9129
9130Overview:
9131"""""""""
9132
9133The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
9134changing any bits.
9135
9136Arguments:
9137""""""""""
9138
9139The '``bitcast``' instruction takes a value to cast, which must be a
9140non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009141also be a non-aggregate :ref:`first class <t_firstclass>` type. The
9142bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00009143identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009144also be a pointer of the same size. This instruction supports bitwise
9145conversion of vectors to integers and to vectors of other types (as
9146long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00009147
9148Semantics:
9149""""""""""
9150
Matt Arsenault24b49c42013-07-31 17:49:08 +00009151The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
9152is always a *no-op cast* because no bits change with this
9153conversion. The conversion is done as if the ``value`` had been stored
9154to memory and read back as type ``ty2``. Pointer (or vector of
9155pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009156pointers) types with the same address space through this instruction.
9157To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
9158or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00009159
9160Example:
9161""""""""
9162
Renato Golin124f2592016-07-20 12:16:38 +00009163.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009164
9165 %X = bitcast i8 255 to i8 ; yields i8 :-1
9166 %Y = bitcast i32* %x to sint* ; yields sint*:%x
9167 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
9168 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
9169
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009170.. _i_addrspacecast:
9171
9172'``addrspacecast .. to``' Instruction
9173^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9174
9175Syntax:
9176"""""""
9177
9178::
9179
9180 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
9181
9182Overview:
9183"""""""""
9184
9185The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
9186address space ``n`` to type ``pty2`` in address space ``m``.
9187
9188Arguments:
9189""""""""""
9190
9191The '``addrspacecast``' instruction takes a pointer or vector of pointer value
9192to cast and a pointer type to cast it to, which must have a different
9193address space.
9194
9195Semantics:
9196""""""""""
9197
9198The '``addrspacecast``' instruction converts the pointer value
9199``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00009200value modification, depending on the target and the address space
9201pair. Pointer conversions within the same address space must be
9202performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009203conversion is legal then both result and operand refer to the same memory
9204location.
9205
9206Example:
9207""""""""
9208
9209.. code-block:: llvm
9210
Matt Arsenault9c13dd02013-11-15 22:43:50 +00009211 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
9212 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
9213 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009214
Sean Silvab084af42012-12-07 10:36:55 +00009215.. _otherops:
9216
9217Other Operations
9218----------------
9219
9220The instructions in this category are the "miscellaneous" instructions,
9221which defy better classification.
9222
9223.. _i_icmp:
9224
9225'``icmp``' Instruction
9226^^^^^^^^^^^^^^^^^^^^^^
9227
9228Syntax:
9229"""""""
9230
9231::
9232
Tim Northover675a0962014-06-13 14:24:23 +00009233 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009234
9235Overview:
9236"""""""""
9237
9238The '``icmp``' instruction returns a boolean value or a vector of
9239boolean values based on comparison of its two integer, integer vector,
9240pointer, or pointer vector operands.
9241
9242Arguments:
9243""""""""""
9244
9245The '``icmp``' instruction takes three operands. The first operand is
9246the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009247not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009248
9249#. ``eq``: equal
9250#. ``ne``: not equal
9251#. ``ugt``: unsigned greater than
9252#. ``uge``: unsigned greater or equal
9253#. ``ult``: unsigned less than
9254#. ``ule``: unsigned less or equal
9255#. ``sgt``: signed greater than
9256#. ``sge``: signed greater or equal
9257#. ``slt``: signed less than
9258#. ``sle``: signed less or equal
9259
9260The remaining two arguments must be :ref:`integer <t_integer>` or
9261:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
9262must also be identical types.
9263
9264Semantics:
9265""""""""""
9266
9267The '``icmp``' compares ``op1`` and ``op2`` according to the condition
9268code given as ``cond``. The comparison performed always yields either an
9269:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
9270
9271#. ``eq``: yields ``true`` if the operands are equal, ``false``
9272 otherwise. No sign interpretation is necessary or performed.
9273#. ``ne``: yields ``true`` if the operands are unequal, ``false``
9274 otherwise. No sign interpretation is necessary or performed.
9275#. ``ugt``: interprets the operands as unsigned values and yields
9276 ``true`` if ``op1`` is greater than ``op2``.
9277#. ``uge``: interprets the operands as unsigned values and yields
9278 ``true`` if ``op1`` is greater than or equal to ``op2``.
9279#. ``ult``: interprets the operands as unsigned values and yields
9280 ``true`` if ``op1`` is less than ``op2``.
9281#. ``ule``: interprets the operands as unsigned values and yields
9282 ``true`` if ``op1`` is less than or equal to ``op2``.
9283#. ``sgt``: interprets the operands as signed values and yields ``true``
9284 if ``op1`` is greater than ``op2``.
9285#. ``sge``: interprets the operands as signed values and yields ``true``
9286 if ``op1`` is greater than or equal to ``op2``.
9287#. ``slt``: interprets the operands as signed values and yields ``true``
9288 if ``op1`` is less than ``op2``.
9289#. ``sle``: interprets the operands as signed values and yields ``true``
9290 if ``op1`` is less than or equal to ``op2``.
9291
9292If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
9293are compared as if they were integers.
9294
9295If the operands are integer vectors, then they are compared element by
9296element. The result is an ``i1`` vector with the same number of elements
9297as the values being compared. Otherwise, the result is an ``i1``.
9298
9299Example:
9300""""""""
9301
Renato Golin124f2592016-07-20 12:16:38 +00009302.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009303
9304 <result> = icmp eq i32 4, 5 ; yields: result=false
9305 <result> = icmp ne float* %X, %X ; yields: result=false
9306 <result> = icmp ult i16 4, 5 ; yields: result=true
9307 <result> = icmp sgt i16 4, 5 ; yields: result=false
9308 <result> = icmp ule i16 -4, 5 ; yields: result=false
9309 <result> = icmp sge i16 4, 5 ; yields: result=false
9310
Sean Silvab084af42012-12-07 10:36:55 +00009311.. _i_fcmp:
9312
9313'``fcmp``' Instruction
9314^^^^^^^^^^^^^^^^^^^^^^
9315
9316Syntax:
9317"""""""
9318
9319::
9320
James Molloy88eb5352015-07-10 12:52:00 +00009321 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009322
9323Overview:
9324"""""""""
9325
9326The '``fcmp``' instruction returns a boolean value or vector of boolean
9327values based on comparison of its operands.
9328
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009329If the operands are floating-point scalars, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009330boolean (:ref:`i1 <t_integer>`).
9331
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009332If the operands are floating-point vectors, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009333vector of boolean with the same number of elements as the operands being
9334compared.
9335
9336Arguments:
9337""""""""""
9338
9339The '``fcmp``' instruction takes three operands. The first operand is
9340the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009341not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009342
9343#. ``false``: no comparison, always returns false
9344#. ``oeq``: ordered and equal
9345#. ``ogt``: ordered and greater than
9346#. ``oge``: ordered and greater than or equal
9347#. ``olt``: ordered and less than
9348#. ``ole``: ordered and less than or equal
9349#. ``one``: ordered and not equal
9350#. ``ord``: ordered (no nans)
9351#. ``ueq``: unordered or equal
9352#. ``ugt``: unordered or greater than
9353#. ``uge``: unordered or greater than or equal
9354#. ``ult``: unordered or less than
9355#. ``ule``: unordered or less than or equal
9356#. ``une``: unordered or not equal
9357#. ``uno``: unordered (either nans)
9358#. ``true``: no comparison, always returns true
9359
9360*Ordered* means that neither operand is a QNAN while *unordered* means
9361that either operand may be a QNAN.
9362
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009363Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating-point
9364<t_floating>` type or a :ref:`vector <t_vector>` of floating-point type.
9365They must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00009366
9367Semantics:
9368""""""""""
9369
9370The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
9371condition code given as ``cond``. If the operands are vectors, then the
9372vectors are compared element by element. Each comparison performed
9373always yields an :ref:`i1 <t_integer>` result, as follows:
9374
9375#. ``false``: always yields ``false``, regardless of operands.
9376#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
9377 is equal to ``op2``.
9378#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
9379 is greater than ``op2``.
9380#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
9381 is greater than or equal to ``op2``.
9382#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
9383 is less than ``op2``.
9384#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
9385 is less than or equal to ``op2``.
9386#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
9387 is not equal to ``op2``.
9388#. ``ord``: yields ``true`` if both operands are not a QNAN.
9389#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
9390 equal to ``op2``.
9391#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
9392 greater than ``op2``.
9393#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
9394 greater than or equal to ``op2``.
9395#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
9396 less than ``op2``.
9397#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
9398 less than or equal to ``op2``.
9399#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
9400 not equal to ``op2``.
9401#. ``uno``: yields ``true`` if either operand is a QNAN.
9402#. ``true``: always yields ``true``, regardless of operands.
9403
James Molloy88eb5352015-07-10 12:52:00 +00009404The ``fcmp`` instruction can also optionally take any number of
9405:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009406otherwise unsafe floating-point optimizations.
James Molloy88eb5352015-07-10 12:52:00 +00009407
9408Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
9409only flags that have any effect on its semantics are those that allow
9410assumptions to be made about the values of input arguments; namely
Eli Friedman8bb43262018-07-17 20:28:31 +00009411``nnan``, ``ninf``, and ``reassoc``. See :ref:`fastmath` for more information.
James Molloy88eb5352015-07-10 12:52:00 +00009412
Sean Silvab084af42012-12-07 10:36:55 +00009413Example:
9414""""""""
9415
Renato Golin124f2592016-07-20 12:16:38 +00009416.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009417
9418 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
9419 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
9420 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
9421 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
9422
Sean Silvab084af42012-12-07 10:36:55 +00009423.. _i_phi:
9424
9425'``phi``' Instruction
9426^^^^^^^^^^^^^^^^^^^^^
9427
9428Syntax:
9429"""""""
9430
9431::
9432
9433 <result> = phi <ty> [ <val0>, <label0>], ...
9434
9435Overview:
9436"""""""""
9437
9438The '``phi``' instruction is used to implement the φ node in the SSA
9439graph representing the function.
9440
9441Arguments:
9442""""""""""
9443
9444The type of the incoming values is specified with the first type field.
9445After this, the '``phi``' instruction takes a list of pairs as
9446arguments, with one pair for each predecessor basic block of the current
9447block. Only values of :ref:`first class <t_firstclass>` type may be used as
9448the value arguments to the PHI node. Only labels may be used as the
9449label arguments.
9450
9451There must be no non-phi instructions between the start of a basic block
9452and the PHI instructions: i.e. PHI instructions must be first in a basic
9453block.
9454
9455For the purposes of the SSA form, the use of each incoming value is
9456deemed to occur on the edge from the corresponding predecessor block to
9457the current block (but after any definition of an '``invoke``'
9458instruction's return value on the same edge).
9459
9460Semantics:
9461""""""""""
9462
9463At runtime, the '``phi``' instruction logically takes on the value
9464specified by the pair corresponding to the predecessor basic block that
9465executed just prior to the current block.
9466
9467Example:
9468""""""""
9469
9470.. code-block:: llvm
9471
9472 Loop: ; Infinite loop that counts from 0 on up...
9473 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
9474 %nextindvar = add i32 %indvar, 1
9475 br label %Loop
9476
9477.. _i_select:
9478
9479'``select``' Instruction
9480^^^^^^^^^^^^^^^^^^^^^^^^
9481
9482Syntax:
9483"""""""
9484
9485::
9486
9487 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
9488
9489 selty is either i1 or {<N x i1>}
9490
9491Overview:
9492"""""""""
9493
9494The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00009495condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00009496
9497Arguments:
9498""""""""""
9499
9500The '``select``' instruction requires an 'i1' value or a vector of 'i1'
9501values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00009502class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00009503
9504Semantics:
9505""""""""""
9506
9507If the condition is an i1 and it evaluates to 1, the instruction returns
9508the first value argument; otherwise, it returns the second value
9509argument.
9510
9511If the condition is a vector of i1, then the value arguments must be
9512vectors of the same size, and the selection is done element by element.
9513
David Majnemer40a0b592015-03-03 22:45:47 +00009514If the condition is an i1 and the value arguments are vectors of the
9515same size, then an entire vector is selected.
9516
Sean Silvab084af42012-12-07 10:36:55 +00009517Example:
9518""""""""
9519
9520.. code-block:: llvm
9521
9522 %X = select i1 true, i8 17, i8 42 ; yields i8:17
9523
9524.. _i_call:
9525
9526'``call``' Instruction
9527^^^^^^^^^^^^^^^^^^^^^^
9528
9529Syntax:
9530"""""""
9531
9532::
9533
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00009534 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] [addrspace(<num>)]
9535 [<ty>|<fnty> <fnptrval>(<function args>) [fn attrs] [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00009536
9537Overview:
9538"""""""""
9539
9540The '``call``' instruction represents a simple function call.
9541
9542Arguments:
9543""""""""""
9544
9545This instruction requires several arguments:
9546
Reid Kleckner5772b772014-04-24 20:14:34 +00009547#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00009548 should perform tail call optimization. The ``tail`` marker is a hint that
9549 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00009550 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00009551 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00009552
9553 #. The call will not cause unbounded stack growth if it is part of a
9554 recursive cycle in the call graph.
9555 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
9556 forwarded in place.
9557
Florian Hahnedae5a62018-01-17 23:29:25 +00009558 Both markers imply that the callee does not access allocas from the caller.
9559 The ``tail`` marker additionally implies that the callee does not access
9560 varargs from the caller, while ``musttail`` implies that varargs from the
9561 caller are passed to the callee. Calls marked ``musttail`` must obey the
9562 following additional rules:
Reid Kleckner5772b772014-04-24 20:14:34 +00009563
9564 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
9565 or a pointer bitcast followed by a ret instruction.
9566 - The ret instruction must return the (possibly bitcasted) value
9567 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00009568 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00009569 parameters or return types may differ in pointee type, but not
9570 in address space.
9571 - The calling conventions of the caller and callee must match.
9572 - All ABI-impacting function attributes, such as sret, byval, inreg,
9573 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00009574 - The callee must be varargs iff the caller is varargs. Bitcasting a
9575 non-varargs function to the appropriate varargs type is legal so
9576 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00009577
9578 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
9579 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00009580
9581 - Caller and callee both have the calling convention ``fastcc``.
9582 - The call is in tail position (ret immediately follows call and ret
9583 uses value of call or is void).
9584 - Option ``-tailcallopt`` is enabled, or
9585 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00009586 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00009587 met. <CodeGenerator.html#tailcallopt>`_
9588
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00009589#. The optional ``notail`` marker indicates that the optimizers should not add
9590 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
9591 call optimization from being performed on the call.
9592
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00009593#. The optional ``fast-math flags`` marker indicates that the call has one or more
Sanjay Patelfa54ace2015-12-14 21:59:03 +00009594 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
9595 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
9596 for calls that return a floating-point scalar or vector type.
9597
Sean Silvab084af42012-12-07 10:36:55 +00009598#. The optional "cconv" marker indicates which :ref:`calling
9599 convention <callingconv>` the call should use. If none is
9600 specified, the call defaults to using C calling conventions. The
9601 calling convention of the call must match the calling convention of
9602 the target function, or else the behavior is undefined.
9603#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
9604 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
9605 are valid here.
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00009606#. The optional addrspace attribute can be used to indicate the adress space
9607 of the called function. If it is not specified, the program address space
9608 from the :ref:`datalayout string<langref_datalayout>` will be used.
Sean Silvab084af42012-12-07 10:36:55 +00009609#. '``ty``': the type of the call instruction itself which is also the
9610 type of the return value. Functions that return no value are marked
9611 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00009612#. '``fnty``': shall be the signature of the function being called. The
9613 argument types must match the types implied by this signature. This
9614 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00009615#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00009616 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00009617 indirect ``call``'s are just as possible, calling an arbitrary pointer
9618 to function value.
9619#. '``function args``': argument list whose types match the function
9620 signature argument types and parameter attributes. All arguments must
9621 be of :ref:`first class <t_firstclass>` type. If the function signature
9622 indicates the function accepts a variable number of arguments, the
9623 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00009624#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009625#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00009626
9627Semantics:
9628""""""""""
9629
9630The '``call``' instruction is used to cause control flow to transfer to
9631a specified function, with its incoming arguments bound to the specified
9632values. Upon a '``ret``' instruction in the called function, control
9633flow continues with the instruction after the function call, and the
9634return value of the function is bound to the result argument.
9635
9636Example:
9637""""""""
9638
9639.. code-block:: llvm
9640
9641 %retval = call i32 @test(i32 %argc)
9642 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
9643 %X = tail call i32 @foo() ; yields i32
9644 %Y = tail call fastcc i32 @foo() ; yields i32
9645 call void %foo(i8 97 signext)
9646
9647 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00009648 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00009649 %gr = extractvalue %struct.A %r, 0 ; yields i32
9650 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
9651 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
9652 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
9653
9654llvm treats calls to some functions with names and arguments that match
9655the standard C99 library as being the C99 library functions, and may
9656perform optimizations or generate code for them under that assumption.
9657This is something we'd like to change in the future to provide better
9658support for freestanding environments and non-C-based languages.
9659
9660.. _i_va_arg:
9661
9662'``va_arg``' Instruction
9663^^^^^^^^^^^^^^^^^^^^^^^^
9664
9665Syntax:
9666"""""""
9667
9668::
9669
9670 <resultval> = va_arg <va_list*> <arglist>, <argty>
9671
9672Overview:
9673"""""""""
9674
9675The '``va_arg``' instruction is used to access arguments passed through
9676the "variable argument" area of a function call. It is used to implement
9677the ``va_arg`` macro in C.
9678
9679Arguments:
9680""""""""""
9681
9682This instruction takes a ``va_list*`` value and the type of the
9683argument. It returns a value of the specified argument type and
9684increments the ``va_list`` to point to the next argument. The actual
9685type of ``va_list`` is target specific.
9686
9687Semantics:
9688""""""""""
9689
9690The '``va_arg``' instruction loads an argument of the specified type
9691from the specified ``va_list`` and causes the ``va_list`` to point to
9692the next argument. For more information, see the variable argument
9693handling :ref:`Intrinsic Functions <int_varargs>`.
9694
9695It is legal for this instruction to be called in a function which does
9696not take a variable number of arguments, for example, the ``vfprintf``
9697function.
9698
9699``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
9700function <intrinsics>` because it takes a type as an argument.
9701
9702Example:
9703""""""""
9704
9705See the :ref:`variable argument processing <int_varargs>` section.
9706
9707Note that the code generator does not yet fully support va\_arg on many
9708targets. Also, it does not currently support va\_arg with aggregate
9709types on any target.
9710
9711.. _i_landingpad:
9712
9713'``landingpad``' Instruction
9714^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9715
9716Syntax:
9717"""""""
9718
9719::
9720
David Majnemer7fddecc2015-06-17 20:52:32 +00009721 <resultval> = landingpad <resultty> <clause>+
9722 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00009723
9724 <clause> := catch <type> <value>
9725 <clause> := filter <array constant type> <array constant>
9726
9727Overview:
9728"""""""""
9729
9730The '``landingpad``' instruction is used by `LLVM's exception handling
9731system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009732is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009733code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009734defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009735re-entry to the function. The ``resultval`` has the type ``resultty``.
9736
9737Arguments:
9738""""""""""
9739
David Majnemer7fddecc2015-06-17 20:52:32 +00009740The optional
Sean Silvab084af42012-12-07 10:36:55 +00009741``cleanup`` flag indicates that the landing pad block is a cleanup.
9742
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009743A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009744contains the global variable representing the "type" that may be caught
9745or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9746clause takes an array constant as its argument. Use
9747"``[0 x i8**] undef``" for a filter which cannot throw. The
9748'``landingpad``' instruction must contain *at least* one ``clause`` or
9749the ``cleanup`` flag.
9750
9751Semantics:
9752""""""""""
9753
9754The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009755:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009756therefore the "result type" of the ``landingpad`` instruction. As with
9757calling conventions, how the personality function results are
9758represented in LLVM IR is target specific.
9759
9760The clauses are applied in order from top to bottom. If two
9761``landingpad`` instructions are merged together through inlining, the
9762clauses from the calling function are appended to the list of clauses.
9763When the call stack is being unwound due to an exception being thrown,
9764the exception is compared against each ``clause`` in turn. If it doesn't
9765match any of the clauses, and the ``cleanup`` flag is not set, then
9766unwinding continues further up the call stack.
9767
9768The ``landingpad`` instruction has several restrictions:
9769
9770- A landing pad block is a basic block which is the unwind destination
9771 of an '``invoke``' instruction.
9772- A landing pad block must have a '``landingpad``' instruction as its
9773 first non-PHI instruction.
9774- There can be only one '``landingpad``' instruction within the landing
9775 pad block.
9776- A basic block that is not a landing pad block may not include a
9777 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009778
9779Example:
9780""""""""
9781
9782.. code-block:: llvm
9783
9784 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009785 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009786 catch i8** @_ZTIi
9787 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009788 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009789 cleanup
9790 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009791 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009792 catch i8** @_ZTIi
9793 filter [1 x i8**] [@_ZTId]
9794
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009795.. _i_catchpad:
9796
9797'``catchpad``' Instruction
9798^^^^^^^^^^^^^^^^^^^^^^^^^^
9799
9800Syntax:
9801"""""""
9802
9803::
9804
9805 <resultval> = catchpad within <catchswitch> [<args>*]
9806
9807Overview:
9808"""""""""
9809
9810The '``catchpad``' instruction is used by `LLVM's exception handling
9811system <ExceptionHandling.html#overview>`_ to specify that a basic block
9812begins a catch handler --- one where a personality routine attempts to transfer
9813control to catch an exception.
9814
9815Arguments:
9816""""""""""
9817
9818The ``catchswitch`` operand must always be a token produced by a
9819:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9820ensures that each ``catchpad`` has exactly one predecessor block, and it always
9821terminates in a ``catchswitch``.
9822
9823The ``args`` correspond to whatever information the personality routine
9824requires to know if this is an appropriate handler for the exception. Control
9825will transfer to the ``catchpad`` if this is the first appropriate handler for
9826the exception.
9827
9828The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9829``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9830pads.
9831
9832Semantics:
9833""""""""""
9834
9835When the call stack is being unwound due to an exception being thrown, the
9836exception is compared against the ``args``. If it doesn't match, control will
9837not reach the ``catchpad`` instruction. The representation of ``args`` is
9838entirely target and personality function-specific.
9839
9840Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9841instruction must be the first non-phi of its parent basic block.
9842
9843The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9844instructions is described in the
9845`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9846
9847When a ``catchpad`` has been "entered" but not yet "exited" (as
9848described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9849it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9850that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9851
9852Example:
9853""""""""
9854
Renato Golin124f2592016-07-20 12:16:38 +00009855.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009856
9857 dispatch:
9858 %cs = catchswitch within none [label %handler0] unwind to caller
9859 ;; A catch block which can catch an integer.
9860 handler0:
9861 %tok = catchpad within %cs [i8** @_ZTIi]
9862
David Majnemer654e1302015-07-31 17:58:14 +00009863.. _i_cleanuppad:
9864
9865'``cleanuppad``' Instruction
9866^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9867
9868Syntax:
9869"""""""
9870
9871::
9872
David Majnemer8a1c45d2015-12-12 05:38:55 +00009873 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009874
9875Overview:
9876"""""""""
9877
9878The '``cleanuppad``' instruction is used by `LLVM's exception handling
9879system <ExceptionHandling.html#overview>`_ to specify that a basic block
9880is a cleanup block --- one where a personality routine attempts to
9881transfer control to run cleanup actions.
9882The ``args`` correspond to whatever additional
9883information the :ref:`personality function <personalityfn>` requires to
9884execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009885The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009886match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9887The ``parent`` argument is the token of the funclet that contains the
9888``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9889this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009890
9891Arguments:
9892""""""""""
9893
9894The instruction takes a list of arbitrary values which are interpreted
9895by the :ref:`personality function <personalityfn>`.
9896
9897Semantics:
9898""""""""""
9899
David Majnemer654e1302015-07-31 17:58:14 +00009900When the call stack is being unwound due to an exception being thrown,
9901the :ref:`personality function <personalityfn>` transfers control to the
9902``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009903As with calling conventions, how the personality function results are
9904represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009905
9906The ``cleanuppad`` instruction has several restrictions:
9907
9908- A cleanup block is a basic block which is the unwind destination of
9909 an exceptional instruction.
9910- A cleanup block must have a '``cleanuppad``' instruction as its
9911 first non-PHI instruction.
9912- There can be only one '``cleanuppad``' instruction within the
9913 cleanup block.
9914- A basic block that is not a cleanup block may not include a
9915 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009916
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009917When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9918described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9919it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9920that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009921
David Majnemer654e1302015-07-31 17:58:14 +00009922Example:
9923""""""""
9924
Renato Golin124f2592016-07-20 12:16:38 +00009925.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009926
David Majnemer8a1c45d2015-12-12 05:38:55 +00009927 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009928
Sean Silvab084af42012-12-07 10:36:55 +00009929.. _intrinsics:
9930
9931Intrinsic Functions
9932===================
9933
9934LLVM supports the notion of an "intrinsic function". These functions
9935have well known names and semantics and are required to follow certain
9936restrictions. Overall, these intrinsics represent an extension mechanism
9937for the LLVM language that does not require changing all of the
9938transformations in LLVM when adding to the language (or the bitcode
9939reader/writer, the parser, etc...).
9940
9941Intrinsic function names must all start with an "``llvm.``" prefix. This
9942prefix is reserved in LLVM for intrinsic names; thus, function names may
9943not begin with this prefix. Intrinsic functions must always be external
9944functions: you cannot define the body of intrinsic functions. Intrinsic
9945functions may only be used in call or invoke instructions: it is illegal
9946to take the address of an intrinsic function. Additionally, because
9947intrinsic functions are part of the LLVM language, it is required if any
9948are added that they be documented here.
9949
9950Some intrinsic functions can be overloaded, i.e., the intrinsic
9951represents a family of functions that perform the same operation but on
9952different data types. Because LLVM can represent over 8 million
9953different integer types, overloading is used commonly to allow an
9954intrinsic function to operate on any integer type. One or more of the
9955argument types or the result type can be overloaded to accept any
9956integer type. Argument types may also be defined as exactly matching a
9957previous argument's type or the result type. This allows an intrinsic
9958function which accepts multiple arguments, but needs all of them to be
9959of the same type, to only be overloaded with respect to a single
9960argument or the result.
9961
9962Overloaded intrinsics will have the names of its overloaded argument
9963types encoded into its function name, each preceded by a period. Only
9964those types which are overloaded result in a name suffix. Arguments
9965whose type is matched against another type do not. For example, the
9966``llvm.ctpop`` function can take an integer of any width and returns an
9967integer of exactly the same integer width. This leads to a family of
9968functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9969``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9970overloaded, and only one type suffix is required. Because the argument's
9971type is matched against the return type, it does not require its own
9972name suffix.
9973
9974To learn how to add an intrinsic function, please see the `Extending
9975LLVM Guide <ExtendingLLVM.html>`_.
9976
9977.. _int_varargs:
9978
9979Variable Argument Handling Intrinsics
9980-------------------------------------
9981
9982Variable argument support is defined in LLVM with the
9983:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9984functions. These functions are related to the similarly named macros
9985defined in the ``<stdarg.h>`` header file.
9986
9987All of these functions operate on arguments that use a target-specific
9988value type "``va_list``". The LLVM assembly language reference manual
9989does not define what this type is, so all transformations should be
9990prepared to handle these functions regardless of the type used.
9991
9992This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9993variable argument handling intrinsic functions are used.
9994
9995.. code-block:: llvm
9996
Tim Northoverab60bb92014-11-02 01:21:51 +00009997 ; This struct is different for every platform. For most platforms,
9998 ; it is merely an i8*.
9999 %struct.va_list = type { i8* }
10000
10001 ; For Unix x86_64 platforms, va_list is the following struct:
10002 ; %struct.va_list = type { i32, i32, i8*, i8* }
10003
Sean Silvab084af42012-12-07 10:36:55 +000010004 define i32 @test(i32 %X, ...) {
10005 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +000010006 %ap = alloca %struct.va_list
10007 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +000010008 call void @llvm.va_start(i8* %ap2)
10009
10010 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +000010011 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +000010012
10013 ; Demonstrate usage of llvm.va_copy and llvm.va_end
10014 %aq = alloca i8*
10015 %aq2 = bitcast i8** %aq to i8*
10016 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
10017 call void @llvm.va_end(i8* %aq2)
10018
10019 ; Stop processing of arguments.
10020 call void @llvm.va_end(i8* %ap2)
10021 ret i32 %tmp
10022 }
10023
10024 declare void @llvm.va_start(i8*)
10025 declare void @llvm.va_copy(i8*, i8*)
10026 declare void @llvm.va_end(i8*)
10027
10028.. _int_va_start:
10029
10030'``llvm.va_start``' Intrinsic
10031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10032
10033Syntax:
10034"""""""
10035
10036::
10037
Nick Lewycky04f6de02013-09-11 22:04:52 +000010038 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +000010039
10040Overview:
10041"""""""""
10042
10043The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
10044subsequent use by ``va_arg``.
10045
10046Arguments:
10047""""""""""
10048
10049The argument is a pointer to a ``va_list`` element to initialize.
10050
10051Semantics:
10052""""""""""
10053
10054The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
10055available in C. In a target-dependent way, it initializes the
10056``va_list`` element to which the argument points, so that the next call
10057to ``va_arg`` will produce the first variable argument passed to the
10058function. Unlike the C ``va_start`` macro, this intrinsic does not need
10059to know the last argument of the function as the compiler can figure
10060that out.
10061
10062'``llvm.va_end``' Intrinsic
10063^^^^^^^^^^^^^^^^^^^^^^^^^^^
10064
10065Syntax:
10066"""""""
10067
10068::
10069
10070 declare void @llvm.va_end(i8* <arglist>)
10071
10072Overview:
10073"""""""""
10074
10075The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
10076initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
10077
10078Arguments:
10079""""""""""
10080
10081The argument is a pointer to a ``va_list`` to destroy.
10082
10083Semantics:
10084""""""""""
10085
10086The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
10087available in C. In a target-dependent way, it destroys the ``va_list``
10088element to which the argument points. Calls to
10089:ref:`llvm.va_start <int_va_start>` and
10090:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
10091``llvm.va_end``.
10092
10093.. _int_va_copy:
10094
10095'``llvm.va_copy``' Intrinsic
10096^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10097
10098Syntax:
10099"""""""
10100
10101::
10102
10103 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
10104
10105Overview:
10106"""""""""
10107
10108The '``llvm.va_copy``' intrinsic copies the current argument position
10109from the source argument list to the destination argument list.
10110
10111Arguments:
10112""""""""""
10113
10114The first argument is a pointer to a ``va_list`` element to initialize.
10115The second argument is a pointer to a ``va_list`` element to copy from.
10116
10117Semantics:
10118""""""""""
10119
10120The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
10121available in C. In a target-dependent way, it copies the source
10122``va_list`` element into the destination ``va_list`` element. This
10123intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
10124arbitrarily complex and require, for example, memory allocation.
10125
10126Accurate Garbage Collection Intrinsics
10127--------------------------------------
10128
Philip Reamesc5b0f562015-02-25 23:52:06 +000010129LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010130(GC) requires the frontend to generate code containing appropriate intrinsic
10131calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +000010132intrinsics in a manner which is appropriate for the target collector.
10133
Sean Silvab084af42012-12-07 10:36:55 +000010134These intrinsics allow identification of :ref:`GC roots on the
10135stack <int_gcroot>`, as well as garbage collector implementations that
10136require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +000010137Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +000010138these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +000010139details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +000010140
Philip Reamesf80bbff2015-02-25 23:45:20 +000010141Experimental Statepoint Intrinsics
10142^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10143
10144LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +000010145collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010146to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +000010147:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010148differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +000010149<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +000010150described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +000010151
10152.. _int_gcroot:
10153
10154'``llvm.gcroot``' Intrinsic
10155^^^^^^^^^^^^^^^^^^^^^^^^^^^
10156
10157Syntax:
10158"""""""
10159
10160::
10161
10162 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
10163
10164Overview:
10165"""""""""
10166
10167The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
10168the code generator, and allows some metadata to be associated with it.
10169
10170Arguments:
10171""""""""""
10172
10173The first argument specifies the address of a stack object that contains
10174the root pointer. The second pointer (which must be either a constant or
10175a global value address) contains the meta-data to be associated with the
10176root.
10177
10178Semantics:
10179""""""""""
10180
10181At runtime, a call to this intrinsic stores a null pointer into the
10182"ptrloc" location. At compile-time, the code generator generates
10183information to allow the runtime to find the pointer at GC safe points.
10184The '``llvm.gcroot``' intrinsic may only be used in a function which
10185:ref:`specifies a GC algorithm <gc>`.
10186
10187.. _int_gcread:
10188
10189'``llvm.gcread``' Intrinsic
10190^^^^^^^^^^^^^^^^^^^^^^^^^^^
10191
10192Syntax:
10193"""""""
10194
10195::
10196
10197 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
10198
10199Overview:
10200"""""""""
10201
10202The '``llvm.gcread``' intrinsic identifies reads of references from heap
10203locations, allowing garbage collector implementations that require read
10204barriers.
10205
10206Arguments:
10207""""""""""
10208
10209The second argument is the address to read from, which should be an
10210address allocated from the garbage collector. The first object is a
10211pointer to the start of the referenced object, if needed by the language
10212runtime (otherwise null).
10213
10214Semantics:
10215""""""""""
10216
10217The '``llvm.gcread``' intrinsic has the same semantics as a load
10218instruction, but may be replaced with substantially more complex code by
10219the garbage collector runtime, as needed. The '``llvm.gcread``'
10220intrinsic may only be used in a function which :ref:`specifies a GC
10221algorithm <gc>`.
10222
10223.. _int_gcwrite:
10224
10225'``llvm.gcwrite``' Intrinsic
10226^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10227
10228Syntax:
10229"""""""
10230
10231::
10232
10233 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
10234
10235Overview:
10236"""""""""
10237
10238The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
10239locations, allowing garbage collector implementations that require write
10240barriers (such as generational or reference counting collectors).
10241
10242Arguments:
10243""""""""""
10244
10245The first argument is the reference to store, the second is the start of
10246the object to store it to, and the third is the address of the field of
10247Obj to store to. If the runtime does not require a pointer to the
10248object, Obj may be null.
10249
10250Semantics:
10251""""""""""
10252
10253The '``llvm.gcwrite``' intrinsic has the same semantics as a store
10254instruction, but may be replaced with substantially more complex code by
10255the garbage collector runtime, as needed. The '``llvm.gcwrite``'
10256intrinsic may only be used in a function which :ref:`specifies a GC
10257algorithm <gc>`.
10258
10259Code Generator Intrinsics
10260-------------------------
10261
10262These intrinsics are provided by LLVM to expose special features that
10263may only be implemented with code generator support.
10264
10265'``llvm.returnaddress``' Intrinsic
10266^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10267
10268Syntax:
10269"""""""
10270
10271::
10272
George Burgess IVfbc34982017-05-20 04:52:29 +000010273 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +000010274
10275Overview:
10276"""""""""
10277
10278The '``llvm.returnaddress``' intrinsic attempts to compute a
10279target-specific value indicating the return address of the current
10280function or one of its callers.
10281
10282Arguments:
10283""""""""""
10284
10285The argument to this intrinsic indicates which function to return the
10286address for. Zero indicates the calling function, one indicates its
10287caller, etc. The argument is **required** to be a constant integer
10288value.
10289
10290Semantics:
10291""""""""""
10292
10293The '``llvm.returnaddress``' intrinsic either returns a pointer
10294indicating the return address of the specified call frame, or zero if it
10295cannot be identified. The value returned by this intrinsic is likely to
10296be incorrect or 0 for arguments other than zero, so it should only be
10297used for debugging purposes.
10298
10299Note that calling this intrinsic does not prevent function inlining or
10300other aggressive transformations, so the value returned may not be that
10301of the obvious source-language caller.
10302
Albert Gutowski795d7d62016-10-12 22:13:19 +000010303'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +000010304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +000010305
10306Syntax:
10307"""""""
10308
10309::
10310
George Burgess IVfbc34982017-05-20 04:52:29 +000010311 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +000010312
10313Overview:
10314"""""""""
10315
10316The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
10317pointer to the place in the stack frame where the return address of the
10318current function is stored.
10319
10320Semantics:
10321""""""""""
10322
10323Note that calling this intrinsic does not prevent function inlining or
10324other aggressive transformations, so the value returned may not be that
10325of the obvious source-language caller.
10326
10327This intrinsic is only implemented for x86.
10328
Sean Silvab084af42012-12-07 10:36:55 +000010329'``llvm.frameaddress``' Intrinsic
10330^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10331
10332Syntax:
10333"""""""
10334
10335::
10336
10337 declare i8* @llvm.frameaddress(i32 <level>)
10338
10339Overview:
10340"""""""""
10341
10342The '``llvm.frameaddress``' intrinsic attempts to return the
10343target-specific frame pointer value for the specified stack frame.
10344
10345Arguments:
10346""""""""""
10347
10348The argument to this intrinsic indicates which function to return the
10349frame pointer for. Zero indicates the calling function, one indicates
10350its caller, etc. The argument is **required** to be a constant integer
10351value.
10352
10353Semantics:
10354""""""""""
10355
10356The '``llvm.frameaddress``' intrinsic either returns a pointer
10357indicating the frame address of the specified call frame, or zero if it
10358cannot be identified. The value returned by this intrinsic is likely to
10359be incorrect or 0 for arguments other than zero, so it should only be
10360used for debugging purposes.
10361
10362Note that calling this intrinsic does not prevent function inlining or
10363other aggressive transformations, so the value returned may not be that
10364of the obvious source-language caller.
10365
Reid Kleckner60381792015-07-07 22:25:32 +000010366'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +000010367^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10368
10369Syntax:
10370"""""""
10371
10372::
10373
Reid Kleckner60381792015-07-07 22:25:32 +000010374 declare void @llvm.localescape(...)
10375 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +000010376
10377Overview:
10378"""""""""
10379
Reid Kleckner60381792015-07-07 22:25:32 +000010380The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
10381allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010382live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +000010383computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +000010384
10385Arguments:
10386""""""""""
10387
Reid Kleckner60381792015-07-07 22:25:32 +000010388All arguments to '``llvm.localescape``' must be pointers to static allocas or
10389casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010390once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +000010391
Reid Kleckner60381792015-07-07 22:25:32 +000010392The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +000010393bitcasted pointer to a function defined in the current module. The code
10394generator cannot determine the frame allocation offset of functions defined in
10395other modules.
10396
Reid Klecknerd5afc62f2015-07-07 23:23:03 +000010397The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
10398call frame that is currently live. The return value of '``llvm.localaddress``'
10399is one way to produce such a value, but various runtimes also expose a suitable
10400pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +000010401
Reid Kleckner60381792015-07-07 22:25:32 +000010402The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
10403'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010404
Reid Klecknere9b89312015-01-13 00:48:10 +000010405Semantics:
10406""""""""""
10407
Reid Kleckner60381792015-07-07 22:25:32 +000010408These intrinsics allow a group of functions to share access to a set of local
10409stack allocations of a one parent function. The parent function may call the
10410'``llvm.localescape``' intrinsic once from the function entry block, and the
10411child functions can use '``llvm.localrecover``' to access the escaped allocas.
10412The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
10413the escaped allocas are allocated, which would break attempts to use
10414'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +000010415
Renato Golinc7aea402014-05-06 16:51:25 +000010416.. _int_read_register:
10417.. _int_write_register:
10418
10419'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
10420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10421
10422Syntax:
10423"""""""
10424
10425::
10426
10427 declare i32 @llvm.read_register.i32(metadata)
10428 declare i64 @llvm.read_register.i64(metadata)
10429 declare void @llvm.write_register.i32(metadata, i32 @value)
10430 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +000010431 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +000010432
10433Overview:
10434"""""""""
10435
10436The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
10437provides access to the named register. The register must be valid on
10438the architecture being compiled to. The type needs to be compatible
10439with the register being read.
10440
10441Semantics:
10442""""""""""
10443
10444The '``llvm.read_register``' intrinsic returns the current value of the
10445register, where possible. The '``llvm.write_register``' intrinsic sets
10446the current value of the register, where possible.
10447
10448This is useful to implement named register global variables that need
10449to always be mapped to a specific register, as is common practice on
10450bare-metal programs including OS kernels.
10451
10452The compiler doesn't check for register availability or use of the used
10453register in surrounding code, including inline assembly. Because of that,
10454allocatable registers are not supported.
10455
10456Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +000010457architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +000010458work is needed to support other registers and even more so, allocatable
10459registers.
10460
Sean Silvab084af42012-12-07 10:36:55 +000010461.. _int_stacksave:
10462
10463'``llvm.stacksave``' Intrinsic
10464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10465
10466Syntax:
10467"""""""
10468
10469::
10470
10471 declare i8* @llvm.stacksave()
10472
10473Overview:
10474"""""""""
10475
10476The '``llvm.stacksave``' intrinsic is used to remember the current state
10477of the function stack, for use with
10478:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
10479implementing language features like scoped automatic variable sized
10480arrays in C99.
10481
10482Semantics:
10483""""""""""
10484
10485This intrinsic returns a opaque pointer value that can be passed to
10486:ref:`llvm.stackrestore <int_stackrestore>`. When an
10487``llvm.stackrestore`` intrinsic is executed with a value saved from
10488``llvm.stacksave``, it effectively restores the state of the stack to
10489the state it was in when the ``llvm.stacksave`` intrinsic executed. In
10490practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
10491were allocated after the ``llvm.stacksave`` was executed.
10492
10493.. _int_stackrestore:
10494
10495'``llvm.stackrestore``' Intrinsic
10496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10497
10498Syntax:
10499"""""""
10500
10501::
10502
10503 declare void @llvm.stackrestore(i8* %ptr)
10504
10505Overview:
10506"""""""""
10507
10508The '``llvm.stackrestore``' intrinsic is used to restore the state of
10509the function stack to the state it was in when the corresponding
10510:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
10511useful for implementing language features like scoped automatic variable
10512sized arrays in C99.
10513
10514Semantics:
10515""""""""""
10516
10517See the description for :ref:`llvm.stacksave <int_stacksave>`.
10518
Yury Gribovd7dbb662015-12-01 11:40:55 +000010519.. _int_get_dynamic_area_offset:
10520
10521'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +000010522^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +000010523
10524Syntax:
10525"""""""
10526
10527::
10528
10529 declare i32 @llvm.get.dynamic.area.offset.i32()
10530 declare i64 @llvm.get.dynamic.area.offset.i64()
10531
Lang Hames10239932016-10-08 00:20:42 +000010532Overview:
10533"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +000010534
10535 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
10536 get the offset from native stack pointer to the address of the most
10537 recent dynamic alloca on the caller's stack. These intrinsics are
10538 intendend for use in combination with
10539 :ref:`llvm.stacksave <int_stacksave>` to get a
10540 pointer to the most recent dynamic alloca. This is useful, for example,
10541 for AddressSanitizer's stack unpoisoning routines.
10542
10543Semantics:
10544""""""""""
10545
10546 These intrinsics return a non-negative integer value that can be used to
10547 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
10548 on the caller's stack. In particular, for targets where stack grows downwards,
10549 adding this offset to the native stack pointer would get the address of the most
10550 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +000010551 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +000010552 one past the end of the most recent dynamic alloca.
10553
10554 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
10555 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
10556 compile-time-known constant value.
10557
10558 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +000010559 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +000010560
Sean Silvab084af42012-12-07 10:36:55 +000010561'``llvm.prefetch``' Intrinsic
10562^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10563
10564Syntax:
10565"""""""
10566
10567::
10568
10569 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
10570
10571Overview:
10572"""""""""
10573
10574The '``llvm.prefetch``' intrinsic is a hint to the code generator to
10575insert a prefetch instruction if supported; otherwise, it is a noop.
10576Prefetches have no effect on the behavior of the program but can change
10577its performance characteristics.
10578
10579Arguments:
10580""""""""""
10581
10582``address`` is the address to be prefetched, ``rw`` is the specifier
10583determining if the fetch should be for a read (0) or write (1), and
10584``locality`` is a temporal locality specifier ranging from (0) - no
10585locality, to (3) - extremely local keep in cache. The ``cache type``
10586specifies whether the prefetch is performed on the data (1) or
10587instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
10588arguments must be constant integers.
10589
10590Semantics:
10591""""""""""
10592
10593This intrinsic does not modify the behavior of the program. In
10594particular, prefetches cannot trap and do not produce a value. On
10595targets that support this intrinsic, the prefetch can provide hints to
10596the processor cache for better performance.
10597
10598'``llvm.pcmarker``' Intrinsic
10599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10600
10601Syntax:
10602"""""""
10603
10604::
10605
10606 declare void @llvm.pcmarker(i32 <id>)
10607
10608Overview:
10609"""""""""
10610
10611The '``llvm.pcmarker``' intrinsic is a method to export a Program
10612Counter (PC) in a region of code to simulators and other tools. The
10613method is target specific, but it is expected that the marker will use
10614exported symbols to transmit the PC of the marker. The marker makes no
10615guarantees that it will remain with any specific instruction after
10616optimizations. It is possible that the presence of a marker will inhibit
10617optimizations. The intended use is to be inserted after optimizations to
10618allow correlations of simulation runs.
10619
10620Arguments:
10621""""""""""
10622
10623``id`` is a numerical id identifying the marker.
10624
10625Semantics:
10626""""""""""
10627
10628This intrinsic does not modify the behavior of the program. Backends
10629that do not support this intrinsic may ignore it.
10630
10631'``llvm.readcyclecounter``' Intrinsic
10632^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10633
10634Syntax:
10635"""""""
10636
10637::
10638
10639 declare i64 @llvm.readcyclecounter()
10640
10641Overview:
10642"""""""""
10643
10644The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
10645counter register (or similar low latency, high accuracy clocks) on those
10646targets that support it. On X86, it should map to RDTSC. On Alpha, it
10647should map to RPCC. As the backing counters overflow quickly (on the
10648order of 9 seconds on alpha), this should only be used for small
10649timings.
10650
10651Semantics:
10652""""""""""
10653
10654When directly supported, reading the cycle counter should not modify any
10655memory. Implementations are allowed to either return a application
10656specific value or a system wide value. On backends without support, this
10657is lowered to a constant 0.
10658
Tim Northoverbc933082013-05-23 19:11:20 +000010659Note that runtime support may be conditional on the privilege-level code is
10660running at and the host platform.
10661
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010662'``llvm.clear_cache``' Intrinsic
10663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10664
10665Syntax:
10666"""""""
10667
10668::
10669
10670 declare void @llvm.clear_cache(i8*, i8*)
10671
10672Overview:
10673"""""""""
10674
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010675The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
10676in the specified range to the execution unit of the processor. On
10677targets with non-unified instruction and data cache, the implementation
10678flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010679
10680Semantics:
10681""""""""""
10682
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010683On platforms with coherent instruction and data caches (e.g. x86), this
10684intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000010685cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010686instructions or a system call, if cache flushing requires special
10687privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010688
Sean Silvad02bf3e2014-04-07 22:29:53 +000010689The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010690time library.
Renato Golin93010e62014-03-26 14:01:32 +000010691
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010692This instrinsic does *not* empty the instruction pipeline. Modifications
10693of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010694
Vedant Kumar51ce6682018-01-26 23:54:25 +000010695'``llvm.instrprof.increment``' Intrinsic
Justin Bogner61ba2e32014-12-08 18:02:35 +000010696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10697
10698Syntax:
10699"""""""
10700
10701::
10702
Vedant Kumar51ce6682018-01-26 23:54:25 +000010703 declare void @llvm.instrprof.increment(i8* <name>, i64 <hash>,
Justin Bogner61ba2e32014-12-08 18:02:35 +000010704 i32 <num-counters>, i32 <index>)
10705
10706Overview:
10707"""""""""
10708
Vedant Kumar51ce6682018-01-26 23:54:25 +000010709The '``llvm.instrprof.increment``' intrinsic can be emitted by a
Justin Bogner61ba2e32014-12-08 18:02:35 +000010710frontend for use with instrumentation based profiling. These will be
10711lowered by the ``-instrprof`` pass to generate execution counts of a
10712program at runtime.
10713
10714Arguments:
10715""""""""""
10716
10717The first argument is a pointer to a global variable containing the
10718name of the entity being instrumented. This should generally be the
10719(mangled) function name for a set of counters.
10720
10721The second argument is a hash value that can be used by the consumer
10722of the profile data to detect changes to the instrumented source, and
10723the third is the number of counters associated with ``name``. It is an
10724error if ``hash`` or ``num-counters`` differ between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010725``instrprof.increment`` that refer to the same name.
Justin Bogner61ba2e32014-12-08 18:02:35 +000010726
10727The last argument refers to which of the counters for ``name`` should
10728be incremented. It should be a value between 0 and ``num-counters``.
10729
10730Semantics:
10731""""""""""
10732
10733This intrinsic represents an increment of a profiling counter. It will
10734cause the ``-instrprof`` pass to generate the appropriate data
10735structures and the code to increment the appropriate value, in a
10736format that can be written out by a compiler runtime and consumed via
10737the ``llvm-profdata`` tool.
10738
Vedant Kumar51ce6682018-01-26 23:54:25 +000010739'``llvm.instrprof.increment.step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010740^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010741
10742Syntax:
10743"""""""
10744
10745::
10746
Vedant Kumar51ce6682018-01-26 23:54:25 +000010747 declare void @llvm.instrprof.increment.step(i8* <name>, i64 <hash>,
Xinliang David Li4ca17332016-09-18 18:34:07 +000010748 i32 <num-counters>,
10749 i32 <index>, i64 <step>)
10750
10751Overview:
10752"""""""""
10753
Vedant Kumar51ce6682018-01-26 23:54:25 +000010754The '``llvm.instrprof.increment.step``' intrinsic is an extension to
10755the '``llvm.instrprof.increment``' intrinsic with an additional fifth
Xinliang David Li4ca17332016-09-18 18:34:07 +000010756argument to specify the step of the increment.
10757
10758Arguments:
10759""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010760The first four arguments are the same as '``llvm.instrprof.increment``'
Pete Couperused9569d2017-08-23 20:58:22 +000010761intrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010762
10763The last argument specifies the value of the increment of the counter variable.
10764
10765Semantics:
10766""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010767See description of '``llvm.instrprof.increment``' instrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010768
10769
Vedant Kumar51ce6682018-01-26 23:54:25 +000010770'``llvm.instrprof.value.profile``' Intrinsic
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010771^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10772
10773Syntax:
10774"""""""
10775
10776::
10777
Vedant Kumar51ce6682018-01-26 23:54:25 +000010778 declare void @llvm.instrprof.value.profile(i8* <name>, i64 <hash>,
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010779 i64 <value>, i32 <value_kind>,
10780 i32 <index>)
10781
10782Overview:
10783"""""""""
10784
Vedant Kumar51ce6682018-01-26 23:54:25 +000010785The '``llvm.instrprof.value.profile``' intrinsic can be emitted by a
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010786frontend for use with instrumentation based profiling. This will be
10787lowered by the ``-instrprof`` pass to find out the target values,
10788instrumented expressions take in a program at runtime.
10789
10790Arguments:
10791""""""""""
10792
10793The first argument is a pointer to a global variable containing the
10794name of the entity being instrumented. ``name`` should generally be the
10795(mangled) function name for a set of counters.
10796
10797The second argument is a hash value that can be used by the consumer
10798of the profile data to detect changes to the instrumented source. It
10799is an error if ``hash`` differs between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010800``llvm.instrprof.*`` that refer to the same name.
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010801
10802The third argument is the value of the expression being profiled. The profiled
10803expression's value should be representable as an unsigned 64-bit value. The
10804fourth argument represents the kind of value profiling that is being done. The
10805supported value profiling kinds are enumerated through the
10806``InstrProfValueKind`` type declared in the
10807``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10808index of the instrumented expression within ``name``. It should be >= 0.
10809
10810Semantics:
10811""""""""""
10812
10813This intrinsic represents the point where a call to a runtime routine
10814should be inserted for value profiling of target expressions. ``-instrprof``
10815pass will generate the appropriate data structures and replace the
Vedant Kumar51ce6682018-01-26 23:54:25 +000010816``llvm.instrprof.value.profile`` intrinsic with the call to the profile
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010817runtime library with proper arguments.
10818
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010819'``llvm.thread.pointer``' Intrinsic
10820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10821
10822Syntax:
10823"""""""
10824
10825::
10826
10827 declare i8* @llvm.thread.pointer()
10828
10829Overview:
10830"""""""""
10831
10832The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10833pointer.
10834
10835Semantics:
10836""""""""""
10837
10838The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10839for the current thread. The exact semantics of this value are target
10840specific: it may point to the start of TLS area, to the end, or somewhere
10841in the middle. Depending on the target, this intrinsic may read a register,
10842call a helper function, read from an alternate memory space, or perform
10843other operations necessary to locate the TLS area. Not all targets support
10844this intrinsic.
10845
Sean Silvab084af42012-12-07 10:36:55 +000010846Standard C Library Intrinsics
10847-----------------------------
10848
10849LLVM provides intrinsics for a few important standard C library
10850functions. These intrinsics allow source-language front-ends to pass
10851information about the alignment of the pointer arguments to the code
10852generator, providing opportunity for more efficient code generation.
10853
10854.. _int_memcpy:
10855
10856'``llvm.memcpy``' Intrinsic
10857^^^^^^^^^^^^^^^^^^^^^^^^^^^
10858
10859Syntax:
10860"""""""
10861
10862This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10863integer bit width and for different address spaces. Not all targets
10864support all bit widths however.
10865
10866::
10867
10868 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010869 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010870 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010871 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010872
10873Overview:
10874"""""""""
10875
10876The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10877source location to the destination location.
10878
10879Note that, unlike the standard libc function, the ``llvm.memcpy.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010880intrinsics do not return a value, takes extra isvolatile
Sean Silvab084af42012-12-07 10:36:55 +000010881arguments and the pointers can be in specified address spaces.
10882
10883Arguments:
10884""""""""""
10885
10886The first argument is a pointer to the destination, the second is a
10887pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010888specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010889boolean indicating a volatile access.
10890
Daniel Neilson39eb6a52018-01-19 17:24:21 +000010891The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010892for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010893
10894If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10895a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10896very cleanly specified and it is unwise to depend on it.
10897
10898Semantics:
10899""""""""""
10900
10901The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10902source location to the destination location, which are not allowed to
10903overlap. It copies "len" bytes of memory over. If the argument is known
10904to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010905argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010906
Daniel Neilson57226ef2017-07-12 15:25:26 +000010907.. _int_memmove:
10908
Sean Silvab084af42012-12-07 10:36:55 +000010909'``llvm.memmove``' Intrinsic
10910^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10911
10912Syntax:
10913"""""""
10914
10915This is an overloaded intrinsic. You can use llvm.memmove on any integer
10916bit width and for different address space. Not all targets support all
10917bit widths however.
10918
10919::
10920
10921 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010922 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010923 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010924 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010925
10926Overview:
10927"""""""""
10928
10929The '``llvm.memmove.*``' intrinsics move a block of memory from the
10930source location to the destination location. It is similar to the
10931'``llvm.memcpy``' intrinsic but allows the two memory locations to
10932overlap.
10933
10934Note that, unlike the standard libc function, the ``llvm.memmove.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010935intrinsics do not return a value, takes an extra isvolatile
10936argument and the pointers can be in specified address spaces.
Sean Silvab084af42012-12-07 10:36:55 +000010937
10938Arguments:
10939""""""""""
10940
10941The first argument is a pointer to the destination, the second is a
10942pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010943specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010944boolean indicating a volatile access.
10945
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010946The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010947for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010948
10949If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10950is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10951not very cleanly specified and it is unwise to depend on it.
10952
10953Semantics:
10954""""""""""
10955
10956The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10957source location to the destination location, which may overlap. It
10958copies "len" bytes of memory over. If the argument is known to be
10959aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010960otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010961
Daniel Neilson965613e2017-07-12 21:57:23 +000010962.. _int_memset:
10963
Sean Silvab084af42012-12-07 10:36:55 +000010964'``llvm.memset.*``' Intrinsics
10965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10966
10967Syntax:
10968"""""""
10969
10970This is an overloaded intrinsic. You can use llvm.memset on any integer
10971bit width and for different address spaces. However, not all targets
10972support all bit widths.
10973
10974::
10975
10976 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010977 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010978 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010979 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010980
10981Overview:
10982"""""""""
10983
10984The '``llvm.memset.*``' intrinsics fill a block of memory with a
10985particular byte value.
10986
10987Note that, unlike the standard libc function, the ``llvm.memset``
Daniel Neilson1e687242018-01-19 17:13:12 +000010988intrinsic does not return a value and takes an extra volatile
10989argument. Also, the destination can be in an arbitrary address space.
Sean Silvab084af42012-12-07 10:36:55 +000010990
10991Arguments:
10992""""""""""
10993
10994The first argument is a pointer to the destination to fill, the second
10995is the byte value with which to fill it, the third argument is an
10996integer argument specifying the number of bytes to fill, and the fourth
Daniel Neilson1e687242018-01-19 17:13:12 +000010997is a boolean indicating a volatile access.
Sean Silvab084af42012-12-07 10:36:55 +000010998
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010999The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000011000for the first arguments.
Sean Silvab084af42012-12-07 10:36:55 +000011001
11002If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
11003a :ref:`volatile operation <volatile>`. The detailed access behavior is not
11004very cleanly specified and it is unwise to depend on it.
11005
11006Semantics:
11007""""""""""
11008
11009The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011010at the destination location.
Sean Silvab084af42012-12-07 10:36:55 +000011011
11012'``llvm.sqrt.*``' Intrinsic
11013^^^^^^^^^^^^^^^^^^^^^^^^^^^
11014
11015Syntax:
11016"""""""
11017
11018This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011019floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011020all types however.
11021
11022::
11023
11024 declare float @llvm.sqrt.f32(float %Val)
11025 declare double @llvm.sqrt.f64(double %Val)
11026 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
11027 declare fp128 @llvm.sqrt.f128(fp128 %Val)
11028 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
11029
11030Overview:
11031"""""""""
11032
Sanjay Patel629c4112017-11-06 16:27:15 +000011033The '``llvm.sqrt``' intrinsics return the square root of the specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011034
11035Arguments:
11036""""""""""
11037
Sanjay Patel629c4112017-11-06 16:27:15 +000011038The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011039
11040Semantics:
11041""""""""""
11042
Sanjay Patel629c4112017-11-06 16:27:15 +000011043Return the same value as a corresponding libm '``sqrt``' function but without
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011044trapping or setting ``errno``. For types specified by IEEE-754, the result
Sanjay Patel629c4112017-11-06 16:27:15 +000011045matches a conforming libm implementation.
11046
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011047When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011048using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011049
11050'``llvm.powi.*``' Intrinsic
11051^^^^^^^^^^^^^^^^^^^^^^^^^^^
11052
11053Syntax:
11054"""""""
11055
11056This is an overloaded intrinsic. You can use ``llvm.powi`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011057floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011058all types however.
11059
11060::
11061
11062 declare float @llvm.powi.f32(float %Val, i32 %power)
11063 declare double @llvm.powi.f64(double %Val, i32 %power)
11064 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
11065 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
11066 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
11067
11068Overview:
11069"""""""""
11070
11071The '``llvm.powi.*``' intrinsics return the first operand raised to the
11072specified (positive or negative) power. The order of evaluation of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011073multiplications is not defined. When a vector of floating-point type is
Sean Silvab084af42012-12-07 10:36:55 +000011074used, the second argument remains a scalar integer value.
11075
11076Arguments:
11077""""""""""
11078
11079The second argument is an integer power, and the first is a value to
11080raise to that power.
11081
11082Semantics:
11083""""""""""
11084
11085This function returns the first value raised to the second power with an
11086unspecified sequence of rounding operations.
11087
11088'``llvm.sin.*``' Intrinsic
11089^^^^^^^^^^^^^^^^^^^^^^^^^^
11090
11091Syntax:
11092"""""""
11093
11094This is an overloaded intrinsic. You can use ``llvm.sin`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011095floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011096all types however.
11097
11098::
11099
11100 declare float @llvm.sin.f32(float %Val)
11101 declare double @llvm.sin.f64(double %Val)
11102 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
11103 declare fp128 @llvm.sin.f128(fp128 %Val)
11104 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
11105
11106Overview:
11107"""""""""
11108
11109The '``llvm.sin.*``' intrinsics return the sine of the operand.
11110
11111Arguments:
11112""""""""""
11113
Sanjay Patel629c4112017-11-06 16:27:15 +000011114The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011115
11116Semantics:
11117""""""""""
11118
Sanjay Patel629c4112017-11-06 16:27:15 +000011119Return the same value as a corresponding libm '``sin``' function but without
11120trapping or setting ``errno``.
11121
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011122When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011123using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011124
11125'``llvm.cos.*``' Intrinsic
11126^^^^^^^^^^^^^^^^^^^^^^^^^^
11127
11128Syntax:
11129"""""""
11130
11131This is an overloaded intrinsic. You can use ``llvm.cos`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011132floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011133all types however.
11134
11135::
11136
11137 declare float @llvm.cos.f32(float %Val)
11138 declare double @llvm.cos.f64(double %Val)
11139 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
11140 declare fp128 @llvm.cos.f128(fp128 %Val)
11141 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
11142
11143Overview:
11144"""""""""
11145
11146The '``llvm.cos.*``' intrinsics return the cosine of the operand.
11147
11148Arguments:
11149""""""""""
11150
Sanjay Patel629c4112017-11-06 16:27:15 +000011151The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011152
11153Semantics:
11154""""""""""
11155
Sanjay Patel629c4112017-11-06 16:27:15 +000011156Return the same value as a corresponding libm '``cos``' function but without
11157trapping or setting ``errno``.
11158
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011159When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011160using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011161
11162'``llvm.pow.*``' Intrinsic
11163^^^^^^^^^^^^^^^^^^^^^^^^^^
11164
11165Syntax:
11166"""""""
11167
11168This is an overloaded intrinsic. You can use ``llvm.pow`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011169floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011170all types however.
11171
11172::
11173
11174 declare float @llvm.pow.f32(float %Val, float %Power)
11175 declare double @llvm.pow.f64(double %Val, double %Power)
11176 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
11177 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
11178 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
11179
11180Overview:
11181"""""""""
11182
11183The '``llvm.pow.*``' intrinsics return the first operand raised to the
11184specified (positive or negative) power.
11185
11186Arguments:
11187""""""""""
11188
Sanjay Patel629c4112017-11-06 16:27:15 +000011189The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011190
11191Semantics:
11192""""""""""
11193
Sanjay Patel629c4112017-11-06 16:27:15 +000011194Return the same value as a corresponding libm '``pow``' function but without
11195trapping or setting ``errno``.
11196
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011197When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011198using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011199
11200'``llvm.exp.*``' Intrinsic
11201^^^^^^^^^^^^^^^^^^^^^^^^^^
11202
11203Syntax:
11204"""""""
11205
11206This is an overloaded intrinsic. You can use ``llvm.exp`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011207floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011208all types however.
11209
11210::
11211
11212 declare float @llvm.exp.f32(float %Val)
11213 declare double @llvm.exp.f64(double %Val)
11214 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
11215 declare fp128 @llvm.exp.f128(fp128 %Val)
11216 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
11217
11218Overview:
11219"""""""""
11220
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011221The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
11222value.
Sean Silvab084af42012-12-07 10:36:55 +000011223
11224Arguments:
11225""""""""""
11226
Sanjay Patel629c4112017-11-06 16:27:15 +000011227The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011228
11229Semantics:
11230""""""""""
11231
Sanjay Patel629c4112017-11-06 16:27:15 +000011232Return the same value as a corresponding libm '``exp``' function but without
11233trapping or setting ``errno``.
11234
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011235When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011236using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011237
11238'``llvm.exp2.*``' Intrinsic
11239^^^^^^^^^^^^^^^^^^^^^^^^^^^
11240
11241Syntax:
11242"""""""
11243
11244This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011245floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011246all types however.
11247
11248::
11249
11250 declare float @llvm.exp2.f32(float %Val)
11251 declare double @llvm.exp2.f64(double %Val)
11252 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
11253 declare fp128 @llvm.exp2.f128(fp128 %Val)
11254 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
11255
11256Overview:
11257"""""""""
11258
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011259The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
11260specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011261
11262Arguments:
11263""""""""""
11264
Sanjay Patel629c4112017-11-06 16:27:15 +000011265The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011266
11267Semantics:
11268""""""""""
11269
Sanjay Patel629c4112017-11-06 16:27:15 +000011270Return the same value as a corresponding libm '``exp2``' function but without
11271trapping or setting ``errno``.
11272
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011273When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011274using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011275
11276'``llvm.log.*``' Intrinsic
11277^^^^^^^^^^^^^^^^^^^^^^^^^^
11278
11279Syntax:
11280"""""""
11281
11282This is an overloaded intrinsic. You can use ``llvm.log`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011283floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011284all types however.
11285
11286::
11287
11288 declare float @llvm.log.f32(float %Val)
11289 declare double @llvm.log.f64(double %Val)
11290 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
11291 declare fp128 @llvm.log.f128(fp128 %Val)
11292 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
11293
11294Overview:
11295"""""""""
11296
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011297The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
11298value.
Sean Silvab084af42012-12-07 10:36:55 +000011299
11300Arguments:
11301""""""""""
11302
Sanjay Patel629c4112017-11-06 16:27:15 +000011303The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011304
11305Semantics:
11306""""""""""
11307
Sanjay Patel629c4112017-11-06 16:27:15 +000011308Return the same value as a corresponding libm '``log``' function but without
11309trapping or setting ``errno``.
11310
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011311When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011312using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011313
11314'``llvm.log10.*``' Intrinsic
11315^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11316
11317Syntax:
11318"""""""
11319
11320This is an overloaded intrinsic. You can use ``llvm.log10`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011321floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011322all types however.
11323
11324::
11325
11326 declare float @llvm.log10.f32(float %Val)
11327 declare double @llvm.log10.f64(double %Val)
11328 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
11329 declare fp128 @llvm.log10.f128(fp128 %Val)
11330 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
11331
11332Overview:
11333"""""""""
11334
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011335The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
11336specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011337
11338Arguments:
11339""""""""""
11340
Sanjay Patel629c4112017-11-06 16:27:15 +000011341The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011342
11343Semantics:
11344""""""""""
11345
Sanjay Patel629c4112017-11-06 16:27:15 +000011346Return the same value as a corresponding libm '``log10``' function but without
11347trapping or setting ``errno``.
11348
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011349When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011350using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011351
11352'``llvm.log2.*``' Intrinsic
11353^^^^^^^^^^^^^^^^^^^^^^^^^^^
11354
11355Syntax:
11356"""""""
11357
11358This is an overloaded intrinsic. You can use ``llvm.log2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011359floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011360all types however.
11361
11362::
11363
11364 declare float @llvm.log2.f32(float %Val)
11365 declare double @llvm.log2.f64(double %Val)
11366 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
11367 declare fp128 @llvm.log2.f128(fp128 %Val)
11368 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
11369
11370Overview:
11371"""""""""
11372
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011373The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
11374value.
Sean Silvab084af42012-12-07 10:36:55 +000011375
11376Arguments:
11377""""""""""
11378
Sanjay Patel629c4112017-11-06 16:27:15 +000011379The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011380
11381Semantics:
11382""""""""""
11383
Sanjay Patel629c4112017-11-06 16:27:15 +000011384Return the same value as a corresponding libm '``log2``' function but without
11385trapping or setting ``errno``.
11386
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011387When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011388using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011389
11390'``llvm.fma.*``' Intrinsic
11391^^^^^^^^^^^^^^^^^^^^^^^^^^
11392
11393Syntax:
11394"""""""
11395
11396This is an overloaded intrinsic. You can use ``llvm.fma`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011397floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011398all types however.
11399
11400::
11401
11402 declare float @llvm.fma.f32(float %a, float %b, float %c)
11403 declare double @llvm.fma.f64(double %a, double %b, double %c)
11404 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
11405 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
11406 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
11407
11408Overview:
11409"""""""""
11410
Sanjay Patel629c4112017-11-06 16:27:15 +000011411The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
Sean Silvab084af42012-12-07 10:36:55 +000011412
11413Arguments:
11414""""""""""
11415
Sanjay Patel629c4112017-11-06 16:27:15 +000011416The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011417
11418Semantics:
11419""""""""""
11420
Sanjay Patel629c4112017-11-06 16:27:15 +000011421Return the same value as a corresponding libm '``fma``' function but without
11422trapping or setting ``errno``.
11423
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011424When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011425using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011426
11427'``llvm.fabs.*``' Intrinsic
11428^^^^^^^^^^^^^^^^^^^^^^^^^^^
11429
11430Syntax:
11431"""""""
11432
11433This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011434floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011435all types however.
11436
11437::
11438
11439 declare float @llvm.fabs.f32(float %Val)
11440 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011441 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011442 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011443 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011444
11445Overview:
11446"""""""""
11447
11448The '``llvm.fabs.*``' intrinsics return the absolute value of the
11449operand.
11450
11451Arguments:
11452""""""""""
11453
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011454The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011455type.
11456
11457Semantics:
11458""""""""""
11459
11460This function returns the same values as the libm ``fabs`` functions
11461would, and handles error conditions in the same way.
11462
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011463'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011465
11466Syntax:
11467"""""""
11468
11469This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011470floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011471all types however.
11472
11473::
11474
Matt Arsenault64313c92014-10-22 18:25:02 +000011475 declare float @llvm.minnum.f32(float %Val0, float %Val1)
11476 declare double @llvm.minnum.f64(double %Val0, double %Val1)
11477 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11478 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
11479 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011480
11481Overview:
11482"""""""""
11483
11484The '``llvm.minnum.*``' intrinsics return the minimum of the two
11485arguments.
11486
11487
11488Arguments:
11489""""""""""
11490
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011491The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011492type.
11493
11494Semantics:
11495""""""""""
11496
Matt Arsenault937003c2018-08-27 17:40:07 +000011497Follows the IEEE-754 semantics for minNum, except for handling of
11498signaling NaNs. This match's the behavior of libm's fmin.
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011499
11500If either operand is a NaN, returns the other non-NaN operand. Returns
Matt Arsenault937003c2018-08-27 17:40:07 +000011501NaN only if both operands are NaN. The returned NaN is always
11502quiet. If the operands compare equal, returns a value that compares
11503equal to both operands. This means that fmin(+/-0.0, +/-0.0) could
11504return either -0.0 or 0.0.
11505
11506Unlike the IEEE-754 2008 behavior, this does not distinguish between
11507signaling and quiet NaN inputs. If a target's implementation follows
11508the standard and returns a quiet NaN if either input is a signaling
11509NaN, the intrinsic lowering is responsible for quieting the inputs to
11510correctly return the non-NaN input (e.g. by using the equivalent of
11511``llvm.canonicalize``).
11512
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011513
11514'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011516
11517Syntax:
11518"""""""
11519
11520This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011521floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011522all types however.
11523
11524::
11525
Matt Arsenault64313c92014-10-22 18:25:02 +000011526 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
11527 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
11528 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11529 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
11530 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011531
11532Overview:
11533"""""""""
11534
11535The '``llvm.maxnum.*``' intrinsics return the maximum of the two
11536arguments.
11537
11538
11539Arguments:
11540""""""""""
11541
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011542The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011543type.
11544
11545Semantics:
11546""""""""""
Matt Arsenault937003c2018-08-27 17:40:07 +000011547Follows the IEEE-754 semantics for maxNum except for the handling of
11548signaling NaNs. This matches the behavior of libm's fmax.
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011549
11550If either operand is a NaN, returns the other non-NaN operand. Returns
Matt Arsenault937003c2018-08-27 17:40:07 +000011551NaN only if both operands are NaN. The returned NaN is always
11552quiet. If the operands compare equal, returns a value that compares
11553equal to both operands. This means that fmax(+/-0.0, +/-0.0) could
11554return either -0.0 or 0.0.
11555
11556Unlike the IEEE-754 2008 behavior, this does not distinguish between
11557signaling and quiet NaN inputs. If a target's implementation follows
11558the standard and returns a quiet NaN if either input is a signaling
11559NaN, the intrinsic lowering is responsible for quieting the inputs to
11560correctly return the non-NaN input (e.g. by using the equivalent of
11561``llvm.canonicalize``).
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011562
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011563'``llvm.copysign.*``' Intrinsic
11564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11565
11566Syntax:
11567"""""""
11568
11569This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011570floating-point or vector of floating-point type. Not all targets support
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011571all types however.
11572
11573::
11574
11575 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
11576 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
11577 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
11578 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
11579 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
11580
11581Overview:
11582"""""""""
11583
11584The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
11585first operand and the sign of the second operand.
11586
11587Arguments:
11588""""""""""
11589
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011590The arguments and return value are floating-point numbers of the same
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011591type.
11592
11593Semantics:
11594""""""""""
11595
11596This function returns the same values as the libm ``copysign``
11597functions would, and handles error conditions in the same way.
11598
Sean Silvab084af42012-12-07 10:36:55 +000011599'``llvm.floor.*``' Intrinsic
11600^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11601
11602Syntax:
11603"""""""
11604
11605This is an overloaded intrinsic. You can use ``llvm.floor`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011606floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011607all types however.
11608
11609::
11610
11611 declare float @llvm.floor.f32(float %Val)
11612 declare double @llvm.floor.f64(double %Val)
11613 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
11614 declare fp128 @llvm.floor.f128(fp128 %Val)
11615 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
11616
11617Overview:
11618"""""""""
11619
11620The '``llvm.floor.*``' intrinsics return the floor of the operand.
11621
11622Arguments:
11623""""""""""
11624
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011625The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011626type.
11627
11628Semantics:
11629""""""""""
11630
11631This function returns the same values as the libm ``floor`` functions
11632would, and handles error conditions in the same way.
11633
11634'``llvm.ceil.*``' Intrinsic
11635^^^^^^^^^^^^^^^^^^^^^^^^^^^
11636
11637Syntax:
11638"""""""
11639
11640This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011641floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011642all types however.
11643
11644::
11645
11646 declare float @llvm.ceil.f32(float %Val)
11647 declare double @llvm.ceil.f64(double %Val)
11648 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
11649 declare fp128 @llvm.ceil.f128(fp128 %Val)
11650 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
11651
11652Overview:
11653"""""""""
11654
11655The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
11656
11657Arguments:
11658""""""""""
11659
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011660The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011661type.
11662
11663Semantics:
11664""""""""""
11665
11666This function returns the same values as the libm ``ceil`` functions
11667would, and handles error conditions in the same way.
11668
11669'``llvm.trunc.*``' Intrinsic
11670^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11671
11672Syntax:
11673"""""""
11674
11675This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011676floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011677all types however.
11678
11679::
11680
11681 declare float @llvm.trunc.f32(float %Val)
11682 declare double @llvm.trunc.f64(double %Val)
11683 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
11684 declare fp128 @llvm.trunc.f128(fp128 %Val)
11685 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
11686
11687Overview:
11688"""""""""
11689
11690The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
11691nearest integer not larger in magnitude than the operand.
11692
11693Arguments:
11694""""""""""
11695
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011696The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011697type.
11698
11699Semantics:
11700""""""""""
11701
11702This function returns the same values as the libm ``trunc`` functions
11703would, and handles error conditions in the same way.
11704
11705'``llvm.rint.*``' Intrinsic
11706^^^^^^^^^^^^^^^^^^^^^^^^^^^
11707
11708Syntax:
11709"""""""
11710
11711This is an overloaded intrinsic. You can use ``llvm.rint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011712floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011713all types however.
11714
11715::
11716
11717 declare float @llvm.rint.f32(float %Val)
11718 declare double @llvm.rint.f64(double %Val)
11719 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
11720 declare fp128 @llvm.rint.f128(fp128 %Val)
11721 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
11722
11723Overview:
11724"""""""""
11725
11726The '``llvm.rint.*``' intrinsics returns the operand rounded to the
11727nearest integer. It may raise an inexact floating-point exception if the
11728operand isn't an integer.
11729
11730Arguments:
11731""""""""""
11732
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011733The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011734type.
11735
11736Semantics:
11737""""""""""
11738
11739This function returns the same values as the libm ``rint`` functions
11740would, and handles error conditions in the same way.
11741
11742'``llvm.nearbyint.*``' Intrinsic
11743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11744
11745Syntax:
11746"""""""
11747
11748This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011749floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011750all types however.
11751
11752::
11753
11754 declare float @llvm.nearbyint.f32(float %Val)
11755 declare double @llvm.nearbyint.f64(double %Val)
11756 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
11757 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
11758 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
11759
11760Overview:
11761"""""""""
11762
11763The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
11764nearest integer.
11765
11766Arguments:
11767""""""""""
11768
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011769The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011770type.
11771
11772Semantics:
11773""""""""""
11774
11775This function returns the same values as the libm ``nearbyint``
11776functions would, and handles error conditions in the same way.
11777
Hal Finkel171817e2013-08-07 22:49:12 +000011778'``llvm.round.*``' Intrinsic
11779^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11780
11781Syntax:
11782"""""""
11783
11784This is an overloaded intrinsic. You can use ``llvm.round`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011785floating-point or vector of floating-point type. Not all targets support
Hal Finkel171817e2013-08-07 22:49:12 +000011786all types however.
11787
11788::
11789
11790 declare float @llvm.round.f32(float %Val)
11791 declare double @llvm.round.f64(double %Val)
11792 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11793 declare fp128 @llvm.round.f128(fp128 %Val)
11794 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11795
11796Overview:
11797"""""""""
11798
11799The '``llvm.round.*``' intrinsics returns the operand rounded to the
11800nearest integer.
11801
11802Arguments:
11803""""""""""
11804
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011805The argument and return value are floating-point numbers of the same
Hal Finkel171817e2013-08-07 22:49:12 +000011806type.
11807
11808Semantics:
11809""""""""""
11810
11811This function returns the same values as the libm ``round``
11812functions would, and handles error conditions in the same way.
11813
Sean Silvab084af42012-12-07 10:36:55 +000011814Bit Manipulation Intrinsics
11815---------------------------
11816
11817LLVM provides intrinsics for a few important bit manipulation
11818operations. These allow efficient code generation for some algorithms.
11819
James Molloy90111f72015-11-12 12:29:09 +000011820'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011821^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011822
11823Syntax:
11824"""""""
11825
11826This is an overloaded intrinsic function. You can use bitreverse on any
11827integer type.
11828
11829::
11830
11831 declare i16 @llvm.bitreverse.i16(i16 <id>)
11832 declare i32 @llvm.bitreverse.i32(i32 <id>)
11833 declare i64 @llvm.bitreverse.i64(i64 <id>)
11834
11835Overview:
11836"""""""""
11837
11838The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011839bitpattern of an integer value; for example ``0b10110110`` becomes
11840``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011841
11842Semantics:
11843""""""""""
11844
Yichao Yu5abf14b2016-11-23 16:25:31 +000011845The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011846``M`` in the input moved to bit ``N-M`` in the output.
11847
Sean Silvab084af42012-12-07 10:36:55 +000011848'``llvm.bswap.*``' Intrinsics
11849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11850
11851Syntax:
11852"""""""
11853
11854This is an overloaded intrinsic function. You can use bswap on any
11855integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11856
11857::
11858
11859 declare i16 @llvm.bswap.i16(i16 <id>)
11860 declare i32 @llvm.bswap.i32(i32 <id>)
11861 declare i64 @llvm.bswap.i64(i64 <id>)
11862
11863Overview:
11864"""""""""
11865
11866The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11867values with an even number of bytes (positive multiple of 16 bits).
11868These are useful for performing operations on data that is not in the
11869target's native byte order.
11870
11871Semantics:
11872""""""""""
11873
11874The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11875and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11876intrinsic returns an i32 value that has the four bytes of the input i32
11877swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11878returned i32 will have its bytes in 3, 2, 1, 0 order. The
11879``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11880concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11881respectively).
11882
11883'``llvm.ctpop.*``' Intrinsic
11884^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11885
11886Syntax:
11887"""""""
11888
11889This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11890bit width, or on any vector with integer elements. Not all targets
11891support all bit widths or vector types, however.
11892
11893::
11894
11895 declare i8 @llvm.ctpop.i8(i8 <src>)
11896 declare i16 @llvm.ctpop.i16(i16 <src>)
11897 declare i32 @llvm.ctpop.i32(i32 <src>)
11898 declare i64 @llvm.ctpop.i64(i64 <src>)
11899 declare i256 @llvm.ctpop.i256(i256 <src>)
11900 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11901
11902Overview:
11903"""""""""
11904
11905The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11906in a value.
11907
11908Arguments:
11909""""""""""
11910
11911The only argument is the value to be counted. The argument may be of any
11912integer type, or a vector with integer elements. The return type must
11913match the argument type.
11914
11915Semantics:
11916""""""""""
11917
11918The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11919each element of a vector.
11920
11921'``llvm.ctlz.*``' Intrinsic
11922^^^^^^^^^^^^^^^^^^^^^^^^^^^
11923
11924Syntax:
11925"""""""
11926
11927This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
11928integer bit width, or any vector whose elements are integers. Not all
11929targets support all bit widths or vector types, however.
11930
11931::
11932
11933 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
11934 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
11935 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
11936 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
11937 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011938 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011939
11940Overview:
11941"""""""""
11942
11943The '``llvm.ctlz``' family of intrinsic functions counts the number of
11944leading zeros in a variable.
11945
11946Arguments:
11947""""""""""
11948
11949The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011950any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011951type must match the first argument type.
11952
11953The second argument must be a constant and is a flag to indicate whether
11954the intrinsic should ensure that a zero as the first argument produces a
11955defined result. Historically some architectures did not provide a
11956defined result for zero values as efficiently, and many algorithms are
11957now predicated on avoiding zero-value inputs.
11958
11959Semantics:
11960""""""""""
11961
11962The '``llvm.ctlz``' intrinsic counts the leading (most significant)
11963zeros in a variable, or within each element of the vector. If
11964``src == 0`` then the result is the size in bits of the type of ``src``
11965if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
11966``llvm.ctlz(i32 2) = 30``.
11967
11968'``llvm.cttz.*``' Intrinsic
11969^^^^^^^^^^^^^^^^^^^^^^^^^^^
11970
11971Syntax:
11972"""""""
11973
11974This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
11975integer bit width, or any vector of integer elements. Not all targets
11976support all bit widths or vector types, however.
11977
11978::
11979
11980 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
11981 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
11982 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
11983 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
11984 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000011985 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000011986
11987Overview:
11988"""""""""
11989
11990The '``llvm.cttz``' family of intrinsic functions counts the number of
11991trailing zeros.
11992
11993Arguments:
11994""""""""""
11995
11996The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000011997any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000011998type must match the first argument type.
11999
12000The second argument must be a constant and is a flag to indicate whether
12001the intrinsic should ensure that a zero as the first argument produces a
12002defined result. Historically some architectures did not provide a
12003defined result for zero values as efficiently, and many algorithms are
12004now predicated on avoiding zero-value inputs.
12005
12006Semantics:
12007""""""""""
12008
12009The '``llvm.cttz``' intrinsic counts the trailing (least significant)
12010zeros in a variable, or within each element of a vector. If ``src == 0``
12011then the result is the size in bits of the type of ``src`` if
12012``is_zero_undef == 0`` and ``undef`` otherwise. For example,
12013``llvm.cttz(2) = 1``.
12014
Philip Reames34843ae2015-03-05 05:55:55 +000012015.. _int_overflow:
12016
Sanjay Patelc71adc82018-07-16 22:59:31 +000012017'``llvm.fshl.*``' Intrinsic
12018^^^^^^^^^^^^^^^^^^^^^^^^^^^
12019
12020Syntax:
12021"""""""
12022
12023This is an overloaded intrinsic. You can use ``llvm.fshl`` on any
12024integer bit width or any vector of integer elements. Not all targets
12025support all bit widths or vector types, however.
12026
12027::
12028
12029 declare i8 @llvm.fshl.i8 (i8 %a, i8 %b, i8 %c)
12030 declare i67 @llvm.fshl.i67(i67 %a, i67 %b, i67 %c)
12031 declare <2 x i32> @llvm.fshl.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
12032
12033Overview:
12034"""""""""
12035
12036The '``llvm.fshl``' family of intrinsic functions performs a funnel shift left:
12037the first two values are concatenated as { %a : %b } (%a is the most significant
12038bits of the wide value), the combined value is shifted left, and the most
12039significant bits are extracted to produce a result that is the same size as the
12040original arguments. If the first 2 arguments are identical, this is equivalent
12041to a rotate left operation. For vector types, the operation occurs for each
12042element of the vector. The shift argument is treated as an unsigned amount
12043modulo the element size of the arguments.
12044
12045Arguments:
12046""""""""""
12047
12048The first two arguments are the values to be concatenated. The third
12049argument is the shift amount. The arguments may be any integer type or a
12050vector with integer element type. All arguments and the return value must
12051have the same type.
12052
12053Example:
12054""""""""
12055
12056.. code-block:: text
12057
12058 %r = call i8 @llvm.fshl.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: msb_extract((concat(x, y) << (z % 8)), 8)
12059 %r = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 15) ; %r = i8: 128 (0b10000000)
12060 %r = call i8 @llvm.fshl.i8(i8 15, i8 15, i8 11) ; %r = i8: 120 (0b01111000)
12061 %r = call i8 @llvm.fshl.i8(i8 0, i8 255, i8 8) ; %r = i8: 0 (0b00000000)
12062
12063'``llvm.fshr.*``' Intrinsic
12064^^^^^^^^^^^^^^^^^^^^^^^^^^^
12065
12066Syntax:
12067"""""""
12068
12069This is an overloaded intrinsic. You can use ``llvm.fshr`` on any
12070integer bit width or any vector of integer elements. Not all targets
12071support all bit widths or vector types, however.
12072
12073::
12074
12075 declare i8 @llvm.fshr.i8 (i8 %a, i8 %b, i8 %c)
12076 declare i67 @llvm.fshr.i67(i67 %a, i67 %b, i67 %c)
12077 declare <2 x i32> @llvm.fshr.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
12078
12079Overview:
12080"""""""""
12081
12082The '``llvm.fshr``' family of intrinsic functions performs a funnel shift right:
12083the first two values are concatenated as { %a : %b } (%a is the most significant
12084bits of the wide value), the combined value is shifted right, and the least
12085significant bits are extracted to produce a result that is the same size as the
12086original arguments. If the first 2 arguments are identical, this is equivalent
12087to a rotate right operation. For vector types, the operation occurs for each
12088element of the vector. The shift argument is treated as an unsigned amount
12089modulo the element size of the arguments.
12090
12091Arguments:
12092""""""""""
12093
12094The first two arguments are the values to be concatenated. The third
12095argument is the shift amount. The arguments may be any integer type or a
12096vector with integer element type. All arguments and the return value must
12097have the same type.
12098
12099Example:
12100""""""""
12101
12102.. code-block:: text
12103
12104 %r = call i8 @llvm.fshr.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: lsb_extract((concat(x, y) >> (z % 8)), 8)
12105 %r = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 15) ; %r = i8: 254 (0b11111110)
12106 %r = call i8 @llvm.fshr.i8(i8 15, i8 15, i8 11) ; %r = i8: 225 (0b11100001)
12107 %r = call i8 @llvm.fshr.i8(i8 0, i8 255, i8 8) ; %r = i8: 255 (0b11111111)
12108
Sean Silvab084af42012-12-07 10:36:55 +000012109Arithmetic with Overflow Intrinsics
12110-----------------------------------
12111
John Regehr6a493f22016-05-12 20:55:09 +000012112LLVM provides intrinsics for fast arithmetic overflow checking.
12113
12114Each of these intrinsics returns a two-element struct. The first
12115element of this struct contains the result of the corresponding
12116arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
12117the result. Therefore, for example, the first element of the struct
12118returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
12119result of a 32-bit ``add`` instruction with the same operands, where
12120the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
12121
12122The second element of the result is an ``i1`` that is 1 if the
12123arithmetic operation overflowed and 0 otherwise. An operation
12124overflows if, for any values of its operands ``A`` and ``B`` and for
12125any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
12126not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
12127``sext`` for signed overflow and ``zext`` for unsigned overflow, and
12128``op`` is the underlying arithmetic operation.
12129
12130The behavior of these intrinsics is well-defined for all argument
12131values.
Sean Silvab084af42012-12-07 10:36:55 +000012132
12133'``llvm.sadd.with.overflow.*``' Intrinsics
12134^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12135
12136Syntax:
12137"""""""
12138
12139This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
12140on any integer bit width.
12141
12142::
12143
12144 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
12145 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12146 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
12147
12148Overview:
12149"""""""""
12150
12151The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
12152a signed addition of the two arguments, and indicate whether an overflow
12153occurred during the signed summation.
12154
12155Arguments:
12156""""""""""
12157
12158The arguments (%a and %b) and the first element of the result structure
12159may be of integer types of any bit width, but they must have the same
12160bit width. The second element of the result structure must be of type
12161``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12162addition.
12163
12164Semantics:
12165""""""""""
12166
12167The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012168a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012169first element of which is the signed summation, and the second element
12170of which is a bit specifying if the signed summation resulted in an
12171overflow.
12172
12173Examples:
12174"""""""""
12175
12176.. code-block:: llvm
12177
12178 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12179 %sum = extractvalue {i32, i1} %res, 0
12180 %obit = extractvalue {i32, i1} %res, 1
12181 br i1 %obit, label %overflow, label %normal
12182
12183'``llvm.uadd.with.overflow.*``' Intrinsics
12184^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12185
12186Syntax:
12187"""""""
12188
12189This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
12190on any integer bit width.
12191
12192::
12193
12194 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
12195 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12196 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
12197
12198Overview:
12199"""""""""
12200
12201The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
12202an unsigned addition of the two arguments, and indicate whether a carry
12203occurred during the unsigned summation.
12204
12205Arguments:
12206""""""""""
12207
12208The arguments (%a and %b) and the first element of the result structure
12209may be of integer types of any bit width, but they must have the same
12210bit width. The second element of the result structure must be of type
12211``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12212addition.
12213
12214Semantics:
12215""""""""""
12216
12217The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012218an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012219first element of which is the sum, and the second element of which is a
12220bit specifying if the unsigned summation resulted in a carry.
12221
12222Examples:
12223"""""""""
12224
12225.. code-block:: llvm
12226
12227 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12228 %sum = extractvalue {i32, i1} %res, 0
12229 %obit = extractvalue {i32, i1} %res, 1
12230 br i1 %obit, label %carry, label %normal
12231
12232'``llvm.ssub.with.overflow.*``' Intrinsics
12233^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12234
12235Syntax:
12236"""""""
12237
12238This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
12239on any integer bit width.
12240
12241::
12242
12243 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
12244 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12245 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
12246
12247Overview:
12248"""""""""
12249
12250The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
12251a signed subtraction of the two arguments, and indicate whether an
12252overflow occurred during the signed subtraction.
12253
12254Arguments:
12255""""""""""
12256
12257The arguments (%a and %b) and the first element of the result structure
12258may be of integer types of any bit width, but they must have the same
12259bit width. The second element of the result structure must be of type
12260``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12261subtraction.
12262
12263Semantics:
12264""""""""""
12265
12266The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012267a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012268first element of which is the subtraction, and the second element of
12269which is a bit specifying if the signed subtraction resulted in an
12270overflow.
12271
12272Examples:
12273"""""""""
12274
12275.. code-block:: llvm
12276
12277 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12278 %sum = extractvalue {i32, i1} %res, 0
12279 %obit = extractvalue {i32, i1} %res, 1
12280 br i1 %obit, label %overflow, label %normal
12281
12282'``llvm.usub.with.overflow.*``' Intrinsics
12283^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12284
12285Syntax:
12286"""""""
12287
12288This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
12289on any integer bit width.
12290
12291::
12292
12293 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
12294 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12295 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
12296
12297Overview:
12298"""""""""
12299
12300The '``llvm.usub.with.overflow``' family of intrinsic functions perform
12301an unsigned subtraction of the two arguments, and indicate whether an
12302overflow occurred during the unsigned subtraction.
12303
12304Arguments:
12305""""""""""
12306
12307The arguments (%a and %b) and the first element of the result structure
12308may be of integer types of any bit width, but they must have the same
12309bit width. The second element of the result structure must be of type
12310``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12311subtraction.
12312
12313Semantics:
12314""""""""""
12315
12316The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012317an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012318the first element of which is the subtraction, and the second element of
12319which is a bit specifying if the unsigned subtraction resulted in an
12320overflow.
12321
12322Examples:
12323"""""""""
12324
12325.. code-block:: llvm
12326
12327 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12328 %sum = extractvalue {i32, i1} %res, 0
12329 %obit = extractvalue {i32, i1} %res, 1
12330 br i1 %obit, label %overflow, label %normal
12331
12332'``llvm.smul.with.overflow.*``' Intrinsics
12333^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12334
12335Syntax:
12336"""""""
12337
12338This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
12339on any integer bit width.
12340
12341::
12342
12343 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
12344 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12345 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
12346
12347Overview:
12348"""""""""
12349
12350The '``llvm.smul.with.overflow``' family of intrinsic functions perform
12351a signed multiplication of the two arguments, and indicate whether an
12352overflow occurred during the signed multiplication.
12353
12354Arguments:
12355""""""""""
12356
12357The arguments (%a and %b) and the first element of the result structure
12358may be of integer types of any bit width, but they must have the same
12359bit width. The second element of the result structure must be of type
12360``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12361multiplication.
12362
12363Semantics:
12364""""""""""
12365
12366The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012367a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012368the first element of which is the multiplication, and the second element
12369of which is a bit specifying if the signed multiplication resulted in an
12370overflow.
12371
12372Examples:
12373"""""""""
12374
12375.. code-block:: llvm
12376
12377 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12378 %sum = extractvalue {i32, i1} %res, 0
12379 %obit = extractvalue {i32, i1} %res, 1
12380 br i1 %obit, label %overflow, label %normal
12381
12382'``llvm.umul.with.overflow.*``' Intrinsics
12383^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12384
12385Syntax:
12386"""""""
12387
12388This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
12389on any integer bit width.
12390
12391::
12392
12393 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
12394 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12395 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
12396
12397Overview:
12398"""""""""
12399
12400The '``llvm.umul.with.overflow``' family of intrinsic functions perform
12401a unsigned multiplication of the two arguments, and indicate whether an
12402overflow occurred during the unsigned multiplication.
12403
12404Arguments:
12405""""""""""
12406
12407The arguments (%a and %b) and the first element of the result structure
12408may be of integer types of any bit width, but they must have the same
12409bit width. The second element of the result structure must be of type
12410``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12411multiplication.
12412
12413Semantics:
12414""""""""""
12415
12416The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012417an unsigned multiplication of the two arguments. They return a structure ---
12418the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000012419element of which is a bit specifying if the unsigned multiplication
12420resulted in an overflow.
12421
12422Examples:
12423"""""""""
12424
12425.. code-block:: llvm
12426
12427 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12428 %sum = extractvalue {i32, i1} %res, 0
12429 %obit = extractvalue {i32, i1} %res, 1
12430 br i1 %obit, label %overflow, label %normal
12431
12432Specialised Arithmetic Intrinsics
12433---------------------------------
12434
Owen Anderson1056a922015-07-11 07:01:27 +000012435'``llvm.canonicalize.*``' Intrinsic
12436^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12437
12438Syntax:
12439"""""""
12440
12441::
12442
12443 declare float @llvm.canonicalize.f32(float %a)
12444 declare double @llvm.canonicalize.f64(double %b)
12445
12446Overview:
12447"""""""""
12448
12449The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012450encoding of a floating-point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000012451implementing certain numeric primitives such as frexp. The canonical encoding is
12452defined by IEEE-754-2008 to be:
12453
12454::
12455
12456 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000012457 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000012458 numbers, infinities, and NaNs, especially in decimal formats.
12459
12460This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000012461conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000012462according to section 6.2.
12463
12464Examples of non-canonical encodings:
12465
Sean Silvaa1190322015-08-06 22:56:48 +000012466- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000012467 converted to a canonical representation per hardware-specific protocol.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012468- Many normal decimal floating-point numbers have non-canonical alternative
Owen Anderson1056a922015-07-11 07:01:27 +000012469 encodings.
12470- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000012471 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000012472 a zero of the same sign by this operation.
12473
12474Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
12475default exception handling must signal an invalid exception, and produce a
12476quiet NaN result.
12477
12478This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000012479that the compiler does not constant fold the operation. Likewise, division by
124801.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000012481-0.0 is also sufficient provided that the rounding mode is not -Infinity.
12482
Sean Silvaa1190322015-08-06 22:56:48 +000012483``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000012484
12485- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
12486- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
12487 to ``(x == y)``
12488
12489Additionally, the sign of zero must be conserved:
12490``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
12491
12492The payload bits of a NaN must be conserved, with two exceptions.
12493First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000012494must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000012495usual methods.
12496
12497The canonicalization operation may be optimized away if:
12498
Sean Silvaa1190322015-08-06 22:56:48 +000012499- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000012500 floating-point operation that is required by the standard to be canonical.
12501- The result is consumed only by (or fused with) other floating-point
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012502 operations. That is, the bits of the floating-point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000012503
Sean Silvab084af42012-12-07 10:36:55 +000012504'``llvm.fmuladd.*``' Intrinsic
12505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12506
12507Syntax:
12508"""""""
12509
12510::
12511
12512 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
12513 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
12514
12515Overview:
12516"""""""""
12517
12518The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000012519expressions that can be fused if the code generator determines that (a) the
12520target instruction set has support for a fused operation, and (b) that the
12521fused operation is more efficient than the equivalent, separate pair of mul
12522and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000012523
12524Arguments:
12525""""""""""
12526
12527The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
12528multiplicands, a and b, and an addend c.
12529
12530Semantics:
12531""""""""""
12532
12533The expression:
12534
12535::
12536
12537 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
12538
12539is equivalent to the expression a \* b + c, except that rounding will
12540not be performed between the multiplication and addition steps if the
12541code generator fuses the operations. Fusion is not guaranteed, even if
12542the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000012543corresponding llvm.fma.\* intrinsic function should be used
12544instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000012545
12546Examples:
12547"""""""""
12548
12549.. code-block:: llvm
12550
Tim Northover675a0962014-06-13 14:24:23 +000012551 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000012552
Amara Emersoncf9daa32017-05-09 10:43:25 +000012553
12554Experimental Vector Reduction Intrinsics
12555----------------------------------------
12556
12557Horizontal reductions of vectors can be expressed using the following
12558intrinsics. Each one takes a vector operand as an input and applies its
12559respective operation across all elements of the vector, returning a single
12560scalar result of the same element type.
12561
12562
12563'``llvm.experimental.vector.reduce.add.*``' Intrinsic
12564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12565
12566Syntax:
12567"""""""
12568
12569::
12570
12571 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
12572 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
12573
12574Overview:
12575"""""""""
12576
12577The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
12578reduction of a vector, returning the result as a scalar. The return type matches
12579the element-type of the vector input.
12580
12581Arguments:
12582""""""""""
12583The argument to this intrinsic must be a vector of integer values.
12584
12585'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
12586^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12587
12588Syntax:
12589"""""""
12590
12591::
12592
12593 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
12594 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
12595
12596Overview:
12597"""""""""
12598
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012599The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012600``ADD`` reduction of a vector, returning the result as a scalar. The return type
12601matches the element-type of the vector input.
12602
12603If the intrinsic call has fast-math flags, then the reduction will not preserve
12604the associativity of an equivalent scalarized counterpart. If it does not have
12605fast-math flags, then the reduction will be *ordered*, implying that the
12606operation respects the associativity of a scalarized reduction.
12607
12608
12609Arguments:
12610""""""""""
12611The first argument to this intrinsic is a scalar accumulator value, which is
12612only used when there are no fast-math flags attached. This argument may be undef
12613when fast-math flags are used.
12614
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012615The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012616
12617Examples:
12618"""""""""
12619
12620.. code-block:: llvm
12621
12622 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12623 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12624
12625
12626'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
12627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12628
12629Syntax:
12630"""""""
12631
12632::
12633
12634 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
12635 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
12636
12637Overview:
12638"""""""""
12639
12640The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
12641reduction of a vector, returning the result as a scalar. The return type matches
12642the element-type of the vector input.
12643
12644Arguments:
12645""""""""""
12646The argument to this intrinsic must be a vector of integer values.
12647
12648'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
12649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12650
12651Syntax:
12652"""""""
12653
12654::
12655
12656 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
12657 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
12658
12659Overview:
12660"""""""""
12661
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012662The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012663``MUL`` reduction of a vector, returning the result as a scalar. The return type
12664matches the element-type of the vector input.
12665
12666If the intrinsic call has fast-math flags, then the reduction will not preserve
12667the associativity of an equivalent scalarized counterpart. If it does not have
12668fast-math flags, then the reduction will be *ordered*, implying that the
12669operation respects the associativity of a scalarized reduction.
12670
12671
12672Arguments:
12673""""""""""
12674The first argument to this intrinsic is a scalar accumulator value, which is
12675only used when there are no fast-math flags attached. This argument may be undef
12676when fast-math flags are used.
12677
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012678The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012679
12680Examples:
12681"""""""""
12682
12683.. code-block:: llvm
12684
12685 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12686 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12687
12688'``llvm.experimental.vector.reduce.and.*``' Intrinsic
12689^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12690
12691Syntax:
12692"""""""
12693
12694::
12695
12696 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
12697
12698Overview:
12699"""""""""
12700
12701The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
12702reduction of a vector, returning the result as a scalar. The return type matches
12703the element-type of the vector input.
12704
12705Arguments:
12706""""""""""
12707The argument to this intrinsic must be a vector of integer values.
12708
12709'``llvm.experimental.vector.reduce.or.*``' Intrinsic
12710^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12711
12712Syntax:
12713"""""""
12714
12715::
12716
12717 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
12718
12719Overview:
12720"""""""""
12721
12722The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
12723of a vector, returning the result as a scalar. The return type matches the
12724element-type of the vector input.
12725
12726Arguments:
12727""""""""""
12728The argument to this intrinsic must be a vector of integer values.
12729
12730'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
12731^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12732
12733Syntax:
12734"""""""
12735
12736::
12737
12738 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
12739
12740Overview:
12741"""""""""
12742
12743The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
12744reduction of a vector, returning the result as a scalar. The return type matches
12745the element-type of the vector input.
12746
12747Arguments:
12748""""""""""
12749The argument to this intrinsic must be a vector of integer values.
12750
12751'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
12752^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12753
12754Syntax:
12755"""""""
12756
12757::
12758
12759 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
12760
12761Overview:
12762"""""""""
12763
12764The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
12765``MAX`` reduction of a vector, returning the result as a scalar. The return type
12766matches the element-type of the vector input.
12767
12768Arguments:
12769""""""""""
12770The argument to this intrinsic must be a vector of integer values.
12771
12772'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
12773^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12774
12775Syntax:
12776"""""""
12777
12778::
12779
12780 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
12781
12782Overview:
12783"""""""""
12784
12785The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
12786``MIN`` reduction of a vector, returning the result as a scalar. The return type
12787matches the element-type of the vector input.
12788
12789Arguments:
12790""""""""""
12791The argument to this intrinsic must be a vector of integer values.
12792
12793'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
12794^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12795
12796Syntax:
12797"""""""
12798
12799::
12800
12801 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
12802
12803Overview:
12804"""""""""
12805
12806The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
12807integer ``MAX`` reduction of a vector, returning the result as a scalar. The
12808return type matches the element-type of the vector input.
12809
12810Arguments:
12811""""""""""
12812The argument to this intrinsic must be a vector of integer values.
12813
12814'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
12815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12816
12817Syntax:
12818"""""""
12819
12820::
12821
12822 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
12823
12824Overview:
12825"""""""""
12826
12827The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
12828integer ``MIN`` reduction of a vector, returning the result as a scalar. The
12829return type matches the element-type of the vector input.
12830
12831Arguments:
12832""""""""""
12833The argument to this intrinsic must be a vector of integer values.
12834
12835'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
12836^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12837
12838Syntax:
12839"""""""
12840
12841::
12842
12843 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
12844 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
12845
12846Overview:
12847"""""""""
12848
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012849The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012850``MAX`` reduction of a vector, returning the result as a scalar. The return type
12851matches the element-type of the vector input.
12852
12853If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12854assume that NaNs are not present in the input vector.
12855
12856Arguments:
12857""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012858The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012859
12860'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12861^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12862
12863Syntax:
12864"""""""
12865
12866::
12867
12868 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12869 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12870
12871Overview:
12872"""""""""
12873
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012874The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012875``MIN`` reduction of a vector, returning the result as a scalar. The return type
12876matches the element-type of the vector input.
12877
12878If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12879assume that NaNs are not present in the input vector.
12880
12881Arguments:
12882""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012883The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012884
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012885Half Precision Floating-Point Intrinsics
Sean Silvab084af42012-12-07 10:36:55 +000012886----------------------------------------
12887
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012888For most target platforms, half precision floating-point is a
Sean Silvab084af42012-12-07 10:36:55 +000012889storage-only format. This means that it is a dense encoding (in memory)
12890but does not support computation in the format.
12891
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012892This means that code must first load the half-precision floating-point
Sean Silvab084af42012-12-07 10:36:55 +000012893value as an i16, then convert it to float with
12894:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12895then be performed on the float value (including extending to double
12896etc). To store the value back to memory, it is first converted to float
12897if needed, then converted to i16 with
12898:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12899i16 value.
12900
12901.. _int_convert_to_fp16:
12902
12903'``llvm.convert.to.fp16``' Intrinsic
12904^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12905
12906Syntax:
12907"""""""
12908
12909::
12910
Tim Northoverfd7e4242014-07-17 10:51:23 +000012911 declare i16 @llvm.convert.to.fp16.f32(float %a)
12912 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012913
12914Overview:
12915"""""""""
12916
Tim Northoverfd7e4242014-07-17 10:51:23 +000012917The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012918conventional floating-point type to half precision floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000012919
12920Arguments:
12921""""""""""
12922
12923The intrinsic function contains single argument - the value to be
12924converted.
12925
12926Semantics:
12927""""""""""
12928
Tim Northoverfd7e4242014-07-17 10:51:23 +000012929The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012930conventional floating-point format to half precision floating-point format. The
Tim Northoverfd7e4242014-07-17 10:51:23 +000012931return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000012932
12933Examples:
12934"""""""""
12935
12936.. code-block:: llvm
12937
Tim Northoverfd7e4242014-07-17 10:51:23 +000012938 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000012939 store i16 %res, i16* @x, align 2
12940
12941.. _int_convert_from_fp16:
12942
12943'``llvm.convert.from.fp16``' Intrinsic
12944^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12945
12946Syntax:
12947"""""""
12948
12949::
12950
Tim Northoverfd7e4242014-07-17 10:51:23 +000012951 declare float @llvm.convert.from.fp16.f32(i16 %a)
12952 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012953
12954Overview:
12955"""""""""
12956
12957The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012958conversion from half precision floating-point format to single precision
12959floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000012960
12961Arguments:
12962""""""""""
12963
12964The intrinsic function contains single argument - the value to be
12965converted.
12966
12967Semantics:
12968""""""""""
12969
12970The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012971conversion from half single precision floating-point format to single
12972precision floating-point format. The input half-float value is
Sean Silvab084af42012-12-07 10:36:55 +000012973represented by an ``i16`` value.
12974
12975Examples:
12976"""""""""
12977
12978.. code-block:: llvm
12979
David Blaikiec7aabbb2015-03-04 22:06:14 +000012980 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000012981 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000012982
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000012983.. _dbg_intrinsics:
12984
Sean Silvab084af42012-12-07 10:36:55 +000012985Debugger Intrinsics
12986-------------------
12987
12988The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
12989prefix), are described in the `LLVM Source Level
Hans Wennborg65195622017-09-28 15:16:37 +000012990Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
Sean Silvab084af42012-12-07 10:36:55 +000012991document.
12992
12993Exception Handling Intrinsics
12994-----------------------------
12995
12996The LLVM exception handling intrinsics (which all start with
12997``llvm.eh.`` prefix), are described in the `LLVM Exception
Hans Wennborg65195622017-09-28 15:16:37 +000012998Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
Sean Silvab084af42012-12-07 10:36:55 +000012999
13000.. _int_trampoline:
13001
13002Trampoline Intrinsics
13003---------------------
13004
13005These intrinsics make it possible to excise one parameter, marked with
13006the :ref:`nest <nest>` attribute, from a function. The result is a
13007callable function pointer lacking the nest parameter - the caller does
13008not need to provide a value for it. Instead, the value to use is stored
13009in advance in a "trampoline", a block of memory usually allocated on the
13010stack, which also contains code to splice the nest value into the
13011argument list. This is used to implement the GCC nested function address
13012extension.
13013
13014For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
13015then the resulting function pointer has signature ``i32 (i32, i32)*``.
13016It can be created as follows:
13017
13018.. code-block:: llvm
13019
13020 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000013021 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000013022 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
13023 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
13024 %fp = bitcast i8* %p to i32 (i32, i32)*
13025
13026The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
13027``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
13028
13029.. _int_it:
13030
13031'``llvm.init.trampoline``' Intrinsic
13032^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13033
13034Syntax:
13035"""""""
13036
13037::
13038
13039 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
13040
13041Overview:
13042"""""""""
13043
13044This fills the memory pointed to by ``tramp`` with executable code,
13045turning it into a trampoline.
13046
13047Arguments:
13048""""""""""
13049
13050The ``llvm.init.trampoline`` intrinsic takes three arguments, all
13051pointers. The ``tramp`` argument must point to a sufficiently large and
13052sufficiently aligned block of memory; this memory is written to by the
13053intrinsic. Note that the size and the alignment are target-specific -
13054LLVM currently provides no portable way of determining them, so a
13055front-end that generates this intrinsic needs to have some
13056target-specific knowledge. The ``func`` argument must hold a function
13057bitcast to an ``i8*``.
13058
13059Semantics:
13060""""""""""
13061
13062The block of memory pointed to by ``tramp`` is filled with target
13063dependent code, turning it into a function. Then ``tramp`` needs to be
13064passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
13065be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
13066function's signature is the same as that of ``func`` with any arguments
13067marked with the ``nest`` attribute removed. At most one such ``nest``
13068argument is allowed, and it must be of pointer type. Calling the new
13069function is equivalent to calling ``func`` with the same argument list,
13070but with ``nval`` used for the missing ``nest`` argument. If, after
13071calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
13072modified, then the effect of any later call to the returned function
13073pointer is undefined.
13074
13075.. _int_at:
13076
13077'``llvm.adjust.trampoline``' Intrinsic
13078^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13079
13080Syntax:
13081"""""""
13082
13083::
13084
13085 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
13086
13087Overview:
13088"""""""""
13089
13090This performs any required machine-specific adjustment to the address of
13091a trampoline (passed as ``tramp``).
13092
13093Arguments:
13094""""""""""
13095
13096``tramp`` must point to a block of memory which already has trampoline
13097code filled in by a previous call to
13098:ref:`llvm.init.trampoline <int_it>`.
13099
13100Semantics:
13101""""""""""
13102
13103On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000013104different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000013105intrinsic returns the executable address corresponding to ``tramp``
13106after performing the required machine specific adjustments. The pointer
13107returned can then be :ref:`bitcast and executed <int_trampoline>`.
13108
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013109.. _int_mload_mstore:
13110
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013111Masked Vector Load and Store Intrinsics
13112---------------------------------------
13113
13114LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
13115
13116.. _int_mload:
13117
13118'``llvm.masked.load.*``' Intrinsics
13119^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13120
13121Syntax:
13122"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013123This is an overloaded intrinsic. The loaded data is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013124
13125::
13126
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013127 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
13128 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013129 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013130 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013131 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013132 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013133
13134Overview:
13135"""""""""
13136
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013137Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013138
13139
13140Arguments:
13141""""""""""
13142
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013143The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013144
13145
13146Semantics:
13147""""""""""
13148
13149The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
13150The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
13151
13152
13153::
13154
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013155 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000013156
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013157 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000013158 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000013159 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013160
13161.. _int_mstore:
13162
13163'``llvm.masked.store.*``' Intrinsics
13164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13165
13166Syntax:
13167"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013168This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013169
13170::
13171
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013172 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
13173 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013174 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013175 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013176 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013177 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013178
13179Overview:
13180"""""""""
13181
13182Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
13183
13184Arguments:
13185""""""""""
13186
13187The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
13188
13189
13190Semantics:
13191""""""""""
13192
13193The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
13194The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
13195
13196::
13197
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013198 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000013199
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000013200 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000013201 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013202 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
13203 store <16 x float> %res, <16 x float>* %ptr, align 4
13204
13205
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013206Masked Vector Gather and Scatter Intrinsics
13207-------------------------------------------
13208
13209LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
13210
13211.. _int_mgather:
13212
13213'``llvm.masked.gather.*``' Intrinsics
13214^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13215
13216Syntax:
13217"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013218This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating-point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013219
13220::
13221
Elad Cohenef5798a2017-05-03 12:28:54 +000013222 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
13223 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
13224 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013225
13226Overview:
13227"""""""""
13228
13229Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
13230
13231
13232Arguments:
13233""""""""""
13234
13235The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
13236
13237
13238Semantics:
13239""""""""""
13240
13241The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
13242The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
13243
13244
13245::
13246
Elad Cohenef5798a2017-05-03 12:28:54 +000013247 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013248
13249 ;; The gather with all-true mask is equivalent to the following instruction sequence
13250 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
13251 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
13252 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
13253 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
13254
13255 %val0 = load double, double* %ptr0, align 8
13256 %val1 = load double, double* %ptr1, align 8
13257 %val2 = load double, double* %ptr2, align 8
13258 %val3 = load double, double* %ptr3, align 8
13259
13260 %vec0 = insertelement <4 x double>undef, %val0, 0
13261 %vec01 = insertelement <4 x double>%vec0, %val1, 1
13262 %vec012 = insertelement <4 x double>%vec01, %val2, 2
13263 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
13264
13265.. _int_mscatter:
13266
13267'``llvm.masked.scatter.*``' Intrinsics
13268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13269
13270Syntax:
13271"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013272This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013273
13274::
13275
Elad Cohenef5798a2017-05-03 12:28:54 +000013276 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
13277 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
13278 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013279
13280Overview:
13281"""""""""
13282
13283Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
13284
13285Arguments:
13286""""""""""
13287
13288The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
13289
13290
13291Semantics:
13292""""""""""
13293
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000013294The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013295
13296::
13297
Sylvestre Ledru84666a12016-02-14 20:16:22 +000013298 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000013299 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013300
13301 ;; It is equivalent to a list of scalar stores
13302 %val0 = extractelement <8 x i32> %value, i32 0
13303 %val1 = extractelement <8 x i32> %value, i32 1
13304 ..
13305 %val7 = extractelement <8 x i32> %value, i32 7
13306 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
13307 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
13308 ..
13309 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
13310 ;; Note: the order of the following stores is important when they overlap:
13311 store i32 %val0, i32* %ptr0, align 4
13312 store i32 %val1, i32* %ptr1, align 4
13313 ..
13314 store i32 %val7, i32* %ptr7, align 4
13315
13316
Elena Demikhovsky0ef2ce32018-06-06 09:11:46 +000013317Masked Vector Expanding Load and Compressing Store Intrinsics
13318-------------------------------------------------------------
13319
13320LLVM provides intrinsics for expanding load and compressing store operations. Data selected from a vector according to a mask is stored in consecutive memory addresses (compressed store), and vice-versa (expanding load). These operations effective map to "if (cond.i) a[j++] = v.i" and "if (cond.i) v.i = a[j++]" patterns, respectively. Note that when the mask starts with '1' bits followed by '0' bits, these operations are identical to :ref:`llvm.masked.store <int_mstore>` and :ref:`llvm.masked.load <int_mload>`.
13321
13322.. _int_expandload:
13323
13324'``llvm.masked.expandload.*``' Intrinsics
13325^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13326
13327Syntax:
13328"""""""
13329This is an overloaded intrinsic. Several values of integer, floating point or pointer data type are loaded from consecutive memory addresses and stored into the elements of a vector according to the mask.
13330
13331::
13332
13333 declare <16 x float> @llvm.masked.expandload.v16f32 (float* <ptr>, <16 x i1> <mask>, <16 x float> <passthru>)
13334 declare <2 x i64> @llvm.masked.expandload.v2i64 (i64* <ptr>, <2 x i1> <mask>, <2 x i64> <passthru>)
13335
13336Overview:
13337"""""""""
13338
13339Reads a number of scalar values sequentially from memory location provided in '``ptr``' and spreads them in a vector. The '``mask``' holds a bit for each vector lane. The number of elements read from memory is equal to the number of '1' bits in the mask. The loaded elements are positioned in the destination vector according to the sequence of '1' and '0' bits in the mask. E.g., if the mask vector is '10010001', "explandload" reads 3 values from memory addresses ptr, ptr+1, ptr+2 and places them in lanes 0, 3 and 7 accordingly. The masked-off lanes are filled by elements from the corresponding lanes of the '``passthru``' operand.
13340
13341
13342Arguments:
13343""""""""""
13344
13345The first operand is the base pointer for the load. It has the same underlying type as the element of the returned vector. The second operand, mask, is a vector of boolean values with the same number of elements as the return type. The third is a pass-through value that is used to fill the masked-off lanes of the result. The return type and the type of the '``passthru``' operand have the same vector type.
13346
13347Semantics:
13348""""""""""
13349
13350The '``llvm.masked.expandload``' intrinsic is designed for reading multiple scalar values from adjacent memory addresses into possibly non-adjacent vector lanes. It is useful for targets that support vector expanding loads and allows vectorizing loop with cross-iteration dependency like in the following example:
13351
13352.. code-block:: c
13353
13354 // In this loop we load from B and spread the elements into array A.
13355 double *A, B; int *C;
13356 for (int i = 0; i < size; ++i) {
13357 if (C[i] != 0)
13358 A[i] = B[j++];
13359 }
13360
13361
13362.. code-block:: llvm
13363
13364 ; Load several elements from array B and expand them in a vector.
13365 ; The number of loaded elements is equal to the number of '1' elements in the Mask.
13366 %Tmp = call <8 x double> @llvm.masked.expandload.v8f64(double* %Bptr, <8 x i1> %Mask, <8 x double> undef)
13367 ; Store the result in A
13368 call void @llvm.masked.store.v8f64.p0v8f64(<8 x double> %Tmp, <8 x double>* %Aptr, i32 8, <8 x i1> %Mask)
13369
13370 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
13371 %MaskI = bitcast <8 x i1> %Mask to i8
13372 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
13373 %MaskI64 = zext i8 %MaskIPopcnt to i64
13374 %BNextInd = add i64 %BInd, %MaskI64
13375
13376
13377Other targets may support this intrinsic differently, for example, by lowering it into a sequence of conditional scalar load operations and shuffles.
13378If all mask elements are '1', the intrinsic behavior is equivalent to the regular unmasked vector load.
13379
13380.. _int_compressstore:
13381
13382'``llvm.masked.compressstore.*``' Intrinsics
13383^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13384
13385Syntax:
13386"""""""
13387This is an overloaded intrinsic. A number of scalar values of integer, floating point or pointer data type are collected from an input vector and stored into adjacent memory addresses. A mask defines which elements to collect from the vector.
13388
13389::
13390
13391 declare void @llvm.masked.compressstore.v8i32 (<8 x i32> <value>, i32* <ptr>, <8 x i1> <mask>)
13392 declare void @llvm.masked.compressstore.v16f32 (<16 x float> <value>, float* <ptr>, <16 x i1> <mask>)
13393
13394Overview:
13395"""""""""
13396
13397Selects elements from input vector '``value``' according to the '``mask``'. All selected elements are written into adjacent memory addresses starting at address '`ptr`', from lower to higher. The mask holds a bit for each vector lane, and is used to select elements to be stored. The number of elements to be stored is equal to the number of active bits in the mask.
13398
13399Arguments:
13400""""""""""
13401
13402The first operand is the input vector, from which elements are collected and written to memory. The second operand is the base pointer for the store, it has the same underlying type as the element of the input vector operand. The third operand is the mask, a vector of boolean values. The mask and the input vector must have the same number of vector elements.
13403
13404
13405Semantics:
13406""""""""""
13407
13408The '``llvm.masked.compressstore``' intrinsic is designed for compressing data in memory. It allows to collect elements from possibly non-adjacent lanes of a vector and store them contiguously in memory in one IR operation. It is useful for targets that support compressing store operations and allows vectorizing loops with cross-iteration dependences like in the following example:
13409
13410.. code-block:: c
13411
13412 // In this loop we load elements from A and store them consecutively in B
13413 double *A, B; int *C;
13414 for (int i = 0; i < size; ++i) {
13415 if (C[i] != 0)
13416 B[j++] = A[i]
13417 }
13418
13419
13420.. code-block:: llvm
13421
13422 ; Load elements from A.
13423 %Tmp = call <8 x double> @llvm.masked.load.v8f64.p0v8f64(<8 x double>* %Aptr, i32 8, <8 x i1> %Mask, <8 x double> undef)
13424 ; Store all selected elements consecutively in array B
13425 call <void> @llvm.masked.compressstore.v8f64(<8 x double> %Tmp, double* %Bptr, <8 x i1> %Mask)
13426
13427 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
13428 %MaskI = bitcast <8 x i1> %Mask to i8
13429 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
13430 %MaskI64 = zext i8 %MaskIPopcnt to i64
13431 %BNextInd = add i64 %BInd, %MaskI64
13432
13433
13434Other targets may support this intrinsic differently, for example, by lowering it into a sequence of branches that guard scalar store operations.
13435
13436
Sean Silvab084af42012-12-07 10:36:55 +000013437Memory Use Markers
13438------------------
13439
Sanjay Patel69bf48e2014-07-04 19:40:43 +000013440This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000013441memory objects and ranges where variables are immutable.
13442
Reid Klecknera534a382013-12-19 02:14:12 +000013443.. _int_lifestart:
13444
Sean Silvab084af42012-12-07 10:36:55 +000013445'``llvm.lifetime.start``' Intrinsic
13446^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13447
13448Syntax:
13449"""""""
13450
13451::
13452
13453 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
13454
13455Overview:
13456"""""""""
13457
13458The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
13459object's lifetime.
13460
13461Arguments:
13462""""""""""
13463
13464The first argument is a constant integer representing the size of the
13465object, or -1 if it is variable sized. The second argument is a pointer
13466to the object.
13467
13468Semantics:
13469""""""""""
13470
13471This intrinsic indicates that before this point in the code, the value
13472of the memory pointed to by ``ptr`` is dead. This means that it is known
13473to never be used and has an undefined value. A load from the pointer
13474that precedes this intrinsic can be replaced with ``'undef'``.
13475
Reid Klecknera534a382013-12-19 02:14:12 +000013476.. _int_lifeend:
13477
Sean Silvab084af42012-12-07 10:36:55 +000013478'``llvm.lifetime.end``' Intrinsic
13479^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13480
13481Syntax:
13482"""""""
13483
13484::
13485
13486 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
13487
13488Overview:
13489"""""""""
13490
13491The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
13492object's lifetime.
13493
13494Arguments:
13495""""""""""
13496
13497The first argument is a constant integer representing the size of the
13498object, or -1 if it is variable sized. The second argument is a pointer
13499to the object.
13500
13501Semantics:
13502""""""""""
13503
13504This intrinsic indicates that after this point in the code, the value of
13505the memory pointed to by ``ptr`` is dead. This means that it is known to
13506never be used and has an undefined value. Any stores into the memory
13507object following this intrinsic may be removed as dead.
13508
13509'``llvm.invariant.start``' Intrinsic
13510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13511
13512Syntax:
13513"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013514This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000013515
13516::
13517
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013518 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000013519
13520Overview:
13521"""""""""
13522
13523The '``llvm.invariant.start``' intrinsic specifies that the contents of
13524a memory object will not change.
13525
13526Arguments:
13527""""""""""
13528
13529The first argument is a constant integer representing the size of the
13530object, or -1 if it is variable sized. The second argument is a pointer
13531to the object.
13532
13533Semantics:
13534""""""""""
13535
13536This intrinsic indicates that until an ``llvm.invariant.end`` that uses
13537the return value, the referenced memory location is constant and
13538unchanging.
13539
13540'``llvm.invariant.end``' Intrinsic
13541^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13542
13543Syntax:
13544"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013545This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000013546
13547::
13548
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013549 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000013550
13551Overview:
13552"""""""""
13553
13554The '``llvm.invariant.end``' intrinsic specifies that the contents of a
13555memory object are mutable.
13556
13557Arguments:
13558""""""""""
13559
13560The first argument is the matching ``llvm.invariant.start`` intrinsic.
13561The second argument is a constant integer representing the size of the
13562object, or -1 if it is variable sized and the third argument is a
13563pointer to the object.
13564
13565Semantics:
13566""""""""""
13567
13568This intrinsic indicates that the memory is mutable again.
13569
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013570'``llvm.launder.invariant.group``' Intrinsic
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013571^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13572
13573Syntax:
13574"""""""
Yaxun Liu407ca362017-11-16 16:32:16 +000013575This is an overloaded intrinsic. The memory object can belong to any address
13576space. The returned pointer must belong to the same address space as the
13577argument.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013578
13579::
13580
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013581 declare i8* @llvm.launder.invariant.group.p0i8(i8* <ptr>)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013582
13583Overview:
13584"""""""""
13585
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013586The '``llvm.launder.invariant.group``' intrinsic can be used when an invariant
Piotr Padlewski5b3db452018-07-02 04:49:30 +000013587established by ``invariant.group`` metadata no longer holds, to obtain a new
13588pointer value that carries fresh invariant group information. It is an
13589experimental intrinsic, which means that its semantics might change in the
13590future.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013591
13592
13593Arguments:
13594""""""""""
13595
Piotr Padlewski5b3db452018-07-02 04:49:30 +000013596The ``llvm.launder.invariant.group`` takes only one argument, which is a pointer
13597to the memory.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013598
13599Semantics:
13600""""""""""
13601
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013602Returns another pointer that aliases its argument but which is considered different
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013603for the purposes of ``load``/``store`` ``invariant.group`` metadata.
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013604It does not read any accessible memory and the execution can be speculated.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013605
Piotr Padlewski5b3db452018-07-02 04:49:30 +000013606'``llvm.strip.invariant.group``' Intrinsic
13607^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13608
13609Syntax:
13610"""""""
13611This is an overloaded intrinsic. The memory object can belong to any address
13612space. The returned pointer must belong to the same address space as the
13613argument.
13614
13615::
13616
13617 declare i8* @llvm.strip.invariant.group.p0i8(i8* <ptr>)
13618
13619Overview:
13620"""""""""
13621
13622The '``llvm.strip.invariant.group``' intrinsic can be used when an invariant
13623established by ``invariant.group`` metadata no longer holds, to obtain a new pointer
13624value that does not carry the invariant information. It is an experimental
13625intrinsic, which means that its semantics might change in the future.
13626
13627
13628Arguments:
13629""""""""""
13630
13631The ``llvm.strip.invariant.group`` takes only one argument, which is a pointer
13632to the memory.
13633
13634Semantics:
13635""""""""""
13636
13637Returns another pointer that aliases its argument but which has no associated
13638``invariant.group`` metadata.
13639It does not read any memory and can be speculated.
13640
13641
13642
Sanjay Patel54b161e2018-03-20 16:38:22 +000013643.. _constrainedfp:
13644
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013645Constrained Floating-Point Intrinsics
Andrew Kaylora0a11642017-01-26 23:27:59 +000013646-------------------------------------
13647
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013648These intrinsics are used to provide special handling of floating-point
13649operations when specific rounding mode or floating-point exception behavior is
Andrew Kaylora0a11642017-01-26 23:27:59 +000013650required. By default, LLVM optimization passes assume that the rounding mode is
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013651round-to-nearest and that floating-point exceptions will not be monitored.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013652Constrained FP intrinsics are used to support non-default rounding modes and
13653accurately preserve exception behavior without compromising LLVM's ability to
13654optimize FP code when the default behavior is used.
13655
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013656Each of these intrinsics corresponds to a normal floating-point operation. The
Andrew Kaylora0a11642017-01-26 23:27:59 +000013657first two arguments and the return value are the same as the corresponding FP
13658operation.
13659
13660The third argument is a metadata argument specifying the rounding mode to be
13661assumed. This argument must be one of the following strings:
13662
13663::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000013664
Andrew Kaylora0a11642017-01-26 23:27:59 +000013665 "round.dynamic"
13666 "round.tonearest"
13667 "round.downward"
13668 "round.upward"
13669 "round.towardzero"
13670
13671If this argument is "round.dynamic" optimization passes must assume that the
13672rounding mode is unknown and may change at runtime. No transformations that
13673depend on rounding mode may be performed in this case.
13674
13675The other possible values for the rounding mode argument correspond to the
13676similarly named IEEE rounding modes. If the argument is any of these values
13677optimization passes may perform transformations as long as they are consistent
13678with the specified rounding mode.
13679
13680For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
13681"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
13682'x-0' should evaluate to '-0' when rounding downward. However, this
13683transformation is legal for all other rounding modes.
13684
13685For values other than "round.dynamic" optimization passes may assume that the
13686actual runtime rounding mode (as defined in a target-specific manner) matches
13687the specified rounding mode, but this is not guaranteed. Using a specific
13688non-dynamic rounding mode which does not match the actual rounding mode at
13689runtime results in undefined behavior.
13690
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013691The fourth argument to the constrained floating-point intrinsics specifies the
Andrew Kaylora0a11642017-01-26 23:27:59 +000013692required exception behavior. This argument must be one of the following
13693strings:
13694
13695::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000013696
Andrew Kaylora0a11642017-01-26 23:27:59 +000013697 "fpexcept.ignore"
13698 "fpexcept.maytrap"
13699 "fpexcept.strict"
13700
13701If this argument is "fpexcept.ignore" optimization passes may assume that the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013702exception status flags will not be read and that floating-point exceptions will
Andrew Kaylora0a11642017-01-26 23:27:59 +000013703be masked. This allows transformations to be performed that may change the
13704exception semantics of the original code. For example, FP operations may be
13705speculatively executed in this case whereas they must not be for either of the
13706other possible values of this argument.
13707
13708If the exception behavior argument is "fpexcept.maytrap" optimization passes
13709must avoid transformations that may raise exceptions that would not have been
13710raised by the original code (such as speculatively executing FP operations), but
13711passes are not required to preserve all exceptions that are implied by the
13712original code. For example, exceptions may be potentially hidden by constant
13713folding.
13714
13715If the exception behavior argument is "fpexcept.strict" all transformations must
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013716strictly preserve the floating-point exception semantics of the original code.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013717Any FP exception that would have been raised by the original code must be raised
13718by the transformed code, and the transformed code must not raise any FP
13719exceptions that would not have been raised by the original code. This is the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013720exception behavior argument that will be used if the code being compiled reads
Andrew Kaylora0a11642017-01-26 23:27:59 +000013721the FP exception status flags, but this mode can also be used with code that
13722unmasks FP exceptions.
13723
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013724The number and order of floating-point exceptions is NOT guaranteed. For
Andrew Kaylora0a11642017-01-26 23:27:59 +000013725example, a series of FP operations that each may raise exceptions may be
13726vectorized into a single instruction that raises each unique exception a single
13727time.
13728
13729
13730'``llvm.experimental.constrained.fadd``' Intrinsic
13731^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13732
13733Syntax:
13734"""""""
13735
13736::
13737
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013738 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013739 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
13740 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013741 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013742
13743Overview:
13744"""""""""
13745
13746The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
13747two operands.
13748
13749
13750Arguments:
13751""""""""""
13752
13753The first two arguments to the '``llvm.experimental.constrained.fadd``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013754intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13755of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013756
13757The third and fourth arguments specify the rounding mode and exception
13758behavior as described above.
13759
13760Semantics:
13761""""""""""
13762
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013763The value produced is the floating-point sum of the two value operands and has
Andrew Kaylora0a11642017-01-26 23:27:59 +000013764the same type as the operands.
13765
13766
13767'``llvm.experimental.constrained.fsub``' Intrinsic
13768^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13769
13770Syntax:
13771"""""""
13772
13773::
13774
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013775 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013776 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
13777 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013778 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013779
13780Overview:
13781"""""""""
13782
13783The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
13784of its two operands.
13785
13786
13787Arguments:
13788""""""""""
13789
13790The first two arguments to the '``llvm.experimental.constrained.fsub``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013791intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13792of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013793
13794The third and fourth arguments specify the rounding mode and exception
13795behavior as described above.
13796
13797Semantics:
13798""""""""""
13799
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013800The value produced is the floating-point difference of the two value operands
Andrew Kaylora0a11642017-01-26 23:27:59 +000013801and has the same type as the operands.
13802
13803
13804'``llvm.experimental.constrained.fmul``' Intrinsic
13805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13806
13807Syntax:
13808"""""""
13809
13810::
13811
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013812 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013813 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
13814 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013815 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013816
13817Overview:
13818"""""""""
13819
13820The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
13821its two operands.
13822
13823
13824Arguments:
13825""""""""""
13826
13827The first two arguments to the '``llvm.experimental.constrained.fmul``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013828intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13829of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013830
13831The third and fourth arguments specify the rounding mode and exception
13832behavior as described above.
13833
13834Semantics:
13835""""""""""
13836
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013837The value produced is the floating-point product of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000013838has the same type as the operands.
13839
13840
13841'``llvm.experimental.constrained.fdiv``' Intrinsic
13842^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13843
13844Syntax:
13845"""""""
13846
13847::
13848
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013849 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013850 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
13851 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013852 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013853
13854Overview:
13855"""""""""
13856
13857The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
13858its two operands.
13859
13860
13861Arguments:
13862""""""""""
13863
13864The first two arguments to the '``llvm.experimental.constrained.fdiv``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013865intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13866of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013867
13868The third and fourth arguments specify the rounding mode and exception
13869behavior as described above.
13870
13871Semantics:
13872""""""""""
13873
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013874The value produced is the floating-point quotient of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000013875has the same type as the operands.
13876
13877
13878'``llvm.experimental.constrained.frem``' Intrinsic
13879^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13880
13881Syntax:
13882"""""""
13883
13884::
13885
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013886 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013887 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
13888 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013889 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013890
13891Overview:
13892"""""""""
13893
13894The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
13895from the division of its two operands.
13896
13897
13898Arguments:
13899""""""""""
13900
13901The first two arguments to the '``llvm.experimental.constrained.frem``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013902intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13903of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013904
13905The third and fourth arguments specify the rounding mode and exception
13906behavior as described above. The rounding mode argument has no effect, since
13907the result of frem is never rounded, but the argument is included for
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013908consistency with the other constrained floating-point intrinsics.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013909
13910Semantics:
13911""""""""""
13912
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013913The value produced is the floating-point remainder from the division of the two
Andrew Kaylora0a11642017-01-26 23:27:59 +000013914value operands and has the same type as the operands. The remainder has the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013915same sign as the dividend.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013916
Wei Dinga131d3f2017-08-24 04:18:24 +000013917'``llvm.experimental.constrained.fma``' Intrinsic
13918^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13919
13920Syntax:
13921"""""""
13922
13923::
13924
13925 declare <type>
13926 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
13927 metadata <rounding mode>,
13928 metadata <exception behavior>)
13929
13930Overview:
13931"""""""""
13932
13933The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
13934fused-multiply-add operation on its operands.
13935
13936Arguments:
13937""""""""""
13938
13939The first three arguments to the '``llvm.experimental.constrained.fma``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013940intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector
13941<t_vector>` of floating-point values. All arguments must have identical types.
Wei Dinga131d3f2017-08-24 04:18:24 +000013942
13943The fourth and fifth arguments specify the rounding mode and exception behavior
13944as described above.
13945
13946Semantics:
13947""""""""""
13948
13949The result produced is the product of the first two operands added to the third
13950operand computed with infinite precision, and then rounded to the target
13951precision.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013952
Andrew Kaylorf4660012017-05-25 21:31:00 +000013953Constrained libm-equivalent Intrinsics
13954--------------------------------------
13955
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013956In addition to the basic floating-point operations for which constrained
Andrew Kaylorf4660012017-05-25 21:31:00 +000013957intrinsics are described above, there are constrained versions of various
13958operations which provide equivalent behavior to a corresponding libm function.
13959These intrinsics allow the precise behavior of these operations with respect to
13960rounding mode and exception behavior to be controlled.
13961
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013962As with the basic constrained floating-point intrinsics, the rounding mode
Andrew Kaylorf4660012017-05-25 21:31:00 +000013963and exception behavior arguments only control the behavior of the optimizer.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013964They do not change the runtime floating-point environment.
Andrew Kaylorf4660012017-05-25 21:31:00 +000013965
13966
13967'``llvm.experimental.constrained.sqrt``' Intrinsic
13968^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13969
13970Syntax:
13971"""""""
13972
13973::
13974
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013975 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000013976 @llvm.experimental.constrained.sqrt(<type> <op1>,
13977 metadata <rounding mode>,
13978 metadata <exception behavior>)
13979
13980Overview:
13981"""""""""
13982
13983The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
13984of the specified value, returning the same value as the libm '``sqrt``'
13985functions would, but without setting ``errno``.
13986
13987Arguments:
13988""""""""""
13989
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013990The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000013991type.
13992
13993The second and third arguments specify the rounding mode and exception
13994behavior as described above.
13995
13996Semantics:
13997""""""""""
13998
13999This function returns the nonnegative square root of the specified value.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014000If the value is less than negative zero, a floating-point exception occurs
Hiroshi Inoue760c0c92018-01-16 13:19:48 +000014001and the return value is architecture specific.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014002
14003
14004'``llvm.experimental.constrained.pow``' Intrinsic
14005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14006
14007Syntax:
14008"""""""
14009
14010::
14011
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014012 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014013 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
14014 metadata <rounding mode>,
14015 metadata <exception behavior>)
14016
14017Overview:
14018"""""""""
14019
14020The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
14021raised to the (positive or negative) power specified by the second operand.
14022
14023Arguments:
14024""""""""""
14025
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014026The first two arguments and the return value are floating-point numbers of the
Andrew Kaylorf4660012017-05-25 21:31:00 +000014027same type. The second argument specifies the power to which the first argument
14028should be raised.
14029
14030The third and fourth arguments specify the rounding mode and exception
14031behavior as described above.
14032
14033Semantics:
14034""""""""""
14035
14036This function returns the first value raised to the second power,
14037returning the same values as the libm ``pow`` functions would, and
14038handles error conditions in the same way.
14039
14040
14041'``llvm.experimental.constrained.powi``' Intrinsic
14042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14043
14044Syntax:
14045"""""""
14046
14047::
14048
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014049 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014050 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
14051 metadata <rounding mode>,
14052 metadata <exception behavior>)
14053
14054Overview:
14055"""""""""
14056
14057The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
14058raised to the (positive or negative) power specified by the second operand. The
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014059order of evaluation of multiplications is not defined. When a vector of
14060floating-point type is used, the second argument remains a scalar integer value.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014061
14062
14063Arguments:
14064""""""""""
14065
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014066The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014067type. The second argument is a 32-bit signed integer specifying the power to
14068which the first argument should be raised.
14069
14070The third and fourth arguments specify the rounding mode and exception
14071behavior as described above.
14072
14073Semantics:
14074""""""""""
14075
14076This function returns the first value raised to the second power with an
14077unspecified sequence of rounding operations.
14078
14079
14080'``llvm.experimental.constrained.sin``' Intrinsic
14081^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14082
14083Syntax:
14084"""""""
14085
14086::
14087
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014088 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014089 @llvm.experimental.constrained.sin(<type> <op1>,
14090 metadata <rounding mode>,
14091 metadata <exception behavior>)
14092
14093Overview:
14094"""""""""
14095
14096The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
14097first operand.
14098
14099Arguments:
14100""""""""""
14101
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014102The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014103type.
14104
14105The second and third arguments specify the rounding mode and exception
14106behavior as described above.
14107
14108Semantics:
14109""""""""""
14110
14111This function returns the sine of the specified operand, returning the
14112same values as the libm ``sin`` functions would, and handles error
14113conditions in the same way.
14114
14115
14116'``llvm.experimental.constrained.cos``' Intrinsic
14117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14118
14119Syntax:
14120"""""""
14121
14122::
14123
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014124 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014125 @llvm.experimental.constrained.cos(<type> <op1>,
14126 metadata <rounding mode>,
14127 metadata <exception behavior>)
14128
14129Overview:
14130"""""""""
14131
14132The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
14133first operand.
14134
14135Arguments:
14136""""""""""
14137
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014138The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014139type.
14140
14141The second and third arguments specify the rounding mode and exception
14142behavior as described above.
14143
14144Semantics:
14145""""""""""
14146
14147This function returns the cosine of the specified operand, returning the
14148same values as the libm ``cos`` functions would, and handles error
14149conditions in the same way.
14150
14151
14152'``llvm.experimental.constrained.exp``' Intrinsic
14153^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14154
14155Syntax:
14156"""""""
14157
14158::
14159
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014160 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014161 @llvm.experimental.constrained.exp(<type> <op1>,
14162 metadata <rounding mode>,
14163 metadata <exception behavior>)
14164
14165Overview:
14166"""""""""
14167
14168The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
14169exponential of the specified value.
14170
14171Arguments:
14172""""""""""
14173
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014174The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014175type.
14176
14177The second and third arguments specify the rounding mode and exception
14178behavior as described above.
14179
14180Semantics:
14181""""""""""
14182
14183This function returns the same values as the libm ``exp`` functions
14184would, and handles error conditions in the same way.
14185
14186
14187'``llvm.experimental.constrained.exp2``' Intrinsic
14188^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14189
14190Syntax:
14191"""""""
14192
14193::
14194
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014195 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014196 @llvm.experimental.constrained.exp2(<type> <op1>,
14197 metadata <rounding mode>,
14198 metadata <exception behavior>)
14199
14200Overview:
14201"""""""""
14202
14203The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
14204exponential of the specified value.
14205
14206
14207Arguments:
14208""""""""""
14209
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014210The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014211type.
14212
14213The second and third arguments specify the rounding mode and exception
14214behavior as described above.
14215
14216Semantics:
14217""""""""""
14218
14219This function returns the same values as the libm ``exp2`` functions
14220would, and handles error conditions in the same way.
14221
14222
14223'``llvm.experimental.constrained.log``' Intrinsic
14224^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14225
14226Syntax:
14227"""""""
14228
14229::
14230
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014231 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014232 @llvm.experimental.constrained.log(<type> <op1>,
14233 metadata <rounding mode>,
14234 metadata <exception behavior>)
14235
14236Overview:
14237"""""""""
14238
14239The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
14240logarithm of the specified value.
14241
14242Arguments:
14243""""""""""
14244
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014245The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014246type.
14247
14248The second and third arguments specify the rounding mode and exception
14249behavior as described above.
14250
14251
14252Semantics:
14253""""""""""
14254
14255This function returns the same values as the libm ``log`` functions
14256would, and handles error conditions in the same way.
14257
14258
14259'``llvm.experimental.constrained.log10``' Intrinsic
14260^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14261
14262Syntax:
14263"""""""
14264
14265::
14266
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014267 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014268 @llvm.experimental.constrained.log10(<type> <op1>,
14269 metadata <rounding mode>,
14270 metadata <exception behavior>)
14271
14272Overview:
14273"""""""""
14274
14275The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
14276logarithm of the specified value.
14277
14278Arguments:
14279""""""""""
14280
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014281The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014282type.
14283
14284The second and third arguments specify the rounding mode and exception
14285behavior as described above.
14286
14287Semantics:
14288""""""""""
14289
14290This function returns the same values as the libm ``log10`` functions
14291would, and handles error conditions in the same way.
14292
14293
14294'``llvm.experimental.constrained.log2``' Intrinsic
14295^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14296
14297Syntax:
14298"""""""
14299
14300::
14301
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014302 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014303 @llvm.experimental.constrained.log2(<type> <op1>,
14304 metadata <rounding mode>,
14305 metadata <exception behavior>)
14306
14307Overview:
14308"""""""""
14309
14310The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
14311logarithm of the specified value.
14312
14313Arguments:
14314""""""""""
14315
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014316The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014317type.
14318
14319The second and third arguments specify the rounding mode and exception
14320behavior as described above.
14321
14322Semantics:
14323""""""""""
14324
14325This function returns the same values as the libm ``log2`` functions
14326would, and handles error conditions in the same way.
14327
14328
14329'``llvm.experimental.constrained.rint``' Intrinsic
14330^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14331
14332Syntax:
14333"""""""
14334
14335::
14336
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014337 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014338 @llvm.experimental.constrained.rint(<type> <op1>,
14339 metadata <rounding mode>,
14340 metadata <exception behavior>)
14341
14342Overview:
14343"""""""""
14344
14345The '``llvm.experimental.constrained.rint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014346operand rounded to the nearest integer. It may raise an inexact floating-point
Andrew Kaylorf4660012017-05-25 21:31:00 +000014347exception if the operand is not an integer.
14348
14349Arguments:
14350""""""""""
14351
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014352The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014353type.
14354
14355The second and third arguments specify the rounding mode and exception
14356behavior as described above.
14357
14358Semantics:
14359""""""""""
14360
14361This function returns the same values as the libm ``rint`` functions
14362would, and handles error conditions in the same way. The rounding mode is
14363described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014364mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000014365mode argument is only intended as information to the compiler.
14366
14367
14368'``llvm.experimental.constrained.nearbyint``' Intrinsic
14369^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14370
14371Syntax:
14372"""""""
14373
14374::
14375
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014376 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014377 @llvm.experimental.constrained.nearbyint(<type> <op1>,
14378 metadata <rounding mode>,
14379 metadata <exception behavior>)
14380
14381Overview:
14382"""""""""
14383
14384The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014385operand rounded to the nearest integer. It will not raise an inexact
14386floating-point exception if the operand is not an integer.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014387
14388
14389Arguments:
14390""""""""""
14391
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014392The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014393type.
14394
14395The second and third arguments specify the rounding mode and exception
14396behavior as described above.
14397
14398Semantics:
14399""""""""""
14400
14401This function returns the same values as the libm ``nearbyint`` functions
14402would, and handles error conditions in the same way. The rounding mode is
14403described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014404mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000014405mode argument is only intended as information to the compiler.
14406
14407
Sean Silvab084af42012-12-07 10:36:55 +000014408General Intrinsics
14409------------------
14410
14411This class of intrinsics is designed to be generic and has no specific
14412purpose.
14413
14414'``llvm.var.annotation``' Intrinsic
14415^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14416
14417Syntax:
14418"""""""
14419
14420::
14421
14422 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
14423
14424Overview:
14425"""""""""
14426
14427The '``llvm.var.annotation``' intrinsic.
14428
14429Arguments:
14430""""""""""
14431
14432The first argument is a pointer to a value, the second is a pointer to a
14433global string, the third is a pointer to a global string which is the
14434source file name, and the last argument is the line number.
14435
14436Semantics:
14437""""""""""
14438
14439This intrinsic allows annotation of local variables with arbitrary
14440strings. This can be useful for special purpose optimizations that want
14441to look for these annotations. These have no other defined use; they are
14442ignored by code generation and optimization.
14443
Michael Gottesman88d18832013-03-26 00:34:27 +000014444'``llvm.ptr.annotation.*``' Intrinsic
14445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14446
14447Syntax:
14448"""""""
14449
14450This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
14451pointer to an integer of any width. *NOTE* you must specify an address space for
14452the pointer. The identifier for the default address space is the integer
14453'``0``'.
14454
14455::
14456
14457 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
14458 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
14459 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
14460 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
14461 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
14462
14463Overview:
14464"""""""""
14465
14466The '``llvm.ptr.annotation``' intrinsic.
14467
14468Arguments:
14469""""""""""
14470
14471The first argument is a pointer to an integer value of arbitrary bitwidth
14472(result of some expression), the second is a pointer to a global string, the
14473third is a pointer to a global string which is the source file name, and the
14474last argument is the line number. It returns the value of the first argument.
14475
14476Semantics:
14477""""""""""
14478
14479This intrinsic allows annotation of a pointer to an integer with arbitrary
14480strings. This can be useful for special purpose optimizations that want to look
14481for these annotations. These have no other defined use; they are ignored by code
14482generation and optimization.
14483
Sean Silvab084af42012-12-07 10:36:55 +000014484'``llvm.annotation.*``' Intrinsic
14485^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14486
14487Syntax:
14488"""""""
14489
14490This is an overloaded intrinsic. You can use '``llvm.annotation``' on
14491any integer bit width.
14492
14493::
14494
14495 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
14496 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
14497 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
14498 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
14499 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
14500
14501Overview:
14502"""""""""
14503
14504The '``llvm.annotation``' intrinsic.
14505
14506Arguments:
14507""""""""""
14508
14509The first argument is an integer value (result of some expression), the
14510second is a pointer to a global string, the third is a pointer to a
14511global string which is the source file name, and the last argument is
14512the line number. It returns the value of the first argument.
14513
14514Semantics:
14515""""""""""
14516
14517This intrinsic allows annotations to be put on arbitrary expressions
14518with arbitrary strings. This can be useful for special purpose
14519optimizations that want to look for these annotations. These have no
14520other defined use; they are ignored by code generation and optimization.
14521
Reid Klecknere33c94f2017-09-05 20:14:58 +000014522'``llvm.codeview.annotation``' Intrinsic
Reid Klecknerd4523682017-09-05 20:26:25 +000014523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknere33c94f2017-09-05 20:14:58 +000014524
14525Syntax:
14526"""""""
14527
14528This annotation emits a label at its program point and an associated
14529``S_ANNOTATION`` codeview record with some additional string metadata. This is
14530used to implement MSVC's ``__annotation`` intrinsic. It is marked
14531``noduplicate``, so calls to this intrinsic prevent inlining and should be
14532considered expensive.
14533
14534::
14535
14536 declare void @llvm.codeview.annotation(metadata)
14537
14538Arguments:
14539""""""""""
14540
14541The argument should be an MDTuple containing any number of MDStrings.
14542
Sean Silvab084af42012-12-07 10:36:55 +000014543'``llvm.trap``' Intrinsic
14544^^^^^^^^^^^^^^^^^^^^^^^^^
14545
14546Syntax:
14547"""""""
14548
14549::
14550
14551 declare void @llvm.trap() noreturn nounwind
14552
14553Overview:
14554"""""""""
14555
14556The '``llvm.trap``' intrinsic.
14557
14558Arguments:
14559""""""""""
14560
14561None.
14562
14563Semantics:
14564""""""""""
14565
14566This intrinsic is lowered to the target dependent trap instruction. If
14567the target does not have a trap instruction, this intrinsic will be
14568lowered to a call of the ``abort()`` function.
14569
14570'``llvm.debugtrap``' Intrinsic
14571^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14572
14573Syntax:
14574"""""""
14575
14576::
14577
14578 declare void @llvm.debugtrap() nounwind
14579
14580Overview:
14581"""""""""
14582
14583The '``llvm.debugtrap``' intrinsic.
14584
14585Arguments:
14586""""""""""
14587
14588None.
14589
14590Semantics:
14591""""""""""
14592
14593This intrinsic is lowered to code which is intended to cause an
14594execution trap with the intention of requesting the attention of a
14595debugger.
14596
14597'``llvm.stackprotector``' Intrinsic
14598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14599
14600Syntax:
14601"""""""
14602
14603::
14604
14605 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
14606
14607Overview:
14608"""""""""
14609
14610The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
14611onto the stack at ``slot``. The stack slot is adjusted to ensure that it
14612is placed on the stack before local variables.
14613
14614Arguments:
14615""""""""""
14616
14617The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
14618The first argument is the value loaded from the stack guard
14619``@__stack_chk_guard``. The second variable is an ``alloca`` that has
14620enough space to hold the value of the guard.
14621
14622Semantics:
14623""""""""""
14624
Michael Gottesmandafc7d92013-08-12 18:35:32 +000014625This intrinsic causes the prologue/epilogue inserter to force the position of
14626the ``AllocaInst`` stack slot to be before local variables on the stack. This is
14627to ensure that if a local variable on the stack is overwritten, it will destroy
14628the value of the guard. When the function exits, the guard on the stack is
14629checked against the original guard by ``llvm.stackprotectorcheck``. If they are
14630different, then ``llvm.stackprotectorcheck`` causes the program to abort by
14631calling the ``__stack_chk_fail()`` function.
14632
Tim Shene885d5e2016-04-19 19:40:37 +000014633'``llvm.stackguard``' Intrinsic
14634^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14635
14636Syntax:
14637"""""""
14638
14639::
14640
14641 declare i8* @llvm.stackguard()
14642
14643Overview:
14644"""""""""
14645
14646The ``llvm.stackguard`` intrinsic returns the system stack guard value.
14647
14648It should not be generated by frontends, since it is only for internal usage.
14649The reason why we create this intrinsic is that we still support IR form Stack
14650Protector in FastISel.
14651
14652Arguments:
14653""""""""""
14654
14655None.
14656
14657Semantics:
14658""""""""""
14659
14660On some platforms, the value returned by this intrinsic remains unchanged
14661between loads in the same thread. On other platforms, it returns the same
14662global variable value, if any, e.g. ``@__stack_chk_guard``.
14663
14664Currently some platforms have IR-level customized stack guard loading (e.g.
14665X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
14666in the future.
14667
Sean Silvab084af42012-12-07 10:36:55 +000014668'``llvm.objectsize``' Intrinsic
14669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14670
14671Syntax:
14672"""""""
14673
14674::
14675
George Burgess IV56c7e882017-03-21 20:08:59 +000014676 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
14677 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000014678
14679Overview:
14680"""""""""
14681
14682The ``llvm.objectsize`` intrinsic is designed to provide information to
14683the optimizers to determine at compile time whether a) an operation
14684(like memcpy) will overflow a buffer that corresponds to an object, or
14685b) that a runtime check for overflow isn't necessary. An object in this
14686context means an allocation of a specific class, structure, array, or
14687other object.
14688
14689Arguments:
14690""""""""""
14691
George Burgess IV56c7e882017-03-21 20:08:59 +000014692The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
14693a pointer to or into the ``object``. The second argument determines whether
14694``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
14695is unknown. The third argument controls how ``llvm.objectsize`` acts when
George Burgess IV3fbfa9c42018-07-09 22:21:16 +000014696``null`` in address space 0 is used as its pointer argument. If it's ``false``,
14697``llvm.objectsize`` reports 0 bytes available when given ``null``. Otherwise, if
14698the ``null`` is in a non-zero address space or if ``true`` is given for the
14699third argument of ``llvm.objectsize``, we assume its size is unknown.
George Burgess IV56c7e882017-03-21 20:08:59 +000014700
14701The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000014702
14703Semantics:
14704""""""""""
14705
14706The ``llvm.objectsize`` intrinsic is lowered to a constant representing
14707the size of the object concerned. If the size cannot be determined at
14708compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
14709on the ``min`` argument).
14710
14711'``llvm.expect``' Intrinsic
14712^^^^^^^^^^^^^^^^^^^^^^^^^^^
14713
14714Syntax:
14715"""""""
14716
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000014717This is an overloaded intrinsic. You can use ``llvm.expect`` on any
14718integer bit width.
14719
Sean Silvab084af42012-12-07 10:36:55 +000014720::
14721
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000014722 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000014723 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
14724 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
14725
14726Overview:
14727"""""""""
14728
14729The ``llvm.expect`` intrinsic provides information about expected (the
14730most probable) value of ``val``, which can be used by optimizers.
14731
14732Arguments:
14733""""""""""
14734
14735The ``llvm.expect`` intrinsic takes two arguments. The first argument is
14736a value. The second argument is an expected value, this needs to be a
14737constant value, variables are not allowed.
14738
14739Semantics:
14740""""""""""
14741
14742This intrinsic is lowered to the ``val``.
14743
Philip Reamese0e90832015-04-26 22:23:12 +000014744.. _int_assume:
14745
Hal Finkel93046912014-07-25 21:13:35 +000014746'``llvm.assume``' Intrinsic
14747^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14748
14749Syntax:
14750"""""""
14751
14752::
14753
14754 declare void @llvm.assume(i1 %cond)
14755
14756Overview:
14757"""""""""
14758
14759The ``llvm.assume`` allows the optimizer to assume that the provided
14760condition is true. This information can then be used in simplifying other parts
14761of the code.
14762
14763Arguments:
14764""""""""""
14765
14766The condition which the optimizer may assume is always true.
14767
14768Semantics:
14769""""""""""
14770
14771The intrinsic allows the optimizer to assume that the provided condition is
14772always true whenever the control flow reaches the intrinsic call. No code is
14773generated for this intrinsic, and instructions that contribute only to the
14774provided condition are not used for code generation. If the condition is
14775violated during execution, the behavior is undefined.
14776
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014777Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000014778used by the ``llvm.assume`` intrinsic in order to preserve the instructions
14779only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014780if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000014781sufficient overall improvement in code quality. For this reason,
14782``llvm.assume`` should not be used to document basic mathematical invariants
14783that the optimizer can otherwise deduce or facts that are of little use to the
14784optimizer.
14785
Daniel Berlin2c438a32017-02-07 19:29:25 +000014786.. _int_ssa_copy:
14787
14788'``llvm.ssa_copy``' Intrinsic
14789^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14790
14791Syntax:
14792"""""""
14793
14794::
14795
14796 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
14797
14798Arguments:
14799""""""""""
14800
14801The first argument is an operand which is used as the returned value.
14802
14803Overview:
14804""""""""""
14805
14806The ``llvm.ssa_copy`` intrinsic can be used to attach information to
14807operations by copying them and giving them new names. For example,
14808the PredicateInfo utility uses it to build Extended SSA form, and
14809attach various forms of information to operands that dominate specific
14810uses. It is not meant for general use, only for building temporary
14811renaming forms that require value splits at certain points.
14812
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014813.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000014814
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014815'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000014816^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14817
14818Syntax:
14819"""""""
14820
14821::
14822
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014823 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000014824
14825
14826Arguments:
14827""""""""""
14828
14829The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014830metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014831
14832Overview:
14833"""""""""
14834
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014835The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
14836with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014837
Peter Collingbourne0312f612016-06-25 00:23:04 +000014838'``llvm.type.checked.load``' Intrinsic
14839^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14840
14841Syntax:
14842"""""""
14843
14844::
14845
14846 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
14847
14848
14849Arguments:
14850""""""""""
14851
14852The first argument is a pointer from which to load a function pointer. The
14853second argument is the byte offset from which to load the function pointer. The
14854third argument is a metadata object representing a :doc:`type identifier
14855<TypeMetadata>`.
14856
14857Overview:
14858"""""""""
14859
14860The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
14861virtual table pointer using type metadata. This intrinsic is used to implement
14862control flow integrity in conjunction with virtual call optimization. The
14863virtual call optimization pass will optimize away ``llvm.type.checked.load``
14864intrinsics associated with devirtualized calls, thereby removing the type
14865check in cases where it is not needed to enforce the control flow integrity
14866constraint.
14867
14868If the given pointer is associated with a type metadata identifier, this
14869function returns true as the second element of its return value. (Note that
14870the function may also return true if the given pointer is not associated
14871with a type metadata identifier.) If the function's return value's second
14872element is true, the following rules apply to the first element:
14873
14874- If the given pointer is associated with the given type metadata identifier,
14875 it is the function pointer loaded from the given byte offset from the given
14876 pointer.
14877
14878- If the given pointer is not associated with the given type metadata
14879 identifier, it is one of the following (the choice of which is unspecified):
14880
14881 1. The function pointer that would have been loaded from an arbitrarily chosen
14882 (through an unspecified mechanism) pointer associated with the type
14883 metadata.
14884
14885 2. If the function has a non-void return type, a pointer to a function that
14886 returns an unspecified value without causing side effects.
14887
14888If the function's return value's second element is false, the value of the
14889first element is undefined.
14890
14891
Sean Silvab084af42012-12-07 10:36:55 +000014892'``llvm.donothing``' Intrinsic
14893^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14894
14895Syntax:
14896"""""""
14897
14898::
14899
14900 declare void @llvm.donothing() nounwind readnone
14901
14902Overview:
14903"""""""""
14904
Juergen Ributzkac9161192014-10-23 22:36:13 +000014905The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000014906three intrinsics (besides ``llvm.experimental.patchpoint`` and
14907``llvm.experimental.gc.statepoint``) that can be called with an invoke
14908instruction.
Sean Silvab084af42012-12-07 10:36:55 +000014909
14910Arguments:
14911""""""""""
14912
14913None.
14914
14915Semantics:
14916""""""""""
14917
14918This intrinsic does nothing, and it's removed by optimizers and ignored
14919by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000014920
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014921'``llvm.experimental.deoptimize``' Intrinsic
14922^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14923
14924Syntax:
14925"""""""
14926
14927::
14928
14929 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
14930
14931Overview:
14932"""""""""
14933
14934This intrinsic, together with :ref:`deoptimization operand bundles
14935<deopt_opbundles>`, allow frontends to express transfer of control and
14936frame-local state from the currently executing (typically more specialized,
14937hence faster) version of a function into another (typically more generic, hence
14938slower) version.
14939
14940In languages with a fully integrated managed runtime like Java and JavaScript
14941this intrinsic can be used to implement "uncommon trap" or "side exit" like
14942functionality. In unmanaged languages like C and C++, this intrinsic can be
14943used to represent the slow paths of specialized functions.
14944
14945
14946Arguments:
14947""""""""""
14948
14949The intrinsic takes an arbitrary number of arguments, whose meaning is
14950decided by the :ref:`lowering strategy<deoptimize_lowering>`.
14951
14952Semantics:
14953""""""""""
14954
14955The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
14956deoptimization continuation (denoted using a :ref:`deoptimization
14957operand bundle <deopt_opbundles>`) and returns the value returned by
14958the deoptimization continuation. Defining the semantic properties of
14959the continuation itself is out of scope of the language reference --
14960as far as LLVM is concerned, the deoptimization continuation can
14961invoke arbitrary side effects, including reading from and writing to
14962the entire heap.
14963
14964Deoptimization continuations expressed using ``"deopt"`` operand bundles always
14965continue execution to the end of the physical frame containing them, so all
14966calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
14967
14968 - ``@llvm.experimental.deoptimize`` cannot be invoked.
14969 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
14970 - The ``ret`` instruction must return the value produced by the
14971 ``@llvm.experimental.deoptimize`` call if there is one, or void.
14972
14973Note that the above restrictions imply that the return type for a call to
14974``@llvm.experimental.deoptimize`` will match the return type of its immediate
14975caller.
14976
14977The inliner composes the ``"deopt"`` continuations of the caller into the
14978``"deopt"`` continuations present in the inlinee, and also updates calls to this
14979intrinsic to return directly from the frame of the function it inlined into.
14980
Sanjoy Dase0aa4142016-05-12 01:17:38 +000014981All declarations of ``@llvm.experimental.deoptimize`` must share the
14982same calling convention.
14983
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014984.. _deoptimize_lowering:
14985
14986Lowering:
14987"""""""""
14988
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000014989Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
14990symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
14991ensure that this symbol is defined). The call arguments to
14992``@llvm.experimental.deoptimize`` are lowered as if they were formal
14993arguments of the specified types, and not as varargs.
14994
Sanjoy Dasb51325d2016-03-11 19:08:34 +000014995
Sanjoy Das021de052016-03-31 00:18:46 +000014996'``llvm.experimental.guard``' Intrinsic
14997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14998
14999Syntax:
15000"""""""
15001
15002::
15003
15004 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
15005
15006Overview:
15007"""""""""
15008
15009This intrinsic, together with :ref:`deoptimization operand bundles
15010<deopt_opbundles>`, allows frontends to express guards or checks on
15011optimistic assumptions made during compilation. The semantics of
15012``@llvm.experimental.guard`` is defined in terms of
15013``@llvm.experimental.deoptimize`` -- its body is defined to be
15014equivalent to:
15015
Renato Golin124f2592016-07-20 12:16:38 +000015016.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000015017
Renato Golin124f2592016-07-20 12:16:38 +000015018 define void @llvm.experimental.guard(i1 %pred, <args...>) {
15019 %realPred = and i1 %pred, undef
15020 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000015021
Renato Golin124f2592016-07-20 12:16:38 +000015022 leave:
15023 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
15024 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000015025
Renato Golin124f2592016-07-20 12:16:38 +000015026 continue:
15027 ret void
15028 }
Sanjoy Das021de052016-03-31 00:18:46 +000015029
Sanjoy Das47cf2af2016-04-30 00:55:59 +000015030
15031with the optional ``[, !make.implicit !{}]`` present if and only if it
15032is present on the call site. For more details on ``!make.implicit``,
15033see :doc:`FaultMaps`.
15034
Sanjoy Das021de052016-03-31 00:18:46 +000015035In words, ``@llvm.experimental.guard`` executes the attached
15036``"deopt"`` continuation if (but **not** only if) its first argument
15037is ``false``. Since the optimizer is allowed to replace the ``undef``
15038with an arbitrary value, it can optimize guard to fail "spuriously",
15039i.e. without the original condition being false (hence the "not only
15040if"); and this allows for "check widening" type optimizations.
15041
15042``@llvm.experimental.guard`` cannot be invoked.
15043
15044
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000015045'``llvm.load.relative``' Intrinsic
15046^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15047
15048Syntax:
15049"""""""
15050
15051::
15052
15053 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
15054
15055Overview:
15056"""""""""
15057
15058This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
15059adds ``%ptr`` to that value and returns it. The constant folder specifically
15060recognizes the form of this intrinsic and the constant initializers it may
15061load from; if a loaded constant initializer is known to have the form
15062``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
15063
15064LLVM provides that the calculation of such a constant initializer will
15065not overflow at link time under the medium code model if ``x`` is an
15066``unnamed_addr`` function. However, it does not provide this guarantee for
15067a constant initializer folded into a function body. This intrinsic can be
15068used to avoid the possibility of overflows when loading from such a constant.
15069
Dan Gohman2c74fe92017-11-08 21:59:51 +000015070'``llvm.sideeffect``' Intrinsic
15071^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15072
15073Syntax:
15074"""""""
15075
15076::
15077
15078 declare void @llvm.sideeffect() inaccessiblememonly nounwind
15079
15080Overview:
15081"""""""""
15082
15083The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
15084treat it as having side effects, so it can be inserted into a loop to
15085indicate that the loop shouldn't be assumed to terminate (which could
15086potentially lead to the loop being optimized away entirely), even if it's
15087an infinite loop with no other side effects.
15088
15089Arguments:
15090""""""""""
15091
15092None.
15093
15094Semantics:
15095""""""""""
15096
15097This intrinsic actually does nothing, but optimizers must assume that it
15098has externally observable side effects.
15099
Andrew Trick5e029ce2013-12-24 02:57:25 +000015100Stack Map Intrinsics
15101--------------------
15102
15103LLVM provides experimental intrinsics to support runtime patching
15104mechanisms commonly desired in dynamic language JITs. These intrinsics
15105are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015106
15107Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000015108-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000015109
15110These intrinsics are similar to the standard library memory intrinsics except
15111that they perform memory transfer as a sequence of atomic memory accesses.
15112
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015113.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000015114
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015115'``llvm.memcpy.element.unordered.atomic``' Intrinsic
15116^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000015117
15118Syntax:
15119"""""""
15120
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015121This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000015122any integer bit width and for different address spaces. Not all targets
15123support all bit widths however.
15124
15125::
15126
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015127 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
15128 i8* <src>,
15129 i32 <len>,
15130 i32 <element_size>)
15131 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
15132 i8* <src>,
15133 i64 <len>,
15134 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000015135
15136Overview:
15137"""""""""
15138
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015139The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
15140'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
15141as arrays with elements that are exactly ``element_size`` bytes, and the copy between
15142buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
15143that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015144
15145Arguments:
15146""""""""""
15147
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015148The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
15149intrinsic, with the added constraint that ``len`` is required to be a positive integer
15150multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
15151``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015152
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015153``element_size`` must be a compile-time constant positive power of two no greater than
15154target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015155
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015156For each of the input pointers ``align`` parameter attribute must be specified. It
15157must be a power of two no less than the ``element_size``. Caller guarantees that
15158both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015159
15160Semantics:
15161""""""""""
15162
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015163The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
15164memory from the source location to the destination location. These locations are not
15165allowed to overlap. The memory copy is performed as a sequence of load/store operations
15166where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015167aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015168
15169The order of the copy is unspecified. The same value may be read from the source
15170buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015171element. It is well defined to have concurrent reads and writes to both source and
15172destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015173
15174This intrinsic does not provide any additional ordering guarantees over those
15175provided by a set of unordered loads from the source location and stores to the
15176destination.
15177
15178Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000015179"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000015180
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015181In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
15182lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
15183is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015184
Daniel Neilson57226ef2017-07-12 15:25:26 +000015185Optimizer is allowed to inline memory copy when it's profitable to do so.
15186
15187'``llvm.memmove.element.unordered.atomic``' Intrinsic
15188^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15189
15190Syntax:
15191"""""""
15192
15193This is an overloaded intrinsic. You can use
15194``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
15195different address spaces. Not all targets support all bit widths however.
15196
15197::
15198
15199 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
15200 i8* <src>,
15201 i32 <len>,
15202 i32 <element_size>)
15203 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
15204 i8* <src>,
15205 i64 <len>,
15206 i32 <element_size>)
15207
15208Overview:
15209"""""""""
15210
15211The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
15212of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
15213``src`` are treated as arrays with elements that are exactly ``element_size``
15214bytes, and the copy between buffers uses a sequence of
15215:ref:`unordered atomic <ordering>` load/store operations that are a positive
15216integer multiple of the ``element_size`` in size.
15217
15218Arguments:
15219""""""""""
15220
15221The first three arguments are the same as they are in the
15222:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
15223``len`` is required to be a positive integer multiple of the ``element_size``.
15224If ``len`` is not a positive integer multiple of ``element_size``, then the
15225behaviour of the intrinsic is undefined.
15226
15227``element_size`` must be a compile-time constant positive power of two no
15228greater than a target-specific atomic access size limit.
15229
15230For each of the input pointers the ``align`` parameter attribute must be
15231specified. It must be a power of two no less than the ``element_size``. Caller
15232guarantees that both the source and destination pointers are aligned to that
15233boundary.
15234
15235Semantics:
15236""""""""""
15237
15238The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
15239of memory from the source location to the destination location. These locations
15240are allowed to overlap. The memory copy is performed as a sequence of load/store
15241operations where each access is guaranteed to be a multiple of ``element_size``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015242bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson57226ef2017-07-12 15:25:26 +000015243
15244The order of the copy is unspecified. The same value may be read from the source
15245buffer many times, but only one write is issued to the destination buffer per
15246element. It is well defined to have concurrent reads and writes to both source
15247and destination provided those reads and writes are unordered atomic when
15248specified.
15249
15250This intrinsic does not provide any additional ordering guarantees over those
15251provided by a set of unordered loads from the source location and stores to the
15252destination.
15253
15254Lowering:
15255"""""""""
15256
15257In the most general case call to the
15258'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
15259``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
15260actual element size.
15261
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015262The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000015263
15264.. _int_memset_element_unordered_atomic:
15265
15266'``llvm.memset.element.unordered.atomic``' Intrinsic
15267^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15268
15269Syntax:
15270"""""""
15271
15272This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
15273any integer bit width and for different address spaces. Not all targets
15274support all bit widths however.
15275
15276::
15277
15278 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
15279 i8 <value>,
15280 i32 <len>,
15281 i32 <element_size>)
15282 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
15283 i8 <value>,
15284 i64 <len>,
15285 i32 <element_size>)
15286
15287Overview:
15288"""""""""
15289
15290The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
15291'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
15292with elements that are exactly ``element_size`` bytes, and the assignment to that array
15293uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
15294that are a positive integer multiple of the ``element_size`` in size.
15295
15296Arguments:
15297""""""""""
15298
15299The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
15300intrinsic, with the added constraint that ``len`` is required to be a positive integer
15301multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
15302``element_size``, then the behaviour of the intrinsic is undefined.
15303
15304``element_size`` must be a compile-time constant positive power of two no greater than
15305target-specific atomic access size limit.
15306
15307The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
15308must be a power of two no less than the ``element_size``. Caller guarantees that
15309the destination pointer is aligned to that boundary.
15310
15311Semantics:
15312""""""""""
15313
15314The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
15315memory starting at the destination location to the given ``value``. The memory is
15316set with a sequence of store operations where each access is guaranteed to be a
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015317multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson965613e2017-07-12 21:57:23 +000015318
15319The order of the assignment is unspecified. Only one write is issued to the
15320destination buffer per element. It is well defined to have concurrent reads and
15321writes to the destination provided those reads and writes are unordered atomic
15322when specified.
15323
15324This intrinsic does not provide any additional ordering guarantees over those
15325provided by a set of unordered stores to the destination.
15326
15327Lowering:
15328"""""""""
15329
15330In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
15331lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
15332is replaced with an actual element size.
15333
15334The optimizer is allowed to inline the memory assignment when it's profitable to do so.