blob: 63db11b9485bf977b276265d8c3acbaaf5fa0659 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
Hans Wennborg2cfcc012018-05-22 10:14:07 +000083 can be used on global values to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000327 floating-point types are supported.
Sean Silvab084af42012-12-07 10:36:55 +0000328 - On *X86-64* only supports up to 10 bit type parameters and 6
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000329 floating-point parameters.
Sean Silvab084af42012-12-07 10:36:55 +0000330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Sean Fertilec70d28b2017-10-26 15:00:26 +0000530.. _runtime_preemption_model:
531
532Runtime Preemption Specifiers
533-----------------------------
534
535Global variables, functions and aliases may have an optional runtime preemption
536specifier. If a preemption specifier isn't given explicitly, then a
537symbol is assumed to be ``dso_preemptable``.
538
539``dso_preemptable``
540 Indicates that the function or variable may be replaced by a symbol from
541 outside the linkage unit at runtime.
542
543``dso_local``
544 The compiler may assume that a function or variable marked as ``dso_local``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000545 will resolve to a symbol within the same linkage unit. Direct access will
Sean Fertilec70d28b2017-10-26 15:00:26 +0000546 be generated even if the definition is not within this compilation unit.
547
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000548.. _namedtypes:
549
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000550Structure Types
551---------------
Sean Silvab084af42012-12-07 10:36:55 +0000552
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000553LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000554types <t_struct>`. Literal types are uniqued structurally, but identified types
555are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000556to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000557
Sean Silva706fba52015-08-06 22:56:24 +0000558An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000559
560.. code-block:: llvm
561
562 %mytype = type { %mytype*, i32 }
563
Sean Silvaa1190322015-08-06 22:56:48 +0000564Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000565literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000566
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000567.. _nointptrtype:
568
569Non-Integral Pointer Type
570-------------------------
571
572Note: non-integral pointer types are a work in progress, and they should be
573considered experimental at this time.
574
575LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000576spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
577Non-integral pointer types represent pointers that have an *unspecified* bitwise
578representation; that is, the integral representation may be target dependent or
579unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000580
581``inttoptr`` instructions converting integers to non-integral pointer types are
582ill-typed, and so are ``ptrtoint`` instructions converting values of
583non-integral pointer types to integers. Vector versions of said instructions
584are ill-typed as well.
585
Sean Silvab084af42012-12-07 10:36:55 +0000586.. _globalvars:
587
588Global Variables
589----------------
590
591Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000592instead of run-time.
593
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000594Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000595
596Global variables in other translation units can also be declared, in which
597case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000598
Bob Wilson85b24f22014-06-12 20:40:33 +0000599Either global variable definitions or declarations may have an explicit section
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000600to be placed in and may have an optional explicit alignment specified. If there
601is a mismatch between the explicit or inferred section information for the
602variable declaration and its definition the resulting behavior is undefined.
Bob Wilson85b24f22014-06-12 20:40:33 +0000603
Michael Gottesman006039c2013-01-31 05:48:48 +0000604A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000605the contents of the variable will **never** be modified (enabling better
606optimization, allowing the global data to be placed in the read-only
607section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000608initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000609variable.
610
611LLVM explicitly allows *declarations* of global variables to be marked
612constant, even if the final definition of the global is not. This
613capability can be used to enable slightly better optimization of the
614program, but requires the language definition to guarantee that
615optimizations based on the 'constantness' are valid for the translation
616units that do not include the definition.
617
618As SSA values, global variables define pointer values that are in scope
619(i.e. they dominate) all basic blocks in the program. Global variables
620always define a pointer to their "content" type because they describe a
621region of memory, and all memory objects in LLVM are accessed through
622pointers.
623
624Global variables can be marked with ``unnamed_addr`` which indicates
625that the address is not significant, only the content. Constants marked
626like this can be merged with other constants if they have the same
627initializer. Note that a constant with significant address *can* be
628merged with a ``unnamed_addr`` constant, the result being a constant
629whose address is significant.
630
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000631If the ``local_unnamed_addr`` attribute is given, the address is known to
632not be significant within the module.
633
Sean Silvab084af42012-12-07 10:36:55 +0000634A global variable may be declared to reside in a target-specific
635numbered address space. For targets that support them, address spaces
636may affect how optimizations are performed and/or what target
637instructions are used to access the variable. The default address space
638is zero. The address space qualifier must precede any other attributes.
639
640LLVM allows an explicit section to be specified for globals. If the
641target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000642Additionally, the global can placed in a comdat if the target has the necessary
643support.
Sean Silvab084af42012-12-07 10:36:55 +0000644
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000645External declarations may have an explicit section specified. Section
646information is retained in LLVM IR for targets that make use of this
647information. Attaching section information to an external declaration is an
648assertion that its definition is located in the specified section. If the
649definition is located in a different section, the behavior is undefined.
Erich Keane0343ef82017-08-22 15:30:43 +0000650
Michael Gottesmane743a302013-02-04 03:22:00 +0000651By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000652variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000653initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000654true even for variables potentially accessible from outside the
655module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000656``@llvm.used`` or dllexported variables. This assumption may be suppressed
657by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659An explicit alignment may be specified for a global, which must be a
660power of 2. If not present, or if the alignment is set to zero, the
661alignment of the global is set by the target to whatever it feels
662convenient. If an explicit alignment is specified, the global is forced
663to have exactly that alignment. Targets and optimizers are not allowed
664to over-align the global if the global has an assigned section. In this
665case, the extra alignment could be observable: for example, code could
666assume that the globals are densely packed in their section and try to
667iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000668iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000669
Javed Absarf3d79042017-05-11 12:28:08 +0000670Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
Sean Fertilec70d28b2017-10-26 15:00:26 +0000671an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
Javed Absarf3d79042017-05-11 12:28:08 +0000672an optional :ref:`global attributes <glattrs>` and
673an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000674
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000675Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000676:ref:`Thread Local Storage Model <tls_model>`.
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678Syntax::
679
Sean Fertilec70d28b2017-10-26 15:00:26 +0000680 @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
681 [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
683 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000684 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000686 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000687
Sean Silvab084af42012-12-07 10:36:55 +0000688For example, the following defines a global in a numbered address space
689with an initializer, section, and alignment:
690
691.. code-block:: llvm
692
693 @G = addrspace(5) constant float 1.0, section "foo", align 4
694
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000695The following example just declares a global variable
696
697.. code-block:: llvm
698
699 @G = external global i32
700
Sean Silvab084af42012-12-07 10:36:55 +0000701The following example defines a thread-local global with the
702``initialexec`` TLS model:
703
704.. code-block:: llvm
705
706 @G = thread_local(initialexec) global i32 0, align 4
707
708.. _functionstructure:
709
710Functions
711---------
712
713LLVM function definitions consist of the "``define``" keyword, an
Sean Fertilec70d28b2017-10-26 15:00:26 +0000714optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
715specifier <runtime_preemption_model>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000716style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
717an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000718an optional ``unnamed_addr`` attribute, a return type, an optional
719:ref:`parameter attribute <paramattrs>` for the return type, a function
720name, a (possibly empty) argument list (each with optional :ref:`parameter
721attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000722an optional address space, an optional section, an optional alignment,
David Majnemerdad0a642014-06-27 18:19:56 +0000723an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000724an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000725an optional :ref:`prologue <prologuedata>`,
726an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000727an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000728an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000731optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
732<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
733optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000734or ``local_unnamed_addr`` attribute, an optional address space, a return type,
735an optional :ref:`parameter attribute <paramattrs>` for the return type, a function name, a possibly
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000736empty list of arguments, an optional alignment, an optional :ref:`garbage
737collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
738:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000739
Bill Wendling6822ecb2013-10-27 05:09:12 +0000740A function definition contains a list of basic blocks, forming the CFG (Control
741Flow Graph) for the function. Each basic block may optionally start with a label
742(giving the basic block a symbol table entry), contains a list of instructions,
743and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
744function return). If an explicit label is not provided, a block is assigned an
745implicit numbered label, using the next value from the same counter as used for
746unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
747entry block does not have an explicit label, it will be assigned label "%0",
748then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000749
750The first basic block in a function is special in two ways: it is
751immediately executed on entrance to the function, and it is not allowed
752to have predecessor basic blocks (i.e. there can not be any branches to
753the entry block of a function). Because the block can have no
754predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
755
756LLVM allows an explicit section to be specified for functions. If the
757target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000758Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000759
760An explicit alignment may be specified for a function. If not present,
761or if the alignment is set to zero, the alignment of the function is set
762by the target to whatever it feels convenient. If an explicit alignment
763is specified, the function is forced to have at least that much
764alignment. All alignments must be a power of 2.
765
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000766If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000767be significant and two identical functions can be merged.
768
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000769If the ``local_unnamed_addr`` attribute is given, the address is known to
770not be significant within the module.
771
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000772If an explicit address space is not given, it will default to the program
773address space from the :ref:`datalayout string<langref_datalayout>`.
774
Sean Silvab084af42012-12-07 10:36:55 +0000775Syntax::
776
Sean Fertilec70d28b2017-10-26 15:00:26 +0000777 define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000778 [cconv] [ret attrs]
779 <ResultType> @<FunctionName> ([argument list])
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000780 [(unnamed_addr|local_unnamed_addr)] [AddrSpace] [fn Attrs]
781 [section "name"] [comdat [($name)]] [align N] [gc] [prefix Constant]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000782 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000783
Sean Silva706fba52015-08-06 22:56:24 +0000784The argument list is a comma separated sequence of arguments where each
785argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000786
787Syntax::
788
789 <type> [parameter Attrs] [name]
790
791
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000792.. _langref_aliases:
793
Sean Silvab084af42012-12-07 10:36:55 +0000794Aliases
795-------
796
Rafael Espindola64c1e182014-06-03 02:41:57 +0000797Aliases, unlike function or variables, don't create any new data. They
798are just a new symbol and metadata for an existing position.
799
800Aliases have a name and an aliasee that is either a global value or a
801constant expression.
802
Nico Rieck7157bb72014-01-14 15:22:47 +0000803Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Sean Fertilec70d28b2017-10-26 15:00:26 +0000804:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000805:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
806<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000807
808Syntax::
809
Sean Fertilec70d28b2017-10-26 15:00:26 +0000810 @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000811
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000812The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000813``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000814might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000815
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000816Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000817the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
818to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000819
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000820If the ``local_unnamed_addr`` attribute is given, the address is known to
821not be significant within the module.
822
Rafael Espindola64c1e182014-06-03 02:41:57 +0000823Since aliases are only a second name, some restrictions apply, of which
824some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000825
Rafael Espindola64c1e182014-06-03 02:41:57 +0000826* The expression defining the aliasee must be computable at assembly
827 time. Since it is just a name, no relocations can be used.
828
829* No alias in the expression can be weak as the possibility of the
830 intermediate alias being overridden cannot be represented in an
831 object file.
832
833* No global value in the expression can be a declaration, since that
834 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000835
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000836.. _langref_ifunc:
837
838IFuncs
839-------
840
841IFuncs, like as aliases, don't create any new data or func. They are just a new
842symbol that dynamic linker resolves at runtime by calling a resolver function.
843
844IFuncs have a name and a resolver that is a function called by dynamic linker
845that returns address of another function associated with the name.
846
847IFunc may have an optional :ref:`linkage type <linkage>` and an optional
848:ref:`visibility style <visibility>`.
849
850Syntax::
851
852 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
853
854
David Majnemerdad0a642014-06-27 18:19:56 +0000855.. _langref_comdats:
856
857Comdats
858-------
859
860Comdat IR provides access to COFF and ELF object file COMDAT functionality.
861
Sean Silvaa1190322015-08-06 22:56:48 +0000862Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000863specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000864that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000865aliasee computes to, if any.
866
867Comdats have a selection kind to provide input on how the linker should
868choose between keys in two different object files.
869
870Syntax::
871
872 $<Name> = comdat SelectionKind
873
874The selection kind must be one of the following:
875
876``any``
877 The linker may choose any COMDAT key, the choice is arbitrary.
878``exactmatch``
879 The linker may choose any COMDAT key but the sections must contain the
880 same data.
881``largest``
882 The linker will choose the section containing the largest COMDAT key.
883``noduplicates``
884 The linker requires that only section with this COMDAT key exist.
885``samesize``
886 The linker may choose any COMDAT key but the sections must contain the
887 same amount of data.
888
Sam Cleggea7cace2018-01-09 23:43:14 +0000889Note that the Mach-O platform doesn't support COMDATs, and ELF and WebAssembly
890only support ``any`` as a selection kind.
David Majnemerdad0a642014-06-27 18:19:56 +0000891
892Here is an example of a COMDAT group where a function will only be selected if
893the COMDAT key's section is the largest:
894
Renato Golin124f2592016-07-20 12:16:38 +0000895.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000896
897 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000898 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000899
Rafael Espindola83a362c2015-01-06 22:55:16 +0000900 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000901 ret void
902 }
903
Rafael Espindola83a362c2015-01-06 22:55:16 +0000904As a syntactic sugar the ``$name`` can be omitted if the name is the same as
905the global name:
906
Renato Golin124f2592016-07-20 12:16:38 +0000907.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000908
909 $foo = comdat any
910 @foo = global i32 2, comdat
911
912
David Majnemerdad0a642014-06-27 18:19:56 +0000913In a COFF object file, this will create a COMDAT section with selection kind
914``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
915and another COMDAT section with selection kind
916``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000917section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000918
919There are some restrictions on the properties of the global object.
920It, or an alias to it, must have the same name as the COMDAT group when
921targeting COFF.
922The contents and size of this object may be used during link-time to determine
923which COMDAT groups get selected depending on the selection kind.
924Because the name of the object must match the name of the COMDAT group, the
925linkage of the global object must not be local; local symbols can get renamed
926if a collision occurs in the symbol table.
927
928The combined use of COMDATS and section attributes may yield surprising results.
929For example:
930
Renato Golin124f2592016-07-20 12:16:38 +0000931.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000932
933 $foo = comdat any
934 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000935 @g1 = global i32 42, section "sec", comdat($foo)
936 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000937
938From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000939with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000940COMDAT groups and COMDATs, at the object file level, are represented by
941sections.
942
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000943Note that certain IR constructs like global variables and functions may
944create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000945COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000946in individual sections (e.g. when `-data-sections` or `-function-sections`
947is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000948
Sean Silvab084af42012-12-07 10:36:55 +0000949.. _namedmetadatastructure:
950
951Named Metadata
952--------------
953
954Named metadata is a collection of metadata. :ref:`Metadata
955nodes <metadata>` (but not metadata strings) are the only valid
956operands for a named metadata.
957
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000958#. Named metadata are represented as a string of characters with the
959 metadata prefix. The rules for metadata names are the same as for
960 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
961 are still valid, which allows any character to be part of a name.
962
Sean Silvab084af42012-12-07 10:36:55 +0000963Syntax::
964
965 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000966 !0 = !{!"zero"}
967 !1 = !{!"one"}
968 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000969 ; A named metadata.
970 !name = !{!0, !1, !2}
971
972.. _paramattrs:
973
974Parameter Attributes
975--------------------
976
977The return type and each parameter of a function type may have a set of
978*parameter attributes* associated with them. Parameter attributes are
979used to communicate additional information about the result or
980parameters of a function. Parameter attributes are considered to be part
981of the function, not of the function type, so functions with different
982parameter attributes can have the same function type.
983
984Parameter attributes are simple keywords that follow the type specified.
985If multiple parameter attributes are needed, they are space separated.
986For example:
987
988.. code-block:: llvm
989
990 declare i32 @printf(i8* noalias nocapture, ...)
991 declare i32 @atoi(i8 zeroext)
992 declare signext i8 @returns_signed_char()
993
994Note that any attributes for the function result (``nounwind``,
995``readonly``) come immediately after the argument list.
996
997Currently, only the following parameter attributes are defined:
998
999``zeroext``
1000 This indicates to the code generator that the parameter or return
1001 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +00001002 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +00001003``signext``
1004 This indicates to the code generator that the parameter or return
1005 value should be sign-extended to the extent required by the target's
1006 ABI (which is usually 32-bits) by the caller (for a parameter) or
1007 the callee (for a return value).
1008``inreg``
1009 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +00001010 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +00001011 a function call or return (usually, by putting it in a register as
1012 opposed to memory, though some targets use it to distinguish between
1013 two different kinds of registers). Use of this attribute is
1014 target-specific.
1015``byval``
1016 This indicates that the pointer parameter should really be passed by
1017 value to the function. The attribute implies that a hidden copy of
1018 the pointee is made between the caller and the callee, so the callee
1019 is unable to modify the value in the caller. This attribute is only
1020 valid on LLVM pointer arguments. It is generally used to pass
1021 structs and arrays by value, but is also valid on pointers to
1022 scalars. The copy is considered to belong to the caller not the
1023 callee (for example, ``readonly`` functions should not write to
1024 ``byval`` parameters). This is not a valid attribute for return
1025 values.
1026
1027 The byval attribute also supports specifying an alignment with the
1028 align attribute. It indicates the alignment of the stack slot to
1029 form and the known alignment of the pointer specified to the call
1030 site. If the alignment is not specified, then the code generator
1031 makes a target-specific assumption.
1032
Reid Klecknera534a382013-12-19 02:14:12 +00001033.. _attr_inalloca:
1034
1035``inalloca``
1036
Reid Kleckner60d3a832014-01-16 22:59:24 +00001037 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001038 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001039 be a pointer to stack memory produced by an ``alloca`` instruction.
1040 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001041 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001042 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001043
Reid Kleckner436c42e2014-01-17 23:58:17 +00001044 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001045 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001046 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001047 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001048 ``inalloca`` attribute also disables LLVM's implicit lowering of
1049 large aggregate return values, which means that frontend authors
1050 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001051
Reid Kleckner60d3a832014-01-16 22:59:24 +00001052 When the call site is reached, the argument allocation must have
1053 been the most recent stack allocation that is still live, or the
Eli Friedman0f522bd2018-07-25 18:26:38 +00001054 behavior is undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001055 space after an argument allocation and before its call site, but it
1056 must be cleared off with :ref:`llvm.stackrestore
1057 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001058
1059 See :doc:`InAlloca` for more information on how to use this
1060 attribute.
1061
Sean Silvab084af42012-12-07 10:36:55 +00001062``sret``
1063 This indicates that the pointer parameter specifies the address of a
1064 structure that is the return value of the function in the source
1065 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001066 loads and stores to the structure may be assumed by the callee not
1067 to trap and to be properly aligned. This is not a valid attribute
1068 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001069
Daniel Neilson1e687242018-01-19 17:13:12 +00001070.. _attr_align:
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001071
Hal Finkelccc70902014-07-22 16:58:55 +00001072``align <n>``
1073 This indicates that the pointer value may be assumed by the optimizer to
1074 have the specified alignment.
1075
1076 Note that this attribute has additional semantics when combined with the
1077 ``byval`` attribute.
1078
Sean Silva1703e702014-04-08 21:06:22 +00001079.. _noalias:
1080
Sean Silvab084af42012-12-07 10:36:55 +00001081``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001082 This indicates that objects accessed via pointer values
1083 :ref:`based <pointeraliasing>` on the argument or return value are not also
1084 accessed, during the execution of the function, via pointer values not
1085 *based* on the argument or return value. The attribute on a return value
1086 also has additional semantics described below. The caller shares the
1087 responsibility with the callee for ensuring that these requirements are met.
1088 For further details, please see the discussion of the NoAlias response in
1089 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001090
1091 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001092 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001093
1094 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001095 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1096 attribute on return values are stronger than the semantics of the attribute
1097 when used on function arguments. On function return values, the ``noalias``
1098 attribute indicates that the function acts like a system memory allocation
1099 function, returning a pointer to allocated storage disjoint from the
1100 storage for any other object accessible to the caller.
1101
Sean Silvab084af42012-12-07 10:36:55 +00001102``nocapture``
1103 This indicates that the callee does not make any copies of the
1104 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001105 attribute for return values. Addresses used in volatile operations
1106 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001107
1108.. _nest:
1109
1110``nest``
1111 This indicates that the pointer parameter can be excised using the
1112 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001113 attribute for return values and can only be applied to one parameter.
1114
1115``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001116 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001117 value. This is a hint to the optimizer and code generator used when
1118 generating the caller, allowing value propagation, tail call optimization,
1119 and omission of register saves and restores in some cases; it is not
1120 checked or enforced when generating the callee. The parameter and the
1121 function return type must be valid operands for the
1122 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1123 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001124
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001125``nonnull``
1126 This indicates that the parameter or return pointer is not null. This
1127 attribute may only be applied to pointer typed parameters. This is not
Eli Friedman0f522bd2018-07-25 18:26:38 +00001128 checked or enforced by LLVM; if the parameter or return pointer is null,
1129 the behavior is undefined.
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001130
Hal Finkelb0407ba2014-07-18 15:51:28 +00001131``dereferenceable(<n>)``
1132 This indicates that the parameter or return pointer is dereferenceable. This
1133 attribute may only be applied to pointer typed parameters. A pointer that
1134 is dereferenceable can be loaded from speculatively without a risk of
1135 trapping. The number of bytes known to be dereferenceable must be provided
1136 in parentheses. It is legal for the number of bytes to be less than the
1137 size of the pointee type. The ``nonnull`` attribute does not imply
1138 dereferenceability (consider a pointer to one element past the end of an
1139 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1140 ``addrspace(0)`` (which is the default address space).
1141
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001142``dereferenceable_or_null(<n>)``
1143 This indicates that the parameter or return value isn't both
1144 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001145 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001146 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1147 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1148 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1149 and in other address spaces ``dereferenceable_or_null(<n>)``
1150 implies that a pointer is at least one of ``dereferenceable(<n>)``
1151 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001152 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001153 pointer typed parameters.
1154
Manman Renf46262e2016-03-29 17:37:21 +00001155``swiftself``
1156 This indicates that the parameter is the self/context parameter. This is not
1157 a valid attribute for return values and can only be applied to one
1158 parameter.
1159
Manman Ren9bfd0d02016-04-01 21:41:15 +00001160``swifterror``
1161 This attribute is motivated to model and optimize Swift error handling. It
1162 can be applied to a parameter with pointer to pointer type or a
1163 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001164 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1165 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1166 the parameter or the alloca) can only be loaded and stored from, or used as
1167 a ``swifterror`` argument. This is not a valid attribute for return values
1168 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001169
1170 These constraints allow the calling convention to optimize access to
1171 ``swifterror`` variables by associating them with a specific register at
1172 call boundaries rather than placing them in memory. Since this does change
1173 the calling convention, a function which uses the ``swifterror`` attribute
1174 on a parameter is not ABI-compatible with one which does not.
1175
1176 These constraints also allow LLVM to assume that a ``swifterror`` argument
1177 does not alias any other memory visible within a function and that a
1178 ``swifterror`` alloca passed as an argument does not escape.
1179
Sean Silvab084af42012-12-07 10:36:55 +00001180.. _gc:
1181
Philip Reamesf80bbff2015-02-25 23:45:20 +00001182Garbage Collector Strategy Names
1183--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001184
Philip Reamesf80bbff2015-02-25 23:45:20 +00001185Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001186string:
1187
1188.. code-block:: llvm
1189
1190 define void @f() gc "name" { ... }
1191
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001192The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001193<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001194strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001195named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001196garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001197which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001198
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001199.. _prefixdata:
1200
1201Prefix Data
1202-----------
1203
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001204Prefix data is data associated with a function which the code
1205generator will emit immediately before the function's entrypoint.
1206The purpose of this feature is to allow frontends to associate
1207language-specific runtime metadata with specific functions and make it
1208available through the function pointer while still allowing the
1209function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001210
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001211To access the data for a given function, a program may bitcast the
1212function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001213index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001214the prefix data. For instance, take the example of a function annotated
1215with a single ``i32``,
1216
1217.. code-block:: llvm
1218
1219 define void @f() prefix i32 123 { ... }
1220
1221The prefix data can be referenced as,
1222
1223.. code-block:: llvm
1224
David Blaikie16a97eb2015-03-04 22:02:58 +00001225 %0 = bitcast void* () @f to i32*
1226 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001227 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001228
1229Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001230of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231beginning of the prefix data is aligned. This means that if the size
1232of the prefix data is not a multiple of the alignment size, the
1233function's entrypoint will not be aligned. If alignment of the
1234function's entrypoint is desired, padding must be added to the prefix
1235data.
1236
Sean Silvaa1190322015-08-06 22:56:48 +00001237A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001238to the ``available_externally`` linkage in that the data may be used by the
1239optimizers but will not be emitted in the object file.
1240
1241.. _prologuedata:
1242
1243Prologue Data
1244-------------
1245
1246The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1247be inserted prior to the function body. This can be used for enabling
1248function hot-patching and instrumentation.
1249
1250To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001251have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001252bytes which decode to a sequence of machine instructions, valid for the
1253module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001254the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001255the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001256definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001257makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001258
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001259A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001260which encodes the ``nop`` instruction:
1261
Renato Golin124f2592016-07-20 12:16:38 +00001262.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001263
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001264 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001265
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001266Generally prologue data can be formed by encoding a relative branch instruction
1267which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001268x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1269
Renato Golin124f2592016-07-20 12:16:38 +00001270.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001271
1272 %0 = type <{ i8, i8, i8* }>
1273
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001274 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001275
Sean Silvaa1190322015-08-06 22:56:48 +00001276A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001277to the ``available_externally`` linkage in that the data may be used by the
1278optimizers but will not be emitted in the object file.
1279
David Majnemer7fddecc2015-06-17 20:52:32 +00001280.. _personalityfn:
1281
1282Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001283--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001284
1285The ``personality`` attribute permits functions to specify what function
1286to use for exception handling.
1287
Bill Wendling63b88192013-02-06 06:52:58 +00001288.. _attrgrp:
1289
1290Attribute Groups
1291----------------
1292
1293Attribute groups are groups of attributes that are referenced by objects within
1294the IR. They are important for keeping ``.ll`` files readable, because a lot of
1295functions will use the same set of attributes. In the degenerative case of a
1296``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1297group will capture the important command line flags used to build that file.
1298
1299An attribute group is a module-level object. To use an attribute group, an
1300object references the attribute group's ID (e.g. ``#37``). An object may refer
1301to more than one attribute group. In that situation, the attributes from the
1302different groups are merged.
1303
1304Here is an example of attribute groups for a function that should always be
1305inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1306
1307.. code-block:: llvm
1308
1309 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001310 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001311
1312 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001313 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001314
1315 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1316 define void @f() #0 #1 { ... }
1317
Sean Silvab084af42012-12-07 10:36:55 +00001318.. _fnattrs:
1319
1320Function Attributes
1321-------------------
1322
1323Function attributes are set to communicate additional information about
1324a function. Function attributes are considered to be part of the
1325function, not of the function type, so functions with different function
1326attributes can have the same function type.
1327
1328Function attributes are simple keywords that follow the type specified.
1329If multiple attributes are needed, they are space separated. For
1330example:
1331
1332.. code-block:: llvm
1333
1334 define void @f() noinline { ... }
1335 define void @f() alwaysinline { ... }
1336 define void @f() alwaysinline optsize { ... }
1337 define void @f() optsize { ... }
1338
Sean Silvab084af42012-12-07 10:36:55 +00001339``alignstack(<n>)``
1340 This attribute indicates that, when emitting the prologue and
1341 epilogue, the backend should forcibly align the stack pointer.
1342 Specify the desired alignment, which must be a power of two, in
1343 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001344``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1345 This attribute indicates that the annotated function will always return at
1346 least a given number of bytes (or null). Its arguments are zero-indexed
1347 parameter numbers; if one argument is provided, then it's assumed that at
1348 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1349 returned pointer. If two are provided, then it's assumed that
1350 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1351 available. The referenced parameters must be integer types. No assumptions
1352 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001353``alwaysinline``
1354 This attribute indicates that the inliner should attempt to inline
1355 this function into callers whenever possible, ignoring any active
1356 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001357``builtin``
1358 This indicates that the callee function at a call site should be
1359 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001360 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001361 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001362 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001363``cold``
1364 This attribute indicates that this function is rarely called. When
1365 computing edge weights, basic blocks post-dominated by a cold
1366 function call are also considered to be cold; and, thus, given low
1367 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001368``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001369 In some parallel execution models, there exist operations that cannot be
1370 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001371 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001372
Justin Lebar58535b12016-02-17 17:46:41 +00001373 The ``convergent`` attribute may appear on functions or call/invoke
1374 instructions. When it appears on a function, it indicates that calls to
1375 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001376 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001377 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001378 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001379
Justin Lebar58535b12016-02-17 17:46:41 +00001380 When it appears on a call/invoke, the ``convergent`` attribute indicates
1381 that we should treat the call as though we're calling a convergent
1382 function. This is particularly useful on indirect calls; without this we
1383 may treat such calls as though the target is non-convergent.
1384
1385 The optimizer may remove the ``convergent`` attribute on functions when it
1386 can prove that the function does not execute any convergent operations.
1387 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1388 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001389``inaccessiblememonly``
1390 This attribute indicates that the function may only access memory that
1391 is not accessible by the module being compiled. This is a weaker form
Eli Friedman0f522bd2018-07-25 18:26:38 +00001392 of ``readnone``. If the function reads or writes other memory, the
1393 behavior is undefined.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001394``inaccessiblemem_or_argmemonly``
1395 This attribute indicates that the function may only access memory that is
1396 either not accessible by the module being compiled, or is pointed to
Eli Friedman0f522bd2018-07-25 18:26:38 +00001397 by its pointer arguments. This is a weaker form of ``argmemonly``. If the
1398 function reads or writes other memory, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001399``inlinehint``
1400 This attribute indicates that the source code contained a hint that
1401 inlining this function is desirable (such as the "inline" keyword in
1402 C/C++). It is just a hint; it imposes no requirements on the
1403 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001404``jumptable``
1405 This attribute indicates that the function should be added to a
1406 jump-instruction table at code-generation time, and that all address-taken
1407 references to this function should be replaced with a reference to the
1408 appropriate jump-instruction-table function pointer. Note that this creates
1409 a new pointer for the original function, which means that code that depends
1410 on function-pointer identity can break. So, any function annotated with
1411 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001412``minsize``
1413 This attribute suggests that optimization passes and code generator
1414 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001415 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001416 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001417``naked``
1418 This attribute disables prologue / epilogue emission for the
1419 function. This can have very system-specific consequences.
Sumanth Gundapaneni6af104e2017-07-28 22:26:22 +00001420``no-jump-tables``
1421 When this attribute is set to true, the jump tables and lookup tables that
1422 can be generated from a switch case lowering are disabled.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001423``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001424 This indicates that the callee function at a call site is not recognized as
1425 a built-in function. LLVM will retain the original call and not replace it
1426 with equivalent code based on the semantics of the built-in function, unless
1427 the call site uses the ``builtin`` attribute. This is valid at call sites
1428 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001429``noduplicate``
1430 This attribute indicates that calls to the function cannot be
1431 duplicated. A call to a ``noduplicate`` function may be moved
1432 within its parent function, but may not be duplicated within
1433 its parent function.
1434
1435 A function containing a ``noduplicate`` call may still
1436 be an inlining candidate, provided that the call is not
1437 duplicated by inlining. That implies that the function has
1438 internal linkage and only has one call site, so the original
1439 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001440``noimplicitfloat``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001441 This attributes disables implicit floating-point instructions.
Sean Silvab084af42012-12-07 10:36:55 +00001442``noinline``
1443 This attribute indicates that the inliner should never inline this
1444 function in any situation. This attribute may not be used together
1445 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001446``nonlazybind``
1447 This attribute suppresses lazy symbol binding for the function. This
1448 may make calls to the function faster, at the cost of extra program
1449 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001450``noredzone``
1451 This attribute indicates that the code generator should not use a
1452 red zone, even if the target-specific ABI normally permits it.
Kristina Brooks312fcc12018-10-18 03:14:37 +00001453``indirect-tls-seg-refs``
1454 This attribute indicates that the code generator should not use
1455 direct TLS access through segment registers, even if the
1456 target-specific ABI normally permits it.
Sean Silvab084af42012-12-07 10:36:55 +00001457``noreturn``
1458 This function attribute indicates that the function never returns
1459 normally. This produces undefined behavior at runtime if the
1460 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001461``norecurse``
1462 This function attribute indicates that the function does not call itself
1463 either directly or indirectly down any possible call path. This produces
1464 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001465``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001466 This function attribute indicates that the function never raises an
1467 exception. If the function does raise an exception, its runtime
1468 behavior is undefined. However, functions marked nounwind may still
1469 trap or generate asynchronous exceptions. Exception handling schemes
1470 that are recognized by LLVM to handle asynchronous exceptions, such
1471 as SEH, will still provide their implementation defined semantics.
Manoj Gupta77eeac32018-07-09 22:27:23 +00001472``"null-pointer-is-valid"``
1473 If ``"null-pointer-is-valid"`` is set to ``"true"``, then ``null`` address
1474 in address-space 0 is considered to be a valid address for memory loads and
1475 stores. Any analysis or optimization should not treat dereferencing a
1476 pointer to ``null`` as undefined behavior in this function.
1477 Note: Comparing address of a global variable to ``null`` may still
1478 evaluate to false because of a limitation in querying this attribute inside
1479 constant expressions.
Matt Morehouse31819412018-03-22 19:50:10 +00001480``optforfuzzing``
1481 This attribute indicates that this function should be optimized
1482 for maximum fuzzing signal.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001483``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001484 This function attribute indicates that most optimization passes will skip
1485 this function, with the exception of interprocedural optimization passes.
1486 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001487 This attribute cannot be used together with the ``alwaysinline``
1488 attribute; this attribute is also incompatible
1489 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001490
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001491 This attribute requires the ``noinline`` attribute to be specified on
1492 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001493 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001494 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001495``optsize``
1496 This attribute suggests that optimization passes and code generator
1497 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001498 and otherwise do optimizations specifically to reduce code size as
1499 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001500``"patchable-function"``
1501 This attribute tells the code generator that the code
1502 generated for this function needs to follow certain conventions that
1503 make it possible for a runtime function to patch over it later.
1504 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001505 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001506
1507 * ``"prologue-short-redirect"`` - This style of patchable
1508 function is intended to support patching a function prologue to
1509 redirect control away from the function in a thread safe
1510 manner. It guarantees that the first instruction of the
1511 function will be large enough to accommodate a short jump
1512 instruction, and will be sufficiently aligned to allow being
1513 fully changed via an atomic compare-and-swap instruction.
1514 While the first requirement can be satisfied by inserting large
1515 enough NOP, LLVM can and will try to re-purpose an existing
1516 instruction (i.e. one that would have to be emitted anyway) as
1517 the patchable instruction larger than a short jump.
1518
1519 ``"prologue-short-redirect"`` is currently only supported on
1520 x86-64.
1521
1522 This attribute by itself does not imply restrictions on
1523 inter-procedural optimizations. All of the semantic effects the
1524 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001525``"probe-stack"``
1526 This attribute indicates that the function will trigger a guard region
1527 in the end of the stack. It ensures that accesses to the stack must be
1528 no further apart than the size of the guard region to a previous
1529 access of the stack. It takes one required string value, the name of
1530 the stack probing function that will be called.
1531
1532 If a function that has a ``"probe-stack"`` attribute is inlined into
1533 a function with another ``"probe-stack"`` attribute, the resulting
1534 function has the ``"probe-stack"`` attribute of the caller. If a
1535 function that has a ``"probe-stack"`` attribute is inlined into a
1536 function that has no ``"probe-stack"`` attribute at all, the resulting
1537 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001538``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001539 On a function, this attribute indicates that the function computes its
1540 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001541 without dereferencing any pointer arguments or otherwise accessing
1542 any mutable state (e.g. memory, control registers, etc) visible to
1543 caller functions. It does not write through any pointer arguments
1544 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001545 to callers. This means while it cannot unwind exceptions by calling
1546 the ``C++`` exception throwing methods (since they write to memory), there may
1547 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1548 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001549
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001550 On an argument, this attribute indicates that the function does not
1551 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001552 memory that the pointer points to if accessed through other pointers.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001553
1554 If a readnone function reads or writes memory visible to the program, or
1555 has other side-effects, the behavior is undefined. If a function reads from
1556 or writes to a readnone pointer argument, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001557``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001558 On a function, this attribute indicates that the function does not write
1559 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001560 modify any state (e.g. memory, control registers, etc) visible to
1561 caller functions. It may dereference pointer arguments and read
1562 state that may be set in the caller. A readonly function always
1563 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001564 called with the same set of arguments and global state. This means while it
1565 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1566 (since they write to memory), there may be non-``C++`` mechanisms that throw
1567 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001568
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001569 On an argument, this attribute indicates that the function does not write
1570 through this pointer argument, even though it may write to the memory that
1571 the pointer points to.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001572
1573 If a readonly function writes memory visible to the program, or
1574 has other side-effects, the behavior is undefined. If a function writes to
1575 a readonly pointer argument, the behavior is undefined.
whitequark08b20352017-06-22 23:22:36 +00001576``"stack-probe-size"``
1577 This attribute controls the behavior of stack probes: either
1578 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1579 It defines the size of the guard region. It ensures that if the function
1580 may use more stack space than the size of the guard region, stack probing
1581 sequence will be emitted. It takes one required integer value, which
1582 is 4096 by default.
1583
1584 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1585 a function with another ``"stack-probe-size"`` attribute, the resulting
1586 function has the ``"stack-probe-size"`` attribute that has the lower
1587 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1588 inlined into a function that has no ``"stack-probe-size"`` attribute
1589 at all, the resulting function has the ``"stack-probe-size"`` attribute
1590 of the callee.
Hans Wennborg89c35fc2018-02-23 13:46:25 +00001591``"no-stack-arg-probe"``
1592 This attribute disables ABI-required stack probes, if any.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001593``writeonly``
1594 On a function, this attribute indicates that the function may write to but
1595 does not read from memory.
1596
1597 On an argument, this attribute indicates that the function may write to but
1598 does not read through this pointer argument (even though it may read from
1599 the memory that the pointer points to).
Eli Friedman0f522bd2018-07-25 18:26:38 +00001600
1601 If a writeonly function reads memory visible to the program, or
1602 has other side-effects, the behavior is undefined. If a function reads
1603 from a writeonly pointer argument, the behavior is undefined.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001604``argmemonly``
1605 This attribute indicates that the only memory accesses inside function are
1606 loads and stores from objects pointed to by its pointer-typed arguments,
1607 with arbitrary offsets. Or in other words, all memory operations in the
1608 function can refer to memory only using pointers based on its function
1609 arguments.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001610
Igor Laevsky39d662f2015-07-11 10:30:36 +00001611 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1612 in order to specify that function reads only from its arguments.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001613
1614 If an argmemonly function reads or writes memory other than the pointer
1615 arguments, or has other side-effects, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001616``returns_twice``
1617 This attribute indicates that this function can return twice. The C
1618 ``setjmp`` is an example of such a function. The compiler disables
1619 some optimizations (like tail calls) in the caller of these
1620 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001621``safestack``
1622 This attribute indicates that
1623 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1624 protection is enabled for this function.
1625
1626 If a function that has a ``safestack`` attribute is inlined into a
1627 function that doesn't have a ``safestack`` attribute or which has an
1628 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1629 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001630``sanitize_address``
1631 This attribute indicates that AddressSanitizer checks
1632 (dynamic address safety analysis) are enabled for this function.
1633``sanitize_memory``
1634 This attribute indicates that MemorySanitizer checks (dynamic detection
1635 of accesses to uninitialized memory) are enabled for this function.
1636``sanitize_thread``
1637 This attribute indicates that ThreadSanitizer checks
1638 (dynamic thread safety analysis) are enabled for this function.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00001639``sanitize_hwaddress``
1640 This attribute indicates that HWAddressSanitizer checks
1641 (dynamic address safety analysis based on tagged pointers) are enabled for
1642 this function.
Chandler Carruth664aa862018-09-04 12:38:00 +00001643``speculative_load_hardening``
1644 This attribute indicates that
1645 `Speculative Load Hardening <https://llvm.org/docs/SpeculativeLoadHardening.html>`_
Zola Bridgescbac3ad2018-11-27 19:56:46 +00001646 should be enabled for the function body.
1647
1648 Speculative Load Hardening is a best-effort mitigation against
1649 information leak attacks that make use of control flow
1650 miss-speculation - specifically miss-speculation of whether a branch
1651 is taken or not. Typically vulnerabilities enabling such attacks are
1652 classified as "Spectre variant #1". Notably, this does not attempt to
1653 mitigate against miss-speculation of branch target, classified as
1654 "Spectre variant #2" vulnerabilities.
Chandler Carruth664aa862018-09-04 12:38:00 +00001655
1656 When inlining, the attribute is sticky. Inlining a function that carries
1657 this attribute will cause the caller to gain the attribute. This is intended
1658 to provide a maximally conservative model where the code in a function
1659 annotated with this attribute will always (even after inlining) end up
1660 hardened.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001661``speculatable``
1662 This function attribute indicates that the function does not have any
1663 effects besides calculating its result and does not have undefined behavior.
1664 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001665 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001666 externally observable. This attribute is only valid on functions
1667 and declarations, not on individual call sites. If a function is
1668 incorrectly marked as speculatable and really does exhibit
1669 undefined behavior, the undefined behavior may be observed even
1670 if the call site is dead code.
1671
Sean Silvab084af42012-12-07 10:36:55 +00001672``ssp``
1673 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001674 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001675 placed on the stack before the local variables that's checked upon
1676 return from the function to see if it has been overwritten. A
1677 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001678 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001679
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001680 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1681 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1682 - Calls to alloca() with variable sizes or constant sizes greater than
1683 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001684
Josh Magee24c7f062014-02-01 01:36:16 +00001685 Variables that are identified as requiring a protector will be arranged
1686 on the stack such that they are adjacent to the stack protector guard.
1687
Sean Silvab084af42012-12-07 10:36:55 +00001688 If a function that has an ``ssp`` attribute is inlined into a
1689 function that doesn't have an ``ssp`` attribute, then the resulting
1690 function will have an ``ssp`` attribute.
1691``sspreq``
1692 This attribute indicates that the function should *always* emit a
1693 stack smashing protector. This overrides the ``ssp`` function
1694 attribute.
1695
Josh Magee24c7f062014-02-01 01:36:16 +00001696 Variables that are identified as requiring a protector will be arranged
1697 on the stack such that they are adjacent to the stack protector guard.
1698 The specific layout rules are:
1699
1700 #. Large arrays and structures containing large arrays
1701 (``>= ssp-buffer-size``) are closest to the stack protector.
1702 #. Small arrays and structures containing small arrays
1703 (``< ssp-buffer-size``) are 2nd closest to the protector.
1704 #. Variables that have had their address taken are 3rd closest to the
1705 protector.
1706
Sean Silvab084af42012-12-07 10:36:55 +00001707 If a function that has an ``sspreq`` attribute is inlined into a
1708 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001709 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1710 an ``sspreq`` attribute.
1711``sspstrong``
1712 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001713 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001714 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001715 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001716
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001717 - Arrays of any size and type
1718 - Aggregates containing an array of any size and type.
1719 - Calls to alloca().
1720 - Local variables that have had their address taken.
1721
Josh Magee24c7f062014-02-01 01:36:16 +00001722 Variables that are identified as requiring a protector will be arranged
1723 on the stack such that they are adjacent to the stack protector guard.
1724 The specific layout rules are:
1725
1726 #. Large arrays and structures containing large arrays
1727 (``>= ssp-buffer-size``) are closest to the stack protector.
1728 #. Small arrays and structures containing small arrays
1729 (``< ssp-buffer-size``) are 2nd closest to the protector.
1730 #. Variables that have had their address taken are 3rd closest to the
1731 protector.
1732
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001733 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001734
1735 If a function that has an ``sspstrong`` attribute is inlined into a
1736 function that doesn't have an ``sspstrong`` attribute, then the
1737 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001738``strictfp``
1739 This attribute indicates that the function was called from a scope that
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001740 requires strict floating-point semantics. LLVM will not attempt any
1741 optimizations that require assumptions about the floating-point rounding
1742 mode or that might alter the state of floating-point status flags that
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001743 might otherwise be set or cleared by calling this function.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001744``"thunk"``
1745 This attribute indicates that the function will delegate to some other
1746 function with a tail call. The prototype of a thunk should not be used for
1747 optimization purposes. The caller is expected to cast the thunk prototype to
1748 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001749``uwtable``
1750 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001751 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001752 show that no exceptions passes by it. This is normally the case for
1753 the ELF x86-64 abi, but it can be disabled for some compilation
1754 units.
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001755``nocf_check``
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001756 This attribute indicates that no control-flow check will be performed on
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001757 the attributed entity. It disables -fcf-protection=<> for a specific
1758 entity to fine grain the HW control flow protection mechanism. The flag
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001759 is target independent and currently appertains to a function or function
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001760 pointer.
Vlad Tsyrklevichd17f61e2018-04-03 20:10:40 +00001761``shadowcallstack``
1762 This attribute indicates that the ShadowCallStack checks are enabled for
1763 the function. The instrumentation checks that the return address for the
1764 function has not changed between the function prolog and eiplog. It is
1765 currently x86_64-specific.
Sean Silvab084af42012-12-07 10:36:55 +00001766
Javed Absarf3d79042017-05-11 12:28:08 +00001767.. _glattrs:
1768
1769Global Attributes
1770-----------------
1771
1772Attributes may be set to communicate additional information about a global variable.
1773Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1774are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001775
1776.. _opbundles:
1777
1778Operand Bundles
1779---------------
1780
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001781Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001782with certain LLVM instructions (currently only ``call`` s and
1783``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001784incorrect and will change program semantics.
1785
1786Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001787
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001788 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001789 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1790 bundle operand ::= SSA value
1791 tag ::= string constant
1792
1793Operand bundles are **not** part of a function's signature, and a
1794given function may be called from multiple places with different kinds
1795of operand bundles. This reflects the fact that the operand bundles
1796are conceptually a part of the ``call`` (or ``invoke``), not the
1797callee being dispatched to.
1798
1799Operand bundles are a generic mechanism intended to support
1800runtime-introspection-like functionality for managed languages. While
1801the exact semantics of an operand bundle depend on the bundle tag,
1802there are certain limitations to how much the presence of an operand
1803bundle can influence the semantics of a program. These restrictions
1804are described as the semantics of an "unknown" operand bundle. As
1805long as the behavior of an operand bundle is describable within these
1806restrictions, LLVM does not need to have special knowledge of the
1807operand bundle to not miscompile programs containing it.
1808
David Majnemer34cacb42015-10-22 01:46:38 +00001809- The bundle operands for an unknown operand bundle escape in unknown
1810 ways before control is transferred to the callee or invokee.
1811- Calls and invokes with operand bundles have unknown read / write
1812 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001813 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001814 callsite specific attributes.
1815- An operand bundle at a call site cannot change the implementation
1816 of the called function. Inter-procedural optimizations work as
1817 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001818
Sanjoy Dascdafd842015-11-11 21:38:02 +00001819More specific types of operand bundles are described below.
1820
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001821.. _deopt_opbundles:
1822
Sanjoy Dascdafd842015-11-11 21:38:02 +00001823Deoptimization Operand Bundles
1824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1825
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001826Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001827operand bundle tag. These operand bundles represent an alternate
1828"safe" continuation for the call site they're attached to, and can be
1829used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001830specified call site. There can be at most one ``"deopt"`` operand
1831bundle attached to a call site. Exact details of deoptimization is
1832out of scope for the language reference, but it usually involves
1833rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001834
1835From the compiler's perspective, deoptimization operand bundles make
1836the call sites they're attached to at least ``readonly``. They read
1837through all of their pointer typed operands (even if they're not
1838otherwise escaped) and the entire visible heap. Deoptimization
1839operand bundles do not capture their operands except during
1840deoptimization, in which case control will not be returned to the
1841compiled frame.
1842
Sanjoy Das2d161452015-11-18 06:23:38 +00001843The inliner knows how to inline through calls that have deoptimization
1844operand bundles. Just like inlining through a normal call site
1845involves composing the normal and exceptional continuations, inlining
1846through a call site with a deoptimization operand bundle needs to
1847appropriately compose the "safe" deoptimization continuation. The
1848inliner does this by prepending the parent's deoptimization
1849continuation to every deoptimization continuation in the inlined body.
1850E.g. inlining ``@f`` into ``@g`` in the following example
1851
1852.. code-block:: llvm
1853
1854 define void @f() {
1855 call void @x() ;; no deopt state
1856 call void @y() [ "deopt"(i32 10) ]
1857 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1858 ret void
1859 }
1860
1861 define void @g() {
1862 call void @f() [ "deopt"(i32 20) ]
1863 ret void
1864 }
1865
1866will result in
1867
1868.. code-block:: llvm
1869
1870 define void @g() {
1871 call void @x() ;; still no deopt state
1872 call void @y() [ "deopt"(i32 20, i32 10) ]
1873 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1874 ret void
1875 }
1876
1877It is the frontend's responsibility to structure or encode the
1878deoptimization state in a way that syntactically prepending the
1879caller's deoptimization state to the callee's deoptimization state is
1880semantically equivalent to composing the caller's deoptimization
1881continuation after the callee's deoptimization continuation.
1882
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001883.. _ob_funclet:
1884
David Majnemer3bb88c02015-12-15 21:27:27 +00001885Funclet Operand Bundles
1886^^^^^^^^^^^^^^^^^^^^^^^
1887
1888Funclet operand bundles are characterized by the ``"funclet"``
1889operand bundle tag. These operand bundles indicate that a call site
1890is within a particular funclet. There can be at most one
1891``"funclet"`` operand bundle attached to a call site and it must have
1892exactly one bundle operand.
1893
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001894If any funclet EH pads have been "entered" but not "exited" (per the
1895`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1896it is undefined behavior to execute a ``call`` or ``invoke`` which:
1897
1898* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1899 intrinsic, or
1900* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1901 not-yet-exited funclet EH pad.
1902
1903Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1904executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1905
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001906GC Transition Operand Bundles
1907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1908
1909GC transition operand bundles are characterized by the
1910``"gc-transition"`` operand bundle tag. These operand bundles mark a
1911call as a transition between a function with one GC strategy to a
1912function with a different GC strategy. If coordinating the transition
1913between GC strategies requires additional code generation at the call
1914site, these bundles may contain any values that are needed by the
1915generated code. For more details, see :ref:`GC Transitions
1916<gc_transition_args>`.
1917
Sean Silvab084af42012-12-07 10:36:55 +00001918.. _moduleasm:
1919
1920Module-Level Inline Assembly
1921----------------------------
1922
1923Modules may contain "module-level inline asm" blocks, which corresponds
1924to the GCC "file scope inline asm" blocks. These blocks are internally
1925concatenated by LLVM and treated as a single unit, but may be separated
1926in the ``.ll`` file if desired. The syntax is very simple:
1927
1928.. code-block:: llvm
1929
1930 module asm "inline asm code goes here"
1931 module asm "more can go here"
1932
1933The strings can contain any character by escaping non-printable
1934characters. The escape sequence used is simply "\\xx" where "xx" is the
1935two digit hex code for the number.
1936
James Y Knightbc832ed2015-07-08 18:08:36 +00001937Note that the assembly string *must* be parseable by LLVM's integrated assembler
1938(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001939
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001940.. _langref_datalayout:
1941
Sean Silvab084af42012-12-07 10:36:55 +00001942Data Layout
1943-----------
1944
1945A module may specify a target specific data layout string that specifies
1946how data is to be laid out in memory. The syntax for the data layout is
1947simply:
1948
1949.. code-block:: llvm
1950
1951 target datalayout = "layout specification"
1952
1953The *layout specification* consists of a list of specifications
1954separated by the minus sign character ('-'). Each specification starts
1955with a letter and may include other information after the letter to
1956define some aspect of the data layout. The specifications accepted are
1957as follows:
1958
1959``E``
1960 Specifies that the target lays out data in big-endian form. That is,
1961 the bits with the most significance have the lowest address
1962 location.
1963``e``
1964 Specifies that the target lays out data in little-endian form. That
1965 is, the bits with the least significance have the lowest address
1966 location.
1967``S<size>``
1968 Specifies the natural alignment of the stack in bits. Alignment
1969 promotion of stack variables is limited to the natural stack
1970 alignment to avoid dynamic stack realignment. The stack alignment
1971 must be a multiple of 8-bits. If omitted, the natural stack
1972 alignment defaults to "unspecified", which does not prevent any
1973 alignment promotions.
Dylan McKayced2fe62018-02-19 09:56:22 +00001974``P<address space>``
1975 Specifies the address space that corresponds to program memory.
1976 Harvard architectures can use this to specify what space LLVM
1977 should place things such as functions into. If omitted, the
1978 program memory space defaults to the default address space of 0,
1979 which corresponds to a Von Neumann architecture that has code
1980 and data in the same space.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001981``A<address space>``
Dylan McKayced2fe62018-02-19 09:56:22 +00001982 Specifies the address space of objects created by '``alloca``'.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001983 Defaults to the default address space of 0.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001984``p[n]:<size>:<abi>:<pref>:<idx>``
Sean Silvab084af42012-12-07 10:36:55 +00001985 This specifies the *size* of a pointer and its ``<abi>`` and
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001986 ``<pref>``\erred alignments for address space ``n``. The fourth parameter
1987 ``<idx>`` is a size of index that used for address calculation. If not
1988 specified, the default index size is equal to the pointer size. All sizes
1989 are in bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001990 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001991 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001992``i<size>:<abi>:<pref>``
1993 This specifies the alignment for an integer type of a given bit
1994 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1995``v<size>:<abi>:<pref>``
1996 This specifies the alignment for a vector type of a given bit
1997 ``<size>``.
1998``f<size>:<abi>:<pref>``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001999 This specifies the alignment for a floating-point type of a given bit
Sean Silvab084af42012-12-07 10:36:55 +00002000 ``<size>``. Only values of ``<size>`` that are supported by the target
2001 will work. 32 (float) and 64 (double) are supported on all targets; 80
2002 or 128 (different flavors of long double) are also supported on some
2003 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00002004``a:<abi>:<pref>``
2005 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00002006``m:<mangling>``
Reid Klecknerf8b51c52018-03-16 20:13:32 +00002007 If present, specifies that llvm names are mangled in the output. Symbols
2008 prefixed with the mangling escape character ``\01`` are passed through
2009 directly to the assembler without the escape character. The mangling style
Hans Wennborgd4245ac2014-01-15 02:49:17 +00002010 options are
2011
2012 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
2013 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
2014 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
2015 symbols get a ``_`` prefix.
Reid Klecknerf8b51c52018-03-16 20:13:32 +00002016 * ``x``: Windows x86 COFF mangling: Private symbols get the usual prefix.
2017 Regular C symbols get a ``_`` prefix. Functions with ``__stdcall``,
2018 ``__fastcall``, and ``__vectorcall`` have custom mangling that appends
2019 ``@N`` where N is the number of bytes used to pass parameters. C++ symbols
2020 starting with ``?`` are not mangled in any way.
2021 * ``w``: Windows COFF mangling: Similar to ``x``, except that normal C
2022 symbols do not receive a ``_`` prefix.
Sean Silvab084af42012-12-07 10:36:55 +00002023``n<size1>:<size2>:<size3>...``
2024 This specifies a set of native integer widths for the target CPU in
2025 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
2026 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
2027 this set are considered to support most general arithmetic operations
2028 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00002029``ni:<address space0>:<address space1>:<address space2>...``
2030 This specifies pointer types with the specified address spaces
2031 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
2032 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00002033
Rafael Espindolaabdd7262014-01-06 21:40:24 +00002034On every specification that takes a ``<abi>:<pref>``, specifying the
2035``<pref>`` alignment is optional. If omitted, the preceding ``:``
2036should be omitted too and ``<pref>`` will be equal to ``<abi>``.
2037
Sean Silvab084af42012-12-07 10:36:55 +00002038When constructing the data layout for a given target, LLVM starts with a
2039default set of specifications which are then (possibly) overridden by
2040the specifications in the ``datalayout`` keyword. The default
2041specifications are given in this list:
2042
2043- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00002044- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
2045- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
2046 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002047- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00002048- ``i1:8:8`` - i1 is 8-bit (byte) aligned
2049- ``i8:8:8`` - i8 is 8-bit (byte) aligned
2050- ``i16:16:16`` - i16 is 16-bit aligned
2051- ``i32:32:32`` - i32 is 32-bit aligned
2052- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
2053 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002054- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002055- ``f32:32:32`` - float is 32-bit aligned
2056- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002057- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002058- ``v64:64:64`` - 64-bit vector is 64-bit aligned
2059- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00002060- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002061
2062When LLVM is determining the alignment for a given type, it uses the
2063following rules:
2064
2065#. If the type sought is an exact match for one of the specifications,
2066 that specification is used.
2067#. If no match is found, and the type sought is an integer type, then
2068 the smallest integer type that is larger than the bitwidth of the
2069 sought type is used. If none of the specifications are larger than
2070 the bitwidth then the largest integer type is used. For example,
2071 given the default specifications above, the i7 type will use the
2072 alignment of i8 (next largest) while both i65 and i256 will use the
2073 alignment of i64 (largest specified).
2074#. If no match is found, and the type sought is a vector type, then the
2075 largest vector type that is smaller than the sought vector type will
2076 be used as a fall back. This happens because <128 x double> can be
2077 implemented in terms of 64 <2 x double>, for example.
2078
2079The function of the data layout string may not be what you expect.
2080Notably, this is not a specification from the frontend of what alignment
2081the code generator should use.
2082
2083Instead, if specified, the target data layout is required to match what
2084the ultimate *code generator* expects. This string is used by the
2085mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00002086what the ultimate code generator uses. There is no way to generate IR
2087that does not embed this target-specific detail into the IR. If you
2088don't specify the string, the default specifications will be used to
2089generate a Data Layout and the optimization phases will operate
2090accordingly and introduce target specificity into the IR with respect to
2091these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00002092
Bill Wendling5cc90842013-10-18 23:41:25 +00002093.. _langref_triple:
2094
2095Target Triple
2096-------------
2097
2098A module may specify a target triple string that describes the target
2099host. The syntax for the target triple is simply:
2100
2101.. code-block:: llvm
2102
2103 target triple = "x86_64-apple-macosx10.7.0"
2104
2105The *target triple* string consists of a series of identifiers delimited
2106by the minus sign character ('-'). The canonical forms are:
2107
2108::
2109
2110 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2111 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2112
2113This information is passed along to the backend so that it generates
2114code for the proper architecture. It's possible to override this on the
2115command line with the ``-mtriple`` command line option.
2116
Sean Silvab084af42012-12-07 10:36:55 +00002117.. _pointeraliasing:
2118
2119Pointer Aliasing Rules
2120----------------------
2121
2122Any memory access must be done through a pointer value associated with
2123an address range of the memory access, otherwise the behavior is
2124undefined. Pointer values are associated with address ranges according
2125to the following rules:
2126
2127- A pointer value is associated with the addresses associated with any
2128 value it is *based* on.
2129- An address of a global variable is associated with the address range
2130 of the variable's storage.
2131- The result value of an allocation instruction is associated with the
2132 address range of the allocated storage.
2133- A null pointer in the default address-space is associated with no
2134 address.
2135- An integer constant other than zero or a pointer value returned from
2136 a function not defined within LLVM may be associated with address
2137 ranges allocated through mechanisms other than those provided by
2138 LLVM. Such ranges shall not overlap with any ranges of addresses
2139 allocated by mechanisms provided by LLVM.
2140
2141A pointer value is *based* on another pointer value according to the
2142following rules:
2143
Sanjoy Das6d489492017-09-13 18:49:22 +00002144- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2145 the pointer-typed operand of the ``getelementptr``.
2146- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2147 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2148 of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002149- The result value of a ``bitcast`` is *based* on the operand of the
2150 ``bitcast``.
2151- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2152 values that contribute (directly or indirectly) to the computation of
2153 the pointer's value.
2154- The "*based* on" relationship is transitive.
2155
2156Note that this definition of *"based"* is intentionally similar to the
2157definition of *"based"* in C99, though it is slightly weaker.
2158
2159LLVM IR does not associate types with memory. The result type of a
2160``load`` merely indicates the size and alignment of the memory from
2161which to load, as well as the interpretation of the value. The first
2162operand type of a ``store`` similarly only indicates the size and
2163alignment of the store.
2164
2165Consequently, type-based alias analysis, aka TBAA, aka
2166``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2167:ref:`Metadata <metadata>` may be used to encode additional information
2168which specialized optimization passes may use to implement type-based
2169alias analysis.
2170
2171.. _volatile:
2172
2173Volatile Memory Accesses
2174------------------------
2175
2176Certain memory accesses, such as :ref:`load <i_load>`'s,
2177:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2178marked ``volatile``. The optimizers must not change the number of
2179volatile operations or change their order of execution relative to other
2180volatile operations. The optimizers *may* change the order of volatile
2181operations relative to non-volatile operations. This is not Java's
2182"volatile" and has no cross-thread synchronization behavior.
2183
Eli Friedman9ba16822019-01-22 00:42:20 +00002184A volatile load or store may have additional target-specific semantics.
2185Any volatile operation can have side effects, and any volatile operation
2186can read and/or modify state which is not accessible via a regular load
Eli Friedmanf0e67682019-01-28 23:03:41 +00002187or store in this module. Volatile operations may use addresses which do
Eli Friedman9ba16822019-01-22 00:42:20 +00002188not point to memory (like MMIO registers). This means the compiler may
2189not use a volatile operation to prove a non-volatile access to that
2190address has defined behavior.
2191
2192The allowed side-effects for volatile accesses are limited. If a
2193non-volatile store to a given address would be legal, a volatile
2194operation may modify the memory at that address. A volatile operation
2195may not modify any other memory accessible by the module being compiled.
2196A volatile operation may not call any code in the current module.
2197
2198The compiler may assume execution will continue after a volatile operation,
2199so operations which modify memory or may have undefined behavior can be
2200hoisted past a volatile operation.
2201
Andrew Trick89fc5a62013-01-30 21:19:35 +00002202IR-level volatile loads and stores cannot safely be optimized into
2203llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2204flagged volatile. Likewise, the backend should never split or merge
2205target-legal volatile load/store instructions.
2206
Andrew Trick7e6f9282013-01-31 00:49:39 +00002207.. admonition:: Rationale
2208
2209 Platforms may rely on volatile loads and stores of natively supported
2210 data width to be executed as single instruction. For example, in C
2211 this holds for an l-value of volatile primitive type with native
2212 hardware support, but not necessarily for aggregate types. The
2213 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002214 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002215 do not violate the frontend's contract with the language.
2216
Sean Silvab084af42012-12-07 10:36:55 +00002217.. _memmodel:
2218
2219Memory Model for Concurrent Operations
2220--------------------------------------
2221
2222The LLVM IR does not define any way to start parallel threads of
2223execution or to register signal handlers. Nonetheless, there are
2224platform-specific ways to create them, and we define LLVM IR's behavior
2225in their presence. This model is inspired by the C++0x memory model.
2226
2227For a more informal introduction to this model, see the :doc:`Atomics`.
2228
2229We define a *happens-before* partial order as the least partial order
2230that
2231
2232- Is a superset of single-thread program order, and
2233- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2234 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2235 techniques, like pthread locks, thread creation, thread joining,
2236 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2237 Constraints <ordering>`).
2238
2239Note that program order does not introduce *happens-before* edges
2240between a thread and signals executing inside that thread.
2241
2242Every (defined) read operation (load instructions, memcpy, atomic
2243loads/read-modify-writes, etc.) R reads a series of bytes written by
2244(defined) write operations (store instructions, atomic
2245stores/read-modify-writes, memcpy, etc.). For the purposes of this
2246section, initialized globals are considered to have a write of the
2247initializer which is atomic and happens before any other read or write
2248of the memory in question. For each byte of a read R, R\ :sub:`byte`
2249may see any write to the same byte, except:
2250
2251- If write\ :sub:`1` happens before write\ :sub:`2`, and
2252 write\ :sub:`2` happens before R\ :sub:`byte`, then
2253 R\ :sub:`byte` does not see write\ :sub:`1`.
2254- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2255 R\ :sub:`byte` does not see write\ :sub:`3`.
2256
2257Given that definition, R\ :sub:`byte` is defined as follows:
2258
2259- If R is volatile, the result is target-dependent. (Volatile is
2260 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002261 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002262 like normal memory. It does not generally provide cross-thread
2263 synchronization.)
2264- Otherwise, if there is no write to the same byte that happens before
2265 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2266- Otherwise, if R\ :sub:`byte` may see exactly one write,
2267 R\ :sub:`byte` returns the value written by that write.
2268- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2269 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2270 Memory Ordering Constraints <ordering>` section for additional
2271 constraints on how the choice is made.
2272- Otherwise R\ :sub:`byte` returns ``undef``.
2273
2274R returns the value composed of the series of bytes it read. This
2275implies that some bytes within the value may be ``undef`` **without**
2276the entire value being ``undef``. Note that this only defines the
2277semantics of the operation; it doesn't mean that targets will emit more
2278than one instruction to read the series of bytes.
2279
2280Note that in cases where none of the atomic intrinsics are used, this
2281model places only one restriction on IR transformations on top of what
2282is required for single-threaded execution: introducing a store to a byte
2283which might not otherwise be stored is not allowed in general.
2284(Specifically, in the case where another thread might write to and read
2285from an address, introducing a store can change a load that may see
2286exactly one write into a load that may see multiple writes.)
2287
2288.. _ordering:
2289
2290Atomic Memory Ordering Constraints
2291----------------------------------
2292
2293Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2294:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2295:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002296ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002297the same address they *synchronize with*. These semantics are borrowed
2298from Java and C++0x, but are somewhat more colloquial. If these
2299descriptions aren't precise enough, check those specs (see spec
2300references in the :doc:`atomics guide <Atomics>`).
2301:ref:`fence <i_fence>` instructions treat these orderings somewhat
2302differently since they don't take an address. See that instruction's
2303documentation for details.
2304
2305For a simpler introduction to the ordering constraints, see the
2306:doc:`Atomics`.
2307
2308``unordered``
2309 The set of values that can be read is governed by the happens-before
2310 partial order. A value cannot be read unless some operation wrote
2311 it. This is intended to provide a guarantee strong enough to model
2312 Java's non-volatile shared variables. This ordering cannot be
2313 specified for read-modify-write operations; it is not strong enough
2314 to make them atomic in any interesting way.
2315``monotonic``
2316 In addition to the guarantees of ``unordered``, there is a single
2317 total order for modifications by ``monotonic`` operations on each
2318 address. All modification orders must be compatible with the
2319 happens-before order. There is no guarantee that the modification
2320 orders can be combined to a global total order for the whole program
2321 (and this often will not be possible). The read in an atomic
2322 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2323 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2324 order immediately before the value it writes. If one atomic read
2325 happens before another atomic read of the same address, the later
2326 read must see the same value or a later value in the address's
2327 modification order. This disallows reordering of ``monotonic`` (or
2328 stronger) operations on the same address. If an address is written
2329 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2330 read that address repeatedly, the other threads must eventually see
2331 the write. This corresponds to the C++0x/C1x
2332 ``memory_order_relaxed``.
2333``acquire``
2334 In addition to the guarantees of ``monotonic``, a
2335 *synchronizes-with* edge may be formed with a ``release`` operation.
2336 This is intended to model C++'s ``memory_order_acquire``.
2337``release``
2338 In addition to the guarantees of ``monotonic``, if this operation
2339 writes a value which is subsequently read by an ``acquire``
2340 operation, it *synchronizes-with* that operation. (This isn't a
2341 complete description; see the C++0x definition of a release
2342 sequence.) This corresponds to the C++0x/C1x
2343 ``memory_order_release``.
2344``acq_rel`` (acquire+release)
2345 Acts as both an ``acquire`` and ``release`` operation on its
2346 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2347``seq_cst`` (sequentially consistent)
2348 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002349 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002350 writes), there is a global total order on all
2351 sequentially-consistent operations on all addresses, which is
2352 consistent with the *happens-before* partial order and with the
2353 modification orders of all the affected addresses. Each
2354 sequentially-consistent read sees the last preceding write to the
2355 same address in this global order. This corresponds to the C++0x/C1x
2356 ``memory_order_seq_cst`` and Java volatile.
2357
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002358.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002359
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002360If an atomic operation is marked ``syncscope("singlethread")``, it only
2361*synchronizes with* and only participates in the seq\_cst total orderings of
2362other operations running in the same thread (for example, in signal handlers).
2363
2364If an atomic operation is marked ``syncscope("<target-scope>")``, where
2365``<target-scope>`` is a target specific synchronization scope, then it is target
2366dependent if it *synchronizes with* and participates in the seq\_cst total
2367orderings of other operations.
2368
2369Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2370or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2371seq\_cst total orderings of other operations that are not marked
2372``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002373
Sanjay Patel54b161e2018-03-20 16:38:22 +00002374.. _floatenv:
2375
2376Floating-Point Environment
2377--------------------------
2378
2379The default LLVM floating-point environment assumes that floating-point
2380instructions do not have side effects. Results assume the round-to-nearest
2381rounding mode. No floating-point exception state is maintained in this
2382environment. Therefore, there is no attempt to create or preserve invalid
Chandler Carruth297620d2018-08-06 02:02:09 +00002383operation (SNaN) or division-by-zero exceptions.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002384
2385The benefit of this exception-free assumption is that floating-point
2386operations may be speculated freely without any other fast-math relaxations
2387to the floating-point model.
2388
2389Code that requires different behavior than this should use the
Sanjay Patelec95e0e2018-03-20 17:05:19 +00002390:ref:`Constrained Floating-Point Intrinsics <constrainedfp>`.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002391
Sean Silvab084af42012-12-07 10:36:55 +00002392.. _fastmath:
2393
2394Fast-Math Flags
2395---------------
2396
Sanjay Patel629c4112017-11-06 16:27:15 +00002397LLVM IR floating-point operations (:ref:`fadd <i_fadd>`,
Sean Silvab084af42012-12-07 10:36:55 +00002398:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002399:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002400may use the following flags to enable otherwise unsafe
Sanjay Patel629c4112017-11-06 16:27:15 +00002401floating-point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002402
2403``nnan``
2404 No NaNs - Allow optimizations to assume the arguments and result are not
Eli Friedmand3a30872018-07-17 20:31:42 +00002405 NaN. If an argument is a nan, or the result would be a nan, it produces
2406 a :ref:`poison value <poisonvalues>` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002407
2408``ninf``
2409 No Infs - Allow optimizations to assume the arguments and result are not
Eli Friedmand3a30872018-07-17 20:31:42 +00002410 +/-Inf. If an argument is +/-Inf, or the result would be +/-Inf, it
2411 produces a :ref:`poison value <poisonvalues>` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002412
2413``nsz``
2414 No Signed Zeros - Allow optimizations to treat the sign of a zero
2415 argument or result as insignificant.
2416
2417``arcp``
2418 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2419 argument rather than perform division.
2420
Adam Nemetcd847a82017-03-28 20:11:52 +00002421``contract``
2422 Allow floating-point contraction (e.g. fusing a multiply followed by an
2423 addition into a fused multiply-and-add).
2424
Sanjay Patel629c4112017-11-06 16:27:15 +00002425``afn``
2426 Approximate functions - Allow substitution of approximate calculations for
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002427 functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2428 for places where this can apply to LLVM's intrinsic math functions.
Sanjay Patel629c4112017-11-06 16:27:15 +00002429
2430``reassoc``
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002431 Allow reassociation transformations for floating-point instructions.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002432 This may dramatically change results in floating-point.
Sanjay Patel629c4112017-11-06 16:27:15 +00002433
Sean Silvab084af42012-12-07 10:36:55 +00002434``fast``
Sanjay Patel629c4112017-11-06 16:27:15 +00002435 This flag implies all of the others.
Sean Silvab084af42012-12-07 10:36:55 +00002436
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002437.. _uselistorder:
2438
2439Use-list Order Directives
2440-------------------------
2441
2442Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002443order to be recreated. ``<order-indexes>`` is a comma-separated list of
2444indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002445value's use-list is immediately sorted by these indexes.
2446
Sean Silvaa1190322015-08-06 22:56:48 +00002447Use-list directives may appear at function scope or global scope. They are not
2448instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002449function scope, they must appear after the terminator of the final basic block.
2450
2451If basic blocks have their address taken via ``blockaddress()`` expressions,
2452``uselistorder_bb`` can be used to reorder their use-lists from outside their
2453function's scope.
2454
2455:Syntax:
2456
2457::
2458
2459 uselistorder <ty> <value>, { <order-indexes> }
2460 uselistorder_bb @function, %block { <order-indexes> }
2461
2462:Examples:
2463
2464::
2465
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002466 define void @foo(i32 %arg1, i32 %arg2) {
2467 entry:
2468 ; ... instructions ...
2469 bb:
2470 ; ... instructions ...
2471
2472 ; At function scope.
2473 uselistorder i32 %arg1, { 1, 0, 2 }
2474 uselistorder label %bb, { 1, 0 }
2475 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002476
2477 ; At global scope.
2478 uselistorder i32* @global, { 1, 2, 0 }
2479 uselistorder i32 7, { 1, 0 }
2480 uselistorder i32 (i32) @bar, { 1, 0 }
2481 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2482
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002483.. _source_filename:
2484
2485Source Filename
2486---------------
2487
2488The *source filename* string is set to the original module identifier,
2489which will be the name of the compiled source file when compiling from
2490source through the clang front end, for example. It is then preserved through
2491the IR and bitcode.
2492
2493This is currently necessary to generate a consistent unique global
2494identifier for local functions used in profile data, which prepends the
2495source file name to the local function name.
2496
2497The syntax for the source file name is simply:
2498
Renato Golin124f2592016-07-20 12:16:38 +00002499.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002500
2501 source_filename = "/path/to/source.c"
2502
Sean Silvab084af42012-12-07 10:36:55 +00002503.. _typesystem:
2504
2505Type System
2506===========
2507
2508The LLVM type system is one of the most important features of the
2509intermediate representation. Being typed enables a number of
2510optimizations to be performed on the intermediate representation
2511directly, without having to do extra analyses on the side before the
2512transformation. A strong type system makes it easier to read the
2513generated code and enables novel analyses and transformations that are
2514not feasible to perform on normal three address code representations.
2515
Rafael Espindola08013342013-12-07 19:34:20 +00002516.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002517
Rafael Espindola08013342013-12-07 19:34:20 +00002518Void Type
2519---------
Sean Silvab084af42012-12-07 10:36:55 +00002520
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002521:Overview:
2522
Rafael Espindola08013342013-12-07 19:34:20 +00002523
2524The void type does not represent any value and has no size.
2525
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002526:Syntax:
2527
Rafael Espindola08013342013-12-07 19:34:20 +00002528
2529::
2530
2531 void
Sean Silvab084af42012-12-07 10:36:55 +00002532
2533
Rafael Espindola08013342013-12-07 19:34:20 +00002534.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002535
Rafael Espindola08013342013-12-07 19:34:20 +00002536Function Type
2537-------------
Sean Silvab084af42012-12-07 10:36:55 +00002538
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002539:Overview:
2540
Sean Silvab084af42012-12-07 10:36:55 +00002541
Rafael Espindola08013342013-12-07 19:34:20 +00002542The function type can be thought of as a function signature. It consists of a
2543return type and a list of formal parameter types. The return type of a function
2544type is a void type or first class type --- except for :ref:`label <t_label>`
2545and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002546
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002547:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002548
Rafael Espindola08013342013-12-07 19:34:20 +00002549::
Sean Silvab084af42012-12-07 10:36:55 +00002550
Rafael Espindola08013342013-12-07 19:34:20 +00002551 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002552
Rafael Espindola08013342013-12-07 19:34:20 +00002553...where '``<parameter list>``' is a comma-separated list of type
2554specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002555indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002556argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002557handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002558except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002559
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002560:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002561
Rafael Espindola08013342013-12-07 19:34:20 +00002562+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2563| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2564+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2565| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2566+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2567| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2568+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2569| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2570+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2571
2572.. _t_firstclass:
2573
2574First Class Types
2575-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002576
2577The :ref:`first class <t_firstclass>` types are perhaps the most important.
2578Values of these types are the only ones which can be produced by
2579instructions.
2580
Rafael Espindola08013342013-12-07 19:34:20 +00002581.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002582
Rafael Espindola08013342013-12-07 19:34:20 +00002583Single Value Types
2584^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002585
Rafael Espindola08013342013-12-07 19:34:20 +00002586These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002587
2588.. _t_integer:
2589
2590Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002591""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002592
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002593:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002594
2595The integer type is a very simple type that simply specifies an
2596arbitrary bit width for the integer type desired. Any bit width from 1
2597bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2598
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002599:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002600
2601::
2602
2603 iN
2604
2605The number of bits the integer will occupy is specified by the ``N``
2606value.
2607
2608Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002609*********
Sean Silvab084af42012-12-07 10:36:55 +00002610
2611+----------------+------------------------------------------------+
2612| ``i1`` | a single-bit integer. |
2613+----------------+------------------------------------------------+
2614| ``i32`` | a 32-bit integer. |
2615+----------------+------------------------------------------------+
2616| ``i1942652`` | a really big integer of over 1 million bits. |
2617+----------------+------------------------------------------------+
2618
2619.. _t_floating:
2620
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002621Floating-Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002622""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002623
2624.. list-table::
2625 :header-rows: 1
2626
2627 * - Type
2628 - Description
2629
2630 * - ``half``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002631 - 16-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002632
2633 * - ``float``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002634 - 32-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002635
2636 * - ``double``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002637 - 64-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002638
2639 * - ``fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002640 - 128-bit floating-point value (112-bit mantissa)
Sean Silvab084af42012-12-07 10:36:55 +00002641
2642 * - ``x86_fp80``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002643 - 80-bit floating-point value (X87)
Sean Silvab084af42012-12-07 10:36:55 +00002644
2645 * - ``ppc_fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002646 - 128-bit floating-point value (two 64-bits)
Sean Silvab084af42012-12-07 10:36:55 +00002647
Sanjay Patelbab6ce02018-03-21 15:22:09 +00002648The binary format of half, float, double, and fp128 correspond to the
2649IEEE-754-2008 specifications for binary16, binary32, binary64, and binary128
2650respectively.
2651
Reid Kleckner9a16d082014-03-05 02:41:37 +00002652X86_mmx Type
2653""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002654
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002655:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002656
Reid Kleckner9a16d082014-03-05 02:41:37 +00002657The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002658machine. The operations allowed on it are quite limited: parameters and
2659return values, load and store, and bitcast. User-specified MMX
2660instructions are represented as intrinsic or asm calls with arguments
2661and/or results of this type. There are no arrays, vectors or constants
2662of this type.
2663
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002664:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002665
2666::
2667
Reid Kleckner9a16d082014-03-05 02:41:37 +00002668 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002669
Sean Silvab084af42012-12-07 10:36:55 +00002670
Rafael Espindola08013342013-12-07 19:34:20 +00002671.. _t_pointer:
2672
2673Pointer Type
2674""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002675
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002676:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002677
Rafael Espindola08013342013-12-07 19:34:20 +00002678The pointer type is used to specify memory locations. Pointers are
2679commonly used to reference objects in memory.
2680
2681Pointer types may have an optional address space attribute defining the
2682numbered address space where the pointed-to object resides. The default
2683address space is number zero. The semantics of non-zero address spaces
2684are target-specific.
2685
2686Note that LLVM does not permit pointers to void (``void*``) nor does it
2687permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002688
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002689:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002690
2691::
2692
Rafael Espindola08013342013-12-07 19:34:20 +00002693 <type> *
2694
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002695:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002696
2697+-------------------------+--------------------------------------------------------------------------------------------------------------+
2698| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2699+-------------------------+--------------------------------------------------------------------------------------------------------------+
2700| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2701+-------------------------+--------------------------------------------------------------------------------------------------------------+
2702| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2703+-------------------------+--------------------------------------------------------------------------------------------------------------+
2704
2705.. _t_vector:
2706
2707Vector Type
2708"""""""""""
2709
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002710:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002711
2712A vector type is a simple derived type that represents a vector of
2713elements. Vector types are used when multiple primitive data are
2714operated in parallel using a single instruction (SIMD). A vector type
2715requires a size (number of elements) and an underlying primitive data
2716type. Vector types are considered :ref:`first class <t_firstclass>`.
2717
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002718:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002719
2720::
2721
2722 < <# elements> x <elementtype> >
2723
2724The number of elements is a constant integer value larger than 0;
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002725elementtype may be any integer, floating-point or pointer type. Vectors
Manuel Jacob961f7872014-07-30 12:30:06 +00002726of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002727
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002728:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002729
2730+-------------------+--------------------------------------------------+
2731| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2732+-------------------+--------------------------------------------------+
2733| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2734+-------------------+--------------------------------------------------+
2735| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2736+-------------------+--------------------------------------------------+
2737| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2738+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002739
2740.. _t_label:
2741
2742Label Type
2743^^^^^^^^^^
2744
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002745:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002746
2747The label type represents code labels.
2748
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002749:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002750
2751::
2752
2753 label
2754
David Majnemerb611e3f2015-08-14 05:09:07 +00002755.. _t_token:
2756
2757Token Type
2758^^^^^^^^^^
2759
2760:Overview:
2761
2762The token type is used when a value is associated with an instruction
2763but all uses of the value must not attempt to introspect or obscure it.
2764As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2765:ref:`select <i_select>` of type token.
2766
2767:Syntax:
2768
2769::
2770
2771 token
2772
2773
2774
Sean Silvab084af42012-12-07 10:36:55 +00002775.. _t_metadata:
2776
2777Metadata Type
2778^^^^^^^^^^^^^
2779
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002780:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002781
2782The metadata type represents embedded metadata. No derived types may be
2783created from metadata except for :ref:`function <t_function>` arguments.
2784
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002785:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002786
2787::
2788
2789 metadata
2790
Sean Silvab084af42012-12-07 10:36:55 +00002791.. _t_aggregate:
2792
2793Aggregate Types
2794^^^^^^^^^^^^^^^
2795
2796Aggregate Types are a subset of derived types that can contain multiple
2797member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2798aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2799aggregate types.
2800
2801.. _t_array:
2802
2803Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002804""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002805
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002806:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002807
2808The array type is a very simple derived type that arranges elements
2809sequentially in memory. The array type requires a size (number of
2810elements) and an underlying data type.
2811
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002812:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002813
2814::
2815
2816 [<# elements> x <elementtype>]
2817
2818The number of elements is a constant integer value; ``elementtype`` may
2819be any type with a size.
2820
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002821:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002822
2823+------------------+--------------------------------------+
2824| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2825+------------------+--------------------------------------+
2826| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2827+------------------+--------------------------------------+
2828| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2829+------------------+--------------------------------------+
2830
2831Here are some examples of multidimensional arrays:
2832
2833+-----------------------------+----------------------------------------------------------+
2834| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2835+-----------------------------+----------------------------------------------------------+
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002836| ``[12 x [10 x float]]`` | 12x10 array of single precision floating-point values. |
Sean Silvab084af42012-12-07 10:36:55 +00002837+-----------------------------+----------------------------------------------------------+
2838| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2839+-----------------------------+----------------------------------------------------------+
2840
2841There is no restriction on indexing beyond the end of the array implied
2842by a static type (though there are restrictions on indexing beyond the
2843bounds of an allocated object in some cases). This means that
2844single-dimension 'variable sized array' addressing can be implemented in
2845LLVM with a zero length array type. An implementation of 'pascal style
2846arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2847example.
2848
Sean Silvab084af42012-12-07 10:36:55 +00002849.. _t_struct:
2850
2851Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002852""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002853
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002854:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002855
2856The structure type is used to represent a collection of data members
2857together in memory. The elements of a structure may be any type that has
2858a size.
2859
2860Structures in memory are accessed using '``load``' and '``store``' by
2861getting a pointer to a field with the '``getelementptr``' instruction.
2862Structures in registers are accessed using the '``extractvalue``' and
2863'``insertvalue``' instructions.
2864
2865Structures may optionally be "packed" structures, which indicate that
2866the alignment of the struct is one byte, and that there is no padding
2867between the elements. In non-packed structs, padding between field types
2868is inserted as defined by the DataLayout string in the module, which is
2869required to match what the underlying code generator expects.
2870
2871Structures can either be "literal" or "identified". A literal structure
2872is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2873identified types are always defined at the top level with a name.
2874Literal types are uniqued by their contents and can never be recursive
2875or opaque since there is no way to write one. Identified types can be
2876recursive, can be opaqued, and are never uniqued.
2877
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002878:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002879
2880::
2881
2882 %T1 = type { <type list> } ; Identified normal struct type
2883 %T2 = type <{ <type list> }> ; Identified packed struct type
2884
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002885:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002886
2887+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2888| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2889+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002890| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002891+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2892| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2893+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2894
2895.. _t_opaque:
2896
2897Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002898""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002899
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002900:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002901
2902Opaque structure types are used to represent named structure types that
2903do not have a body specified. This corresponds (for example) to the C
2904notion of a forward declared structure.
2905
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002906:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002907
2908::
2909
2910 %X = type opaque
2911 %52 = type opaque
2912
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002913:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002914
2915+--------------+-------------------+
2916| ``opaque`` | An opaque type. |
2917+--------------+-------------------+
2918
Sean Silva1703e702014-04-08 21:06:22 +00002919.. _constants:
2920
Sean Silvab084af42012-12-07 10:36:55 +00002921Constants
2922=========
2923
2924LLVM has several different basic types of constants. This section
2925describes them all and their syntax.
2926
2927Simple Constants
2928----------------
2929
2930**Boolean constants**
2931 The two strings '``true``' and '``false``' are both valid constants
2932 of the ``i1`` type.
2933**Integer constants**
2934 Standard integers (such as '4') are constants of the
2935 :ref:`integer <t_integer>` type. Negative numbers may be used with
2936 integer types.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002937**Floating-point constants**
2938 Floating-point constants use standard decimal notation (e.g.
Sean Silvab084af42012-12-07 10:36:55 +00002939 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2940 hexadecimal notation (see below). The assembler requires the exact
2941 decimal value of a floating-point constant. For example, the
2942 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00002943 decimal in binary. Floating-point constants must have a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002944 :ref:`floating-point <t_floating>` type.
Sean Silvab084af42012-12-07 10:36:55 +00002945**Null pointer constants**
2946 The identifier '``null``' is recognized as a null pointer constant
2947 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002948**Token constants**
2949 The identifier '``none``' is recognized as an empty token constant
2950 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002951
2952The one non-intuitive notation for constants is the hexadecimal form of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002953floating-point constants. For example, the form
Sean Silvab084af42012-12-07 10:36:55 +00002954'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002955than) '``double 4.5e+15``'. The only time hexadecimal floating-point
Sean Silvab084af42012-12-07 10:36:55 +00002956constants are required (and the only time that they are generated by the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002957disassembler) is when a floating-point constant must be emitted but it
2958cannot be represented as a decimal floating-point number in a reasonable
Sean Silvab084af42012-12-07 10:36:55 +00002959number of digits. For example, NaN's, infinities, and other special
2960values are represented in their IEEE hexadecimal format so that assembly
2961and disassembly do not cause any bits to change in the constants.
2962
2963When using the hexadecimal form, constants of types half, float, and
2964double are represented using the 16-digit form shown above (which
2965matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002966must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002967precision, respectively. Hexadecimal format is always used for long
2968double, and there are three forms of long double. The 80-bit format used
2969by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2970128-bit format used by PowerPC (two adjacent doubles) is represented by
2971``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002972represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2973will only work if they match the long double format on your target.
2974The IEEE 16-bit format (half precision) is represented by ``0xH``
2975followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2976(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002977
Reid Kleckner9a16d082014-03-05 02:41:37 +00002978There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002979
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002980.. _complexconstants:
2981
Sean Silvab084af42012-12-07 10:36:55 +00002982Complex Constants
2983-----------------
2984
2985Complex constants are a (potentially recursive) combination of simple
2986constants and smaller complex constants.
2987
2988**Structure constants**
2989 Structure constants are represented with notation similar to
2990 structure type definitions (a comma separated list of elements,
2991 surrounded by braces (``{}``)). For example:
2992 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2993 "``@G = external global i32``". Structure constants must have
2994 :ref:`structure type <t_struct>`, and the number and types of elements
2995 must match those specified by the type.
2996**Array constants**
2997 Array constants are represented with notation similar to array type
2998 definitions (a comma separated list of elements, surrounded by
2999 square brackets (``[]``)). For example:
3000 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
3001 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00003002 match those specified by the type. As a special case, character array
3003 constants may also be represented as a double-quoted string using the ``c``
3004 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00003005**Vector constants**
3006 Vector constants are represented with notation similar to vector
3007 type definitions (a comma separated list of elements, surrounded by
3008 less-than/greater-than's (``<>``)). For example:
3009 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
3010 must have :ref:`vector type <t_vector>`, and the number and types of
3011 elements must match those specified by the type.
3012**Zero initialization**
3013 The string '``zeroinitializer``' can be used to zero initialize a
3014 value to zero of *any* type, including scalar and
3015 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
3016 having to print large zero initializers (e.g. for large arrays) and
3017 is always exactly equivalent to using explicit zero initializers.
3018**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00003019 A metadata node is a constant tuple without types. For example:
3020 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003021 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
3022 Unlike other typed constants that are meant to be interpreted as part of
3023 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00003024 information such as debug info.
3025
3026Global Variable and Function Addresses
3027--------------------------------------
3028
3029The addresses of :ref:`global variables <globalvars>` and
3030:ref:`functions <functionstructure>` are always implicitly valid
3031(link-time) constants. These constants are explicitly referenced when
3032the :ref:`identifier for the global <identifiers>` is used and always have
3033:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
3034file:
3035
3036.. code-block:: llvm
3037
3038 @X = global i32 17
3039 @Y = global i32 42
3040 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
3041
3042.. _undefvalues:
3043
3044Undefined Values
3045----------------
3046
3047The string '``undef``' can be used anywhere a constant is expected, and
3048indicates that the user of the value may receive an unspecified
3049bit-pattern. Undefined values may be of any type (other than '``label``'
3050or '``void``') and be used anywhere a constant is permitted.
3051
3052Undefined values are useful because they indicate to the compiler that
3053the program is well defined no matter what value is used. This gives the
3054compiler more freedom to optimize. Here are some examples of
3055(potentially surprising) transformations that are valid (in pseudo IR):
3056
3057.. code-block:: llvm
3058
3059 %A = add %X, undef
3060 %B = sub %X, undef
3061 %C = xor %X, undef
3062 Safe:
3063 %A = undef
3064 %B = undef
3065 %C = undef
3066
3067This is safe because all of the output bits are affected by the undef
3068bits. Any output bit can have a zero or one depending on the input bits.
3069
3070.. code-block:: llvm
3071
3072 %A = or %X, undef
3073 %B = and %X, undef
3074 Safe:
3075 %A = -1
3076 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00003077 Safe:
3078 %A = %X ;; By choosing undef as 0
3079 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00003080 Unsafe:
3081 %A = undef
3082 %B = undef
3083
3084These logical operations have bits that are not always affected by the
3085input. For example, if ``%X`` has a zero bit, then the output of the
3086'``and``' operation will always be a zero for that bit, no matter what
3087the corresponding bit from the '``undef``' is. As such, it is unsafe to
3088optimize or assume that the result of the '``and``' is '``undef``'.
3089However, it is safe to assume that all bits of the '``undef``' could be
30900, and optimize the '``and``' to 0. Likewise, it is safe to assume that
3091all the bits of the '``undef``' operand to the '``or``' could be set,
3092allowing the '``or``' to be folded to -1.
3093
3094.. code-block:: llvm
3095
3096 %A = select undef, %X, %Y
3097 %B = select undef, 42, %Y
3098 %C = select %X, %Y, undef
3099 Safe:
3100 %A = %X (or %Y)
3101 %B = 42 (or %Y)
3102 %C = %Y
3103 Unsafe:
3104 %A = undef
3105 %B = undef
3106 %C = undef
3107
3108This set of examples shows that undefined '``select``' (and conditional
3109branch) conditions can go *either way*, but they have to come from one
3110of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
3111both known to have a clear low bit, then ``%A`` would have to have a
3112cleared low bit. However, in the ``%C`` example, the optimizer is
3113allowed to assume that the '``undef``' operand could be the same as
3114``%Y``, allowing the whole '``select``' to be eliminated.
3115
Renato Golin124f2592016-07-20 12:16:38 +00003116.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003117
3118 %A = xor undef, undef
3119
3120 %B = undef
3121 %C = xor %B, %B
3122
3123 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00003124 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00003125 %F = icmp gte %D, 4
3126
3127 Safe:
3128 %A = undef
3129 %B = undef
3130 %C = undef
3131 %D = undef
3132 %E = undef
3133 %F = undef
3134
3135This example points out that two '``undef``' operands are not
3136necessarily the same. This can be surprising to people (and also matches
3137C semantics) where they assume that "``X^X``" is always zero, even if
3138``X`` is undefined. This isn't true for a number of reasons, but the
3139short answer is that an '``undef``' "variable" can arbitrarily change
3140its value over its "live range". This is true because the variable
3141doesn't actually *have a live range*. Instead, the value is logically
3142read from arbitrary registers that happen to be around when needed, so
3143the value is not necessarily consistent over time. In fact, ``%A`` and
3144``%C`` need to have the same semantics or the core LLVM "replace all
3145uses with" concept would not hold.
3146
3147.. code-block:: llvm
3148
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003149 %A = sdiv undef, %X
3150 %B = sdiv %X, undef
Sean Silvab084af42012-12-07 10:36:55 +00003151 Safe:
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003152 %A = 0
Sean Silvab084af42012-12-07 10:36:55 +00003153 b: unreachable
3154
3155These examples show the crucial difference between an *undefined value*
3156and *undefined behavior*. An undefined value (like '``undef``') is
3157allowed to have an arbitrary bit-pattern. This means that the ``%A``
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003158operation can be constant folded to '``0``', because the '``undef``'
3159could be zero, and zero divided by any value is zero.
Sean Silvab084af42012-12-07 10:36:55 +00003160However, in the second example, we can make a more aggressive
3161assumption: because the ``undef`` is allowed to be an arbitrary value,
3162we are allowed to assume that it could be zero. Since a divide by zero
3163has *undefined behavior*, we are allowed to assume that the operation
3164does not execute at all. This allows us to delete the divide and all
3165code after it. Because the undefined operation "can't happen", the
3166optimizer can assume that it occurs in dead code.
3167
Renato Golin124f2592016-07-20 12:16:38 +00003168.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003169
3170 a: store undef -> %X
3171 b: store %X -> undef
3172 Safe:
3173 a: <deleted>
3174 b: unreachable
3175
Sanjay Patel7b722402018-03-07 17:18:22 +00003176A store *of* an undefined value can be assumed to not have any effect;
3177we can assume that the value is overwritten with bits that happen to
3178match what was already there. However, a store *to* an undefined
3179location could clobber arbitrary memory, therefore, it has undefined
3180behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003181
3182.. _poisonvalues:
3183
3184Poison Values
3185-------------
3186
3187Poison values are similar to :ref:`undef values <undefvalues>`, however
3188they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003189that cannot evoke side effects has nevertheless detected a condition
3190that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003191
3192There is currently no way of representing a poison value in the IR; they
3193only exist when produced by operations such as :ref:`add <i_add>` with
3194the ``nsw`` flag.
3195
3196Poison value behavior is defined in terms of value *dependence*:
3197
3198- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3199- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3200 their dynamic predecessor basic block.
3201- Function arguments depend on the corresponding actual argument values
3202 in the dynamic callers of their functions.
3203- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3204 instructions that dynamically transfer control back to them.
3205- :ref:`Invoke <i_invoke>` instructions depend on the
3206 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3207 call instructions that dynamically transfer control back to them.
3208- Non-volatile loads and stores depend on the most recent stores to all
3209 of the referenced memory addresses, following the order in the IR
3210 (including loads and stores implied by intrinsics such as
3211 :ref:`@llvm.memcpy <int_memcpy>`.)
3212- An instruction with externally visible side effects depends on the
3213 most recent preceding instruction with externally visible side
3214 effects, following the order in the IR. (This includes :ref:`volatile
3215 operations <volatile>`.)
3216- An instruction *control-depends* on a :ref:`terminator
3217 instruction <terminators>` if the terminator instruction has
3218 multiple successors and the instruction is always executed when
3219 control transfers to one of the successors, and may not be executed
3220 when control is transferred to another.
3221- Additionally, an instruction also *control-depends* on a terminator
3222 instruction if the set of instructions it otherwise depends on would
3223 be different if the terminator had transferred control to a different
3224 successor.
3225- Dependence is transitive.
3226
Richard Smith32dbdf62014-07-31 04:25:36 +00003227Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3228with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003229on a poison value has undefined behavior.
3230
3231Here are some examples:
3232
3233.. code-block:: llvm
3234
3235 entry:
3236 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3237 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003238 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003239 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3240
3241 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003242 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003243
3244 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3245
3246 %narrowaddr = bitcast i32* @g to i16*
3247 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003248 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3249 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003250
3251 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3252 br i1 %cmp, label %true, label %end ; Branch to either destination.
3253
3254 true:
3255 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3256 ; it has undefined behavior.
3257 br label %end
3258
3259 end:
3260 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3261 ; Both edges into this PHI are
3262 ; control-dependent on %cmp, so this
3263 ; always results in a poison value.
3264
3265 store volatile i32 0, i32* @g ; This would depend on the store in %true
3266 ; if %cmp is true, or the store in %entry
3267 ; otherwise, so this is undefined behavior.
3268
3269 br i1 %cmp, label %second_true, label %second_end
3270 ; The same branch again, but this time the
3271 ; true block doesn't have side effects.
3272
3273 second_true:
3274 ; No side effects!
3275 ret void
3276
3277 second_end:
3278 store volatile i32 0, i32* @g ; This time, the instruction always depends
3279 ; on the store in %end. Also, it is
3280 ; control-equivalent to %end, so this is
3281 ; well-defined (ignoring earlier undefined
3282 ; behavior in this example).
3283
3284.. _blockaddress:
3285
3286Addresses of Basic Blocks
3287-------------------------
3288
3289``blockaddress(@function, %block)``
3290
3291The '``blockaddress``' constant computes the address of the specified
3292basic block in the specified function, and always has an ``i8*`` type.
3293Taking the address of the entry block is illegal.
3294
3295This value only has defined behavior when used as an operand to the
3296':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3297against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003298undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003299no label is equal to the null pointer. This may be passed around as an
3300opaque pointer sized value as long as the bits are not inspected. This
3301allows ``ptrtoint`` and arithmetic to be performed on these values so
3302long as the original value is reconstituted before the ``indirectbr``
3303instruction.
3304
3305Finally, some targets may provide defined semantics when using the value
3306as the operand to an inline assembly, but that is target specific.
3307
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003308.. _constantexprs:
3309
Sean Silvab084af42012-12-07 10:36:55 +00003310Constant Expressions
3311--------------------
3312
3313Constant expressions are used to allow expressions involving other
3314constants to be used as constants. Constant expressions may be of any
3315:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3316that does not have side effects (e.g. load and call are not supported).
3317The following is the syntax for constant expressions:
3318
3319``trunc (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003320 Perform the :ref:`trunc operation <i_trunc>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003321``zext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003322 Perform the :ref:`zext operation <i_zext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003323``sext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003324 Perform the :ref:`sext operation <i_sext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003325``fptrunc (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003326 Truncate a floating-point constant to another floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003327 The size of CST must be larger than the size of TYPE. Both types
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003328 must be floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003329``fpext (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003330 Floating-point extend a constant to another type. The size of CST
Sean Silvab084af42012-12-07 10:36:55 +00003331 must be smaller or equal to the size of TYPE. Both types must be
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003332 floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003333``fptoui (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003334 Convert a floating-point constant to the corresponding unsigned
Sean Silvab084af42012-12-07 10:36:55 +00003335 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003336 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003337 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003338 value won't fit in the integer type, the result is a
3339 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003340``fptosi (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003341 Convert a floating-point constant to the corresponding signed
Sean Silvab084af42012-12-07 10:36:55 +00003342 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003343 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003344 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003345 value won't fit in the integer type, the result is a
3346 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003347``uitofp (CST to TYPE)``
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00003348 Convert an unsigned integer constant to the corresponding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003349 floating-point constant. TYPE must be a scalar or vector floating-point
3350 type. CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003351 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003352``sitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003353 Convert a signed integer constant to the corresponding floating-point
3354 constant. TYPE must be a scalar or vector floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003355 CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003356 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003357``ptrtoint (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003358 Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003359``inttoptr (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003360 Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003361 This one is *really* dangerous!
3362``bitcast (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003363 Convert a constant, CST, to another TYPE.
3364 The constraints of the operands are the same as those for the
3365 :ref:`bitcast instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003366``addrspacecast (CST to TYPE)``
3367 Convert a constant pointer or constant vector of pointer, CST, to another
3368 TYPE in a different address space. The constraints of the operands are the
3369 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003370``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003371 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3372 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003373 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003374 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003375``select (COND, VAL1, VAL2)``
3376 Perform the :ref:`select operation <i_select>` on constants.
3377``icmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003378 Perform the :ref:`icmp operation <i_icmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003379``fcmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003380 Perform the :ref:`fcmp operation <i_fcmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003381``extractelement (VAL, IDX)``
3382 Perform the :ref:`extractelement operation <i_extractelement>` on
3383 constants.
3384``insertelement (VAL, ELT, IDX)``
3385 Perform the :ref:`insertelement operation <i_insertelement>` on
3386 constants.
3387``shufflevector (VEC1, VEC2, IDXMASK)``
3388 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3389 constants.
3390``extractvalue (VAL, IDX0, IDX1, ...)``
3391 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3392 constants. The index list is interpreted in a similar manner as
3393 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3394 least one index value must be specified.
3395``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3396 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3397 The index list is interpreted in a similar manner as indices in a
3398 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3399 value must be specified.
3400``OPCODE (LHS, RHS)``
3401 Perform the specified operation of the LHS and RHS constants. OPCODE
3402 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3403 binary <bitwiseops>` operations. The constraints on operands are
3404 the same as those for the corresponding instruction (e.g. no bitwise
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003405 operations on floating-point values are allowed).
Sean Silvab084af42012-12-07 10:36:55 +00003406
3407Other Values
3408============
3409
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003410.. _inlineasmexprs:
3411
Sean Silvab084af42012-12-07 10:36:55 +00003412Inline Assembler Expressions
3413----------------------------
3414
3415LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003416Inline Assembly <moduleasm>`) through the use of a special value. This value
3417represents the inline assembler as a template string (containing the
3418instructions to emit), a list of operand constraints (stored as a string), a
3419flag that indicates whether or not the inline asm expression has side effects,
3420and a flag indicating whether the function containing the asm needs to align its
3421stack conservatively.
3422
3423The template string supports argument substitution of the operands using "``$``"
3424followed by a number, to indicate substitution of the given register/memory
3425location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3426be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3427operand (See :ref:`inline-asm-modifiers`).
3428
3429A literal "``$``" may be included by using "``$$``" in the template. To include
3430other special characters into the output, the usual "``\XX``" escapes may be
3431used, just as in other strings. Note that after template substitution, the
3432resulting assembly string is parsed by LLVM's integrated assembler unless it is
3433disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3434syntax known to LLVM.
3435
Reid Kleckner71cb1642017-02-06 18:08:45 +00003436LLVM also supports a few more substitions useful for writing inline assembly:
3437
3438- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3439 This substitution is useful when declaring a local label. Many standard
3440 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3441 Adding a blob-unique identifier ensures that the two labels will not conflict
3442 during assembly. This is used to implement `GCC's %= special format
3443 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3444- ``${:comment}``: Expands to the comment character of the current target's
3445 assembly dialect. This is usually ``#``, but many targets use other strings,
3446 such as ``;``, ``//``, or ``!``.
3447- ``${:private}``: Expands to the assembler private label prefix. Labels with
3448 this prefix will not appear in the symbol table of the assembled object.
3449 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3450 relatively popular.
3451
James Y Knightbc832ed2015-07-08 18:08:36 +00003452LLVM's support for inline asm is modeled closely on the requirements of Clang's
3453GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3454modifier codes listed here are similar or identical to those in GCC's inline asm
3455support. However, to be clear, the syntax of the template and constraint strings
3456described here is *not* the same as the syntax accepted by GCC and Clang, and,
3457while most constraint letters are passed through as-is by Clang, some get
3458translated to other codes when converting from the C source to the LLVM
3459assembly.
3460
3461An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003462
3463.. code-block:: llvm
3464
3465 i32 (i32) asm "bswap $0", "=r,r"
3466
3467Inline assembler expressions may **only** be used as the callee operand
3468of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3469Thus, typically we have:
3470
3471.. code-block:: llvm
3472
3473 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3474
3475Inline asms with side effects not visible in the constraint list must be
3476marked as having side effects. This is done through the use of the
3477'``sideeffect``' keyword, like so:
3478
3479.. code-block:: llvm
3480
3481 call void asm sideeffect "eieio", ""()
3482
3483In some cases inline asms will contain code that will not work unless
3484the stack is aligned in some way, such as calls or SSE instructions on
3485x86, yet will not contain code that does that alignment within the asm.
3486The compiler should make conservative assumptions about what the asm
3487might contain and should generate its usual stack alignment code in the
3488prologue if the '``alignstack``' keyword is present:
3489
3490.. code-block:: llvm
3491
3492 call void asm alignstack "eieio", ""()
3493
3494Inline asms also support using non-standard assembly dialects. The
3495assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3496the inline asm is using the Intel dialect. Currently, ATT and Intel are
3497the only supported dialects. An example is:
3498
3499.. code-block:: llvm
3500
3501 call void asm inteldialect "eieio", ""()
3502
3503If multiple keywords appear the '``sideeffect``' keyword must come
3504first, the '``alignstack``' keyword second and the '``inteldialect``'
3505keyword last.
3506
James Y Knightbc832ed2015-07-08 18:08:36 +00003507Inline Asm Constraint String
3508^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3509
3510The constraint list is a comma-separated string, each element containing one or
3511more constraint codes.
3512
3513For each element in the constraint list an appropriate register or memory
3514operand will be chosen, and it will be made available to assembly template
3515string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3516second, etc.
3517
3518There are three different types of constraints, which are distinguished by a
3519prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3520constraints must always be given in that order: outputs first, then inputs, then
3521clobbers. They cannot be intermingled.
3522
3523There are also three different categories of constraint codes:
3524
3525- Register constraint. This is either a register class, or a fixed physical
3526 register. This kind of constraint will allocate a register, and if necessary,
3527 bitcast the argument or result to the appropriate type.
3528- Memory constraint. This kind of constraint is for use with an instruction
3529 taking a memory operand. Different constraints allow for different addressing
3530 modes used by the target.
3531- Immediate value constraint. This kind of constraint is for an integer or other
3532 immediate value which can be rendered directly into an instruction. The
3533 various target-specific constraints allow the selection of a value in the
3534 proper range for the instruction you wish to use it with.
3535
3536Output constraints
3537""""""""""""""""""
3538
3539Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3540indicates that the assembly will write to this operand, and the operand will
3541then be made available as a return value of the ``asm`` expression. Output
3542constraints do not consume an argument from the call instruction. (Except, see
3543below about indirect outputs).
3544
3545Normally, it is expected that no output locations are written to by the assembly
3546expression until *all* of the inputs have been read. As such, LLVM may assign
3547the same register to an output and an input. If this is not safe (e.g. if the
3548assembly contains two instructions, where the first writes to one output, and
3549the second reads an input and writes to a second output), then the "``&``"
3550modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003551"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003552will not use the same register for any inputs (other than an input tied to this
3553output).
3554
3555Input constraints
3556"""""""""""""""""
3557
3558Input constraints do not have a prefix -- just the constraint codes. Each input
3559constraint will consume one argument from the call instruction. It is not
3560permitted for the asm to write to any input register or memory location (unless
3561that input is tied to an output). Note also that multiple inputs may all be
3562assigned to the same register, if LLVM can determine that they necessarily all
3563contain the same value.
3564
3565Instead of providing a Constraint Code, input constraints may also "tie"
3566themselves to an output constraint, by providing an integer as the constraint
3567string. Tied inputs still consume an argument from the call instruction, and
3568take up a position in the asm template numbering as is usual -- they will simply
3569be constrained to always use the same register as the output they've been tied
3570to. For example, a constraint string of "``=r,0``" says to assign a register for
3571output, and use that register as an input as well (it being the 0'th
3572constraint).
3573
3574It is permitted to tie an input to an "early-clobber" output. In that case, no
3575*other* input may share the same register as the input tied to the early-clobber
3576(even when the other input has the same value).
3577
3578You may only tie an input to an output which has a register constraint, not a
3579memory constraint. Only a single input may be tied to an output.
3580
3581There is also an "interesting" feature which deserves a bit of explanation: if a
3582register class constraint allocates a register which is too small for the value
3583type operand provided as input, the input value will be split into multiple
3584registers, and all of them passed to the inline asm.
3585
3586However, this feature is often not as useful as you might think.
3587
3588Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3589architectures that have instructions which operate on multiple consecutive
3590instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3591SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3592hardware then loads into both the named register, and the next register. This
3593feature of inline asm would not be useful to support that.)
3594
3595A few of the targets provide a template string modifier allowing explicit access
3596to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3597``D``). On such an architecture, you can actually access the second allocated
3598register (yet, still, not any subsequent ones). But, in that case, you're still
3599probably better off simply splitting the value into two separate operands, for
3600clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3601despite existing only for use with this feature, is not really a good idea to
3602use)
3603
3604Indirect inputs and outputs
3605"""""""""""""""""""""""""""
3606
3607Indirect output or input constraints can be specified by the "``*``" modifier
3608(which goes after the "``=``" in case of an output). This indicates that the asm
3609will write to or read from the contents of an *address* provided as an input
3610argument. (Note that in this way, indirect outputs act more like an *input* than
3611an output: just like an input, they consume an argument of the call expression,
3612rather than producing a return value. An indirect output constraint is an
3613"output" only in that the asm is expected to write to the contents of the input
3614memory location, instead of just read from it).
3615
3616This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3617address of a variable as a value.
3618
3619It is also possible to use an indirect *register* constraint, but only on output
3620(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3621value normally, and then, separately emit a store to the address provided as
3622input, after the provided inline asm. (It's not clear what value this
3623functionality provides, compared to writing the store explicitly after the asm
3624statement, and it can only produce worse code, since it bypasses many
3625optimization passes. I would recommend not using it.)
3626
3627
3628Clobber constraints
3629"""""""""""""""""""
3630
3631A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3632consume an input operand, nor generate an output. Clobbers cannot use any of the
3633general constraint code letters -- they may use only explicit register
3634constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3635"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3636memory locations -- not only the memory pointed to by a declared indirect
3637output.
3638
Peter Zotov00257232016-08-30 10:48:31 +00003639Note that clobbering named registers that are also present in output
3640constraints is not legal.
3641
James Y Knightbc832ed2015-07-08 18:08:36 +00003642
3643Constraint Codes
3644""""""""""""""""
3645After a potential prefix comes constraint code, or codes.
3646
3647A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3648followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3649(e.g. "``{eax}``").
3650
3651The one and two letter constraint codes are typically chosen to be the same as
3652GCC's constraint codes.
3653
3654A single constraint may include one or more than constraint code in it, leaving
3655it up to LLVM to choose which one to use. This is included mainly for
3656compatibility with the translation of GCC inline asm coming from clang.
3657
3658There are two ways to specify alternatives, and either or both may be used in an
3659inline asm constraint list:
3660
36611) Append the codes to each other, making a constraint code set. E.g. "``im``"
3662 or "``{eax}m``". This means "choose any of the options in the set". The
3663 choice of constraint is made independently for each constraint in the
3664 constraint list.
3665
36662) Use "``|``" between constraint code sets, creating alternatives. Every
3667 constraint in the constraint list must have the same number of alternative
3668 sets. With this syntax, the same alternative in *all* of the items in the
3669 constraint list will be chosen together.
3670
3671Putting those together, you might have a two operand constraint string like
3672``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3673operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3674may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3675
3676However, the use of either of the alternatives features is *NOT* recommended, as
3677LLVM is not able to make an intelligent choice about which one to use. (At the
3678point it currently needs to choose, not enough information is available to do so
3679in a smart way.) Thus, it simply tries to make a choice that's most likely to
3680compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3681always choose to use memory, not registers). And, if given multiple registers,
3682or multiple register classes, it will simply choose the first one. (In fact, it
3683doesn't currently even ensure explicitly specified physical registers are
3684unique, so specifying multiple physical registers as alternatives, like
3685``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3686intended.)
3687
3688Supported Constraint Code List
3689""""""""""""""""""""""""""""""
3690
3691The constraint codes are, in general, expected to behave the same way they do in
3692GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3693inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3694and GCC likely indicates a bug in LLVM.
3695
3696Some constraint codes are typically supported by all targets:
3697
3698- ``r``: A register in the target's general purpose register class.
3699- ``m``: A memory address operand. It is target-specific what addressing modes
3700 are supported, typical examples are register, or register + register offset,
3701 or register + immediate offset (of some target-specific size).
3702- ``i``: An integer constant (of target-specific width). Allows either a simple
3703 immediate, or a relocatable value.
3704- ``n``: An integer constant -- *not* including relocatable values.
3705- ``s``: An integer constant, but allowing *only* relocatable values.
3706- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3707 useful to pass a label for an asm branch or call.
3708
3709 .. FIXME: but that surely isn't actually okay to jump out of an asm
3710 block without telling llvm about the control transfer???)
3711
3712- ``{register-name}``: Requires exactly the named physical register.
3713
3714Other constraints are target-specific:
3715
3716AArch64:
3717
3718- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3719- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3720 i.e. 0 to 4095 with optional shift by 12.
3721- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3722 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3723- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3724 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3725- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3726 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3727- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3728 32-bit register. This is a superset of ``K``: in addition to the bitmask
3729 immediate, also allows immediate integers which can be loaded with a single
3730 ``MOVZ`` or ``MOVL`` instruction.
3731- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3732 64-bit register. This is a superset of ``L``.
3733- ``Q``: Memory address operand must be in a single register (no
3734 offsets). (However, LLVM currently does this for the ``m`` constraint as
3735 well.)
3736- ``r``: A 32 or 64-bit integer register (W* or X*).
3737- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3738- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3739
3740AMDGPU:
3741
3742- ``r``: A 32 or 64-bit integer register.
3743- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3744- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3745
3746
3747All ARM modes:
3748
3749- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3750 operand. Treated the same as operand ``m``, at the moment.
3751
3752ARM and ARM's Thumb2 mode:
3753
3754- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3755- ``I``: An immediate integer valid for a data-processing instruction.
3756- ``J``: An immediate integer between -4095 and 4095.
3757- ``K``: An immediate integer whose bitwise inverse is valid for a
3758 data-processing instruction. (Can be used with template modifier "``B``" to
3759 print the inverted value).
3760- ``L``: An immediate integer whose negation is valid for a data-processing
3761 instruction. (Can be used with template modifier "``n``" to print the negated
3762 value).
3763- ``M``: A power of two or a integer between 0 and 32.
3764- ``N``: Invalid immediate constraint.
3765- ``O``: Invalid immediate constraint.
3766- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3767- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3768 as ``r``.
3769- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3770 invalid.
3771- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3772 ``d0-d31``, or ``q0-q15``.
3773- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3774 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003775- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3776 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003777
3778ARM's Thumb1 mode:
3779
3780- ``I``: An immediate integer between 0 and 255.
3781- ``J``: An immediate integer between -255 and -1.
3782- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3783 some amount.
3784- ``L``: An immediate integer between -7 and 7.
3785- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3786- ``N``: An immediate integer between 0 and 31.
3787- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3788- ``r``: A low 32-bit GPR register (``r0-r7``).
3789- ``l``: A low 32-bit GPR register (``r0-r7``).
3790- ``h``: A high GPR register (``r0-r7``).
3791- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3792 ``d0-d31``, or ``q0-q15``.
3793- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3794 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003795- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3796 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003797
3798
3799Hexagon:
3800
3801- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3802 at the moment.
3803- ``r``: A 32 or 64-bit register.
3804
3805MSP430:
3806
3807- ``r``: An 8 or 16-bit register.
3808
3809MIPS:
3810
3811- ``I``: An immediate signed 16-bit integer.
3812- ``J``: An immediate integer zero.
3813- ``K``: An immediate unsigned 16-bit integer.
3814- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3815- ``N``: An immediate integer between -65535 and -1.
3816- ``O``: An immediate signed 15-bit integer.
3817- ``P``: An immediate integer between 1 and 65535.
3818- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3819 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3820- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3821 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3822 ``m``.
3823- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3824 ``sc`` instruction on the given subtarget (details vary).
3825- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3826- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003827 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3828 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003829- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3830 ``25``).
3831- ``l``: The ``lo`` register, 32 or 64-bit.
3832- ``x``: Invalid.
3833
3834NVPTX:
3835
3836- ``b``: A 1-bit integer register.
3837- ``c`` or ``h``: A 16-bit integer register.
3838- ``r``: A 32-bit integer register.
3839- ``l`` or ``N``: A 64-bit integer register.
3840- ``f``: A 32-bit float register.
3841- ``d``: A 64-bit float register.
3842
3843
3844PowerPC:
3845
3846- ``I``: An immediate signed 16-bit integer.
3847- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3848- ``K``: An immediate unsigned 16-bit integer.
3849- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3850- ``M``: An immediate integer greater than 31.
3851- ``N``: An immediate integer that is an exact power of 2.
3852- ``O``: The immediate integer constant 0.
3853- ``P``: An immediate integer constant whose negation is a signed 16-bit
3854 constant.
3855- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3856 treated the same as ``m``.
3857- ``r``: A 32 or 64-bit integer register.
3858- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3859 ``R1-R31``).
3860- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3861 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3862- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3863 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3864 altivec vector register (``V0-V31``).
3865
3866 .. FIXME: is this a bug that v accepts QPX registers? I think this
3867 is supposed to only use the altivec vector registers?
3868
3869- ``y``: Condition register (``CR0-CR7``).
3870- ``wc``: An individual CR bit in a CR register.
3871- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3872 register set (overlapping both the floating-point and vector register files).
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003873- ``ws``: A 32 or 64-bit floating-point register, from the full VSX register
James Y Knightbc832ed2015-07-08 18:08:36 +00003874 set.
3875
3876Sparc:
3877
3878- ``I``: An immediate 13-bit signed integer.
3879- ``r``: A 32-bit integer register.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003880- ``f``: Any floating-point register on SparcV8, or a floating-point
James Y Knightd4e1b002017-05-12 15:59:10 +00003881 register in the "low" half of the registers on SparcV9.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003882- ``e``: Any floating-point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003883
3884SystemZ:
3885
3886- ``I``: An immediate unsigned 8-bit integer.
3887- ``J``: An immediate unsigned 12-bit integer.
3888- ``K``: An immediate signed 16-bit integer.
3889- ``L``: An immediate signed 20-bit integer.
3890- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003891- ``Q``: A memory address operand with a base address and a 12-bit immediate
3892 unsigned displacement.
3893- ``R``: A memory address operand with a base address, a 12-bit immediate
3894 unsigned displacement, and an index register.
3895- ``S``: A memory address operand with a base address and a 20-bit immediate
3896 signed displacement.
3897- ``T``: A memory address operand with a base address, a 20-bit immediate
3898 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003899- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3900- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3901 address context evaluates as zero).
3902- ``h``: A 32-bit value in the high part of a 64bit data register
3903 (LLVM-specific)
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003904- ``f``: A 32, 64, or 128-bit floating-point register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003905
3906X86:
3907
3908- ``I``: An immediate integer between 0 and 31.
3909- ``J``: An immediate integer between 0 and 64.
3910- ``K``: An immediate signed 8-bit integer.
3911- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3912 0xffffffff.
3913- ``M``: An immediate integer between 0 and 3.
3914- ``N``: An immediate unsigned 8-bit integer.
3915- ``O``: An immediate integer between 0 and 127.
3916- ``e``: An immediate 32-bit signed integer.
3917- ``Z``: An immediate 32-bit unsigned integer.
3918- ``o``, ``v``: Treated the same as ``m``, at the moment.
3919- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3920 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3921 registers, and on X86-64, it is all of the integer registers.
3922- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3923 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3924- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3925- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3926 existed since i386, and can be accessed without the REX prefix.
3927- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3928- ``y``: A 64-bit MMX register, if MMX is enabled.
3929- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3930 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3931 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3932 512-bit vector operand in an AVX512 register, Otherwise, an error.
3933- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3934- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3935 32-bit mode, a 64-bit integer operand will get split into two registers). It
3936 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3937 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3938 you're better off splitting it yourself, before passing it to the asm
3939 statement.
3940
3941XCore:
3942
3943- ``r``: A 32-bit integer register.
3944
3945
3946.. _inline-asm-modifiers:
3947
3948Asm template argument modifiers
3949^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3950
3951In the asm template string, modifiers can be used on the operand reference, like
3952"``${0:n}``".
3953
3954The modifiers are, in general, expected to behave the same way they do in
3955GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3956inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3957and GCC likely indicates a bug in LLVM.
3958
3959Target-independent:
3960
Sean Silvaa1190322015-08-06 22:56:48 +00003961- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003962 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3963- ``n``: Negate and print immediate integer constant unadorned, without the
3964 target-specific immediate punctuation (e.g. no ``$`` prefix).
3965- ``l``: Print as an unadorned label, without the target-specific label
3966 punctuation (e.g. no ``$`` prefix).
3967
3968AArch64:
3969
3970- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3971 instead of ``x30``, print ``w30``.
3972- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3973- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3974 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3975 ``v*``.
3976
3977AMDGPU:
3978
3979- ``r``: No effect.
3980
3981ARM:
3982
3983- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3984 register).
3985- ``P``: No effect.
3986- ``q``: No effect.
3987- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3988 as ``d4[1]`` instead of ``s9``)
3989- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3990 prefix.
3991- ``L``: Print the low 16-bits of an immediate integer constant.
3992- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3993 register operands subsequent to the specified one (!), so use carefully.
3994- ``Q``: Print the low-order register of a register-pair, or the low-order
3995 register of a two-register operand.
3996- ``R``: Print the high-order register of a register-pair, or the high-order
3997 register of a two-register operand.
3998- ``H``: Print the second register of a register-pair. (On a big-endian system,
3999 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
4000 to ``R``.)
4001
4002 .. FIXME: H doesn't currently support printing the second register
4003 of a two-register operand.
4004
4005- ``e``: Print the low doubleword register of a NEON quad register.
4006- ``f``: Print the high doubleword register of a NEON quad register.
4007- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
4008 adornment.
4009
4010Hexagon:
4011
4012- ``L``: Print the second register of a two-register operand. Requires that it
4013 has been allocated consecutively to the first.
4014
4015 .. FIXME: why is it restricted to consecutive ones? And there's
4016 nothing that ensures that happens, is there?
4017
4018- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4019 nothing. Used to print 'addi' vs 'add' instructions.
4020
4021MSP430:
4022
4023No additional modifiers.
4024
4025MIPS:
4026
4027- ``X``: Print an immediate integer as hexadecimal
4028- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
4029- ``d``: Print an immediate integer as decimal.
4030- ``m``: Subtract one and print an immediate integer as decimal.
4031- ``z``: Print $0 if an immediate zero, otherwise print normally.
4032- ``L``: Print the low-order register of a two-register operand, or prints the
4033 address of the low-order word of a double-word memory operand.
4034
4035 .. FIXME: L seems to be missing memory operand support.
4036
4037- ``M``: Print the high-order register of a two-register operand, or prints the
4038 address of the high-order word of a double-word memory operand.
4039
4040 .. FIXME: M seems to be missing memory operand support.
4041
4042- ``D``: Print the second register of a two-register operand, or prints the
4043 second word of a double-word memory operand. (On a big-endian system, ``D`` is
4044 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
4045 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00004046- ``w``: No effect. Provided for compatibility with GCC which requires this
4047 modifier in order to print MSA registers (``W0-W31``) with the ``f``
4048 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00004049
4050NVPTX:
4051
4052- ``r``: No effect.
4053
4054PowerPC:
4055
4056- ``L``: Print the second register of a two-register operand. Requires that it
4057 has been allocated consecutively to the first.
4058
4059 .. FIXME: why is it restricted to consecutive ones? And there's
4060 nothing that ensures that happens, is there?
4061
4062- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4063 nothing. Used to print 'addi' vs 'add' instructions.
4064- ``y``: For a memory operand, prints formatter for a two-register X-form
4065 instruction. (Currently always prints ``r0,OPERAND``).
4066- ``U``: Prints 'u' if the memory operand is an update form, and nothing
4067 otherwise. (NOTE: LLVM does not support update form, so this will currently
4068 always print nothing)
4069- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
4070 not support indexed form, so this will currently always print nothing)
4071
4072Sparc:
4073
4074- ``r``: No effect.
4075
4076SystemZ:
4077
4078SystemZ implements only ``n``, and does *not* support any of the other
4079target-independent modifiers.
4080
4081X86:
4082
4083- ``c``: Print an unadorned integer or symbol name. (The latter is
4084 target-specific behavior for this typically target-independent modifier).
4085- ``A``: Print a register name with a '``*``' before it.
4086- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
4087 operand.
4088- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
4089 memory operand.
4090- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
4091 operand.
4092- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
4093 operand.
4094- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
4095 available, otherwise the 32-bit register name; do nothing on a memory operand.
4096- ``n``: Negate and print an unadorned integer, or, for operands other than an
4097 immediate integer (e.g. a relocatable symbol expression), print a '-' before
4098 the operand. (The behavior for relocatable symbol expressions is a
4099 target-specific behavior for this typically target-independent modifier)
4100- ``H``: Print a memory reference with additional offset +8.
4101- ``P``: Print a memory reference or operand for use as the argument of a call
4102 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
4103
4104XCore:
4105
4106No additional modifiers.
4107
4108
Sean Silvab084af42012-12-07 10:36:55 +00004109Inline Asm Metadata
4110^^^^^^^^^^^^^^^^^^^
4111
4112The call instructions that wrap inline asm nodes may have a
4113"``!srcloc``" MDNode attached to it that contains a list of constant
4114integers. If present, the code generator will use the integer as the
4115location cookie value when report errors through the ``LLVMContext``
4116error reporting mechanisms. This allows a front-end to correlate backend
4117errors that occur with inline asm back to the source code that produced
4118it. For example:
4119
4120.. code-block:: llvm
4121
4122 call void asm sideeffect "something bad", ""(), !srcloc !42
4123 ...
4124 !42 = !{ i32 1234567 }
4125
4126It is up to the front-end to make sense of the magic numbers it places
4127in the IR. If the MDNode contains multiple constants, the code generator
4128will use the one that corresponds to the line of the asm that the error
4129occurs on.
4130
4131.. _metadata:
4132
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004133Metadata
4134========
Sean Silvab084af42012-12-07 10:36:55 +00004135
4136LLVM IR allows metadata to be attached to instructions in the program
4137that can convey extra information about the code to the optimizers and
4138code generator. One example application of metadata is source-level
4139debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004140
Sean Silvaa1190322015-08-06 22:56:48 +00004141Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004142``call`` instruction, it uses the ``metadata`` type.
4143
4144All metadata are identified in syntax by a exclamation point ('``!``').
4145
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004146.. _metadata-string:
4147
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004148Metadata Nodes and Metadata Strings
4149-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00004150
4151A metadata string is a string surrounded by double quotes. It can
4152contain any character by escaping non-printable characters with
4153"``\xx``" where "``xx``" is the two digit hex code. For example:
4154"``!"test\00"``".
4155
4156Metadata nodes are represented with notation similar to structure
4157constants (a comma separated list of elements, surrounded by braces and
4158preceded by an exclamation point). Metadata nodes can have any values as
4159their operand. For example:
4160
4161.. code-block:: llvm
4162
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004163 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00004164
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004165Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4166
Renato Golin124f2592016-07-20 12:16:38 +00004167.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004168
4169 !0 = distinct !{!"test\00", i32 10}
4170
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004171``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004172content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004173when metadata operands change.
4174
Sean Silvab084af42012-12-07 10:36:55 +00004175A :ref:`named metadata <namedmetadatastructure>` is a collection of
4176metadata nodes, which can be looked up in the module symbol table. For
4177example:
4178
4179.. code-block:: llvm
4180
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004181 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004182
Adrian Prantl1b842da2017-07-28 20:44:29 +00004183Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4184intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004185
4186.. code-block:: llvm
4187
Adrian Prantlabe04752017-07-28 20:21:02 +00004188 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004189
Peter Collingbourne50108682015-11-06 02:41:02 +00004190Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4191to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004192
4193.. code-block:: llvm
4194
4195 %indvar.next = add i64 %indvar, 1, !dbg !21
4196
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004197Metadata can also be attached to a function or a global variable. Here metadata
4198``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4199and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004200
4201.. code-block:: llvm
4202
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004203 declare !dbg !22 void @f1()
4204 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004205 ret void
4206 }
4207
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004208 @g1 = global i32 0, !dbg !22
4209 @g2 = external global i32, !dbg !22
4210
4211A transformation is required to drop any metadata attachment that it does not
4212know or know it can't preserve. Currently there is an exception for metadata
4213attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4214unconditionally dropped unless the global is itself deleted.
4215
4216Metadata attached to a module using named metadata may not be dropped, with
4217the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4218
Sean Silvab084af42012-12-07 10:36:55 +00004219More information about specific metadata nodes recognized by the
4220optimizers and code generator is found below.
4221
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004222.. _specialized-metadata:
4223
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004224Specialized Metadata Nodes
4225^^^^^^^^^^^^^^^^^^^^^^^^^^
4226
4227Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004228to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004229order.
4230
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004231These aren't inherently debug info centric, but currently all the specialized
4232metadata nodes are related to debug info.
4233
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004234.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004235
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004236DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004237"""""""""""""
4238
Sean Silvaa1190322015-08-06 22:56:48 +00004239``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004240``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4241containing the debug info to be emitted along with the compile unit, regardless
4242of code optimizations (some nodes are only emitted if there are references to
4243them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4244indicating whether or not line-table discriminators are updated to provide
4245more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004246
Renato Golin124f2592016-07-20 12:16:38 +00004247.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004248
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004249 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004250 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004251 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004252 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4253 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004254
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004255Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004256specific compilation unit. File descriptors are defined using this scope. These
4257descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4258track of global variables, type information, and imported entities (declarations
4259and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004260
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004261.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004262
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004263DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004264""""""
4265
Sean Silvaa1190322015-08-06 22:56:48 +00004266``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004267
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004268.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004269
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004270 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4271 checksumkind: CSK_MD5,
4272 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004273
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004274Files are sometimes used in ``scope:`` fields, and are the only valid target
4275for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004276Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004277
Michael Kuperstein605308a2015-05-14 10:58:59 +00004278.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004279
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004280DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004281"""""""""""
4282
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004283``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004284``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004285
Renato Golin124f2592016-07-20 12:16:38 +00004286.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004287
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004288 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004289 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004290 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004291
Sean Silvaa1190322015-08-06 22:56:48 +00004292The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004293following:
4294
Renato Golin124f2592016-07-20 12:16:38 +00004295.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004296
4297 DW_ATE_address = 1
4298 DW_ATE_boolean = 2
4299 DW_ATE_float = 4
4300 DW_ATE_signed = 5
4301 DW_ATE_signed_char = 6
4302 DW_ATE_unsigned = 7
4303 DW_ATE_unsigned_char = 8
4304
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004305.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004306
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004307DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004308""""""""""""""""
4309
Sean Silvaa1190322015-08-06 22:56:48 +00004310``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004311refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004312types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004313represents a function with no return value (such as ``void foo() {}`` in C++).
4314
Renato Golin124f2592016-07-20 12:16:38 +00004315.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004316
4317 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4318 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004319 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004320
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004321.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004322
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004323DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004324"""""""""""""
4325
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004326``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004327qualified types.
4328
Renato Golin124f2592016-07-20 12:16:38 +00004329.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004330
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004331 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004332 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004333 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004334 align: 32)
4335
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004336The following ``tag:`` values are valid:
4337
Renato Golin124f2592016-07-20 12:16:38 +00004338.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004339
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004340 DW_TAG_member = 13
4341 DW_TAG_pointer_type = 15
4342 DW_TAG_reference_type = 16
4343 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004344 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004345 DW_TAG_ptr_to_member_type = 31
4346 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004347 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004348 DW_TAG_volatile_type = 53
4349 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004350 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004351
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004352.. _DIDerivedTypeMember:
4353
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004354``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004355<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004356``offset:`` is the member's bit offset. If the composite type has an ODR
4357``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4358uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004359
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004360``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4361field of :ref:`composite types <DICompositeType>` to describe parents and
4362friends.
4363
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004364``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4365
4366``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004367``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4368are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004369
4370Note that the ``void *`` type is expressed as a type derived from NULL.
4371
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004372.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004373
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004374DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004375"""""""""""""""
4376
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004377``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004378structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004379
4380If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004381identifier used for type merging between modules. When specified,
4382:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4383derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4384``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004385
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004386For a given ``identifier:``, there should only be a single composite type that
4387does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4388together will unique such definitions at parse time via the ``identifier:``
4389field, even if the nodes are ``distinct``.
4390
Renato Golin124f2592016-07-20 12:16:38 +00004391.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004392
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004393 !0 = !DIEnumerator(name: "SixKind", value: 7)
4394 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4395 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4396 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004397 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4398 elements: !{!0, !1, !2})
4399
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004400The following ``tag:`` values are valid:
4401
Renato Golin124f2592016-07-20 12:16:38 +00004402.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004403
4404 DW_TAG_array_type = 1
4405 DW_TAG_class_type = 2
4406 DW_TAG_enumeration_type = 4
4407 DW_TAG_structure_type = 19
4408 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004409
4410For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004411descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004412level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004413array type is a native packed vector.
4414
4415For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004416descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004417value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004418``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004419
4420For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4421``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004422<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4423``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4424``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004425
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004426.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004427
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004428DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004429""""""""""
4430
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004431``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sander de Smalen1cb94312018-01-24 10:30:23 +00004432:ref:`DICompositeType`.
4433
4434- ``count: -1`` indicates an empty array.
4435- ``count: !9`` describes the count with a :ref:`DILocalVariable`.
4436- ``count: !11`` describes the count with a :ref:`DIGlobalVariable`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004437
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004438.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004439
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004440 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4441 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4442 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004443
Sander de Smalenfdf40912018-01-24 09:56:07 +00004444 ; Scopes used in rest of example
4445 !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
Chandler Carruth24dd2112018-08-06 02:30:01 +00004446 !7 = distinct !DICompileUnit(language: DW_LANG_C99, file: !6)
4447 !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004448
4449 ; Use of local variable as count value
4450 !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
4451 !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
Chandler Carruth24dd2112018-08-06 02:30:01 +00004452 !11 = !DISubrange(count: !10, lowerBound: 0)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004453
4454 ; Use of global variable as count value
4455 !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
Chandler Carruth24dd2112018-08-06 02:30:01 +00004456 !13 = !DISubrange(count: !12, lowerBound: 0)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004457
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004458.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004459
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004460DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004461""""""""""""
4462
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004463``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4464variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004465
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004466.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004467
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004468 !0 = !DIEnumerator(name: "SixKind", value: 7)
4469 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4470 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004471
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004472DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004473"""""""""""""""""""""""
4474
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004475``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004476language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004477:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004478
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004479.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004480
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004481 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004482
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004483DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004484""""""""""""""""""""""""
4485
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004486``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004487language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004488but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004489``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004490:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004491
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004492.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004493
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004494 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004495
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004496DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004497"""""""""""
4498
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004499``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004500
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004501.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004502
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004503 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004504
Sander de Smalen1cb94312018-01-24 10:30:23 +00004505.. _DIGlobalVariable:
4506
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004507DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004508""""""""""""""""
4509
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004510``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004511
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004512.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004513
Adrian Prantl6f0ec692019-01-22 16:40:18 +00004514 @foo = global i32, !dbg !0
4515 !0 = !DIGlobalVariableExpression(var: !1, expr: !DIExpression())
4516 !1 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !2,
4517 file: !3, line: 7, type: !4, isLocal: true,
4518 isDefinition: false, declaration: !5)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004519
Adrian Prantl6f0ec692019-01-22 16:40:18 +00004520
4521DIGlobalVariableExpression
4522""""""""""""""""""""""""""
4523
4524``DIGlobalVariableExpression`` nodes tie a :ref:`DIGlobalVariable` together
4525with a :ref:`DIExpression`.
4526
4527.. code-block:: text
4528
4529 @lower = global i32, !dbg !0
4530 @upper = global i32, !dbg !1
4531 !0 = !DIGlobalVariableExpression(
4532 var: !2,
4533 expr: !DIExpression(DW_OP_LLVM_fragment, 0, 32)
4534 )
4535 !1 = !DIGlobalVariableExpression(
4536 var: !2,
4537 expr: !DIExpression(DW_OP_LLVM_fragment, 32, 32)
4538 )
4539 !2 = !DIGlobalVariable(name: "split64", linkageName: "split64", scope: !3,
4540 file: !4, line: 8, type: !5, declaration: !6)
4541
4542All global variable expressions should be referenced by the `globals:` field of
4543a :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004544
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004545.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004546
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004547DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004548""""""""""""
4549
Peter Collingbourne50108682015-11-06 02:41:02 +00004550``DISubprogram`` nodes represent functions from the source language. A
4551``DISubprogram`` may be attached to a function definition using ``!dbg``
4552metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4553that must be retained, even if their IR counterparts are optimized out of
4554the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004555
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004556.. _DISubprogramDeclaration:
4557
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004558When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004559tree as opposed to a definition of a function. If the scope is a composite
4560type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4561then the subprogram declaration is uniqued based only on its ``linkageName:``
4562and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004563
Renato Golin124f2592016-07-20 12:16:38 +00004564.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004565
Peter Collingbourne50108682015-11-06 02:41:02 +00004566 define void @_Z3foov() !dbg !0 {
4567 ...
4568 }
4569
4570 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4571 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004572 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004573 containingType: !4,
4574 virtuality: DW_VIRTUALITY_pure_virtual,
4575 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004576 isOptimized: true, unit: !5, templateParams: !6,
4577 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004578
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004579.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004580
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004581DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004582""""""""""""""
4583
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004584``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004585<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004586two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004587fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004588
Renato Golin124f2592016-07-20 12:16:38 +00004589.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004590
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004591 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004592
4593Usually lexical blocks are ``distinct`` to prevent node merging based on
4594operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004595
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004596.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004597
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004598DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004599""""""""""""""""""
4600
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004601``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004602:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004603indicate textual inclusion, or the ``discriminator:`` field can be used to
4604discriminate between control flow within a single block in the source language.
4605
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004606.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004607
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004608 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4609 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4610 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004611
Michael Kuperstein605308a2015-05-14 10:58:59 +00004612.. _DILocation:
4613
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004614DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004615""""""""""
4616
Sean Silvaa1190322015-08-06 22:56:48 +00004617``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004618mandatory, and points at an :ref:`DILexicalBlockFile`, an
4619:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004620
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004621.. code-block:: text
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004622
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004623 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004624
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004625.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004626
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004627DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004628"""""""""""""""
4629
Sean Silvaa1190322015-08-06 22:56:48 +00004630``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004631the ``arg:`` field is set to non-zero, then this variable is a subprogram
4632parameter, and it will be included in the ``variables:`` field of its
4633:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004634
Renato Golin124f2592016-07-20 12:16:38 +00004635.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004636
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004637 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4638 type: !3, flags: DIFlagArtificial)
4639 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4640 type: !3)
4641 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004642
James Y Knight94b97092019-02-01 17:06:41 +00004643.. _DIExpression:
4644
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004645DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004646""""""""""""
4647
Adrian Prantlb44c7762017-03-22 18:01:01 +00004648``DIExpression`` nodes represent expressions that are inspired by the DWARF
4649expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4650(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
Vedant Kumar8a05b012018-07-28 00:33:47 +00004651referenced LLVM variable relates to the source language variable. Debug
4652intrinsics are interpreted left-to-right: start by pushing the value/address
4653operand of the intrinsic onto a stack, then repeatedly push and evaluate
4654opcodes from the DIExpression until the final variable description is produced.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004655
Vedant Kumar8a05b012018-07-28 00:33:47 +00004656The current supported opcode vocabulary is limited:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004657
Adrian Prantl6825fb62017-04-18 01:21:53 +00004658- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004659- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4660 them together and appends the result to the expression stack.
4661- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4662 the last entry from the second last entry and appends the result to the
4663 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004664- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004665- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4666 here, respectively) of the variable fragment from the working expression. Note
Hiroshi Inoue760c0c92018-01-16 13:19:48 +00004667 that contrary to DW_OP_bit_piece, the offset is describing the location
Adrian Prantlb44c7762017-03-22 18:01:01 +00004668 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004669- ``DW_OP_swap`` swaps top two stack entries.
4670- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4671 of the stack is treated as an address. The second stack entry is treated as an
4672 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004673- ``DW_OP_stack_value`` marks a constant value.
4674
Adrian Prantl6825fb62017-04-18 01:21:53 +00004675DWARF specifies three kinds of simple location descriptions: Register, memory,
Vedant Kumar8a05b012018-07-28 00:33:47 +00004676and implicit location descriptions. Note that a location description is
4677defined over certain ranges of a program, i.e the location of a variable may
4678change over the course of the program. Register and memory location
4679descriptions describe the *concrete location* of a source variable (in the
4680sense that a debugger might modify its value), whereas *implicit locations*
4681describe merely the actual *value* of a source variable which might not exist
4682in registers or in memory (see ``DW_OP_stack_value``).
4683
4684A ``llvm.dbg.addr`` or ``llvm.dbg.declare`` intrinsic describes an indirect
4685value (the address) of a source variable. The first operand of the intrinsic
4686must be an address of some kind. A DIExpression attached to the intrinsic
4687refines this address to produce a concrete location for the source variable.
4688
4689A ``llvm.dbg.value`` intrinsic describes the direct value of a source variable.
4690The first operand of the intrinsic may be a direct or indirect value. A
4691DIExpresion attached to the intrinsic refines the first operand to produce a
4692direct value. For example, if the first operand is an indirect value, it may be
4693necessary to insert ``DW_OP_deref`` into the DIExpresion in order to produce a
4694valid debug intrinsic.
4695
4696.. note::
4697
4698 A DIExpression is interpreted in the same way regardless of which kind of
4699 debug intrinsic it's attached to.
Adrian Prantl6825fb62017-04-18 01:21:53 +00004700
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004701.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004702
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004703 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004704 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004705 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004706 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004707 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004708 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004709 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004710
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004711DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004712""""""""""""""
4713
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004714``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004715
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004716.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004717
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004718 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004719 getter: "getFoo", attributes: 7, type: !2)
4720
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004721DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004722""""""""""""""""
4723
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004724``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004725compile unit.
4726
Renato Golin124f2592016-07-20 12:16:38 +00004727.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004728
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004729 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004730 entity: !1, line: 7)
4731
Amjad Abouda9bcf162015-12-10 12:56:35 +00004732DIMacro
4733"""""""
4734
4735``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4736The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004737defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004738used to expand the macro identifier.
4739
Renato Golin124f2592016-07-20 12:16:38 +00004740.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004741
4742 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4743 value: "((x) + 1)")
4744 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4745
4746DIMacroFile
4747"""""""""""
4748
4749``DIMacroFile`` nodes represent inclusion of source files.
4750The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4751appear in the included source file.
4752
Renato Golin124f2592016-07-20 12:16:38 +00004753.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004754
4755 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4756 nodes: !3)
4757
Sean Silvab084af42012-12-07 10:36:55 +00004758'``tbaa``' Metadata
4759^^^^^^^^^^^^^^^^^^^
4760
4761In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004762suitable for doing type based alias analysis (TBAA). Instead, metadata is
4763added to the IR to describe a type system of a higher level language. This
4764can be used to implement C/C++ strict type aliasing rules, but it can also
4765be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004766
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004767This description of LLVM's TBAA system is broken into two parts:
4768:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4769:ref:`Representation<tbaa_node_representation>` talks about the metadata
4770encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004771
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004772It is always possible to trace any TBAA node to a "root" TBAA node (details
4773in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4774nodes with different roots have an unknown aliasing relationship, and LLVM
4775conservatively infers ``MayAlias`` between them. The rules mentioned in
4776this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004777
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004778.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004779
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004780Semantics
4781"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004782
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004783The TBAA metadata system, referred to as "struct path TBAA" (not to be
4784confused with ``tbaa.struct``), consists of the following high level
4785concepts: *Type Descriptors*, further subdivided into scalar type
4786descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004787
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004788**Type descriptors** describe the type system of the higher level language
4789being compiled. **Scalar type descriptors** describe types that do not
4790contain other types. Each scalar type has a parent type, which must also
4791be a scalar type or the TBAA root. Via this parent relation, scalar types
4792within a TBAA root form a tree. **Struct type descriptors** denote types
4793that contain a sequence of other type descriptors, at known offsets. These
4794contained type descriptors can either be struct type descriptors themselves
4795or scalar type descriptors.
4796
4797**Access tags** are metadata nodes attached to load and store instructions.
4798Access tags use type descriptors to describe the *location* being accessed
4799in terms of the type system of the higher level language. Access tags are
4800tuples consisting of a base type, an access type and an offset. The base
4801type is a scalar type descriptor or a struct type descriptor, the access
4802type is a scalar type descriptor, and the offset is a constant integer.
4803
4804The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4805things:
4806
4807 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4808 or store) of a value of type ``AccessTy`` contained in the struct type
4809 ``BaseTy`` at offset ``Offset``.
4810
4811 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4812 ``AccessTy`` must be the same; and the access tag describes a scalar
4813 access with scalar type ``AccessTy``.
4814
4815We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4816tuples this way:
4817
4818 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4819 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4820 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4821 undefined if ``Offset`` is non-zero.
4822
4823 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4824 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4825 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4826 to be relative within that inner type.
4827
4828A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4829aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4830Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4831Offset2)`` via the ``Parent`` relation or vice versa.
4832
4833As a concrete example, the type descriptor graph for the following program
4834
4835.. code-block:: c
4836
4837 struct Inner {
4838 int i; // offset 0
4839 float f; // offset 4
4840 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004841
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004842 struct Outer {
4843 float f; // offset 0
4844 double d; // offset 4
4845 struct Inner inner_a; // offset 12
4846 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004847
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004848 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4849 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4850 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
Fangrui Song74d6a742018-05-29 05:38:05 +00004851 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, FloatScalarTy, 16)
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004852 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4853 }
4854
4855is (note that in C and C++, ``char`` can be used to access any arbitrary
4856type):
4857
4858.. code-block:: text
4859
4860 Root = "TBAA Root"
4861 CharScalarTy = ("char", Root, 0)
4862 FloatScalarTy = ("float", CharScalarTy, 0)
4863 DoubleScalarTy = ("double", CharScalarTy, 0)
4864 IntScalarTy = ("int", CharScalarTy, 0)
4865 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4866 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4867 (InnerStructTy, 12)}
4868
4869
4870with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
48710)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4872``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4873
4874.. _tbaa_node_representation:
4875
4876Representation
4877""""""""""""""
4878
4879The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4880with exactly one ``MDString`` operand.
4881
4882Scalar type descriptors are represented as an ``MDNode`` s with two
4883operands. The first operand is an ``MDString`` denoting the name of the
4884struct type. LLVM does not assign meaning to the value of this operand, it
4885only cares about it being an ``MDString``. The second operand is an
4886``MDNode`` which points to the parent for said scalar type descriptor,
4887which is either another scalar type descriptor or the TBAA root. Scalar
4888type descriptors can have an optional third argument, but that must be the
4889constant integer zero.
4890
4891Struct type descriptors are represented as ``MDNode`` s with an odd number
4892of operands greater than 1. The first operand is an ``MDString`` denoting
4893the name of the struct type. Like in scalar type descriptors the actual
4894value of this name operand is irrelevant to LLVM. After the name operand,
4895the struct type descriptors have a sequence of alternating ``MDNode`` and
4896``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4897an ``MDNode``, denotes a contained field, and the 2N th operand, a
4898``ConstantInt``, is the offset of the said contained field. The offsets
4899must be in non-decreasing order.
4900
4901Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4902The first operand is an ``MDNode`` pointing to the node representing the
4903base type. The second operand is an ``MDNode`` pointing to the node
4904representing the access type. The third operand is a ``ConstantInt`` that
4905states the offset of the access. If a fourth field is present, it must be
4906a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4907that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004908``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004909AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4910the access type and the base type of an access tag must be the same, and
4911that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004912
4913'``tbaa.struct``' Metadata
4914^^^^^^^^^^^^^^^^^^^^^^^^^^
4915
4916The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4917aggregate assignment operations in C and similar languages, however it
4918is defined to copy a contiguous region of memory, which is more than
4919strictly necessary for aggregate types which contain holes due to
4920padding. Also, it doesn't contain any TBAA information about the fields
4921of the aggregate.
4922
4923``!tbaa.struct`` metadata can describe which memory subregions in a
4924memcpy are padding and what the TBAA tags of the struct are.
4925
4926The current metadata format is very simple. ``!tbaa.struct`` metadata
4927nodes are a list of operands which are in conceptual groups of three.
4928For each group of three, the first operand gives the byte offset of a
4929field in bytes, the second gives its size in bytes, and the third gives
4930its tbaa tag. e.g.:
4931
4932.. code-block:: llvm
4933
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004934 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004935
4936This describes a struct with two fields. The first is at offset 0 bytes
4937with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4938and has size 4 bytes and has tbaa tag !2.
4939
4940Note that the fields need not be contiguous. In this example, there is a
49414 byte gap between the two fields. This gap represents padding which
4942does not carry useful data and need not be preserved.
4943
Hal Finkel94146652014-07-24 14:25:39 +00004944'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004946
4947``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4948noalias memory-access sets. This means that some collection of memory access
4949instructions (loads, stores, memory-accessing calls, etc.) that carry
4950``noalias`` metadata can specifically be specified not to alias with some other
4951collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004952Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004953a domain.
4954
4955When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004956of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004957subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004958instruction's ``noalias`` list, then the two memory accesses are assumed not to
4959alias.
Hal Finkel94146652014-07-24 14:25:39 +00004960
Adam Nemet569a5b32016-04-27 00:52:48 +00004961Because scopes in one domain don't affect scopes in other domains, separate
4962domains can be used to compose multiple independent noalias sets. This is
4963used for example during inlining. As the noalias function parameters are
4964turned into noalias scope metadata, a new domain is used every time the
4965function is inlined.
4966
Hal Finkel029cde62014-07-25 15:50:02 +00004967The metadata identifying each domain is itself a list containing one or two
4968entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004969string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004970self-reference can be used to create globally unique domain names. A
4971descriptive string may optionally be provided as a second list entry.
4972
4973The metadata identifying each scope is also itself a list containing two or
4974three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004975is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004976self-reference can be used to create globally unique scope names. A metadata
4977reference to the scope's domain is the second entry. A descriptive string may
4978optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004979
4980For example,
4981
4982.. code-block:: llvm
4983
Hal Finkel029cde62014-07-25 15:50:02 +00004984 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004985 !0 = !{!0}
4986 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004987
Hal Finkel029cde62014-07-25 15:50:02 +00004988 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004989 !2 = !{!2, !0}
4990 !3 = !{!3, !0}
4991 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004992
Hal Finkel029cde62014-07-25 15:50:02 +00004993 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004994 !5 = !{!4} ; A list containing only scope !4
4995 !6 = !{!4, !3, !2}
4996 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004997
4998 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004999 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00005000 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00005001
Hal Finkel029cde62014-07-25 15:50:02 +00005002 ; These two instructions also don't alias (for domain !1, the set of scopes
5003 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00005004 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00005005 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00005006
Adam Nemet0a8416f2015-05-11 08:30:28 +00005007 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00005008 ; the !noalias list is not a superset of, or equal to, the scopes in the
5009 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00005010 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00005011 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00005012
Sean Silvab084af42012-12-07 10:36:55 +00005013'``fpmath``' Metadata
5014^^^^^^^^^^^^^^^^^^^^^
5015
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00005016``fpmath`` metadata may be attached to any instruction of floating-point
Sean Silvab084af42012-12-07 10:36:55 +00005017type. It can be used to express the maximum acceptable error in the
5018result of that instruction, in ULPs, thus potentially allowing the
5019compiler to use a more efficient but less accurate method of computing
5020it. ULP is defined as follows:
5021
5022 If ``x`` is a real number that lies between two finite consecutive
5023 floating-point numbers ``a`` and ``b``, without being equal to one
5024 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
5025 distance between the two non-equal finite floating-point numbers
5026 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
5027
Matt Arsenault82f41512016-06-27 19:43:15 +00005028The metadata node shall consist of a single positive float type number
5029representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00005030
5031.. code-block:: llvm
5032
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005033 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00005034
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00005035.. _range-metadata:
5036
Sean Silvab084af42012-12-07 10:36:55 +00005037'``range``' Metadata
5038^^^^^^^^^^^^^^^^^^^^
5039
Jingyue Wu37fcb592014-06-19 16:50:16 +00005040``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
5041integer types. It expresses the possible ranges the loaded value or the value
Eli Friedmane15a1112018-07-17 20:38:11 +00005042returned by the called function at this call site is in. If the loaded or
5043returned value is not in the specified range, the behavior is undefined. The
5044ranges are represented with a flattened list of integers. The loaded value or
5045the value returned is known to be in the union of the ranges defined by each
5046consecutive pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00005047
5048- The type must match the type loaded by the instruction.
5049- The pair ``a,b`` represents the range ``[a,b)``.
5050- Both ``a`` and ``b`` are constants.
5051- The range is allowed to wrap.
5052- The range should not represent the full or empty set. That is,
5053 ``a!=b``.
5054
5055In addition, the pairs must be in signed order of the lower bound and
5056they must be non-contiguous.
5057
5058Examples:
5059
5060.. code-block:: llvm
5061
David Blaikiec7aabbb2015-03-04 22:06:14 +00005062 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
5063 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00005064 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
5065 %d = invoke i8 @bar() to label %cont
5066 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00005067 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005068 !0 = !{ i8 0, i8 2 }
5069 !1 = !{ i8 255, i8 2 }
5070 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
5071 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00005072
Peter Collingbourne235c2752016-12-08 19:01:00 +00005073'``absolute_symbol``' Metadata
5074^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5075
5076``absolute_symbol`` metadata may be attached to a global variable
5077declaration. It marks the declaration as a reference to an absolute symbol,
5078which causes the backend to use absolute relocations for the symbol even
5079in position independent code, and expresses the possible ranges that the
5080global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00005081``range`` metadata, with the extension that the pair ``all-ones,all-ones``
5082may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00005083
Peter Collingbourned88f9282017-01-20 21:56:37 +00005084Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00005085
5086.. code-block:: llvm
5087
5088 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00005089 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00005090
5091 ...
5092 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00005093 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00005094
Matthew Simpson36bbc8c2017-10-16 22:22:11 +00005095'``callees``' Metadata
5096^^^^^^^^^^^^^^^^^^^^^^
5097
5098``callees`` metadata may be attached to indirect call sites. If ``callees``
5099metadata is attached to a call site, and any callee is not among the set of
5100functions provided by the metadata, the behavior is undefined. The intent of
5101this metadata is to facilitate optimizations such as indirect-call promotion.
5102For example, in the code below, the call instruction may only target the
5103``add`` or ``sub`` functions:
5104
5105.. code-block:: llvm
5106
5107 %result = call i64 %binop(i64 %x, i64 %y), !callees !0
5108
5109 ...
5110 !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
5111
Johannes Doerfert18251842019-01-19 05:19:06 +00005112'``callback``' Metadata
Johannes Doerfert0b029072019-01-19 09:40:14 +00005113^^^^^^^^^^^^^^^^^^^^^^^
Johannes Doerfert18251842019-01-19 05:19:06 +00005114
5115``callback`` metadata may be attached to a function declaration, or definition.
5116(Call sites are excluded only due to the lack of a use case.) For ease of
5117exposition, we'll refer to the function annotated w/ metadata as a broker
5118function. The metadata describes how the arguments of a call to the broker are
5119in turn passed to the callback function specified by the metadata. Thus, the
5120``callback`` metadata provides a partial description of a call site inside the
5121broker function with regards to the arguments of a call to the broker. The only
5122semantic restriction on the broker function itself is that it is not allowed to
5123inspect or modify arguments referenced in the ``callback`` metadata as
5124pass-through to the callback function.
5125
5126The broker is not required to actually invoke the callback function at runtime.
5127However, the assumptions about not inspecting or modifying arguments that would
5128be passed to the specified callback function still hold, even if the callback
5129function is not dynamically invoked. The broker is allowed to invoke the
5130callback function more than once per invocation of the broker. The broker is
5131also allowed to invoke (directly or indirectly) the function passed as a
5132callback through another use. Finally, the broker is also allowed to relay the
5133callback callee invocation to a different thread.
5134
5135The metadata is structured as follows: At the outer level, ``callback``
5136metadata is a list of ``callback`` encodings. Each encoding starts with a
5137constant ``i64`` which describes the argument position of the callback function
5138in the call to the broker. The following elements, except the last, describe
5139what arguments are passed to the callback function. Each element is again an
5140``i64`` constant identifying the argument of the broker that is passed through,
5141or ``i64 -1`` to indicate an unknown or inspected argument. The order in which
5142they are listed has to be the same in which they are passed to the callback
5143callee. The last element of the encoding is a boolean which specifies how
5144variadic arguments of the broker are handled. If it is true, all variadic
5145arguments of the broker are passed through to the callback function *after* the
5146arguments encoded explicitly before.
5147
5148In the code below, the ``pthread_create`` function is marked as a broker
5149through the ``!callback !1`` metadata. In the example, there is only one
5150callback encoding, namely ``!2``, associated with the broker. This encoding
5151identifies the callback function as the second argument of the broker (``i64
51522``) and the sole argument of the callback function as the third one of the
5153broker function (``i64 3``).
5154
5155.. code-block:: llvm
5156
5157 declare !callback !1 dso_local i32 @pthread_create(i64*, %union.pthread_attr_t*, i8* (i8*)*, i8*)
5158
5159 ...
5160 !2 = !{i64 2, i64 3, i1 false}
5161 !1 = !{!2}
5162
5163Another example is shown below. The callback callee is the second argument of
5164the ``__kmpc_fork_call`` function (``i64 2``). The callee is given two unknown
5165values (each identified by a ``i64 -1``) and afterwards all
5166variadic arguments that are passed to the ``__kmpc_fork_call`` call (due to the
5167final ``i1 true``).
5168
5169.. code-block:: llvm
5170
5171 declare !callback !0 dso_local void @__kmpc_fork_call(%struct.ident_t*, i32, void (i32*, i32*, ...)*, ...)
5172
5173 ...
5174 !1 = !{i64 2, i64 -1, i64 -1, i1 true}
5175 !0 = !{!1}
5176
5177
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005178'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00005179^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005180
5181``unpredictable`` metadata may be attached to any branch or switch
5182instruction. It can be used to express the unpredictability of control
5183flow. Similar to the llvm.expect intrinsic, it may be used to alter
5184optimizations related to compare and branch instructions. The metadata
5185is treated as a boolean value; if it exists, it signals that the branch
5186or switch that it is attached to is completely unpredictable.
5187
Michael Kruse72448522018-12-12 17:32:52 +00005188.. _llvm.loop:
5189
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005190'``llvm.loop``'
5191^^^^^^^^^^^^^^^
5192
5193It is sometimes useful to attach information to loop constructs. Currently,
5194loop metadata is implemented as metadata attached to the branch instruction
5195in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00005196guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00005197specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005198
5199The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00005200itself to avoid merging it with any other identifier metadata, e.g.,
5201during module linkage or function inlining. That is, each loop should refer
5202to their own identification metadata even if they reside in separate functions.
5203The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005204constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005205
5206.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00005207
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005208 !0 = !{!0}
5209 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005210
Mark Heffernan893752a2014-07-18 19:24:51 +00005211The loop identifier metadata can be used to specify additional
5212per-loop metadata. Any operands after the first operand can be treated
5213as user-defined metadata. For example the ``llvm.loop.unroll.count``
5214suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005215
Paul Redmond5fdf8362013-05-28 20:00:34 +00005216.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005217
Paul Redmond5fdf8362013-05-28 20:00:34 +00005218 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
5219 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005220 !0 = !{!0, !1}
5221 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005222
Michael Kruse72448522018-12-12 17:32:52 +00005223'``llvm.loop.disable_nonforced``'
5224^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5225
5226This metadata disables all optional loop transformations unless
5227explicitly instructed using other transformation metdata such as
Michael Kruse82dd71e2018-12-12 17:59:01 +00005228``llvm.loop.unroll.enable``. That is, no heuristic will try to determine
Michael Kruse72448522018-12-12 17:32:52 +00005229whether a transformation is profitable. The purpose is to avoid that the
5230loop is transformed to a different loop before an explicitly requested
5231(forced) transformation is applied. For instance, loop fusion can make
5232other transformations impossible. Mandatory loop canonicalizations such
5233as loop rotation are still applied.
5234
5235It is recommended to use this metadata in addition to any llvm.loop.*
5236transformation directive. Also, any loop should have at most one
5237directive applied to it (and a sequence of transformations built using
5238followup-attributes). Otherwise, which transformation will be applied
5239depends on implementation details such as the pass pipeline order.
5240
5241See :ref:`transformation-metadata` for details.
5242
Mark Heffernan9d20e422014-07-21 23:11:03 +00005243'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
5244^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00005245
Mark Heffernan9d20e422014-07-21 23:11:03 +00005246Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
5247used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00005248vectorization width and interleave count. These metadata should be used in
5249conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00005250``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
5251optimization hints and the optimizer will only interleave and vectorize loops if
Michael Kruse978ba612018-12-20 04:58:07 +00005252it believes it is safe to do so. The ``llvm.loop.parallel_accesses`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00005253which contains information about loop-carried memory dependencies can be helpful
5254in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00005255
Mark Heffernan9d20e422014-07-21 23:11:03 +00005256'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00005257^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5258
Mark Heffernan9d20e422014-07-21 23:11:03 +00005259This metadata suggests an interleave count to the loop interleaver.
5260The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00005261second operand is an integer specifying the interleave count. For
5262example:
5263
5264.. code-block:: llvm
5265
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005266 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005267
Mark Heffernan9d20e422014-07-21 23:11:03 +00005268Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00005269multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00005270then the interleave count will be determined automatically.
5271
5272'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00005273^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00005274
5275This metadata selectively enables or disables vectorization for the loop. The
5276first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00005277is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000052780 disables vectorization:
5279
5280.. code-block:: llvm
5281
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005282 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5283 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00005284
5285'``llvm.loop.vectorize.width``' Metadata
5286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5287
5288This metadata sets the target width of the vectorizer. The first
5289operand is the string ``llvm.loop.vectorize.width`` and the second
5290operand is an integer specifying the width. For example:
5291
5292.. code-block:: llvm
5293
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005294 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005295
5296Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00005297vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000052980 or if the loop does not have this metadata the width will be
5299determined automatically.
5300
Michael Kruse72448522018-12-12 17:32:52 +00005301'``llvm.loop.vectorize.followup_vectorized``' Metadata
5302^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5303
5304This metadata defines which loop attributes the vectorized loop will
5305have. See :ref:`transformation-metadata` for details.
5306
5307'``llvm.loop.vectorize.followup_epilogue``' Metadata
5308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5309
5310This metadata defines which loop attributes the epilogue will have. The
5311epilogue is not vectorized and is executed when either the vectorized
5312loop is not known to preserve semantics (because e.g., it processes two
5313arrays that are found to alias by a runtime check) or for the last
5314iterations that do not fill a complete set of vector lanes. See
5315:ref:`Transformation Metadata <transformation-metadata>` for details.
5316
5317'``llvm.loop.vectorize.followup_all``' Metadata
5318^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5319
5320Attributes in the metadata will be added to both the vectorized and
5321epilogue loop.
5322See :ref:`Transformation Metadata <transformation-metadata>` for details.
5323
Mark Heffernan893752a2014-07-18 19:24:51 +00005324'``llvm.loop.unroll``'
5325^^^^^^^^^^^^^^^^^^^^^^
5326
5327Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5328optimization hints such as the unroll factor. ``llvm.loop.unroll``
5329metadata should be used in conjunction with ``llvm.loop`` loop
5330identification metadata. The ``llvm.loop.unroll`` metadata are only
5331optimization hints and the unrolling will only be performed if the
5332optimizer believes it is safe to do so.
5333
Mark Heffernan893752a2014-07-18 19:24:51 +00005334'``llvm.loop.unroll.count``' Metadata
5335^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5336
5337This metadata suggests an unroll factor to the loop unroller. The
5338first operand is the string ``llvm.loop.unroll.count`` and the second
5339operand is a positive integer specifying the unroll factor. For
5340example:
5341
5342.. code-block:: llvm
5343
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005344 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005345
5346If the trip count of the loop is less than the unroll count the loop
5347will be partially unrolled.
5348
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005349'``llvm.loop.unroll.disable``' Metadata
5350^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5351
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005352This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00005353which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005354
5355.. code-block:: llvm
5356
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005357 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005358
Kevin Qin715b01e2015-03-09 06:14:18 +00005359'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00005360^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00005361
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005362This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005363operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005364
5365.. code-block:: llvm
5366
5367 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5368
Mark Heffernan89391542015-08-10 17:28:08 +00005369'``llvm.loop.unroll.enable``' Metadata
5370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5371
5372This metadata suggests that the loop should be fully unrolled if the trip count
5373is known at compile time and partially unrolled if the trip count is not known
5374at compile time. The metadata has a single operand which is the string
5375``llvm.loop.unroll.enable``. For example:
5376
5377.. code-block:: llvm
5378
5379 !0 = !{!"llvm.loop.unroll.enable"}
5380
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005381'``llvm.loop.unroll.full``' Metadata
5382^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5383
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005384This metadata suggests that the loop should be unrolled fully. The
5385metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005386For example:
5387
5388.. code-block:: llvm
5389
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005390 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005391
Michael Kruse72448522018-12-12 17:32:52 +00005392'``llvm.loop.unroll.followup``' Metadata
5393^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5394
5395This metadata defines which loop attributes the unrolled loop will have.
5396See :ref:`Transformation Metadata <transformation-metadata>` for details.
5397
5398'``llvm.loop.unroll.followup_remainder``' Metadata
5399^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5400
5401This metadata defines which loop attributes the remainder loop after
5402partial/runtime unrolling will have. See
5403:ref:`Transformation Metadata <transformation-metadata>` for details.
5404
David Green7fbf06c2018-07-19 12:37:00 +00005405'``llvm.loop.unroll_and_jam``'
5406^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5407
5408This metadata is treated very similarly to the ``llvm.loop.unroll`` metadata
5409above, but affect the unroll and jam pass. In addition any loop with
5410``llvm.loop.unroll`` metadata but no ``llvm.loop.unroll_and_jam`` metadata will
5411disable unroll and jam (so ``llvm.loop.unroll`` metadata will be left to the
5412unroller, plus ``llvm.loop.unroll.disable`` metadata will disable unroll and jam
5413too.)
5414
5415The metadata for unroll and jam otherwise is the same as for ``unroll``.
5416``llvm.loop.unroll_and_jam.enable``, ``llvm.loop.unroll_and_jam.disable`` and
5417``llvm.loop.unroll_and_jam.count`` do the same as for unroll.
5418``llvm.loop.unroll_and_jam.full`` is not supported. Again these are only hints
5419and the normal safety checks will still be performed.
5420
5421'``llvm.loop.unroll_and_jam.count``' Metadata
5422^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5423
5424This metadata suggests an unroll and jam factor to use, similarly to
5425``llvm.loop.unroll.count``. The first operand is the string
5426``llvm.loop.unroll_and_jam.count`` and the second operand is a positive integer
5427specifying the unroll factor. For example:
5428
5429.. code-block:: llvm
5430
5431 !0 = !{!"llvm.loop.unroll_and_jam.count", i32 4}
5432
5433If the trip count of the loop is less than the unroll count the loop
5434will be partially unroll and jammed.
5435
5436'``llvm.loop.unroll_and_jam.disable``' Metadata
5437^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5438
5439This metadata disables loop unroll and jamming. The metadata has a single
5440operand which is the string ``llvm.loop.unroll_and_jam.disable``. For example:
5441
5442.. code-block:: llvm
5443
5444 !0 = !{!"llvm.loop.unroll_and_jam.disable"}
5445
5446'``llvm.loop.unroll_and_jam.enable``' Metadata
5447^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5448
5449This metadata suggests that the loop should be fully unroll and jammed if the
5450trip count is known at compile time and partially unrolled if the trip count is
5451not known at compile time. The metadata has a single operand which is the
5452string ``llvm.loop.unroll_and_jam.enable``. For example:
5453
5454.. code-block:: llvm
5455
5456 !0 = !{!"llvm.loop.unroll_and_jam.enable"}
5457
Michael Kruse72448522018-12-12 17:32:52 +00005458'``llvm.loop.unroll_and_jam.followup_outer``' Metadata
5459^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5460
5461This metadata defines which loop attributes the outer unrolled loop will
5462have. See :ref:`Transformation Metadata <transformation-metadata>` for
5463details.
5464
5465'``llvm.loop.unroll_and_jam.followup_inner``' Metadata
5466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5467
5468This metadata defines which loop attributes the inner jammed loop will
5469have. See :ref:`Transformation Metadata <transformation-metadata>` for
5470details.
5471
5472'``llvm.loop.unroll_and_jam.followup_remainder_outer``' Metadata
5473^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5474
5475This metadata defines which attributes the epilogue of the outer loop
5476will have. This loop is usually unrolled, meaning there is no such
5477loop. This attribute will be ignored in this case. See
5478:ref:`Transformation Metadata <transformation-metadata>` for details.
5479
5480'``llvm.loop.unroll_and_jam.followup_remainder_inner``' Metadata
5481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5482
5483This metadata defines which attributes the inner loop of the epilogue
5484will have. The outer epilogue will usually be unrolled, meaning there
5485can be multiple inner remainder loops. See
5486:ref:`Transformation Metadata <transformation-metadata>` for details.
5487
5488'``llvm.loop.unroll_and_jam.followup_all``' Metadata
5489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5490
5491Attributes specified in the metadata is added to all
5492``llvm.loop.unroll_and_jam.*`` loops. See
5493:ref:`Transformation Metadata <transformation-metadata>` for details.
5494
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005495'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005497
5498This metadata indicates that the loop should not be versioned for the purpose
5499of enabling loop-invariant code motion (LICM). The metadata has a single operand
5500which is the string ``llvm.loop.licm_versioning.disable``. For example:
5501
5502.. code-block:: llvm
5503
5504 !0 = !{!"llvm.loop.licm_versioning.disable"}
5505
Adam Nemetd2fa4142016-04-27 05:28:18 +00005506'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005507^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005508
5509Loop distribution allows splitting a loop into multiple loops. Currently,
5510this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005511memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005512dependencies into their own loop.
5513
5514This metadata can be used to selectively enable or disable distribution of the
5515loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5516second operand is a bit. If the bit operand value is 1 distribution is
5517enabled. A value of 0 disables distribution:
5518
5519.. code-block:: llvm
5520
5521 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5522 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5523
5524This metadata should be used in conjunction with ``llvm.loop`` loop
5525identification metadata.
5526
Michael Kruse72448522018-12-12 17:32:52 +00005527'``llvm.loop.distribute.followup_coincident``' Metadata
5528^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5529
5530This metadata defines which attributes extracted loops with no cyclic
5531dependencies will have (i.e. can be vectorized). See
5532:ref:`Transformation Metadata <transformation-metadata>` for details.
5533
5534'``llvm.loop.distribute.followup_sequential``' Metadata
5535^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5536
5537This metadata defines which attributes the isolated loops with unsafe
5538memory dependencies will have. See
5539:ref:`Transformation Metadata <transformation-metadata>` for details.
5540
5541'``llvm.loop.distribute.followup_fallback``' Metadata
5542^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5543
5544If loop versioning is necessary, this metadata defined the attributes
5545the non-distributed fallback version will have. See
5546:ref:`Transformation Metadata <transformation-metadata>` for details.
5547
5548'``llvm.loop.distribute.followup_all``' Metadata
5549^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5550
5551Thes attributes in this metdata is added to all followup loops of the
5552loop distribution pass. See
5553:ref:`Transformation Metadata <transformation-metadata>` for details.
5554
Michael Kruse978ba612018-12-20 04:58:07 +00005555'``llvm.access.group``' Metadata
5556^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005557
Michael Kruse978ba612018-12-20 04:58:07 +00005558``llvm.access.group`` metadata can be attached to any instruction that
5559potentially accesses memory. It can point to a single distinct metadata
5560node, which we call access group. This node represents all memory access
5561instructions referring to it via ``llvm.access.group``. When an
5562instruction belongs to multiple access groups, it can also point to a
5563list of accesses groups, illustrated by the following example.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005564
Michael Kruse978ba612018-12-20 04:58:07 +00005565.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005566
Michael Kruse978ba612018-12-20 04:58:07 +00005567 %val = load i32, i32* %arrayidx, !llvm.access.group !0
5568 ...
5569 !0 = !{!1, !2}
5570 !1 = distinct !{}
5571 !2 = distinct !{}
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005572
Michael Kruse978ba612018-12-20 04:58:07 +00005573It is illegal for the list node to be empty since it might be confused
5574with an access group.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005575
Michael Kruse978ba612018-12-20 04:58:07 +00005576The access group metadata node must be 'distinct' to avoid collapsing
5577multiple access groups by content. A access group metadata node must
5578always be empty which can be used to distinguish an access group
5579metadata node from a list of access groups. Being empty avoids the
5580situation that the content must be updated which, because metadata is
5581immutable by design, would required finding and updating all references
5582to the access group node.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005583
Michael Kruse978ba612018-12-20 04:58:07 +00005584The access group can be used to refer to a memory access instruction
5585without pointing to it directly (which is not possible in global
5586metadata). Currently, the only metadata making use of it is
5587``llvm.loop.parallel_accesses``.
5588
5589'``llvm.loop.parallel_accesses``' Metadata
5590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5591
5592The ``llvm.loop.parallel_accesses`` metadata refers to one or more
5593access group metadata nodes (see ``llvm.access.group``). It denotes that
5594no loop-carried memory dependence exist between it and other instructions
5595in the loop with this metadata.
5596
5597Let ``m1`` and ``m2`` be two instructions that both have the
5598``llvm.access.group`` metadata to the access group ``g1``, respectively
5599``g2`` (which might be identical). If a loop contains both access groups
5600in its ``llvm.loop.parallel_accesses`` metadata, then the compiler can
5601assume that there is no dependency between ``m1`` and ``m2`` carried by
5602this loop. Instructions that belong to multiple access groups are
5603considered having this property if at least one of the access groups
5604matches the ``llvm.loop.parallel_accesses`` list.
5605
5606If all memory-accessing instructions in a loop have
5607``llvm.loop.parallel_accesses`` metadata that refers to that loop, then the
5608loop has no loop carried memory dependences and is considered to be a
5609parallel loop.
5610
5611Note that if not all memory access instructions belong to an access
5612group referred to by ``llvm.loop.parallel_accesses``, then the loop must
5613not be considered trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005614memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005615safe mechanism, this causes loops that were originally parallel to be considered
5616sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005617insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005618
5619Example of a loop that is considered parallel due to its correct use of
Michael Kruse978ba612018-12-20 04:58:07 +00005620both ``llvm.access.group`` and ``llvm.loop.parallel_accesses``
5621metadata types.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005622
5623.. code-block:: llvm
5624
5625 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005626 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005627 %val0 = load i32, i32* %arrayidx, !llvm.access.group !1
Paul Redmond5fdf8362013-05-28 20:00:34 +00005628 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005629 store i32 %val0, i32* %arrayidx1, !llvm.access.group !1
Paul Redmond5fdf8362013-05-28 20:00:34 +00005630 ...
5631 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005632
5633 for.end:
5634 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005635 !0 = distinct !{!0, !{!"llvm.loop.parallel_accesses", !1}}
5636 !1 = distinct !{}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005637
Michael Kruse978ba612018-12-20 04:58:07 +00005638It is also possible to have nested parallel loops:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005639
5640.. code-block:: llvm
5641
5642 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005643 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005644 %val1 = load i32, i32* %arrayidx3, !llvm.access.group !4
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005645 ...
5646 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005647
5648 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005649 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005650 %val0 = load i32, i32* %arrayidx1, !llvm.access.group !3
Paul Redmond5fdf8362013-05-28 20:00:34 +00005651 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005652 store i32 %val0, i32* %arrayidx2, !llvm.access.group !3
Paul Redmond5fdf8362013-05-28 20:00:34 +00005653 ...
5654 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005655
5656 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005657 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005658 store i32 %val1, i32* %arrayidx4, !llvm.access.group !4
Paul Redmond5fdf8362013-05-28 20:00:34 +00005659 ...
5660 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005661
5662 outer.for.end: ; preds = %for.body
5663 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005664 !1 = distinct !{!1, !{!"llvm.loop.parallel_accesses", !3}} ; metadata for the inner loop
5665 !2 = distinct !{!2, !{!"llvm.loop.parallel_accesses", !3, !4}} ; metadata for the outer loop
5666 !3 = distinct !{} ; access group for instructions in the inner loop (which are implicitly contained in outer loop as well)
5667 !4 = distinct !{} ; access group for instructions in the outer, but not the inner loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005668
Hiroshi Yamauchidce9def2017-11-02 22:26:51 +00005669'``irr_loop``' Metadata
5670^^^^^^^^^^^^^^^^^^^^^^^
5671
5672``irr_loop`` metadata may be attached to the terminator instruction of a basic
5673block that's an irreducible loop header (note that an irreducible loop has more
5674than once header basic blocks.) If ``irr_loop`` metadata is attached to the
5675terminator instruction of a basic block that is not really an irreducible loop
5676header, the behavior is undefined. The intent of this metadata is to improve the
5677accuracy of the block frequency propagation. For example, in the code below, the
5678block ``header0`` may have a loop header weight (relative to the other headers of
5679the irreducible loop) of 100:
5680
5681.. code-block:: llvm
5682
5683 header0:
5684 ...
5685 br i1 %cmp, label %t1, label %t2, !irr_loop !0
5686
5687 ...
5688 !0 = !{"loop_header_weight", i64 100}
5689
5690Irreducible loop header weights are typically based on profile data.
5691
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005692'``invariant.group``' Metadata
5693^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5694
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00005695The experimental ``invariant.group`` metadata may be attached to
Piotr Padlewskice358262018-05-18 23:53:46 +00005696``load``/``store`` instructions referencing a single metadata with no entries.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005697The existence of the ``invariant.group`` metadata on the instruction tells
5698the optimizer that every ``load`` and ``store`` to the same pointer operand
Piotr Padlewskice358262018-05-18 23:53:46 +00005699can be assumed to load or store the same
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005700value (but see the ``llvm.launder.invariant.group`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005701when two pointers are considered the same). Pointers returned by bitcast or
5702getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005703
5704Examples:
5705
5706.. code-block:: llvm
5707
5708 @unknownPtr = external global i8
5709 ...
5710 %ptr = alloca i8
5711 store i8 42, i8* %ptr, !invariant.group !0
5712 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005713
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005714 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5715 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005716
5717 %newPtr = call i8* @getPointer(i8* %ptr)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005718 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005719
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005720 %unknownValue = load i8, i8* @unknownPtr
5721 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005722
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005723 call void @foo(i8* %ptr)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005724 %newPtr2 = call i8* @llvm.launder.invariant.group(i8* %ptr)
5725 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through launder.invariant.group to get value of %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005726
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005727 ...
5728 declare void @foo(i8*)
5729 declare i8* @getPointer(i8*)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005730 declare i8* @llvm.launder.invariant.group(i8*)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005731
Piotr Padlewskice358262018-05-18 23:53:46 +00005732 !0 = !{}
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005733
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005734The invariant.group metadata must be dropped when replacing one pointer by
5735another based on aliasing information. This is because invariant.group is tied
5736to the SSA value of the pointer operand.
5737
5738.. code-block:: llvm
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005739
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005740 %v = load i8, i8* %x, !invariant.group !0
5741 ; if %x mustalias %y then we can replace the above instruction with
5742 %v = load i8, i8* %y
5743
Piotr Padlewski74b155f2018-04-08 13:53:04 +00005744Note that this is an experimental feature, which means that its semantics might
5745change in the future.
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005746
Peter Collingbournea333db82016-07-26 22:31:30 +00005747'``type``' Metadata
5748^^^^^^^^^^^^^^^^^^^
5749
5750See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005751
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005752'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005753^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005754
5755The ``associated`` metadata may be attached to a global object
5756declaration with a single argument that references another global object.
5757
5758This metadata prevents discarding of the global object in linker GC
5759unless the referenced object is also discarded. The linker support for
5760this feature is spotty. For best compatibility, globals carrying this
5761metadata may also:
5762
5763- Be in a comdat with the referenced global.
5764- Be in @llvm.compiler.used.
5765- Have an explicit section with a name which is a valid C identifier.
5766
5767It does not have any effect on non-ELF targets.
5768
5769Example:
5770
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005771.. code-block:: text
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005772
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005773 $a = comdat any
5774 @a = global i32 1, comdat $a
5775 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5776 !0 = !{i32* @a}
5777
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005778
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005779'``prof``' Metadata
5780^^^^^^^^^^^^^^^^^^^
5781
5782The ``prof`` metadata is used to record profile data in the IR.
5783The first operand of the metadata node indicates the profile metadata
5784type. There are currently 3 types:
5785:ref:`branch_weights<prof_node_branch_weights>`,
5786:ref:`function_entry_count<prof_node_function_entry_count>`, and
5787:ref:`VP<prof_node_VP>`.
5788
5789.. _prof_node_branch_weights:
5790
5791branch_weights
5792""""""""""""""
5793
5794Branch weight metadata attached to a branch, select, switch or call instruction
5795represents the likeliness of the associated branch being taken.
5796For more information, see :doc:`BranchWeightMetadata`.
5797
5798.. _prof_node_function_entry_count:
5799
5800function_entry_count
5801""""""""""""""""""""
5802
5803Function entry count metadata can be attached to function definitions
5804to record the number of times the function is called. Used with BFI
5805information, it is also used to derive the basic block profile count.
5806For more information, see :doc:`BranchWeightMetadata`.
5807
5808.. _prof_node_VP:
5809
5810VP
5811""
5812
5813VP (value profile) metadata can be attached to instructions that have
5814value profile information. Currently this is indirect calls (where it
5815records the hottest callees) and calls to memory intrinsics such as memcpy,
5816memmove, and memset (where it records the hottest byte lengths).
5817
5818Each VP metadata node contains "VP" string, then a uint32_t value for the value
5819profiling kind, a uint64_t value for the total number of times the instruction
5820is executed, followed by uint64_t value and execution count pairs.
5821The value profiling kind is 0 for indirect call targets and 1 for memory
5822operations. For indirect call targets, each profile value is a hash
5823of the callee function name, and for memory operations each value is the
5824byte length.
5825
5826Note that the value counts do not need to add up to the total count
5827listed in the third operand (in practice only the top hottest values
5828are tracked and reported).
5829
5830Indirect call example:
5831
5832.. code-block:: llvm
5833
5834 call void %f(), !prof !1
5835 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5836
5837Note that the VP type is 0 (the second operand), which indicates this is
5838an indirect call value profile data. The third operand indicates that the
5839indirect call executed 1600 times. The 4th and 6th operands give the
5840hashes of the 2 hottest target functions' names (this is the same hash used
5841to represent function names in the profile database), and the 5th and 7th
5842operands give the execution count that each of the respective prior target
5843functions was called.
5844
Sean Silvab084af42012-12-07 10:36:55 +00005845Module Flags Metadata
5846=====================
5847
5848Information about the module as a whole is difficult to convey to LLVM's
5849subsystems. The LLVM IR isn't sufficient to transmit this information.
5850The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005851this. These flags are in the form of key / value pairs --- much like a
5852dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005853look it up.
5854
5855The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5856Each triplet has the following form:
5857
5858- The first element is a *behavior* flag, which specifies the behavior
5859 when two (or more) modules are merged together, and it encounters two
5860 (or more) metadata with the same ID. The supported behaviors are
5861 described below.
5862- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005863 metadata. Each module may only have one flag entry for each unique ID (not
5864 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005865- The third element is the value of the flag.
5866
5867When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005868``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5869each unique metadata ID string, there will be exactly one entry in the merged
5870modules ``llvm.module.flags`` metadata table, and the value for that entry will
5871be determined by the merge behavior flag, as described below. The only exception
5872is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005873
5874The following behaviors are supported:
5875
5876.. list-table::
5877 :header-rows: 1
5878 :widths: 10 90
5879
5880 * - Value
5881 - Behavior
5882
5883 * - 1
5884 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005885 Emits an error if two values disagree, otherwise the resulting value
5886 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005887
5888 * - 2
5889 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005890 Emits a warning if two values disagree. The result value will be the
5891 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005892
5893 * - 3
5894 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005895 Adds a requirement that another module flag be present and have a
5896 specified value after linking is performed. The value must be a
5897 metadata pair, where the first element of the pair is the ID of the
5898 module flag to be restricted, and the second element of the pair is
5899 the value the module flag should be restricted to. This behavior can
5900 be used to restrict the allowable results (via triggering of an
5901 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005902
5903 * - 4
5904 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005905 Uses the specified value, regardless of the behavior or value of the
5906 other module. If both modules specify **Override**, but the values
5907 differ, an error will be emitted.
5908
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005909 * - 5
5910 - **Append**
5911 Appends the two values, which are required to be metadata nodes.
5912
5913 * - 6
5914 - **AppendUnique**
5915 Appends the two values, which are required to be metadata
5916 nodes. However, duplicate entries in the second list are dropped
5917 during the append operation.
5918
Steven Wu86a511e2017-08-15 16:16:33 +00005919 * - 7
5920 - **Max**
5921 Takes the max of the two values, which are required to be integers.
5922
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005923It is an error for a particular unique flag ID to have multiple behaviors,
5924except in the case of **Require** (which adds restrictions on another metadata
5925value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005926
5927An example of module flags:
5928
5929.. code-block:: llvm
5930
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005931 !0 = !{ i32 1, !"foo", i32 1 }
5932 !1 = !{ i32 4, !"bar", i32 37 }
5933 !2 = !{ i32 2, !"qux", i32 42 }
5934 !3 = !{ i32 3, !"qux",
5935 !{
5936 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005937 }
5938 }
5939 !llvm.module.flags = !{ !0, !1, !2, !3 }
5940
5941- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5942 if two or more ``!"foo"`` flags are seen is to emit an error if their
5943 values are not equal.
5944
5945- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5946 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005947 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005948
5949- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5950 behavior if two or more ``!"qux"`` flags are seen is to emit a
5951 warning if their values are not equal.
5952
5953- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5954
5955 ::
5956
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005957 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005958
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005959 The behavior is to emit an error if the ``llvm.module.flags`` does not
5960 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5961 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005962
5963Objective-C Garbage Collection Module Flags Metadata
5964----------------------------------------------------
5965
5966On the Mach-O platform, Objective-C stores metadata about garbage
5967collection in a special section called "image info". The metadata
5968consists of a version number and a bitmask specifying what types of
5969garbage collection are supported (if any) by the file. If two or more
5970modules are linked together their garbage collection metadata needs to
5971be merged rather than appended together.
5972
5973The Objective-C garbage collection module flags metadata consists of the
5974following key-value pairs:
5975
5976.. list-table::
5977 :header-rows: 1
5978 :widths: 30 70
5979
5980 * - Key
5981 - Value
5982
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005983 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005984 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005985
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005986 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005987 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005988 always 0.
5989
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005990 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005991 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005992 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5993 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5994 Objective-C ABI version 2.
5995
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005996 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005997 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005998 not. Valid values are 0, for no garbage collection, and 2, for garbage
5999 collection supported.
6000
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00006001 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006002 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00006003 If present, its value must be 6. This flag requires that the
6004 ``Objective-C Garbage Collection`` flag have the value 2.
6005
6006Some important flag interactions:
6007
6008- If a module with ``Objective-C Garbage Collection`` set to 0 is
6009 merged with a module with ``Objective-C Garbage Collection`` set to
6010 2, then the resulting module has the
6011 ``Objective-C Garbage Collection`` flag set to 0.
6012- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
6013 merged with a module with ``Objective-C GC Only`` set to 6.
6014
Oliver Stannard5dc29342014-06-20 10:08:11 +00006015C type width Module Flags Metadata
6016----------------------------------
6017
6018The ARM backend emits a section into each generated object file describing the
6019options that it was compiled with (in a compiler-independent way) to prevent
6020linking incompatible objects, and to allow automatic library selection. Some
6021of these options are not visible at the IR level, namely wchar_t width and enum
6022width.
6023
6024To pass this information to the backend, these options are encoded in module
6025flags metadata, using the following key-value pairs:
6026
6027.. list-table::
6028 :header-rows: 1
6029 :widths: 30 70
6030
6031 * - Key
6032 - Value
6033
6034 * - short_wchar
6035 - * 0 --- sizeof(wchar_t) == 4
6036 * 1 --- sizeof(wchar_t) == 2
6037
6038 * - short_enum
6039 - * 0 --- Enums are at least as large as an ``int``.
6040 * 1 --- Enums are stored in the smallest integer type which can
6041 represent all of its values.
6042
6043For example, the following metadata section specifies that the module was
6044compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
6045enum is the smallest type which can represent all of its values::
6046
6047 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00006048 !0 = !{i32 1, !"short_wchar", i32 1}
6049 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00006050
Peter Collingbourne89061b22017-06-12 20:10:48 +00006051Automatic Linker Flags Named Metadata
6052=====================================
6053
6054Some targets support embedding flags to the linker inside individual object
6055files. Typically this is used in conjunction with language extensions which
6056allow source files to explicitly declare the libraries they depend on, and have
6057these automatically be transmitted to the linker via object files.
6058
6059These flags are encoded in the IR using named metadata with the name
6060``!llvm.linker.options``. Each operand is expected to be a metadata node
6061which should be a list of other metadata nodes, each of which should be a
6062list of metadata strings defining linker options.
6063
6064For example, the following metadata section specifies two separate sets of
6065linker options, presumably to link against ``libz`` and the ``Cocoa``
6066framework::
6067
6068 !0 = !{ !"-lz" },
6069 !1 = !{ !"-framework", !"Cocoa" } } }
6070 !llvm.linker.options = !{ !0, !1 }
6071
6072The metadata encoding as lists of lists of options, as opposed to a collapsed
6073list of options, is chosen so that the IR encoding can use multiple option
6074strings to specify e.g., a single library, while still having that specifier be
6075preserved as an atomic element that can be recognized by a target specific
6076assembly writer or object file emitter.
6077
6078Each individual option is required to be either a valid option for the target's
6079linker, or an option that is reserved by the target specific assembly writer or
6080object file emitter. No other aspect of these options is defined by the IR.
6081
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006082.. _summary:
6083
6084ThinLTO Summary
6085===============
6086
6087Compiling with `ThinLTO <https://clang.llvm.org/docs/ThinLTO.html>`_
6088causes the building of a compact summary of the module that is emitted into
6089the bitcode. The summary is emitted into the LLVM assembly and identified
6090in syntax by a caret ('``^``').
6091
Teresa Johnsonab2a7f02018-09-18 13:44:13 +00006092The summary is parsed into a bitcode output, along with the Module
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006093IR, via the "``llvm-as``" tool. Tools that parse the Module IR for the purposes
6094of optimization (e.g. "``clang -x ir``" and "``opt``"), will ignore the
6095summary entries (just as they currently ignore summary entries in a bitcode
6096input file).
6097
Teresa Johnsonab2a7f02018-09-18 13:44:13 +00006098Eventually, the summary will be parsed into a ModuleSummaryIndex object under
6099the same conditions where summary index is currently built from bitcode.
6100Specifically, tools that test the Thin Link portion of a ThinLTO compile
6101(i.e. llvm-lto and llvm-lto2), or when parsing a combined index
6102for a distributed ThinLTO backend via clang's "``-fthinlto-index=<>``" flag
6103(this part is not yet implemented, use llvm-as to create a bitcode object
6104before feeding into thin link tools for now).
6105
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006106There are currently 3 types of summary entries in the LLVM assembly:
6107:ref:`module paths<module_path_summary>`,
6108:ref:`global values<gv_summary>`, and
6109:ref:`type identifiers<typeid_summary>`.
6110
6111.. _module_path_summary:
6112
6113Module Path Summary Entry
6114-------------------------
6115
6116Each module path summary entry lists a module containing global values included
6117in the summary. For a single IR module there will be one such entry, but
6118in a combined summary index produced during the thin link, there will be
6119one module path entry per linked module with summary.
6120
6121Example:
6122
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006123.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006124
6125 ^0 = module: (path: "/path/to/file.o", hash: (2468601609, 1329373163, 1565878005, 638838075, 3148790418))
6126
6127The ``path`` field is a string path to the bitcode file, and the ``hash``
6128field is the 160-bit SHA-1 hash of the IR bitcode contents, used for
6129incremental builds and caching.
6130
6131.. _gv_summary:
6132
6133Global Value Summary Entry
6134--------------------------
6135
6136Each global value summary entry corresponds to a global value defined or
6137referenced by a summarized module.
6138
6139Example:
6140
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006141.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006142
6143 ^4 = gv: (name: "f"[, summaries: (Summary)[, (Summary)]*]?) ; guid = 14740650423002898831
6144
6145For declarations, there will not be a summary list. For definitions, a
6146global value will contain a list of summaries, one per module containing
6147a definition. There can be multiple entries in a combined summary index
6148for symbols with weak linkage.
6149
6150Each ``Summary`` format will depend on whether the global value is a
6151:ref:`function<function_summary>`, :ref:`variable<variable_summary>`, or
6152:ref:`alias<alias_summary>`.
6153
6154.. _function_summary:
6155
6156Function Summary
6157^^^^^^^^^^^^^^^^
6158
6159If the global value is a function, the ``Summary`` entry will look like:
6160
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006161.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006162
6163 function: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), insts: 2[, FuncFlags]?[, Calls]?[, TypeIdInfo]?[, Refs]?
6164
6165The ``module`` field includes the summary entry id for the module containing
6166this definition, and the ``flags`` field contains information such as
6167the linkage type, a flag indicating whether it is legal to import the
6168definition, whether it is globally live and whether the linker resolved it
6169to a local definition (the latter two are populated during the thin link).
6170The ``insts`` field contains the number of IR instructions in the function.
6171Finally, there are several optional fields: :ref:`FuncFlags<funcflags_summary>`,
6172:ref:`Calls<calls_summary>`, :ref:`TypeIdInfo<typeidinfo_summary>`,
6173:ref:`Refs<refs_summary>`.
6174
6175.. _variable_summary:
6176
6177Global Variable Summary
6178^^^^^^^^^^^^^^^^^^^^^^^
6179
6180If the global value is a variable, the ``Summary`` entry will look like:
6181
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006182.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006183
6184 variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0)[, Refs]?
6185
6186The variable entry contains a subset of the fields in a
6187:ref:`function summary <function_summary>`, see the descriptions there.
6188
6189.. _alias_summary:
6190
6191Alias Summary
6192^^^^^^^^^^^^^
6193
6194If the global value is an alias, the ``Summary`` entry will look like:
6195
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006196.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006197
6198 alias: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), aliasee: ^2)
6199
6200The ``module`` and ``flags`` fields are as described for a
6201:ref:`function summary <function_summary>`. The ``aliasee`` field
6202contains a reference to the global value summary entry of the aliasee.
6203
6204.. _funcflags_summary:
6205
6206Function Flags
6207^^^^^^^^^^^^^^
6208
6209The optional ``FuncFlags`` field looks like:
6210
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006211.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006212
6213 funcFlags: (readNone: 0, readOnly: 0, noRecurse: 0, returnDoesNotAlias: 0)
6214
6215If unspecified, flags are assumed to hold the conservative ``false`` value of
6216``0``.
6217
6218.. _calls_summary:
6219
6220Calls
6221^^^^^
6222
6223The optional ``Calls`` field looks like:
6224
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006225.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006226
6227 calls: ((Callee)[, (Callee)]*)
6228
6229where each ``Callee`` looks like:
6230
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006231.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006232
6233 callee: ^1[, hotness: None]?[, relbf: 0]?
6234
6235The ``callee`` refers to the summary entry id of the callee. At most one
6236of ``hotness`` (which can take the values ``Unknown``, ``Cold``, ``None``,
6237``Hot``, and ``Critical``), and ``relbf`` (which holds the integer
6238branch frequency relative to the entry frequency, scaled down by 2^8)
6239may be specified. The defaults are ``Unknown`` and ``0``, respectively.
6240
6241.. _refs_summary:
6242
6243Refs
6244^^^^
6245
6246The optional ``Refs`` field looks like:
6247
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006248.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006249
6250 refs: ((Ref)[, (Ref)]*)
6251
6252where each ``Ref`` contains a reference to the summary id of the referenced
6253value (e.g. ``^1``).
6254
6255.. _typeidinfo_summary:
6256
6257TypeIdInfo
6258^^^^^^^^^^
6259
6260The optional ``TypeIdInfo`` field, used for
6261`Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
6262looks like:
6263
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006264.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006265
6266 typeIdInfo: [(TypeTests)]?[, (TypeTestAssumeVCalls)]?[, (TypeCheckedLoadVCalls)]?[, (TypeTestAssumeConstVCalls)]?[, (TypeCheckedLoadConstVCalls)]?
6267
6268These optional fields have the following forms:
6269
6270TypeTests
6271"""""""""
6272
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006273.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006274
6275 typeTests: (TypeIdRef[, TypeIdRef]*)
6276
6277Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
6278by summary id or ``GUID``.
6279
6280TypeTestAssumeVCalls
6281""""""""""""""""""""
6282
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006283.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006284
6285 typeTestAssumeVCalls: (VFuncId[, VFuncId]*)
6286
6287Where each VFuncId has the format:
6288
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006289.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006290
6291 vFuncId: (TypeIdRef, offset: 16)
6292
6293Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
6294by summary id or ``GUID`` preceeded by a ``guid:`` tag.
6295
6296TypeCheckedLoadVCalls
6297"""""""""""""""""""""
6298
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006299.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006300
6301 typeCheckedLoadVCalls: (VFuncId[, VFuncId]*)
6302
6303Where each VFuncId has the format described for ``TypeTestAssumeVCalls``.
6304
6305TypeTestAssumeConstVCalls
6306"""""""""""""""""""""""""
6307
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006308.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006309
6310 typeTestAssumeConstVCalls: (ConstVCall[, ConstVCall]*)
6311
6312Where each ConstVCall has the format:
6313
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006314.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006315
Teresa Johnsonab2a7f02018-09-18 13:44:13 +00006316 (VFuncId, args: (Arg[, Arg]*))
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006317
6318and where each VFuncId has the format described for ``TypeTestAssumeVCalls``,
6319and each Arg is an integer argument number.
6320
6321TypeCheckedLoadConstVCalls
6322""""""""""""""""""""""""""
6323
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006324.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006325
6326 typeCheckedLoadConstVCalls: (ConstVCall[, ConstVCall]*)
6327
6328Where each ConstVCall has the format described for
6329``TypeTestAssumeConstVCalls``.
6330
6331.. _typeid_summary:
6332
6333Type ID Summary Entry
6334---------------------
6335
6336Each type id summary entry corresponds to a type identifier resolution
6337which is generated during the LTO link portion of the compile when building
6338with `Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
6339so these are only present in a combined summary index.
6340
6341Example:
6342
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006343.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006344
6345 ^4 = typeid: (name: "_ZTS1A", summary: (typeTestRes: (kind: allOnes, sizeM1BitWidth: 7[, alignLog2: 0]?[, sizeM1: 0]?[, bitMask: 0]?[, inlineBits: 0]?)[, WpdResolutions]?)) ; guid = 7004155349499253778
6346
6347The ``typeTestRes`` gives the type test resolution ``kind`` (which may
6348be ``unsat``, ``byteArray``, ``inline``, ``single``, or ``allOnes``), and
6349the ``size-1`` bit width. It is followed by optional flags, which default to 0,
6350and an optional WpdResolutions (whole program devirtualization resolution)
6351field that looks like:
6352
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006353.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006354
6355 wpdResolutions: ((offset: 0, WpdRes)[, (offset: 1, WpdRes)]*
6356
6357where each entry is a mapping from the given byte offset to the whole-program
6358devirtualization resolution WpdRes, that has one of the following formats:
6359
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006360.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006361
6362 wpdRes: (kind: branchFunnel)
6363 wpdRes: (kind: singleImpl, singleImplName: "_ZN1A1nEi")
6364 wpdRes: (kind: indir)
6365
6366Additionally, each wpdRes has an optional ``resByArg`` field, which
6367describes the resolutions for calls with all constant integer arguments:
6368
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006369.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006370
6371 resByArg: (ResByArg[, ResByArg]*)
6372
6373where ResByArg is:
6374
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006375.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006376
6377 args: (Arg[, Arg]*), byArg: (kind: UniformRetVal[, info: 0][, byte: 0][, bit: 0])
6378
6379Where the ``kind`` can be ``Indir``, ``UniformRetVal``, ``UniqueRetVal``
6380or ``VirtualConstProp``. The ``info`` field is only used if the kind
6381is ``UniformRetVal`` (indicates the uniform return value), or
6382``UniqueRetVal`` (holds the return value associated with the unique vtable
6383(0 or 1)). The ``byte`` and ``bit`` fields are only used if the target does
6384not support the use of absolute symbols to store constants.
6385
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006386.. _intrinsicglobalvariables:
6387
Sean Silvab084af42012-12-07 10:36:55 +00006388Intrinsic Global Variables
6389==========================
6390
6391LLVM has a number of "magic" global variables that contain data that
6392affect code generation or other IR semantics. These are documented here.
6393All globals of this sort should have a section specified as
6394"``llvm.metadata``". This section and all globals that start with
6395"``llvm.``" are reserved for use by LLVM.
6396
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006397.. _gv_llvmused:
6398
Sean Silvab084af42012-12-07 10:36:55 +00006399The '``llvm.used``' Global Variable
6400-----------------------------------
6401
Rafael Espindola74f2e462013-04-22 14:58:02 +00006402The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00006403:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00006404pointers to named global variables, functions and aliases which may optionally
6405have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00006406use of it is:
6407
6408.. code-block:: llvm
6409
6410 @X = global i8 4
6411 @Y = global i32 123
6412
6413 @llvm.used = appending global [2 x i8*] [
6414 i8* @X,
6415 i8* bitcast (i32* @Y to i8*)
6416 ], section "llvm.metadata"
6417
Rafael Espindola74f2e462013-04-22 14:58:02 +00006418If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
6419and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00006420symbol that it cannot see (which is why they have to be named). For example, if
6421a variable has internal linkage and no references other than that from the
6422``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
6423references from inline asms and other things the compiler cannot "see", and
6424corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00006425
6426On some targets, the code generator must emit a directive to the
6427assembler or object file to prevent the assembler and linker from
6428molesting the symbol.
6429
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006430.. _gv_llvmcompilerused:
6431
Sean Silvab084af42012-12-07 10:36:55 +00006432The '``llvm.compiler.used``' Global Variable
6433--------------------------------------------
6434
6435The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
6436directive, except that it only prevents the compiler from touching the
6437symbol. On targets that support it, this allows an intelligent linker to
6438optimize references to the symbol without being impeded as it would be
6439by ``@llvm.used``.
6440
6441This is a rare construct that should only be used in rare circumstances,
6442and should not be exposed to source languages.
6443
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006444.. _gv_llvmglobalctors:
6445
Sean Silvab084af42012-12-07 10:36:55 +00006446The '``llvm.global_ctors``' Global Variable
6447-------------------------------------------
6448
6449.. code-block:: llvm
6450
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006451 %0 = type { i32, void ()*, i8* }
6452 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006453
6454The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006455functions, priorities, and an optional associated global or function.
6456The functions referenced by this array will be called in ascending order
6457of priority (i.e. lowest first) when the module is loaded. The order of
6458functions with the same priority is not defined.
6459
6460If the third field is present, non-null, and points to a global variable
6461or function, the initializer function will only run if the associated
6462data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006463
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006464.. _llvmglobaldtors:
6465
Sean Silvab084af42012-12-07 10:36:55 +00006466The '``llvm.global_dtors``' Global Variable
6467-------------------------------------------
6468
6469.. code-block:: llvm
6470
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006471 %0 = type { i32, void ()*, i8* }
6472 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006473
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006474The ``@llvm.global_dtors`` array contains a list of destructor
6475functions, priorities, and an optional associated global or function.
6476The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00006477order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006478order of functions with the same priority is not defined.
6479
6480If the third field is present, non-null, and points to a global variable
6481or function, the destructor function will only run if the associated
6482data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006483
6484Instruction Reference
6485=====================
6486
6487The LLVM instruction set consists of several different classifications
6488of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
6489instructions <binaryops>`, :ref:`bitwise binary
6490instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
6491:ref:`other instructions <otherops>`.
6492
6493.. _terminators:
6494
6495Terminator Instructions
6496-----------------------
6497
6498As mentioned :ref:`previously <functionstructure>`, every basic block in a
6499program ends with a "Terminator" instruction, which indicates which
6500block should be executed after the current block is finished. These
6501terminator instructions typically yield a '``void``' value: they produce
6502control flow, not values (the one exception being the
6503':ref:`invoke <i_invoke>`' instruction).
6504
6505The terminator instructions are: ':ref:`ret <i_ret>`',
6506':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
6507':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00006508':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00006509':ref:`catchret <i_catchret>`',
6510':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00006511and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00006512
6513.. _i_ret:
6514
6515'``ret``' Instruction
6516^^^^^^^^^^^^^^^^^^^^^
6517
6518Syntax:
6519"""""""
6520
6521::
6522
6523 ret <type> <value> ; Return a value from a non-void function
6524 ret void ; Return from void function
6525
6526Overview:
6527"""""""""
6528
6529The '``ret``' instruction is used to return control flow (and optionally
6530a value) from a function back to the caller.
6531
6532There are two forms of the '``ret``' instruction: one that returns a
6533value and then causes control flow, and one that just causes control
6534flow to occur.
6535
6536Arguments:
6537""""""""""
6538
6539The '``ret``' instruction optionally accepts a single argument, the
6540return value. The type of the return value must be a ':ref:`first
6541class <t_firstclass>`' type.
6542
Xing GUO454e51b2019-01-18 03:56:37 +00006543A function is not :ref:`well formed <wellformed>` if it has a non-void
Sean Silvab084af42012-12-07 10:36:55 +00006544return type and contains a '``ret``' instruction with no return value or
6545a return value with a type that does not match its type, or if it has a
6546void return type and contains a '``ret``' instruction with a return
6547value.
6548
6549Semantics:
6550""""""""""
6551
6552When the '``ret``' instruction is executed, control flow returns back to
6553the calling function's context. If the caller is a
6554":ref:`call <i_call>`" instruction, execution continues at the
6555instruction after the call. If the caller was an
6556":ref:`invoke <i_invoke>`" instruction, execution continues at the
6557beginning of the "normal" destination block. If the instruction returns
6558a value, that value shall set the call or invoke instruction's return
6559value.
6560
6561Example:
6562""""""""
6563
6564.. code-block:: llvm
6565
6566 ret i32 5 ; Return an integer value of 5
6567 ret void ; Return from a void function
6568 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
6569
6570.. _i_br:
6571
6572'``br``' Instruction
6573^^^^^^^^^^^^^^^^^^^^
6574
6575Syntax:
6576"""""""
6577
6578::
6579
6580 br i1 <cond>, label <iftrue>, label <iffalse>
6581 br label <dest> ; Unconditional branch
6582
6583Overview:
6584"""""""""
6585
6586The '``br``' instruction is used to cause control flow to transfer to a
6587different basic block in the current function. There are two forms of
6588this instruction, corresponding to a conditional branch and an
6589unconditional branch.
6590
6591Arguments:
6592""""""""""
6593
6594The conditional branch form of the '``br``' instruction takes a single
6595'``i1``' value and two '``label``' values. The unconditional form of the
6596'``br``' instruction takes a single '``label``' value as a target.
6597
6598Semantics:
6599""""""""""
6600
6601Upon execution of a conditional '``br``' instruction, the '``i1``'
6602argument is evaluated. If the value is ``true``, control flows to the
6603'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
6604to the '``iffalse``' ``label`` argument.
6605
6606Example:
6607""""""""
6608
6609.. code-block:: llvm
6610
6611 Test:
6612 %cond = icmp eq i32 %a, %b
6613 br i1 %cond, label %IfEqual, label %IfUnequal
6614 IfEqual:
6615 ret i32 1
6616 IfUnequal:
6617 ret i32 0
6618
6619.. _i_switch:
6620
6621'``switch``' Instruction
6622^^^^^^^^^^^^^^^^^^^^^^^^
6623
6624Syntax:
6625"""""""
6626
6627::
6628
6629 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
6630
6631Overview:
6632"""""""""
6633
6634The '``switch``' instruction is used to transfer control flow to one of
6635several different places. It is a generalization of the '``br``'
6636instruction, allowing a branch to occur to one of many possible
6637destinations.
6638
6639Arguments:
6640""""""""""
6641
6642The '``switch``' instruction uses three parameters: an integer
6643comparison value '``value``', a default '``label``' destination, and an
6644array of pairs of comparison value constants and '``label``'s. The table
6645is not allowed to contain duplicate constant entries.
6646
6647Semantics:
6648""""""""""
6649
6650The ``switch`` instruction specifies a table of values and destinations.
6651When the '``switch``' instruction is executed, this table is searched
6652for the given value. If the value is found, control flow is transferred
6653to the corresponding destination; otherwise, control flow is transferred
6654to the default destination.
6655
6656Implementation:
6657"""""""""""""""
6658
6659Depending on properties of the target machine and the particular
6660``switch`` instruction, this instruction may be code generated in
6661different ways. For example, it could be generated as a series of
6662chained conditional branches or with a lookup table.
6663
6664Example:
6665""""""""
6666
6667.. code-block:: llvm
6668
6669 ; Emulate a conditional br instruction
6670 %Val = zext i1 %value to i32
6671 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
6672
6673 ; Emulate an unconditional br instruction
6674 switch i32 0, label %dest [ ]
6675
6676 ; Implement a jump table:
6677 switch i32 %val, label %otherwise [ i32 0, label %onzero
6678 i32 1, label %onone
6679 i32 2, label %ontwo ]
6680
6681.. _i_indirectbr:
6682
6683'``indirectbr``' Instruction
6684^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6685
6686Syntax:
6687"""""""
6688
6689::
6690
6691 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
6692
6693Overview:
6694"""""""""
6695
6696The '``indirectbr``' instruction implements an indirect branch to a
6697label within the current function, whose address is specified by
6698"``address``". Address must be derived from a
6699:ref:`blockaddress <blockaddress>` constant.
6700
6701Arguments:
6702""""""""""
6703
6704The '``address``' argument is the address of the label to jump to. The
6705rest of the arguments indicate the full set of possible destinations
6706that the address may point to. Blocks are allowed to occur multiple
6707times in the destination list, though this isn't particularly useful.
6708
6709This destination list is required so that dataflow analysis has an
6710accurate understanding of the CFG.
6711
6712Semantics:
6713""""""""""
6714
6715Control transfers to the block specified in the address argument. All
6716possible destination blocks must be listed in the label list, otherwise
6717this instruction has undefined behavior. This implies that jumps to
6718labels defined in other functions have undefined behavior as well.
6719
6720Implementation:
6721"""""""""""""""
6722
6723This is typically implemented with a jump through a register.
6724
6725Example:
6726""""""""
6727
6728.. code-block:: llvm
6729
6730 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
6731
6732.. _i_invoke:
6733
6734'``invoke``' Instruction
6735^^^^^^^^^^^^^^^^^^^^^^^^
6736
6737Syntax:
6738"""""""
6739
6740::
6741
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00006742 <result> = invoke [cconv] [ret attrs] [addrspace(<num>)] [<ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006743 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00006744
6745Overview:
6746"""""""""
6747
6748The '``invoke``' instruction causes control to transfer to a specified
6749function, with the possibility of control flow transfer to either the
6750'``normal``' label or the '``exception``' label. If the callee function
6751returns with the "``ret``" instruction, control flow will return to the
6752"normal" label. If the callee (or any indirect callees) returns via the
6753":ref:`resume <i_resume>`" instruction or other exception handling
6754mechanism, control is interrupted and continued at the dynamically
6755nearest "exception" label.
6756
6757The '``exception``' label is a `landing
6758pad <ExceptionHandling.html#overview>`_ for the exception. As such,
6759'``exception``' label is required to have the
6760":ref:`landingpad <i_landingpad>`" instruction, which contains the
6761information about the behavior of the program after unwinding happens,
6762as its first non-PHI instruction. The restrictions on the
6763"``landingpad``" instruction's tightly couples it to the "``invoke``"
6764instruction, so that the important information contained within the
6765"``landingpad``" instruction can't be lost through normal code motion.
6766
6767Arguments:
6768""""""""""
6769
6770This instruction requires several arguments:
6771
6772#. The optional "cconv" marker indicates which :ref:`calling
6773 convention <callingconv>` the call should use. If none is
6774 specified, the call defaults to using C calling conventions.
6775#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6776 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6777 are valid here.
Craig Topper78e7fff2019-01-16 00:21:59 +00006778#. The optional addrspace attribute can be used to indicate the address space
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00006779 of the called function. If it is not specified, the program address space
6780 from the :ref:`datalayout string<langref_datalayout>` will be used.
David Blaikieb83cf102016-07-13 17:21:34 +00006781#. '``ty``': the type of the call instruction itself which is also the
6782 type of the return value. Functions that return no value are marked
6783 ``void``.
6784#. '``fnty``': shall be the signature of the function being invoked. The
6785 argument types must match the types implied by this signature. This
6786 type can be omitted if the function is not varargs.
6787#. '``fnptrval``': An LLVM value containing a pointer to a function to
6788 be invoked. In most cases, this is a direct function invocation, but
6789 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
6790 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00006791#. '``function args``': argument list whose types match the function
6792 signature argument types and parameter attributes. All arguments must
6793 be of :ref:`first class <t_firstclass>` type. If the function signature
6794 indicates the function accepts a variable number of arguments, the
6795 extra arguments can be specified.
6796#. '``normal label``': the label reached when the called function
6797 executes a '``ret``' instruction.
6798#. '``exception label``': the label reached when a callee returns via
6799 the :ref:`resume <i_resume>` instruction or other exception handling
6800 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00006801#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006802#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00006803
6804Semantics:
6805""""""""""
6806
6807This instruction is designed to operate as a standard '``call``'
6808instruction in most regards. The primary difference is that it
6809establishes an association with a label, which is used by the runtime
6810library to unwind the stack.
6811
6812This instruction is used in languages with destructors to ensure that
6813proper cleanup is performed in the case of either a ``longjmp`` or a
6814thrown exception. Additionally, this is important for implementation of
6815'``catch``' clauses in high-level languages that support them.
6816
6817For the purposes of the SSA form, the definition of the value returned
6818by the '``invoke``' instruction is deemed to occur on the edge from the
6819current block to the "normal" label. If the callee unwinds then no
6820return value is available.
6821
6822Example:
6823""""""""
6824
6825.. code-block:: llvm
6826
6827 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006828 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006829 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006830 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006831
6832.. _i_resume:
6833
6834'``resume``' Instruction
6835^^^^^^^^^^^^^^^^^^^^^^^^
6836
6837Syntax:
6838"""""""
6839
6840::
6841
6842 resume <type> <value>
6843
6844Overview:
6845"""""""""
6846
6847The '``resume``' instruction is a terminator instruction that has no
6848successors.
6849
6850Arguments:
6851""""""""""
6852
6853The '``resume``' instruction requires one argument, which must have the
6854same type as the result of any '``landingpad``' instruction in the same
6855function.
6856
6857Semantics:
6858""""""""""
6859
6860The '``resume``' instruction resumes propagation of an existing
6861(in-flight) exception whose unwinding was interrupted with a
6862:ref:`landingpad <i_landingpad>` instruction.
6863
6864Example:
6865""""""""
6866
6867.. code-block:: llvm
6868
6869 resume { i8*, i32 } %exn
6870
David Majnemer8a1c45d2015-12-12 05:38:55 +00006871.. _i_catchswitch:
6872
6873'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00006874^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00006875
6876Syntax:
6877"""""""
6878
6879::
6880
6881 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6882 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6883
6884Overview:
6885"""""""""
6886
6887The '``catchswitch``' instruction is used by `LLVM's exception handling system
6888<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6889that may be executed by the :ref:`EH personality routine <personalityfn>`.
6890
6891Arguments:
6892""""""""""
6893
6894The ``parent`` argument is the token of the funclet that contains the
6895``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6896this operand may be the token ``none``.
6897
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006898The ``default`` argument is the label of another basic block beginning with
6899either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6900must be a legal target with respect to the ``parent`` links, as described in
6901the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006902
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006903The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006904:ref:`catchpad <i_catchpad>` instruction.
6905
6906Semantics:
6907""""""""""
6908
6909Executing this instruction transfers control to one of the successors in
6910``handlers``, if appropriate, or continues to unwind via the unwind label if
6911present.
6912
6913The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6914it must be both the first non-phi instruction and last instruction in the basic
6915block. Therefore, it must be the only non-phi instruction in the block.
6916
6917Example:
6918""""""""
6919
Renato Golin124f2592016-07-20 12:16:38 +00006920.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00006921
6922 dispatch1:
6923 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6924 dispatch2:
6925 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6926
David Majnemer654e1302015-07-31 17:58:14 +00006927.. _i_catchret:
6928
6929'``catchret``' Instruction
6930^^^^^^^^^^^^^^^^^^^^^^^^^^
6931
6932Syntax:
6933"""""""
6934
6935::
6936
David Majnemer8a1c45d2015-12-12 05:38:55 +00006937 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00006938
6939Overview:
6940"""""""""
6941
6942The '``catchret``' instruction is a terminator instruction that has a
6943single successor.
6944
6945
6946Arguments:
6947""""""""""
6948
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006949The first argument to a '``catchret``' indicates which ``catchpad`` it
6950exits. It must be a :ref:`catchpad <i_catchpad>`.
6951The second argument to a '``catchret``' specifies where control will
6952transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00006953
6954Semantics:
6955""""""""""
6956
David Majnemer8a1c45d2015-12-12 05:38:55 +00006957The '``catchret``' instruction ends an existing (in-flight) exception whose
6958unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6959:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6960code to, for example, destroy the active exception. Control then transfers to
6961``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006962
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006963The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6964If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6965funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6966the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006967
6968Example:
6969""""""""
6970
Renato Golin124f2592016-07-20 12:16:38 +00006971.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006972
David Majnemer8a1c45d2015-12-12 05:38:55 +00006973 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006974
David Majnemer654e1302015-07-31 17:58:14 +00006975.. _i_cleanupret:
6976
6977'``cleanupret``' Instruction
6978^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6979
6980Syntax:
6981"""""""
6982
6983::
6984
David Majnemer8a1c45d2015-12-12 05:38:55 +00006985 cleanupret from <value> unwind label <continue>
6986 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006987
6988Overview:
6989"""""""""
6990
6991The '``cleanupret``' instruction is a terminator instruction that has
6992an optional successor.
6993
6994
6995Arguments:
6996""""""""""
6997
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006998The '``cleanupret``' instruction requires one argument, which indicates
6999which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00007000If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
7001funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
7002the ``cleanupret``'s behavior is undefined.
7003
7004The '``cleanupret``' instruction also has an optional successor, ``continue``,
7005which must be the label of another basic block beginning with either a
7006``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
7007be a legal target with respect to the ``parent`` links, as described in the
7008`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00007009
7010Semantics:
7011""""""""""
7012
7013The '``cleanupret``' instruction indicates to the
7014:ref:`personality function <personalityfn>` that one
7015:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
7016It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00007017
David Majnemer654e1302015-07-31 17:58:14 +00007018Example:
7019""""""""
7020
Renato Golin124f2592016-07-20 12:16:38 +00007021.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00007022
David Majnemer8a1c45d2015-12-12 05:38:55 +00007023 cleanupret from %cleanup unwind to caller
7024 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00007025
Sean Silvab084af42012-12-07 10:36:55 +00007026.. _i_unreachable:
7027
7028'``unreachable``' Instruction
7029^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7030
7031Syntax:
7032"""""""
7033
7034::
7035
7036 unreachable
7037
7038Overview:
7039"""""""""
7040
7041The '``unreachable``' instruction has no defined semantics. This
7042instruction is used to inform the optimizer that a particular portion of
7043the code is not reachable. This can be used to indicate that the code
7044after a no-return function cannot be reached, and other facts.
7045
7046Semantics:
7047""""""""""
7048
7049The '``unreachable``' instruction has no defined semantics.
7050
Cameron McInallye4ee9842018-11-16 19:52:59 +00007051.. _unaryops:
7052
7053Unary Operations
7054-----------------
7055
7056Unary operators require a single operand, execute an operation on
7057it, and produce a single value. The operand might represent multiple
7058data, as is the case with the :ref:`vector <t_vector>` data type. The
7059result value has the same type as its operand.
7060
7061.. _i_fneg:
7062
7063'``fneg``' Instruction
7064^^^^^^^^^^^^^^^^^^^^^^
7065
7066Syntax:
7067"""""""
7068
7069::
7070
7071 <result> = fneg [fast-math flags]* <ty> <op1> ; yields ty:result
7072
7073Overview:
7074"""""""""
7075
7076The '``fneg``' instruction returns the negation of its operand.
7077
7078Arguments:
7079""""""""""
7080
7081The argument to the '``fneg``' instruction must be a
7082:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Michael Kruse978ba612018-12-20 04:58:07 +00007083floating-point values.
Cameron McInallye4ee9842018-11-16 19:52:59 +00007084
7085Semantics:
7086""""""""""
7087
7088The value produced is a copy of the operand with its sign bit flipped.
7089This instruction can also take any number of :ref:`fast-math
7090flags <fastmath>`, which are optimization hints to enable otherwise
7091unsafe floating-point optimizations:
7092
7093Example:
7094""""""""
7095
7096.. code-block:: text
7097
7098 <result> = fneg float %val ; yields float:result = -%var
7099
Sean Silvab084af42012-12-07 10:36:55 +00007100.. _binaryops:
7101
7102Binary Operations
7103-----------------
7104
7105Binary operators are used to do most of the computation in a program.
7106They require two operands of the same type, execute an operation on
7107them, and produce a single value. The operands might represent multiple
7108data, as is the case with the :ref:`vector <t_vector>` data type. The
7109result value has the same type as its operands.
7110
7111There are several different binary operators:
7112
7113.. _i_add:
7114
7115'``add``' Instruction
7116^^^^^^^^^^^^^^^^^^^^^
7117
7118Syntax:
7119"""""""
7120
7121::
7122
Tim Northover675a0962014-06-13 14:24:23 +00007123 <result> = add <ty> <op1>, <op2> ; yields ty:result
7124 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
7125 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
7126 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007127
7128Overview:
7129"""""""""
7130
7131The '``add``' instruction returns the sum of its two operands.
7132
7133Arguments:
7134""""""""""
7135
7136The two arguments to the '``add``' instruction must be
7137:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7138arguments must have identical types.
7139
7140Semantics:
7141""""""""""
7142
7143The value produced is the integer sum of the two operands.
7144
7145If the sum has unsigned overflow, the result returned is the
7146mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
7147the result.
7148
7149Because LLVM integers use a two's complement representation, this
7150instruction is appropriate for both signed and unsigned integers.
7151
7152``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7153respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7154result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
7155unsigned and/or signed overflow, respectively, occurs.
7156
7157Example:
7158""""""""
7159
Renato Golin124f2592016-07-20 12:16:38 +00007160.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007161
Tim Northover675a0962014-06-13 14:24:23 +00007162 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00007163
7164.. _i_fadd:
7165
7166'``fadd``' Instruction
7167^^^^^^^^^^^^^^^^^^^^^^
7168
7169Syntax:
7170"""""""
7171
7172::
7173
Tim Northover675a0962014-06-13 14:24:23 +00007174 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007175
7176Overview:
7177"""""""""
7178
7179The '``fadd``' instruction returns the sum of its two operands.
7180
7181Arguments:
7182""""""""""
7183
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007184The two arguments to the '``fadd``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007185:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007186floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007187
7188Semantics:
7189""""""""""
7190
Sanjay Patel7b722402018-03-07 17:18:22 +00007191The value produced is the floating-point sum of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007192This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007193environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00007194This instruction can also take any number of :ref:`fast-math
7195flags <fastmath>`, which are optimization hints to enable otherwise
7196unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007197
7198Example:
7199""""""""
7200
Renato Golin124f2592016-07-20 12:16:38 +00007201.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007202
Tim Northover675a0962014-06-13 14:24:23 +00007203 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00007204
7205'``sub``' Instruction
7206^^^^^^^^^^^^^^^^^^^^^
7207
7208Syntax:
7209"""""""
7210
7211::
7212
Tim Northover675a0962014-06-13 14:24:23 +00007213 <result> = sub <ty> <op1>, <op2> ; yields ty:result
7214 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
7215 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
7216 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007217
7218Overview:
7219"""""""""
7220
7221The '``sub``' instruction returns the difference of its two operands.
7222
7223Note that the '``sub``' instruction is used to represent the '``neg``'
7224instruction present in most other intermediate representations.
7225
7226Arguments:
7227""""""""""
7228
7229The two arguments to the '``sub``' instruction must be
7230:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7231arguments must have identical types.
7232
7233Semantics:
7234""""""""""
7235
7236The value produced is the integer difference of the two operands.
7237
7238If the difference has unsigned overflow, the result returned is the
7239mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
7240the result.
7241
7242Because LLVM integers use a two's complement representation, this
7243instruction is appropriate for both signed and unsigned integers.
7244
7245``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7246respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7247result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
7248unsigned and/or signed overflow, respectively, occurs.
7249
7250Example:
7251""""""""
7252
Renato Golin124f2592016-07-20 12:16:38 +00007253.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007254
Tim Northover675a0962014-06-13 14:24:23 +00007255 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
7256 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00007257
7258.. _i_fsub:
7259
7260'``fsub``' Instruction
7261^^^^^^^^^^^^^^^^^^^^^^
7262
7263Syntax:
7264"""""""
7265
7266::
7267
Tim Northover675a0962014-06-13 14:24:23 +00007268 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007269
7270Overview:
7271"""""""""
7272
7273The '``fsub``' instruction returns the difference of its two operands.
7274
Sean Silvab084af42012-12-07 10:36:55 +00007275Arguments:
7276""""""""""
7277
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007278The two arguments to the '``fsub``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007279:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007280floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007281
7282Semantics:
7283""""""""""
7284
Sanjay Patel7b722402018-03-07 17:18:22 +00007285The value produced is the floating-point difference of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007286This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007287environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007288This instruction can also take any number of :ref:`fast-math
7289flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007290unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007291
7292Example:
7293""""""""
7294
Renato Golin124f2592016-07-20 12:16:38 +00007295.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007296
Tim Northover675a0962014-06-13 14:24:23 +00007297 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
7298 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00007299
7300'``mul``' Instruction
7301^^^^^^^^^^^^^^^^^^^^^
7302
7303Syntax:
7304"""""""
7305
7306::
7307
Tim Northover675a0962014-06-13 14:24:23 +00007308 <result> = mul <ty> <op1>, <op2> ; yields ty:result
7309 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
7310 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
7311 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007312
7313Overview:
7314"""""""""
7315
7316The '``mul``' instruction returns the product of its two operands.
7317
7318Arguments:
7319""""""""""
7320
7321The two arguments to the '``mul``' instruction must be
7322:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7323arguments must have identical types.
7324
7325Semantics:
7326""""""""""
7327
7328The value produced is the integer product of the two operands.
7329
7330If the result of the multiplication has unsigned overflow, the result
7331returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
7332bit width of the result.
7333
7334Because LLVM integers use a two's complement representation, and the
7335result is the same width as the operands, this instruction returns the
7336correct result for both signed and unsigned integers. If a full product
7337(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
7338sign-extended or zero-extended as appropriate to the width of the full
7339product.
7340
7341``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7342respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7343result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
7344unsigned and/or signed overflow, respectively, occurs.
7345
7346Example:
7347""""""""
7348
Renato Golin124f2592016-07-20 12:16:38 +00007349.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007350
Tim Northover675a0962014-06-13 14:24:23 +00007351 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00007352
7353.. _i_fmul:
7354
7355'``fmul``' Instruction
7356^^^^^^^^^^^^^^^^^^^^^^
7357
7358Syntax:
7359"""""""
7360
7361::
7362
Tim Northover675a0962014-06-13 14:24:23 +00007363 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007364
7365Overview:
7366"""""""""
7367
7368The '``fmul``' instruction returns the product of its two operands.
7369
7370Arguments:
7371""""""""""
7372
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007373The two arguments to the '``fmul``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007374:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007375floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007376
7377Semantics:
7378""""""""""
7379
Sanjay Patel7b722402018-03-07 17:18:22 +00007380The value produced is the floating-point product of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007381This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007382environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007383This instruction can also take any number of :ref:`fast-math
7384flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007385unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007386
7387Example:
7388""""""""
7389
Renato Golin124f2592016-07-20 12:16:38 +00007390.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007391
Tim Northover675a0962014-06-13 14:24:23 +00007392 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00007393
7394'``udiv``' Instruction
7395^^^^^^^^^^^^^^^^^^^^^^
7396
7397Syntax:
7398"""""""
7399
7400::
7401
Tim Northover675a0962014-06-13 14:24:23 +00007402 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
7403 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007404
7405Overview:
7406"""""""""
7407
7408The '``udiv``' instruction returns the quotient of its two operands.
7409
7410Arguments:
7411""""""""""
7412
7413The two arguments to the '``udiv``' instruction must be
7414:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7415arguments must have identical types.
7416
7417Semantics:
7418""""""""""
7419
7420The value produced is the unsigned integer quotient of the two operands.
7421
7422Note that unsigned integer division and signed integer division are
7423distinct operations; for signed integer division, use '``sdiv``'.
7424
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007425Division by zero is undefined behavior. For vectors, if any element
7426of the divisor is zero, the operation has undefined behavior.
7427
Sean Silvab084af42012-12-07 10:36:55 +00007428
7429If the ``exact`` keyword is present, the result value of the ``udiv`` is
7430a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
7431such, "((a udiv exact b) mul b) == a").
7432
7433Example:
7434""""""""
7435
Renato Golin124f2592016-07-20 12:16:38 +00007436.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007437
Tim Northover675a0962014-06-13 14:24:23 +00007438 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007439
7440'``sdiv``' Instruction
7441^^^^^^^^^^^^^^^^^^^^^^
7442
7443Syntax:
7444"""""""
7445
7446::
7447
Tim Northover675a0962014-06-13 14:24:23 +00007448 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
7449 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007450
7451Overview:
7452"""""""""
7453
7454The '``sdiv``' instruction returns the quotient of its two operands.
7455
7456Arguments:
7457""""""""""
7458
7459The two arguments to the '``sdiv``' instruction must be
7460:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7461arguments must have identical types.
7462
7463Semantics:
7464""""""""""
7465
7466The value produced is the signed integer quotient of the two operands
7467rounded towards zero.
7468
7469Note that signed integer division and unsigned integer division are
7470distinct operations; for unsigned integer division, use '``udiv``'.
7471
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007472Division by zero is undefined behavior. For vectors, if any element
7473of the divisor is zero, the operation has undefined behavior.
7474Overflow also leads to undefined behavior; this is a rare case, but can
7475occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00007476
7477If the ``exact`` keyword is present, the result value of the ``sdiv`` is
7478a :ref:`poison value <poisonvalues>` if the result would be rounded.
7479
7480Example:
7481""""""""
7482
Renato Golin124f2592016-07-20 12:16:38 +00007483.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007484
Tim Northover675a0962014-06-13 14:24:23 +00007485 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007486
7487.. _i_fdiv:
7488
7489'``fdiv``' Instruction
7490^^^^^^^^^^^^^^^^^^^^^^
7491
7492Syntax:
7493"""""""
7494
7495::
7496
Tim Northover675a0962014-06-13 14:24:23 +00007497 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007498
7499Overview:
7500"""""""""
7501
7502The '``fdiv``' instruction returns the quotient of its two operands.
7503
7504Arguments:
7505""""""""""
7506
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007507The two arguments to the '``fdiv``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007508:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007509floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007510
7511Semantics:
7512""""""""""
7513
Sanjay Patel7b722402018-03-07 17:18:22 +00007514The value produced is the floating-point quotient of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007515This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007516environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007517This instruction can also take any number of :ref:`fast-math
7518flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007519unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007520
7521Example:
7522""""""""
7523
Renato Golin124f2592016-07-20 12:16:38 +00007524.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007525
Tim Northover675a0962014-06-13 14:24:23 +00007526 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007527
7528'``urem``' Instruction
7529^^^^^^^^^^^^^^^^^^^^^^
7530
7531Syntax:
7532"""""""
7533
7534::
7535
Tim Northover675a0962014-06-13 14:24:23 +00007536 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007537
7538Overview:
7539"""""""""
7540
7541The '``urem``' instruction returns the remainder from the unsigned
7542division of its two arguments.
7543
7544Arguments:
7545""""""""""
7546
7547The two arguments to the '``urem``' instruction must be
7548:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7549arguments must have identical types.
7550
7551Semantics:
7552""""""""""
7553
7554This instruction returns the unsigned integer *remainder* of a division.
7555This instruction always performs an unsigned division to get the
7556remainder.
7557
7558Note that unsigned integer remainder and signed integer remainder are
7559distinct operations; for signed integer remainder, use '``srem``'.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007560
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007561Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007562For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007563undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007564
7565Example:
7566""""""""
7567
Renato Golin124f2592016-07-20 12:16:38 +00007568.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007569
Tim Northover675a0962014-06-13 14:24:23 +00007570 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007571
7572'``srem``' Instruction
7573^^^^^^^^^^^^^^^^^^^^^^
7574
7575Syntax:
7576"""""""
7577
7578::
7579
Tim Northover675a0962014-06-13 14:24:23 +00007580 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007581
7582Overview:
7583"""""""""
7584
7585The '``srem``' instruction returns the remainder from the signed
7586division of its two operands. This instruction can also take
7587:ref:`vector <t_vector>` versions of the values in which case the elements
7588must be integers.
7589
7590Arguments:
7591""""""""""
7592
7593The two arguments to the '``srem``' instruction must be
7594:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7595arguments must have identical types.
7596
7597Semantics:
7598""""""""""
7599
7600This instruction returns the *remainder* of a division (where the result
7601is either zero or has the same sign as the dividend, ``op1``), not the
7602*modulo* operator (where the result is either zero or has the same sign
7603as the divisor, ``op2``) of a value. For more information about the
7604difference, see `The Math
7605Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
7606table of how this is implemented in various languages, please see
7607`Wikipedia: modulo
7608operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
7609
7610Note that signed integer remainder and unsigned integer remainder are
7611distinct operations; for unsigned integer remainder, use '``urem``'.
7612
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007613Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007614For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007615undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007616Overflow also leads to undefined behavior; this is a rare case, but can
7617occur, for example, by taking the remainder of a 32-bit division of
7618-2147483648 by -1. (The remainder doesn't actually overflow, but this
7619rule lets srem be implemented using instructions that return both the
7620result of the division and the remainder.)
7621
7622Example:
7623""""""""
7624
Renato Golin124f2592016-07-20 12:16:38 +00007625.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007626
Tim Northover675a0962014-06-13 14:24:23 +00007627 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007628
7629.. _i_frem:
7630
7631'``frem``' Instruction
7632^^^^^^^^^^^^^^^^^^^^^^
7633
7634Syntax:
7635"""""""
7636
7637::
7638
Tim Northover675a0962014-06-13 14:24:23 +00007639 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007640
7641Overview:
7642"""""""""
7643
7644The '``frem``' instruction returns the remainder from the division of
7645its two operands.
7646
7647Arguments:
7648""""""""""
7649
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007650The two arguments to the '``frem``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007651:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007652floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007653
7654Semantics:
7655""""""""""
7656
Sanjay Patel7b722402018-03-07 17:18:22 +00007657The value produced is the floating-point remainder of the two operands.
7658This is the same output as a libm '``fmod``' function, but without any
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007659possibility of setting ``errno``. The remainder has the same sign as the
Sanjay Patel7b722402018-03-07 17:18:22 +00007660dividend.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007661This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007662environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00007663This instruction can also take any number of :ref:`fast-math
7664flags <fastmath>`, which are optimization hints to enable otherwise
7665unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007666
7667Example:
7668""""""""
7669
Renato Golin124f2592016-07-20 12:16:38 +00007670.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007671
Tim Northover675a0962014-06-13 14:24:23 +00007672 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007673
7674.. _bitwiseops:
7675
7676Bitwise Binary Operations
7677-------------------------
7678
7679Bitwise binary operators are used to do various forms of bit-twiddling
7680in a program. They are generally very efficient instructions and can
7681commonly be strength reduced from other instructions. They require two
7682operands of the same type, execute an operation on them, and produce a
7683single value. The resulting value is the same type as its operands.
7684
7685'``shl``' Instruction
7686^^^^^^^^^^^^^^^^^^^^^
7687
7688Syntax:
7689"""""""
7690
7691::
7692
Tim Northover675a0962014-06-13 14:24:23 +00007693 <result> = shl <ty> <op1>, <op2> ; yields ty:result
7694 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
7695 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
7696 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007697
7698Overview:
7699"""""""""
7700
7701The '``shl``' instruction returns the first operand shifted to the left
7702a specified number of bits.
7703
7704Arguments:
7705""""""""""
7706
7707Both arguments to the '``shl``' instruction must be the same
7708:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7709'``op2``' is treated as an unsigned value.
7710
7711Semantics:
7712""""""""""
7713
7714The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
7715where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00007716dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007717``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
7718If the arguments are vectors, each vector element of ``op1`` is shifted
7719by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007720
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007721If the ``nuw`` keyword is present, then the shift produces a poison
7722value if it shifts out any non-zero bits.
7723If the ``nsw`` keyword is present, then the shift produces a poison
Sanjay Patel2896c772018-06-01 15:21:14 +00007724value if it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00007725
7726Example:
7727""""""""
7728
Renato Golin124f2592016-07-20 12:16:38 +00007729.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007730
Tim Northover675a0962014-06-13 14:24:23 +00007731 <result> = shl i32 4, %var ; yields i32: 4 << %var
7732 <result> = shl i32 4, 2 ; yields i32: 16
7733 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00007734 <result> = shl i32 1, 32 ; undefined
7735 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
7736
7737'``lshr``' Instruction
7738^^^^^^^^^^^^^^^^^^^^^^
7739
7740Syntax:
7741"""""""
7742
7743::
7744
Tim Northover675a0962014-06-13 14:24:23 +00007745 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
7746 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007747
7748Overview:
7749"""""""""
7750
7751The '``lshr``' instruction (logical shift right) returns the first
7752operand shifted to the right a specified number of bits with zero fill.
7753
7754Arguments:
7755""""""""""
7756
7757Both arguments to the '``lshr``' instruction must be the same
7758:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7759'``op2``' is treated as an unsigned value.
7760
7761Semantics:
7762""""""""""
7763
7764This instruction always performs a logical shift right operation. The
7765most significant bits of the result will be filled with zero bits after
7766the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007767than the number of bits in ``op1``, this instruction returns a :ref:`poison
7768value <poisonvalues>`. If the arguments are vectors, each vector element
7769of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007770
7771If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007772a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007773
7774Example:
7775""""""""
7776
Renato Golin124f2592016-07-20 12:16:38 +00007777.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007778
Tim Northover675a0962014-06-13 14:24:23 +00007779 <result> = lshr i32 4, 1 ; yields i32:result = 2
7780 <result> = lshr i32 4, 2 ; yields i32:result = 1
7781 <result> = lshr i8 4, 3 ; yields i8:result = 0
7782 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00007783 <result> = lshr i32 1, 32 ; undefined
7784 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
7785
7786'``ashr``' Instruction
7787^^^^^^^^^^^^^^^^^^^^^^
7788
7789Syntax:
7790"""""""
7791
7792::
7793
Tim Northover675a0962014-06-13 14:24:23 +00007794 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
7795 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007796
7797Overview:
7798"""""""""
7799
7800The '``ashr``' instruction (arithmetic shift right) returns the first
7801operand shifted to the right a specified number of bits with sign
7802extension.
7803
7804Arguments:
7805""""""""""
7806
7807Both arguments to the '``ashr``' instruction must be the same
7808:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7809'``op2``' is treated as an unsigned value.
7810
7811Semantics:
7812""""""""""
7813
7814This instruction always performs an arithmetic shift right operation,
7815The most significant bits of the result will be filled with the sign bit
7816of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007817than the number of bits in ``op1``, this instruction returns a :ref:`poison
7818value <poisonvalues>`. If the arguments are vectors, each vector element
7819of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007820
7821If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007822a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007823
7824Example:
7825""""""""
7826
Renato Golin124f2592016-07-20 12:16:38 +00007827.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007828
Tim Northover675a0962014-06-13 14:24:23 +00007829 <result> = ashr i32 4, 1 ; yields i32:result = 2
7830 <result> = ashr i32 4, 2 ; yields i32:result = 1
7831 <result> = ashr i8 4, 3 ; yields i8:result = 0
7832 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00007833 <result> = ashr i32 1, 32 ; undefined
7834 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
7835
7836'``and``' Instruction
7837^^^^^^^^^^^^^^^^^^^^^
7838
7839Syntax:
7840"""""""
7841
7842::
7843
Tim Northover675a0962014-06-13 14:24:23 +00007844 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007845
7846Overview:
7847"""""""""
7848
7849The '``and``' instruction returns the bitwise logical and of its two
7850operands.
7851
7852Arguments:
7853""""""""""
7854
7855The two arguments to the '``and``' instruction must be
7856:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7857arguments must have identical types.
7858
7859Semantics:
7860""""""""""
7861
7862The truth table used for the '``and``' instruction is:
7863
7864+-----+-----+-----+
7865| In0 | In1 | Out |
7866+-----+-----+-----+
7867| 0 | 0 | 0 |
7868+-----+-----+-----+
7869| 0 | 1 | 0 |
7870+-----+-----+-----+
7871| 1 | 0 | 0 |
7872+-----+-----+-----+
7873| 1 | 1 | 1 |
7874+-----+-----+-----+
7875
7876Example:
7877""""""""
7878
Renato Golin124f2592016-07-20 12:16:38 +00007879.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007880
Tim Northover675a0962014-06-13 14:24:23 +00007881 <result> = and i32 4, %var ; yields i32:result = 4 & %var
7882 <result> = and i32 15, 40 ; yields i32:result = 8
7883 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00007884
7885'``or``' Instruction
7886^^^^^^^^^^^^^^^^^^^^
7887
7888Syntax:
7889"""""""
7890
7891::
7892
Tim Northover675a0962014-06-13 14:24:23 +00007893 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007894
7895Overview:
7896"""""""""
7897
7898The '``or``' instruction returns the bitwise logical inclusive or of its
7899two operands.
7900
7901Arguments:
7902""""""""""
7903
7904The two arguments to the '``or``' instruction must be
7905:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7906arguments must have identical types.
7907
7908Semantics:
7909""""""""""
7910
7911The truth table used for the '``or``' instruction is:
7912
7913+-----+-----+-----+
7914| In0 | In1 | Out |
7915+-----+-----+-----+
7916| 0 | 0 | 0 |
7917+-----+-----+-----+
7918| 0 | 1 | 1 |
7919+-----+-----+-----+
7920| 1 | 0 | 1 |
7921+-----+-----+-----+
7922| 1 | 1 | 1 |
7923+-----+-----+-----+
7924
7925Example:
7926""""""""
7927
7928::
7929
Tim Northover675a0962014-06-13 14:24:23 +00007930 <result> = or i32 4, %var ; yields i32:result = 4 | %var
7931 <result> = or i32 15, 40 ; yields i32:result = 47
7932 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00007933
7934'``xor``' Instruction
7935^^^^^^^^^^^^^^^^^^^^^
7936
7937Syntax:
7938"""""""
7939
7940::
7941
Tim Northover675a0962014-06-13 14:24:23 +00007942 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007943
7944Overview:
7945"""""""""
7946
7947The '``xor``' instruction returns the bitwise logical exclusive or of
7948its two operands. The ``xor`` is used to implement the "one's
7949complement" operation, which is the "~" operator in C.
7950
7951Arguments:
7952""""""""""
7953
7954The two arguments to the '``xor``' instruction must be
7955:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7956arguments must have identical types.
7957
7958Semantics:
7959""""""""""
7960
7961The truth table used for the '``xor``' instruction is:
7962
7963+-----+-----+-----+
7964| In0 | In1 | Out |
7965+-----+-----+-----+
7966| 0 | 0 | 0 |
7967+-----+-----+-----+
7968| 0 | 1 | 1 |
7969+-----+-----+-----+
7970| 1 | 0 | 1 |
7971+-----+-----+-----+
7972| 1 | 1 | 0 |
7973+-----+-----+-----+
7974
7975Example:
7976""""""""
7977
Renato Golin124f2592016-07-20 12:16:38 +00007978.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007979
Tim Northover675a0962014-06-13 14:24:23 +00007980 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7981 <result> = xor i32 15, 40 ; yields i32:result = 39
7982 <result> = xor i32 4, 8 ; yields i32:result = 12
7983 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00007984
7985Vector Operations
7986-----------------
7987
7988LLVM supports several instructions to represent vector operations in a
7989target-independent manner. These instructions cover the element-access
7990and vector-specific operations needed to process vectors effectively.
7991While LLVM does directly support these vector operations, many
7992sophisticated algorithms will want to use target-specific intrinsics to
7993take full advantage of a specific target.
7994
7995.. _i_extractelement:
7996
7997'``extractelement``' Instruction
7998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7999
8000Syntax:
8001"""""""
8002
8003::
8004
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00008005 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00008006
8007Overview:
8008"""""""""
8009
8010The '``extractelement``' instruction extracts a single scalar element
8011from a vector at a specified index.
8012
8013Arguments:
8014""""""""""
8015
8016The first operand of an '``extractelement``' instruction is a value of
8017:ref:`vector <t_vector>` type. The second operand is an index indicating
8018the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00008019variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00008020
8021Semantics:
8022""""""""""
8023
8024The result is a scalar of the same type as the element type of ``val``.
8025Its value is the value at position ``idx`` of ``val``. If ``idx``
Eli Friedman2c7a81b2018-06-08 21:23:09 +00008026exceeds the length of ``val``, the result is a
8027:ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008028
8029Example:
8030""""""""
8031
Renato Golin124f2592016-07-20 12:16:38 +00008032.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008033
8034 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
8035
8036.. _i_insertelement:
8037
8038'``insertelement``' Instruction
8039^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8040
8041Syntax:
8042"""""""
8043
8044::
8045
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00008046 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00008047
8048Overview:
8049"""""""""
8050
8051The '``insertelement``' instruction inserts a scalar element into a
8052vector at a specified index.
8053
8054Arguments:
8055""""""""""
8056
8057The first operand of an '``insertelement``' instruction is a value of
8058:ref:`vector <t_vector>` type. The second operand is a scalar value whose
8059type must equal the element type of the first operand. The third operand
8060is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00008061index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00008062
8063Semantics:
8064""""""""""
8065
8066The result is a vector of the same type as ``val``. Its element values
8067are those of ``val`` except at position ``idx``, where it gets the value
Eli Friedman2c7a81b2018-06-08 21:23:09 +00008068``elt``. If ``idx`` exceeds the length of ``val``, the result
8069is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008070
8071Example:
8072""""""""
8073
Renato Golin124f2592016-07-20 12:16:38 +00008074.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008075
8076 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
8077
8078.. _i_shufflevector:
8079
8080'``shufflevector``' Instruction
8081^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8082
8083Syntax:
8084"""""""
8085
8086::
8087
8088 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
8089
8090Overview:
8091"""""""""
8092
8093The '``shufflevector``' instruction constructs a permutation of elements
8094from two input vectors, returning a vector with the same element type as
8095the input and length that is the same as the shuffle mask.
8096
8097Arguments:
8098""""""""""
8099
8100The first two operands of a '``shufflevector``' instruction are vectors
8101with the same type. The third argument is a shuffle mask whose element
8102type is always 'i32'. The result of the instruction is a vector whose
8103length is the same as the shuffle mask and whose element type is the
8104same as the element type of the first two operands.
8105
8106The shuffle mask operand is required to be a constant vector with either
8107constant integer or undef values.
8108
8109Semantics:
8110""""""""""
8111
8112The elements of the two input vectors are numbered from left to right
8113across both of the vectors. The shuffle mask operand specifies, for each
8114element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00008115result element gets. If the shuffle mask is undef, the result vector is
8116undef. If any element of the mask operand is undef, that element of the
8117result is undef. If the shuffle mask selects an undef element from one
8118of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00008119
8120Example:
8121""""""""
8122
Renato Golin124f2592016-07-20 12:16:38 +00008123.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008124
8125 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
8126 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
8127 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
8128 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
8129 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
8130 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
8131 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
8132 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
8133
8134Aggregate Operations
8135--------------------
8136
8137LLVM supports several instructions for working with
8138:ref:`aggregate <t_aggregate>` values.
8139
8140.. _i_extractvalue:
8141
8142'``extractvalue``' Instruction
8143^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8144
8145Syntax:
8146"""""""
8147
8148::
8149
8150 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
8151
8152Overview:
8153"""""""""
8154
8155The '``extractvalue``' instruction extracts the value of a member field
8156from an :ref:`aggregate <t_aggregate>` value.
8157
8158Arguments:
8159""""""""""
8160
8161The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00008162:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00008163constant indices to specify which value to extract in a similar manner
8164as indices in a '``getelementptr``' instruction.
8165
8166The major differences to ``getelementptr`` indexing are:
8167
8168- Since the value being indexed is not a pointer, the first index is
8169 omitted and assumed to be zero.
8170- At least one index must be specified.
8171- Not only struct indices but also array indices must be in bounds.
8172
8173Semantics:
8174""""""""""
8175
8176The result is the value at the position in the aggregate specified by
8177the index operands.
8178
8179Example:
8180""""""""
8181
Renato Golin124f2592016-07-20 12:16:38 +00008182.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008183
8184 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
8185
8186.. _i_insertvalue:
8187
8188'``insertvalue``' Instruction
8189^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8190
8191Syntax:
8192"""""""
8193
8194::
8195
8196 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
8197
8198Overview:
8199"""""""""
8200
8201The '``insertvalue``' instruction inserts a value into a member field in
8202an :ref:`aggregate <t_aggregate>` value.
8203
8204Arguments:
8205""""""""""
8206
8207The first operand of an '``insertvalue``' instruction is a value of
8208:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
8209a first-class value to insert. The following operands are constant
8210indices indicating the position at which to insert the value in a
8211similar manner as indices in a '``extractvalue``' instruction. The value
8212to insert must have the same type as the value identified by the
8213indices.
8214
8215Semantics:
8216""""""""""
8217
8218The result is an aggregate of the same type as ``val``. Its value is
8219that of ``val`` except that the value at the position specified by the
8220indices is that of ``elt``.
8221
8222Example:
8223""""""""
8224
8225.. code-block:: llvm
8226
8227 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
8228 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00008229 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00008230
8231.. _memoryops:
8232
8233Memory Access and Addressing Operations
8234---------------------------------------
8235
8236A key design point of an SSA-based representation is how it represents
8237memory. In LLVM, no memory locations are in SSA form, which makes things
8238very simple. This section describes how to read, write, and allocate
8239memory in LLVM.
8240
8241.. _i_alloca:
8242
8243'``alloca``' Instruction
8244^^^^^^^^^^^^^^^^^^^^^^^^
8245
8246Syntax:
8247"""""""
8248
8249::
8250
Matt Arsenault3c1fc762017-04-10 22:27:50 +00008251 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00008252
8253Overview:
8254"""""""""
8255
8256The '``alloca``' instruction allocates memory on the stack frame of the
8257currently executing function, to be automatically released when this
8258function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00008259address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00008260
8261Arguments:
8262""""""""""
8263
8264The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
8265bytes of memory on the runtime stack, returning a pointer of the
8266appropriate type to the program. If "NumElements" is specified, it is
8267the number of elements allocated, otherwise "NumElements" is defaulted
8268to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00008269allocation is guaranteed to be aligned to at least that boundary. The
8270alignment may not be greater than ``1 << 29``. If not specified, or if
8271zero, the target can choose to align the allocation on any convenient
8272boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00008273
8274'``type``' may be any sized type.
8275
8276Semantics:
8277""""""""""
8278
8279Memory is allocated; a pointer is returned. The operation is undefined
8280if there is insufficient stack space for the allocation. '``alloca``'d
8281memory is automatically released when the function returns. The
8282'``alloca``' instruction is commonly used to represent automatic
8283variables that must have an address available. When the function returns
8284(either with the ``ret`` or ``resume`` instructions), the memory is
Eli Friedman18f882c2018-07-11 00:02:01 +00008285reclaimed. Allocating zero bytes is legal, but the returned pointer may not
8286be unique. The order in which memory is allocated (ie., which way the stack
8287grows) is not specified.
Sean Silvab084af42012-12-07 10:36:55 +00008288
8289Example:
8290""""""""
8291
8292.. code-block:: llvm
8293
Tim Northover675a0962014-06-13 14:24:23 +00008294 %ptr = alloca i32 ; yields i32*:ptr
8295 %ptr = alloca i32, i32 4 ; yields i32*:ptr
8296 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
8297 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00008298
8299.. _i_load:
8300
8301'``load``' Instruction
8302^^^^^^^^^^^^^^^^^^^^^^
8303
8304Syntax:
8305"""""""
8306
8307::
8308
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008309 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008310 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00008311 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008312 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008313 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00008314
8315Overview:
8316"""""""""
8317
8318The '``load``' instruction is used to read from memory.
8319
8320Arguments:
8321""""""""""
8322
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00008323The argument to the ``load`` instruction specifies the memory address from which
8324to load. The type specified must be a :ref:`first class <t_firstclass>` type of
8325known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
8326the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
8327modify the number or order of execution of this ``load`` with other
8328:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008329
JF Bastiend1fb5852015-12-17 22:09:19 +00008330If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008331<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8332``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
8333Atomic loads produce :ref:`defined <memmodel>` results when they may see
8334multiple atomic stores. The type of the pointee must be an integer, pointer, or
8335floating-point type whose bit width is a power of two greater than or equal to
8336eight and less than or equal to a target-specific size limit. ``align`` must be
8337explicitly specified on atomic loads, and the load has undefined behavior if the
8338alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00008339pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00008340
8341The optional constant ``align`` argument specifies the alignment of the
8342operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00008343or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00008344alignment for the target. It is the responsibility of the code emitter
8345to ensure that the alignment information is correct. Overestimating the
8346alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00008347may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00008348maximum possible alignment is ``1 << 29``. An alignment value higher
8349than the size of the loaded type implies memory up to the alignment
8350value bytes can be safely loaded without trapping in the default
8351address space. Access of the high bytes can interfere with debugging
8352tools, so should not be accessed if the function has the
8353``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00008354
8355The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008356metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00008357``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008358metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00008359that this load is not expected to be reused in the cache. The code
8360generator may select special instructions to save cache bandwidth, such
8361as the ``MOVNT`` instruction on x86.
8362
8363The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008364metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00008365entries. If a load instruction tagged with the ``!invariant.load``
8366metadata is executed, the optimizer may assume the memory location
8367referenced by the load contains the same value at all points in the
Eli Friedmane15a1112018-07-17 20:38:11 +00008368program where the memory location is known to be dereferenceable;
8369otherwise, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008370
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008371The optional ``!invariant.group`` metadata must reference a single metadata name
Piotr Padlewskice358262018-05-18 23:53:46 +00008372 ``<index>`` corresponding to a metadata node with no entries.
8373 See ``invariant.group`` metadata.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008374
Philip Reamescdb72f32014-10-20 22:40:55 +00008375The optional ``!nonnull`` metadata must reference a single
8376metadata name ``<index>`` corresponding to a metadata node with no
8377entries. The existence of the ``!nonnull`` metadata on the
8378instruction tells the optimizer that the value loaded is known to
Eli Friedmane15a1112018-07-17 20:38:11 +00008379never be null. If the value is null at runtime, the behavior is undefined.
8380This is analogous to the ``nonnull`` attribute on parameters and return
8381values. This metadata can only be applied to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00008382
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008383The optional ``!dereferenceable`` metadata must reference a single metadata
8384name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00008385entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00008386tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00008387The number of bytes known to be dereferenceable is specified by the integer
8388value in the metadata node. This is analogous to the ''dereferenceable''
8389attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00008390to loads of a pointer type.
8391
8392The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008393metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
8394``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00008395instruction tells the optimizer that the value loaded is known to be either
8396dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00008397The number of bytes known to be dereferenceable is specified by the integer
8398value in the metadata node. This is analogous to the ''dereferenceable_or_null''
8399attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00008400to loads of a pointer type.
8401
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008402The optional ``!align`` metadata must reference a single metadata name
8403``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
8404The existence of the ``!align`` metadata on the instruction tells the
8405optimizer that the value loaded is known to be aligned to a boundary specified
8406by the integer value in the metadata node. The alignment must be a power of 2.
8407This is analogous to the ''align'' attribute on parameters and return values.
Eli Friedmane15a1112018-07-17 20:38:11 +00008408This metadata can only be applied to loads of a pointer type. If the returned
8409value is not appropriately aligned at runtime, the behavior is undefined.
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008410
Sean Silvab084af42012-12-07 10:36:55 +00008411Semantics:
8412""""""""""
8413
8414The location of memory pointed to is loaded. If the value being loaded
8415is of scalar type then the number of bytes read does not exceed the
8416minimum number of bytes needed to hold all bits of the type. For
8417example, loading an ``i24`` reads at most three bytes. When loading a
8418value of a type like ``i20`` with a size that is not an integral number
8419of bytes, the result is undefined if the value was not originally
8420written using a store of the same type.
8421
8422Examples:
8423"""""""""
8424
8425.. code-block:: llvm
8426
Tim Northover675a0962014-06-13 14:24:23 +00008427 %ptr = alloca i32 ; yields i32*:ptr
8428 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00008429 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008430
8431.. _i_store:
8432
8433'``store``' Instruction
8434^^^^^^^^^^^^^^^^^^^^^^^
8435
8436Syntax:
8437"""""""
8438
8439::
8440
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008441 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008442 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008443
8444Overview:
8445"""""""""
8446
8447The '``store``' instruction is used to write to memory.
8448
8449Arguments:
8450""""""""""
8451
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00008452There are two arguments to the ``store`` instruction: a value to store and an
8453address at which to store it. The type of the ``<pointer>`` operand must be a
8454pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
8455operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
8456allowed to modify the number or order of execution of this ``store`` with other
8457:ref:`volatile operations <volatile>`. Only values of :ref:`first class
8458<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
8459structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00008460
JF Bastiend1fb5852015-12-17 22:09:19 +00008461If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008462<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8463``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
8464Atomic loads produce :ref:`defined <memmodel>` results when they may see
8465multiple atomic stores. The type of the pointee must be an integer, pointer, or
8466floating-point type whose bit width is a power of two greater than or equal to
8467eight and less than or equal to a target-specific size limit. ``align`` must be
8468explicitly specified on atomic stores, and the store has undefined behavior if
8469the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00008470pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00008471
Eli Benderskyca380842013-04-17 17:17:20 +00008472The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00008473operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00008474or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00008475alignment for the target. It is the responsibility of the code emitter
8476to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00008477alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00008478alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00008479safe. The maximum possible alignment is ``1 << 29``. An alignment
8480value higher than the size of the stored type implies memory up to the
8481alignment value bytes can be stored to without trapping in the default
8482address space. Storing to the higher bytes however may result in data
8483races if another thread can access the same address. Introducing a
8484data race is not allowed. Storing to the extra bytes is not allowed
8485even in situations where a data race is known to not exist if the
8486function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00008487
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008488The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00008489name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008490value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00008491tells the optimizer and code generator that this load is not expected to
8492be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00008493instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00008494x86.
8495
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008496The optional ``!invariant.group`` metadata must reference a
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008497single metadata name ``<index>``. See ``invariant.group`` metadata.
8498
Sean Silvab084af42012-12-07 10:36:55 +00008499Semantics:
8500""""""""""
8501
Eli Benderskyca380842013-04-17 17:17:20 +00008502The contents of memory are updated to contain ``<value>`` at the
8503location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00008504of scalar type then the number of bytes written does not exceed the
8505minimum number of bytes needed to hold all bits of the type. For
8506example, storing an ``i24`` writes at most three bytes. When writing a
8507value of a type like ``i20`` with a size that is not an integral number
8508of bytes, it is unspecified what happens to the extra bits that do not
8509belong to the type, but they will typically be overwritten.
8510
8511Example:
8512""""""""
8513
8514.. code-block:: llvm
8515
Tim Northover675a0962014-06-13 14:24:23 +00008516 %ptr = alloca i32 ; yields i32*:ptr
8517 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00008518 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008519
8520.. _i_fence:
8521
8522'``fence``' Instruction
8523^^^^^^^^^^^^^^^^^^^^^^^
8524
8525Syntax:
8526"""""""
8527
8528::
8529
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008530 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008531
8532Overview:
8533"""""""""
8534
8535The '``fence``' instruction is used to introduce happens-before edges
8536between operations.
8537
8538Arguments:
8539""""""""""
8540
8541'``fence``' instructions take an :ref:`ordering <ordering>` argument which
8542defines what *synchronizes-with* edges they add. They can only be given
8543``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
8544
8545Semantics:
8546""""""""""
8547
8548A fence A which has (at least) ``release`` ordering semantics
8549*synchronizes with* a fence B with (at least) ``acquire`` ordering
8550semantics if and only if there exist atomic operations X and Y, both
8551operating on some atomic object M, such that A is sequenced before X, X
8552modifies M (either directly or through some side effect of a sequence
8553headed by X), Y is sequenced before B, and Y observes M. This provides a
8554*happens-before* dependency between A and B. Rather than an explicit
8555``fence``, one (but not both) of the atomic operations X or Y might
8556provide a ``release`` or ``acquire`` (resp.) ordering constraint and
8557still *synchronize-with* the explicit ``fence`` and establish the
8558*happens-before* edge.
8559
8560A ``fence`` which has ``seq_cst`` ordering, in addition to having both
8561``acquire`` and ``release`` semantics specified above, participates in
8562the global program order of other ``seq_cst`` operations and/or fences.
8563
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008564A ``fence`` instruction can also take an optional
8565":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008566
8567Example:
8568""""""""
8569
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008570.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008571
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008572 fence acquire ; yields void
8573 fence syncscope("singlethread") seq_cst ; yields void
8574 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008575
8576.. _i_cmpxchg:
8577
8578'``cmpxchg``' Instruction
8579^^^^^^^^^^^^^^^^^^^^^^^^^
8580
8581Syntax:
8582"""""""
8583
8584::
8585
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008586 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00008587
8588Overview:
8589"""""""""
8590
8591The '``cmpxchg``' instruction is used to atomically modify memory. It
8592loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00008593equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00008594
8595Arguments:
8596""""""""""
8597
8598There are three arguments to the '``cmpxchg``' instruction: an address
8599to operate on, a value to compare to the value currently be at that
8600address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00008601are equal. The type of '<cmp>' must be an integer or pointer type whose
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008602bit width is a power of two greater than or equal to eight and less
Philip Reames1960cfd2016-02-19 00:06:41 +00008603than or equal to a target-specific size limit. '<cmp>' and '<new>' must
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008604have the same type, and the type of '<pointer>' must be a pointer to
8605that type. If the ``cmpxchg`` is marked as ``volatile``, then the
Philip Reames1960cfd2016-02-19 00:06:41 +00008606optimizer is not allowed to modify the number or order of execution of
8607this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008608
Tim Northovere94a5182014-03-11 10:48:52 +00008609The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00008610``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
8611must be at least ``monotonic``, the ordering constraint on failure must be no
8612stronger than that on success, and the failure ordering cannot be either
8613``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00008614
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008615A ``cmpxchg`` instruction can also take an optional
8616":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008617
8618The pointer passed into cmpxchg must have alignment greater than or
8619equal to the size in memory of the operand.
8620
8621Semantics:
8622""""""""""
8623
Tim Northover420a2162014-06-13 14:24:07 +00008624The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun93f2b4b2017-08-09 22:22:04 +00008625is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
8626written to the location. The original value at the location is returned,
8627together with a flag indicating success (true) or failure (false).
Tim Northover420a2162014-06-13 14:24:07 +00008628
8629If the cmpxchg operation is marked as ``weak`` then a spurious failure is
8630permitted: the operation may not write ``<new>`` even if the comparison
8631matched.
8632
8633If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
8634if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00008635
Tim Northovere94a5182014-03-11 10:48:52 +00008636A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
8637identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
8638load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00008639
8640Example:
8641""""""""
8642
8643.. code-block:: llvm
8644
8645 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008646 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008647 br label %loop
8648
8649 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008650 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00008651 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00008652 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00008653 %value_loaded = extractvalue { i32, i1 } %val_success, 0
8654 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00008655 br i1 %success, label %done, label %loop
8656
8657 done:
8658 ...
8659
8660.. _i_atomicrmw:
8661
8662'``atomicrmw``' Instruction
8663^^^^^^^^^^^^^^^^^^^^^^^^^^^
8664
8665Syntax:
8666"""""""
8667
8668::
8669
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008670 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00008671
8672Overview:
8673"""""""""
8674
8675The '``atomicrmw``' instruction is used to atomically modify memory.
8676
8677Arguments:
8678""""""""""
8679
8680There are three arguments to the '``atomicrmw``' instruction: an
8681operation to apply, an address whose value to modify, an argument to the
8682operation. The operation must be one of the following keywords:
8683
8684- xchg
8685- add
8686- sub
8687- and
8688- nand
8689- or
8690- xor
8691- max
8692- min
8693- umax
8694- umin
Matt Arsenault39508332019-01-22 18:18:02 +00008695- fadd
8696- fsub
Sean Silvab084af42012-12-07 10:36:55 +00008697
Matt Arsenault0cb08e42019-01-17 10:49:01 +00008698For most of these operations, the type of '<value>' must be an integer
8699type whose bit width is a power of two greater than or equal to eight
8700and less than or equal to a target-specific size limit. For xchg, this
8701may also be a floating point type with the same size constraints as
Matt Arsenault39508332019-01-22 18:18:02 +00008702integers. For fadd/fsub, this must be a floating point type. The
8703type of the '``<pointer>``' operand must be a pointer to that type. If
8704the ``atomicrmw`` is marked as ``volatile``, then the optimizer is not
8705allowed to modify the number or order of execution of this
8706``atomicrmw`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008707
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008708A ``atomicrmw`` instruction can also take an optional
8709":ref:`syncscope <syncscope>`" argument.
8710
Sean Silvab084af42012-12-07 10:36:55 +00008711Semantics:
8712""""""""""
8713
8714The contents of memory at the location specified by the '``<pointer>``'
8715operand are atomically read, modified, and written back. The original
8716value at the location is returned. The modification is specified by the
8717operation argument:
8718
8719- xchg: ``*ptr = val``
8720- add: ``*ptr = *ptr + val``
8721- sub: ``*ptr = *ptr - val``
8722- and: ``*ptr = *ptr & val``
8723- nand: ``*ptr = ~(*ptr & val)``
8724- or: ``*ptr = *ptr | val``
8725- xor: ``*ptr = *ptr ^ val``
8726- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
8727- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
8728- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
8729 comparison)
8730- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
8731 comparison)
Matt Arsenault39508332019-01-22 18:18:02 +00008732- fadd: ``*ptr = *ptr + val`` (using floating point arithmetic)
8733- fsub: ``*ptr = *ptr - val`` (using floating point arithmetic)
Sean Silvab084af42012-12-07 10:36:55 +00008734
8735Example:
8736""""""""
8737
8738.. code-block:: llvm
8739
Tim Northover675a0962014-06-13 14:24:23 +00008740 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008741
8742.. _i_getelementptr:
8743
8744'``getelementptr``' Instruction
8745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8746
8747Syntax:
8748"""""""
8749
8750::
8751
Peter Collingbourned93620b2016-11-10 22:34:55 +00008752 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8753 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8754 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00008755
8756Overview:
8757"""""""""
8758
8759The '``getelementptr``' instruction is used to get the address of a
8760subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008761address calculation only and does not access memory. The instruction can also
8762be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00008763
8764Arguments:
8765""""""""""
8766
David Blaikie16a97eb2015-03-04 22:02:58 +00008767The first argument is always a type used as the basis for the calculations.
8768The second argument is always a pointer or a vector of pointers, and is the
8769base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00008770that indicate which of the elements of the aggregate object are indexed.
8771The interpretation of each index is dependent on the type being indexed
8772into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00008773second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00008774(not necessarily the value directly pointed to, since the first index
8775can be non-zero), etc. The first type indexed into must be a pointer
8776value, subsequent types can be arrays, vectors, and structs. Note that
8777subsequent types being indexed into can never be pointers, since that
8778would require loading the pointer before continuing calculation.
8779
8780The type of each index argument depends on the type it is indexing into.
8781When indexing into a (optionally packed) structure, only ``i32`` integer
8782**constants** are allowed (when using a vector of indices they must all
8783be the **same** ``i32`` integer constant). When indexing into an array,
8784pointer or vector, integers of any width are allowed, and they are not
8785required to be constant. These integers are treated as signed values
8786where relevant.
8787
8788For example, let's consider a C code fragment and how it gets compiled
8789to LLVM:
8790
8791.. code-block:: c
8792
8793 struct RT {
8794 char A;
8795 int B[10][20];
8796 char C;
8797 };
8798 struct ST {
8799 int X;
8800 double Y;
8801 struct RT Z;
8802 };
8803
8804 int *foo(struct ST *s) {
8805 return &s[1].Z.B[5][13];
8806 }
8807
8808The LLVM code generated by Clang is:
8809
8810.. code-block:: llvm
8811
8812 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
8813 %struct.ST = type { i32, double, %struct.RT }
8814
8815 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
8816 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00008817 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00008818 ret i32* %arrayidx
8819 }
8820
8821Semantics:
8822""""""""""
8823
8824In the example above, the first index is indexing into the
8825'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
8826= '``{ i32, double, %struct.RT }``' type, a structure. The second index
8827indexes into the third element of the structure, yielding a
8828'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
8829structure. The third index indexes into the second element of the
8830structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
8831dimensions of the array are subscripted into, yielding an '``i32``'
8832type. The '``getelementptr``' instruction returns a pointer to this
8833element, thus computing a value of '``i32*``' type.
8834
8835Note that it is perfectly legal to index partially through a structure,
8836returning a pointer to an inner element. Because of this, the LLVM code
8837for the given testcase is equivalent to:
8838
8839.. code-block:: llvm
8840
8841 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00008842 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
8843 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
8844 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
8845 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
8846 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00008847 ret i32* %t5
8848 }
8849
8850If the ``inbounds`` keyword is present, the result value of the
8851``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
8852pointer is not an *in bounds* address of an allocated object, or if any
8853of the addresses that would be formed by successive addition of the
8854offsets implied by the indices to the base address with infinitely
8855precise signed arithmetic are not an *in bounds* address of that
8856allocated object. The *in bounds* addresses for an allocated object are
8857all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00008858past the end. The only *in bounds* address for a null pointer in the
8859default address-space is the null pointer itself. In cases where the
8860base is a vector of pointers the ``inbounds`` keyword applies to each
8861of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00008862
8863If the ``inbounds`` keyword is not present, the offsets are added to the
8864base address with silently-wrapping two's complement arithmetic. If the
8865offsets have a different width from the pointer, they are sign-extended
8866or truncated to the width of the pointer. The result value of the
8867``getelementptr`` may be outside the object pointed to by the base
8868pointer. The result value may not necessarily be used to access memory
8869though, even if it happens to point into allocated storage. See the
8870:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
8871information.
8872
Peter Collingbourned93620b2016-11-10 22:34:55 +00008873If the ``inrange`` keyword is present before any index, loading from or
8874storing to any pointer derived from the ``getelementptr`` has undefined
8875behavior if the load or store would access memory outside of the bounds of
8876the element selected by the index marked as ``inrange``. The result of a
8877pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
8878involving memory) involving a pointer derived from a ``getelementptr`` with
8879the ``inrange`` keyword is undefined, with the exception of comparisons
8880in the case where both operands are in the range of the element selected
8881by the ``inrange`` keyword, inclusive of the address one past the end of
8882that element. Note that the ``inrange`` keyword is currently only allowed
8883in constant ``getelementptr`` expressions.
8884
Sean Silvab084af42012-12-07 10:36:55 +00008885The getelementptr instruction is often confusing. For some more insight
8886into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
8887
8888Example:
8889""""""""
8890
8891.. code-block:: llvm
8892
8893 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008894 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008895 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008896 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008897 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008898 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008899 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008900 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00008901
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008902Vector of pointers:
8903"""""""""""""""""""
8904
8905The ``getelementptr`` returns a vector of pointers, instead of a single address,
8906when one or more of its arguments is a vector. In such cases, all vector
8907arguments should have the same number of elements, and every scalar argument
8908will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00008909
8910.. code-block:: llvm
8911
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008912 ; All arguments are vectors:
8913 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
8914 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008915
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008916 ; Add the same scalar offset to each pointer of a vector:
8917 ; A[i] = ptrs[i] + offset*sizeof(i8)
8918 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00008919
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008920 ; Add distinct offsets to the same pointer:
8921 ; A[i] = ptr + offsets[i]*sizeof(i8)
8922 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008923
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008924 ; In all cases described above the type of the result is <4 x i8*>
8925
8926The two following instructions are equivalent:
8927
8928.. code-block:: llvm
8929
8930 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8931 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
8932 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
8933 <4 x i32> %ind4,
8934 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00008935
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008936 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8937 i32 2, i32 1, <4 x i32> %ind4, i64 13
8938
8939Let's look at the C code, where the vector version of ``getelementptr``
8940makes sense:
8941
8942.. code-block:: c
8943
8944 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00008945 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008946 for (int i = 0; i < size; ++i) {
8947 A[i] = B[C[i]];
8948 }
8949
8950.. code-block:: llvm
8951
8952 ; get pointers for 8 elements from array B
8953 %ptrs = getelementptr double, double* %B, <8 x i32> %C
8954 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00008955 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008956 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00008957
8958Conversion Operations
8959---------------------
8960
8961The instructions in this category are the conversion instructions
8962(casting) which all take a single operand and a type. They perform
8963various bit conversions on the operand.
8964
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008965.. _i_trunc:
8966
Sean Silvab084af42012-12-07 10:36:55 +00008967'``trunc .. to``' Instruction
8968^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8969
8970Syntax:
8971"""""""
8972
8973::
8974
8975 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8976
8977Overview:
8978"""""""""
8979
8980The '``trunc``' instruction truncates its operand to the type ``ty2``.
8981
8982Arguments:
8983""""""""""
8984
8985The '``trunc``' instruction takes a value to trunc, and a type to trunc
8986it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8987of the same number of integers. The bit size of the ``value`` must be
8988larger than the bit size of the destination type, ``ty2``. Equal sized
8989types are not allowed.
8990
8991Semantics:
8992""""""""""
8993
8994The '``trunc``' instruction truncates the high order bits in ``value``
8995and converts the remaining bits to ``ty2``. Since the source size must
8996be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8997It will always truncate bits.
8998
8999Example:
9000""""""""
9001
9002.. code-block:: llvm
9003
9004 %X = trunc i32 257 to i8 ; yields i8:1
9005 %Y = trunc i32 123 to i1 ; yields i1:true
9006 %Z = trunc i32 122 to i1 ; yields i1:false
9007 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
9008
Bjorn Petterssone1285e32017-10-24 11:59:20 +00009009.. _i_zext:
9010
Sean Silvab084af42012-12-07 10:36:55 +00009011'``zext .. to``' Instruction
9012^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9013
9014Syntax:
9015"""""""
9016
9017::
9018
9019 <result> = zext <ty> <value> to <ty2> ; yields ty2
9020
9021Overview:
9022"""""""""
9023
9024The '``zext``' instruction zero extends its operand to type ``ty2``.
9025
9026Arguments:
9027""""""""""
9028
9029The '``zext``' instruction takes a value to cast, and a type to cast it
9030to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
9031the same number of integers. The bit size of the ``value`` must be
9032smaller than the bit size of the destination type, ``ty2``.
9033
9034Semantics:
9035""""""""""
9036
9037The ``zext`` fills the high order bits of the ``value`` with zero bits
9038until it reaches the size of the destination type, ``ty2``.
9039
9040When zero extending from i1, the result will always be either 0 or 1.
9041
9042Example:
9043""""""""
9044
9045.. code-block:: llvm
9046
9047 %X = zext i32 257 to i64 ; yields i64:257
9048 %Y = zext i1 true to i32 ; yields i32:1
9049 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
9050
Bjorn Petterssone1285e32017-10-24 11:59:20 +00009051.. _i_sext:
9052
Sean Silvab084af42012-12-07 10:36:55 +00009053'``sext .. to``' Instruction
9054^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9055
9056Syntax:
9057"""""""
9058
9059::
9060
9061 <result> = sext <ty> <value> to <ty2> ; yields ty2
9062
9063Overview:
9064"""""""""
9065
9066The '``sext``' sign extends ``value`` to the type ``ty2``.
9067
9068Arguments:
9069""""""""""
9070
9071The '``sext``' instruction takes a value to cast, and a type to cast it
9072to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
9073the same number of integers. The bit size of the ``value`` must be
9074smaller than the bit size of the destination type, ``ty2``.
9075
9076Semantics:
9077""""""""""
9078
9079The '``sext``' instruction performs a sign extension by copying the sign
9080bit (highest order bit) of the ``value`` until it reaches the bit size
9081of the type ``ty2``.
9082
9083When sign extending from i1, the extension always results in -1 or 0.
9084
9085Example:
9086""""""""
9087
9088.. code-block:: llvm
9089
9090 %X = sext i8 -1 to i16 ; yields i16 :65535
9091 %Y = sext i1 true to i32 ; yields i32:-1
9092 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
9093
9094'``fptrunc .. to``' Instruction
9095^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9096
9097Syntax:
9098"""""""
9099
9100::
9101
9102 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
9103
9104Overview:
9105"""""""""
9106
9107The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
9108
9109Arguments:
9110""""""""""
9111
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009112The '``fptrunc``' instruction takes a :ref:`floating-point <t_floating>`
9113value to cast and a :ref:`floating-point <t_floating>` type to cast it to.
Sean Silvab084af42012-12-07 10:36:55 +00009114The size of ``value`` must be larger than the size of ``ty2``. This
9115implies that ``fptrunc`` cannot be used to make a *no-op cast*.
9116
9117Semantics:
9118""""""""""
9119
Dan Liew50456fb2015-09-03 18:43:56 +00009120The '``fptrunc``' instruction casts a ``value`` from a larger
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009121:ref:`floating-point <t_floating>` type to a smaller :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00009122<t_floating>` type.
Sanjay Pateld96a3632018-04-03 13:05:20 +00009123This instruction is assumed to execute in the default :ref:`floating-point
9124environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00009125
9126Example:
9127""""""""
9128
9129.. code-block:: llvm
9130
Sanjay Pateld96a3632018-04-03 13:05:20 +00009131 %X = fptrunc double 16777217.0 to float ; yields float:16777216.0
9132 %Y = fptrunc double 1.0E+300 to half ; yields half:+infinity
Sean Silvab084af42012-12-07 10:36:55 +00009133
9134'``fpext .. to``' Instruction
9135^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9136
9137Syntax:
9138"""""""
9139
9140::
9141
9142 <result> = fpext <ty> <value> to <ty2> ; yields ty2
9143
9144Overview:
9145"""""""""
9146
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009147The '``fpext``' extends a floating-point ``value`` to a larger floating-point
9148value.
Sean Silvab084af42012-12-07 10:36:55 +00009149
9150Arguments:
9151""""""""""
9152
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009153The '``fpext``' instruction takes a :ref:`floating-point <t_floating>`
9154``value`` to cast, and a :ref:`floating-point <t_floating>` type to cast it
Sean Silvab084af42012-12-07 10:36:55 +00009155to. The source type must be smaller than the destination type.
9156
9157Semantics:
9158""""""""""
9159
9160The '``fpext``' instruction extends the ``value`` from a smaller
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009161:ref:`floating-point <t_floating>` type to a larger :ref:`floating-point
9162<t_floating>` type. The ``fpext`` cannot be used to make a
Sean Silvab084af42012-12-07 10:36:55 +00009163*no-op cast* because it always changes bits. Use ``bitcast`` to make a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009164*no-op cast* for a floating-point cast.
Sean Silvab084af42012-12-07 10:36:55 +00009165
9166Example:
9167""""""""
9168
9169.. code-block:: llvm
9170
9171 %X = fpext float 3.125 to double ; yields double:3.125000e+00
9172 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
9173
9174'``fptoui .. to``' Instruction
9175^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9176
9177Syntax:
9178"""""""
9179
9180::
9181
9182 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
9183
9184Overview:
9185"""""""""
9186
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009187The '``fptoui``' converts a floating-point ``value`` to its unsigned
Sean Silvab084af42012-12-07 10:36:55 +00009188integer equivalent of type ``ty2``.
9189
9190Arguments:
9191""""""""""
9192
9193The '``fptoui``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009194scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00009195cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009196``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00009197type with the same number of elements as ``ty``
9198
9199Semantics:
9200""""""""""
9201
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009202The '``fptoui``' instruction converts its :ref:`floating-point
9203<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00009204unsigned integer value. If the value cannot fit in ``ty2``, the result
9205is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00009206
9207Example:
9208""""""""
9209
9210.. code-block:: llvm
9211
9212 %X = fptoui double 123.0 to i32 ; yields i32:123
9213 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
9214 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
9215
9216'``fptosi .. to``' Instruction
9217^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9218
9219Syntax:
9220"""""""
9221
9222::
9223
9224 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
9225
9226Overview:
9227"""""""""
9228
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009229The '``fptosi``' instruction converts :ref:`floating-point <t_floating>`
Sean Silvab084af42012-12-07 10:36:55 +00009230``value`` to type ``ty2``.
9231
9232Arguments:
9233""""""""""
9234
9235The '``fptosi``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009236scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00009237cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009238``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00009239type with the same number of elements as ``ty``
9240
9241Semantics:
9242""""""""""
9243
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009244The '``fptosi``' instruction converts its :ref:`floating-point
9245<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00009246signed integer value. If the value cannot fit in ``ty2``, the result
9247is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00009248
9249Example:
9250""""""""
9251
9252.. code-block:: llvm
9253
9254 %X = fptosi double -123.0 to i32 ; yields i32:-123
9255 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
9256 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
9257
9258'``uitofp .. to``' Instruction
9259^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9260
9261Syntax:
9262"""""""
9263
9264::
9265
9266 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
9267
9268Overview:
9269"""""""""
9270
9271The '``uitofp``' instruction regards ``value`` as an unsigned integer
9272and converts that value to the ``ty2`` type.
9273
9274Arguments:
9275""""""""""
9276
9277The '``uitofp``' instruction takes a value to cast, which must be a
9278scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009279``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
9280``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00009281type with the same number of elements as ``ty``
9282
9283Semantics:
9284""""""""""
9285
9286The '``uitofp``' instruction interprets its operand as an unsigned
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009287integer quantity and converts it to the corresponding floating-point
Eli Friedman3f1ce092018-06-14 22:58:48 +00009288value. If the value cannot be exactly represented, it is rounded using
9289the default rounding mode.
9290
Sean Silvab084af42012-12-07 10:36:55 +00009291
9292Example:
9293""""""""
9294
9295.. code-block:: llvm
9296
9297 %X = uitofp i32 257 to float ; yields float:257.0
9298 %Y = uitofp i8 -1 to double ; yields double:255.0
9299
9300'``sitofp .. to``' Instruction
9301^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9302
9303Syntax:
9304"""""""
9305
9306::
9307
9308 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
9309
9310Overview:
9311"""""""""
9312
9313The '``sitofp``' instruction regards ``value`` as a signed integer and
9314converts that value to the ``ty2`` type.
9315
9316Arguments:
9317""""""""""
9318
9319The '``sitofp``' instruction takes a value to cast, which must be a
9320scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009321``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
9322``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00009323type with the same number of elements as ``ty``
9324
9325Semantics:
9326""""""""""
9327
9328The '``sitofp``' instruction interprets its operand as a signed integer
Eli Friedman3f1ce092018-06-14 22:58:48 +00009329quantity and converts it to the corresponding floating-point value. If the
9330value cannot be exactly represented, it is rounded using the default rounding
9331mode.
Sean Silvab084af42012-12-07 10:36:55 +00009332
9333Example:
9334""""""""
9335
9336.. code-block:: llvm
9337
9338 %X = sitofp i32 257 to float ; yields float:257.0
9339 %Y = sitofp i8 -1 to double ; yields double:-1.0
9340
9341.. _i_ptrtoint:
9342
9343'``ptrtoint .. to``' Instruction
9344^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9345
9346Syntax:
9347"""""""
9348
9349::
9350
9351 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
9352
9353Overview:
9354"""""""""
9355
9356The '``ptrtoint``' instruction converts the pointer or a vector of
9357pointers ``value`` to the integer (or vector of integers) type ``ty2``.
9358
9359Arguments:
9360""""""""""
9361
9362The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00009363a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00009364type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
9365a vector of integers type.
9366
9367Semantics:
9368""""""""""
9369
9370The '``ptrtoint``' instruction converts ``value`` to integer type
9371``ty2`` by interpreting the pointer value as an integer and either
9372truncating or zero extending that value to the size of the integer type.
9373If ``value`` is smaller than ``ty2`` then a zero extension is done. If
9374``value`` is larger than ``ty2`` then a truncation is done. If they are
9375the same size, then nothing is done (*no-op cast*) other than a type
9376change.
9377
9378Example:
9379""""""""
9380
9381.. code-block:: llvm
9382
9383 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
9384 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
9385 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
9386
9387.. _i_inttoptr:
9388
9389'``inttoptr .. to``' Instruction
9390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9391
9392Syntax:
9393"""""""
9394
9395::
9396
9397 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
9398
9399Overview:
9400"""""""""
9401
9402The '``inttoptr``' instruction converts an integer ``value`` to a
9403pointer type, ``ty2``.
9404
9405Arguments:
9406""""""""""
9407
9408The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
9409cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
9410type.
9411
9412Semantics:
9413""""""""""
9414
9415The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
9416applying either a zero extension or a truncation depending on the size
9417of the integer ``value``. If ``value`` is larger than the size of a
9418pointer then a truncation is done. If ``value`` is smaller than the size
9419of a pointer then a zero extension is done. If they are the same size,
9420nothing is done (*no-op cast*).
9421
9422Example:
9423""""""""
9424
9425.. code-block:: llvm
9426
9427 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
9428 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
9429 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
9430 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
9431
9432.. _i_bitcast:
9433
9434'``bitcast .. to``' Instruction
9435^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9436
9437Syntax:
9438"""""""
9439
9440::
9441
9442 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
9443
9444Overview:
9445"""""""""
9446
9447The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
9448changing any bits.
9449
9450Arguments:
9451""""""""""
9452
9453The '``bitcast``' instruction takes a value to cast, which must be a
9454non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009455also be a non-aggregate :ref:`first class <t_firstclass>` type. The
9456bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00009457identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009458also be a pointer of the same size. This instruction supports bitwise
9459conversion of vectors to integers and to vectors of other types (as
9460long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00009461
9462Semantics:
9463""""""""""
9464
Matt Arsenault24b49c42013-07-31 17:49:08 +00009465The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
9466is always a *no-op cast* because no bits change with this
9467conversion. The conversion is done as if the ``value`` had been stored
9468to memory and read back as type ``ty2``. Pointer (or vector of
9469pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009470pointers) types with the same address space through this instruction.
9471To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
9472or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00009473
9474Example:
9475""""""""
9476
Renato Golin124f2592016-07-20 12:16:38 +00009477.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009478
9479 %X = bitcast i8 255 to i8 ; yields i8 :-1
9480 %Y = bitcast i32* %x to sint* ; yields sint*:%x
9481 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
9482 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
9483
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009484.. _i_addrspacecast:
9485
9486'``addrspacecast .. to``' Instruction
9487^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9488
9489Syntax:
9490"""""""
9491
9492::
9493
9494 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
9495
9496Overview:
9497"""""""""
9498
9499The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
9500address space ``n`` to type ``pty2`` in address space ``m``.
9501
9502Arguments:
9503""""""""""
9504
9505The '``addrspacecast``' instruction takes a pointer or vector of pointer value
9506to cast and a pointer type to cast it to, which must have a different
9507address space.
9508
9509Semantics:
9510""""""""""
9511
9512The '``addrspacecast``' instruction converts the pointer value
9513``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00009514value modification, depending on the target and the address space
9515pair. Pointer conversions within the same address space must be
9516performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009517conversion is legal then both result and operand refer to the same memory
9518location.
9519
9520Example:
9521""""""""
9522
9523.. code-block:: llvm
9524
Matt Arsenault9c13dd02013-11-15 22:43:50 +00009525 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
9526 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
9527 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009528
Sean Silvab084af42012-12-07 10:36:55 +00009529.. _otherops:
9530
9531Other Operations
9532----------------
9533
9534The instructions in this category are the "miscellaneous" instructions,
9535which defy better classification.
9536
9537.. _i_icmp:
9538
9539'``icmp``' Instruction
9540^^^^^^^^^^^^^^^^^^^^^^
9541
9542Syntax:
9543"""""""
9544
9545::
9546
Tim Northover675a0962014-06-13 14:24:23 +00009547 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009548
9549Overview:
9550"""""""""
9551
9552The '``icmp``' instruction returns a boolean value or a vector of
9553boolean values based on comparison of its two integer, integer vector,
9554pointer, or pointer vector operands.
9555
9556Arguments:
9557""""""""""
9558
9559The '``icmp``' instruction takes three operands. The first operand is
9560the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009561not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009562
9563#. ``eq``: equal
9564#. ``ne``: not equal
9565#. ``ugt``: unsigned greater than
9566#. ``uge``: unsigned greater or equal
9567#. ``ult``: unsigned less than
9568#. ``ule``: unsigned less or equal
9569#. ``sgt``: signed greater than
9570#. ``sge``: signed greater or equal
9571#. ``slt``: signed less than
9572#. ``sle``: signed less or equal
9573
9574The remaining two arguments must be :ref:`integer <t_integer>` or
9575:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
9576must also be identical types.
9577
9578Semantics:
9579""""""""""
9580
9581The '``icmp``' compares ``op1`` and ``op2`` according to the condition
9582code given as ``cond``. The comparison performed always yields either an
9583:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
9584
9585#. ``eq``: yields ``true`` if the operands are equal, ``false``
9586 otherwise. No sign interpretation is necessary or performed.
9587#. ``ne``: yields ``true`` if the operands are unequal, ``false``
9588 otherwise. No sign interpretation is necessary or performed.
9589#. ``ugt``: interprets the operands as unsigned values and yields
9590 ``true`` if ``op1`` is greater than ``op2``.
9591#. ``uge``: interprets the operands as unsigned values and yields
9592 ``true`` if ``op1`` is greater than or equal to ``op2``.
9593#. ``ult``: interprets the operands as unsigned values and yields
9594 ``true`` if ``op1`` is less than ``op2``.
9595#. ``ule``: interprets the operands as unsigned values and yields
9596 ``true`` if ``op1`` is less than or equal to ``op2``.
9597#. ``sgt``: interprets the operands as signed values and yields ``true``
9598 if ``op1`` is greater than ``op2``.
9599#. ``sge``: interprets the operands as signed values and yields ``true``
9600 if ``op1`` is greater than or equal to ``op2``.
9601#. ``slt``: interprets the operands as signed values and yields ``true``
9602 if ``op1`` is less than ``op2``.
9603#. ``sle``: interprets the operands as signed values and yields ``true``
9604 if ``op1`` is less than or equal to ``op2``.
9605
9606If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
9607are compared as if they were integers.
9608
9609If the operands are integer vectors, then they are compared element by
9610element. The result is an ``i1`` vector with the same number of elements
9611as the values being compared. Otherwise, the result is an ``i1``.
9612
9613Example:
9614""""""""
9615
Renato Golin124f2592016-07-20 12:16:38 +00009616.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009617
9618 <result> = icmp eq i32 4, 5 ; yields: result=false
9619 <result> = icmp ne float* %X, %X ; yields: result=false
9620 <result> = icmp ult i16 4, 5 ; yields: result=true
9621 <result> = icmp sgt i16 4, 5 ; yields: result=false
9622 <result> = icmp ule i16 -4, 5 ; yields: result=false
9623 <result> = icmp sge i16 4, 5 ; yields: result=false
9624
Sean Silvab084af42012-12-07 10:36:55 +00009625.. _i_fcmp:
9626
9627'``fcmp``' Instruction
9628^^^^^^^^^^^^^^^^^^^^^^
9629
9630Syntax:
9631"""""""
9632
9633::
9634
James Molloy88eb5352015-07-10 12:52:00 +00009635 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009636
9637Overview:
9638"""""""""
9639
9640The '``fcmp``' instruction returns a boolean value or vector of boolean
9641values based on comparison of its operands.
9642
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009643If the operands are floating-point scalars, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009644boolean (:ref:`i1 <t_integer>`).
9645
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009646If the operands are floating-point vectors, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009647vector of boolean with the same number of elements as the operands being
9648compared.
9649
9650Arguments:
9651""""""""""
9652
9653The '``fcmp``' instruction takes three operands. The first operand is
9654the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009655not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009656
9657#. ``false``: no comparison, always returns false
9658#. ``oeq``: ordered and equal
9659#. ``ogt``: ordered and greater than
9660#. ``oge``: ordered and greater than or equal
9661#. ``olt``: ordered and less than
9662#. ``ole``: ordered and less than or equal
9663#. ``one``: ordered and not equal
9664#. ``ord``: ordered (no nans)
9665#. ``ueq``: unordered or equal
9666#. ``ugt``: unordered or greater than
9667#. ``uge``: unordered or greater than or equal
9668#. ``ult``: unordered or less than
9669#. ``ule``: unordered or less than or equal
9670#. ``une``: unordered or not equal
9671#. ``uno``: unordered (either nans)
9672#. ``true``: no comparison, always returns true
9673
9674*Ordered* means that neither operand is a QNAN while *unordered* means
9675that either operand may be a QNAN.
9676
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009677Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating-point
9678<t_floating>` type or a :ref:`vector <t_vector>` of floating-point type.
9679They must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00009680
9681Semantics:
9682""""""""""
9683
9684The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
9685condition code given as ``cond``. If the operands are vectors, then the
9686vectors are compared element by element. Each comparison performed
9687always yields an :ref:`i1 <t_integer>` result, as follows:
9688
9689#. ``false``: always yields ``false``, regardless of operands.
9690#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
9691 is equal to ``op2``.
9692#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
9693 is greater than ``op2``.
9694#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
9695 is greater than or equal to ``op2``.
9696#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
9697 is less than ``op2``.
9698#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
9699 is less than or equal to ``op2``.
9700#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
9701 is not equal to ``op2``.
9702#. ``ord``: yields ``true`` if both operands are not a QNAN.
9703#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
9704 equal to ``op2``.
9705#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
9706 greater than ``op2``.
9707#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
9708 greater than or equal to ``op2``.
9709#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
9710 less than ``op2``.
9711#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
9712 less than or equal to ``op2``.
9713#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
9714 not equal to ``op2``.
9715#. ``uno``: yields ``true`` if either operand is a QNAN.
9716#. ``true``: always yields ``true``, regardless of operands.
9717
James Molloy88eb5352015-07-10 12:52:00 +00009718The ``fcmp`` instruction can also optionally take any number of
9719:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009720otherwise unsafe floating-point optimizations.
James Molloy88eb5352015-07-10 12:52:00 +00009721
9722Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
9723only flags that have any effect on its semantics are those that allow
9724assumptions to be made about the values of input arguments; namely
Eli Friedman8bb43262018-07-17 20:28:31 +00009725``nnan``, ``ninf``, and ``reassoc``. See :ref:`fastmath` for more information.
James Molloy88eb5352015-07-10 12:52:00 +00009726
Sean Silvab084af42012-12-07 10:36:55 +00009727Example:
9728""""""""
9729
Renato Golin124f2592016-07-20 12:16:38 +00009730.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009731
9732 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
9733 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
9734 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
9735 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
9736
Sean Silvab084af42012-12-07 10:36:55 +00009737.. _i_phi:
9738
9739'``phi``' Instruction
9740^^^^^^^^^^^^^^^^^^^^^
9741
9742Syntax:
9743"""""""
9744
9745::
9746
9747 <result> = phi <ty> [ <val0>, <label0>], ...
9748
9749Overview:
9750"""""""""
9751
9752The '``phi``' instruction is used to implement the φ node in the SSA
9753graph representing the function.
9754
9755Arguments:
9756""""""""""
9757
9758The type of the incoming values is specified with the first type field.
9759After this, the '``phi``' instruction takes a list of pairs as
9760arguments, with one pair for each predecessor basic block of the current
9761block. Only values of :ref:`first class <t_firstclass>` type may be used as
9762the value arguments to the PHI node. Only labels may be used as the
9763label arguments.
9764
9765There must be no non-phi instructions between the start of a basic block
9766and the PHI instructions: i.e. PHI instructions must be first in a basic
9767block.
9768
9769For the purposes of the SSA form, the use of each incoming value is
9770deemed to occur on the edge from the corresponding predecessor block to
9771the current block (but after any definition of an '``invoke``'
9772instruction's return value on the same edge).
9773
9774Semantics:
9775""""""""""
9776
9777At runtime, the '``phi``' instruction logically takes on the value
9778specified by the pair corresponding to the predecessor basic block that
9779executed just prior to the current block.
9780
9781Example:
9782""""""""
9783
9784.. code-block:: llvm
9785
9786 Loop: ; Infinite loop that counts from 0 on up...
9787 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
9788 %nextindvar = add i32 %indvar, 1
9789 br label %Loop
9790
9791.. _i_select:
9792
9793'``select``' Instruction
9794^^^^^^^^^^^^^^^^^^^^^^^^
9795
9796Syntax:
9797"""""""
9798
9799::
9800
9801 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
9802
9803 selty is either i1 or {<N x i1>}
9804
9805Overview:
9806"""""""""
9807
9808The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00009809condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00009810
9811Arguments:
9812""""""""""
9813
9814The '``select``' instruction requires an 'i1' value or a vector of 'i1'
9815values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00009816class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00009817
9818Semantics:
9819""""""""""
9820
9821If the condition is an i1 and it evaluates to 1, the instruction returns
9822the first value argument; otherwise, it returns the second value
9823argument.
9824
9825If the condition is a vector of i1, then the value arguments must be
9826vectors of the same size, and the selection is done element by element.
9827
David Majnemer40a0b592015-03-03 22:45:47 +00009828If the condition is an i1 and the value arguments are vectors of the
9829same size, then an entire vector is selected.
9830
Sean Silvab084af42012-12-07 10:36:55 +00009831Example:
9832""""""""
9833
9834.. code-block:: llvm
9835
9836 %X = select i1 true, i8 17, i8 42 ; yields i8:17
9837
9838.. _i_call:
9839
9840'``call``' Instruction
9841^^^^^^^^^^^^^^^^^^^^^^
9842
9843Syntax:
9844"""""""
9845
9846::
9847
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00009848 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] [addrspace(<num>)]
9849 [<ty>|<fnty> <fnptrval>(<function args>) [fn attrs] [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00009850
9851Overview:
9852"""""""""
9853
9854The '``call``' instruction represents a simple function call.
9855
9856Arguments:
9857""""""""""
9858
9859This instruction requires several arguments:
9860
Reid Kleckner5772b772014-04-24 20:14:34 +00009861#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00009862 should perform tail call optimization. The ``tail`` marker is a hint that
9863 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00009864 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00009865 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00009866
9867 #. The call will not cause unbounded stack growth if it is part of a
9868 recursive cycle in the call graph.
9869 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
9870 forwarded in place.
9871
Florian Hahnedae5a62018-01-17 23:29:25 +00009872 Both markers imply that the callee does not access allocas from the caller.
9873 The ``tail`` marker additionally implies that the callee does not access
9874 varargs from the caller, while ``musttail`` implies that varargs from the
9875 caller are passed to the callee. Calls marked ``musttail`` must obey the
9876 following additional rules:
Reid Kleckner5772b772014-04-24 20:14:34 +00009877
9878 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
9879 or a pointer bitcast followed by a ret instruction.
9880 - The ret instruction must return the (possibly bitcasted) value
9881 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00009882 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00009883 parameters or return types may differ in pointee type, but not
9884 in address space.
9885 - The calling conventions of the caller and callee must match.
9886 - All ABI-impacting function attributes, such as sret, byval, inreg,
9887 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00009888 - The callee must be varargs iff the caller is varargs. Bitcasting a
9889 non-varargs function to the appropriate varargs type is legal so
9890 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00009891
9892 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
9893 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00009894
9895 - Caller and callee both have the calling convention ``fastcc``.
9896 - The call is in tail position (ret immediately follows call and ret
9897 uses value of call or is void).
9898 - Option ``-tailcallopt`` is enabled, or
9899 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00009900 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00009901 met. <CodeGenerator.html#tailcallopt>`_
9902
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00009903#. The optional ``notail`` marker indicates that the optimizers should not add
9904 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
9905 call optimization from being performed on the call.
9906
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00009907#. The optional ``fast-math flags`` marker indicates that the call has one or more
Sanjay Patelfa54ace2015-12-14 21:59:03 +00009908 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
9909 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
9910 for calls that return a floating-point scalar or vector type.
9911
Sean Silvab084af42012-12-07 10:36:55 +00009912#. The optional "cconv" marker indicates which :ref:`calling
9913 convention <callingconv>` the call should use. If none is
9914 specified, the call defaults to using C calling conventions. The
9915 calling convention of the call must match the calling convention of
9916 the target function, or else the behavior is undefined.
9917#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
9918 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
9919 are valid here.
Craig Topper78e7fff2019-01-16 00:21:59 +00009920#. The optional addrspace attribute can be used to indicate the address space
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00009921 of the called function. If it is not specified, the program address space
9922 from the :ref:`datalayout string<langref_datalayout>` will be used.
Sean Silvab084af42012-12-07 10:36:55 +00009923#. '``ty``': the type of the call instruction itself which is also the
9924 type of the return value. Functions that return no value are marked
9925 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00009926#. '``fnty``': shall be the signature of the function being called. The
9927 argument types must match the types implied by this signature. This
9928 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00009929#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00009930 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00009931 indirect ``call``'s are just as possible, calling an arbitrary pointer
9932 to function value.
9933#. '``function args``': argument list whose types match the function
9934 signature argument types and parameter attributes. All arguments must
9935 be of :ref:`first class <t_firstclass>` type. If the function signature
9936 indicates the function accepts a variable number of arguments, the
9937 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00009938#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009939#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00009940
9941Semantics:
9942""""""""""
9943
9944The '``call``' instruction is used to cause control flow to transfer to
9945a specified function, with its incoming arguments bound to the specified
9946values. Upon a '``ret``' instruction in the called function, control
9947flow continues with the instruction after the function call, and the
9948return value of the function is bound to the result argument.
9949
9950Example:
9951""""""""
9952
9953.. code-block:: llvm
9954
9955 %retval = call i32 @test(i32 %argc)
9956 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
9957 %X = tail call i32 @foo() ; yields i32
9958 %Y = tail call fastcc i32 @foo() ; yields i32
9959 call void %foo(i8 97 signext)
9960
9961 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00009962 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00009963 %gr = extractvalue %struct.A %r, 0 ; yields i32
9964 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
9965 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
9966 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
9967
9968llvm treats calls to some functions with names and arguments that match
9969the standard C99 library as being the C99 library functions, and may
9970perform optimizations or generate code for them under that assumption.
9971This is something we'd like to change in the future to provide better
9972support for freestanding environments and non-C-based languages.
9973
9974.. _i_va_arg:
9975
9976'``va_arg``' Instruction
9977^^^^^^^^^^^^^^^^^^^^^^^^
9978
9979Syntax:
9980"""""""
9981
9982::
9983
9984 <resultval> = va_arg <va_list*> <arglist>, <argty>
9985
9986Overview:
9987"""""""""
9988
9989The '``va_arg``' instruction is used to access arguments passed through
9990the "variable argument" area of a function call. It is used to implement
9991the ``va_arg`` macro in C.
9992
9993Arguments:
9994""""""""""
9995
9996This instruction takes a ``va_list*`` value and the type of the
9997argument. It returns a value of the specified argument type and
9998increments the ``va_list`` to point to the next argument. The actual
9999type of ``va_list`` is target specific.
10000
10001Semantics:
10002""""""""""
10003
10004The '``va_arg``' instruction loads an argument of the specified type
10005from the specified ``va_list`` and causes the ``va_list`` to point to
10006the next argument. For more information, see the variable argument
10007handling :ref:`Intrinsic Functions <int_varargs>`.
10008
10009It is legal for this instruction to be called in a function which does
10010not take a variable number of arguments, for example, the ``vfprintf``
10011function.
10012
10013``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
10014function <intrinsics>` because it takes a type as an argument.
10015
10016Example:
10017""""""""
10018
10019See the :ref:`variable argument processing <int_varargs>` section.
10020
10021Note that the code generator does not yet fully support va\_arg on many
10022targets. Also, it does not currently support va\_arg with aggregate
10023types on any target.
10024
10025.. _i_landingpad:
10026
10027'``landingpad``' Instruction
10028^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10029
10030Syntax:
10031"""""""
10032
10033::
10034
David Majnemer7fddecc2015-06-17 20:52:32 +000010035 <resultval> = landingpad <resultty> <clause>+
10036 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +000010037
10038 <clause> := catch <type> <value>
10039 <clause> := filter <array constant type> <array constant>
10040
10041Overview:
10042"""""""""
10043
10044The '``landingpad``' instruction is used by `LLVM's exception handling
10045system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010046is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +000010047code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +000010048defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +000010049re-entry to the function. The ``resultval`` has the type ``resultty``.
10050
10051Arguments:
10052""""""""""
10053
David Majnemer7fddecc2015-06-17 20:52:32 +000010054The optional
Sean Silvab084af42012-12-07 10:36:55 +000010055``cleanup`` flag indicates that the landing pad block is a cleanup.
10056
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010057A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +000010058contains the global variable representing the "type" that may be caught
10059or filtered respectively. Unlike the ``catch`` clause, the ``filter``
10060clause takes an array constant as its argument. Use
10061"``[0 x i8**] undef``" for a filter which cannot throw. The
10062'``landingpad``' instruction must contain *at least* one ``clause`` or
10063the ``cleanup`` flag.
10064
10065Semantics:
10066""""""""""
10067
10068The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +000010069:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +000010070therefore the "result type" of the ``landingpad`` instruction. As with
10071calling conventions, how the personality function results are
10072represented in LLVM IR is target specific.
10073
10074The clauses are applied in order from top to bottom. If two
10075``landingpad`` instructions are merged together through inlining, the
10076clauses from the calling function are appended to the list of clauses.
10077When the call stack is being unwound due to an exception being thrown,
10078the exception is compared against each ``clause`` in turn. If it doesn't
10079match any of the clauses, and the ``cleanup`` flag is not set, then
10080unwinding continues further up the call stack.
10081
10082The ``landingpad`` instruction has several restrictions:
10083
10084- A landing pad block is a basic block which is the unwind destination
10085 of an '``invoke``' instruction.
10086- A landing pad block must have a '``landingpad``' instruction as its
10087 first non-PHI instruction.
10088- There can be only one '``landingpad``' instruction within the landing
10089 pad block.
10090- A basic block that is not a landing pad block may not include a
10091 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +000010092
10093Example:
10094""""""""
10095
10096.. code-block:: llvm
10097
10098 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +000010099 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +000010100 catch i8** @_ZTIi
10101 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +000010102 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +000010103 cleanup
10104 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +000010105 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +000010106 catch i8** @_ZTIi
10107 filter [1 x i8**] [@_ZTId]
10108
Joseph Tremoulet2adaa982016-01-10 04:46:10 +000010109.. _i_catchpad:
10110
10111'``catchpad``' Instruction
10112^^^^^^^^^^^^^^^^^^^^^^^^^^
10113
10114Syntax:
10115"""""""
10116
10117::
10118
10119 <resultval> = catchpad within <catchswitch> [<args>*]
10120
10121Overview:
10122"""""""""
10123
10124The '``catchpad``' instruction is used by `LLVM's exception handling
10125system <ExceptionHandling.html#overview>`_ to specify that a basic block
10126begins a catch handler --- one where a personality routine attempts to transfer
10127control to catch an exception.
10128
10129Arguments:
10130""""""""""
10131
10132The ``catchswitch`` operand must always be a token produced by a
10133:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
10134ensures that each ``catchpad`` has exactly one predecessor block, and it always
10135terminates in a ``catchswitch``.
10136
10137The ``args`` correspond to whatever information the personality routine
10138requires to know if this is an appropriate handler for the exception. Control
10139will transfer to the ``catchpad`` if this is the first appropriate handler for
10140the exception.
10141
10142The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
10143``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
10144pads.
10145
10146Semantics:
10147""""""""""
10148
10149When the call stack is being unwound due to an exception being thrown, the
10150exception is compared against the ``args``. If it doesn't match, control will
10151not reach the ``catchpad`` instruction. The representation of ``args`` is
10152entirely target and personality function-specific.
10153
10154Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
10155instruction must be the first non-phi of its parent basic block.
10156
10157The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
10158instructions is described in the
10159`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
10160
10161When a ``catchpad`` has been "entered" but not yet "exited" (as
10162described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
10163it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
10164that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
10165
10166Example:
10167""""""""
10168
Renato Golin124f2592016-07-20 12:16:38 +000010169.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +000010170
10171 dispatch:
10172 %cs = catchswitch within none [label %handler0] unwind to caller
10173 ;; A catch block which can catch an integer.
10174 handler0:
10175 %tok = catchpad within %cs [i8** @_ZTIi]
10176
David Majnemer654e1302015-07-31 17:58:14 +000010177.. _i_cleanuppad:
10178
10179'``cleanuppad``' Instruction
10180^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10181
10182Syntax:
10183"""""""
10184
10185::
10186
David Majnemer8a1c45d2015-12-12 05:38:55 +000010187 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +000010188
10189Overview:
10190"""""""""
10191
10192The '``cleanuppad``' instruction is used by `LLVM's exception handling
10193system <ExceptionHandling.html#overview>`_ to specify that a basic block
10194is a cleanup block --- one where a personality routine attempts to
10195transfer control to run cleanup actions.
10196The ``args`` correspond to whatever additional
10197information the :ref:`personality function <personalityfn>` requires to
10198execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +000010199The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +000010200match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
10201The ``parent`` argument is the token of the funclet that contains the
10202``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
10203this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +000010204
10205Arguments:
10206""""""""""
10207
10208The instruction takes a list of arbitrary values which are interpreted
10209by the :ref:`personality function <personalityfn>`.
10210
10211Semantics:
10212""""""""""
10213
David Majnemer654e1302015-07-31 17:58:14 +000010214When the call stack is being unwound due to an exception being thrown,
10215the :ref:`personality function <personalityfn>` transfers control to the
10216``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +000010217As with calling conventions, how the personality function results are
10218represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +000010219
10220The ``cleanuppad`` instruction has several restrictions:
10221
10222- A cleanup block is a basic block which is the unwind destination of
10223 an exceptional instruction.
10224- A cleanup block must have a '``cleanuppad``' instruction as its
10225 first non-PHI instruction.
10226- There can be only one '``cleanuppad``' instruction within the
10227 cleanup block.
10228- A basic block that is not a cleanup block may not include a
10229 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +000010230
Joseph Tremoulete28885e2016-01-10 04:28:38 +000010231When a ``cleanuppad`` has been "entered" but not yet "exited" (as
10232described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
10233it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
10234that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +000010235
David Majnemer654e1302015-07-31 17:58:14 +000010236Example:
10237""""""""
10238
Renato Golin124f2592016-07-20 12:16:38 +000010239.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +000010240
David Majnemer8a1c45d2015-12-12 05:38:55 +000010241 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +000010242
Sean Silvab084af42012-12-07 10:36:55 +000010243.. _intrinsics:
10244
10245Intrinsic Functions
10246===================
10247
10248LLVM supports the notion of an "intrinsic function". These functions
10249have well known names and semantics and are required to follow certain
10250restrictions. Overall, these intrinsics represent an extension mechanism
10251for the LLVM language that does not require changing all of the
10252transformations in LLVM when adding to the language (or the bitcode
10253reader/writer, the parser, etc...).
10254
10255Intrinsic function names must all start with an "``llvm.``" prefix. This
10256prefix is reserved in LLVM for intrinsic names; thus, function names may
10257not begin with this prefix. Intrinsic functions must always be external
10258functions: you cannot define the body of intrinsic functions. Intrinsic
10259functions may only be used in call or invoke instructions: it is illegal
10260to take the address of an intrinsic function. Additionally, because
10261intrinsic functions are part of the LLVM language, it is required if any
10262are added that they be documented here.
10263
10264Some intrinsic functions can be overloaded, i.e., the intrinsic
10265represents a family of functions that perform the same operation but on
10266different data types. Because LLVM can represent over 8 million
10267different integer types, overloading is used commonly to allow an
10268intrinsic function to operate on any integer type. One or more of the
10269argument types or the result type can be overloaded to accept any
10270integer type. Argument types may also be defined as exactly matching a
10271previous argument's type or the result type. This allows an intrinsic
10272function which accepts multiple arguments, but needs all of them to be
10273of the same type, to only be overloaded with respect to a single
10274argument or the result.
10275
10276Overloaded intrinsics will have the names of its overloaded argument
10277types encoded into its function name, each preceded by a period. Only
10278those types which are overloaded result in a name suffix. Arguments
10279whose type is matched against another type do not. For example, the
10280``llvm.ctpop`` function can take an integer of any width and returns an
10281integer of exactly the same integer width. This leads to a family of
10282functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
10283``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
10284overloaded, and only one type suffix is required. Because the argument's
10285type is matched against the return type, it does not require its own
10286name suffix.
10287
10288To learn how to add an intrinsic function, please see the `Extending
10289LLVM Guide <ExtendingLLVM.html>`_.
10290
10291.. _int_varargs:
10292
10293Variable Argument Handling Intrinsics
10294-------------------------------------
10295
10296Variable argument support is defined in LLVM with the
10297:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
10298functions. These functions are related to the similarly named macros
10299defined in the ``<stdarg.h>`` header file.
10300
10301All of these functions operate on arguments that use a target-specific
10302value type "``va_list``". The LLVM assembly language reference manual
10303does not define what this type is, so all transformations should be
10304prepared to handle these functions regardless of the type used.
10305
10306This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
10307variable argument handling intrinsic functions are used.
10308
10309.. code-block:: llvm
10310
Tim Northoverab60bb92014-11-02 01:21:51 +000010311 ; This struct is different for every platform. For most platforms,
10312 ; it is merely an i8*.
10313 %struct.va_list = type { i8* }
10314
10315 ; For Unix x86_64 platforms, va_list is the following struct:
10316 ; %struct.va_list = type { i32, i32, i8*, i8* }
10317
Sean Silvab084af42012-12-07 10:36:55 +000010318 define i32 @test(i32 %X, ...) {
10319 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +000010320 %ap = alloca %struct.va_list
10321 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +000010322 call void @llvm.va_start(i8* %ap2)
10323
10324 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +000010325 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +000010326
10327 ; Demonstrate usage of llvm.va_copy and llvm.va_end
10328 %aq = alloca i8*
10329 %aq2 = bitcast i8** %aq to i8*
10330 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
10331 call void @llvm.va_end(i8* %aq2)
10332
10333 ; Stop processing of arguments.
10334 call void @llvm.va_end(i8* %ap2)
10335 ret i32 %tmp
10336 }
10337
10338 declare void @llvm.va_start(i8*)
10339 declare void @llvm.va_copy(i8*, i8*)
10340 declare void @llvm.va_end(i8*)
10341
10342.. _int_va_start:
10343
10344'``llvm.va_start``' Intrinsic
10345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10346
10347Syntax:
10348"""""""
10349
10350::
10351
Nick Lewycky04f6de02013-09-11 22:04:52 +000010352 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +000010353
10354Overview:
10355"""""""""
10356
10357The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
10358subsequent use by ``va_arg``.
10359
10360Arguments:
10361""""""""""
10362
10363The argument is a pointer to a ``va_list`` element to initialize.
10364
10365Semantics:
10366""""""""""
10367
10368The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
10369available in C. In a target-dependent way, it initializes the
10370``va_list`` element to which the argument points, so that the next call
10371to ``va_arg`` will produce the first variable argument passed to the
10372function. Unlike the C ``va_start`` macro, this intrinsic does not need
10373to know the last argument of the function as the compiler can figure
10374that out.
10375
10376'``llvm.va_end``' Intrinsic
10377^^^^^^^^^^^^^^^^^^^^^^^^^^^
10378
10379Syntax:
10380"""""""
10381
10382::
10383
10384 declare void @llvm.va_end(i8* <arglist>)
10385
10386Overview:
10387"""""""""
10388
10389The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
10390initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
10391
10392Arguments:
10393""""""""""
10394
10395The argument is a pointer to a ``va_list`` to destroy.
10396
10397Semantics:
10398""""""""""
10399
10400The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
10401available in C. In a target-dependent way, it destroys the ``va_list``
10402element to which the argument points. Calls to
10403:ref:`llvm.va_start <int_va_start>` and
10404:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
10405``llvm.va_end``.
10406
10407.. _int_va_copy:
10408
10409'``llvm.va_copy``' Intrinsic
10410^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10411
10412Syntax:
10413"""""""
10414
10415::
10416
10417 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
10418
10419Overview:
10420"""""""""
10421
10422The '``llvm.va_copy``' intrinsic copies the current argument position
10423from the source argument list to the destination argument list.
10424
10425Arguments:
10426""""""""""
10427
10428The first argument is a pointer to a ``va_list`` element to initialize.
10429The second argument is a pointer to a ``va_list`` element to copy from.
10430
10431Semantics:
10432""""""""""
10433
10434The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
10435available in C. In a target-dependent way, it copies the source
10436``va_list`` element into the destination ``va_list`` element. This
10437intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
10438arbitrarily complex and require, for example, memory allocation.
10439
10440Accurate Garbage Collection Intrinsics
10441--------------------------------------
10442
Philip Reamesc5b0f562015-02-25 23:52:06 +000010443LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010444(GC) requires the frontend to generate code containing appropriate intrinsic
10445calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +000010446intrinsics in a manner which is appropriate for the target collector.
10447
Sean Silvab084af42012-12-07 10:36:55 +000010448These intrinsics allow identification of :ref:`GC roots on the
10449stack <int_gcroot>`, as well as garbage collector implementations that
10450require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +000010451Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +000010452these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +000010453details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +000010454
Philip Reamesf80bbff2015-02-25 23:45:20 +000010455Experimental Statepoint Intrinsics
10456^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10457
10458LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +000010459collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010460to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +000010461:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010462differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +000010463<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +000010464described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +000010465
10466.. _int_gcroot:
10467
10468'``llvm.gcroot``' Intrinsic
10469^^^^^^^^^^^^^^^^^^^^^^^^^^^
10470
10471Syntax:
10472"""""""
10473
10474::
10475
10476 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
10477
10478Overview:
10479"""""""""
10480
10481The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
10482the code generator, and allows some metadata to be associated with it.
10483
10484Arguments:
10485""""""""""
10486
10487The first argument specifies the address of a stack object that contains
10488the root pointer. The second pointer (which must be either a constant or
10489a global value address) contains the meta-data to be associated with the
10490root.
10491
10492Semantics:
10493""""""""""
10494
10495At runtime, a call to this intrinsic stores a null pointer into the
10496"ptrloc" location. At compile-time, the code generator generates
10497information to allow the runtime to find the pointer at GC safe points.
10498The '``llvm.gcroot``' intrinsic may only be used in a function which
10499:ref:`specifies a GC algorithm <gc>`.
10500
10501.. _int_gcread:
10502
10503'``llvm.gcread``' Intrinsic
10504^^^^^^^^^^^^^^^^^^^^^^^^^^^
10505
10506Syntax:
10507"""""""
10508
10509::
10510
10511 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
10512
10513Overview:
10514"""""""""
10515
10516The '``llvm.gcread``' intrinsic identifies reads of references from heap
10517locations, allowing garbage collector implementations that require read
10518barriers.
10519
10520Arguments:
10521""""""""""
10522
10523The second argument is the address to read from, which should be an
10524address allocated from the garbage collector. The first object is a
10525pointer to the start of the referenced object, if needed by the language
10526runtime (otherwise null).
10527
10528Semantics:
10529""""""""""
10530
10531The '``llvm.gcread``' intrinsic has the same semantics as a load
10532instruction, but may be replaced with substantially more complex code by
10533the garbage collector runtime, as needed. The '``llvm.gcread``'
10534intrinsic may only be used in a function which :ref:`specifies a GC
10535algorithm <gc>`.
10536
10537.. _int_gcwrite:
10538
10539'``llvm.gcwrite``' Intrinsic
10540^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10541
10542Syntax:
10543"""""""
10544
10545::
10546
10547 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
10548
10549Overview:
10550"""""""""
10551
10552The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
10553locations, allowing garbage collector implementations that require write
10554barriers (such as generational or reference counting collectors).
10555
10556Arguments:
10557""""""""""
10558
10559The first argument is the reference to store, the second is the start of
10560the object to store it to, and the third is the address of the field of
10561Obj to store to. If the runtime does not require a pointer to the
10562object, Obj may be null.
10563
10564Semantics:
10565""""""""""
10566
10567The '``llvm.gcwrite``' intrinsic has the same semantics as a store
10568instruction, but may be replaced with substantially more complex code by
10569the garbage collector runtime, as needed. The '``llvm.gcwrite``'
10570intrinsic may only be used in a function which :ref:`specifies a GC
10571algorithm <gc>`.
10572
10573Code Generator Intrinsics
10574-------------------------
10575
10576These intrinsics are provided by LLVM to expose special features that
10577may only be implemented with code generator support.
10578
10579'``llvm.returnaddress``' Intrinsic
10580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10581
10582Syntax:
10583"""""""
10584
10585::
10586
George Burgess IVfbc34982017-05-20 04:52:29 +000010587 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +000010588
10589Overview:
10590"""""""""
10591
10592The '``llvm.returnaddress``' intrinsic attempts to compute a
10593target-specific value indicating the return address of the current
10594function or one of its callers.
10595
10596Arguments:
10597""""""""""
10598
10599The argument to this intrinsic indicates which function to return the
10600address for. Zero indicates the calling function, one indicates its
10601caller, etc. The argument is **required** to be a constant integer
10602value.
10603
10604Semantics:
10605""""""""""
10606
10607The '``llvm.returnaddress``' intrinsic either returns a pointer
10608indicating the return address of the specified call frame, or zero if it
10609cannot be identified. The value returned by this intrinsic is likely to
10610be incorrect or 0 for arguments other than zero, so it should only be
10611used for debugging purposes.
10612
10613Note that calling this intrinsic does not prevent function inlining or
10614other aggressive transformations, so the value returned may not be that
10615of the obvious source-language caller.
10616
Albert Gutowski795d7d62016-10-12 22:13:19 +000010617'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +000010618^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +000010619
10620Syntax:
10621"""""""
10622
10623::
10624
George Burgess IVfbc34982017-05-20 04:52:29 +000010625 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +000010626
10627Overview:
10628"""""""""
10629
10630The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
10631pointer to the place in the stack frame where the return address of the
10632current function is stored.
10633
10634Semantics:
10635""""""""""
10636
10637Note that calling this intrinsic does not prevent function inlining or
10638other aggressive transformations, so the value returned may not be that
10639of the obvious source-language caller.
10640
Mandeep Singh Grangdf19e572018-11-01 21:23:47 +000010641This intrinsic is only implemented for x86 and aarch64.
Albert Gutowski795d7d62016-10-12 22:13:19 +000010642
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000010643'``llvm.sponentry``' Intrinsic
10644^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10645
10646Syntax:
10647"""""""
10648
10649::
10650
10651 declare i8* @llvm.sponentry()
10652
10653Overview:
10654"""""""""
10655
10656The '``llvm.sponentry``' intrinsic returns the stack pointer value at
10657the entry of the current function calling this intrinsic.
10658
10659Semantics:
10660""""""""""
10661
10662Note this intrinsic is only verified on AArch64.
10663
Sean Silvab084af42012-12-07 10:36:55 +000010664'``llvm.frameaddress``' Intrinsic
10665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10666
10667Syntax:
10668"""""""
10669
10670::
10671
10672 declare i8* @llvm.frameaddress(i32 <level>)
10673
10674Overview:
10675"""""""""
10676
10677The '``llvm.frameaddress``' intrinsic attempts to return the
10678target-specific frame pointer value for the specified stack frame.
10679
10680Arguments:
10681""""""""""
10682
10683The argument to this intrinsic indicates which function to return the
10684frame pointer for. Zero indicates the calling function, one indicates
10685its caller, etc. The argument is **required** to be a constant integer
10686value.
10687
10688Semantics:
10689""""""""""
10690
10691The '``llvm.frameaddress``' intrinsic either returns a pointer
10692indicating the frame address of the specified call frame, or zero if it
10693cannot be identified. The value returned by this intrinsic is likely to
10694be incorrect or 0 for arguments other than zero, so it should only be
10695used for debugging purposes.
10696
10697Note that calling this intrinsic does not prevent function inlining or
10698other aggressive transformations, so the value returned may not be that
10699of the obvious source-language caller.
10700
Reid Kleckner60381792015-07-07 22:25:32 +000010701'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +000010702^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10703
10704Syntax:
10705"""""""
10706
10707::
10708
Reid Kleckner60381792015-07-07 22:25:32 +000010709 declare void @llvm.localescape(...)
10710 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +000010711
10712Overview:
10713"""""""""
10714
Reid Kleckner60381792015-07-07 22:25:32 +000010715The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
10716allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010717live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +000010718computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +000010719
10720Arguments:
10721""""""""""
10722
Reid Kleckner60381792015-07-07 22:25:32 +000010723All arguments to '``llvm.localescape``' must be pointers to static allocas or
10724casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010725once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +000010726
Reid Kleckner60381792015-07-07 22:25:32 +000010727The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +000010728bitcasted pointer to a function defined in the current module. The code
10729generator cannot determine the frame allocation offset of functions defined in
10730other modules.
10731
Reid Klecknerd5afc62f2015-07-07 23:23:03 +000010732The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
10733call frame that is currently live. The return value of '``llvm.localaddress``'
10734is one way to produce such a value, but various runtimes also expose a suitable
10735pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +000010736
Reid Kleckner60381792015-07-07 22:25:32 +000010737The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
10738'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010739
Reid Klecknere9b89312015-01-13 00:48:10 +000010740Semantics:
10741""""""""""
10742
Reid Kleckner60381792015-07-07 22:25:32 +000010743These intrinsics allow a group of functions to share access to a set of local
10744stack allocations of a one parent function. The parent function may call the
10745'``llvm.localescape``' intrinsic once from the function entry block, and the
10746child functions can use '``llvm.localrecover``' to access the escaped allocas.
10747The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
10748the escaped allocas are allocated, which would break attempts to use
10749'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +000010750
Renato Golinc7aea402014-05-06 16:51:25 +000010751.. _int_read_register:
10752.. _int_write_register:
10753
10754'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
10755^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10756
10757Syntax:
10758"""""""
10759
10760::
10761
10762 declare i32 @llvm.read_register.i32(metadata)
10763 declare i64 @llvm.read_register.i64(metadata)
10764 declare void @llvm.write_register.i32(metadata, i32 @value)
10765 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +000010766 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +000010767
10768Overview:
10769"""""""""
10770
10771The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
10772provides access to the named register. The register must be valid on
10773the architecture being compiled to. The type needs to be compatible
10774with the register being read.
10775
10776Semantics:
10777""""""""""
10778
10779The '``llvm.read_register``' intrinsic returns the current value of the
10780register, where possible. The '``llvm.write_register``' intrinsic sets
10781the current value of the register, where possible.
10782
10783This is useful to implement named register global variables that need
10784to always be mapped to a specific register, as is common practice on
10785bare-metal programs including OS kernels.
10786
10787The compiler doesn't check for register availability or use of the used
10788register in surrounding code, including inline assembly. Because of that,
10789allocatable registers are not supported.
10790
10791Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +000010792architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +000010793work is needed to support other registers and even more so, allocatable
10794registers.
10795
Sean Silvab084af42012-12-07 10:36:55 +000010796.. _int_stacksave:
10797
10798'``llvm.stacksave``' Intrinsic
10799^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10800
10801Syntax:
10802"""""""
10803
10804::
10805
10806 declare i8* @llvm.stacksave()
10807
10808Overview:
10809"""""""""
10810
10811The '``llvm.stacksave``' intrinsic is used to remember the current state
10812of the function stack, for use with
10813:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
10814implementing language features like scoped automatic variable sized
10815arrays in C99.
10816
10817Semantics:
10818""""""""""
10819
10820This intrinsic returns a opaque pointer value that can be passed to
10821:ref:`llvm.stackrestore <int_stackrestore>`. When an
10822``llvm.stackrestore`` intrinsic is executed with a value saved from
10823``llvm.stacksave``, it effectively restores the state of the stack to
10824the state it was in when the ``llvm.stacksave`` intrinsic executed. In
10825practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
10826were allocated after the ``llvm.stacksave`` was executed.
10827
10828.. _int_stackrestore:
10829
10830'``llvm.stackrestore``' Intrinsic
10831^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10832
10833Syntax:
10834"""""""
10835
10836::
10837
10838 declare void @llvm.stackrestore(i8* %ptr)
10839
10840Overview:
10841"""""""""
10842
10843The '``llvm.stackrestore``' intrinsic is used to restore the state of
10844the function stack to the state it was in when the corresponding
10845:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
10846useful for implementing language features like scoped automatic variable
10847sized arrays in C99.
10848
10849Semantics:
10850""""""""""
10851
10852See the description for :ref:`llvm.stacksave <int_stacksave>`.
10853
Yury Gribovd7dbb662015-12-01 11:40:55 +000010854.. _int_get_dynamic_area_offset:
10855
10856'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +000010857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +000010858
10859Syntax:
10860"""""""
10861
10862::
10863
10864 declare i32 @llvm.get.dynamic.area.offset.i32()
10865 declare i64 @llvm.get.dynamic.area.offset.i64()
10866
Lang Hames10239932016-10-08 00:20:42 +000010867Overview:
10868"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +000010869
10870 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
10871 get the offset from native stack pointer to the address of the most
10872 recent dynamic alloca on the caller's stack. These intrinsics are
10873 intendend for use in combination with
10874 :ref:`llvm.stacksave <int_stacksave>` to get a
10875 pointer to the most recent dynamic alloca. This is useful, for example,
10876 for AddressSanitizer's stack unpoisoning routines.
10877
10878Semantics:
10879""""""""""
10880
10881 These intrinsics return a non-negative integer value that can be used to
10882 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
10883 on the caller's stack. In particular, for targets where stack grows downwards,
10884 adding this offset to the native stack pointer would get the address of the most
10885 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +000010886 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +000010887 one past the end of the most recent dynamic alloca.
10888
10889 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
10890 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
10891 compile-time-known constant value.
10892
10893 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +000010894 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +000010895
Sean Silvab084af42012-12-07 10:36:55 +000010896'``llvm.prefetch``' Intrinsic
10897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10898
10899Syntax:
10900"""""""
10901
10902::
10903
10904 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
10905
10906Overview:
10907"""""""""
10908
10909The '``llvm.prefetch``' intrinsic is a hint to the code generator to
10910insert a prefetch instruction if supported; otherwise, it is a noop.
10911Prefetches have no effect on the behavior of the program but can change
10912its performance characteristics.
10913
10914Arguments:
10915""""""""""
10916
10917``address`` is the address to be prefetched, ``rw`` is the specifier
10918determining if the fetch should be for a read (0) or write (1), and
10919``locality`` is a temporal locality specifier ranging from (0) - no
10920locality, to (3) - extremely local keep in cache. The ``cache type``
10921specifies whether the prefetch is performed on the data (1) or
10922instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
10923arguments must be constant integers.
10924
10925Semantics:
10926""""""""""
10927
10928This intrinsic does not modify the behavior of the program. In
10929particular, prefetches cannot trap and do not produce a value. On
10930targets that support this intrinsic, the prefetch can provide hints to
10931the processor cache for better performance.
10932
10933'``llvm.pcmarker``' Intrinsic
10934^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10935
10936Syntax:
10937"""""""
10938
10939::
10940
10941 declare void @llvm.pcmarker(i32 <id>)
10942
10943Overview:
10944"""""""""
10945
10946The '``llvm.pcmarker``' intrinsic is a method to export a Program
10947Counter (PC) in a region of code to simulators and other tools. The
10948method is target specific, but it is expected that the marker will use
10949exported symbols to transmit the PC of the marker. The marker makes no
10950guarantees that it will remain with any specific instruction after
10951optimizations. It is possible that the presence of a marker will inhibit
10952optimizations. The intended use is to be inserted after optimizations to
10953allow correlations of simulation runs.
10954
10955Arguments:
10956""""""""""
10957
10958``id`` is a numerical id identifying the marker.
10959
10960Semantics:
10961""""""""""
10962
10963This intrinsic does not modify the behavior of the program. Backends
10964that do not support this intrinsic may ignore it.
10965
10966'``llvm.readcyclecounter``' Intrinsic
10967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10968
10969Syntax:
10970"""""""
10971
10972::
10973
10974 declare i64 @llvm.readcyclecounter()
10975
10976Overview:
10977"""""""""
10978
10979The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
10980counter register (or similar low latency, high accuracy clocks) on those
10981targets that support it. On X86, it should map to RDTSC. On Alpha, it
10982should map to RPCC. As the backing counters overflow quickly (on the
10983order of 9 seconds on alpha), this should only be used for small
10984timings.
10985
10986Semantics:
10987""""""""""
10988
10989When directly supported, reading the cycle counter should not modify any
10990memory. Implementations are allowed to either return a application
10991specific value or a system wide value. On backends without support, this
10992is lowered to a constant 0.
10993
Tim Northoverbc933082013-05-23 19:11:20 +000010994Note that runtime support may be conditional on the privilege-level code is
10995running at and the host platform.
10996
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010997'``llvm.clear_cache``' Intrinsic
10998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10999
11000Syntax:
11001"""""""
11002
11003::
11004
11005 declare void @llvm.clear_cache(i8*, i8*)
11006
11007Overview:
11008"""""""""
11009
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011010The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
11011in the specified range to the execution unit of the processor. On
11012targets with non-unified instruction and data cache, the implementation
11013flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000011014
11015Semantics:
11016""""""""""
11017
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011018On platforms with coherent instruction and data caches (e.g. x86), this
11019intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000011020cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011021instructions or a system call, if cache flushing requires special
11022privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000011023
Sean Silvad02bf3e2014-04-07 22:29:53 +000011024The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011025time library.
Renato Golin93010e62014-03-26 14:01:32 +000011026
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011027This instrinsic does *not* empty the instruction pipeline. Modifications
11028of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000011029
Vedant Kumar51ce6682018-01-26 23:54:25 +000011030'``llvm.instrprof.increment``' Intrinsic
Justin Bogner61ba2e32014-12-08 18:02:35 +000011031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11032
11033Syntax:
11034"""""""
11035
11036::
11037
Vedant Kumar51ce6682018-01-26 23:54:25 +000011038 declare void @llvm.instrprof.increment(i8* <name>, i64 <hash>,
Justin Bogner61ba2e32014-12-08 18:02:35 +000011039 i32 <num-counters>, i32 <index>)
11040
11041Overview:
11042"""""""""
11043
Vedant Kumar51ce6682018-01-26 23:54:25 +000011044The '``llvm.instrprof.increment``' intrinsic can be emitted by a
Justin Bogner61ba2e32014-12-08 18:02:35 +000011045frontend for use with instrumentation based profiling. These will be
11046lowered by the ``-instrprof`` pass to generate execution counts of a
11047program at runtime.
11048
11049Arguments:
11050""""""""""
11051
11052The first argument is a pointer to a global variable containing the
11053name of the entity being instrumented. This should generally be the
11054(mangled) function name for a set of counters.
11055
11056The second argument is a hash value that can be used by the consumer
11057of the profile data to detect changes to the instrumented source, and
11058the third is the number of counters associated with ``name``. It is an
11059error if ``hash`` or ``num-counters`` differ between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000011060``instrprof.increment`` that refer to the same name.
Justin Bogner61ba2e32014-12-08 18:02:35 +000011061
11062The last argument refers to which of the counters for ``name`` should
11063be incremented. It should be a value between 0 and ``num-counters``.
11064
11065Semantics:
11066""""""""""
11067
11068This intrinsic represents an increment of a profiling counter. It will
11069cause the ``-instrprof`` pass to generate the appropriate data
11070structures and the code to increment the appropriate value, in a
11071format that can be written out by a compiler runtime and consumed via
11072the ``llvm-profdata`` tool.
11073
Vedant Kumar51ce6682018-01-26 23:54:25 +000011074'``llvm.instrprof.increment.step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000011075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000011076
11077Syntax:
11078"""""""
11079
11080::
11081
Vedant Kumar51ce6682018-01-26 23:54:25 +000011082 declare void @llvm.instrprof.increment.step(i8* <name>, i64 <hash>,
Xinliang David Li4ca17332016-09-18 18:34:07 +000011083 i32 <num-counters>,
11084 i32 <index>, i64 <step>)
11085
11086Overview:
11087"""""""""
11088
Vedant Kumar51ce6682018-01-26 23:54:25 +000011089The '``llvm.instrprof.increment.step``' intrinsic is an extension to
11090the '``llvm.instrprof.increment``' intrinsic with an additional fifth
Xinliang David Li4ca17332016-09-18 18:34:07 +000011091argument to specify the step of the increment.
11092
11093Arguments:
11094""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000011095The first four arguments are the same as '``llvm.instrprof.increment``'
Pete Couperused9569d2017-08-23 20:58:22 +000011096intrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000011097
11098The last argument specifies the value of the increment of the counter variable.
11099
11100Semantics:
11101""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000011102See description of '``llvm.instrprof.increment``' instrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000011103
11104
Vedant Kumar51ce6682018-01-26 23:54:25 +000011105'``llvm.instrprof.value.profile``' Intrinsic
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011106^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11107
11108Syntax:
11109"""""""
11110
11111::
11112
Vedant Kumar51ce6682018-01-26 23:54:25 +000011113 declare void @llvm.instrprof.value.profile(i8* <name>, i64 <hash>,
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011114 i64 <value>, i32 <value_kind>,
11115 i32 <index>)
11116
11117Overview:
11118"""""""""
11119
Vedant Kumar51ce6682018-01-26 23:54:25 +000011120The '``llvm.instrprof.value.profile``' intrinsic can be emitted by a
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011121frontend for use with instrumentation based profiling. This will be
11122lowered by the ``-instrprof`` pass to find out the target values,
11123instrumented expressions take in a program at runtime.
11124
11125Arguments:
11126""""""""""
11127
11128The first argument is a pointer to a global variable containing the
11129name of the entity being instrumented. ``name`` should generally be the
11130(mangled) function name for a set of counters.
11131
11132The second argument is a hash value that can be used by the consumer
11133of the profile data to detect changes to the instrumented source. It
11134is an error if ``hash`` differs between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000011135``llvm.instrprof.*`` that refer to the same name.
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011136
11137The third argument is the value of the expression being profiled. The profiled
11138expression's value should be representable as an unsigned 64-bit value. The
11139fourth argument represents the kind of value profiling that is being done. The
11140supported value profiling kinds are enumerated through the
11141``InstrProfValueKind`` type declared in the
11142``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
11143index of the instrumented expression within ``name``. It should be >= 0.
11144
11145Semantics:
11146""""""""""
11147
11148This intrinsic represents the point where a call to a runtime routine
11149should be inserted for value profiling of target expressions. ``-instrprof``
11150pass will generate the appropriate data structures and replace the
Vedant Kumar51ce6682018-01-26 23:54:25 +000011151``llvm.instrprof.value.profile`` intrinsic with the call to the profile
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011152runtime library with proper arguments.
11153
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000011154'``llvm.thread.pointer``' Intrinsic
11155^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11156
11157Syntax:
11158"""""""
11159
11160::
11161
11162 declare i8* @llvm.thread.pointer()
11163
11164Overview:
11165"""""""""
11166
11167The '``llvm.thread.pointer``' intrinsic returns the value of the thread
11168pointer.
11169
11170Semantics:
11171""""""""""
11172
11173The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
11174for the current thread. The exact semantics of this value are target
11175specific: it may point to the start of TLS area, to the end, or somewhere
11176in the middle. Depending on the target, this intrinsic may read a register,
11177call a helper function, read from an alternate memory space, or perform
11178other operations necessary to locate the TLS area. Not all targets support
11179this intrinsic.
11180
Sean Silvab084af42012-12-07 10:36:55 +000011181Standard C Library Intrinsics
11182-----------------------------
11183
11184LLVM provides intrinsics for a few important standard C library
11185functions. These intrinsics allow source-language front-ends to pass
11186information about the alignment of the pointer arguments to the code
11187generator, providing opportunity for more efficient code generation.
11188
11189.. _int_memcpy:
11190
11191'``llvm.memcpy``' Intrinsic
11192^^^^^^^^^^^^^^^^^^^^^^^^^^^
11193
11194Syntax:
11195"""""""
11196
11197This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
11198integer bit width and for different address spaces. Not all targets
11199support all bit widths however.
11200
11201::
11202
11203 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011204 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011205 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011206 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011207
11208Overview:
11209"""""""""
11210
11211The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
11212source location to the destination location.
11213
11214Note that, unlike the standard libc function, the ``llvm.memcpy.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000011215intrinsics do not return a value, takes extra isvolatile
Sean Silvab084af42012-12-07 10:36:55 +000011216arguments and the pointers can be in specified address spaces.
11217
11218Arguments:
11219""""""""""
11220
11221The first argument is a pointer to the destination, the second is a
11222pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000011223specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000011224boolean indicating a volatile access.
11225
Daniel Neilson39eb6a52018-01-19 17:24:21 +000011226The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000011227for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000011228
11229If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
11230a :ref:`volatile operation <volatile>`. The detailed access behavior is not
11231very cleanly specified and it is unwise to depend on it.
11232
11233Semantics:
11234""""""""""
11235
11236The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
11237source location to the destination location, which are not allowed to
11238overlap. It copies "len" bytes of memory over. If the argument is known
11239to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000011240argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000011241
Daniel Neilson57226ef2017-07-12 15:25:26 +000011242.. _int_memmove:
11243
Sean Silvab084af42012-12-07 10:36:55 +000011244'``llvm.memmove``' Intrinsic
11245^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11246
11247Syntax:
11248"""""""
11249
11250This is an overloaded intrinsic. You can use llvm.memmove on any integer
11251bit width and for different address space. Not all targets support all
11252bit widths however.
11253
11254::
11255
11256 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011257 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011258 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011259 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011260
11261Overview:
11262"""""""""
11263
11264The '``llvm.memmove.*``' intrinsics move a block of memory from the
11265source location to the destination location. It is similar to the
11266'``llvm.memcpy``' intrinsic but allows the two memory locations to
11267overlap.
11268
11269Note that, unlike the standard libc function, the ``llvm.memmove.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000011270intrinsics do not return a value, takes an extra isvolatile
11271argument and the pointers can be in specified address spaces.
Sean Silvab084af42012-12-07 10:36:55 +000011272
11273Arguments:
11274""""""""""
11275
11276The first argument is a pointer to the destination, the second is a
11277pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000011278specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000011279boolean indicating a volatile access.
11280
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000011281The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000011282for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000011283
11284If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
11285is a :ref:`volatile operation <volatile>`. The detailed access behavior is
11286not very cleanly specified and it is unwise to depend on it.
11287
11288Semantics:
11289""""""""""
11290
11291The '``llvm.memmove.*``' intrinsics copy a block of memory from the
11292source location to the destination location, which may overlap. It
11293copies "len" bytes of memory over. If the argument is known to be
11294aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000011295otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000011296
Daniel Neilson965613e2017-07-12 21:57:23 +000011297.. _int_memset:
11298
Sean Silvab084af42012-12-07 10:36:55 +000011299'``llvm.memset.*``' Intrinsics
11300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11301
11302Syntax:
11303"""""""
11304
11305This is an overloaded intrinsic. You can use llvm.memset on any integer
11306bit width and for different address spaces. However, not all targets
11307support all bit widths.
11308
11309::
11310
11311 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011312 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011313 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011314 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011315
11316Overview:
11317"""""""""
11318
11319The '``llvm.memset.*``' intrinsics fill a block of memory with a
11320particular byte value.
11321
11322Note that, unlike the standard libc function, the ``llvm.memset``
Daniel Neilson1e687242018-01-19 17:13:12 +000011323intrinsic does not return a value and takes an extra volatile
11324argument. Also, the destination can be in an arbitrary address space.
Sean Silvab084af42012-12-07 10:36:55 +000011325
11326Arguments:
11327""""""""""
11328
11329The first argument is a pointer to the destination to fill, the second
11330is the byte value with which to fill it, the third argument is an
11331integer argument specifying the number of bytes to fill, and the fourth
Daniel Neilson1e687242018-01-19 17:13:12 +000011332is a boolean indicating a volatile access.
Sean Silvab084af42012-12-07 10:36:55 +000011333
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000011334The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000011335for the first arguments.
Sean Silvab084af42012-12-07 10:36:55 +000011336
11337If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
11338a :ref:`volatile operation <volatile>`. The detailed access behavior is not
11339very cleanly specified and it is unwise to depend on it.
11340
11341Semantics:
11342""""""""""
11343
11344The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011345at the destination location.
Sean Silvab084af42012-12-07 10:36:55 +000011346
11347'``llvm.sqrt.*``' Intrinsic
11348^^^^^^^^^^^^^^^^^^^^^^^^^^^
11349
11350Syntax:
11351"""""""
11352
11353This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011354floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011355all types however.
11356
11357::
11358
11359 declare float @llvm.sqrt.f32(float %Val)
11360 declare double @llvm.sqrt.f64(double %Val)
11361 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
11362 declare fp128 @llvm.sqrt.f128(fp128 %Val)
11363 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
11364
11365Overview:
11366"""""""""
11367
Sanjay Patel629c4112017-11-06 16:27:15 +000011368The '``llvm.sqrt``' intrinsics return the square root of the specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011369
11370Arguments:
11371""""""""""
11372
Sanjay Patel629c4112017-11-06 16:27:15 +000011373The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011374
11375Semantics:
11376""""""""""
11377
Sanjay Patel629c4112017-11-06 16:27:15 +000011378Return the same value as a corresponding libm '``sqrt``' function but without
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011379trapping or setting ``errno``. For types specified by IEEE-754, the result
Sanjay Patel629c4112017-11-06 16:27:15 +000011380matches a conforming libm implementation.
11381
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011382When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011383using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011384
11385'``llvm.powi.*``' Intrinsic
11386^^^^^^^^^^^^^^^^^^^^^^^^^^^
11387
11388Syntax:
11389"""""""
11390
11391This is an overloaded intrinsic. You can use ``llvm.powi`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011392floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011393all types however.
11394
11395::
11396
11397 declare float @llvm.powi.f32(float %Val, i32 %power)
11398 declare double @llvm.powi.f64(double %Val, i32 %power)
11399 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
11400 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
11401 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
11402
11403Overview:
11404"""""""""
11405
11406The '``llvm.powi.*``' intrinsics return the first operand raised to the
11407specified (positive or negative) power. The order of evaluation of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011408multiplications is not defined. When a vector of floating-point type is
Sean Silvab084af42012-12-07 10:36:55 +000011409used, the second argument remains a scalar integer value.
11410
11411Arguments:
11412""""""""""
11413
11414The second argument is an integer power, and the first is a value to
11415raise to that power.
11416
11417Semantics:
11418""""""""""
11419
11420This function returns the first value raised to the second power with an
11421unspecified sequence of rounding operations.
11422
11423'``llvm.sin.*``' Intrinsic
11424^^^^^^^^^^^^^^^^^^^^^^^^^^
11425
11426Syntax:
11427"""""""
11428
11429This is an overloaded intrinsic. You can use ``llvm.sin`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011430floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011431all types however.
11432
11433::
11434
11435 declare float @llvm.sin.f32(float %Val)
11436 declare double @llvm.sin.f64(double %Val)
11437 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
11438 declare fp128 @llvm.sin.f128(fp128 %Val)
11439 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
11440
11441Overview:
11442"""""""""
11443
11444The '``llvm.sin.*``' intrinsics return the sine of the operand.
11445
11446Arguments:
11447""""""""""
11448
Sanjay Patel629c4112017-11-06 16:27:15 +000011449The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011450
11451Semantics:
11452""""""""""
11453
Sanjay Patel629c4112017-11-06 16:27:15 +000011454Return the same value as a corresponding libm '``sin``' function but without
11455trapping or setting ``errno``.
11456
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011457When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011458using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011459
11460'``llvm.cos.*``' Intrinsic
11461^^^^^^^^^^^^^^^^^^^^^^^^^^
11462
11463Syntax:
11464"""""""
11465
11466This is an overloaded intrinsic. You can use ``llvm.cos`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011467floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011468all types however.
11469
11470::
11471
11472 declare float @llvm.cos.f32(float %Val)
11473 declare double @llvm.cos.f64(double %Val)
11474 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
11475 declare fp128 @llvm.cos.f128(fp128 %Val)
11476 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
11477
11478Overview:
11479"""""""""
11480
11481The '``llvm.cos.*``' intrinsics return the cosine of the operand.
11482
11483Arguments:
11484""""""""""
11485
Sanjay Patel629c4112017-11-06 16:27:15 +000011486The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011487
11488Semantics:
11489""""""""""
11490
Sanjay Patel629c4112017-11-06 16:27:15 +000011491Return the same value as a corresponding libm '``cos``' function but without
11492trapping or setting ``errno``.
11493
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011494When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011495using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011496
11497'``llvm.pow.*``' Intrinsic
11498^^^^^^^^^^^^^^^^^^^^^^^^^^
11499
11500Syntax:
11501"""""""
11502
11503This is an overloaded intrinsic. You can use ``llvm.pow`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011504floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011505all types however.
11506
11507::
11508
11509 declare float @llvm.pow.f32(float %Val, float %Power)
11510 declare double @llvm.pow.f64(double %Val, double %Power)
11511 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
11512 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
11513 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
11514
11515Overview:
11516"""""""""
11517
11518The '``llvm.pow.*``' intrinsics return the first operand raised to the
11519specified (positive or negative) power.
11520
11521Arguments:
11522""""""""""
11523
Sanjay Patel629c4112017-11-06 16:27:15 +000011524The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011525
11526Semantics:
11527""""""""""
11528
Sanjay Patel629c4112017-11-06 16:27:15 +000011529Return the same value as a corresponding libm '``pow``' function but without
11530trapping or setting ``errno``.
11531
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011532When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011533using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011534
11535'``llvm.exp.*``' Intrinsic
11536^^^^^^^^^^^^^^^^^^^^^^^^^^
11537
11538Syntax:
11539"""""""
11540
11541This is an overloaded intrinsic. You can use ``llvm.exp`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011542floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011543all types however.
11544
11545::
11546
11547 declare float @llvm.exp.f32(float %Val)
11548 declare double @llvm.exp.f64(double %Val)
11549 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
11550 declare fp128 @llvm.exp.f128(fp128 %Val)
11551 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
11552
11553Overview:
11554"""""""""
11555
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011556The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
11557value.
Sean Silvab084af42012-12-07 10:36:55 +000011558
11559Arguments:
11560""""""""""
11561
Sanjay Patel629c4112017-11-06 16:27:15 +000011562The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011563
11564Semantics:
11565""""""""""
11566
Sanjay Patel629c4112017-11-06 16:27:15 +000011567Return the same value as a corresponding libm '``exp``' function but without
11568trapping or setting ``errno``.
11569
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011570When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011571using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011572
11573'``llvm.exp2.*``' Intrinsic
11574^^^^^^^^^^^^^^^^^^^^^^^^^^^
11575
11576Syntax:
11577"""""""
11578
11579This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011580floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011581all types however.
11582
11583::
11584
11585 declare float @llvm.exp2.f32(float %Val)
11586 declare double @llvm.exp2.f64(double %Val)
11587 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
11588 declare fp128 @llvm.exp2.f128(fp128 %Val)
11589 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
11590
11591Overview:
11592"""""""""
11593
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011594The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
11595specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011596
11597Arguments:
11598""""""""""
11599
Sanjay Patel629c4112017-11-06 16:27:15 +000011600The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011601
11602Semantics:
11603""""""""""
11604
Sanjay Patel629c4112017-11-06 16:27:15 +000011605Return the same value as a corresponding libm '``exp2``' function but without
11606trapping or setting ``errno``.
11607
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011608When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011609using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011610
11611'``llvm.log.*``' Intrinsic
11612^^^^^^^^^^^^^^^^^^^^^^^^^^
11613
11614Syntax:
11615"""""""
11616
11617This is an overloaded intrinsic. You can use ``llvm.log`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011618floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011619all types however.
11620
11621::
11622
11623 declare float @llvm.log.f32(float %Val)
11624 declare double @llvm.log.f64(double %Val)
11625 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
11626 declare fp128 @llvm.log.f128(fp128 %Val)
11627 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
11628
11629Overview:
11630"""""""""
11631
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011632The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
11633value.
Sean Silvab084af42012-12-07 10:36:55 +000011634
11635Arguments:
11636""""""""""
11637
Sanjay Patel629c4112017-11-06 16:27:15 +000011638The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011639
11640Semantics:
11641""""""""""
11642
Sanjay Patel629c4112017-11-06 16:27:15 +000011643Return the same value as a corresponding libm '``log``' function but without
11644trapping or setting ``errno``.
11645
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011646When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011647using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011648
11649'``llvm.log10.*``' Intrinsic
11650^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11651
11652Syntax:
11653"""""""
11654
11655This is an overloaded intrinsic. You can use ``llvm.log10`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011656floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011657all types however.
11658
11659::
11660
11661 declare float @llvm.log10.f32(float %Val)
11662 declare double @llvm.log10.f64(double %Val)
11663 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
11664 declare fp128 @llvm.log10.f128(fp128 %Val)
11665 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
11666
11667Overview:
11668"""""""""
11669
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011670The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
11671specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011672
11673Arguments:
11674""""""""""
11675
Sanjay Patel629c4112017-11-06 16:27:15 +000011676The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011677
11678Semantics:
11679""""""""""
11680
Sanjay Patel629c4112017-11-06 16:27:15 +000011681Return the same value as a corresponding libm '``log10``' function but without
11682trapping or setting ``errno``.
11683
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011684When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011685using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011686
11687'``llvm.log2.*``' Intrinsic
11688^^^^^^^^^^^^^^^^^^^^^^^^^^^
11689
11690Syntax:
11691"""""""
11692
11693This is an overloaded intrinsic. You can use ``llvm.log2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011694floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011695all types however.
11696
11697::
11698
11699 declare float @llvm.log2.f32(float %Val)
11700 declare double @llvm.log2.f64(double %Val)
11701 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
11702 declare fp128 @llvm.log2.f128(fp128 %Val)
11703 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
11704
11705Overview:
11706"""""""""
11707
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011708The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
11709value.
Sean Silvab084af42012-12-07 10:36:55 +000011710
11711Arguments:
11712""""""""""
11713
Sanjay Patel629c4112017-11-06 16:27:15 +000011714The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011715
11716Semantics:
11717""""""""""
11718
Sanjay Patel629c4112017-11-06 16:27:15 +000011719Return the same value as a corresponding libm '``log2``' function but without
11720trapping or setting ``errno``.
11721
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011722When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011723using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011724
11725'``llvm.fma.*``' Intrinsic
11726^^^^^^^^^^^^^^^^^^^^^^^^^^
11727
11728Syntax:
11729"""""""
11730
11731This is an overloaded intrinsic. You can use ``llvm.fma`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011732floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011733all types however.
11734
11735::
11736
11737 declare float @llvm.fma.f32(float %a, float %b, float %c)
11738 declare double @llvm.fma.f64(double %a, double %b, double %c)
11739 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
11740 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
11741 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
11742
11743Overview:
11744"""""""""
11745
Sanjay Patel629c4112017-11-06 16:27:15 +000011746The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
Sean Silvab084af42012-12-07 10:36:55 +000011747
11748Arguments:
11749""""""""""
11750
Sanjay Patel629c4112017-11-06 16:27:15 +000011751The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011752
11753Semantics:
11754""""""""""
11755
Sanjay Patel629c4112017-11-06 16:27:15 +000011756Return the same value as a corresponding libm '``fma``' function but without
11757trapping or setting ``errno``.
11758
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011759When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011760using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011761
11762'``llvm.fabs.*``' Intrinsic
11763^^^^^^^^^^^^^^^^^^^^^^^^^^^
11764
11765Syntax:
11766"""""""
11767
11768This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011769floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011770all types however.
11771
11772::
11773
11774 declare float @llvm.fabs.f32(float %Val)
11775 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011776 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011777 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011778 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011779
11780Overview:
11781"""""""""
11782
11783The '``llvm.fabs.*``' intrinsics return the absolute value of the
11784operand.
11785
11786Arguments:
11787""""""""""
11788
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011789The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011790type.
11791
11792Semantics:
11793""""""""""
11794
11795This function returns the same values as the libm ``fabs`` functions
11796would, and handles error conditions in the same way.
11797
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011798'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011799^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011800
11801Syntax:
11802"""""""
11803
11804This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011805floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011806all types however.
11807
11808::
11809
Matt Arsenault64313c92014-10-22 18:25:02 +000011810 declare float @llvm.minnum.f32(float %Val0, float %Val1)
11811 declare double @llvm.minnum.f64(double %Val0, double %Val1)
11812 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11813 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
11814 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011815
11816Overview:
11817"""""""""
11818
11819The '``llvm.minnum.*``' intrinsics return the minimum of the two
11820arguments.
11821
11822
11823Arguments:
11824""""""""""
11825
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011826The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011827type.
11828
11829Semantics:
11830""""""""""
11831
Matt Arsenault937003c2018-08-27 17:40:07 +000011832Follows the IEEE-754 semantics for minNum, except for handling of
11833signaling NaNs. This match's the behavior of libm's fmin.
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011834
11835If either operand is a NaN, returns the other non-NaN operand. Returns
Matt Arsenault937003c2018-08-27 17:40:07 +000011836NaN only if both operands are NaN. The returned NaN is always
11837quiet. If the operands compare equal, returns a value that compares
11838equal to both operands. This means that fmin(+/-0.0, +/-0.0) could
11839return either -0.0 or 0.0.
11840
11841Unlike the IEEE-754 2008 behavior, this does not distinguish between
11842signaling and quiet NaN inputs. If a target's implementation follows
11843the standard and returns a quiet NaN if either input is a signaling
11844NaN, the intrinsic lowering is responsible for quieting the inputs to
11845correctly return the non-NaN input (e.g. by using the equivalent of
11846``llvm.canonicalize``).
11847
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011848
11849'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011850^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011851
11852Syntax:
11853"""""""
11854
11855This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011856floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011857all types however.
11858
11859::
11860
Matt Arsenault64313c92014-10-22 18:25:02 +000011861 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
11862 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
11863 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11864 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
11865 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011866
11867Overview:
11868"""""""""
11869
11870The '``llvm.maxnum.*``' intrinsics return the maximum of the two
11871arguments.
11872
11873
11874Arguments:
11875""""""""""
11876
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011877The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011878type.
11879
11880Semantics:
11881""""""""""
Matt Arsenault937003c2018-08-27 17:40:07 +000011882Follows the IEEE-754 semantics for maxNum except for the handling of
11883signaling NaNs. This matches the behavior of libm's fmax.
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011884
11885If either operand is a NaN, returns the other non-NaN operand. Returns
Matt Arsenault937003c2018-08-27 17:40:07 +000011886NaN only if both operands are NaN. The returned NaN is always
11887quiet. If the operands compare equal, returns a value that compares
11888equal to both operands. This means that fmax(+/-0.0, +/-0.0) could
11889return either -0.0 or 0.0.
11890
11891Unlike the IEEE-754 2008 behavior, this does not distinguish between
11892signaling and quiet NaN inputs. If a target's implementation follows
11893the standard and returns a quiet NaN if either input is a signaling
11894NaN, the intrinsic lowering is responsible for quieting the inputs to
11895correctly return the non-NaN input (e.g. by using the equivalent of
11896``llvm.canonicalize``).
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011897
Thomas Lively16c349d2018-10-13 07:21:44 +000011898'``llvm.minimum.*``' Intrinsic
11899^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11900
11901Syntax:
11902"""""""
11903
11904This is an overloaded intrinsic. You can use ``llvm.minimum`` on any
11905floating-point or vector of floating-point type. Not all targets support
11906all types however.
11907
11908::
11909
11910 declare float @llvm.minimum.f32(float %Val0, float %Val1)
11911 declare double @llvm.minimum.f64(double %Val0, double %Val1)
11912 declare x86_fp80 @llvm.minimum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11913 declare fp128 @llvm.minimum.f128(fp128 %Val0, fp128 %Val1)
11914 declare ppc_fp128 @llvm.minimum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
11915
11916Overview:
11917"""""""""
11918
11919The '``llvm.minimum.*``' intrinsics return the minimum of the two
11920arguments, propagating NaNs and treating -0.0 as less than +0.0.
11921
11922
11923Arguments:
11924""""""""""
11925
11926The arguments and return value are floating-point numbers of the same
11927type.
11928
11929Semantics:
11930""""""""""
11931If either operand is a NaN, returns NaN. Otherwise returns the lesser
11932of the two arguments. -0.0 is considered to be less than +0.0 for this
11933intrinsic. Note that these are the semantics specified in the draft of
11934IEEE 754-2018.
11935
11936'``llvm.maximum.*``' Intrinsic
11937^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11938
11939Syntax:
11940"""""""
11941
11942This is an overloaded intrinsic. You can use ``llvm.maximum`` on any
11943floating-point or vector of floating-point type. Not all targets support
11944all types however.
11945
11946::
11947
11948 declare float @llvm.maximum.f32(float %Val0, float %Val1)
11949 declare double @llvm.maximum.f64(double %Val0, double %Val1)
11950 declare x86_fp80 @llvm.maximum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11951 declare fp128 @llvm.maximum.f128(fp128 %Val0, fp128 %Val1)
11952 declare ppc_fp128 @llvm.maximum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
11953
11954Overview:
11955"""""""""
11956
11957The '``llvm.maximum.*``' intrinsics return the maximum of the two
11958arguments, propagating NaNs and treating -0.0 as less than +0.0.
11959
11960
11961Arguments:
11962""""""""""
11963
11964The arguments and return value are floating-point numbers of the same
11965type.
11966
11967Semantics:
11968""""""""""
11969If either operand is a NaN, returns NaN. Otherwise returns the greater
11970of the two arguments. -0.0 is considered to be less than +0.0 for this
11971intrinsic. Note that these are the semantics specified in the draft of
11972IEEE 754-2018.
11973
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011974'``llvm.copysign.*``' Intrinsic
11975^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11976
11977Syntax:
11978"""""""
11979
11980This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011981floating-point or vector of floating-point type. Not all targets support
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011982all types however.
11983
11984::
11985
11986 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
11987 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
11988 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
11989 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
11990 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
11991
11992Overview:
11993"""""""""
11994
11995The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
11996first operand and the sign of the second operand.
11997
11998Arguments:
11999""""""""""
12000
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012001The arguments and return value are floating-point numbers of the same
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000012002type.
12003
12004Semantics:
12005""""""""""
12006
12007This function returns the same values as the libm ``copysign``
12008functions would, and handles error conditions in the same way.
12009
Sean Silvab084af42012-12-07 10:36:55 +000012010'``llvm.floor.*``' Intrinsic
12011^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12012
12013Syntax:
12014"""""""
12015
12016This is an overloaded intrinsic. You can use ``llvm.floor`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012017floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012018all types however.
12019
12020::
12021
12022 declare float @llvm.floor.f32(float %Val)
12023 declare double @llvm.floor.f64(double %Val)
12024 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
12025 declare fp128 @llvm.floor.f128(fp128 %Val)
12026 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
12027
12028Overview:
12029"""""""""
12030
12031The '``llvm.floor.*``' intrinsics return the floor of the operand.
12032
12033Arguments:
12034""""""""""
12035
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012036The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012037type.
12038
12039Semantics:
12040""""""""""
12041
12042This function returns the same values as the libm ``floor`` functions
12043would, and handles error conditions in the same way.
12044
12045'``llvm.ceil.*``' Intrinsic
12046^^^^^^^^^^^^^^^^^^^^^^^^^^^
12047
12048Syntax:
12049"""""""
12050
12051This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012052floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012053all types however.
12054
12055::
12056
12057 declare float @llvm.ceil.f32(float %Val)
12058 declare double @llvm.ceil.f64(double %Val)
12059 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
12060 declare fp128 @llvm.ceil.f128(fp128 %Val)
12061 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
12062
12063Overview:
12064"""""""""
12065
12066The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
12067
12068Arguments:
12069""""""""""
12070
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012071The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012072type.
12073
12074Semantics:
12075""""""""""
12076
12077This function returns the same values as the libm ``ceil`` functions
12078would, and handles error conditions in the same way.
12079
12080'``llvm.trunc.*``' Intrinsic
12081^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12082
12083Syntax:
12084"""""""
12085
12086This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012087floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012088all types however.
12089
12090::
12091
12092 declare float @llvm.trunc.f32(float %Val)
12093 declare double @llvm.trunc.f64(double %Val)
12094 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
12095 declare fp128 @llvm.trunc.f128(fp128 %Val)
12096 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
12097
12098Overview:
12099"""""""""
12100
12101The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
12102nearest integer not larger in magnitude than the operand.
12103
12104Arguments:
12105""""""""""
12106
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012107The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012108type.
12109
12110Semantics:
12111""""""""""
12112
12113This function returns the same values as the libm ``trunc`` functions
12114would, and handles error conditions in the same way.
12115
12116'``llvm.rint.*``' Intrinsic
12117^^^^^^^^^^^^^^^^^^^^^^^^^^^
12118
12119Syntax:
12120"""""""
12121
12122This is an overloaded intrinsic. You can use ``llvm.rint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012123floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012124all types however.
12125
12126::
12127
12128 declare float @llvm.rint.f32(float %Val)
12129 declare double @llvm.rint.f64(double %Val)
12130 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
12131 declare fp128 @llvm.rint.f128(fp128 %Val)
12132 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
12133
12134Overview:
12135"""""""""
12136
12137The '``llvm.rint.*``' intrinsics returns the operand rounded to the
12138nearest integer. It may raise an inexact floating-point exception if the
12139operand isn't an integer.
12140
12141Arguments:
12142""""""""""
12143
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012144The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012145type.
12146
12147Semantics:
12148""""""""""
12149
12150This function returns the same values as the libm ``rint`` functions
12151would, and handles error conditions in the same way.
12152
12153'``llvm.nearbyint.*``' Intrinsic
12154^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12155
12156Syntax:
12157"""""""
12158
12159This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012160floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012161all types however.
12162
12163::
12164
12165 declare float @llvm.nearbyint.f32(float %Val)
12166 declare double @llvm.nearbyint.f64(double %Val)
12167 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
12168 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
12169 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
12170
12171Overview:
12172"""""""""
12173
12174The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
12175nearest integer.
12176
12177Arguments:
12178""""""""""
12179
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012180The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012181type.
12182
12183Semantics:
12184""""""""""
12185
12186This function returns the same values as the libm ``nearbyint``
12187functions would, and handles error conditions in the same way.
12188
Hal Finkel171817e2013-08-07 22:49:12 +000012189'``llvm.round.*``' Intrinsic
12190^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12191
12192Syntax:
12193"""""""
12194
12195This is an overloaded intrinsic. You can use ``llvm.round`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012196floating-point or vector of floating-point type. Not all targets support
Hal Finkel171817e2013-08-07 22:49:12 +000012197all types however.
12198
12199::
12200
12201 declare float @llvm.round.f32(float %Val)
12202 declare double @llvm.round.f64(double %Val)
12203 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
12204 declare fp128 @llvm.round.f128(fp128 %Val)
12205 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
12206
12207Overview:
12208"""""""""
12209
12210The '``llvm.round.*``' intrinsics returns the operand rounded to the
12211nearest integer.
12212
12213Arguments:
12214""""""""""
12215
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012216The argument and return value are floating-point numbers of the same
Hal Finkel171817e2013-08-07 22:49:12 +000012217type.
12218
12219Semantics:
12220""""""""""
12221
12222This function returns the same values as the libm ``round``
12223functions would, and handles error conditions in the same way.
12224
Sean Silvab084af42012-12-07 10:36:55 +000012225Bit Manipulation Intrinsics
12226---------------------------
12227
12228LLVM provides intrinsics for a few important bit manipulation
12229operations. These allow efficient code generation for some algorithms.
12230
James Molloy90111f72015-11-12 12:29:09 +000012231'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000012232^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000012233
12234Syntax:
12235"""""""
12236
12237This is an overloaded intrinsic function. You can use bitreverse on any
12238integer type.
12239
12240::
12241
12242 declare i16 @llvm.bitreverse.i16(i16 <id>)
12243 declare i32 @llvm.bitreverse.i32(i32 <id>)
12244 declare i64 @llvm.bitreverse.i64(i64 <id>)
Simon Pilgrimf4268172019-01-28 16:56:38 +000012245 declare <4 x i32> @llvm.bitreverse.v4i32(<4 x i32> <id>)
James Molloy90111f72015-11-12 12:29:09 +000012246
12247Overview:
12248"""""""""
12249
12250The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Simon Pilgrimf4268172019-01-28 16:56:38 +000012251bitpattern of an integer value or vector of integer values; for example
12252``0b10110110`` becomes ``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000012253
12254Semantics:
12255""""""""""
12256
Yichao Yu5abf14b2016-11-23 16:25:31 +000012257The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
Simon Pilgrimf4268172019-01-28 16:56:38 +000012258``M`` in the input moved to bit ``N-M`` in the output. The vector
12259intrinsics, such as ``llvm.bitreverse.v4i32``, operate on a per-element
12260basis and the element order is not affected.
James Molloy90111f72015-11-12 12:29:09 +000012261
Sean Silvab084af42012-12-07 10:36:55 +000012262'``llvm.bswap.*``' Intrinsics
12263^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12264
12265Syntax:
12266"""""""
12267
12268This is an overloaded intrinsic function. You can use bswap on any
12269integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
12270
12271::
12272
12273 declare i16 @llvm.bswap.i16(i16 <id>)
12274 declare i32 @llvm.bswap.i32(i32 <id>)
12275 declare i64 @llvm.bswap.i64(i64 <id>)
Simon Pilgrimf4268172019-01-28 16:56:38 +000012276 declare <4 x i32> @llvm.bswap.v4i32(<4 x i32> <id>)
Sean Silvab084af42012-12-07 10:36:55 +000012277
12278Overview:
12279"""""""""
12280
Simon Pilgrimf4268172019-01-28 16:56:38 +000012281The '``llvm.bswap``' family of intrinsics is used to byte swap an integer
12282value or vector of integer values with an even number of bytes (positive
12283multiple of 16 bits).
Sean Silvab084af42012-12-07 10:36:55 +000012284
12285Semantics:
12286""""""""""
12287
12288The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
12289and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
12290intrinsic returns an i32 value that has the four bytes of the input i32
12291swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
12292returned i32 will have its bytes in 3, 2, 1, 0 order. The
12293``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
12294concept to additional even-byte lengths (6 bytes, 8 bytes and more,
Simon Pilgrimf4268172019-01-28 16:56:38 +000012295respectively). The vector intrinsics, such as ``llvm.bswap.v4i32``,
12296operate on a per-element basis and the element order is not affected.
Sean Silvab084af42012-12-07 10:36:55 +000012297
12298'``llvm.ctpop.*``' Intrinsic
12299^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12300
12301Syntax:
12302"""""""
12303
12304This is an overloaded intrinsic. You can use llvm.ctpop on any integer
12305bit width, or on any vector with integer elements. Not all targets
12306support all bit widths or vector types, however.
12307
12308::
12309
12310 declare i8 @llvm.ctpop.i8(i8 <src>)
12311 declare i16 @llvm.ctpop.i16(i16 <src>)
12312 declare i32 @llvm.ctpop.i32(i32 <src>)
12313 declare i64 @llvm.ctpop.i64(i64 <src>)
12314 declare i256 @llvm.ctpop.i256(i256 <src>)
12315 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
12316
12317Overview:
12318"""""""""
12319
12320The '``llvm.ctpop``' family of intrinsics counts the number of bits set
12321in a value.
12322
12323Arguments:
12324""""""""""
12325
12326The only argument is the value to be counted. The argument may be of any
12327integer type, or a vector with integer elements. The return type must
12328match the argument type.
12329
12330Semantics:
12331""""""""""
12332
12333The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
12334each element of a vector.
12335
12336'``llvm.ctlz.*``' Intrinsic
12337^^^^^^^^^^^^^^^^^^^^^^^^^^^
12338
12339Syntax:
12340"""""""
12341
12342This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
12343integer bit width, or any vector whose elements are integers. Not all
12344targets support all bit widths or vector types, however.
12345
12346::
12347
12348 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
12349 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
12350 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
12351 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
12352 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000012353 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000012354
12355Overview:
12356"""""""""
12357
12358The '``llvm.ctlz``' family of intrinsic functions counts the number of
12359leading zeros in a variable.
12360
12361Arguments:
12362""""""""""
12363
12364The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000012365any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000012366type must match the first argument type.
12367
12368The second argument must be a constant and is a flag to indicate whether
12369the intrinsic should ensure that a zero as the first argument produces a
12370defined result. Historically some architectures did not provide a
12371defined result for zero values as efficiently, and many algorithms are
12372now predicated on avoiding zero-value inputs.
12373
12374Semantics:
12375""""""""""
12376
12377The '``llvm.ctlz``' intrinsic counts the leading (most significant)
12378zeros in a variable, or within each element of the vector. If
12379``src == 0`` then the result is the size in bits of the type of ``src``
12380if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
12381``llvm.ctlz(i32 2) = 30``.
12382
12383'``llvm.cttz.*``' Intrinsic
12384^^^^^^^^^^^^^^^^^^^^^^^^^^^
12385
12386Syntax:
12387"""""""
12388
12389This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
12390integer bit width, or any vector of integer elements. Not all targets
12391support all bit widths or vector types, however.
12392
12393::
12394
12395 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
12396 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
12397 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
12398 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
12399 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000012400 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000012401
12402Overview:
12403"""""""""
12404
12405The '``llvm.cttz``' family of intrinsic functions counts the number of
12406trailing zeros.
12407
12408Arguments:
12409""""""""""
12410
12411The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000012412any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000012413type must match the first argument type.
12414
12415The second argument must be a constant and is a flag to indicate whether
12416the intrinsic should ensure that a zero as the first argument produces a
12417defined result. Historically some architectures did not provide a
12418defined result for zero values as efficiently, and many algorithms are
12419now predicated on avoiding zero-value inputs.
12420
12421Semantics:
12422""""""""""
12423
12424The '``llvm.cttz``' intrinsic counts the trailing (least significant)
12425zeros in a variable, or within each element of a vector. If ``src == 0``
12426then the result is the size in bits of the type of ``src`` if
12427``is_zero_undef == 0`` and ``undef`` otherwise. For example,
12428``llvm.cttz(2) = 1``.
12429
Philip Reames34843ae2015-03-05 05:55:55 +000012430.. _int_overflow:
12431
Sanjay Patelc71adc82018-07-16 22:59:31 +000012432'``llvm.fshl.*``' Intrinsic
12433^^^^^^^^^^^^^^^^^^^^^^^^^^^
12434
12435Syntax:
12436"""""""
12437
12438This is an overloaded intrinsic. You can use ``llvm.fshl`` on any
12439integer bit width or any vector of integer elements. Not all targets
12440support all bit widths or vector types, however.
12441
12442::
12443
12444 declare i8 @llvm.fshl.i8 (i8 %a, i8 %b, i8 %c)
12445 declare i67 @llvm.fshl.i67(i67 %a, i67 %b, i67 %c)
12446 declare <2 x i32> @llvm.fshl.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
12447
12448Overview:
12449"""""""""
12450
12451The '``llvm.fshl``' family of intrinsic functions performs a funnel shift left:
12452the first two values are concatenated as { %a : %b } (%a is the most significant
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000012453bits of the wide value), the combined value is shifted left, and the most
12454significant bits are extracted to produce a result that is the same size as the
12455original arguments. If the first 2 arguments are identical, this is equivalent
12456to a rotate left operation. For vector types, the operation occurs for each
12457element of the vector. The shift argument is treated as an unsigned amount
Sanjay Patelc71adc82018-07-16 22:59:31 +000012458modulo the element size of the arguments.
12459
12460Arguments:
12461""""""""""
12462
12463The first two arguments are the values to be concatenated. The third
12464argument is the shift amount. The arguments may be any integer type or a
12465vector with integer element type. All arguments and the return value must
12466have the same type.
12467
12468Example:
12469""""""""
12470
12471.. code-block:: text
12472
12473 %r = call i8 @llvm.fshl.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: msb_extract((concat(x, y) << (z % 8)), 8)
12474 %r = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 15) ; %r = i8: 128 (0b10000000)
12475 %r = call i8 @llvm.fshl.i8(i8 15, i8 15, i8 11) ; %r = i8: 120 (0b01111000)
12476 %r = call i8 @llvm.fshl.i8(i8 0, i8 255, i8 8) ; %r = i8: 0 (0b00000000)
12477
12478'``llvm.fshr.*``' Intrinsic
12479^^^^^^^^^^^^^^^^^^^^^^^^^^^
12480
12481Syntax:
12482"""""""
12483
12484This is an overloaded intrinsic. You can use ``llvm.fshr`` on any
12485integer bit width or any vector of integer elements. Not all targets
12486support all bit widths or vector types, however.
12487
12488::
12489
12490 declare i8 @llvm.fshr.i8 (i8 %a, i8 %b, i8 %c)
12491 declare i67 @llvm.fshr.i67(i67 %a, i67 %b, i67 %c)
12492 declare <2 x i32> @llvm.fshr.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
12493
12494Overview:
12495"""""""""
12496
12497The '``llvm.fshr``' family of intrinsic functions performs a funnel shift right:
12498the first two values are concatenated as { %a : %b } (%a is the most significant
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000012499bits of the wide value), the combined value is shifted right, and the least
12500significant bits are extracted to produce a result that is the same size as the
12501original arguments. If the first 2 arguments are identical, this is equivalent
12502to a rotate right operation. For vector types, the operation occurs for each
12503element of the vector. The shift argument is treated as an unsigned amount
Sanjay Patelc71adc82018-07-16 22:59:31 +000012504modulo the element size of the arguments.
12505
12506Arguments:
12507""""""""""
12508
12509The first two arguments are the values to be concatenated. The third
12510argument is the shift amount. The arguments may be any integer type or a
12511vector with integer element type. All arguments and the return value must
12512have the same type.
12513
12514Example:
12515""""""""
12516
12517.. code-block:: text
12518
12519 %r = call i8 @llvm.fshr.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: lsb_extract((concat(x, y) >> (z % 8)), 8)
12520 %r = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 15) ; %r = i8: 254 (0b11111110)
12521 %r = call i8 @llvm.fshr.i8(i8 15, i8 15, i8 11) ; %r = i8: 225 (0b11100001)
12522 %r = call i8 @llvm.fshr.i8(i8 0, i8 255, i8 8) ; %r = i8: 255 (0b11111111)
12523
Sean Silvab084af42012-12-07 10:36:55 +000012524Arithmetic with Overflow Intrinsics
12525-----------------------------------
12526
John Regehr6a493f22016-05-12 20:55:09 +000012527LLVM provides intrinsics for fast arithmetic overflow checking.
12528
12529Each of these intrinsics returns a two-element struct. The first
12530element of this struct contains the result of the corresponding
12531arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
12532the result. Therefore, for example, the first element of the struct
12533returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
12534result of a 32-bit ``add`` instruction with the same operands, where
12535the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
12536
12537The second element of the result is an ``i1`` that is 1 if the
12538arithmetic operation overflowed and 0 otherwise. An operation
12539overflows if, for any values of its operands ``A`` and ``B`` and for
12540any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
12541not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
12542``sext`` for signed overflow and ``zext`` for unsigned overflow, and
12543``op`` is the underlying arithmetic operation.
12544
12545The behavior of these intrinsics is well-defined for all argument
12546values.
Sean Silvab084af42012-12-07 10:36:55 +000012547
12548'``llvm.sadd.with.overflow.*``' Intrinsics
12549^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12550
12551Syntax:
12552"""""""
12553
12554This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
12555on any integer bit width.
12556
12557::
12558
12559 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
12560 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12561 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
12562
12563Overview:
12564"""""""""
12565
12566The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
12567a signed addition of the two arguments, and indicate whether an overflow
12568occurred during the signed summation.
12569
12570Arguments:
12571""""""""""
12572
12573The arguments (%a and %b) and the first element of the result structure
12574may be of integer types of any bit width, but they must have the same
12575bit width. The second element of the result structure must be of type
12576``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12577addition.
12578
12579Semantics:
12580""""""""""
12581
12582The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012583a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012584first element of which is the signed summation, and the second element
12585of which is a bit specifying if the signed summation resulted in an
12586overflow.
12587
12588Examples:
12589"""""""""
12590
12591.. code-block:: llvm
12592
12593 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12594 %sum = extractvalue {i32, i1} %res, 0
12595 %obit = extractvalue {i32, i1} %res, 1
12596 br i1 %obit, label %overflow, label %normal
12597
12598'``llvm.uadd.with.overflow.*``' Intrinsics
12599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12600
12601Syntax:
12602"""""""
12603
12604This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
12605on any integer bit width.
12606
12607::
12608
12609 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
12610 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12611 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
12612
12613Overview:
12614"""""""""
12615
12616The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
12617an unsigned addition of the two arguments, and indicate whether a carry
12618occurred during the unsigned summation.
12619
12620Arguments:
12621""""""""""
12622
12623The arguments (%a and %b) and the first element of the result structure
12624may be of integer types of any bit width, but they must have the same
12625bit width. The second element of the result structure must be of type
12626``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12627addition.
12628
12629Semantics:
12630""""""""""
12631
12632The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012633an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012634first element of which is the sum, and the second element of which is a
12635bit specifying if the unsigned summation resulted in a carry.
12636
12637Examples:
12638"""""""""
12639
12640.. code-block:: llvm
12641
12642 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12643 %sum = extractvalue {i32, i1} %res, 0
12644 %obit = extractvalue {i32, i1} %res, 1
12645 br i1 %obit, label %carry, label %normal
12646
12647'``llvm.ssub.with.overflow.*``' Intrinsics
12648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12649
12650Syntax:
12651"""""""
12652
12653This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
12654on any integer bit width.
12655
12656::
12657
12658 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
12659 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12660 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
12661
12662Overview:
12663"""""""""
12664
12665The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
12666a signed subtraction of the two arguments, and indicate whether an
12667overflow occurred during the signed subtraction.
12668
12669Arguments:
12670""""""""""
12671
12672The arguments (%a and %b) and the first element of the result structure
12673may be of integer types of any bit width, but they must have the same
12674bit width. The second element of the result structure must be of type
12675``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12676subtraction.
12677
12678Semantics:
12679""""""""""
12680
12681The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012682a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012683first element of which is the subtraction, and the second element of
12684which is a bit specifying if the signed subtraction resulted in an
12685overflow.
12686
12687Examples:
12688"""""""""
12689
12690.. code-block:: llvm
12691
12692 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12693 %sum = extractvalue {i32, i1} %res, 0
12694 %obit = extractvalue {i32, i1} %res, 1
12695 br i1 %obit, label %overflow, label %normal
12696
12697'``llvm.usub.with.overflow.*``' Intrinsics
12698^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12699
12700Syntax:
12701"""""""
12702
12703This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
12704on any integer bit width.
12705
12706::
12707
12708 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
12709 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12710 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
12711
12712Overview:
12713"""""""""
12714
12715The '``llvm.usub.with.overflow``' family of intrinsic functions perform
12716an unsigned subtraction of the two arguments, and indicate whether an
12717overflow occurred during the unsigned subtraction.
12718
12719Arguments:
12720""""""""""
12721
12722The arguments (%a and %b) and the first element of the result structure
12723may be of integer types of any bit width, but they must have the same
12724bit width. The second element of the result structure must be of type
12725``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12726subtraction.
12727
12728Semantics:
12729""""""""""
12730
12731The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012732an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012733the first element of which is the subtraction, and the second element of
12734which is a bit specifying if the unsigned subtraction resulted in an
12735overflow.
12736
12737Examples:
12738"""""""""
12739
12740.. code-block:: llvm
12741
12742 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12743 %sum = extractvalue {i32, i1} %res, 0
12744 %obit = extractvalue {i32, i1} %res, 1
12745 br i1 %obit, label %overflow, label %normal
12746
12747'``llvm.smul.with.overflow.*``' Intrinsics
12748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12749
12750Syntax:
12751"""""""
12752
12753This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
12754on any integer bit width.
12755
12756::
12757
12758 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
12759 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12760 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
12761
12762Overview:
12763"""""""""
12764
12765The '``llvm.smul.with.overflow``' family of intrinsic functions perform
12766a signed multiplication of the two arguments, and indicate whether an
12767overflow occurred during the signed multiplication.
12768
12769Arguments:
12770""""""""""
12771
12772The arguments (%a and %b) and the first element of the result structure
12773may be of integer types of any bit width, but they must have the same
12774bit width. The second element of the result structure must be of type
12775``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12776multiplication.
12777
12778Semantics:
12779""""""""""
12780
12781The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012782a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012783the first element of which is the multiplication, and the second element
12784of which is a bit specifying if the signed multiplication resulted in an
12785overflow.
12786
12787Examples:
12788"""""""""
12789
12790.. code-block:: llvm
12791
12792 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12793 %sum = extractvalue {i32, i1} %res, 0
12794 %obit = extractvalue {i32, i1} %res, 1
12795 br i1 %obit, label %overflow, label %normal
12796
12797'``llvm.umul.with.overflow.*``' Intrinsics
12798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12799
12800Syntax:
12801"""""""
12802
12803This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
12804on any integer bit width.
12805
12806::
12807
12808 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
12809 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12810 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
12811
12812Overview:
12813"""""""""
12814
12815The '``llvm.umul.with.overflow``' family of intrinsic functions perform
12816a unsigned multiplication of the two arguments, and indicate whether an
12817overflow occurred during the unsigned multiplication.
12818
12819Arguments:
12820""""""""""
12821
12822The arguments (%a and %b) and the first element of the result structure
12823may be of integer types of any bit width, but they must have the same
12824bit width. The second element of the result structure must be of type
12825``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12826multiplication.
12827
12828Semantics:
12829""""""""""
12830
12831The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012832an unsigned multiplication of the two arguments. They return a structure ---
12833the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000012834element of which is a bit specifying if the unsigned multiplication
12835resulted in an overflow.
12836
12837Examples:
12838"""""""""
12839
12840.. code-block:: llvm
12841
12842 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12843 %sum = extractvalue {i32, i1} %res, 0
12844 %obit = extractvalue {i32, i1} %res, 1
12845 br i1 %obit, label %overflow, label %normal
12846
Leonard Chan9ede9532018-11-20 18:01:24 +000012847Saturation Arithmetic Intrinsics
12848---------------------------------
12849
12850Saturation arithmetic is a version of arithmetic in which operations are
12851limited to a fixed range between a minimum and maximum value. If the result of
12852an operation is greater than the maximum value, the result is set (or
12853"clamped") to this maximum. If it is below the minimum, it is clamped to this
12854minimum.
12855
12856
12857'``llvm.sadd.sat.*``' Intrinsics
12858^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12859
12860Syntax
12861"""""""
12862
12863This is an overloaded intrinsic. You can use ``llvm.sadd.sat``
12864on any integer bit width or vectors of integers.
12865
12866::
12867
12868 declare i16 @llvm.sadd.sat.i16(i16 %a, i16 %b)
12869 declare i32 @llvm.sadd.sat.i32(i32 %a, i32 %b)
12870 declare i64 @llvm.sadd.sat.i64(i64 %a, i64 %b)
12871 declare <4 x i32> @llvm.sadd.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
12872
12873Overview
12874"""""""""
12875
12876The '``llvm.sadd.sat``' family of intrinsic functions perform signed
12877saturation addition on the 2 arguments.
12878
12879Arguments
12880""""""""""
12881
12882The arguments (%a and %b) and the result may be of integer types of any bit
12883width, but they must have the same bit width. ``%a`` and ``%b`` are the two
12884values that will undergo signed addition.
12885
12886Semantics:
12887""""""""""
12888
12889The maximum value this operation can clamp to is the largest signed value
12890representable by the bit width of the arguments. The minimum value is the
12891smallest signed value representable by this bit width.
12892
12893
12894Examples
12895"""""""""
12896
12897.. code-block:: llvm
12898
12899 %res = call i4 @llvm.sadd.sat.i4(i4 1, i4 2) ; %res = 3
12900 %res = call i4 @llvm.sadd.sat.i4(i4 5, i4 6) ; %res = 7
12901 %res = call i4 @llvm.sadd.sat.i4(i4 -4, i4 2) ; %res = -2
12902 %res = call i4 @llvm.sadd.sat.i4(i4 -4, i4 -5) ; %res = -8
12903
12904
12905'``llvm.uadd.sat.*``' Intrinsics
12906^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12907
12908Syntax
12909"""""""
12910
12911This is an overloaded intrinsic. You can use ``llvm.uadd.sat``
12912on any integer bit width or vectors of integers.
12913
12914::
12915
12916 declare i16 @llvm.uadd.sat.i16(i16 %a, i16 %b)
12917 declare i32 @llvm.uadd.sat.i32(i32 %a, i32 %b)
12918 declare i64 @llvm.uadd.sat.i64(i64 %a, i64 %b)
12919 declare <4 x i32> @llvm.uadd.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
12920
12921Overview
12922"""""""""
12923
12924The '``llvm.uadd.sat``' family of intrinsic functions perform unsigned
12925saturation addition on the 2 arguments.
12926
12927Arguments
12928""""""""""
12929
12930The arguments (%a and %b) and the result may be of integer types of any bit
12931width, but they must have the same bit width. ``%a`` and ``%b`` are the two
12932values that will undergo unsigned addition.
12933
12934Semantics:
12935""""""""""
12936
12937The maximum value this operation can clamp to is the largest unsigned value
12938representable by the bit width of the arguments. Because this is an unsigned
12939operation, the result will never saturate towards zero.
12940
12941
12942Examples
12943"""""""""
12944
12945.. code-block:: llvm
12946
12947 %res = call i4 @llvm.uadd.sat.i4(i4 1, i4 2) ; %res = 3
12948 %res = call i4 @llvm.uadd.sat.i4(i4 5, i4 6) ; %res = 11
12949 %res = call i4 @llvm.uadd.sat.i4(i4 8, i4 8) ; %res = 15
12950
12951
12952'``llvm.ssub.sat.*``' Intrinsics
12953^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12954
12955Syntax
12956"""""""
12957
12958This is an overloaded intrinsic. You can use ``llvm.ssub.sat``
12959on any integer bit width or vectors of integers.
12960
12961::
12962
12963 declare i16 @llvm.ssub.sat.i16(i16 %a, i16 %b)
12964 declare i32 @llvm.ssub.sat.i32(i32 %a, i32 %b)
12965 declare i64 @llvm.ssub.sat.i64(i64 %a, i64 %b)
12966 declare <4 x i32> @llvm.ssub.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
12967
12968Overview
12969"""""""""
12970
12971The '``llvm.ssub.sat``' family of intrinsic functions perform signed
12972saturation subtraction on the 2 arguments.
12973
12974Arguments
12975""""""""""
12976
12977The arguments (%a and %b) and the result may be of integer types of any bit
12978width, but they must have the same bit width. ``%a`` and ``%b`` are the two
12979values that will undergo signed subtraction.
12980
12981Semantics:
12982""""""""""
12983
12984The maximum value this operation can clamp to is the largest signed value
12985representable by the bit width of the arguments. The minimum value is the
12986smallest signed value representable by this bit width.
12987
12988
12989Examples
12990"""""""""
12991
12992.. code-block:: llvm
12993
12994 %res = call i4 @llvm.ssub.sat.i4(i4 2, i4 1) ; %res = 1
12995 %res = call i4 @llvm.ssub.sat.i4(i4 2, i4 6) ; %res = -4
12996 %res = call i4 @llvm.ssub.sat.i4(i4 -4, i4 5) ; %res = -8
12997 %res = call i4 @llvm.ssub.sat.i4(i4 4, i4 -5) ; %res = 7
12998
12999
13000'``llvm.usub.sat.*``' Intrinsics
13001^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13002
13003Syntax
13004"""""""
13005
13006This is an overloaded intrinsic. You can use ``llvm.usub.sat``
13007on any integer bit width or vectors of integers.
13008
13009::
13010
13011 declare i16 @llvm.usub.sat.i16(i16 %a, i16 %b)
13012 declare i32 @llvm.usub.sat.i32(i32 %a, i32 %b)
13013 declare i64 @llvm.usub.sat.i64(i64 %a, i64 %b)
13014 declare <4 x i32> @llvm.usub.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
13015
13016Overview
13017"""""""""
13018
13019The '``llvm.usub.sat``' family of intrinsic functions perform unsigned
13020saturation subtraction on the 2 arguments.
13021
13022Arguments
13023""""""""""
13024
13025The arguments (%a and %b) and the result may be of integer types of any bit
13026width, but they must have the same bit width. ``%a`` and ``%b`` are the two
13027values that will undergo unsigned subtraction.
13028
13029Semantics:
13030""""""""""
13031
13032The minimum value this operation can clamp to is 0, which is the smallest
13033unsigned value representable by the bit width of the unsigned arguments.
13034Because this is an unsigned operation, the result will never saturate towards
13035the largest possible value representable by this bit width.
13036
13037
13038Examples
13039"""""""""
13040
13041.. code-block:: llvm
13042
13043 %res = call i4 @llvm.usub.sat.i4(i4 2, i4 1) ; %res = 1
13044 %res = call i4 @llvm.usub.sat.i4(i4 2, i4 6) ; %res = 0
13045
13046
Leonard Chan118e53f2018-12-12 06:29:14 +000013047Fixed Point Arithmetic Intrinsics
13048---------------------------------
13049
13050A fixed point number represents a real data type for a number that has a fixed
13051number of digits after a radix point (equivalent to the decimal point '.').
13052The number of digits after the radix point is referred as the ``scale``. These
13053are useful for representing fractional values to a specific precision. The
13054following intrinsics perform fixed point arithmetic operations on 2 operands
13055of the same scale, specified as the third argument.
13056
13057
13058'``llvm.smul.fix.*``' Intrinsics
13059^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13060
13061Syntax
13062"""""""
13063
13064This is an overloaded intrinsic. You can use ``llvm.smul.fix``
13065on any integer bit width or vectors of integers.
13066
13067::
13068
13069 declare i16 @llvm.smul.fix.i16(i16 %a, i16 %b, i32 %scale)
13070 declare i32 @llvm.smul.fix.i32(i32 %a, i32 %b, i32 %scale)
13071 declare i64 @llvm.smul.fix.i64(i64 %a, i64 %b, i32 %scale)
13072 declare <4 x i32> @llvm.smul.fix.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
13073
13074Overview
13075"""""""""
13076
13077The '``llvm.smul.fix``' family of intrinsic functions perform signed
13078fixed point multiplication on 2 arguments of the same scale.
13079
13080Arguments
13081""""""""""
13082
13083The arguments (%a and %b) and the result may be of integer types of any bit
13084width, but they must have the same bit width. ``%a`` and ``%b`` are the two
13085values that will undergo signed fixed point multiplication. The argument
13086``%scale`` represents the scale of both operands, and must be a constant
13087integer.
13088
13089Semantics:
13090""""""""""
13091
13092This operation performs fixed point multiplication on the 2 arguments of a
13093specified scale. The result will also be returned in the same scale specified
13094in the third argument.
13095
13096If the result value cannot be precisely represented in the given scale, the
13097value is rounded up or down to the closest representable value. The rounding
13098direction is unspecified.
13099
13100It is undefined behavior if the source value does not fit within the range of
13101the fixed point type.
13102
13103
13104Examples
13105"""""""""
13106
13107.. code-block:: llvm
13108
13109 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 2, i32 0) ; %res = 6 (2 x 3 = 6)
13110 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 2, i32 1) ; %res = 3 (1.5 x 1 = 1.5)
13111 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 -2, i32 1) ; %res = -3 (1.5 x -1 = -1.5)
13112
13113 ; The result in the following could be rounded up to -2 or down to -2.5
13114 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 -3, i32 1) ; %res = -5 (or -4) (1.5 x -1.5 = -2.25)
13115
13116
Sean Silvab084af42012-12-07 10:36:55 +000013117Specialised Arithmetic Intrinsics
13118---------------------------------
13119
Owen Anderson1056a922015-07-11 07:01:27 +000013120'``llvm.canonicalize.*``' Intrinsic
13121^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13122
13123Syntax:
13124"""""""
13125
13126::
13127
13128 declare float @llvm.canonicalize.f32(float %a)
13129 declare double @llvm.canonicalize.f64(double %b)
13130
13131Overview:
13132"""""""""
13133
13134The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013135encoding of a floating-point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000013136implementing certain numeric primitives such as frexp. The canonical encoding is
13137defined by IEEE-754-2008 to be:
13138
13139::
13140
13141 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000013142 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000013143 numbers, infinities, and NaNs, especially in decimal formats.
13144
13145This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000013146conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000013147according to section 6.2.
13148
13149Examples of non-canonical encodings:
13150
Sean Silvaa1190322015-08-06 22:56:48 +000013151- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000013152 converted to a canonical representation per hardware-specific protocol.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013153- Many normal decimal floating-point numbers have non-canonical alternative
Owen Anderson1056a922015-07-11 07:01:27 +000013154 encodings.
13155- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000013156 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000013157 a zero of the same sign by this operation.
13158
13159Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
13160default exception handling must signal an invalid exception, and produce a
13161quiet NaN result.
13162
13163This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000013164that the compiler does not constant fold the operation. Likewise, division by
131651.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000013166-0.0 is also sufficient provided that the rounding mode is not -Infinity.
13167
Sean Silvaa1190322015-08-06 22:56:48 +000013168``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000013169
13170- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
13171- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
13172 to ``(x == y)``
13173
13174Additionally, the sign of zero must be conserved:
13175``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
13176
13177The payload bits of a NaN must be conserved, with two exceptions.
13178First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000013179must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000013180usual methods.
13181
13182The canonicalization operation may be optimized away if:
13183
Sean Silvaa1190322015-08-06 22:56:48 +000013184- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000013185 floating-point operation that is required by the standard to be canonical.
13186- The result is consumed only by (or fused with) other floating-point
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013187 operations. That is, the bits of the floating-point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000013188
Sean Silvab084af42012-12-07 10:36:55 +000013189'``llvm.fmuladd.*``' Intrinsic
13190^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13191
13192Syntax:
13193"""""""
13194
13195::
13196
13197 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
13198 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
13199
13200Overview:
13201"""""""""
13202
13203The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000013204expressions that can be fused if the code generator determines that (a) the
13205target instruction set has support for a fused operation, and (b) that the
13206fused operation is more efficient than the equivalent, separate pair of mul
13207and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000013208
13209Arguments:
13210""""""""""
13211
13212The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
13213multiplicands, a and b, and an addend c.
13214
13215Semantics:
13216""""""""""
13217
13218The expression:
13219
13220::
13221
13222 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
13223
13224is equivalent to the expression a \* b + c, except that rounding will
13225not be performed between the multiplication and addition steps if the
13226code generator fuses the operations. Fusion is not guaranteed, even if
13227the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000013228corresponding llvm.fma.\* intrinsic function should be used
13229instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000013230
13231Examples:
13232"""""""""
13233
13234.. code-block:: llvm
13235
Tim Northover675a0962014-06-13 14:24:23 +000013236 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000013237
Amara Emersoncf9daa32017-05-09 10:43:25 +000013238
13239Experimental Vector Reduction Intrinsics
13240----------------------------------------
13241
13242Horizontal reductions of vectors can be expressed using the following
13243intrinsics. Each one takes a vector operand as an input and applies its
13244respective operation across all elements of the vector, returning a single
13245scalar result of the same element type.
13246
13247
13248'``llvm.experimental.vector.reduce.add.*``' Intrinsic
13249^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13250
13251Syntax:
13252"""""""
13253
13254::
13255
13256 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
13257 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
13258
13259Overview:
13260"""""""""
13261
13262The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
13263reduction of a vector, returning the result as a scalar. The return type matches
13264the element-type of the vector input.
13265
13266Arguments:
13267""""""""""
13268The argument to this intrinsic must be a vector of integer values.
13269
13270'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
13271^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13272
13273Syntax:
13274"""""""
13275
13276::
13277
13278 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
13279 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
13280
13281Overview:
13282"""""""""
13283
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013284The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000013285``ADD`` reduction of a vector, returning the result as a scalar. The return type
13286matches the element-type of the vector input.
13287
13288If the intrinsic call has fast-math flags, then the reduction will not preserve
13289the associativity of an equivalent scalarized counterpart. If it does not have
13290fast-math flags, then the reduction will be *ordered*, implying that the
13291operation respects the associativity of a scalarized reduction.
13292
13293
13294Arguments:
13295""""""""""
13296The first argument to this intrinsic is a scalar accumulator value, which is
13297only used when there are no fast-math flags attached. This argument may be undef
13298when fast-math flags are used.
13299
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013300The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000013301
13302Examples:
13303"""""""""
13304
13305.. code-block:: llvm
13306
13307 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
13308 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
13309
13310
13311'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
13312^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13313
13314Syntax:
13315"""""""
13316
13317::
13318
13319 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
13320 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
13321
13322Overview:
13323"""""""""
13324
13325The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
13326reduction of a vector, returning the result as a scalar. The return type matches
13327the element-type of the vector input.
13328
13329Arguments:
13330""""""""""
13331The argument to this intrinsic must be a vector of integer values.
13332
13333'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
13334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13335
13336Syntax:
13337"""""""
13338
13339::
13340
13341 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
13342 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
13343
13344Overview:
13345"""""""""
13346
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013347The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000013348``MUL`` reduction of a vector, returning the result as a scalar. The return type
13349matches the element-type of the vector input.
13350
13351If the intrinsic call has fast-math flags, then the reduction will not preserve
13352the associativity of an equivalent scalarized counterpart. If it does not have
13353fast-math flags, then the reduction will be *ordered*, implying that the
13354operation respects the associativity of a scalarized reduction.
13355
13356
13357Arguments:
13358""""""""""
13359The first argument to this intrinsic is a scalar accumulator value, which is
13360only used when there are no fast-math flags attached. This argument may be undef
13361when fast-math flags are used.
13362
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013363The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000013364
13365Examples:
13366"""""""""
13367
13368.. code-block:: llvm
13369
13370 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
13371 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
13372
13373'``llvm.experimental.vector.reduce.and.*``' Intrinsic
13374^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13375
13376Syntax:
13377"""""""
13378
13379::
13380
13381 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
13382
13383Overview:
13384"""""""""
13385
13386The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
13387reduction of a vector, returning the result as a scalar. The return type matches
13388the element-type of the vector input.
13389
13390Arguments:
13391""""""""""
13392The argument to this intrinsic must be a vector of integer values.
13393
13394'``llvm.experimental.vector.reduce.or.*``' Intrinsic
13395^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13396
13397Syntax:
13398"""""""
13399
13400::
13401
13402 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
13403
13404Overview:
13405"""""""""
13406
13407The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
13408of a vector, returning the result as a scalar. The return type matches the
13409element-type of the vector input.
13410
13411Arguments:
13412""""""""""
13413The argument to this intrinsic must be a vector of integer values.
13414
13415'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
13416^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13417
13418Syntax:
13419"""""""
13420
13421::
13422
13423 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
13424
13425Overview:
13426"""""""""
13427
13428The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
13429reduction of a vector, returning the result as a scalar. The return type matches
13430the element-type of the vector input.
13431
13432Arguments:
13433""""""""""
13434The argument to this intrinsic must be a vector of integer values.
13435
13436'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
13437^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13438
13439Syntax:
13440"""""""
13441
13442::
13443
13444 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
13445
13446Overview:
13447"""""""""
13448
13449The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
13450``MAX`` reduction of a vector, returning the result as a scalar. The return type
13451matches the element-type of the vector input.
13452
13453Arguments:
13454""""""""""
13455The argument to this intrinsic must be a vector of integer values.
13456
13457'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
13458^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13459
13460Syntax:
13461"""""""
13462
13463::
13464
13465 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
13466
13467Overview:
13468"""""""""
13469
13470The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
13471``MIN`` reduction of a vector, returning the result as a scalar. The return type
13472matches the element-type of the vector input.
13473
13474Arguments:
13475""""""""""
13476The argument to this intrinsic must be a vector of integer values.
13477
13478'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
13479^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13480
13481Syntax:
13482"""""""
13483
13484::
13485
13486 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
13487
13488Overview:
13489"""""""""
13490
13491The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
13492integer ``MAX`` reduction of a vector, returning the result as a scalar. The
13493return type matches the element-type of the vector input.
13494
13495Arguments:
13496""""""""""
13497The argument to this intrinsic must be a vector of integer values.
13498
13499'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
13500^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13501
13502Syntax:
13503"""""""
13504
13505::
13506
13507 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
13508
13509Overview:
13510"""""""""
13511
13512The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
13513integer ``MIN`` reduction of a vector, returning the result as a scalar. The
13514return type matches the element-type of the vector input.
13515
13516Arguments:
13517""""""""""
13518The argument to this intrinsic must be a vector of integer values.
13519
13520'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
13521^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13522
13523Syntax:
13524"""""""
13525
13526::
13527
13528 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
13529 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
13530
13531Overview:
13532"""""""""
13533
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013534The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000013535``MAX`` reduction of a vector, returning the result as a scalar. The return type
13536matches the element-type of the vector input.
13537
13538If the intrinsic call has the ``nnan`` fast-math flag then the operation can
13539assume that NaNs are not present in the input vector.
13540
13541Arguments:
13542""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013543The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000013544
13545'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
13546^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13547
13548Syntax:
13549"""""""
13550
13551::
13552
13553 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
13554 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
13555
13556Overview:
13557"""""""""
13558
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013559The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000013560``MIN`` reduction of a vector, returning the result as a scalar. The return type
13561matches the element-type of the vector input.
13562
13563If the intrinsic call has the ``nnan`` fast-math flag then the operation can
13564assume that NaNs are not present in the input vector.
13565
13566Arguments:
13567""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013568The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000013569
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013570Half Precision Floating-Point Intrinsics
Sean Silvab084af42012-12-07 10:36:55 +000013571----------------------------------------
13572
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013573For most target platforms, half precision floating-point is a
Sean Silvab084af42012-12-07 10:36:55 +000013574storage-only format. This means that it is a dense encoding (in memory)
13575but does not support computation in the format.
13576
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013577This means that code must first load the half-precision floating-point
Sean Silvab084af42012-12-07 10:36:55 +000013578value as an i16, then convert it to float with
13579:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
13580then be performed on the float value (including extending to double
13581etc). To store the value back to memory, it is first converted to float
13582if needed, then converted to i16 with
13583:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
13584i16 value.
13585
13586.. _int_convert_to_fp16:
13587
13588'``llvm.convert.to.fp16``' Intrinsic
13589^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13590
13591Syntax:
13592"""""""
13593
13594::
13595
Tim Northoverfd7e4242014-07-17 10:51:23 +000013596 declare i16 @llvm.convert.to.fp16.f32(float %a)
13597 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000013598
13599Overview:
13600"""""""""
13601
Tim Northoverfd7e4242014-07-17 10:51:23 +000013602The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013603conventional floating-point type to half precision floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000013604
13605Arguments:
13606""""""""""
13607
13608The intrinsic function contains single argument - the value to be
13609converted.
13610
13611Semantics:
13612""""""""""
13613
Tim Northoverfd7e4242014-07-17 10:51:23 +000013614The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013615conventional floating-point format to half precision floating-point format. The
Tim Northoverfd7e4242014-07-17 10:51:23 +000013616return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000013617
13618Examples:
13619"""""""""
13620
13621.. code-block:: llvm
13622
Tim Northoverfd7e4242014-07-17 10:51:23 +000013623 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000013624 store i16 %res, i16* @x, align 2
13625
13626.. _int_convert_from_fp16:
13627
13628'``llvm.convert.from.fp16``' Intrinsic
13629^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13630
13631Syntax:
13632"""""""
13633
13634::
13635
Tim Northoverfd7e4242014-07-17 10:51:23 +000013636 declare float @llvm.convert.from.fp16.f32(i16 %a)
13637 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000013638
13639Overview:
13640"""""""""
13641
13642The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013643conversion from half precision floating-point format to single precision
13644floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000013645
13646Arguments:
13647""""""""""
13648
13649The intrinsic function contains single argument - the value to be
13650converted.
13651
13652Semantics:
13653""""""""""
13654
13655The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013656conversion from half single precision floating-point format to single
13657precision floating-point format. The input half-float value is
Sean Silvab084af42012-12-07 10:36:55 +000013658represented by an ``i16`` value.
13659
13660Examples:
13661"""""""""
13662
13663.. code-block:: llvm
13664
David Blaikiec7aabbb2015-03-04 22:06:14 +000013665 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000013666 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000013667
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000013668.. _dbg_intrinsics:
13669
Sean Silvab084af42012-12-07 10:36:55 +000013670Debugger Intrinsics
13671-------------------
13672
13673The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
13674prefix), are described in the `LLVM Source Level
Hans Wennborg65195622017-09-28 15:16:37 +000013675Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
Sean Silvab084af42012-12-07 10:36:55 +000013676document.
13677
13678Exception Handling Intrinsics
13679-----------------------------
13680
13681The LLVM exception handling intrinsics (which all start with
13682``llvm.eh.`` prefix), are described in the `LLVM Exception
Hans Wennborg65195622017-09-28 15:16:37 +000013683Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
Sean Silvab084af42012-12-07 10:36:55 +000013684
13685.. _int_trampoline:
13686
13687Trampoline Intrinsics
13688---------------------
13689
13690These intrinsics make it possible to excise one parameter, marked with
13691the :ref:`nest <nest>` attribute, from a function. The result is a
13692callable function pointer lacking the nest parameter - the caller does
13693not need to provide a value for it. Instead, the value to use is stored
13694in advance in a "trampoline", a block of memory usually allocated on the
13695stack, which also contains code to splice the nest value into the
13696argument list. This is used to implement the GCC nested function address
13697extension.
13698
13699For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
13700then the resulting function pointer has signature ``i32 (i32, i32)*``.
13701It can be created as follows:
13702
13703.. code-block:: llvm
13704
13705 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000013706 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000013707 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
13708 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
13709 %fp = bitcast i8* %p to i32 (i32, i32)*
13710
13711The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
13712``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
13713
13714.. _int_it:
13715
13716'``llvm.init.trampoline``' Intrinsic
13717^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13718
13719Syntax:
13720"""""""
13721
13722::
13723
13724 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
13725
13726Overview:
13727"""""""""
13728
13729This fills the memory pointed to by ``tramp`` with executable code,
13730turning it into a trampoline.
13731
13732Arguments:
13733""""""""""
13734
13735The ``llvm.init.trampoline`` intrinsic takes three arguments, all
13736pointers. The ``tramp`` argument must point to a sufficiently large and
13737sufficiently aligned block of memory; this memory is written to by the
13738intrinsic. Note that the size and the alignment are target-specific -
13739LLVM currently provides no portable way of determining them, so a
13740front-end that generates this intrinsic needs to have some
13741target-specific knowledge. The ``func`` argument must hold a function
13742bitcast to an ``i8*``.
13743
13744Semantics:
13745""""""""""
13746
13747The block of memory pointed to by ``tramp`` is filled with target
13748dependent code, turning it into a function. Then ``tramp`` needs to be
13749passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
13750be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
13751function's signature is the same as that of ``func`` with any arguments
13752marked with the ``nest`` attribute removed. At most one such ``nest``
13753argument is allowed, and it must be of pointer type. Calling the new
13754function is equivalent to calling ``func`` with the same argument list,
13755but with ``nval`` used for the missing ``nest`` argument. If, after
13756calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
13757modified, then the effect of any later call to the returned function
13758pointer is undefined.
13759
13760.. _int_at:
13761
13762'``llvm.adjust.trampoline``' Intrinsic
13763^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13764
13765Syntax:
13766"""""""
13767
13768::
13769
13770 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
13771
13772Overview:
13773"""""""""
13774
13775This performs any required machine-specific adjustment to the address of
13776a trampoline (passed as ``tramp``).
13777
13778Arguments:
13779""""""""""
13780
13781``tramp`` must point to a block of memory which already has trampoline
13782code filled in by a previous call to
13783:ref:`llvm.init.trampoline <int_it>`.
13784
13785Semantics:
13786""""""""""
13787
13788On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000013789different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000013790intrinsic returns the executable address corresponding to ``tramp``
13791after performing the required machine specific adjustments. The pointer
13792returned can then be :ref:`bitcast and executed <int_trampoline>`.
13793
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013794.. _int_mload_mstore:
13795
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013796Masked Vector Load and Store Intrinsics
13797---------------------------------------
13798
13799LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
13800
13801.. _int_mload:
13802
13803'``llvm.masked.load.*``' Intrinsics
13804^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13805
13806Syntax:
13807"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013808This is an overloaded intrinsic. The loaded data is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013809
13810::
13811
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013812 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
13813 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013814 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013815 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013816 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013817 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013818
13819Overview:
13820"""""""""
13821
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013822Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013823
13824
13825Arguments:
13826""""""""""
13827
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013828The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013829
13830
13831Semantics:
13832""""""""""
13833
13834The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
13835The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
13836
13837
13838::
13839
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013840 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000013841
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013842 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000013843 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000013844 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013845
13846.. _int_mstore:
13847
13848'``llvm.masked.store.*``' Intrinsics
13849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13850
13851Syntax:
13852"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013853This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013854
13855::
13856
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013857 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
13858 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013859 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013860 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013861 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013862 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013863
13864Overview:
13865"""""""""
13866
13867Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
13868
13869Arguments:
13870""""""""""
13871
13872The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
13873
13874
13875Semantics:
13876""""""""""
13877
13878The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
13879The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
13880
13881::
13882
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013883 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000013884
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000013885 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000013886 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013887 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
13888 store <16 x float> %res, <16 x float>* %ptr, align 4
13889
13890
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013891Masked Vector Gather and Scatter Intrinsics
13892-------------------------------------------
13893
13894LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
13895
13896.. _int_mgather:
13897
13898'``llvm.masked.gather.*``' Intrinsics
13899^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13900
13901Syntax:
13902"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013903This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating-point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013904
13905::
13906
Elad Cohenef5798a2017-05-03 12:28:54 +000013907 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
13908 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
13909 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013910
13911Overview:
13912"""""""""
13913
13914Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
13915
13916
13917Arguments:
13918""""""""""
13919
13920The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
13921
13922
13923Semantics:
13924""""""""""
13925
13926The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
13927The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
13928
13929
13930::
13931
Elad Cohenef5798a2017-05-03 12:28:54 +000013932 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013933
13934 ;; The gather with all-true mask is equivalent to the following instruction sequence
13935 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
13936 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
13937 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
13938 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
13939
13940 %val0 = load double, double* %ptr0, align 8
13941 %val1 = load double, double* %ptr1, align 8
13942 %val2 = load double, double* %ptr2, align 8
13943 %val3 = load double, double* %ptr3, align 8
13944
13945 %vec0 = insertelement <4 x double>undef, %val0, 0
13946 %vec01 = insertelement <4 x double>%vec0, %val1, 1
13947 %vec012 = insertelement <4 x double>%vec01, %val2, 2
13948 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
13949
13950.. _int_mscatter:
13951
13952'``llvm.masked.scatter.*``' Intrinsics
13953^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13954
13955Syntax:
13956"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013957This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013958
13959::
13960
Elad Cohenef5798a2017-05-03 12:28:54 +000013961 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
13962 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
13963 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013964
13965Overview:
13966"""""""""
13967
13968Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
13969
13970Arguments:
13971""""""""""
13972
13973The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
13974
13975
13976Semantics:
13977""""""""""
13978
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000013979The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013980
13981::
13982
Sylvestre Ledru84666a12016-02-14 20:16:22 +000013983 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000013984 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013985
13986 ;; It is equivalent to a list of scalar stores
13987 %val0 = extractelement <8 x i32> %value, i32 0
13988 %val1 = extractelement <8 x i32> %value, i32 1
13989 ..
13990 %val7 = extractelement <8 x i32> %value, i32 7
13991 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
13992 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
13993 ..
13994 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
13995 ;; Note: the order of the following stores is important when they overlap:
13996 store i32 %val0, i32* %ptr0, align 4
13997 store i32 %val1, i32* %ptr1, align 4
13998 ..
13999 store i32 %val7, i32* %ptr7, align 4
14000
14001
Elena Demikhovsky0ef2ce32018-06-06 09:11:46 +000014002Masked Vector Expanding Load and Compressing Store Intrinsics
14003-------------------------------------------------------------
14004
14005LLVM provides intrinsics for expanding load and compressing store operations. Data selected from a vector according to a mask is stored in consecutive memory addresses (compressed store), and vice-versa (expanding load). These operations effective map to "if (cond.i) a[j++] = v.i" and "if (cond.i) v.i = a[j++]" patterns, respectively. Note that when the mask starts with '1' bits followed by '0' bits, these operations are identical to :ref:`llvm.masked.store <int_mstore>` and :ref:`llvm.masked.load <int_mload>`.
14006
14007.. _int_expandload:
14008
14009'``llvm.masked.expandload.*``' Intrinsics
14010^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14011
14012Syntax:
14013"""""""
14014This is an overloaded intrinsic. Several values of integer, floating point or pointer data type are loaded from consecutive memory addresses and stored into the elements of a vector according to the mask.
14015
14016::
14017
14018 declare <16 x float> @llvm.masked.expandload.v16f32 (float* <ptr>, <16 x i1> <mask>, <16 x float> <passthru>)
14019 declare <2 x i64> @llvm.masked.expandload.v2i64 (i64* <ptr>, <2 x i1> <mask>, <2 x i64> <passthru>)
14020
14021Overview:
14022"""""""""
14023
14024Reads a number of scalar values sequentially from memory location provided in '``ptr``' and spreads them in a vector. The '``mask``' holds a bit for each vector lane. The number of elements read from memory is equal to the number of '1' bits in the mask. The loaded elements are positioned in the destination vector according to the sequence of '1' and '0' bits in the mask. E.g., if the mask vector is '10010001', "explandload" reads 3 values from memory addresses ptr, ptr+1, ptr+2 and places them in lanes 0, 3 and 7 accordingly. The masked-off lanes are filled by elements from the corresponding lanes of the '``passthru``' operand.
14025
14026
14027Arguments:
14028""""""""""
14029
14030The first operand is the base pointer for the load. It has the same underlying type as the element of the returned vector. The second operand, mask, is a vector of boolean values with the same number of elements as the return type. The third is a pass-through value that is used to fill the masked-off lanes of the result. The return type and the type of the '``passthru``' operand have the same vector type.
14031
14032Semantics:
14033""""""""""
14034
14035The '``llvm.masked.expandload``' intrinsic is designed for reading multiple scalar values from adjacent memory addresses into possibly non-adjacent vector lanes. It is useful for targets that support vector expanding loads and allows vectorizing loop with cross-iteration dependency like in the following example:
14036
14037.. code-block:: c
14038
14039 // In this loop we load from B and spread the elements into array A.
14040 double *A, B; int *C;
14041 for (int i = 0; i < size; ++i) {
14042 if (C[i] != 0)
14043 A[i] = B[j++];
14044 }
14045
14046
14047.. code-block:: llvm
14048
14049 ; Load several elements from array B and expand them in a vector.
14050 ; The number of loaded elements is equal to the number of '1' elements in the Mask.
14051 %Tmp = call <8 x double> @llvm.masked.expandload.v8f64(double* %Bptr, <8 x i1> %Mask, <8 x double> undef)
14052 ; Store the result in A
14053 call void @llvm.masked.store.v8f64.p0v8f64(<8 x double> %Tmp, <8 x double>* %Aptr, i32 8, <8 x i1> %Mask)
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000014054
Elena Demikhovsky0ef2ce32018-06-06 09:11:46 +000014055 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
14056 %MaskI = bitcast <8 x i1> %Mask to i8
14057 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
14058 %MaskI64 = zext i8 %MaskIPopcnt to i64
14059 %BNextInd = add i64 %BInd, %MaskI64
14060
14061
14062Other targets may support this intrinsic differently, for example, by lowering it into a sequence of conditional scalar load operations and shuffles.
14063If all mask elements are '1', the intrinsic behavior is equivalent to the regular unmasked vector load.
14064
14065.. _int_compressstore:
14066
14067'``llvm.masked.compressstore.*``' Intrinsics
14068^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14069
14070Syntax:
14071"""""""
14072This is an overloaded intrinsic. A number of scalar values of integer, floating point or pointer data type are collected from an input vector and stored into adjacent memory addresses. A mask defines which elements to collect from the vector.
14073
14074::
14075
14076 declare void @llvm.masked.compressstore.v8i32 (<8 x i32> <value>, i32* <ptr>, <8 x i1> <mask>)
14077 declare void @llvm.masked.compressstore.v16f32 (<16 x float> <value>, float* <ptr>, <16 x i1> <mask>)
14078
14079Overview:
14080"""""""""
14081
14082Selects elements from input vector '``value``' according to the '``mask``'. All selected elements are written into adjacent memory addresses starting at address '`ptr`', from lower to higher. The mask holds a bit for each vector lane, and is used to select elements to be stored. The number of elements to be stored is equal to the number of active bits in the mask.
14083
14084Arguments:
14085""""""""""
14086
14087The first operand is the input vector, from which elements are collected and written to memory. The second operand is the base pointer for the store, it has the same underlying type as the element of the input vector operand. The third operand is the mask, a vector of boolean values. The mask and the input vector must have the same number of vector elements.
14088
14089
14090Semantics:
14091""""""""""
14092
14093The '``llvm.masked.compressstore``' intrinsic is designed for compressing data in memory. It allows to collect elements from possibly non-adjacent lanes of a vector and store them contiguously in memory in one IR operation. It is useful for targets that support compressing store operations and allows vectorizing loops with cross-iteration dependences like in the following example:
14094
14095.. code-block:: c
14096
14097 // In this loop we load elements from A and store them consecutively in B
14098 double *A, B; int *C;
14099 for (int i = 0; i < size; ++i) {
14100 if (C[i] != 0)
14101 B[j++] = A[i]
14102 }
14103
14104
14105.. code-block:: llvm
14106
14107 ; Load elements from A.
14108 %Tmp = call <8 x double> @llvm.masked.load.v8f64.p0v8f64(<8 x double>* %Aptr, i32 8, <8 x i1> %Mask, <8 x double> undef)
14109 ; Store all selected elements consecutively in array B
14110 call <void> @llvm.masked.compressstore.v8f64(<8 x double> %Tmp, double* %Bptr, <8 x i1> %Mask)
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000014111
Elena Demikhovsky0ef2ce32018-06-06 09:11:46 +000014112 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
14113 %MaskI = bitcast <8 x i1> %Mask to i8
14114 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
14115 %MaskI64 = zext i8 %MaskIPopcnt to i64
14116 %BNextInd = add i64 %BInd, %MaskI64
14117
14118
14119Other targets may support this intrinsic differently, for example, by lowering it into a sequence of branches that guard scalar store operations.
14120
14121
Sean Silvab084af42012-12-07 10:36:55 +000014122Memory Use Markers
14123------------------
14124
Sanjay Patel69bf48e2014-07-04 19:40:43 +000014125This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000014126memory objects and ranges where variables are immutable.
14127
Reid Klecknera534a382013-12-19 02:14:12 +000014128.. _int_lifestart:
14129
Sean Silvab084af42012-12-07 10:36:55 +000014130'``llvm.lifetime.start``' Intrinsic
14131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14132
14133Syntax:
14134"""""""
14135
14136::
14137
14138 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
14139
14140Overview:
14141"""""""""
14142
14143The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
14144object's lifetime.
14145
14146Arguments:
14147""""""""""
14148
14149The first argument is a constant integer representing the size of the
14150object, or -1 if it is variable sized. The second argument is a pointer
14151to the object.
14152
14153Semantics:
14154""""""""""
14155
14156This intrinsic indicates that before this point in the code, the value
14157of the memory pointed to by ``ptr`` is dead. This means that it is known
14158to never be used and has an undefined value. A load from the pointer
14159that precedes this intrinsic can be replaced with ``'undef'``.
14160
Reid Klecknera534a382013-12-19 02:14:12 +000014161.. _int_lifeend:
14162
Sean Silvab084af42012-12-07 10:36:55 +000014163'``llvm.lifetime.end``' Intrinsic
14164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14165
14166Syntax:
14167"""""""
14168
14169::
14170
14171 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
14172
14173Overview:
14174"""""""""
14175
14176The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
14177object's lifetime.
14178
14179Arguments:
14180""""""""""
14181
14182The first argument is a constant integer representing the size of the
14183object, or -1 if it is variable sized. The second argument is a pointer
14184to the object.
14185
14186Semantics:
14187""""""""""
14188
14189This intrinsic indicates that after this point in the code, the value of
14190the memory pointed to by ``ptr`` is dead. This means that it is known to
14191never be used and has an undefined value. Any stores into the memory
14192object following this intrinsic may be removed as dead.
14193
14194'``llvm.invariant.start``' Intrinsic
14195^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14196
14197Syntax:
14198"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000014199This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000014200
14201::
14202
Mehdi Amini8c629ec2016-08-13 23:31:24 +000014203 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000014204
14205Overview:
14206"""""""""
14207
14208The '``llvm.invariant.start``' intrinsic specifies that the contents of
14209a memory object will not change.
14210
14211Arguments:
14212""""""""""
14213
14214The first argument is a constant integer representing the size of the
14215object, or -1 if it is variable sized. The second argument is a pointer
14216to the object.
14217
14218Semantics:
14219""""""""""
14220
14221This intrinsic indicates that until an ``llvm.invariant.end`` that uses
14222the return value, the referenced memory location is constant and
14223unchanging.
14224
14225'``llvm.invariant.end``' Intrinsic
14226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14227
14228Syntax:
14229"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000014230This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000014231
14232::
14233
Mehdi Amini8c629ec2016-08-13 23:31:24 +000014234 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000014235
14236Overview:
14237"""""""""
14238
14239The '``llvm.invariant.end``' intrinsic specifies that the contents of a
14240memory object are mutable.
14241
14242Arguments:
14243""""""""""
14244
14245The first argument is the matching ``llvm.invariant.start`` intrinsic.
14246The second argument is a constant integer representing the size of the
14247object, or -1 if it is variable sized and the third argument is a
14248pointer to the object.
14249
14250Semantics:
14251""""""""""
14252
14253This intrinsic indicates that the memory is mutable again.
14254
Piotr Padlewski5dde8092018-05-03 11:03:01 +000014255'``llvm.launder.invariant.group``' Intrinsic
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014256^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14257
14258Syntax:
14259"""""""
Yaxun Liu407ca362017-11-16 16:32:16 +000014260This is an overloaded intrinsic. The memory object can belong to any address
14261space. The returned pointer must belong to the same address space as the
14262argument.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014263
14264::
14265
Piotr Padlewski5dde8092018-05-03 11:03:01 +000014266 declare i8* @llvm.launder.invariant.group.p0i8(i8* <ptr>)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014267
14268Overview:
14269"""""""""
14270
Piotr Padlewski5dde8092018-05-03 11:03:01 +000014271The '``llvm.launder.invariant.group``' intrinsic can be used when an invariant
Piotr Padlewski5b3db452018-07-02 04:49:30 +000014272established by ``invariant.group`` metadata no longer holds, to obtain a new
14273pointer value that carries fresh invariant group information. It is an
14274experimental intrinsic, which means that its semantics might change in the
14275future.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014276
14277
14278Arguments:
14279""""""""""
14280
Piotr Padlewski5b3db452018-07-02 04:49:30 +000014281The ``llvm.launder.invariant.group`` takes only one argument, which is a pointer
14282to the memory.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014283
14284Semantics:
14285""""""""""
14286
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014287Returns another pointer that aliases its argument but which is considered different
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014288for the purposes of ``load``/``store`` ``invariant.group`` metadata.
Piotr Padlewski5dde8092018-05-03 11:03:01 +000014289It does not read any accessible memory and the execution can be speculated.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014290
Piotr Padlewski5b3db452018-07-02 04:49:30 +000014291'``llvm.strip.invariant.group``' Intrinsic
14292^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14293
14294Syntax:
14295"""""""
14296This is an overloaded intrinsic. The memory object can belong to any address
14297space. The returned pointer must belong to the same address space as the
14298argument.
14299
14300::
14301
14302 declare i8* @llvm.strip.invariant.group.p0i8(i8* <ptr>)
14303
14304Overview:
14305"""""""""
14306
14307The '``llvm.strip.invariant.group``' intrinsic can be used when an invariant
14308established by ``invariant.group`` metadata no longer holds, to obtain a new pointer
14309value that does not carry the invariant information. It is an experimental
14310intrinsic, which means that its semantics might change in the future.
14311
14312
14313Arguments:
14314""""""""""
14315
14316The ``llvm.strip.invariant.group`` takes only one argument, which is a pointer
14317to the memory.
14318
14319Semantics:
14320""""""""""
14321
14322Returns another pointer that aliases its argument but which has no associated
14323``invariant.group`` metadata.
14324It does not read any memory and can be speculated.
14325
14326
14327
Sanjay Patel54b161e2018-03-20 16:38:22 +000014328.. _constrainedfp:
14329
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014330Constrained Floating-Point Intrinsics
Andrew Kaylora0a11642017-01-26 23:27:59 +000014331-------------------------------------
14332
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014333These intrinsics are used to provide special handling of floating-point
14334operations when specific rounding mode or floating-point exception behavior is
Andrew Kaylora0a11642017-01-26 23:27:59 +000014335required. By default, LLVM optimization passes assume that the rounding mode is
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014336round-to-nearest and that floating-point exceptions will not be monitored.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014337Constrained FP intrinsics are used to support non-default rounding modes and
14338accurately preserve exception behavior without compromising LLVM's ability to
14339optimize FP code when the default behavior is used.
14340
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014341Each of these intrinsics corresponds to a normal floating-point operation. The
Andrew Kaylora0a11642017-01-26 23:27:59 +000014342first two arguments and the return value are the same as the corresponding FP
14343operation.
14344
14345The third argument is a metadata argument specifying the rounding mode to be
14346assumed. This argument must be one of the following strings:
14347
14348::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000014349
Andrew Kaylora0a11642017-01-26 23:27:59 +000014350 "round.dynamic"
14351 "round.tonearest"
14352 "round.downward"
14353 "round.upward"
14354 "round.towardzero"
14355
14356If this argument is "round.dynamic" optimization passes must assume that the
14357rounding mode is unknown and may change at runtime. No transformations that
14358depend on rounding mode may be performed in this case.
14359
14360The other possible values for the rounding mode argument correspond to the
14361similarly named IEEE rounding modes. If the argument is any of these values
14362optimization passes may perform transformations as long as they are consistent
14363with the specified rounding mode.
14364
14365For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
14366"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
14367'x-0' should evaluate to '-0' when rounding downward. However, this
14368transformation is legal for all other rounding modes.
14369
14370For values other than "round.dynamic" optimization passes may assume that the
14371actual runtime rounding mode (as defined in a target-specific manner) matches
14372the specified rounding mode, but this is not guaranteed. Using a specific
14373non-dynamic rounding mode which does not match the actual rounding mode at
14374runtime results in undefined behavior.
14375
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014376The fourth argument to the constrained floating-point intrinsics specifies the
Andrew Kaylora0a11642017-01-26 23:27:59 +000014377required exception behavior. This argument must be one of the following
14378strings:
14379
14380::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000014381
Andrew Kaylora0a11642017-01-26 23:27:59 +000014382 "fpexcept.ignore"
14383 "fpexcept.maytrap"
14384 "fpexcept.strict"
14385
14386If this argument is "fpexcept.ignore" optimization passes may assume that the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014387exception status flags will not be read and that floating-point exceptions will
Andrew Kaylora0a11642017-01-26 23:27:59 +000014388be masked. This allows transformations to be performed that may change the
14389exception semantics of the original code. For example, FP operations may be
14390speculatively executed in this case whereas they must not be for either of the
14391other possible values of this argument.
14392
14393If the exception behavior argument is "fpexcept.maytrap" optimization passes
14394must avoid transformations that may raise exceptions that would not have been
14395raised by the original code (such as speculatively executing FP operations), but
14396passes are not required to preserve all exceptions that are implied by the
14397original code. For example, exceptions may be potentially hidden by constant
14398folding.
14399
14400If the exception behavior argument is "fpexcept.strict" all transformations must
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014401strictly preserve the floating-point exception semantics of the original code.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014402Any FP exception that would have been raised by the original code must be raised
14403by the transformed code, and the transformed code must not raise any FP
14404exceptions that would not have been raised by the original code. This is the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014405exception behavior argument that will be used if the code being compiled reads
Andrew Kaylora0a11642017-01-26 23:27:59 +000014406the FP exception status flags, but this mode can also be used with code that
14407unmasks FP exceptions.
14408
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014409The number and order of floating-point exceptions is NOT guaranteed. For
Andrew Kaylora0a11642017-01-26 23:27:59 +000014410example, a series of FP operations that each may raise exceptions may be
14411vectorized into a single instruction that raises each unique exception a single
14412time.
14413
14414
14415'``llvm.experimental.constrained.fadd``' Intrinsic
14416^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14417
14418Syntax:
14419"""""""
14420
14421::
14422
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014423 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014424 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
14425 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014426 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014427
14428Overview:
14429"""""""""
14430
14431The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
14432two operands.
14433
14434
14435Arguments:
14436""""""""""
14437
14438The first two arguments to the '``llvm.experimental.constrained.fadd``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014439intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14440of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014441
14442The third and fourth arguments specify the rounding mode and exception
14443behavior as described above.
14444
14445Semantics:
14446""""""""""
14447
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014448The value produced is the floating-point sum of the two value operands and has
Andrew Kaylora0a11642017-01-26 23:27:59 +000014449the same type as the operands.
14450
14451
14452'``llvm.experimental.constrained.fsub``' Intrinsic
14453^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14454
14455Syntax:
14456"""""""
14457
14458::
14459
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014460 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014461 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
14462 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014463 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014464
14465Overview:
14466"""""""""
14467
14468The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
14469of its two operands.
14470
14471
14472Arguments:
14473""""""""""
14474
14475The first two arguments to the '``llvm.experimental.constrained.fsub``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014476intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14477of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014478
14479The third and fourth arguments specify the rounding mode and exception
14480behavior as described above.
14481
14482Semantics:
14483""""""""""
14484
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014485The value produced is the floating-point difference of the two value operands
Andrew Kaylora0a11642017-01-26 23:27:59 +000014486and has the same type as the operands.
14487
14488
14489'``llvm.experimental.constrained.fmul``' Intrinsic
14490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14491
14492Syntax:
14493"""""""
14494
14495::
14496
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014497 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014498 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
14499 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014500 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014501
14502Overview:
14503"""""""""
14504
14505The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
14506its two operands.
14507
14508
14509Arguments:
14510""""""""""
14511
14512The first two arguments to the '``llvm.experimental.constrained.fmul``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014513intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14514of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014515
14516The third and fourth arguments specify the rounding mode and exception
14517behavior as described above.
14518
14519Semantics:
14520""""""""""
14521
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014522The value produced is the floating-point product of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000014523has the same type as the operands.
14524
14525
14526'``llvm.experimental.constrained.fdiv``' Intrinsic
14527^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14528
14529Syntax:
14530"""""""
14531
14532::
14533
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014534 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014535 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
14536 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014537 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014538
14539Overview:
14540"""""""""
14541
14542The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
14543its two operands.
14544
14545
14546Arguments:
14547""""""""""
14548
14549The first two arguments to the '``llvm.experimental.constrained.fdiv``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014550intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14551of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014552
14553The third and fourth arguments specify the rounding mode and exception
14554behavior as described above.
14555
14556Semantics:
14557""""""""""
14558
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014559The value produced is the floating-point quotient of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000014560has the same type as the operands.
14561
14562
14563'``llvm.experimental.constrained.frem``' Intrinsic
14564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14565
14566Syntax:
14567"""""""
14568
14569::
14570
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014571 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014572 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
14573 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014574 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014575
14576Overview:
14577"""""""""
14578
14579The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
14580from the division of its two operands.
14581
14582
14583Arguments:
14584""""""""""
14585
14586The first two arguments to the '``llvm.experimental.constrained.frem``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014587intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14588of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014589
14590The third and fourth arguments specify the rounding mode and exception
14591behavior as described above. The rounding mode argument has no effect, since
14592the result of frem is never rounded, but the argument is included for
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014593consistency with the other constrained floating-point intrinsics.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014594
14595Semantics:
14596""""""""""
14597
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014598The value produced is the floating-point remainder from the division of the two
Andrew Kaylora0a11642017-01-26 23:27:59 +000014599value operands and has the same type as the operands. The remainder has the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014600same sign as the dividend.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014601
Wei Dinga131d3f2017-08-24 04:18:24 +000014602'``llvm.experimental.constrained.fma``' Intrinsic
Cameron McInally10056792018-11-02 15:51:43 +000014603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Wei Dinga131d3f2017-08-24 04:18:24 +000014604
14605Syntax:
14606"""""""
14607
14608::
14609
14610 declare <type>
14611 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
14612 metadata <rounding mode>,
14613 metadata <exception behavior>)
14614
14615Overview:
14616"""""""""
14617
14618The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
14619fused-multiply-add operation on its operands.
14620
14621Arguments:
14622""""""""""
14623
14624The first three arguments to the '``llvm.experimental.constrained.fma``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014625intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector
14626<t_vector>` of floating-point values. All arguments must have identical types.
Wei Dinga131d3f2017-08-24 04:18:24 +000014627
14628The fourth and fifth arguments specify the rounding mode and exception behavior
14629as described above.
14630
14631Semantics:
14632""""""""""
14633
14634The result produced is the product of the first two operands added to the third
14635operand computed with infinite precision, and then rounded to the target
14636precision.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014637
Andrew Kaylorf4660012017-05-25 21:31:00 +000014638Constrained libm-equivalent Intrinsics
14639--------------------------------------
14640
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014641In addition to the basic floating-point operations for which constrained
Andrew Kaylorf4660012017-05-25 21:31:00 +000014642intrinsics are described above, there are constrained versions of various
14643operations which provide equivalent behavior to a corresponding libm function.
14644These intrinsics allow the precise behavior of these operations with respect to
14645rounding mode and exception behavior to be controlled.
14646
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014647As with the basic constrained floating-point intrinsics, the rounding mode
Andrew Kaylorf4660012017-05-25 21:31:00 +000014648and exception behavior arguments only control the behavior of the optimizer.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014649They do not change the runtime floating-point environment.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014650
14651
14652'``llvm.experimental.constrained.sqrt``' Intrinsic
14653^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14654
14655Syntax:
14656"""""""
14657
14658::
14659
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014660 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014661 @llvm.experimental.constrained.sqrt(<type> <op1>,
14662 metadata <rounding mode>,
14663 metadata <exception behavior>)
14664
14665Overview:
14666"""""""""
14667
14668The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
14669of the specified value, returning the same value as the libm '``sqrt``'
14670functions would, but without setting ``errno``.
14671
14672Arguments:
14673""""""""""
14674
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014675The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014676type.
14677
14678The second and third arguments specify the rounding mode and exception
14679behavior as described above.
14680
14681Semantics:
14682""""""""""
14683
14684This function returns the nonnegative square root of the specified value.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014685If the value is less than negative zero, a floating-point exception occurs
Hiroshi Inoue760c0c92018-01-16 13:19:48 +000014686and the return value is architecture specific.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014687
14688
14689'``llvm.experimental.constrained.pow``' Intrinsic
14690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14691
14692Syntax:
14693"""""""
14694
14695::
14696
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014697 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014698 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
14699 metadata <rounding mode>,
14700 metadata <exception behavior>)
14701
14702Overview:
14703"""""""""
14704
14705The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
14706raised to the (positive or negative) power specified by the second operand.
14707
14708Arguments:
14709""""""""""
14710
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014711The first two arguments and the return value are floating-point numbers of the
Andrew Kaylorf4660012017-05-25 21:31:00 +000014712same type. The second argument specifies the power to which the first argument
14713should be raised.
14714
14715The third and fourth arguments specify the rounding mode and exception
14716behavior as described above.
14717
14718Semantics:
14719""""""""""
14720
14721This function returns the first value raised to the second power,
14722returning the same values as the libm ``pow`` functions would, and
14723handles error conditions in the same way.
14724
14725
14726'``llvm.experimental.constrained.powi``' Intrinsic
14727^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14728
14729Syntax:
14730"""""""
14731
14732::
14733
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014734 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014735 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
14736 metadata <rounding mode>,
14737 metadata <exception behavior>)
14738
14739Overview:
14740"""""""""
14741
14742The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
14743raised to the (positive or negative) power specified by the second operand. The
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000014744order of evaluation of multiplications is not defined. When a vector of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014745floating-point type is used, the second argument remains a scalar integer value.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014746
14747
14748Arguments:
14749""""""""""
14750
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014751The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014752type. The second argument is a 32-bit signed integer specifying the power to
14753which the first argument should be raised.
14754
14755The third and fourth arguments specify the rounding mode and exception
14756behavior as described above.
14757
14758Semantics:
14759""""""""""
14760
14761This function returns the first value raised to the second power with an
14762unspecified sequence of rounding operations.
14763
14764
14765'``llvm.experimental.constrained.sin``' Intrinsic
14766^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14767
14768Syntax:
14769"""""""
14770
14771::
14772
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014773 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014774 @llvm.experimental.constrained.sin(<type> <op1>,
14775 metadata <rounding mode>,
14776 metadata <exception behavior>)
14777
14778Overview:
14779"""""""""
14780
14781The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
14782first operand.
14783
14784Arguments:
14785""""""""""
14786
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014787The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014788type.
14789
14790The second and third arguments specify the rounding mode and exception
14791behavior as described above.
14792
14793Semantics:
14794""""""""""
14795
14796This function returns the sine of the specified operand, returning the
14797same values as the libm ``sin`` functions would, and handles error
14798conditions in the same way.
14799
14800
14801'``llvm.experimental.constrained.cos``' Intrinsic
14802^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14803
14804Syntax:
14805"""""""
14806
14807::
14808
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014809 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014810 @llvm.experimental.constrained.cos(<type> <op1>,
14811 metadata <rounding mode>,
14812 metadata <exception behavior>)
14813
14814Overview:
14815"""""""""
14816
14817The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
14818first operand.
14819
14820Arguments:
14821""""""""""
14822
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014823The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014824type.
14825
14826The second and third arguments specify the rounding mode and exception
14827behavior as described above.
14828
14829Semantics:
14830""""""""""
14831
14832This function returns the cosine of the specified operand, returning the
14833same values as the libm ``cos`` functions would, and handles error
14834conditions in the same way.
14835
14836
14837'``llvm.experimental.constrained.exp``' Intrinsic
14838^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14839
14840Syntax:
14841"""""""
14842
14843::
14844
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014845 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014846 @llvm.experimental.constrained.exp(<type> <op1>,
14847 metadata <rounding mode>,
14848 metadata <exception behavior>)
14849
14850Overview:
14851"""""""""
14852
14853The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
14854exponential of the specified value.
14855
14856Arguments:
14857""""""""""
14858
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014859The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014860type.
14861
14862The second and third arguments specify the rounding mode and exception
14863behavior as described above.
14864
14865Semantics:
14866""""""""""
14867
14868This function returns the same values as the libm ``exp`` functions
14869would, and handles error conditions in the same way.
14870
14871
14872'``llvm.experimental.constrained.exp2``' Intrinsic
14873^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14874
14875Syntax:
14876"""""""
14877
14878::
14879
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014880 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014881 @llvm.experimental.constrained.exp2(<type> <op1>,
14882 metadata <rounding mode>,
14883 metadata <exception behavior>)
14884
14885Overview:
14886"""""""""
14887
14888The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
14889exponential of the specified value.
14890
14891
14892Arguments:
14893""""""""""
14894
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014895The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014896type.
14897
14898The second and third arguments specify the rounding mode and exception
14899behavior as described above.
14900
14901Semantics:
14902""""""""""
14903
14904This function returns the same values as the libm ``exp2`` functions
14905would, and handles error conditions in the same way.
14906
14907
14908'``llvm.experimental.constrained.log``' Intrinsic
14909^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14910
14911Syntax:
14912"""""""
14913
14914::
14915
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014916 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014917 @llvm.experimental.constrained.log(<type> <op1>,
14918 metadata <rounding mode>,
14919 metadata <exception behavior>)
14920
14921Overview:
14922"""""""""
14923
14924The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
14925logarithm of the specified value.
14926
14927Arguments:
14928""""""""""
14929
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014930The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014931type.
14932
14933The second and third arguments specify the rounding mode and exception
14934behavior as described above.
14935
14936
14937Semantics:
14938""""""""""
14939
14940This function returns the same values as the libm ``log`` functions
14941would, and handles error conditions in the same way.
14942
14943
14944'``llvm.experimental.constrained.log10``' Intrinsic
14945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14946
14947Syntax:
14948"""""""
14949
14950::
14951
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014952 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014953 @llvm.experimental.constrained.log10(<type> <op1>,
14954 metadata <rounding mode>,
14955 metadata <exception behavior>)
14956
14957Overview:
14958"""""""""
14959
14960The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
14961logarithm of the specified value.
14962
14963Arguments:
14964""""""""""
14965
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014966The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014967type.
14968
14969The second and third arguments specify the rounding mode and exception
14970behavior as described above.
14971
14972Semantics:
14973""""""""""
14974
14975This function returns the same values as the libm ``log10`` functions
14976would, and handles error conditions in the same way.
14977
14978
14979'``llvm.experimental.constrained.log2``' Intrinsic
14980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14981
14982Syntax:
14983"""""""
14984
14985::
14986
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014987 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014988 @llvm.experimental.constrained.log2(<type> <op1>,
14989 metadata <rounding mode>,
14990 metadata <exception behavior>)
14991
14992Overview:
14993"""""""""
14994
14995The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
14996logarithm of the specified value.
14997
14998Arguments:
14999""""""""""
15000
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015001The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015002type.
15003
15004The second and third arguments specify the rounding mode and exception
15005behavior as described above.
15006
15007Semantics:
15008""""""""""
15009
15010This function returns the same values as the libm ``log2`` functions
15011would, and handles error conditions in the same way.
15012
15013
15014'``llvm.experimental.constrained.rint``' Intrinsic
15015^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15016
15017Syntax:
15018"""""""
15019
15020::
15021
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015022 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015023 @llvm.experimental.constrained.rint(<type> <op1>,
15024 metadata <rounding mode>,
15025 metadata <exception behavior>)
15026
15027Overview:
15028"""""""""
15029
15030The '``llvm.experimental.constrained.rint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015031operand rounded to the nearest integer. It may raise an inexact floating-point
Andrew Kaylorf4660012017-05-25 21:31:00 +000015032exception if the operand is not an integer.
15033
15034Arguments:
15035""""""""""
15036
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015037The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015038type.
15039
15040The second and third arguments specify the rounding mode and exception
15041behavior as described above.
15042
15043Semantics:
15044""""""""""
15045
15046This function returns the same values as the libm ``rint`` functions
15047would, and handles error conditions in the same way. The rounding mode is
15048described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015049mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000015050mode argument is only intended as information to the compiler.
15051
15052
15053'``llvm.experimental.constrained.nearbyint``' Intrinsic
15054^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15055
15056Syntax:
15057"""""""
15058
15059::
15060
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015061 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015062 @llvm.experimental.constrained.nearbyint(<type> <op1>,
15063 metadata <rounding mode>,
15064 metadata <exception behavior>)
15065
15066Overview:
15067"""""""""
15068
15069The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000015070operand rounded to the nearest integer. It will not raise an inexact
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015071floating-point exception if the operand is not an integer.
Andrew Kaylorf4660012017-05-25 21:31:00 +000015072
15073
15074Arguments:
15075""""""""""
15076
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015077The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015078type.
15079
15080The second and third arguments specify the rounding mode and exception
15081behavior as described above.
15082
15083Semantics:
15084""""""""""
15085
15086This function returns the same values as the libm ``nearbyint`` functions
15087would, and handles error conditions in the same way. The rounding mode is
15088described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015089mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000015090mode argument is only intended as information to the compiler.
15091
15092
Cameron McInally2ad870e2018-10-30 21:01:29 +000015093'``llvm.experimental.constrained.maxnum``' Intrinsic
Cameron McInally10056792018-11-02 15:51:43 +000015094^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Cameron McInally2ad870e2018-10-30 21:01:29 +000015095
15096Syntax:
15097"""""""
15098
15099::
15100
15101 declare <type>
15102 @llvm.experimental.constrained.maxnum(<type> <op1>, <type> <op2>
15103 metadata <rounding mode>,
15104 metadata <exception behavior>)
15105
15106Overview:
15107"""""""""
15108
Michael Kruse978ba612018-12-20 04:58:07 +000015109The '``llvm.experimental.constrained.maxnum``' intrinsic returns the maximum
Cameron McInally2ad870e2018-10-30 21:01:29 +000015110of the two arguments.
15111
15112Arguments:
15113""""""""""
15114
Michael Kruse978ba612018-12-20 04:58:07 +000015115The first two arguments and the return value are floating-point numbers
Cameron McInally2ad870e2018-10-30 21:01:29 +000015116of the same type.
15117
15118The third and forth arguments specify the rounding mode and exception
15119behavior as described above.
15120
15121Semantics:
15122""""""""""
15123
15124This function follows the IEEE-754 semantics for maxNum. The rounding mode is
15125described, not determined, by the rounding mode argument. The actual rounding
15126mode is determined by the runtime floating-point environment. The rounding
15127mode argument is only intended as information to the compiler.
15128
15129
15130'``llvm.experimental.constrained.minnum``' Intrinsic
Cameron McInally10056792018-11-02 15:51:43 +000015131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Cameron McInally2ad870e2018-10-30 21:01:29 +000015132
15133Syntax:
15134"""""""
15135
15136::
15137
15138 declare <type>
15139 @llvm.experimental.constrained.minnum(<type> <op1>, <type> <op2>
15140 metadata <rounding mode>,
15141 metadata <exception behavior>)
15142
15143Overview:
15144"""""""""
15145
15146The '``llvm.experimental.constrained.minnum``' intrinsic returns the minimum
15147of the two arguments.
15148
15149Arguments:
15150""""""""""
15151
15152The first two arguments and the return value are floating-point numbers
15153of the same type.
15154
15155The third and forth arguments specify the rounding mode and exception
15156behavior as described above.
15157
15158Semantics:
15159""""""""""
15160
15161This function follows the IEEE-754 semantics for minNum. The rounding mode is
15162described, not determined, by the rounding mode argument. The actual rounding
15163mode is determined by the runtime floating-point environment. The rounding
15164mode argument is only intended as information to the compiler.
15165
15166
Cameron McInally9757d5d2018-11-05 15:59:49 +000015167'``llvm.experimental.constrained.ceil``' Intrinsic
15168^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15169
15170Syntax:
15171"""""""
15172
15173::
15174
15175 declare <type>
15176 @llvm.experimental.constrained.ceil(<type> <op1>,
15177 metadata <rounding mode>,
15178 metadata <exception behavior>)
15179
15180Overview:
15181"""""""""
15182
Michael Kruse978ba612018-12-20 04:58:07 +000015183The '``llvm.experimental.constrained.ceil``' intrinsic returns the ceiling of the
Cameron McInally9757d5d2018-11-05 15:59:49 +000015184first operand.
15185
15186Arguments:
15187""""""""""
15188
15189The first argument and the return value are floating-point numbers of the same
15190type.
15191
15192The second and third arguments specify the rounding mode and exception
15193behavior as described above. The rounding mode is currently unused for this
15194intrinsic.
15195
15196Semantics:
15197""""""""""
15198
15199This function returns the same values as the libm ``ceil`` functions
15200would and handles error conditions in the same way.
15201
15202
15203'``llvm.experimental.constrained.floor``' Intrinsic
15204^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15205
15206Syntax:
15207"""""""
15208
15209::
15210
15211 declare <type>
15212 @llvm.experimental.constrained.floor(<type> <op1>,
15213 metadata <rounding mode>,
15214 metadata <exception behavior>)
15215
15216Overview:
15217"""""""""
15218
Michael Kruse978ba612018-12-20 04:58:07 +000015219The '``llvm.experimental.constrained.floor``' intrinsic returns the floor of the
Cameron McInally9757d5d2018-11-05 15:59:49 +000015220first operand.
15221
15222Arguments:
15223""""""""""
15224
15225The first argument and the return value are floating-point numbers of the same
15226type.
15227
15228The second and third arguments specify the rounding mode and exception
15229behavior as described above. The rounding mode is currently unused for this
15230intrinsic.
15231
15232Semantics:
15233""""""""""
15234
15235This function returns the same values as the libm ``floor`` functions
Michael Kruse978ba612018-12-20 04:58:07 +000015236would and handles error conditions in the same way.
Cameron McInally9757d5d2018-11-05 15:59:49 +000015237
15238
15239'``llvm.experimental.constrained.round``' Intrinsic
15240^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15241
15242Syntax:
15243"""""""
15244
15245::
15246
15247 declare <type>
15248 @llvm.experimental.constrained.round(<type> <op1>,
15249 metadata <rounding mode>,
15250 metadata <exception behavior>)
15251
15252Overview:
15253"""""""""
15254
Michael Kruse978ba612018-12-20 04:58:07 +000015255The '``llvm.experimental.constrained.round``' intrinsic returns the first
Cameron McInally9757d5d2018-11-05 15:59:49 +000015256operand rounded to the nearest integer.
15257
15258Arguments:
15259""""""""""
15260
15261The first argument and the return value are floating-point numbers of the same
15262type.
15263
15264The second and third arguments specify the rounding mode and exception
15265behavior as described above. The rounding mode is currently unused for this
15266intrinsic.
15267
15268Semantics:
15269""""""""""
15270
15271This function returns the same values as the libm ``round`` functions
15272would and handles error conditions in the same way.
15273
15274
15275'``llvm.experimental.constrained.trunc``' Intrinsic
15276^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15277
15278Syntax:
15279"""""""
15280
15281::
15282
15283 declare <type>
15284 @llvm.experimental.constrained.trunc(<type> <op1>,
15285 metadata <truncing mode>,
15286 metadata <exception behavior>)
15287
15288Overview:
15289"""""""""
15290
Michael Kruse978ba612018-12-20 04:58:07 +000015291The '``llvm.experimental.constrained.trunc``' intrinsic returns the first
15292operand rounded to the nearest integer not larger in magnitude than the
Cameron McInally9757d5d2018-11-05 15:59:49 +000015293operand.
15294
15295Arguments:
15296""""""""""
15297
15298The first argument and the return value are floating-point numbers of the same
15299type.
15300
15301The second and third arguments specify the truncing mode and exception
15302behavior as described above. The truncing mode is currently unused for this
15303intrinsic.
15304
15305Semantics:
15306""""""""""
15307
15308This function returns the same values as the libm ``trunc`` functions
15309would and handles error conditions in the same way.
15310
15311
Sean Silvab084af42012-12-07 10:36:55 +000015312General Intrinsics
15313------------------
15314
15315This class of intrinsics is designed to be generic and has no specific
15316purpose.
15317
15318'``llvm.var.annotation``' Intrinsic
15319^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15320
15321Syntax:
15322"""""""
15323
15324::
15325
15326 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
15327
15328Overview:
15329"""""""""
15330
15331The '``llvm.var.annotation``' intrinsic.
15332
15333Arguments:
15334""""""""""
15335
15336The first argument is a pointer to a value, the second is a pointer to a
15337global string, the third is a pointer to a global string which is the
15338source file name, and the last argument is the line number.
15339
15340Semantics:
15341""""""""""
15342
15343This intrinsic allows annotation of local variables with arbitrary
15344strings. This can be useful for special purpose optimizations that want
15345to look for these annotations. These have no other defined use; they are
15346ignored by code generation and optimization.
15347
Michael Gottesman88d18832013-03-26 00:34:27 +000015348'``llvm.ptr.annotation.*``' Intrinsic
15349^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15350
15351Syntax:
15352"""""""
15353
15354This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
15355pointer to an integer of any width. *NOTE* you must specify an address space for
15356the pointer. The identifier for the default address space is the integer
15357'``0``'.
15358
15359::
15360
15361 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
15362 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
15363 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
15364 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
15365 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
15366
15367Overview:
15368"""""""""
15369
15370The '``llvm.ptr.annotation``' intrinsic.
15371
15372Arguments:
15373""""""""""
15374
15375The first argument is a pointer to an integer value of arbitrary bitwidth
15376(result of some expression), the second is a pointer to a global string, the
15377third is a pointer to a global string which is the source file name, and the
15378last argument is the line number. It returns the value of the first argument.
15379
15380Semantics:
15381""""""""""
15382
15383This intrinsic allows annotation of a pointer to an integer with arbitrary
15384strings. This can be useful for special purpose optimizations that want to look
15385for these annotations. These have no other defined use; they are ignored by code
15386generation and optimization.
15387
Sean Silvab084af42012-12-07 10:36:55 +000015388'``llvm.annotation.*``' Intrinsic
15389^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15390
15391Syntax:
15392"""""""
15393
15394This is an overloaded intrinsic. You can use '``llvm.annotation``' on
15395any integer bit width.
15396
15397::
15398
15399 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
15400 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
15401 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
15402 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
15403 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
15404
15405Overview:
15406"""""""""
15407
15408The '``llvm.annotation``' intrinsic.
15409
15410Arguments:
15411""""""""""
15412
15413The first argument is an integer value (result of some expression), the
15414second is a pointer to a global string, the third is a pointer to a
15415global string which is the source file name, and the last argument is
15416the line number. It returns the value of the first argument.
15417
15418Semantics:
15419""""""""""
15420
15421This intrinsic allows annotations to be put on arbitrary expressions
15422with arbitrary strings. This can be useful for special purpose
15423optimizations that want to look for these annotations. These have no
15424other defined use; they are ignored by code generation and optimization.
15425
Reid Klecknere33c94f2017-09-05 20:14:58 +000015426'``llvm.codeview.annotation``' Intrinsic
Reid Klecknerd4523682017-09-05 20:26:25 +000015427^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknere33c94f2017-09-05 20:14:58 +000015428
15429Syntax:
15430"""""""
15431
15432This annotation emits a label at its program point and an associated
15433``S_ANNOTATION`` codeview record with some additional string metadata. This is
15434used to implement MSVC's ``__annotation`` intrinsic. It is marked
15435``noduplicate``, so calls to this intrinsic prevent inlining and should be
15436considered expensive.
15437
15438::
15439
15440 declare void @llvm.codeview.annotation(metadata)
15441
15442Arguments:
15443""""""""""
15444
15445The argument should be an MDTuple containing any number of MDStrings.
15446
Sean Silvab084af42012-12-07 10:36:55 +000015447'``llvm.trap``' Intrinsic
15448^^^^^^^^^^^^^^^^^^^^^^^^^
15449
15450Syntax:
15451"""""""
15452
15453::
15454
Vedant Kumar808e1572018-11-14 19:53:41 +000015455 declare void @llvm.trap() cold noreturn nounwind
Sean Silvab084af42012-12-07 10:36:55 +000015456
15457Overview:
15458"""""""""
15459
15460The '``llvm.trap``' intrinsic.
15461
15462Arguments:
15463""""""""""
15464
15465None.
15466
15467Semantics:
15468""""""""""
15469
15470This intrinsic is lowered to the target dependent trap instruction. If
15471the target does not have a trap instruction, this intrinsic will be
15472lowered to a call of the ``abort()`` function.
15473
15474'``llvm.debugtrap``' Intrinsic
15475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15476
15477Syntax:
15478"""""""
15479
15480::
15481
15482 declare void @llvm.debugtrap() nounwind
15483
15484Overview:
15485"""""""""
15486
15487The '``llvm.debugtrap``' intrinsic.
15488
15489Arguments:
15490""""""""""
15491
15492None.
15493
15494Semantics:
15495""""""""""
15496
15497This intrinsic is lowered to code which is intended to cause an
15498execution trap with the intention of requesting the attention of a
15499debugger.
15500
15501'``llvm.stackprotector``' Intrinsic
15502^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15503
15504Syntax:
15505"""""""
15506
15507::
15508
15509 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
15510
15511Overview:
15512"""""""""
15513
15514The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
15515onto the stack at ``slot``. The stack slot is adjusted to ensure that it
15516is placed on the stack before local variables.
15517
15518Arguments:
15519""""""""""
15520
15521The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
15522The first argument is the value loaded from the stack guard
15523``@__stack_chk_guard``. The second variable is an ``alloca`` that has
15524enough space to hold the value of the guard.
15525
15526Semantics:
15527""""""""""
15528
Michael Gottesmandafc7d92013-08-12 18:35:32 +000015529This intrinsic causes the prologue/epilogue inserter to force the position of
15530the ``AllocaInst`` stack slot to be before local variables on the stack. This is
15531to ensure that if a local variable on the stack is overwritten, it will destroy
15532the value of the guard. When the function exits, the guard on the stack is
15533checked against the original guard by ``llvm.stackprotectorcheck``. If they are
15534different, then ``llvm.stackprotectorcheck`` causes the program to abort by
15535calling the ``__stack_chk_fail()`` function.
15536
Tim Shene885d5e2016-04-19 19:40:37 +000015537'``llvm.stackguard``' Intrinsic
15538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15539
15540Syntax:
15541"""""""
15542
15543::
15544
15545 declare i8* @llvm.stackguard()
15546
15547Overview:
15548"""""""""
15549
15550The ``llvm.stackguard`` intrinsic returns the system stack guard value.
15551
15552It should not be generated by frontends, since it is only for internal usage.
15553The reason why we create this intrinsic is that we still support IR form Stack
15554Protector in FastISel.
15555
15556Arguments:
15557""""""""""
15558
15559None.
15560
15561Semantics:
15562""""""""""
15563
15564On some platforms, the value returned by this intrinsic remains unchanged
15565between loads in the same thread. On other platforms, it returns the same
15566global variable value, if any, e.g. ``@__stack_chk_guard``.
15567
15568Currently some platforms have IR-level customized stack guard loading (e.g.
15569X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
15570in the future.
15571
Sean Silvab084af42012-12-07 10:36:55 +000015572'``llvm.objectsize``' Intrinsic
15573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15574
15575Syntax:
15576"""""""
15577
15578::
15579
Erik Pilkington600e9de2019-01-30 20:34:35 +000015580 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>, i1 <dynamic>)
15581 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>, i1 <dynamic>)
Sean Silvab084af42012-12-07 10:36:55 +000015582
15583Overview:
15584"""""""""
15585
Erik Pilkington600e9de2019-01-30 20:34:35 +000015586The ``llvm.objectsize`` intrinsic is designed to provide information to the
15587optimizer to determine whether a) an operation (like memcpy) will overflow a
15588buffer that corresponds to an object, or b) that a runtime check for overflow
15589isn't necessary. An object in this context means an allocation of a specific
15590class, structure, array, or other object.
Sean Silvab084af42012-12-07 10:36:55 +000015591
15592Arguments:
15593""""""""""
15594
Erik Pilkington600e9de2019-01-30 20:34:35 +000015595The ``llvm.objectsize`` intrinsic takes four arguments. The first argument is a
15596pointer to or into the ``object``. The second argument determines whether
15597``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size is
15598unknown. The third argument controls how ``llvm.objectsize`` acts when ``null``
15599in address space 0 is used as its pointer argument. If it's ``false``,
George Burgess IV3fbfa9c42018-07-09 22:21:16 +000015600``llvm.objectsize`` reports 0 bytes available when given ``null``. Otherwise, if
15601the ``null`` is in a non-zero address space or if ``true`` is given for the
Erik Pilkington600e9de2019-01-30 20:34:35 +000015602third argument of ``llvm.objectsize``, we assume its size is unknown. The fourth
15603argument to ``llvm.objectsize`` determines if the value should be evaluated at
15604runtime.
George Burgess IV56c7e882017-03-21 20:08:59 +000015605
Erik Pilkington600e9de2019-01-30 20:34:35 +000015606The second, third, and fourth arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000015607
15608Semantics:
15609""""""""""
15610
Erik Pilkington600e9de2019-01-30 20:34:35 +000015611The ``llvm.objectsize`` intrinsic is lowered to a value representing the size of
15612the object concerned. If the size cannot be determined, ``llvm.objectsize``
15613returns ``i32/i64 -1 or 0`` (depending on the ``min`` argument).
Sean Silvab084af42012-12-07 10:36:55 +000015614
15615'``llvm.expect``' Intrinsic
15616^^^^^^^^^^^^^^^^^^^^^^^^^^^
15617
15618Syntax:
15619"""""""
15620
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000015621This is an overloaded intrinsic. You can use ``llvm.expect`` on any
15622integer bit width.
15623
Sean Silvab084af42012-12-07 10:36:55 +000015624::
15625
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000015626 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000015627 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
15628 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
15629
15630Overview:
15631"""""""""
15632
15633The ``llvm.expect`` intrinsic provides information about expected (the
15634most probable) value of ``val``, which can be used by optimizers.
15635
15636Arguments:
15637""""""""""
15638
15639The ``llvm.expect`` intrinsic takes two arguments. The first argument is
15640a value. The second argument is an expected value, this needs to be a
15641constant value, variables are not allowed.
15642
15643Semantics:
15644""""""""""
15645
15646This intrinsic is lowered to the ``val``.
15647
Philip Reamese0e90832015-04-26 22:23:12 +000015648.. _int_assume:
15649
Hal Finkel93046912014-07-25 21:13:35 +000015650'``llvm.assume``' Intrinsic
15651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15652
15653Syntax:
15654"""""""
15655
15656::
15657
15658 declare void @llvm.assume(i1 %cond)
15659
15660Overview:
15661"""""""""
15662
15663The ``llvm.assume`` allows the optimizer to assume that the provided
15664condition is true. This information can then be used in simplifying other parts
15665of the code.
15666
15667Arguments:
15668""""""""""
15669
15670The condition which the optimizer may assume is always true.
15671
15672Semantics:
15673""""""""""
15674
15675The intrinsic allows the optimizer to assume that the provided condition is
15676always true whenever the control flow reaches the intrinsic call. No code is
15677generated for this intrinsic, and instructions that contribute only to the
15678provided condition are not used for code generation. If the condition is
15679violated during execution, the behavior is undefined.
15680
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000015681Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000015682used by the ``llvm.assume`` intrinsic in order to preserve the instructions
15683only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000015684if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000015685sufficient overall improvement in code quality. For this reason,
15686``llvm.assume`` should not be used to document basic mathematical invariants
15687that the optimizer can otherwise deduce or facts that are of little use to the
15688optimizer.
15689
Daniel Berlin2c438a32017-02-07 19:29:25 +000015690.. _int_ssa_copy:
15691
15692'``llvm.ssa_copy``' Intrinsic
15693^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15694
15695Syntax:
15696"""""""
15697
15698::
15699
15700 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
15701
15702Arguments:
15703""""""""""
15704
15705The first argument is an operand which is used as the returned value.
15706
15707Overview:
15708""""""""""
15709
15710The ``llvm.ssa_copy`` intrinsic can be used to attach information to
15711operations by copying them and giving them new names. For example,
15712the PredicateInfo utility uses it to build Extended SSA form, and
15713attach various forms of information to operands that dominate specific
15714uses. It is not meant for general use, only for building temporary
15715renaming forms that require value splits at certain points.
15716
Peter Collingbourne7efd7502016-06-24 21:21:32 +000015717.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000015718
Peter Collingbourne7efd7502016-06-24 21:21:32 +000015719'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000015720^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15721
15722Syntax:
15723"""""""
15724
15725::
15726
Peter Collingbourne7efd7502016-06-24 21:21:32 +000015727 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000015728
15729
15730Arguments:
15731""""""""""
15732
15733The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000015734metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000015735
15736Overview:
15737"""""""""
15738
Peter Collingbourne7efd7502016-06-24 21:21:32 +000015739The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
15740with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000015741
Peter Collingbourne0312f612016-06-25 00:23:04 +000015742'``llvm.type.checked.load``' Intrinsic
15743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15744
15745Syntax:
15746"""""""
15747
15748::
15749
15750 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
15751
15752
15753Arguments:
15754""""""""""
15755
15756The first argument is a pointer from which to load a function pointer. The
15757second argument is the byte offset from which to load the function pointer. The
15758third argument is a metadata object representing a :doc:`type identifier
15759<TypeMetadata>`.
15760
15761Overview:
15762"""""""""
15763
15764The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
15765virtual table pointer using type metadata. This intrinsic is used to implement
15766control flow integrity in conjunction with virtual call optimization. The
15767virtual call optimization pass will optimize away ``llvm.type.checked.load``
15768intrinsics associated with devirtualized calls, thereby removing the type
15769check in cases where it is not needed to enforce the control flow integrity
15770constraint.
15771
15772If the given pointer is associated with a type metadata identifier, this
15773function returns true as the second element of its return value. (Note that
15774the function may also return true if the given pointer is not associated
15775with a type metadata identifier.) If the function's return value's second
15776element is true, the following rules apply to the first element:
15777
15778- If the given pointer is associated with the given type metadata identifier,
15779 it is the function pointer loaded from the given byte offset from the given
15780 pointer.
15781
15782- If the given pointer is not associated with the given type metadata
15783 identifier, it is one of the following (the choice of which is unspecified):
15784
15785 1. The function pointer that would have been loaded from an arbitrarily chosen
15786 (through an unspecified mechanism) pointer associated with the type
15787 metadata.
15788
15789 2. If the function has a non-void return type, a pointer to a function that
15790 returns an unspecified value without causing side effects.
15791
15792If the function's return value's second element is false, the value of the
15793first element is undefined.
15794
15795
Sean Silvab084af42012-12-07 10:36:55 +000015796'``llvm.donothing``' Intrinsic
15797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15798
15799Syntax:
15800"""""""
15801
15802::
15803
15804 declare void @llvm.donothing() nounwind readnone
15805
15806Overview:
15807"""""""""
15808
Juergen Ributzkac9161192014-10-23 22:36:13 +000015809The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000015810three intrinsics (besides ``llvm.experimental.patchpoint`` and
15811``llvm.experimental.gc.statepoint``) that can be called with an invoke
15812instruction.
Sean Silvab084af42012-12-07 10:36:55 +000015813
15814Arguments:
15815""""""""""
15816
15817None.
15818
15819Semantics:
15820""""""""""
15821
15822This intrinsic does nothing, and it's removed by optimizers and ignored
15823by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000015824
Sanjoy Dasb51325d2016-03-11 19:08:34 +000015825'``llvm.experimental.deoptimize``' Intrinsic
15826^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15827
15828Syntax:
15829"""""""
15830
15831::
15832
15833 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
15834
15835Overview:
15836"""""""""
15837
15838This intrinsic, together with :ref:`deoptimization operand bundles
15839<deopt_opbundles>`, allow frontends to express transfer of control and
15840frame-local state from the currently executing (typically more specialized,
15841hence faster) version of a function into another (typically more generic, hence
15842slower) version.
15843
15844In languages with a fully integrated managed runtime like Java and JavaScript
15845this intrinsic can be used to implement "uncommon trap" or "side exit" like
15846functionality. In unmanaged languages like C and C++, this intrinsic can be
15847used to represent the slow paths of specialized functions.
15848
15849
15850Arguments:
15851""""""""""
15852
15853The intrinsic takes an arbitrary number of arguments, whose meaning is
15854decided by the :ref:`lowering strategy<deoptimize_lowering>`.
15855
15856Semantics:
15857""""""""""
15858
15859The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
15860deoptimization continuation (denoted using a :ref:`deoptimization
15861operand bundle <deopt_opbundles>`) and returns the value returned by
15862the deoptimization continuation. Defining the semantic properties of
15863the continuation itself is out of scope of the language reference --
15864as far as LLVM is concerned, the deoptimization continuation can
15865invoke arbitrary side effects, including reading from and writing to
15866the entire heap.
15867
15868Deoptimization continuations expressed using ``"deopt"`` operand bundles always
15869continue execution to the end of the physical frame containing them, so all
15870calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
15871
15872 - ``@llvm.experimental.deoptimize`` cannot be invoked.
15873 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
15874 - The ``ret`` instruction must return the value produced by the
15875 ``@llvm.experimental.deoptimize`` call if there is one, or void.
15876
15877Note that the above restrictions imply that the return type for a call to
15878``@llvm.experimental.deoptimize`` will match the return type of its immediate
15879caller.
15880
15881The inliner composes the ``"deopt"`` continuations of the caller into the
15882``"deopt"`` continuations present in the inlinee, and also updates calls to this
15883intrinsic to return directly from the frame of the function it inlined into.
15884
Sanjoy Dase0aa4142016-05-12 01:17:38 +000015885All declarations of ``@llvm.experimental.deoptimize`` must share the
15886same calling convention.
15887
Sanjoy Dasb51325d2016-03-11 19:08:34 +000015888.. _deoptimize_lowering:
15889
15890Lowering:
15891"""""""""
15892
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000015893Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
15894symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
15895ensure that this symbol is defined). The call arguments to
15896``@llvm.experimental.deoptimize`` are lowered as if they were formal
15897arguments of the specified types, and not as varargs.
15898
Sanjoy Dasb51325d2016-03-11 19:08:34 +000015899
Sanjoy Das021de052016-03-31 00:18:46 +000015900'``llvm.experimental.guard``' Intrinsic
15901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15902
15903Syntax:
15904"""""""
15905
15906::
15907
15908 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
15909
15910Overview:
15911"""""""""
15912
15913This intrinsic, together with :ref:`deoptimization operand bundles
15914<deopt_opbundles>`, allows frontends to express guards or checks on
15915optimistic assumptions made during compilation. The semantics of
15916``@llvm.experimental.guard`` is defined in terms of
15917``@llvm.experimental.deoptimize`` -- its body is defined to be
15918equivalent to:
15919
Renato Golin124f2592016-07-20 12:16:38 +000015920.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000015921
Renato Golin124f2592016-07-20 12:16:38 +000015922 define void @llvm.experimental.guard(i1 %pred, <args...>) {
15923 %realPred = and i1 %pred, undef
15924 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000015925
Renato Golin124f2592016-07-20 12:16:38 +000015926 leave:
15927 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
15928 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000015929
Renato Golin124f2592016-07-20 12:16:38 +000015930 continue:
15931 ret void
15932 }
Sanjoy Das021de052016-03-31 00:18:46 +000015933
Sanjoy Das47cf2af2016-04-30 00:55:59 +000015934
15935with the optional ``[, !make.implicit !{}]`` present if and only if it
15936is present on the call site. For more details on ``!make.implicit``,
15937see :doc:`FaultMaps`.
15938
Sanjoy Das021de052016-03-31 00:18:46 +000015939In words, ``@llvm.experimental.guard`` executes the attached
15940``"deopt"`` continuation if (but **not** only if) its first argument
15941is ``false``. Since the optimizer is allowed to replace the ``undef``
15942with an arbitrary value, it can optimize guard to fail "spuriously",
15943i.e. without the original condition being false (hence the "not only
15944if"); and this allows for "check widening" type optimizations.
15945
15946``@llvm.experimental.guard`` cannot be invoked.
15947
15948
Max Kazantsevb9e65cb2018-12-07 14:39:46 +000015949'``llvm.experimental.widenable.condition``' Intrinsic
15950^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15951
15952Syntax:
15953"""""""
15954
15955::
15956
15957 declare i1 @llvm.experimental.widenable.condition()
15958
15959Overview:
15960"""""""""
15961
15962This intrinsic represents a "widenable condition" which is
15963boolean expressions with the following property: whether this
15964expression is `true` or `false`, the program is correct and
15965well-defined.
15966
15967Together with :ref:`deoptimization operand bundles <deopt_opbundles>`,
15968``@llvm.experimental.widenable.condition`` allows frontends to
15969express guards or checks on optimistic assumptions made during
15970compilation and represent them as branch instructions on special
15971conditions.
15972
15973While this may appear similar in semantics to `undef`, it is very
15974different in that an invocation produces a particular, singular
15975value. It is also intended to be lowered late, and remain available
15976for specific optimizations and transforms that can benefit from its
15977special properties.
15978
15979Arguments:
15980""""""""""
15981
15982None.
15983
15984Semantics:
15985""""""""""
15986
15987The intrinsic ``@llvm.experimental.widenable.condition()``
15988returns either `true` or `false`. For each evaluation of a call
15989to this intrinsic, the program must be valid and correct both if
15990it returns `true` and if it returns `false`. This allows
15991transformation passes to replace evaluations of this intrinsic
15992with either value whenever one is beneficial.
15993
15994When used in a branch condition, it allows us to choose between
15995two alternative correct solutions for the same problem, like
15996in example below:
15997
15998.. code-block:: text
15999
16000 %cond = call i1 @llvm.experimental.widenable.condition()
16001 br i1 %cond, label %solution_1, label %solution_2
16002
16003 label %fast_path:
16004 ; Apply memory-consuming but fast solution for a task.
16005
16006 label %slow_path:
16007 ; Cheap in memory but slow solution.
16008
16009Whether the result of intrinsic's call is `true` or `false`,
16010it should be correct to pick either solution. We can switch
16011between them by replacing the result of
16012``@llvm.experimental.widenable.condition`` with different
16013`i1` expressions.
16014
16015This is how it can be used to represent guards as widenable branches:
16016
16017.. code-block:: text
16018
16019 block:
16020 ; Unguarded instructions
16021 call void @llvm.experimental.guard(i1 %cond, <args...>) ["deopt"(<deopt_args...>)]
16022 ; Guarded instructions
16023
16024Can be expressed in an alternative equivalent form of explicit branch using
16025``@llvm.experimental.widenable.condition``:
16026
16027.. code-block:: text
16028
16029 block:
16030 ; Unguarded instructions
16031 %widenable_condition = call i1 @llvm.experimental.widenable.condition()
16032 %guard_condition = and i1 %cond, %widenable_condition
16033 br i1 %guard_condition, label %guarded, label %deopt
16034
16035 guarded:
16036 ; Guarded instructions
16037
16038 deopt:
16039 call type @llvm.experimental.deoptimize(<args...>) [ "deopt"(<deopt_args...>) ]
16040
16041So the block `guarded` is only reachable when `%cond` is `true`,
16042and it should be valid to go to the block `deopt` whenever `%cond`
16043is `true` or `false`.
16044
16045``@llvm.experimental.widenable.condition`` will never throw, thus
16046it cannot be invoked.
16047
16048Guard widening:
16049"""""""""""""""
16050
16051When ``@llvm.experimental.widenable.condition()`` is used in
16052condition of a guard represented as explicit branch, it is
16053legal to widen the guard's condition with any additional
16054conditions.
16055
16056Guard widening looks like replacement of
16057
16058.. code-block:: text
16059
16060 %widenable_cond = call i1 @llvm.experimental.widenable.condition()
16061 %guard_cond = and i1 %cond, %widenable_cond
16062 br i1 %guard_cond, label %guarded, label %deopt
16063
16064with
16065
16066.. code-block:: text
16067
16068 %widenable_cond = call i1 @llvm.experimental.widenable.condition()
16069 %new_cond = and i1 %any_other_cond, %widenable_cond
16070 %new_guard_cond = and i1 %cond, %new_cond
16071 br i1 %new_guard_cond, label %guarded, label %deopt
16072
16073for this branch. Here `%any_other_cond` is an arbitrarily chosen
16074well-defined `i1` value. By making guard widening, we may
16075impose stricter conditions on `guarded` block and bail to the
16076deopt when the new condition is not met.
16077
16078Lowering:
16079"""""""""
16080
16081Default lowering strategy is replacing the result of
16082call of ``@llvm.experimental.widenable.condition`` with
16083constant `true`. However it is always correct to replace
16084it with any other `i1` value. Any pass can
16085freely do it if it can benefit from non-default lowering.
16086
16087
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000016088'``llvm.load.relative``' Intrinsic
16089^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16090
16091Syntax:
16092"""""""
16093
16094::
16095
16096 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
16097
16098Overview:
16099"""""""""
16100
16101This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
16102adds ``%ptr`` to that value and returns it. The constant folder specifically
16103recognizes the form of this intrinsic and the constant initializers it may
16104load from; if a loaded constant initializer is known to have the form
16105``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
16106
16107LLVM provides that the calculation of such a constant initializer will
16108not overflow at link time under the medium code model if ``x`` is an
16109``unnamed_addr`` function. However, it does not provide this guarantee for
16110a constant initializer folded into a function body. This intrinsic can be
16111used to avoid the possibility of overflows when loading from such a constant.
16112
Dan Gohman2c74fe92017-11-08 21:59:51 +000016113'``llvm.sideeffect``' Intrinsic
16114^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16115
16116Syntax:
16117"""""""
16118
16119::
16120
16121 declare void @llvm.sideeffect() inaccessiblememonly nounwind
16122
16123Overview:
16124"""""""""
16125
16126The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
16127treat it as having side effects, so it can be inserted into a loop to
16128indicate that the loop shouldn't be assumed to terminate (which could
16129potentially lead to the loop being optimized away entirely), even if it's
16130an infinite loop with no other side effects.
16131
16132Arguments:
16133""""""""""
16134
16135None.
16136
16137Semantics:
16138""""""""""
16139
16140This intrinsic actually does nothing, but optimizers must assume that it
16141has externally observable side effects.
16142
James Y Knight72f76bf2018-11-07 15:24:12 +000016143'``llvm.is.constant.*``' Intrinsic
16144^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16145
16146Syntax:
16147"""""""
16148
16149This is an overloaded intrinsic. You can use llvm.is.constant with any argument type.
16150
16151::
16152
16153 declare i1 @llvm.is.constant.i32(i32 %operand) nounwind readnone
16154 declare i1 @llvm.is.constant.f32(float %operand) nounwind readnone
16155 declare i1 @llvm.is.constant.TYPENAME(TYPE %operand) nounwind readnone
16156
16157Overview:
16158"""""""""
16159
16160The '``llvm.is.constant``' intrinsic will return true if the argument
16161is known to be a manifest compile-time constant. It is guaranteed to
16162fold to either true or false before generating machine code.
16163
16164Semantics:
16165""""""""""
16166
16167This intrinsic generates no code. If its argument is known to be a
16168manifest compile-time constant value, then the intrinsic will be
16169converted to a constant true value. Otherwise, it will be converted to
16170a constant false value.
16171
16172In particular, note that if the argument is a constant expression
16173which refers to a global (the address of which _is_ a constant, but
16174not manifest during the compile), then the intrinsic evaluates to
16175false.
16176
16177The result also intentionally depends on the result of optimization
16178passes -- e.g., the result can change depending on whether a
16179function gets inlined or not. A function's parameters are
16180obviously not constant. However, a call like
16181``llvm.is.constant.i32(i32 %param)`` *can* return true after the
16182function is inlined, if the value passed to the function parameter was
16183a constant.
16184
16185On the other hand, if constant folding is not run, it will never
16186evaluate to true, even in simple cases.
16187
Andrew Trick5e029ce2013-12-24 02:57:25 +000016188Stack Map Intrinsics
16189--------------------
16190
16191LLVM provides experimental intrinsics to support runtime patching
16192mechanisms commonly desired in dynamic language JITs. These intrinsics
16193are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016194
16195Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000016196-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000016197
16198These intrinsics are similar to the standard library memory intrinsics except
16199that they perform memory transfer as a sequence of atomic memory accesses.
16200
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016201.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000016202
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016203'``llvm.memcpy.element.unordered.atomic``' Intrinsic
16204^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000016205
16206Syntax:
16207"""""""
16208
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016209This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000016210any integer bit width and for different address spaces. Not all targets
16211support all bit widths however.
16212
16213::
16214
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016215 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
16216 i8* <src>,
16217 i32 <len>,
16218 i32 <element_size>)
16219 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
16220 i8* <src>,
16221 i64 <len>,
16222 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000016223
16224Overview:
16225"""""""""
16226
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016227The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
16228'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
16229as arrays with elements that are exactly ``element_size`` bytes, and the copy between
16230buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
16231that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016232
16233Arguments:
16234""""""""""
16235
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016236The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
16237intrinsic, with the added constraint that ``len`` is required to be a positive integer
16238multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
16239``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016240
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016241``element_size`` must be a compile-time constant positive power of two no greater than
16242target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016243
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016244For each of the input pointers ``align`` parameter attribute must be specified. It
16245must be a power of two no less than the ``element_size``. Caller guarantees that
16246both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016247
16248Semantics:
16249""""""""""
16250
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016251The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
16252memory from the source location to the destination location. These locations are not
16253allowed to overlap. The memory copy is performed as a sequence of load/store operations
16254where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000016255aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016256
16257The order of the copy is unspecified. The same value may be read from the source
16258buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016259element. It is well defined to have concurrent reads and writes to both source and
16260destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016261
16262This intrinsic does not provide any additional ordering guarantees over those
16263provided by a set of unordered loads from the source location and stores to the
16264destination.
16265
16266Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000016267"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000016268
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016269In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
16270lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
16271is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016272
Daniel Neilson57226ef2017-07-12 15:25:26 +000016273Optimizer is allowed to inline memory copy when it's profitable to do so.
16274
16275'``llvm.memmove.element.unordered.atomic``' Intrinsic
16276^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16277
16278Syntax:
16279"""""""
16280
16281This is an overloaded intrinsic. You can use
16282``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
16283different address spaces. Not all targets support all bit widths however.
16284
16285::
16286
16287 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
16288 i8* <src>,
16289 i32 <len>,
16290 i32 <element_size>)
16291 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
16292 i8* <src>,
16293 i64 <len>,
16294 i32 <element_size>)
16295
16296Overview:
16297"""""""""
16298
16299The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
16300of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
16301``src`` are treated as arrays with elements that are exactly ``element_size``
16302bytes, and the copy between buffers uses a sequence of
16303:ref:`unordered atomic <ordering>` load/store operations that are a positive
16304integer multiple of the ``element_size`` in size.
16305
16306Arguments:
16307""""""""""
16308
16309The first three arguments are the same as they are in the
16310:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
16311``len`` is required to be a positive integer multiple of the ``element_size``.
16312If ``len`` is not a positive integer multiple of ``element_size``, then the
16313behaviour of the intrinsic is undefined.
16314
16315``element_size`` must be a compile-time constant positive power of two no
16316greater than a target-specific atomic access size limit.
16317
16318For each of the input pointers the ``align`` parameter attribute must be
16319specified. It must be a power of two no less than the ``element_size``. Caller
16320guarantees that both the source and destination pointers are aligned to that
16321boundary.
16322
16323Semantics:
16324""""""""""
16325
16326The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
16327of memory from the source location to the destination location. These locations
16328are allowed to overlap. The memory copy is performed as a sequence of load/store
16329operations where each access is guaranteed to be a multiple of ``element_size``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000016330bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson57226ef2017-07-12 15:25:26 +000016331
16332The order of the copy is unspecified. The same value may be read from the source
16333buffer many times, but only one write is issued to the destination buffer per
16334element. It is well defined to have concurrent reads and writes to both source
16335and destination provided those reads and writes are unordered atomic when
16336specified.
16337
16338This intrinsic does not provide any additional ordering guarantees over those
16339provided by a set of unordered loads from the source location and stores to the
16340destination.
16341
16342Lowering:
16343"""""""""
16344
16345In the most general case call to the
16346'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
16347``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
16348actual element size.
16349
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016350The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000016351
16352.. _int_memset_element_unordered_atomic:
16353
16354'``llvm.memset.element.unordered.atomic``' Intrinsic
16355^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16356
16357Syntax:
16358"""""""
16359
16360This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
16361any integer bit width and for different address spaces. Not all targets
16362support all bit widths however.
16363
16364::
16365
16366 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
16367 i8 <value>,
16368 i32 <len>,
16369 i32 <element_size>)
16370 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
16371 i8 <value>,
16372 i64 <len>,
16373 i32 <element_size>)
16374
16375Overview:
16376"""""""""
16377
16378The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
16379'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
16380with elements that are exactly ``element_size`` bytes, and the assignment to that array
16381uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
16382that are a positive integer multiple of the ``element_size`` in size.
16383
16384Arguments:
16385""""""""""
16386
16387The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
16388intrinsic, with the added constraint that ``len`` is required to be a positive integer
16389multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
16390``element_size``, then the behaviour of the intrinsic is undefined.
16391
16392``element_size`` must be a compile-time constant positive power of two no greater than
16393target-specific atomic access size limit.
16394
16395The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
16396must be a power of two no less than the ``element_size``. Caller guarantees that
16397the destination pointer is aligned to that boundary.
16398
16399Semantics:
16400""""""""""
16401
16402The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
16403memory starting at the destination location to the given ``value``. The memory is
16404set with a sequence of store operations where each access is guaranteed to be a
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000016405multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson965613e2017-07-12 21:57:23 +000016406
16407The order of the assignment is unspecified. Only one write is issued to the
16408destination buffer per element. It is well defined to have concurrent reads and
16409writes to the destination provided those reads and writes are unordered atomic
16410when specified.
16411
16412This intrinsic does not provide any additional ordering guarantees over those
16413provided by a set of unordered stores to the destination.
16414
16415Lowering:
16416"""""""""
16417
16418In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
16419lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
16420is replaced with an actual element size.
16421
16422The optimizer is allowed to inline the memory assignment when it's profitable to do so.
Erik Pilkingtonbdad92a2018-12-10 18:19:43 +000016423
16424Objective-C ARC Runtime Intrinsics
16425----------------------------------
16426
16427LLVM provides intrinsics that lower to Objective-C ARC runtime entry points.
16428LLVM is aware of the semantics of these functions, and optimizes based on that
16429knowledge. You can read more about the details of Objective-C ARC `here
16430<https://clang.llvm.org/docs/AutomaticReferenceCounting.html>`_.
16431
16432'``llvm.objc.autorelease``' Intrinsic
16433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16434
16435Syntax:
16436"""""""
16437::
16438
16439 declare i8* @llvm.objc.autorelease(i8*)
16440
16441Lowering:
16442"""""""""
16443
16444Lowers to a call to `objc_autorelease <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autorelease>`_.
16445
16446'``llvm.objc.autoreleasePoolPop``' Intrinsic
16447^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16448
16449Syntax:
16450"""""""
16451::
16452
16453 declare void @llvm.objc.autoreleasePoolPop(i8*)
16454
16455Lowering:
16456"""""""""
16457
16458Lowers to a call to `objc_autoreleasePoolPop <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-autoreleasepoolpop-void-pool>`_.
16459
16460'``llvm.objc.autoreleasePoolPush``' Intrinsic
16461^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16462
16463Syntax:
16464"""""""
16465::
16466
16467 declare i8* @llvm.objc.autoreleasePoolPush()
16468
16469Lowering:
16470"""""""""
16471
16472Lowers to a call to `objc_autoreleasePoolPush <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-autoreleasepoolpush-void>`_.
16473
16474'``llvm.objc.autoreleaseReturnValue``' Intrinsic
16475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16476
16477Syntax:
16478"""""""
16479::
16480
16481 declare i8* @llvm.objc.autoreleaseReturnValue(i8*)
16482
16483Lowering:
16484"""""""""
16485
16486Lowers to a call to `objc_autoreleaseReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue>`_.
16487
16488'``llvm.objc.copyWeak``' Intrinsic
16489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16490
16491Syntax:
16492"""""""
16493::
16494
16495 declare void @llvm.objc.copyWeak(i8**, i8**)
16496
16497Lowering:
16498"""""""""
16499
16500Lowers to a call to `objc_copyWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-copyweak-id-dest-id-src>`_.
16501
16502'``llvm.objc.destroyWeak``' Intrinsic
16503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16504
16505Syntax:
16506"""""""
16507::
16508
16509 declare void @llvm.objc.destroyWeak(i8**)
16510
16511Lowering:
16512"""""""""
16513
16514Lowers to a call to `objc_destroyWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-destroyweak-id-object>`_.
16515
16516'``llvm.objc.initWeak``' Intrinsic
16517^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16518
16519Syntax:
16520"""""""
16521::
16522
16523 declare i8* @llvm.objc.initWeak(i8**, i8*)
16524
16525Lowering:
16526"""""""""
16527
16528Lowers to a call to `objc_initWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-initweak>`_.
16529
16530'``llvm.objc.loadWeak``' Intrinsic
16531^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16532
16533Syntax:
16534"""""""
16535::
16536
16537 declare i8* @llvm.objc.loadWeak(i8**)
16538
16539Lowering:
16540"""""""""
16541
16542Lowers to a call to `objc_loadWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-loadweak>`_.
16543
16544'``llvm.objc.loadWeakRetained``' Intrinsic
16545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16546
16547Syntax:
16548"""""""
16549::
16550
16551 declare i8* @llvm.objc.loadWeakRetained(i8**)
16552
16553Lowering:
16554"""""""""
16555
16556Lowers to a call to `objc_loadWeakRetained <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-loadweakretained>`_.
16557
16558'``llvm.objc.moveWeak``' Intrinsic
16559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16560
16561Syntax:
16562"""""""
16563::
16564
16565 declare void @llvm.objc.moveWeak(i8**, i8**)
16566
16567Lowering:
16568"""""""""
16569
16570Lowers to a call to `objc_moveWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-moveweak-id-dest-id-src>`_.
16571
16572'``llvm.objc.release``' Intrinsic
16573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16574
16575Syntax:
16576"""""""
16577::
16578
16579 declare void @llvm.objc.release(i8*)
16580
16581Lowering:
16582"""""""""
16583
16584Lowers to a call to `objc_release <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-release-id-value>`_.
16585
16586'``llvm.objc.retain``' Intrinsic
16587^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16588
16589Syntax:
16590"""""""
16591::
16592
16593 declare i8* @llvm.objc.retain(i8*)
16594
16595Lowering:
16596"""""""""
16597
16598Lowers to a call to `objc_retain <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retain>`_.
16599
16600'``llvm.objc.retainAutorelease``' Intrinsic
16601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16602
16603Syntax:
16604"""""""
16605::
16606
16607 declare i8* @llvm.objc.retainAutorelease(i8*)
16608
16609Lowering:
16610"""""""""
16611
16612Lowers to a call to `objc_retainAutorelease <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautorelease>`_.
16613
16614'``llvm.objc.retainAutoreleaseReturnValue``' Intrinsic
16615^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16616
16617Syntax:
16618"""""""
16619::
16620
16621 declare i8* @llvm.objc.retainAutoreleaseReturnValue(i8*)
16622
16623Lowering:
16624"""""""""
16625
16626Lowers to a call to `objc_retainAutoreleaseReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautoreleasereturnvalue>`_.
16627
16628'``llvm.objc.retainAutoreleasedReturnValue``' Intrinsic
16629^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16630
16631Syntax:
16632"""""""
16633::
16634
16635 declare i8* @llvm.objc.retainAutoreleasedReturnValue(i8*)
16636
16637Lowering:
16638"""""""""
16639
16640Lowers to a call to `objc_retainAutoreleasedReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautoreleasedreturnvalue>`_.
16641
16642'``llvm.objc.retainBlock``' Intrinsic
16643^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16644
16645Syntax:
16646"""""""
16647::
16648
16649 declare i8* @llvm.objc.retainBlock(i8*)
16650
16651Lowering:
16652"""""""""
16653
16654Lowers to a call to `objc_retainBlock <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainblock>`_.
16655
16656'``llvm.objc.storeStrong``' Intrinsic
16657^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16658
16659Syntax:
16660"""""""
16661::
16662
16663 declare void @llvm.objc.storeStrong(i8**, i8*)
16664
16665Lowering:
16666"""""""""
16667
16668Lowers to a call to `objc_storeStrong <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-storestrong-id-object-id-value>`_.
16669
16670'``llvm.objc.storeWeak``' Intrinsic
16671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16672
16673Syntax:
16674"""""""
16675::
16676
16677 declare i8* @llvm.objc.storeWeak(i8**, i8*)
16678
16679Lowering:
16680"""""""""
16681
16682Lowers to a call to `objc_storeWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-storeweak>`_.