blob: 3f35752b450fdda2272b6c9161681fb38f42e5b8 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
Hans Wennborg2cfcc012018-05-22 10:14:07 +000083 can be used on global values to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000327 floating-point types are supported.
Sean Silvab084af42012-12-07 10:36:55 +0000328 - On *X86-64* only supports up to 10 bit type parameters and 6
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000329 floating-point parameters.
Sean Silvab084af42012-12-07 10:36:55 +0000330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Sean Fertilec70d28b2017-10-26 15:00:26 +0000530.. _runtime_preemption_model:
531
532Runtime Preemption Specifiers
533-----------------------------
534
535Global variables, functions and aliases may have an optional runtime preemption
536specifier. If a preemption specifier isn't given explicitly, then a
537symbol is assumed to be ``dso_preemptable``.
538
539``dso_preemptable``
540 Indicates that the function or variable may be replaced by a symbol from
541 outside the linkage unit at runtime.
542
543``dso_local``
544 The compiler may assume that a function or variable marked as ``dso_local``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000545 will resolve to a symbol within the same linkage unit. Direct access will
Sean Fertilec70d28b2017-10-26 15:00:26 +0000546 be generated even if the definition is not within this compilation unit.
547
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000548.. _namedtypes:
549
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000550Structure Types
551---------------
Sean Silvab084af42012-12-07 10:36:55 +0000552
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000553LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000554types <t_struct>`. Literal types are uniqued structurally, but identified types
555are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000556to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000557
Sean Silva706fba52015-08-06 22:56:24 +0000558An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000559
560.. code-block:: llvm
561
562 %mytype = type { %mytype*, i32 }
563
Sean Silvaa1190322015-08-06 22:56:48 +0000564Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000565literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000566
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000567.. _nointptrtype:
568
569Non-Integral Pointer Type
570-------------------------
571
572Note: non-integral pointer types are a work in progress, and they should be
573considered experimental at this time.
574
575LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000576spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
577Non-integral pointer types represent pointers that have an *unspecified* bitwise
578representation; that is, the integral representation may be target dependent or
579unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000580
581``inttoptr`` instructions converting integers to non-integral pointer types are
582ill-typed, and so are ``ptrtoint`` instructions converting values of
583non-integral pointer types to integers. Vector versions of said instructions
584are ill-typed as well.
585
Sean Silvab084af42012-12-07 10:36:55 +0000586.. _globalvars:
587
588Global Variables
589----------------
590
591Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000592instead of run-time.
593
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000594Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000595
596Global variables in other translation units can also be declared, in which
597case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000598
Bob Wilson85b24f22014-06-12 20:40:33 +0000599Either global variable definitions or declarations may have an explicit section
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000600to be placed in and may have an optional explicit alignment specified. If there
601is a mismatch between the explicit or inferred section information for the
602variable declaration and its definition the resulting behavior is undefined.
Bob Wilson85b24f22014-06-12 20:40:33 +0000603
Michael Gottesman006039c2013-01-31 05:48:48 +0000604A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000605the contents of the variable will **never** be modified (enabling better
606optimization, allowing the global data to be placed in the read-only
607section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000608initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000609variable.
610
611LLVM explicitly allows *declarations* of global variables to be marked
612constant, even if the final definition of the global is not. This
613capability can be used to enable slightly better optimization of the
614program, but requires the language definition to guarantee that
615optimizations based on the 'constantness' are valid for the translation
616units that do not include the definition.
617
618As SSA values, global variables define pointer values that are in scope
619(i.e. they dominate) all basic blocks in the program. Global variables
620always define a pointer to their "content" type because they describe a
621region of memory, and all memory objects in LLVM are accessed through
622pointers.
623
624Global variables can be marked with ``unnamed_addr`` which indicates
625that the address is not significant, only the content. Constants marked
626like this can be merged with other constants if they have the same
627initializer. Note that a constant with significant address *can* be
628merged with a ``unnamed_addr`` constant, the result being a constant
629whose address is significant.
630
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000631If the ``local_unnamed_addr`` attribute is given, the address is known to
632not be significant within the module.
633
Sean Silvab084af42012-12-07 10:36:55 +0000634A global variable may be declared to reside in a target-specific
635numbered address space. For targets that support them, address spaces
636may affect how optimizations are performed and/or what target
637instructions are used to access the variable. The default address space
638is zero. The address space qualifier must precede any other attributes.
639
640LLVM allows an explicit section to be specified for globals. If the
641target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000642Additionally, the global can placed in a comdat if the target has the necessary
643support.
Sean Silvab084af42012-12-07 10:36:55 +0000644
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000645External declarations may have an explicit section specified. Section
646information is retained in LLVM IR for targets that make use of this
647information. Attaching section information to an external declaration is an
648assertion that its definition is located in the specified section. If the
649definition is located in a different section, the behavior is undefined.
Erich Keane0343ef82017-08-22 15:30:43 +0000650
Michael Gottesmane743a302013-02-04 03:22:00 +0000651By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000652variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000653initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000654true even for variables potentially accessible from outside the
655module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000656``@llvm.used`` or dllexported variables. This assumption may be suppressed
657by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659An explicit alignment may be specified for a global, which must be a
660power of 2. If not present, or if the alignment is set to zero, the
661alignment of the global is set by the target to whatever it feels
662convenient. If an explicit alignment is specified, the global is forced
663to have exactly that alignment. Targets and optimizers are not allowed
664to over-align the global if the global has an assigned section. In this
665case, the extra alignment could be observable: for example, code could
666assume that the globals are densely packed in their section and try to
667iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000668iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000669
Javed Absarf3d79042017-05-11 12:28:08 +0000670Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
Sean Fertilec70d28b2017-10-26 15:00:26 +0000671an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
Javed Absarf3d79042017-05-11 12:28:08 +0000672an optional :ref:`global attributes <glattrs>` and
673an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000674
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000675Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000676:ref:`Thread Local Storage Model <tls_model>`.
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678Syntax::
679
Sean Fertilec70d28b2017-10-26 15:00:26 +0000680 @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
681 [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
683 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000684 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000686 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000687
Sean Silvab084af42012-12-07 10:36:55 +0000688For example, the following defines a global in a numbered address space
689with an initializer, section, and alignment:
690
691.. code-block:: llvm
692
693 @G = addrspace(5) constant float 1.0, section "foo", align 4
694
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000695The following example just declares a global variable
696
697.. code-block:: llvm
698
699 @G = external global i32
700
Sean Silvab084af42012-12-07 10:36:55 +0000701The following example defines a thread-local global with the
702``initialexec`` TLS model:
703
704.. code-block:: llvm
705
706 @G = thread_local(initialexec) global i32 0, align 4
707
708.. _functionstructure:
709
710Functions
711---------
712
713LLVM function definitions consist of the "``define``" keyword, an
Sean Fertilec70d28b2017-10-26 15:00:26 +0000714optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
715specifier <runtime_preemption_model>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000716style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
717an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000718an optional ``unnamed_addr`` attribute, a return type, an optional
719:ref:`parameter attribute <paramattrs>` for the return type, a function
720name, a (possibly empty) argument list (each with optional :ref:`parameter
721attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000722an optional address space, an optional section, an optional alignment,
David Majnemerdad0a642014-06-27 18:19:56 +0000723an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000724an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000725an optional :ref:`prologue <prologuedata>`,
726an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000727an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000728an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000731optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
732<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
733optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000734or ``local_unnamed_addr`` attribute, an optional address space, a return type,
735an optional :ref:`parameter attribute <paramattrs>` for the return type, a function name, a possibly
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000736empty list of arguments, an optional alignment, an optional :ref:`garbage
737collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
738:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000739
Bill Wendling6822ecb2013-10-27 05:09:12 +0000740A function definition contains a list of basic blocks, forming the CFG (Control
741Flow Graph) for the function. Each basic block may optionally start with a label
742(giving the basic block a symbol table entry), contains a list of instructions,
743and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
James Y Knightc0e6b8a2019-03-22 18:27:13 +0000744function return). If an explicit label name is not provided, a block is assigned
745an implicit numbered label, using the next value from the same counter as used
746for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
747function entry block does not have an explicit label, it will be assigned label
748"%0", then the first unnamed temporary in that block will be "%1", etc. If a
749numeric label is explicitly specified, it must match the numeric label that
750would be used implicitly.
Sean Silvab084af42012-12-07 10:36:55 +0000751
752The first basic block in a function is special in two ways: it is
753immediately executed on entrance to the function, and it is not allowed
754to have predecessor basic blocks (i.e. there can not be any branches to
755the entry block of a function). Because the block can have no
756predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
757
758LLVM allows an explicit section to be specified for functions. If the
759target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000760Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000761
762An explicit alignment may be specified for a function. If not present,
763or if the alignment is set to zero, the alignment of the function is set
764by the target to whatever it feels convenient. If an explicit alignment
765is specified, the function is forced to have at least that much
766alignment. All alignments must be a power of 2.
767
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000768If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000769be significant and two identical functions can be merged.
770
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000771If the ``local_unnamed_addr`` attribute is given, the address is known to
772not be significant within the module.
773
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000774If an explicit address space is not given, it will default to the program
775address space from the :ref:`datalayout string<langref_datalayout>`.
776
Sean Silvab084af42012-12-07 10:36:55 +0000777Syntax::
778
Sean Fertilec70d28b2017-10-26 15:00:26 +0000779 define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000780 [cconv] [ret attrs]
781 <ResultType> @<FunctionName> ([argument list])
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000782 [(unnamed_addr|local_unnamed_addr)] [AddrSpace] [fn Attrs]
783 [section "name"] [comdat [($name)]] [align N] [gc] [prefix Constant]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000784 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000785
Sean Silva706fba52015-08-06 22:56:24 +0000786The argument list is a comma separated sequence of arguments where each
787argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000788
789Syntax::
790
791 <type> [parameter Attrs] [name]
792
793
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000794.. _langref_aliases:
795
Sean Silvab084af42012-12-07 10:36:55 +0000796Aliases
797-------
798
Rafael Espindola64c1e182014-06-03 02:41:57 +0000799Aliases, unlike function or variables, don't create any new data. They
800are just a new symbol and metadata for an existing position.
801
802Aliases have a name and an aliasee that is either a global value or a
803constant expression.
804
Nico Rieck7157bb72014-01-14 15:22:47 +0000805Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Sean Fertilec70d28b2017-10-26 15:00:26 +0000806:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000807:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
808<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000809
810Syntax::
811
Sean Fertilec70d28b2017-10-26 15:00:26 +0000812 @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000813
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000814The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000815``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000816might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000817
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000818Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000819the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
820to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000821
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000822If the ``local_unnamed_addr`` attribute is given, the address is known to
823not be significant within the module.
824
Rafael Espindola64c1e182014-06-03 02:41:57 +0000825Since aliases are only a second name, some restrictions apply, of which
826some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000827
Rafael Espindola64c1e182014-06-03 02:41:57 +0000828* The expression defining the aliasee must be computable at assembly
829 time. Since it is just a name, no relocations can be used.
830
831* No alias in the expression can be weak as the possibility of the
832 intermediate alias being overridden cannot be represented in an
833 object file.
834
835* No global value in the expression can be a declaration, since that
836 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000837
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000838.. _langref_ifunc:
839
840IFuncs
841-------
842
843IFuncs, like as aliases, don't create any new data or func. They are just a new
844symbol that dynamic linker resolves at runtime by calling a resolver function.
845
846IFuncs have a name and a resolver that is a function called by dynamic linker
847that returns address of another function associated with the name.
848
849IFunc may have an optional :ref:`linkage type <linkage>` and an optional
850:ref:`visibility style <visibility>`.
851
852Syntax::
853
854 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
855
856
David Majnemerdad0a642014-06-27 18:19:56 +0000857.. _langref_comdats:
858
859Comdats
860-------
861
862Comdat IR provides access to COFF and ELF object file COMDAT functionality.
863
Sean Silvaa1190322015-08-06 22:56:48 +0000864Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000865specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000866that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000867aliasee computes to, if any.
868
869Comdats have a selection kind to provide input on how the linker should
870choose between keys in two different object files.
871
872Syntax::
873
874 $<Name> = comdat SelectionKind
875
876The selection kind must be one of the following:
877
878``any``
879 The linker may choose any COMDAT key, the choice is arbitrary.
880``exactmatch``
881 The linker may choose any COMDAT key but the sections must contain the
882 same data.
883``largest``
884 The linker will choose the section containing the largest COMDAT key.
885``noduplicates``
886 The linker requires that only section with this COMDAT key exist.
887``samesize``
888 The linker may choose any COMDAT key but the sections must contain the
889 same amount of data.
890
Sam Cleggea7cace2018-01-09 23:43:14 +0000891Note that the Mach-O platform doesn't support COMDATs, and ELF and WebAssembly
892only support ``any`` as a selection kind.
David Majnemerdad0a642014-06-27 18:19:56 +0000893
894Here is an example of a COMDAT group where a function will only be selected if
895the COMDAT key's section is the largest:
896
Renato Golin124f2592016-07-20 12:16:38 +0000897.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000898
899 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000900 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000901
Rafael Espindola83a362c2015-01-06 22:55:16 +0000902 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000903 ret void
904 }
905
Rafael Espindola83a362c2015-01-06 22:55:16 +0000906As a syntactic sugar the ``$name`` can be omitted if the name is the same as
907the global name:
908
Renato Golin124f2592016-07-20 12:16:38 +0000909.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000910
911 $foo = comdat any
912 @foo = global i32 2, comdat
913
914
David Majnemerdad0a642014-06-27 18:19:56 +0000915In a COFF object file, this will create a COMDAT section with selection kind
916``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
917and another COMDAT section with selection kind
918``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000919section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000920
921There are some restrictions on the properties of the global object.
922It, or an alias to it, must have the same name as the COMDAT group when
923targeting COFF.
924The contents and size of this object may be used during link-time to determine
925which COMDAT groups get selected depending on the selection kind.
926Because the name of the object must match the name of the COMDAT group, the
927linkage of the global object must not be local; local symbols can get renamed
928if a collision occurs in the symbol table.
929
930The combined use of COMDATS and section attributes may yield surprising results.
931For example:
932
Renato Golin124f2592016-07-20 12:16:38 +0000933.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000934
935 $foo = comdat any
936 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000937 @g1 = global i32 42, section "sec", comdat($foo)
938 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000939
940From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000941with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000942COMDAT groups and COMDATs, at the object file level, are represented by
943sections.
944
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000945Note that certain IR constructs like global variables and functions may
946create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000947COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000948in individual sections (e.g. when `-data-sections` or `-function-sections`
949is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000950
Sean Silvab084af42012-12-07 10:36:55 +0000951.. _namedmetadatastructure:
952
953Named Metadata
954--------------
955
956Named metadata is a collection of metadata. :ref:`Metadata
957nodes <metadata>` (but not metadata strings) are the only valid
958operands for a named metadata.
959
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000960#. Named metadata are represented as a string of characters with the
961 metadata prefix. The rules for metadata names are the same as for
962 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
963 are still valid, which allows any character to be part of a name.
964
Sean Silvab084af42012-12-07 10:36:55 +0000965Syntax::
966
967 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000968 !0 = !{!"zero"}
969 !1 = !{!"one"}
970 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000971 ; A named metadata.
972 !name = !{!0, !1, !2}
973
974.. _paramattrs:
975
976Parameter Attributes
977--------------------
978
979The return type and each parameter of a function type may have a set of
980*parameter attributes* associated with them. Parameter attributes are
981used to communicate additional information about the result or
982parameters of a function. Parameter attributes are considered to be part
983of the function, not of the function type, so functions with different
984parameter attributes can have the same function type.
985
986Parameter attributes are simple keywords that follow the type specified.
987If multiple parameter attributes are needed, they are space separated.
988For example:
989
990.. code-block:: llvm
991
992 declare i32 @printf(i8* noalias nocapture, ...)
993 declare i32 @atoi(i8 zeroext)
994 declare signext i8 @returns_signed_char()
995
996Note that any attributes for the function result (``nounwind``,
997``readonly``) come immediately after the argument list.
998
999Currently, only the following parameter attributes are defined:
1000
1001``zeroext``
1002 This indicates to the code generator that the parameter or return
1003 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +00001004 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +00001005``signext``
1006 This indicates to the code generator that the parameter or return
1007 value should be sign-extended to the extent required by the target's
1008 ABI (which is usually 32-bits) by the caller (for a parameter) or
1009 the callee (for a return value).
1010``inreg``
1011 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +00001012 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +00001013 a function call or return (usually, by putting it in a register as
1014 opposed to memory, though some targets use it to distinguish between
1015 two different kinds of registers). Use of this attribute is
1016 target-specific.
1017``byval``
1018 This indicates that the pointer parameter should really be passed by
1019 value to the function. The attribute implies that a hidden copy of
1020 the pointee is made between the caller and the callee, so the callee
1021 is unable to modify the value in the caller. This attribute is only
1022 valid on LLVM pointer arguments. It is generally used to pass
1023 structs and arrays by value, but is also valid on pointers to
1024 scalars. The copy is considered to belong to the caller not the
1025 callee (for example, ``readonly`` functions should not write to
1026 ``byval`` parameters). This is not a valid attribute for return
1027 values.
1028
1029 The byval attribute also supports specifying an alignment with the
1030 align attribute. It indicates the alignment of the stack slot to
1031 form and the known alignment of the pointer specified to the call
1032 site. If the alignment is not specified, then the code generator
1033 makes a target-specific assumption.
1034
Reid Klecknera534a382013-12-19 02:14:12 +00001035.. _attr_inalloca:
1036
1037``inalloca``
1038
Reid Kleckner60d3a832014-01-16 22:59:24 +00001039 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001040 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001041 be a pointer to stack memory produced by an ``alloca`` instruction.
1042 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001043 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001044 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001045
Reid Kleckner436c42e2014-01-17 23:58:17 +00001046 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001047 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001048 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001049 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001050 ``inalloca`` attribute also disables LLVM's implicit lowering of
1051 large aggregate return values, which means that frontend authors
1052 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001053
Reid Kleckner60d3a832014-01-16 22:59:24 +00001054 When the call site is reached, the argument allocation must have
1055 been the most recent stack allocation that is still live, or the
Eli Friedman0f522bd2018-07-25 18:26:38 +00001056 behavior is undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001057 space after an argument allocation and before its call site, but it
1058 must be cleared off with :ref:`llvm.stackrestore
1059 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001060
1061 See :doc:`InAlloca` for more information on how to use this
1062 attribute.
1063
Sean Silvab084af42012-12-07 10:36:55 +00001064``sret``
1065 This indicates that the pointer parameter specifies the address of a
1066 structure that is the return value of the function in the source
1067 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001068 loads and stores to the structure may be assumed by the callee not
1069 to trap and to be properly aligned. This is not a valid attribute
1070 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001071
Daniel Neilson1e687242018-01-19 17:13:12 +00001072.. _attr_align:
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001073
Hal Finkelccc70902014-07-22 16:58:55 +00001074``align <n>``
1075 This indicates that the pointer value may be assumed by the optimizer to
Kristina Brooks76eb4b02019-02-26 18:53:13 +00001076 have the specified alignment. If the pointer value does not have the
1077 specified alignment, behavior is undefined.
Hal Finkelccc70902014-07-22 16:58:55 +00001078
1079 Note that this attribute has additional semantics when combined with the
Kristina Brooks76eb4b02019-02-26 18:53:13 +00001080 ``byval`` attribute, which are documented there.
Hal Finkelccc70902014-07-22 16:58:55 +00001081
Sean Silva1703e702014-04-08 21:06:22 +00001082.. _noalias:
1083
Sean Silvab084af42012-12-07 10:36:55 +00001084``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001085 This indicates that objects accessed via pointer values
1086 :ref:`based <pointeraliasing>` on the argument or return value are not also
1087 accessed, during the execution of the function, via pointer values not
1088 *based* on the argument or return value. The attribute on a return value
1089 also has additional semantics described below. The caller shares the
1090 responsibility with the callee for ensuring that these requirements are met.
1091 For further details, please see the discussion of the NoAlias response in
1092 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001093
1094 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001095 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001096
1097 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001098 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1099 attribute on return values are stronger than the semantics of the attribute
1100 when used on function arguments. On function return values, the ``noalias``
1101 attribute indicates that the function acts like a system memory allocation
1102 function, returning a pointer to allocated storage disjoint from the
1103 storage for any other object accessible to the caller.
1104
Sean Silvab084af42012-12-07 10:36:55 +00001105``nocapture``
1106 This indicates that the callee does not make any copies of the
1107 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001108 attribute for return values. Addresses used in volatile operations
1109 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001110
1111.. _nest:
1112
1113``nest``
1114 This indicates that the pointer parameter can be excised using the
1115 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001116 attribute for return values and can only be applied to one parameter.
1117
1118``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001119 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001120 value. This is a hint to the optimizer and code generator used when
1121 generating the caller, allowing value propagation, tail call optimization,
1122 and omission of register saves and restores in some cases; it is not
1123 checked or enforced when generating the callee. The parameter and the
1124 function return type must be valid operands for the
1125 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1126 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001127
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001128``nonnull``
1129 This indicates that the parameter or return pointer is not null. This
1130 attribute may only be applied to pointer typed parameters. This is not
Eli Friedman0f522bd2018-07-25 18:26:38 +00001131 checked or enforced by LLVM; if the parameter or return pointer is null,
1132 the behavior is undefined.
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001133
Hal Finkelb0407ba2014-07-18 15:51:28 +00001134``dereferenceable(<n>)``
1135 This indicates that the parameter or return pointer is dereferenceable. This
1136 attribute may only be applied to pointer typed parameters. A pointer that
1137 is dereferenceable can be loaded from speculatively without a risk of
1138 trapping. The number of bytes known to be dereferenceable must be provided
1139 in parentheses. It is legal for the number of bytes to be less than the
1140 size of the pointee type. The ``nonnull`` attribute does not imply
1141 dereferenceability (consider a pointer to one element past the end of an
1142 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1143 ``addrspace(0)`` (which is the default address space).
1144
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001145``dereferenceable_or_null(<n>)``
1146 This indicates that the parameter or return value isn't both
1147 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001148 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001149 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1150 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1151 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1152 and in other address spaces ``dereferenceable_or_null(<n>)``
1153 implies that a pointer is at least one of ``dereferenceable(<n>)``
1154 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001155 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001156 pointer typed parameters.
1157
Manman Renf46262e2016-03-29 17:37:21 +00001158``swiftself``
1159 This indicates that the parameter is the self/context parameter. This is not
1160 a valid attribute for return values and can only be applied to one
1161 parameter.
1162
Manman Ren9bfd0d02016-04-01 21:41:15 +00001163``swifterror``
1164 This attribute is motivated to model and optimize Swift error handling. It
1165 can be applied to a parameter with pointer to pointer type or a
1166 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001167 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1168 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1169 the parameter or the alloca) can only be loaded and stored from, or used as
1170 a ``swifterror`` argument. This is not a valid attribute for return values
1171 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001172
1173 These constraints allow the calling convention to optimize access to
1174 ``swifterror`` variables by associating them with a specific register at
1175 call boundaries rather than placing them in memory. Since this does change
1176 the calling convention, a function which uses the ``swifterror`` attribute
1177 on a parameter is not ABI-compatible with one which does not.
1178
1179 These constraints also allow LLVM to assume that a ``swifterror`` argument
1180 does not alias any other memory visible within a function and that a
1181 ``swifterror`` alloca passed as an argument does not escape.
1182
Matt Arsenaultcaf13162019-03-12 21:02:54 +00001183``immarg``
1184 This indicates the parameter is required to be an immediate
1185 value. This must be a trivial immediate integer or floating-point
1186 constant. Undef or constant expressions are not valid. This is
1187 only valid on intrinsic declarations and cannot be applied to a
1188 call site or arbitrary function.
1189
Sean Silvab084af42012-12-07 10:36:55 +00001190.. _gc:
1191
Philip Reamesf80bbff2015-02-25 23:45:20 +00001192Garbage Collector Strategy Names
1193--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001194
Philip Reamesf80bbff2015-02-25 23:45:20 +00001195Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001196string:
1197
1198.. code-block:: llvm
1199
1200 define void @f() gc "name" { ... }
1201
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001202The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001203<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001204strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001205named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001206garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001207which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001208
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001209.. _prefixdata:
1210
1211Prefix Data
1212-----------
1213
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001214Prefix data is data associated with a function which the code
1215generator will emit immediately before the function's entrypoint.
1216The purpose of this feature is to allow frontends to associate
1217language-specific runtime metadata with specific functions and make it
1218available through the function pointer while still allowing the
1219function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001220
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001221To access the data for a given function, a program may bitcast the
1222function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001223index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001224the prefix data. For instance, take the example of a function annotated
1225with a single ``i32``,
1226
1227.. code-block:: llvm
1228
1229 define void @f() prefix i32 123 { ... }
1230
1231The prefix data can be referenced as,
1232
1233.. code-block:: llvm
1234
David Blaikie16a97eb2015-03-04 22:02:58 +00001235 %0 = bitcast void* () @f to i32*
1236 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001237 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001238
1239Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001240of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001241beginning of the prefix data is aligned. This means that if the size
1242of the prefix data is not a multiple of the alignment size, the
1243function's entrypoint will not be aligned. If alignment of the
1244function's entrypoint is desired, padding must be added to the prefix
1245data.
1246
Sean Silvaa1190322015-08-06 22:56:48 +00001247A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001248to the ``available_externally`` linkage in that the data may be used by the
1249optimizers but will not be emitted in the object file.
1250
1251.. _prologuedata:
1252
1253Prologue Data
1254-------------
1255
1256The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1257be inserted prior to the function body. This can be used for enabling
1258function hot-patching and instrumentation.
1259
1260To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001261have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001262bytes which decode to a sequence of machine instructions, valid for the
1263module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001264the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001265the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001266definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001267makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001268
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001269A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001270which encodes the ``nop`` instruction:
1271
Renato Golin124f2592016-07-20 12:16:38 +00001272.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001273
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001274 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001275
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001276Generally prologue data can be formed by encoding a relative branch instruction
1277which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001278x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1279
Renato Golin124f2592016-07-20 12:16:38 +00001280.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001281
1282 %0 = type <{ i8, i8, i8* }>
1283
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001284 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001285
Sean Silvaa1190322015-08-06 22:56:48 +00001286A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001287to the ``available_externally`` linkage in that the data may be used by the
1288optimizers but will not be emitted in the object file.
1289
David Majnemer7fddecc2015-06-17 20:52:32 +00001290.. _personalityfn:
1291
1292Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001293--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001294
1295The ``personality`` attribute permits functions to specify what function
1296to use for exception handling.
1297
Bill Wendling63b88192013-02-06 06:52:58 +00001298.. _attrgrp:
1299
1300Attribute Groups
1301----------------
1302
1303Attribute groups are groups of attributes that are referenced by objects within
1304the IR. They are important for keeping ``.ll`` files readable, because a lot of
1305functions will use the same set of attributes. In the degenerative case of a
1306``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1307group will capture the important command line flags used to build that file.
1308
1309An attribute group is a module-level object. To use an attribute group, an
1310object references the attribute group's ID (e.g. ``#37``). An object may refer
1311to more than one attribute group. In that situation, the attributes from the
1312different groups are merged.
1313
1314Here is an example of attribute groups for a function that should always be
1315inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1316
1317.. code-block:: llvm
1318
1319 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001320 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001321
1322 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001323 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001324
1325 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1326 define void @f() #0 #1 { ... }
1327
Sean Silvab084af42012-12-07 10:36:55 +00001328.. _fnattrs:
1329
1330Function Attributes
1331-------------------
1332
1333Function attributes are set to communicate additional information about
1334a function. Function attributes are considered to be part of the
1335function, not of the function type, so functions with different function
1336attributes can have the same function type.
1337
1338Function attributes are simple keywords that follow the type specified.
1339If multiple attributes are needed, they are space separated. For
1340example:
1341
1342.. code-block:: llvm
1343
1344 define void @f() noinline { ... }
1345 define void @f() alwaysinline { ... }
1346 define void @f() alwaysinline optsize { ... }
1347 define void @f() optsize { ... }
1348
Sean Silvab084af42012-12-07 10:36:55 +00001349``alignstack(<n>)``
1350 This attribute indicates that, when emitting the prologue and
1351 epilogue, the backend should forcibly align the stack pointer.
1352 Specify the desired alignment, which must be a power of two, in
1353 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001354``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1355 This attribute indicates that the annotated function will always return at
1356 least a given number of bytes (or null). Its arguments are zero-indexed
1357 parameter numbers; if one argument is provided, then it's assumed that at
1358 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1359 returned pointer. If two are provided, then it's assumed that
1360 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1361 available. The referenced parameters must be integer types. No assumptions
1362 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001363``alwaysinline``
1364 This attribute indicates that the inliner should attempt to inline
1365 this function into callers whenever possible, ignoring any active
1366 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001367``builtin``
1368 This indicates that the callee function at a call site should be
1369 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001370 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001371 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001372 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001373``cold``
1374 This attribute indicates that this function is rarely called. When
1375 computing edge weights, basic blocks post-dominated by a cold
1376 function call are also considered to be cold; and, thus, given low
1377 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001378``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001379 In some parallel execution models, there exist operations that cannot be
1380 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001381 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001382
Justin Lebar58535b12016-02-17 17:46:41 +00001383 The ``convergent`` attribute may appear on functions or call/invoke
1384 instructions. When it appears on a function, it indicates that calls to
1385 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001386 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001387 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001388 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001389
Justin Lebar58535b12016-02-17 17:46:41 +00001390 When it appears on a call/invoke, the ``convergent`` attribute indicates
1391 that we should treat the call as though we're calling a convergent
1392 function. This is particularly useful on indirect calls; without this we
1393 may treat such calls as though the target is non-convergent.
1394
1395 The optimizer may remove the ``convergent`` attribute on functions when it
1396 can prove that the function does not execute any convergent operations.
1397 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1398 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001399``inaccessiblememonly``
1400 This attribute indicates that the function may only access memory that
1401 is not accessible by the module being compiled. This is a weaker form
Eli Friedman0f522bd2018-07-25 18:26:38 +00001402 of ``readnone``. If the function reads or writes other memory, the
1403 behavior is undefined.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001404``inaccessiblemem_or_argmemonly``
1405 This attribute indicates that the function may only access memory that is
1406 either not accessible by the module being compiled, or is pointed to
Eli Friedman0f522bd2018-07-25 18:26:38 +00001407 by its pointer arguments. This is a weaker form of ``argmemonly``. If the
1408 function reads or writes other memory, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001409``inlinehint``
1410 This attribute indicates that the source code contained a hint that
1411 inlining this function is desirable (such as the "inline" keyword in
1412 C/C++). It is just a hint; it imposes no requirements on the
1413 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001414``jumptable``
1415 This attribute indicates that the function should be added to a
1416 jump-instruction table at code-generation time, and that all address-taken
1417 references to this function should be replaced with a reference to the
1418 appropriate jump-instruction-table function pointer. Note that this creates
1419 a new pointer for the original function, which means that code that depends
1420 on function-pointer identity can break. So, any function annotated with
1421 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001422``minsize``
1423 This attribute suggests that optimization passes and code generator
1424 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001425 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001426 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001427``naked``
1428 This attribute disables prologue / epilogue emission for the
1429 function. This can have very system-specific consequences.
Sumanth Gundapaneni6af104e2017-07-28 22:26:22 +00001430``no-jump-tables``
1431 When this attribute is set to true, the jump tables and lookup tables that
1432 can be generated from a switch case lowering are disabled.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001433``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001434 This indicates that the callee function at a call site is not recognized as
1435 a built-in function. LLVM will retain the original call and not replace it
1436 with equivalent code based on the semantics of the built-in function, unless
1437 the call site uses the ``builtin`` attribute. This is valid at call sites
1438 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001439``noduplicate``
1440 This attribute indicates that calls to the function cannot be
1441 duplicated. A call to a ``noduplicate`` function may be moved
1442 within its parent function, but may not be duplicated within
1443 its parent function.
1444
1445 A function containing a ``noduplicate`` call may still
1446 be an inlining candidate, provided that the call is not
1447 duplicated by inlining. That implies that the function has
1448 internal linkage and only has one call site, so the original
1449 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001450``noimplicitfloat``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001451 This attributes disables implicit floating-point instructions.
Sean Silvab084af42012-12-07 10:36:55 +00001452``noinline``
1453 This attribute indicates that the inliner should never inline this
1454 function in any situation. This attribute may not be used together
1455 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001456``nonlazybind``
1457 This attribute suppresses lazy symbol binding for the function. This
1458 may make calls to the function faster, at the cost of extra program
1459 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001460``noredzone``
1461 This attribute indicates that the code generator should not use a
1462 red zone, even if the target-specific ABI normally permits it.
Kristina Brooks312fcc12018-10-18 03:14:37 +00001463``indirect-tls-seg-refs``
1464 This attribute indicates that the code generator should not use
1465 direct TLS access through segment registers, even if the
1466 target-specific ABI normally permits it.
Sean Silvab084af42012-12-07 10:36:55 +00001467``noreturn``
1468 This function attribute indicates that the function never returns
1469 normally. This produces undefined behavior at runtime if the
1470 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001471``norecurse``
1472 This function attribute indicates that the function does not call itself
1473 either directly or indirectly down any possible call path. This produces
1474 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001475``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001476 This function attribute indicates that the function never raises an
1477 exception. If the function does raise an exception, its runtime
1478 behavior is undefined. However, functions marked nounwind may still
1479 trap or generate asynchronous exceptions. Exception handling schemes
1480 that are recognized by LLVM to handle asynchronous exceptions, such
1481 as SEH, will still provide their implementation defined semantics.
Manoj Gupta77eeac32018-07-09 22:27:23 +00001482``"null-pointer-is-valid"``
1483 If ``"null-pointer-is-valid"`` is set to ``"true"``, then ``null`` address
1484 in address-space 0 is considered to be a valid address for memory loads and
1485 stores. Any analysis or optimization should not treat dereferencing a
1486 pointer to ``null`` as undefined behavior in this function.
1487 Note: Comparing address of a global variable to ``null`` may still
1488 evaluate to false because of a limitation in querying this attribute inside
1489 constant expressions.
Matt Morehouse31819412018-03-22 19:50:10 +00001490``optforfuzzing``
1491 This attribute indicates that this function should be optimized
1492 for maximum fuzzing signal.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001493``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001494 This function attribute indicates that most optimization passes will skip
1495 this function, with the exception of interprocedural optimization passes.
1496 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001497 This attribute cannot be used together with the ``alwaysinline``
1498 attribute; this attribute is also incompatible
1499 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001500
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001501 This attribute requires the ``noinline`` attribute to be specified on
1502 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001503 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001504 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001505``optsize``
1506 This attribute suggests that optimization passes and code generator
1507 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001508 and otherwise do optimizations specifically to reduce code size as
1509 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001510``"patchable-function"``
1511 This attribute tells the code generator that the code
1512 generated for this function needs to follow certain conventions that
1513 make it possible for a runtime function to patch over it later.
1514 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001515 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001516
1517 * ``"prologue-short-redirect"`` - This style of patchable
1518 function is intended to support patching a function prologue to
1519 redirect control away from the function in a thread safe
1520 manner. It guarantees that the first instruction of the
1521 function will be large enough to accommodate a short jump
1522 instruction, and will be sufficiently aligned to allow being
1523 fully changed via an atomic compare-and-swap instruction.
1524 While the first requirement can be satisfied by inserting large
1525 enough NOP, LLVM can and will try to re-purpose an existing
1526 instruction (i.e. one that would have to be emitted anyway) as
1527 the patchable instruction larger than a short jump.
1528
1529 ``"prologue-short-redirect"`` is currently only supported on
1530 x86-64.
1531
1532 This attribute by itself does not imply restrictions on
1533 inter-procedural optimizations. All of the semantic effects the
1534 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001535``"probe-stack"``
1536 This attribute indicates that the function will trigger a guard region
1537 in the end of the stack. It ensures that accesses to the stack must be
1538 no further apart than the size of the guard region to a previous
1539 access of the stack. It takes one required string value, the name of
1540 the stack probing function that will be called.
1541
1542 If a function that has a ``"probe-stack"`` attribute is inlined into
1543 a function with another ``"probe-stack"`` attribute, the resulting
1544 function has the ``"probe-stack"`` attribute of the caller. If a
1545 function that has a ``"probe-stack"`` attribute is inlined into a
1546 function that has no ``"probe-stack"`` attribute at all, the resulting
1547 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001548``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001549 On a function, this attribute indicates that the function computes its
1550 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001551 without dereferencing any pointer arguments or otherwise accessing
1552 any mutable state (e.g. memory, control registers, etc) visible to
1553 caller functions. It does not write through any pointer arguments
1554 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001555 to callers. This means while it cannot unwind exceptions by calling
1556 the ``C++`` exception throwing methods (since they write to memory), there may
1557 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1558 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001559
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001560 On an argument, this attribute indicates that the function does not
1561 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001562 memory that the pointer points to if accessed through other pointers.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001563
1564 If a readnone function reads or writes memory visible to the program, or
1565 has other side-effects, the behavior is undefined. If a function reads from
1566 or writes to a readnone pointer argument, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001567``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001568 On a function, this attribute indicates that the function does not write
1569 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001570 modify any state (e.g. memory, control registers, etc) visible to
1571 caller functions. It may dereference pointer arguments and read
1572 state that may be set in the caller. A readonly function always
1573 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001574 called with the same set of arguments and global state. This means while it
1575 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1576 (since they write to memory), there may be non-``C++`` mechanisms that throw
1577 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001578
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001579 On an argument, this attribute indicates that the function does not write
1580 through this pointer argument, even though it may write to the memory that
1581 the pointer points to.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001582
1583 If a readonly function writes memory visible to the program, or
1584 has other side-effects, the behavior is undefined. If a function writes to
1585 a readonly pointer argument, the behavior is undefined.
whitequark08b20352017-06-22 23:22:36 +00001586``"stack-probe-size"``
1587 This attribute controls the behavior of stack probes: either
1588 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1589 It defines the size of the guard region. It ensures that if the function
1590 may use more stack space than the size of the guard region, stack probing
1591 sequence will be emitted. It takes one required integer value, which
1592 is 4096 by default.
1593
1594 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1595 a function with another ``"stack-probe-size"`` attribute, the resulting
1596 function has the ``"stack-probe-size"`` attribute that has the lower
1597 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1598 inlined into a function that has no ``"stack-probe-size"`` attribute
1599 at all, the resulting function has the ``"stack-probe-size"`` attribute
1600 of the callee.
Hans Wennborg89c35fc2018-02-23 13:46:25 +00001601``"no-stack-arg-probe"``
1602 This attribute disables ABI-required stack probes, if any.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001603``writeonly``
1604 On a function, this attribute indicates that the function may write to but
1605 does not read from memory.
1606
1607 On an argument, this attribute indicates that the function may write to but
1608 does not read through this pointer argument (even though it may read from
1609 the memory that the pointer points to).
Eli Friedman0f522bd2018-07-25 18:26:38 +00001610
1611 If a writeonly function reads memory visible to the program, or
1612 has other side-effects, the behavior is undefined. If a function reads
1613 from a writeonly pointer argument, the behavior is undefined.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001614``argmemonly``
1615 This attribute indicates that the only memory accesses inside function are
1616 loads and stores from objects pointed to by its pointer-typed arguments,
1617 with arbitrary offsets. Or in other words, all memory operations in the
1618 function can refer to memory only using pointers based on its function
1619 arguments.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001620
Igor Laevsky39d662f2015-07-11 10:30:36 +00001621 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1622 in order to specify that function reads only from its arguments.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001623
1624 If an argmemonly function reads or writes memory other than the pointer
1625 arguments, or has other side-effects, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001626``returns_twice``
1627 This attribute indicates that this function can return twice. The C
1628 ``setjmp`` is an example of such a function. The compiler disables
1629 some optimizations (like tail calls) in the caller of these
1630 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001631``safestack``
1632 This attribute indicates that
1633 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1634 protection is enabled for this function.
1635
1636 If a function that has a ``safestack`` attribute is inlined into a
1637 function that doesn't have a ``safestack`` attribute or which has an
1638 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1639 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001640``sanitize_address``
1641 This attribute indicates that AddressSanitizer checks
1642 (dynamic address safety analysis) are enabled for this function.
1643``sanitize_memory``
1644 This attribute indicates that MemorySanitizer checks (dynamic detection
1645 of accesses to uninitialized memory) are enabled for this function.
1646``sanitize_thread``
1647 This attribute indicates that ThreadSanitizer checks
1648 (dynamic thread safety analysis) are enabled for this function.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00001649``sanitize_hwaddress``
1650 This attribute indicates that HWAddressSanitizer checks
1651 (dynamic address safety analysis based on tagged pointers) are enabled for
1652 this function.
Chandler Carruth664aa862018-09-04 12:38:00 +00001653``speculative_load_hardening``
1654 This attribute indicates that
1655 `Speculative Load Hardening <https://llvm.org/docs/SpeculativeLoadHardening.html>`_
Zola Bridgescbac3ad2018-11-27 19:56:46 +00001656 should be enabled for the function body.
1657
1658 Speculative Load Hardening is a best-effort mitigation against
1659 information leak attacks that make use of control flow
1660 miss-speculation - specifically miss-speculation of whether a branch
1661 is taken or not. Typically vulnerabilities enabling such attacks are
1662 classified as "Spectre variant #1". Notably, this does not attempt to
1663 mitigate against miss-speculation of branch target, classified as
1664 "Spectre variant #2" vulnerabilities.
Chandler Carruth664aa862018-09-04 12:38:00 +00001665
1666 When inlining, the attribute is sticky. Inlining a function that carries
1667 this attribute will cause the caller to gain the attribute. This is intended
1668 to provide a maximally conservative model where the code in a function
1669 annotated with this attribute will always (even after inlining) end up
1670 hardened.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001671``speculatable``
1672 This function attribute indicates that the function does not have any
1673 effects besides calculating its result and does not have undefined behavior.
1674 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001675 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001676 externally observable. This attribute is only valid on functions
1677 and declarations, not on individual call sites. If a function is
1678 incorrectly marked as speculatable and really does exhibit
1679 undefined behavior, the undefined behavior may be observed even
1680 if the call site is dead code.
1681
Sean Silvab084af42012-12-07 10:36:55 +00001682``ssp``
1683 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001684 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001685 placed on the stack before the local variables that's checked upon
1686 return from the function to see if it has been overwritten. A
1687 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001688 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001689
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001690 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1691 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1692 - Calls to alloca() with variable sizes or constant sizes greater than
1693 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001694
Josh Magee24c7f062014-02-01 01:36:16 +00001695 Variables that are identified as requiring a protector will be arranged
1696 on the stack such that they are adjacent to the stack protector guard.
1697
Sean Silvab084af42012-12-07 10:36:55 +00001698 If a function that has an ``ssp`` attribute is inlined into a
1699 function that doesn't have an ``ssp`` attribute, then the resulting
1700 function will have an ``ssp`` attribute.
1701``sspreq``
1702 This attribute indicates that the function should *always* emit a
1703 stack smashing protector. This overrides the ``ssp`` function
1704 attribute.
1705
Josh Magee24c7f062014-02-01 01:36:16 +00001706 Variables that are identified as requiring a protector will be arranged
1707 on the stack such that they are adjacent to the stack protector guard.
1708 The specific layout rules are:
1709
1710 #. Large arrays and structures containing large arrays
1711 (``>= ssp-buffer-size``) are closest to the stack protector.
1712 #. Small arrays and structures containing small arrays
1713 (``< ssp-buffer-size``) are 2nd closest to the protector.
1714 #. Variables that have had their address taken are 3rd closest to the
1715 protector.
1716
Sean Silvab084af42012-12-07 10:36:55 +00001717 If a function that has an ``sspreq`` attribute is inlined into a
1718 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001719 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1720 an ``sspreq`` attribute.
1721``sspstrong``
1722 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001723 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001724 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001725 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001726
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001727 - Arrays of any size and type
1728 - Aggregates containing an array of any size and type.
1729 - Calls to alloca().
1730 - Local variables that have had their address taken.
1731
Josh Magee24c7f062014-02-01 01:36:16 +00001732 Variables that are identified as requiring a protector will be arranged
1733 on the stack such that they are adjacent to the stack protector guard.
1734 The specific layout rules are:
1735
1736 #. Large arrays and structures containing large arrays
1737 (``>= ssp-buffer-size``) are closest to the stack protector.
1738 #. Small arrays and structures containing small arrays
1739 (``< ssp-buffer-size``) are 2nd closest to the protector.
1740 #. Variables that have had their address taken are 3rd closest to the
1741 protector.
1742
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001743 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001744
1745 If a function that has an ``sspstrong`` attribute is inlined into a
1746 function that doesn't have an ``sspstrong`` attribute, then the
1747 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001748``strictfp``
1749 This attribute indicates that the function was called from a scope that
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001750 requires strict floating-point semantics. LLVM will not attempt any
1751 optimizations that require assumptions about the floating-point rounding
1752 mode or that might alter the state of floating-point status flags that
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001753 might otherwise be set or cleared by calling this function.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001754``"thunk"``
1755 This attribute indicates that the function will delegate to some other
1756 function with a tail call. The prototype of a thunk should not be used for
1757 optimization purposes. The caller is expected to cast the thunk prototype to
1758 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001759``uwtable``
1760 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001761 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001762 show that no exceptions passes by it. This is normally the case for
1763 the ELF x86-64 abi, but it can be disabled for some compilation
1764 units.
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001765``nocf_check``
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001766 This attribute indicates that no control-flow check will be performed on
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001767 the attributed entity. It disables -fcf-protection=<> for a specific
1768 entity to fine grain the HW control flow protection mechanism. The flag
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001769 is target independent and currently appertains to a function or function
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001770 pointer.
Vlad Tsyrklevichd17f61e2018-04-03 20:10:40 +00001771``shadowcallstack``
1772 This attribute indicates that the ShadowCallStack checks are enabled for
1773 the function. The instrumentation checks that the return address for the
1774 function has not changed between the function prolog and eiplog. It is
1775 currently x86_64-specific.
Sean Silvab084af42012-12-07 10:36:55 +00001776
Javed Absarf3d79042017-05-11 12:28:08 +00001777.. _glattrs:
1778
1779Global Attributes
1780-----------------
1781
1782Attributes may be set to communicate additional information about a global variable.
1783Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1784are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001785
1786.. _opbundles:
1787
1788Operand Bundles
1789---------------
1790
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001791Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001792with certain LLVM instructions (currently only ``call`` s and
1793``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001794incorrect and will change program semantics.
1795
1796Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001797
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001798 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001799 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1800 bundle operand ::= SSA value
1801 tag ::= string constant
1802
1803Operand bundles are **not** part of a function's signature, and a
1804given function may be called from multiple places with different kinds
1805of operand bundles. This reflects the fact that the operand bundles
1806are conceptually a part of the ``call`` (or ``invoke``), not the
1807callee being dispatched to.
1808
1809Operand bundles are a generic mechanism intended to support
1810runtime-introspection-like functionality for managed languages. While
1811the exact semantics of an operand bundle depend on the bundle tag,
1812there are certain limitations to how much the presence of an operand
1813bundle can influence the semantics of a program. These restrictions
1814are described as the semantics of an "unknown" operand bundle. As
1815long as the behavior of an operand bundle is describable within these
1816restrictions, LLVM does not need to have special knowledge of the
1817operand bundle to not miscompile programs containing it.
1818
David Majnemer34cacb42015-10-22 01:46:38 +00001819- The bundle operands for an unknown operand bundle escape in unknown
1820 ways before control is transferred to the callee or invokee.
1821- Calls and invokes with operand bundles have unknown read / write
1822 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001823 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001824 callsite specific attributes.
1825- An operand bundle at a call site cannot change the implementation
1826 of the called function. Inter-procedural optimizations work as
1827 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001828
Sanjoy Dascdafd842015-11-11 21:38:02 +00001829More specific types of operand bundles are described below.
1830
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001831.. _deopt_opbundles:
1832
Sanjoy Dascdafd842015-11-11 21:38:02 +00001833Deoptimization Operand Bundles
1834^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1835
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001836Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001837operand bundle tag. These operand bundles represent an alternate
1838"safe" continuation for the call site they're attached to, and can be
1839used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001840specified call site. There can be at most one ``"deopt"`` operand
1841bundle attached to a call site. Exact details of deoptimization is
1842out of scope for the language reference, but it usually involves
1843rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001844
1845From the compiler's perspective, deoptimization operand bundles make
1846the call sites they're attached to at least ``readonly``. They read
1847through all of their pointer typed operands (even if they're not
1848otherwise escaped) and the entire visible heap. Deoptimization
1849operand bundles do not capture their operands except during
1850deoptimization, in which case control will not be returned to the
1851compiled frame.
1852
Sanjoy Das2d161452015-11-18 06:23:38 +00001853The inliner knows how to inline through calls that have deoptimization
1854operand bundles. Just like inlining through a normal call site
1855involves composing the normal and exceptional continuations, inlining
1856through a call site with a deoptimization operand bundle needs to
1857appropriately compose the "safe" deoptimization continuation. The
1858inliner does this by prepending the parent's deoptimization
1859continuation to every deoptimization continuation in the inlined body.
1860E.g. inlining ``@f`` into ``@g`` in the following example
1861
1862.. code-block:: llvm
1863
1864 define void @f() {
1865 call void @x() ;; no deopt state
1866 call void @y() [ "deopt"(i32 10) ]
1867 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1868 ret void
1869 }
1870
1871 define void @g() {
1872 call void @f() [ "deopt"(i32 20) ]
1873 ret void
1874 }
1875
1876will result in
1877
1878.. code-block:: llvm
1879
1880 define void @g() {
1881 call void @x() ;; still no deopt state
1882 call void @y() [ "deopt"(i32 20, i32 10) ]
1883 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1884 ret void
1885 }
1886
1887It is the frontend's responsibility to structure or encode the
1888deoptimization state in a way that syntactically prepending the
1889caller's deoptimization state to the callee's deoptimization state is
1890semantically equivalent to composing the caller's deoptimization
1891continuation after the callee's deoptimization continuation.
1892
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001893.. _ob_funclet:
1894
David Majnemer3bb88c02015-12-15 21:27:27 +00001895Funclet Operand Bundles
1896^^^^^^^^^^^^^^^^^^^^^^^
1897
1898Funclet operand bundles are characterized by the ``"funclet"``
1899operand bundle tag. These operand bundles indicate that a call site
1900is within a particular funclet. There can be at most one
1901``"funclet"`` operand bundle attached to a call site and it must have
1902exactly one bundle operand.
1903
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001904If any funclet EH pads have been "entered" but not "exited" (per the
1905`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1906it is undefined behavior to execute a ``call`` or ``invoke`` which:
1907
1908* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1909 intrinsic, or
1910* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1911 not-yet-exited funclet EH pad.
1912
1913Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1914executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1915
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001916GC Transition Operand Bundles
1917^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1918
1919GC transition operand bundles are characterized by the
1920``"gc-transition"`` operand bundle tag. These operand bundles mark a
1921call as a transition between a function with one GC strategy to a
1922function with a different GC strategy. If coordinating the transition
1923between GC strategies requires additional code generation at the call
1924site, these bundles may contain any values that are needed by the
1925generated code. For more details, see :ref:`GC Transitions
1926<gc_transition_args>`.
1927
Sean Silvab084af42012-12-07 10:36:55 +00001928.. _moduleasm:
1929
1930Module-Level Inline Assembly
1931----------------------------
1932
1933Modules may contain "module-level inline asm" blocks, which corresponds
1934to the GCC "file scope inline asm" blocks. These blocks are internally
1935concatenated by LLVM and treated as a single unit, but may be separated
1936in the ``.ll`` file if desired. The syntax is very simple:
1937
1938.. code-block:: llvm
1939
1940 module asm "inline asm code goes here"
1941 module asm "more can go here"
1942
1943The strings can contain any character by escaping non-printable
1944characters. The escape sequence used is simply "\\xx" where "xx" is the
1945two digit hex code for the number.
1946
James Y Knightbc832ed2015-07-08 18:08:36 +00001947Note that the assembly string *must* be parseable by LLVM's integrated assembler
1948(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001949
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001950.. _langref_datalayout:
1951
Sean Silvab084af42012-12-07 10:36:55 +00001952Data Layout
1953-----------
1954
1955A module may specify a target specific data layout string that specifies
1956how data is to be laid out in memory. The syntax for the data layout is
1957simply:
1958
1959.. code-block:: llvm
1960
1961 target datalayout = "layout specification"
1962
1963The *layout specification* consists of a list of specifications
1964separated by the minus sign character ('-'). Each specification starts
1965with a letter and may include other information after the letter to
1966define some aspect of the data layout. The specifications accepted are
1967as follows:
1968
1969``E``
1970 Specifies that the target lays out data in big-endian form. That is,
1971 the bits with the most significance have the lowest address
1972 location.
1973``e``
1974 Specifies that the target lays out data in little-endian form. That
1975 is, the bits with the least significance have the lowest address
1976 location.
1977``S<size>``
1978 Specifies the natural alignment of the stack in bits. Alignment
1979 promotion of stack variables is limited to the natural stack
1980 alignment to avoid dynamic stack realignment. The stack alignment
1981 must be a multiple of 8-bits. If omitted, the natural stack
1982 alignment defaults to "unspecified", which does not prevent any
1983 alignment promotions.
Dylan McKayced2fe62018-02-19 09:56:22 +00001984``P<address space>``
1985 Specifies the address space that corresponds to program memory.
1986 Harvard architectures can use this to specify what space LLVM
1987 should place things such as functions into. If omitted, the
1988 program memory space defaults to the default address space of 0,
1989 which corresponds to a Von Neumann architecture that has code
1990 and data in the same space.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001991``A<address space>``
Dylan McKayced2fe62018-02-19 09:56:22 +00001992 Specifies the address space of objects created by '``alloca``'.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001993 Defaults to the default address space of 0.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001994``p[n]:<size>:<abi>:<pref>:<idx>``
Sean Silvab084af42012-12-07 10:36:55 +00001995 This specifies the *size* of a pointer and its ``<abi>`` and
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001996 ``<pref>``\erred alignments for address space ``n``. The fourth parameter
1997 ``<idx>`` is a size of index that used for address calculation. If not
1998 specified, the default index size is equal to the pointer size. All sizes
1999 are in bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00002000 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00002001 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00002002``i<size>:<abi>:<pref>``
2003 This specifies the alignment for an integer type of a given bit
2004 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
2005``v<size>:<abi>:<pref>``
2006 This specifies the alignment for a vector type of a given bit
2007 ``<size>``.
2008``f<size>:<abi>:<pref>``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002009 This specifies the alignment for a floating-point type of a given bit
Sean Silvab084af42012-12-07 10:36:55 +00002010 ``<size>``. Only values of ``<size>`` that are supported by the target
2011 will work. 32 (float) and 64 (double) are supported on all targets; 80
2012 or 128 (different flavors of long double) are also supported on some
2013 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00002014``a:<abi>:<pref>``
2015 This specifies the alignment for an object of aggregate type.
Michael Platings308e82e2019-03-08 10:44:06 +00002016``F<type><abi>``
2017 This specifies the alignment for function pointers.
2018 The options for ``<type>`` are:
2019
2020 * ``i``: The alignment of function pointers is independent of the alignment
2021 of functions, and is a multiple of ``<abi>``.
2022 * ``n``: The alignment of function pointers is a multiple of the explicit
2023 alignment specified on the function, and is a multiple of ``<abi>``.
Rafael Espindola58873562014-01-03 19:21:54 +00002024``m:<mangling>``
Reid Klecknerf8b51c52018-03-16 20:13:32 +00002025 If present, specifies that llvm names are mangled in the output. Symbols
2026 prefixed with the mangling escape character ``\01`` are passed through
2027 directly to the assembler without the escape character. The mangling style
Hans Wennborgd4245ac2014-01-15 02:49:17 +00002028 options are
2029
2030 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
2031 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
2032 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
2033 symbols get a ``_`` prefix.
Reid Klecknerf8b51c52018-03-16 20:13:32 +00002034 * ``x``: Windows x86 COFF mangling: Private symbols get the usual prefix.
2035 Regular C symbols get a ``_`` prefix. Functions with ``__stdcall``,
2036 ``__fastcall``, and ``__vectorcall`` have custom mangling that appends
2037 ``@N`` where N is the number of bytes used to pass parameters. C++ symbols
2038 starting with ``?`` are not mangled in any way.
2039 * ``w``: Windows COFF mangling: Similar to ``x``, except that normal C
2040 symbols do not receive a ``_`` prefix.
Sean Silvab084af42012-12-07 10:36:55 +00002041``n<size1>:<size2>:<size3>...``
2042 This specifies a set of native integer widths for the target CPU in
2043 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
2044 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
2045 this set are considered to support most general arithmetic operations
2046 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00002047``ni:<address space0>:<address space1>:<address space2>...``
2048 This specifies pointer types with the specified address spaces
2049 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
2050 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00002051
Rafael Espindolaabdd7262014-01-06 21:40:24 +00002052On every specification that takes a ``<abi>:<pref>``, specifying the
2053``<pref>`` alignment is optional. If omitted, the preceding ``:``
2054should be omitted too and ``<pref>`` will be equal to ``<abi>``.
2055
Sean Silvab084af42012-12-07 10:36:55 +00002056When constructing the data layout for a given target, LLVM starts with a
2057default set of specifications which are then (possibly) overridden by
2058the specifications in the ``datalayout`` keyword. The default
2059specifications are given in this list:
2060
2061- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00002062- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
2063- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
2064 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002065- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00002066- ``i1:8:8`` - i1 is 8-bit (byte) aligned
2067- ``i8:8:8`` - i8 is 8-bit (byte) aligned
2068- ``i16:16:16`` - i16 is 16-bit aligned
2069- ``i32:32:32`` - i32 is 32-bit aligned
2070- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
2071 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002072- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002073- ``f32:32:32`` - float is 32-bit aligned
2074- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002075- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002076- ``v64:64:64`` - 64-bit vector is 64-bit aligned
2077- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00002078- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002079
2080When LLVM is determining the alignment for a given type, it uses the
2081following rules:
2082
2083#. If the type sought is an exact match for one of the specifications,
2084 that specification is used.
2085#. If no match is found, and the type sought is an integer type, then
2086 the smallest integer type that is larger than the bitwidth of the
2087 sought type is used. If none of the specifications are larger than
2088 the bitwidth then the largest integer type is used. For example,
2089 given the default specifications above, the i7 type will use the
2090 alignment of i8 (next largest) while both i65 and i256 will use the
2091 alignment of i64 (largest specified).
2092#. If no match is found, and the type sought is a vector type, then the
2093 largest vector type that is smaller than the sought vector type will
2094 be used as a fall back. This happens because <128 x double> can be
2095 implemented in terms of 64 <2 x double>, for example.
2096
2097The function of the data layout string may not be what you expect.
2098Notably, this is not a specification from the frontend of what alignment
2099the code generator should use.
2100
2101Instead, if specified, the target data layout is required to match what
2102the ultimate *code generator* expects. This string is used by the
2103mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00002104what the ultimate code generator uses. There is no way to generate IR
2105that does not embed this target-specific detail into the IR. If you
2106don't specify the string, the default specifications will be used to
2107generate a Data Layout and the optimization phases will operate
2108accordingly and introduce target specificity into the IR with respect to
2109these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00002110
Bill Wendling5cc90842013-10-18 23:41:25 +00002111.. _langref_triple:
2112
2113Target Triple
2114-------------
2115
2116A module may specify a target triple string that describes the target
2117host. The syntax for the target triple is simply:
2118
2119.. code-block:: llvm
2120
2121 target triple = "x86_64-apple-macosx10.7.0"
2122
2123The *target triple* string consists of a series of identifiers delimited
2124by the minus sign character ('-'). The canonical forms are:
2125
2126::
2127
2128 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2129 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2130
2131This information is passed along to the backend so that it generates
2132code for the proper architecture. It's possible to override this on the
2133command line with the ``-mtriple`` command line option.
2134
Sean Silvab084af42012-12-07 10:36:55 +00002135.. _pointeraliasing:
2136
2137Pointer Aliasing Rules
2138----------------------
2139
2140Any memory access must be done through a pointer value associated with
2141an address range of the memory access, otherwise the behavior is
2142undefined. Pointer values are associated with address ranges according
2143to the following rules:
2144
2145- A pointer value is associated with the addresses associated with any
2146 value it is *based* on.
2147- An address of a global variable is associated with the address range
2148 of the variable's storage.
2149- The result value of an allocation instruction is associated with the
2150 address range of the allocated storage.
2151- A null pointer in the default address-space is associated with no
2152 address.
2153- An integer constant other than zero or a pointer value returned from
2154 a function not defined within LLVM may be associated with address
2155 ranges allocated through mechanisms other than those provided by
2156 LLVM. Such ranges shall not overlap with any ranges of addresses
2157 allocated by mechanisms provided by LLVM.
2158
2159A pointer value is *based* on another pointer value according to the
2160following rules:
2161
Sanjoy Das6d489492017-09-13 18:49:22 +00002162- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2163 the pointer-typed operand of the ``getelementptr``.
2164- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2165 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2166 of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002167- The result value of a ``bitcast`` is *based* on the operand of the
2168 ``bitcast``.
2169- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2170 values that contribute (directly or indirectly) to the computation of
2171 the pointer's value.
2172- The "*based* on" relationship is transitive.
2173
2174Note that this definition of *"based"* is intentionally similar to the
2175definition of *"based"* in C99, though it is slightly weaker.
2176
2177LLVM IR does not associate types with memory. The result type of a
2178``load`` merely indicates the size and alignment of the memory from
2179which to load, as well as the interpretation of the value. The first
2180operand type of a ``store`` similarly only indicates the size and
2181alignment of the store.
2182
2183Consequently, type-based alias analysis, aka TBAA, aka
2184``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2185:ref:`Metadata <metadata>` may be used to encode additional information
2186which specialized optimization passes may use to implement type-based
2187alias analysis.
2188
2189.. _volatile:
2190
2191Volatile Memory Accesses
2192------------------------
2193
2194Certain memory accesses, such as :ref:`load <i_load>`'s,
2195:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2196marked ``volatile``. The optimizers must not change the number of
2197volatile operations or change their order of execution relative to other
2198volatile operations. The optimizers *may* change the order of volatile
2199operations relative to non-volatile operations. This is not Java's
2200"volatile" and has no cross-thread synchronization behavior.
2201
Eli Friedman9ba16822019-01-22 00:42:20 +00002202A volatile load or store may have additional target-specific semantics.
2203Any volatile operation can have side effects, and any volatile operation
2204can read and/or modify state which is not accessible via a regular load
Eli Friedmanf0e67682019-01-28 23:03:41 +00002205or store in this module. Volatile operations may use addresses which do
Eli Friedman9ba16822019-01-22 00:42:20 +00002206not point to memory (like MMIO registers). This means the compiler may
2207not use a volatile operation to prove a non-volatile access to that
2208address has defined behavior.
2209
2210The allowed side-effects for volatile accesses are limited. If a
2211non-volatile store to a given address would be legal, a volatile
2212operation may modify the memory at that address. A volatile operation
2213may not modify any other memory accessible by the module being compiled.
2214A volatile operation may not call any code in the current module.
2215
2216The compiler may assume execution will continue after a volatile operation,
2217so operations which modify memory or may have undefined behavior can be
2218hoisted past a volatile operation.
2219
Andrew Trick89fc5a62013-01-30 21:19:35 +00002220IR-level volatile loads and stores cannot safely be optimized into
2221llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2222flagged volatile. Likewise, the backend should never split or merge
2223target-legal volatile load/store instructions.
2224
Andrew Trick7e6f9282013-01-31 00:49:39 +00002225.. admonition:: Rationale
2226
2227 Platforms may rely on volatile loads and stores of natively supported
2228 data width to be executed as single instruction. For example, in C
2229 this holds for an l-value of volatile primitive type with native
2230 hardware support, but not necessarily for aggregate types. The
2231 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002232 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002233 do not violate the frontend's contract with the language.
2234
Sean Silvab084af42012-12-07 10:36:55 +00002235.. _memmodel:
2236
2237Memory Model for Concurrent Operations
2238--------------------------------------
2239
2240The LLVM IR does not define any way to start parallel threads of
2241execution or to register signal handlers. Nonetheless, there are
2242platform-specific ways to create them, and we define LLVM IR's behavior
2243in their presence. This model is inspired by the C++0x memory model.
2244
2245For a more informal introduction to this model, see the :doc:`Atomics`.
2246
2247We define a *happens-before* partial order as the least partial order
2248that
2249
2250- Is a superset of single-thread program order, and
2251- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2252 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2253 techniques, like pthread locks, thread creation, thread joining,
2254 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2255 Constraints <ordering>`).
2256
2257Note that program order does not introduce *happens-before* edges
2258between a thread and signals executing inside that thread.
2259
2260Every (defined) read operation (load instructions, memcpy, atomic
2261loads/read-modify-writes, etc.) R reads a series of bytes written by
2262(defined) write operations (store instructions, atomic
2263stores/read-modify-writes, memcpy, etc.). For the purposes of this
2264section, initialized globals are considered to have a write of the
2265initializer which is atomic and happens before any other read or write
2266of the memory in question. For each byte of a read R, R\ :sub:`byte`
2267may see any write to the same byte, except:
2268
2269- If write\ :sub:`1` happens before write\ :sub:`2`, and
2270 write\ :sub:`2` happens before R\ :sub:`byte`, then
2271 R\ :sub:`byte` does not see write\ :sub:`1`.
2272- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2273 R\ :sub:`byte` does not see write\ :sub:`3`.
2274
2275Given that definition, R\ :sub:`byte` is defined as follows:
2276
2277- If R is volatile, the result is target-dependent. (Volatile is
2278 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002279 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002280 like normal memory. It does not generally provide cross-thread
2281 synchronization.)
2282- Otherwise, if there is no write to the same byte that happens before
2283 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2284- Otherwise, if R\ :sub:`byte` may see exactly one write,
2285 R\ :sub:`byte` returns the value written by that write.
2286- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2287 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2288 Memory Ordering Constraints <ordering>` section for additional
2289 constraints on how the choice is made.
2290- Otherwise R\ :sub:`byte` returns ``undef``.
2291
2292R returns the value composed of the series of bytes it read. This
2293implies that some bytes within the value may be ``undef`` **without**
2294the entire value being ``undef``. Note that this only defines the
2295semantics of the operation; it doesn't mean that targets will emit more
2296than one instruction to read the series of bytes.
2297
2298Note that in cases where none of the atomic intrinsics are used, this
2299model places only one restriction on IR transformations on top of what
2300is required for single-threaded execution: introducing a store to a byte
2301which might not otherwise be stored is not allowed in general.
2302(Specifically, in the case where another thread might write to and read
2303from an address, introducing a store can change a load that may see
2304exactly one write into a load that may see multiple writes.)
2305
2306.. _ordering:
2307
2308Atomic Memory Ordering Constraints
2309----------------------------------
2310
2311Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2312:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2313:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002314ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002315the same address they *synchronize with*. These semantics are borrowed
2316from Java and C++0x, but are somewhat more colloquial. If these
2317descriptions aren't precise enough, check those specs (see spec
2318references in the :doc:`atomics guide <Atomics>`).
2319:ref:`fence <i_fence>` instructions treat these orderings somewhat
2320differently since they don't take an address. See that instruction's
2321documentation for details.
2322
2323For a simpler introduction to the ordering constraints, see the
2324:doc:`Atomics`.
2325
2326``unordered``
2327 The set of values that can be read is governed by the happens-before
2328 partial order. A value cannot be read unless some operation wrote
2329 it. This is intended to provide a guarantee strong enough to model
2330 Java's non-volatile shared variables. This ordering cannot be
2331 specified for read-modify-write operations; it is not strong enough
2332 to make them atomic in any interesting way.
2333``monotonic``
2334 In addition to the guarantees of ``unordered``, there is a single
2335 total order for modifications by ``monotonic`` operations on each
2336 address. All modification orders must be compatible with the
2337 happens-before order. There is no guarantee that the modification
2338 orders can be combined to a global total order for the whole program
2339 (and this often will not be possible). The read in an atomic
2340 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2341 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2342 order immediately before the value it writes. If one atomic read
2343 happens before another atomic read of the same address, the later
2344 read must see the same value or a later value in the address's
2345 modification order. This disallows reordering of ``monotonic`` (or
2346 stronger) operations on the same address. If an address is written
2347 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2348 read that address repeatedly, the other threads must eventually see
2349 the write. This corresponds to the C++0x/C1x
2350 ``memory_order_relaxed``.
2351``acquire``
2352 In addition to the guarantees of ``monotonic``, a
2353 *synchronizes-with* edge may be formed with a ``release`` operation.
2354 This is intended to model C++'s ``memory_order_acquire``.
2355``release``
2356 In addition to the guarantees of ``monotonic``, if this operation
2357 writes a value which is subsequently read by an ``acquire``
2358 operation, it *synchronizes-with* that operation. (This isn't a
2359 complete description; see the C++0x definition of a release
2360 sequence.) This corresponds to the C++0x/C1x
2361 ``memory_order_release``.
2362``acq_rel`` (acquire+release)
2363 Acts as both an ``acquire`` and ``release`` operation on its
2364 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2365``seq_cst`` (sequentially consistent)
2366 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002367 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002368 writes), there is a global total order on all
2369 sequentially-consistent operations on all addresses, which is
2370 consistent with the *happens-before* partial order and with the
2371 modification orders of all the affected addresses. Each
2372 sequentially-consistent read sees the last preceding write to the
2373 same address in this global order. This corresponds to the C++0x/C1x
2374 ``memory_order_seq_cst`` and Java volatile.
2375
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002376.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002377
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002378If an atomic operation is marked ``syncscope("singlethread")``, it only
2379*synchronizes with* and only participates in the seq\_cst total orderings of
2380other operations running in the same thread (for example, in signal handlers).
2381
2382If an atomic operation is marked ``syncscope("<target-scope>")``, where
2383``<target-scope>`` is a target specific synchronization scope, then it is target
2384dependent if it *synchronizes with* and participates in the seq\_cst total
2385orderings of other operations.
2386
2387Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2388or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2389seq\_cst total orderings of other operations that are not marked
2390``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002391
Sanjay Patel54b161e2018-03-20 16:38:22 +00002392.. _floatenv:
2393
2394Floating-Point Environment
2395--------------------------
2396
2397The default LLVM floating-point environment assumes that floating-point
2398instructions do not have side effects. Results assume the round-to-nearest
2399rounding mode. No floating-point exception state is maintained in this
2400environment. Therefore, there is no attempt to create or preserve invalid
Chandler Carruth297620d2018-08-06 02:02:09 +00002401operation (SNaN) or division-by-zero exceptions.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002402
2403The benefit of this exception-free assumption is that floating-point
2404operations may be speculated freely without any other fast-math relaxations
2405to the floating-point model.
2406
2407Code that requires different behavior than this should use the
Sanjay Patelec95e0e2018-03-20 17:05:19 +00002408:ref:`Constrained Floating-Point Intrinsics <constrainedfp>`.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002409
Sean Silvab084af42012-12-07 10:36:55 +00002410.. _fastmath:
2411
2412Fast-Math Flags
2413---------------
2414
Sanjay Patel629c4112017-11-06 16:27:15 +00002415LLVM IR floating-point operations (:ref:`fadd <i_fadd>`,
Sean Silvab084af42012-12-07 10:36:55 +00002416:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002417:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002418may use the following flags to enable otherwise unsafe
Sanjay Patel629c4112017-11-06 16:27:15 +00002419floating-point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002420
2421``nnan``
2422 No NaNs - Allow optimizations to assume the arguments and result are not
Eli Friedmand3a30872018-07-17 20:31:42 +00002423 NaN. If an argument is a nan, or the result would be a nan, it produces
2424 a :ref:`poison value <poisonvalues>` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002425
2426``ninf``
2427 No Infs - Allow optimizations to assume the arguments and result are not
Eli Friedmand3a30872018-07-17 20:31:42 +00002428 +/-Inf. If an argument is +/-Inf, or the result would be +/-Inf, it
2429 produces a :ref:`poison value <poisonvalues>` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002430
2431``nsz``
2432 No Signed Zeros - Allow optimizations to treat the sign of a zero
2433 argument or result as insignificant.
2434
2435``arcp``
2436 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2437 argument rather than perform division.
2438
Adam Nemetcd847a82017-03-28 20:11:52 +00002439``contract``
2440 Allow floating-point contraction (e.g. fusing a multiply followed by an
2441 addition into a fused multiply-and-add).
2442
Sanjay Patel629c4112017-11-06 16:27:15 +00002443``afn``
2444 Approximate functions - Allow substitution of approximate calculations for
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002445 functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2446 for places where this can apply to LLVM's intrinsic math functions.
Sanjay Patel629c4112017-11-06 16:27:15 +00002447
2448``reassoc``
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002449 Allow reassociation transformations for floating-point instructions.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002450 This may dramatically change results in floating-point.
Sanjay Patel629c4112017-11-06 16:27:15 +00002451
Sean Silvab084af42012-12-07 10:36:55 +00002452``fast``
Sanjay Patel629c4112017-11-06 16:27:15 +00002453 This flag implies all of the others.
Sean Silvab084af42012-12-07 10:36:55 +00002454
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002455.. _uselistorder:
2456
2457Use-list Order Directives
2458-------------------------
2459
2460Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002461order to be recreated. ``<order-indexes>`` is a comma-separated list of
2462indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002463value's use-list is immediately sorted by these indexes.
2464
Sean Silvaa1190322015-08-06 22:56:48 +00002465Use-list directives may appear at function scope or global scope. They are not
2466instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002467function scope, they must appear after the terminator of the final basic block.
2468
2469If basic blocks have their address taken via ``blockaddress()`` expressions,
2470``uselistorder_bb`` can be used to reorder their use-lists from outside their
2471function's scope.
2472
2473:Syntax:
2474
2475::
2476
2477 uselistorder <ty> <value>, { <order-indexes> }
2478 uselistorder_bb @function, %block { <order-indexes> }
2479
2480:Examples:
2481
2482::
2483
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002484 define void @foo(i32 %arg1, i32 %arg2) {
2485 entry:
2486 ; ... instructions ...
2487 bb:
2488 ; ... instructions ...
2489
2490 ; At function scope.
2491 uselistorder i32 %arg1, { 1, 0, 2 }
2492 uselistorder label %bb, { 1, 0 }
2493 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002494
2495 ; At global scope.
2496 uselistorder i32* @global, { 1, 2, 0 }
2497 uselistorder i32 7, { 1, 0 }
2498 uselistorder i32 (i32) @bar, { 1, 0 }
2499 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2500
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002501.. _source_filename:
2502
2503Source Filename
2504---------------
2505
2506The *source filename* string is set to the original module identifier,
2507which will be the name of the compiled source file when compiling from
2508source through the clang front end, for example. It is then preserved through
2509the IR and bitcode.
2510
2511This is currently necessary to generate a consistent unique global
2512identifier for local functions used in profile data, which prepends the
2513source file name to the local function name.
2514
2515The syntax for the source file name is simply:
2516
Renato Golin124f2592016-07-20 12:16:38 +00002517.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002518
2519 source_filename = "/path/to/source.c"
2520
Sean Silvab084af42012-12-07 10:36:55 +00002521.. _typesystem:
2522
2523Type System
2524===========
2525
2526The LLVM type system is one of the most important features of the
2527intermediate representation. Being typed enables a number of
2528optimizations to be performed on the intermediate representation
2529directly, without having to do extra analyses on the side before the
2530transformation. A strong type system makes it easier to read the
2531generated code and enables novel analyses and transformations that are
2532not feasible to perform on normal three address code representations.
2533
Rafael Espindola08013342013-12-07 19:34:20 +00002534.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002535
Rafael Espindola08013342013-12-07 19:34:20 +00002536Void Type
2537---------
Sean Silvab084af42012-12-07 10:36:55 +00002538
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002539:Overview:
2540
Rafael Espindola08013342013-12-07 19:34:20 +00002541
2542The void type does not represent any value and has no size.
2543
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002544:Syntax:
2545
Rafael Espindola08013342013-12-07 19:34:20 +00002546
2547::
2548
2549 void
Sean Silvab084af42012-12-07 10:36:55 +00002550
2551
Rafael Espindola08013342013-12-07 19:34:20 +00002552.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002553
Rafael Espindola08013342013-12-07 19:34:20 +00002554Function Type
2555-------------
Sean Silvab084af42012-12-07 10:36:55 +00002556
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002557:Overview:
2558
Sean Silvab084af42012-12-07 10:36:55 +00002559
Rafael Espindola08013342013-12-07 19:34:20 +00002560The function type can be thought of as a function signature. It consists of a
2561return type and a list of formal parameter types. The return type of a function
2562type is a void type or first class type --- except for :ref:`label <t_label>`
2563and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002564
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002565:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002566
Rafael Espindola08013342013-12-07 19:34:20 +00002567::
Sean Silvab084af42012-12-07 10:36:55 +00002568
Rafael Espindola08013342013-12-07 19:34:20 +00002569 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002570
Rafael Espindola08013342013-12-07 19:34:20 +00002571...where '``<parameter list>``' is a comma-separated list of type
2572specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002573indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002574argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002575handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002576except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002577
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002578:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002579
Rafael Espindola08013342013-12-07 19:34:20 +00002580+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2581| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2582+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2583| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2584+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2585| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2586+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2587| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2588+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2589
2590.. _t_firstclass:
2591
2592First Class Types
2593-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002594
2595The :ref:`first class <t_firstclass>` types are perhaps the most important.
2596Values of these types are the only ones which can be produced by
2597instructions.
2598
Rafael Espindola08013342013-12-07 19:34:20 +00002599.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002600
Rafael Espindola08013342013-12-07 19:34:20 +00002601Single Value Types
2602^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002603
Rafael Espindola08013342013-12-07 19:34:20 +00002604These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002605
2606.. _t_integer:
2607
2608Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002609""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002610
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002611:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002612
2613The integer type is a very simple type that simply specifies an
2614arbitrary bit width for the integer type desired. Any bit width from 1
2615bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2616
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002617:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002618
2619::
2620
2621 iN
2622
2623The number of bits the integer will occupy is specified by the ``N``
2624value.
2625
2626Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002627*********
Sean Silvab084af42012-12-07 10:36:55 +00002628
2629+----------------+------------------------------------------------+
2630| ``i1`` | a single-bit integer. |
2631+----------------+------------------------------------------------+
2632| ``i32`` | a 32-bit integer. |
2633+----------------+------------------------------------------------+
2634| ``i1942652`` | a really big integer of over 1 million bits. |
2635+----------------+------------------------------------------------+
2636
2637.. _t_floating:
2638
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002639Floating-Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002640""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002641
2642.. list-table::
2643 :header-rows: 1
2644
2645 * - Type
2646 - Description
2647
2648 * - ``half``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002649 - 16-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002650
2651 * - ``float``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002652 - 32-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002653
2654 * - ``double``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002655 - 64-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002656
2657 * - ``fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002658 - 128-bit floating-point value (112-bit mantissa)
Sean Silvab084af42012-12-07 10:36:55 +00002659
2660 * - ``x86_fp80``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002661 - 80-bit floating-point value (X87)
Sean Silvab084af42012-12-07 10:36:55 +00002662
2663 * - ``ppc_fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002664 - 128-bit floating-point value (two 64-bits)
Sean Silvab084af42012-12-07 10:36:55 +00002665
Sanjay Patelbab6ce02018-03-21 15:22:09 +00002666The binary format of half, float, double, and fp128 correspond to the
2667IEEE-754-2008 specifications for binary16, binary32, binary64, and binary128
2668respectively.
2669
Reid Kleckner9a16d082014-03-05 02:41:37 +00002670X86_mmx Type
2671""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002672
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002673:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002674
Reid Kleckner9a16d082014-03-05 02:41:37 +00002675The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002676machine. The operations allowed on it are quite limited: parameters and
2677return values, load and store, and bitcast. User-specified MMX
2678instructions are represented as intrinsic or asm calls with arguments
2679and/or results of this type. There are no arrays, vectors or constants
2680of this type.
2681
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002682:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002683
2684::
2685
Reid Kleckner9a16d082014-03-05 02:41:37 +00002686 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002687
Sean Silvab084af42012-12-07 10:36:55 +00002688
Rafael Espindola08013342013-12-07 19:34:20 +00002689.. _t_pointer:
2690
2691Pointer Type
2692""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002693
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002694:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002695
Rafael Espindola08013342013-12-07 19:34:20 +00002696The pointer type is used to specify memory locations. Pointers are
2697commonly used to reference objects in memory.
2698
2699Pointer types may have an optional address space attribute defining the
2700numbered address space where the pointed-to object resides. The default
2701address space is number zero. The semantics of non-zero address spaces
2702are target-specific.
2703
2704Note that LLVM does not permit pointers to void (``void*``) nor does it
2705permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002706
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002707:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002708
2709::
2710
Rafael Espindola08013342013-12-07 19:34:20 +00002711 <type> *
2712
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002713:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002714
2715+-------------------------+--------------------------------------------------------------------------------------------------------------+
2716| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2717+-------------------------+--------------------------------------------------------------------------------------------------------------+
2718| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2719+-------------------------+--------------------------------------------------------------------------------------------------------------+
2720| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2721+-------------------------+--------------------------------------------------------------------------------------------------------------+
2722
2723.. _t_vector:
2724
2725Vector Type
2726"""""""""""
2727
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002728:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002729
2730A vector type is a simple derived type that represents a vector of
2731elements. Vector types are used when multiple primitive data are
2732operated in parallel using a single instruction (SIMD). A vector type
2733requires a size (number of elements) and an underlying primitive data
2734type. Vector types are considered :ref:`first class <t_firstclass>`.
2735
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002736:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002737
2738::
2739
2740 < <# elements> x <elementtype> >
2741
2742The number of elements is a constant integer value larger than 0;
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002743elementtype may be any integer, floating-point or pointer type. Vectors
Manuel Jacob961f7872014-07-30 12:30:06 +00002744of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002745
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002746:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002747
2748+-------------------+--------------------------------------------------+
2749| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2750+-------------------+--------------------------------------------------+
2751| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2752+-------------------+--------------------------------------------------+
2753| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2754+-------------------+--------------------------------------------------+
2755| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2756+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002757
2758.. _t_label:
2759
2760Label Type
2761^^^^^^^^^^
2762
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002763:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002764
2765The label type represents code labels.
2766
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002767:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002768
2769::
2770
2771 label
2772
David Majnemerb611e3f2015-08-14 05:09:07 +00002773.. _t_token:
2774
2775Token Type
2776^^^^^^^^^^
2777
2778:Overview:
2779
2780The token type is used when a value is associated with an instruction
2781but all uses of the value must not attempt to introspect or obscure it.
2782As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2783:ref:`select <i_select>` of type token.
2784
2785:Syntax:
2786
2787::
2788
2789 token
2790
2791
2792
Sean Silvab084af42012-12-07 10:36:55 +00002793.. _t_metadata:
2794
2795Metadata Type
2796^^^^^^^^^^^^^
2797
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002798:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002799
2800The metadata type represents embedded metadata. No derived types may be
2801created from metadata except for :ref:`function <t_function>` arguments.
2802
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002803:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002804
2805::
2806
2807 metadata
2808
Sean Silvab084af42012-12-07 10:36:55 +00002809.. _t_aggregate:
2810
2811Aggregate Types
2812^^^^^^^^^^^^^^^
2813
2814Aggregate Types are a subset of derived types that can contain multiple
2815member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2816aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2817aggregate types.
2818
2819.. _t_array:
2820
2821Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002822""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002823
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002824:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002825
2826The array type is a very simple derived type that arranges elements
2827sequentially in memory. The array type requires a size (number of
2828elements) and an underlying data type.
2829
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002830:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002831
2832::
2833
2834 [<# elements> x <elementtype>]
2835
2836The number of elements is a constant integer value; ``elementtype`` may
2837be any type with a size.
2838
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002839:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002840
2841+------------------+--------------------------------------+
2842| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2843+------------------+--------------------------------------+
2844| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2845+------------------+--------------------------------------+
2846| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2847+------------------+--------------------------------------+
2848
2849Here are some examples of multidimensional arrays:
2850
2851+-----------------------------+----------------------------------------------------------+
2852| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2853+-----------------------------+----------------------------------------------------------+
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002854| ``[12 x [10 x float]]`` | 12x10 array of single precision floating-point values. |
Sean Silvab084af42012-12-07 10:36:55 +00002855+-----------------------------+----------------------------------------------------------+
2856| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2857+-----------------------------+----------------------------------------------------------+
2858
2859There is no restriction on indexing beyond the end of the array implied
2860by a static type (though there are restrictions on indexing beyond the
2861bounds of an allocated object in some cases). This means that
2862single-dimension 'variable sized array' addressing can be implemented in
2863LLVM with a zero length array type. An implementation of 'pascal style
2864arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2865example.
2866
Sean Silvab084af42012-12-07 10:36:55 +00002867.. _t_struct:
2868
2869Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002870""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002871
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002872:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002873
2874The structure type is used to represent a collection of data members
2875together in memory. The elements of a structure may be any type that has
2876a size.
2877
2878Structures in memory are accessed using '``load``' and '``store``' by
2879getting a pointer to a field with the '``getelementptr``' instruction.
2880Structures in registers are accessed using the '``extractvalue``' and
2881'``insertvalue``' instructions.
2882
2883Structures may optionally be "packed" structures, which indicate that
2884the alignment of the struct is one byte, and that there is no padding
2885between the elements. In non-packed structs, padding between field types
2886is inserted as defined by the DataLayout string in the module, which is
2887required to match what the underlying code generator expects.
2888
2889Structures can either be "literal" or "identified". A literal structure
2890is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2891identified types are always defined at the top level with a name.
2892Literal types are uniqued by their contents and can never be recursive
2893or opaque since there is no way to write one. Identified types can be
2894recursive, can be opaqued, and are never uniqued.
2895
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002896:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002897
2898::
2899
2900 %T1 = type { <type list> } ; Identified normal struct type
2901 %T2 = type <{ <type list> }> ; Identified packed struct type
2902
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002903:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002904
2905+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2906| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2907+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002908| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002909+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2910| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2911+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2912
2913.. _t_opaque:
2914
2915Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002916""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002917
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002918:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002919
2920Opaque structure types are used to represent named structure types that
2921do not have a body specified. This corresponds (for example) to the C
2922notion of a forward declared structure.
2923
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002924:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002925
2926::
2927
2928 %X = type opaque
2929 %52 = type opaque
2930
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002931:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002932
2933+--------------+-------------------+
2934| ``opaque`` | An opaque type. |
2935+--------------+-------------------+
2936
Sean Silva1703e702014-04-08 21:06:22 +00002937.. _constants:
2938
Sean Silvab084af42012-12-07 10:36:55 +00002939Constants
2940=========
2941
2942LLVM has several different basic types of constants. This section
2943describes them all and their syntax.
2944
2945Simple Constants
2946----------------
2947
2948**Boolean constants**
2949 The two strings '``true``' and '``false``' are both valid constants
2950 of the ``i1`` type.
2951**Integer constants**
2952 Standard integers (such as '4') are constants of the
2953 :ref:`integer <t_integer>` type. Negative numbers may be used with
2954 integer types.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002955**Floating-point constants**
2956 Floating-point constants use standard decimal notation (e.g.
Sean Silvab084af42012-12-07 10:36:55 +00002957 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2958 hexadecimal notation (see below). The assembler requires the exact
2959 decimal value of a floating-point constant. For example, the
2960 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00002961 decimal in binary. Floating-point constants must have a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002962 :ref:`floating-point <t_floating>` type.
Sean Silvab084af42012-12-07 10:36:55 +00002963**Null pointer constants**
2964 The identifier '``null``' is recognized as a null pointer constant
2965 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002966**Token constants**
2967 The identifier '``none``' is recognized as an empty token constant
2968 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002969
2970The one non-intuitive notation for constants is the hexadecimal form of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002971floating-point constants. For example, the form
Sean Silvab084af42012-12-07 10:36:55 +00002972'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002973than) '``double 4.5e+15``'. The only time hexadecimal floating-point
Sean Silvab084af42012-12-07 10:36:55 +00002974constants are required (and the only time that they are generated by the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002975disassembler) is when a floating-point constant must be emitted but it
2976cannot be represented as a decimal floating-point number in a reasonable
Sean Silvab084af42012-12-07 10:36:55 +00002977number of digits. For example, NaN's, infinities, and other special
2978values are represented in their IEEE hexadecimal format so that assembly
2979and disassembly do not cause any bits to change in the constants.
2980
2981When using the hexadecimal form, constants of types half, float, and
2982double are represented using the 16-digit form shown above (which
2983matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002984must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002985precision, respectively. Hexadecimal format is always used for long
2986double, and there are three forms of long double. The 80-bit format used
2987by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2988128-bit format used by PowerPC (two adjacent doubles) is represented by
2989``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002990represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2991will only work if they match the long double format on your target.
2992The IEEE 16-bit format (half precision) is represented by ``0xH``
2993followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2994(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002995
Reid Kleckner9a16d082014-03-05 02:41:37 +00002996There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002997
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002998.. _complexconstants:
2999
Sean Silvab084af42012-12-07 10:36:55 +00003000Complex Constants
3001-----------------
3002
3003Complex constants are a (potentially recursive) combination of simple
3004constants and smaller complex constants.
3005
3006**Structure constants**
3007 Structure constants are represented with notation similar to
3008 structure type definitions (a comma separated list of elements,
3009 surrounded by braces (``{}``)). For example:
3010 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
3011 "``@G = external global i32``". Structure constants must have
3012 :ref:`structure type <t_struct>`, and the number and types of elements
3013 must match those specified by the type.
3014**Array constants**
3015 Array constants are represented with notation similar to array type
3016 definitions (a comma separated list of elements, surrounded by
3017 square brackets (``[]``)). For example:
3018 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
3019 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00003020 match those specified by the type. As a special case, character array
3021 constants may also be represented as a double-quoted string using the ``c``
3022 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00003023**Vector constants**
3024 Vector constants are represented with notation similar to vector
3025 type definitions (a comma separated list of elements, surrounded by
3026 less-than/greater-than's (``<>``)). For example:
3027 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
3028 must have :ref:`vector type <t_vector>`, and the number and types of
3029 elements must match those specified by the type.
3030**Zero initialization**
3031 The string '``zeroinitializer``' can be used to zero initialize a
3032 value to zero of *any* type, including scalar and
3033 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
3034 having to print large zero initializers (e.g. for large arrays) and
3035 is always exactly equivalent to using explicit zero initializers.
3036**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00003037 A metadata node is a constant tuple without types. For example:
3038 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003039 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
3040 Unlike other typed constants that are meant to be interpreted as part of
3041 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00003042 information such as debug info.
3043
3044Global Variable and Function Addresses
3045--------------------------------------
3046
3047The addresses of :ref:`global variables <globalvars>` and
3048:ref:`functions <functionstructure>` are always implicitly valid
3049(link-time) constants. These constants are explicitly referenced when
3050the :ref:`identifier for the global <identifiers>` is used and always have
3051:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
3052file:
3053
3054.. code-block:: llvm
3055
3056 @X = global i32 17
3057 @Y = global i32 42
3058 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
3059
3060.. _undefvalues:
3061
3062Undefined Values
3063----------------
3064
3065The string '``undef``' can be used anywhere a constant is expected, and
3066indicates that the user of the value may receive an unspecified
3067bit-pattern. Undefined values may be of any type (other than '``label``'
3068or '``void``') and be used anywhere a constant is permitted.
3069
3070Undefined values are useful because they indicate to the compiler that
3071the program is well defined no matter what value is used. This gives the
3072compiler more freedom to optimize. Here are some examples of
3073(potentially surprising) transformations that are valid (in pseudo IR):
3074
3075.. code-block:: llvm
3076
3077 %A = add %X, undef
3078 %B = sub %X, undef
3079 %C = xor %X, undef
3080 Safe:
3081 %A = undef
3082 %B = undef
3083 %C = undef
3084
3085This is safe because all of the output bits are affected by the undef
3086bits. Any output bit can have a zero or one depending on the input bits.
3087
3088.. code-block:: llvm
3089
3090 %A = or %X, undef
3091 %B = and %X, undef
3092 Safe:
3093 %A = -1
3094 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00003095 Safe:
3096 %A = %X ;; By choosing undef as 0
3097 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00003098 Unsafe:
3099 %A = undef
3100 %B = undef
3101
3102These logical operations have bits that are not always affected by the
3103input. For example, if ``%X`` has a zero bit, then the output of the
3104'``and``' operation will always be a zero for that bit, no matter what
3105the corresponding bit from the '``undef``' is. As such, it is unsafe to
3106optimize or assume that the result of the '``and``' is '``undef``'.
3107However, it is safe to assume that all bits of the '``undef``' could be
31080, and optimize the '``and``' to 0. Likewise, it is safe to assume that
3109all the bits of the '``undef``' operand to the '``or``' could be set,
3110allowing the '``or``' to be folded to -1.
3111
3112.. code-block:: llvm
3113
3114 %A = select undef, %X, %Y
3115 %B = select undef, 42, %Y
3116 %C = select %X, %Y, undef
3117 Safe:
3118 %A = %X (or %Y)
3119 %B = 42 (or %Y)
3120 %C = %Y
3121 Unsafe:
3122 %A = undef
3123 %B = undef
3124 %C = undef
3125
3126This set of examples shows that undefined '``select``' (and conditional
3127branch) conditions can go *either way*, but they have to come from one
3128of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
3129both known to have a clear low bit, then ``%A`` would have to have a
3130cleared low bit. However, in the ``%C`` example, the optimizer is
3131allowed to assume that the '``undef``' operand could be the same as
3132``%Y``, allowing the whole '``select``' to be eliminated.
3133
Renato Golin124f2592016-07-20 12:16:38 +00003134.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003135
3136 %A = xor undef, undef
3137
3138 %B = undef
3139 %C = xor %B, %B
3140
3141 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00003142 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00003143 %F = icmp gte %D, 4
3144
3145 Safe:
3146 %A = undef
3147 %B = undef
3148 %C = undef
3149 %D = undef
3150 %E = undef
3151 %F = undef
3152
3153This example points out that two '``undef``' operands are not
3154necessarily the same. This can be surprising to people (and also matches
3155C semantics) where they assume that "``X^X``" is always zero, even if
3156``X`` is undefined. This isn't true for a number of reasons, but the
3157short answer is that an '``undef``' "variable" can arbitrarily change
3158its value over its "live range". This is true because the variable
3159doesn't actually *have a live range*. Instead, the value is logically
3160read from arbitrary registers that happen to be around when needed, so
3161the value is not necessarily consistent over time. In fact, ``%A`` and
3162``%C`` need to have the same semantics or the core LLVM "replace all
3163uses with" concept would not hold.
3164
3165.. code-block:: llvm
3166
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003167 %A = sdiv undef, %X
3168 %B = sdiv %X, undef
Sean Silvab084af42012-12-07 10:36:55 +00003169 Safe:
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003170 %A = 0
Sean Silvab084af42012-12-07 10:36:55 +00003171 b: unreachable
3172
3173These examples show the crucial difference between an *undefined value*
3174and *undefined behavior*. An undefined value (like '``undef``') is
3175allowed to have an arbitrary bit-pattern. This means that the ``%A``
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003176operation can be constant folded to '``0``', because the '``undef``'
3177could be zero, and zero divided by any value is zero.
Sean Silvab084af42012-12-07 10:36:55 +00003178However, in the second example, we can make a more aggressive
3179assumption: because the ``undef`` is allowed to be an arbitrary value,
3180we are allowed to assume that it could be zero. Since a divide by zero
3181has *undefined behavior*, we are allowed to assume that the operation
3182does not execute at all. This allows us to delete the divide and all
3183code after it. Because the undefined operation "can't happen", the
3184optimizer can assume that it occurs in dead code.
3185
Renato Golin124f2592016-07-20 12:16:38 +00003186.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003187
3188 a: store undef -> %X
3189 b: store %X -> undef
3190 Safe:
3191 a: <deleted>
3192 b: unreachable
3193
Sanjay Patel7b722402018-03-07 17:18:22 +00003194A store *of* an undefined value can be assumed to not have any effect;
3195we can assume that the value is overwritten with bits that happen to
3196match what was already there. However, a store *to* an undefined
3197location could clobber arbitrary memory, therefore, it has undefined
3198behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003199
3200.. _poisonvalues:
3201
3202Poison Values
3203-------------
3204
3205Poison values are similar to :ref:`undef values <undefvalues>`, however
3206they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003207that cannot evoke side effects has nevertheless detected a condition
3208that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003209
3210There is currently no way of representing a poison value in the IR; they
3211only exist when produced by operations such as :ref:`add <i_add>` with
3212the ``nsw`` flag.
3213
3214Poison value behavior is defined in terms of value *dependence*:
3215
3216- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3217- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3218 their dynamic predecessor basic block.
3219- Function arguments depend on the corresponding actual argument values
3220 in the dynamic callers of their functions.
3221- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3222 instructions that dynamically transfer control back to them.
3223- :ref:`Invoke <i_invoke>` instructions depend on the
3224 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3225 call instructions that dynamically transfer control back to them.
3226- Non-volatile loads and stores depend on the most recent stores to all
3227 of the referenced memory addresses, following the order in the IR
3228 (including loads and stores implied by intrinsics such as
3229 :ref:`@llvm.memcpy <int_memcpy>`.)
3230- An instruction with externally visible side effects depends on the
3231 most recent preceding instruction with externally visible side
3232 effects, following the order in the IR. (This includes :ref:`volatile
3233 operations <volatile>`.)
3234- An instruction *control-depends* on a :ref:`terminator
3235 instruction <terminators>` if the terminator instruction has
3236 multiple successors and the instruction is always executed when
3237 control transfers to one of the successors, and may not be executed
3238 when control is transferred to another.
3239- Additionally, an instruction also *control-depends* on a terminator
3240 instruction if the set of instructions it otherwise depends on would
3241 be different if the terminator had transferred control to a different
3242 successor.
3243- Dependence is transitive.
3244
Richard Smith32dbdf62014-07-31 04:25:36 +00003245Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3246with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003247on a poison value has undefined behavior.
3248
3249Here are some examples:
3250
3251.. code-block:: llvm
3252
3253 entry:
3254 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3255 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003256 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003257 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3258
3259 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003260 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003261
3262 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3263
3264 %narrowaddr = bitcast i32* @g to i16*
3265 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003266 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3267 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003268
3269 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3270 br i1 %cmp, label %true, label %end ; Branch to either destination.
3271
3272 true:
3273 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3274 ; it has undefined behavior.
3275 br label %end
3276
3277 end:
3278 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3279 ; Both edges into this PHI are
3280 ; control-dependent on %cmp, so this
3281 ; always results in a poison value.
3282
3283 store volatile i32 0, i32* @g ; This would depend on the store in %true
3284 ; if %cmp is true, or the store in %entry
3285 ; otherwise, so this is undefined behavior.
3286
3287 br i1 %cmp, label %second_true, label %second_end
3288 ; The same branch again, but this time the
3289 ; true block doesn't have side effects.
3290
3291 second_true:
3292 ; No side effects!
3293 ret void
3294
3295 second_end:
3296 store volatile i32 0, i32* @g ; This time, the instruction always depends
3297 ; on the store in %end. Also, it is
3298 ; control-equivalent to %end, so this is
3299 ; well-defined (ignoring earlier undefined
3300 ; behavior in this example).
3301
3302.. _blockaddress:
3303
3304Addresses of Basic Blocks
3305-------------------------
3306
3307``blockaddress(@function, %block)``
3308
3309The '``blockaddress``' constant computes the address of the specified
3310basic block in the specified function, and always has an ``i8*`` type.
3311Taking the address of the entry block is illegal.
3312
3313This value only has defined behavior when used as an operand to the
Craig Topper7a091ae2019-03-05 05:23:37 +00003314':ref:`indirectbr <i_indirectbr>`' or ':ref:`callbr <i_callbr>`'instruction, or
3315for comparisons against null. Pointer equality tests between labels addresses
3316results in undefined behavior --- though, again, comparison against null is ok,
3317and no label is equal to the null pointer. This may be passed around as an
Sean Silvab084af42012-12-07 10:36:55 +00003318opaque pointer sized value as long as the bits are not inspected. This
3319allows ``ptrtoint`` and arithmetic to be performed on these values so
Craig Topper7a091ae2019-03-05 05:23:37 +00003320long as the original value is reconstituted before the ``indirectbr`` or
3321``callbr`` instruction.
Sean Silvab084af42012-12-07 10:36:55 +00003322
3323Finally, some targets may provide defined semantics when using the value
3324as the operand to an inline assembly, but that is target specific.
3325
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003326.. _constantexprs:
3327
Sean Silvab084af42012-12-07 10:36:55 +00003328Constant Expressions
3329--------------------
3330
3331Constant expressions are used to allow expressions involving other
3332constants to be used as constants. Constant expressions may be of any
3333:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3334that does not have side effects (e.g. load and call are not supported).
3335The following is the syntax for constant expressions:
3336
3337``trunc (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003338 Perform the :ref:`trunc operation <i_trunc>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003339``zext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003340 Perform the :ref:`zext operation <i_zext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003341``sext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003342 Perform the :ref:`sext operation <i_sext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003343``fptrunc (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003344 Truncate a floating-point constant to another floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003345 The size of CST must be larger than the size of TYPE. Both types
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003346 must be floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003347``fpext (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003348 Floating-point extend a constant to another type. The size of CST
Sean Silvab084af42012-12-07 10:36:55 +00003349 must be smaller or equal to the size of TYPE. Both types must be
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003350 floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003351``fptoui (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003352 Convert a floating-point constant to the corresponding unsigned
Sean Silvab084af42012-12-07 10:36:55 +00003353 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003354 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003355 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003356 value won't fit in the integer type, the result is a
3357 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003358``fptosi (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003359 Convert a floating-point constant to the corresponding signed
Sean Silvab084af42012-12-07 10:36:55 +00003360 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003361 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003362 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003363 value won't fit in the integer type, the result is a
3364 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003365``uitofp (CST to TYPE)``
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00003366 Convert an unsigned integer constant to the corresponding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003367 floating-point constant. TYPE must be a scalar or vector floating-point
3368 type. CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003369 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003370``sitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003371 Convert a signed integer constant to the corresponding floating-point
3372 constant. TYPE must be a scalar or vector floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003373 CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003374 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003375``ptrtoint (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003376 Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003377``inttoptr (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003378 Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003379 This one is *really* dangerous!
3380``bitcast (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003381 Convert a constant, CST, to another TYPE.
3382 The constraints of the operands are the same as those for the
3383 :ref:`bitcast instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003384``addrspacecast (CST to TYPE)``
3385 Convert a constant pointer or constant vector of pointer, CST, to another
3386 TYPE in a different address space. The constraints of the operands are the
3387 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003388``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003389 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3390 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003391 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003392 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003393``select (COND, VAL1, VAL2)``
3394 Perform the :ref:`select operation <i_select>` on constants.
3395``icmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003396 Perform the :ref:`icmp operation <i_icmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003397``fcmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003398 Perform the :ref:`fcmp operation <i_fcmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003399``extractelement (VAL, IDX)``
3400 Perform the :ref:`extractelement operation <i_extractelement>` on
3401 constants.
3402``insertelement (VAL, ELT, IDX)``
3403 Perform the :ref:`insertelement operation <i_insertelement>` on
3404 constants.
3405``shufflevector (VEC1, VEC2, IDXMASK)``
3406 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3407 constants.
3408``extractvalue (VAL, IDX0, IDX1, ...)``
3409 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3410 constants. The index list is interpreted in a similar manner as
3411 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3412 least one index value must be specified.
3413``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3414 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3415 The index list is interpreted in a similar manner as indices in a
3416 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3417 value must be specified.
3418``OPCODE (LHS, RHS)``
3419 Perform the specified operation of the LHS and RHS constants. OPCODE
3420 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3421 binary <bitwiseops>` operations. The constraints on operands are
3422 the same as those for the corresponding instruction (e.g. no bitwise
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003423 operations on floating-point values are allowed).
Sean Silvab084af42012-12-07 10:36:55 +00003424
3425Other Values
3426============
3427
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003428.. _inlineasmexprs:
3429
Sean Silvab084af42012-12-07 10:36:55 +00003430Inline Assembler Expressions
3431----------------------------
3432
3433LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003434Inline Assembly <moduleasm>`) through the use of a special value. This value
3435represents the inline assembler as a template string (containing the
3436instructions to emit), a list of operand constraints (stored as a string), a
3437flag that indicates whether or not the inline asm expression has side effects,
3438and a flag indicating whether the function containing the asm needs to align its
3439stack conservatively.
3440
3441The template string supports argument substitution of the operands using "``$``"
3442followed by a number, to indicate substitution of the given register/memory
3443location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3444be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3445operand (See :ref:`inline-asm-modifiers`).
3446
3447A literal "``$``" may be included by using "``$$``" in the template. To include
3448other special characters into the output, the usual "``\XX``" escapes may be
3449used, just as in other strings. Note that after template substitution, the
3450resulting assembly string is parsed by LLVM's integrated assembler unless it is
3451disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3452syntax known to LLVM.
3453
Reid Kleckner71cb1642017-02-06 18:08:45 +00003454LLVM also supports a few more substitions useful for writing inline assembly:
3455
3456- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3457 This substitution is useful when declaring a local label. Many standard
3458 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3459 Adding a blob-unique identifier ensures that the two labels will not conflict
3460 during assembly. This is used to implement `GCC's %= special format
3461 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3462- ``${:comment}``: Expands to the comment character of the current target's
3463 assembly dialect. This is usually ``#``, but many targets use other strings,
3464 such as ``;``, ``//``, or ``!``.
3465- ``${:private}``: Expands to the assembler private label prefix. Labels with
3466 this prefix will not appear in the symbol table of the assembled object.
3467 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3468 relatively popular.
3469
James Y Knightbc832ed2015-07-08 18:08:36 +00003470LLVM's support for inline asm is modeled closely on the requirements of Clang's
3471GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3472modifier codes listed here are similar or identical to those in GCC's inline asm
3473support. However, to be clear, the syntax of the template and constraint strings
3474described here is *not* the same as the syntax accepted by GCC and Clang, and,
3475while most constraint letters are passed through as-is by Clang, some get
3476translated to other codes when converting from the C source to the LLVM
3477assembly.
3478
3479An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003480
3481.. code-block:: llvm
3482
3483 i32 (i32) asm "bswap $0", "=r,r"
3484
3485Inline assembler expressions may **only** be used as the callee operand
3486of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3487Thus, typically we have:
3488
3489.. code-block:: llvm
3490
3491 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3492
3493Inline asms with side effects not visible in the constraint list must be
3494marked as having side effects. This is done through the use of the
3495'``sideeffect``' keyword, like so:
3496
3497.. code-block:: llvm
3498
3499 call void asm sideeffect "eieio", ""()
3500
3501In some cases inline asms will contain code that will not work unless
3502the stack is aligned in some way, such as calls or SSE instructions on
3503x86, yet will not contain code that does that alignment within the asm.
3504The compiler should make conservative assumptions about what the asm
3505might contain and should generate its usual stack alignment code in the
3506prologue if the '``alignstack``' keyword is present:
3507
3508.. code-block:: llvm
3509
3510 call void asm alignstack "eieio", ""()
3511
3512Inline asms also support using non-standard assembly dialects. The
3513assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3514the inline asm is using the Intel dialect. Currently, ATT and Intel are
3515the only supported dialects. An example is:
3516
3517.. code-block:: llvm
3518
3519 call void asm inteldialect "eieio", ""()
3520
3521If multiple keywords appear the '``sideeffect``' keyword must come
3522first, the '``alignstack``' keyword second and the '``inteldialect``'
3523keyword last.
3524
James Y Knightbc832ed2015-07-08 18:08:36 +00003525Inline Asm Constraint String
3526^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3527
3528The constraint list is a comma-separated string, each element containing one or
3529more constraint codes.
3530
3531For each element in the constraint list an appropriate register or memory
3532operand will be chosen, and it will be made available to assembly template
3533string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3534second, etc.
3535
3536There are three different types of constraints, which are distinguished by a
3537prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3538constraints must always be given in that order: outputs first, then inputs, then
3539clobbers. They cannot be intermingled.
3540
3541There are also three different categories of constraint codes:
3542
3543- Register constraint. This is either a register class, or a fixed physical
3544 register. This kind of constraint will allocate a register, and if necessary,
3545 bitcast the argument or result to the appropriate type.
3546- Memory constraint. This kind of constraint is for use with an instruction
3547 taking a memory operand. Different constraints allow for different addressing
3548 modes used by the target.
3549- Immediate value constraint. This kind of constraint is for an integer or other
3550 immediate value which can be rendered directly into an instruction. The
3551 various target-specific constraints allow the selection of a value in the
3552 proper range for the instruction you wish to use it with.
3553
3554Output constraints
3555""""""""""""""""""
3556
3557Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3558indicates that the assembly will write to this operand, and the operand will
3559then be made available as a return value of the ``asm`` expression. Output
3560constraints do not consume an argument from the call instruction. (Except, see
3561below about indirect outputs).
3562
3563Normally, it is expected that no output locations are written to by the assembly
3564expression until *all* of the inputs have been read. As such, LLVM may assign
3565the same register to an output and an input. If this is not safe (e.g. if the
3566assembly contains two instructions, where the first writes to one output, and
3567the second reads an input and writes to a second output), then the "``&``"
3568modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003569"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003570will not use the same register for any inputs (other than an input tied to this
3571output).
3572
3573Input constraints
3574"""""""""""""""""
3575
3576Input constraints do not have a prefix -- just the constraint codes. Each input
3577constraint will consume one argument from the call instruction. It is not
3578permitted for the asm to write to any input register or memory location (unless
3579that input is tied to an output). Note also that multiple inputs may all be
3580assigned to the same register, if LLVM can determine that they necessarily all
3581contain the same value.
3582
3583Instead of providing a Constraint Code, input constraints may also "tie"
3584themselves to an output constraint, by providing an integer as the constraint
3585string. Tied inputs still consume an argument from the call instruction, and
3586take up a position in the asm template numbering as is usual -- they will simply
3587be constrained to always use the same register as the output they've been tied
3588to. For example, a constraint string of "``=r,0``" says to assign a register for
3589output, and use that register as an input as well (it being the 0'th
3590constraint).
3591
3592It is permitted to tie an input to an "early-clobber" output. In that case, no
3593*other* input may share the same register as the input tied to the early-clobber
3594(even when the other input has the same value).
3595
3596You may only tie an input to an output which has a register constraint, not a
3597memory constraint. Only a single input may be tied to an output.
3598
3599There is also an "interesting" feature which deserves a bit of explanation: if a
3600register class constraint allocates a register which is too small for the value
3601type operand provided as input, the input value will be split into multiple
3602registers, and all of them passed to the inline asm.
3603
3604However, this feature is often not as useful as you might think.
3605
3606Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3607architectures that have instructions which operate on multiple consecutive
3608instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3609SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3610hardware then loads into both the named register, and the next register. This
3611feature of inline asm would not be useful to support that.)
3612
3613A few of the targets provide a template string modifier allowing explicit access
3614to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3615``D``). On such an architecture, you can actually access the second allocated
3616register (yet, still, not any subsequent ones). But, in that case, you're still
3617probably better off simply splitting the value into two separate operands, for
3618clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3619despite existing only for use with this feature, is not really a good idea to
3620use)
3621
3622Indirect inputs and outputs
3623"""""""""""""""""""""""""""
3624
3625Indirect output or input constraints can be specified by the "``*``" modifier
3626(which goes after the "``=``" in case of an output). This indicates that the asm
3627will write to or read from the contents of an *address* provided as an input
3628argument. (Note that in this way, indirect outputs act more like an *input* than
3629an output: just like an input, they consume an argument of the call expression,
3630rather than producing a return value. An indirect output constraint is an
3631"output" only in that the asm is expected to write to the contents of the input
3632memory location, instead of just read from it).
3633
3634This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3635address of a variable as a value.
3636
3637It is also possible to use an indirect *register* constraint, but only on output
3638(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3639value normally, and then, separately emit a store to the address provided as
3640input, after the provided inline asm. (It's not clear what value this
3641functionality provides, compared to writing the store explicitly after the asm
3642statement, and it can only produce worse code, since it bypasses many
3643optimization passes. I would recommend not using it.)
3644
3645
3646Clobber constraints
3647"""""""""""""""""""
3648
3649A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3650consume an input operand, nor generate an output. Clobbers cannot use any of the
3651general constraint code letters -- they may use only explicit register
3652constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3653"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3654memory locations -- not only the memory pointed to by a declared indirect
3655output.
3656
Peter Zotov00257232016-08-30 10:48:31 +00003657Note that clobbering named registers that are also present in output
3658constraints is not legal.
3659
James Y Knightbc832ed2015-07-08 18:08:36 +00003660
3661Constraint Codes
3662""""""""""""""""
3663After a potential prefix comes constraint code, or codes.
3664
3665A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3666followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3667(e.g. "``{eax}``").
3668
3669The one and two letter constraint codes are typically chosen to be the same as
3670GCC's constraint codes.
3671
3672A single constraint may include one or more than constraint code in it, leaving
3673it up to LLVM to choose which one to use. This is included mainly for
3674compatibility with the translation of GCC inline asm coming from clang.
3675
3676There are two ways to specify alternatives, and either or both may be used in an
3677inline asm constraint list:
3678
36791) Append the codes to each other, making a constraint code set. E.g. "``im``"
3680 or "``{eax}m``". This means "choose any of the options in the set". The
3681 choice of constraint is made independently for each constraint in the
3682 constraint list.
3683
36842) Use "``|``" between constraint code sets, creating alternatives. Every
3685 constraint in the constraint list must have the same number of alternative
3686 sets. With this syntax, the same alternative in *all* of the items in the
3687 constraint list will be chosen together.
3688
3689Putting those together, you might have a two operand constraint string like
3690``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3691operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3692may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3693
3694However, the use of either of the alternatives features is *NOT* recommended, as
3695LLVM is not able to make an intelligent choice about which one to use. (At the
3696point it currently needs to choose, not enough information is available to do so
3697in a smart way.) Thus, it simply tries to make a choice that's most likely to
3698compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3699always choose to use memory, not registers). And, if given multiple registers,
3700or multiple register classes, it will simply choose the first one. (In fact, it
3701doesn't currently even ensure explicitly specified physical registers are
3702unique, so specifying multiple physical registers as alternatives, like
3703``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3704intended.)
3705
3706Supported Constraint Code List
3707""""""""""""""""""""""""""""""
3708
3709The constraint codes are, in general, expected to behave the same way they do in
3710GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3711inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3712and GCC likely indicates a bug in LLVM.
3713
3714Some constraint codes are typically supported by all targets:
3715
3716- ``r``: A register in the target's general purpose register class.
3717- ``m``: A memory address operand. It is target-specific what addressing modes
3718 are supported, typical examples are register, or register + register offset,
3719 or register + immediate offset (of some target-specific size).
3720- ``i``: An integer constant (of target-specific width). Allows either a simple
3721 immediate, or a relocatable value.
3722- ``n``: An integer constant -- *not* including relocatable values.
3723- ``s``: An integer constant, but allowing *only* relocatable values.
3724- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3725 useful to pass a label for an asm branch or call.
3726
3727 .. FIXME: but that surely isn't actually okay to jump out of an asm
3728 block without telling llvm about the control transfer???)
3729
3730- ``{register-name}``: Requires exactly the named physical register.
3731
3732Other constraints are target-specific:
3733
3734AArch64:
3735
3736- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3737- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3738 i.e. 0 to 4095 with optional shift by 12.
3739- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3740 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3741- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3742 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3743- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3744 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3745- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3746 32-bit register. This is a superset of ``K``: in addition to the bitmask
3747 immediate, also allows immediate integers which can be loaded with a single
3748 ``MOVZ`` or ``MOVL`` instruction.
3749- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3750 64-bit register. This is a superset of ``L``.
3751- ``Q``: Memory address operand must be in a single register (no
3752 offsets). (However, LLVM currently does this for the ``m`` constraint as
3753 well.)
3754- ``r``: A 32 or 64-bit integer register (W* or X*).
3755- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3756- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3757
3758AMDGPU:
3759
3760- ``r``: A 32 or 64-bit integer register.
3761- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3762- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3763
3764
3765All ARM modes:
3766
3767- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3768 operand. Treated the same as operand ``m``, at the moment.
3769
3770ARM and ARM's Thumb2 mode:
3771
3772- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3773- ``I``: An immediate integer valid for a data-processing instruction.
3774- ``J``: An immediate integer between -4095 and 4095.
3775- ``K``: An immediate integer whose bitwise inverse is valid for a
3776 data-processing instruction. (Can be used with template modifier "``B``" to
3777 print the inverted value).
3778- ``L``: An immediate integer whose negation is valid for a data-processing
3779 instruction. (Can be used with template modifier "``n``" to print the negated
3780 value).
3781- ``M``: A power of two or a integer between 0 and 32.
3782- ``N``: Invalid immediate constraint.
3783- ``O``: Invalid immediate constraint.
3784- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3785- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3786 as ``r``.
3787- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3788 invalid.
3789- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3790 ``d0-d31``, or ``q0-q15``.
3791- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3792 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003793- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3794 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003795
3796ARM's Thumb1 mode:
3797
3798- ``I``: An immediate integer between 0 and 255.
3799- ``J``: An immediate integer between -255 and -1.
3800- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3801 some amount.
3802- ``L``: An immediate integer between -7 and 7.
3803- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3804- ``N``: An immediate integer between 0 and 31.
3805- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3806- ``r``: A low 32-bit GPR register (``r0-r7``).
3807- ``l``: A low 32-bit GPR register (``r0-r7``).
3808- ``h``: A high GPR register (``r0-r7``).
3809- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3810 ``d0-d31``, or ``q0-q15``.
3811- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3812 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003813- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3814 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003815
3816
3817Hexagon:
3818
3819- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3820 at the moment.
3821- ``r``: A 32 or 64-bit register.
3822
3823MSP430:
3824
3825- ``r``: An 8 or 16-bit register.
3826
3827MIPS:
3828
3829- ``I``: An immediate signed 16-bit integer.
3830- ``J``: An immediate integer zero.
3831- ``K``: An immediate unsigned 16-bit integer.
3832- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3833- ``N``: An immediate integer between -65535 and -1.
3834- ``O``: An immediate signed 15-bit integer.
3835- ``P``: An immediate integer between 1 and 65535.
3836- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3837 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3838- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3839 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3840 ``m``.
3841- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3842 ``sc`` instruction on the given subtarget (details vary).
3843- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3844- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003845 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3846 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003847- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3848 ``25``).
3849- ``l``: The ``lo`` register, 32 or 64-bit.
3850- ``x``: Invalid.
3851
3852NVPTX:
3853
3854- ``b``: A 1-bit integer register.
3855- ``c`` or ``h``: A 16-bit integer register.
3856- ``r``: A 32-bit integer register.
3857- ``l`` or ``N``: A 64-bit integer register.
3858- ``f``: A 32-bit float register.
3859- ``d``: A 64-bit float register.
3860
3861
3862PowerPC:
3863
3864- ``I``: An immediate signed 16-bit integer.
3865- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3866- ``K``: An immediate unsigned 16-bit integer.
3867- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3868- ``M``: An immediate integer greater than 31.
3869- ``N``: An immediate integer that is an exact power of 2.
3870- ``O``: The immediate integer constant 0.
3871- ``P``: An immediate integer constant whose negation is a signed 16-bit
3872 constant.
3873- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3874 treated the same as ``m``.
3875- ``r``: A 32 or 64-bit integer register.
3876- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3877 ``R1-R31``).
3878- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3879 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3880- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3881 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3882 altivec vector register (``V0-V31``).
3883
3884 .. FIXME: is this a bug that v accepts QPX registers? I think this
3885 is supposed to only use the altivec vector registers?
3886
3887- ``y``: Condition register (``CR0-CR7``).
3888- ``wc``: An individual CR bit in a CR register.
3889- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3890 register set (overlapping both the floating-point and vector register files).
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003891- ``ws``: A 32 or 64-bit floating-point register, from the full VSX register
James Y Knightbc832ed2015-07-08 18:08:36 +00003892 set.
3893
3894Sparc:
3895
3896- ``I``: An immediate 13-bit signed integer.
3897- ``r``: A 32-bit integer register.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003898- ``f``: Any floating-point register on SparcV8, or a floating-point
James Y Knightd4e1b002017-05-12 15:59:10 +00003899 register in the "low" half of the registers on SparcV9.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003900- ``e``: Any floating-point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003901
3902SystemZ:
3903
3904- ``I``: An immediate unsigned 8-bit integer.
3905- ``J``: An immediate unsigned 12-bit integer.
3906- ``K``: An immediate signed 16-bit integer.
3907- ``L``: An immediate signed 20-bit integer.
3908- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003909- ``Q``: A memory address operand with a base address and a 12-bit immediate
3910 unsigned displacement.
3911- ``R``: A memory address operand with a base address, a 12-bit immediate
3912 unsigned displacement, and an index register.
3913- ``S``: A memory address operand with a base address and a 20-bit immediate
3914 signed displacement.
3915- ``T``: A memory address operand with a base address, a 20-bit immediate
3916 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003917- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3918- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3919 address context evaluates as zero).
3920- ``h``: A 32-bit value in the high part of a 64bit data register
3921 (LLVM-specific)
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003922- ``f``: A 32, 64, or 128-bit floating-point register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003923
3924X86:
3925
3926- ``I``: An immediate integer between 0 and 31.
3927- ``J``: An immediate integer between 0 and 64.
3928- ``K``: An immediate signed 8-bit integer.
3929- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3930 0xffffffff.
3931- ``M``: An immediate integer between 0 and 3.
3932- ``N``: An immediate unsigned 8-bit integer.
3933- ``O``: An immediate integer between 0 and 127.
3934- ``e``: An immediate 32-bit signed integer.
3935- ``Z``: An immediate 32-bit unsigned integer.
3936- ``o``, ``v``: Treated the same as ``m``, at the moment.
3937- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3938 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3939 registers, and on X86-64, it is all of the integer registers.
3940- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3941 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3942- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3943- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3944 existed since i386, and can be accessed without the REX prefix.
3945- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3946- ``y``: A 64-bit MMX register, if MMX is enabled.
3947- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3948 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3949 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3950 512-bit vector operand in an AVX512 register, Otherwise, an error.
3951- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3952- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3953 32-bit mode, a 64-bit integer operand will get split into two registers). It
3954 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3955 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3956 you're better off splitting it yourself, before passing it to the asm
3957 statement.
3958
3959XCore:
3960
3961- ``r``: A 32-bit integer register.
3962
3963
3964.. _inline-asm-modifiers:
3965
3966Asm template argument modifiers
3967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3968
3969In the asm template string, modifiers can be used on the operand reference, like
3970"``${0:n}``".
3971
3972The modifiers are, in general, expected to behave the same way they do in
3973GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3974inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3975and GCC likely indicates a bug in LLVM.
3976
3977Target-independent:
3978
Sean Silvaa1190322015-08-06 22:56:48 +00003979- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003980 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3981- ``n``: Negate and print immediate integer constant unadorned, without the
3982 target-specific immediate punctuation (e.g. no ``$`` prefix).
3983- ``l``: Print as an unadorned label, without the target-specific label
3984 punctuation (e.g. no ``$`` prefix).
3985
3986AArch64:
3987
3988- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3989 instead of ``x30``, print ``w30``.
3990- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3991- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3992 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3993 ``v*``.
3994
3995AMDGPU:
3996
3997- ``r``: No effect.
3998
3999ARM:
4000
4001- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
4002 register).
4003- ``P``: No effect.
4004- ``q``: No effect.
4005- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
4006 as ``d4[1]`` instead of ``s9``)
4007- ``B``: Bitwise invert and print an immediate integer constant without ``#``
4008 prefix.
4009- ``L``: Print the low 16-bits of an immediate integer constant.
4010- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
4011 register operands subsequent to the specified one (!), so use carefully.
4012- ``Q``: Print the low-order register of a register-pair, or the low-order
4013 register of a two-register operand.
4014- ``R``: Print the high-order register of a register-pair, or the high-order
4015 register of a two-register operand.
4016- ``H``: Print the second register of a register-pair. (On a big-endian system,
4017 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
4018 to ``R``.)
4019
4020 .. FIXME: H doesn't currently support printing the second register
4021 of a two-register operand.
4022
4023- ``e``: Print the low doubleword register of a NEON quad register.
4024- ``f``: Print the high doubleword register of a NEON quad register.
4025- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
4026 adornment.
4027
4028Hexagon:
4029
4030- ``L``: Print the second register of a two-register operand. Requires that it
4031 has been allocated consecutively to the first.
4032
4033 .. FIXME: why is it restricted to consecutive ones? And there's
4034 nothing that ensures that happens, is there?
4035
4036- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4037 nothing. Used to print 'addi' vs 'add' instructions.
4038
4039MSP430:
4040
4041No additional modifiers.
4042
4043MIPS:
4044
4045- ``X``: Print an immediate integer as hexadecimal
4046- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
4047- ``d``: Print an immediate integer as decimal.
4048- ``m``: Subtract one and print an immediate integer as decimal.
4049- ``z``: Print $0 if an immediate zero, otherwise print normally.
4050- ``L``: Print the low-order register of a two-register operand, or prints the
4051 address of the low-order word of a double-word memory operand.
4052
4053 .. FIXME: L seems to be missing memory operand support.
4054
4055- ``M``: Print the high-order register of a two-register operand, or prints the
4056 address of the high-order word of a double-word memory operand.
4057
4058 .. FIXME: M seems to be missing memory operand support.
4059
4060- ``D``: Print the second register of a two-register operand, or prints the
4061 second word of a double-word memory operand. (On a big-endian system, ``D`` is
4062 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
4063 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00004064- ``w``: No effect. Provided for compatibility with GCC which requires this
4065 modifier in order to print MSA registers (``W0-W31``) with the ``f``
4066 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00004067
4068NVPTX:
4069
4070- ``r``: No effect.
4071
4072PowerPC:
4073
4074- ``L``: Print the second register of a two-register operand. Requires that it
4075 has been allocated consecutively to the first.
4076
4077 .. FIXME: why is it restricted to consecutive ones? And there's
4078 nothing that ensures that happens, is there?
4079
4080- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4081 nothing. Used to print 'addi' vs 'add' instructions.
4082- ``y``: For a memory operand, prints formatter for a two-register X-form
4083 instruction. (Currently always prints ``r0,OPERAND``).
4084- ``U``: Prints 'u' if the memory operand is an update form, and nothing
4085 otherwise. (NOTE: LLVM does not support update form, so this will currently
4086 always print nothing)
4087- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
4088 not support indexed form, so this will currently always print nothing)
4089
4090Sparc:
4091
4092- ``r``: No effect.
4093
4094SystemZ:
4095
4096SystemZ implements only ``n``, and does *not* support any of the other
4097target-independent modifiers.
4098
4099X86:
4100
4101- ``c``: Print an unadorned integer or symbol name. (The latter is
4102 target-specific behavior for this typically target-independent modifier).
4103- ``A``: Print a register name with a '``*``' before it.
4104- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
4105 operand.
4106- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
4107 memory operand.
4108- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
4109 operand.
4110- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
4111 operand.
4112- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
4113 available, otherwise the 32-bit register name; do nothing on a memory operand.
4114- ``n``: Negate and print an unadorned integer, or, for operands other than an
4115 immediate integer (e.g. a relocatable symbol expression), print a '-' before
4116 the operand. (The behavior for relocatable symbol expressions is a
4117 target-specific behavior for this typically target-independent modifier)
4118- ``H``: Print a memory reference with additional offset +8.
4119- ``P``: Print a memory reference or operand for use as the argument of a call
4120 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
4121
4122XCore:
4123
4124No additional modifiers.
4125
4126
Sean Silvab084af42012-12-07 10:36:55 +00004127Inline Asm Metadata
4128^^^^^^^^^^^^^^^^^^^
4129
4130The call instructions that wrap inline asm nodes may have a
4131"``!srcloc``" MDNode attached to it that contains a list of constant
4132integers. If present, the code generator will use the integer as the
4133location cookie value when report errors through the ``LLVMContext``
4134error reporting mechanisms. This allows a front-end to correlate backend
4135errors that occur with inline asm back to the source code that produced
4136it. For example:
4137
4138.. code-block:: llvm
4139
4140 call void asm sideeffect "something bad", ""(), !srcloc !42
4141 ...
4142 !42 = !{ i32 1234567 }
4143
4144It is up to the front-end to make sense of the magic numbers it places
4145in the IR. If the MDNode contains multiple constants, the code generator
4146will use the one that corresponds to the line of the asm that the error
4147occurs on.
4148
4149.. _metadata:
4150
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004151Metadata
4152========
Sean Silvab084af42012-12-07 10:36:55 +00004153
4154LLVM IR allows metadata to be attached to instructions in the program
4155that can convey extra information about the code to the optimizers and
4156code generator. One example application of metadata is source-level
4157debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004158
Sean Silvaa1190322015-08-06 22:56:48 +00004159Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004160``call`` instruction, it uses the ``metadata`` type.
4161
4162All metadata are identified in syntax by a exclamation point ('``!``').
4163
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004164.. _metadata-string:
4165
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004166Metadata Nodes and Metadata Strings
4167-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00004168
4169A metadata string is a string surrounded by double quotes. It can
4170contain any character by escaping non-printable characters with
4171"``\xx``" where "``xx``" is the two digit hex code. For example:
4172"``!"test\00"``".
4173
4174Metadata nodes are represented with notation similar to structure
4175constants (a comma separated list of elements, surrounded by braces and
4176preceded by an exclamation point). Metadata nodes can have any values as
4177their operand. For example:
4178
4179.. code-block:: llvm
4180
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004181 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00004182
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004183Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4184
Renato Golin124f2592016-07-20 12:16:38 +00004185.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004186
4187 !0 = distinct !{!"test\00", i32 10}
4188
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004189``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004190content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004191when metadata operands change.
4192
Sean Silvab084af42012-12-07 10:36:55 +00004193A :ref:`named metadata <namedmetadatastructure>` is a collection of
4194metadata nodes, which can be looked up in the module symbol table. For
4195example:
4196
4197.. code-block:: llvm
4198
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004199 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004200
Adrian Prantl1b842da2017-07-28 20:44:29 +00004201Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4202intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004203
4204.. code-block:: llvm
4205
Adrian Prantlabe04752017-07-28 20:21:02 +00004206 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004207
Peter Collingbourne50108682015-11-06 02:41:02 +00004208Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4209to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004210
4211.. code-block:: llvm
4212
4213 %indvar.next = add i64 %indvar, 1, !dbg !21
4214
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004215Metadata can also be attached to a function or a global variable. Here metadata
4216``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4217and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004218
4219.. code-block:: llvm
4220
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004221 declare !dbg !22 void @f1()
4222 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004223 ret void
4224 }
4225
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004226 @g1 = global i32 0, !dbg !22
4227 @g2 = external global i32, !dbg !22
4228
4229A transformation is required to drop any metadata attachment that it does not
4230know or know it can't preserve. Currently there is an exception for metadata
4231attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4232unconditionally dropped unless the global is itself deleted.
4233
4234Metadata attached to a module using named metadata may not be dropped, with
4235the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4236
Sean Silvab084af42012-12-07 10:36:55 +00004237More information about specific metadata nodes recognized by the
4238optimizers and code generator is found below.
4239
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004240.. _specialized-metadata:
4241
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004242Specialized Metadata Nodes
4243^^^^^^^^^^^^^^^^^^^^^^^^^^
4244
4245Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004246to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004247order.
4248
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004249These aren't inherently debug info centric, but currently all the specialized
4250metadata nodes are related to debug info.
4251
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004252.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004253
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004254DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004255"""""""""""""
4256
Sean Silvaa1190322015-08-06 22:56:48 +00004257``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004258``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4259containing the debug info to be emitted along with the compile unit, regardless
4260of code optimizations (some nodes are only emitted if there are references to
4261them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4262indicating whether or not line-table discriminators are updated to provide
4263more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004264
Renato Golin124f2592016-07-20 12:16:38 +00004265.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004266
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004267 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004268 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004269 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004270 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4271 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004272
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004273Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004274specific compilation unit. File descriptors are defined using this scope. These
4275descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4276track of global variables, type information, and imported entities (declarations
4277and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004278
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004279.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004280
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004281DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004282""""""
4283
Sean Silvaa1190322015-08-06 22:56:48 +00004284``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004285
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004286.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004287
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004288 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4289 checksumkind: CSK_MD5,
4290 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004291
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004292Files are sometimes used in ``scope:`` fields, and are the only valid target
4293for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004294Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004295
Michael Kuperstein605308a2015-05-14 10:58:59 +00004296.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004297
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004298DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004299"""""""""""
4300
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004301``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004302``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004303
Renato Golin124f2592016-07-20 12:16:38 +00004304.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004305
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004306 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004307 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004308 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004309
Sean Silvaa1190322015-08-06 22:56:48 +00004310The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004311following:
4312
Renato Golin124f2592016-07-20 12:16:38 +00004313.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004314
4315 DW_ATE_address = 1
4316 DW_ATE_boolean = 2
4317 DW_ATE_float = 4
4318 DW_ATE_signed = 5
4319 DW_ATE_signed_char = 6
4320 DW_ATE_unsigned = 7
4321 DW_ATE_unsigned_char = 8
4322
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004323.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004324
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004325DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004326""""""""""""""""
4327
Sean Silvaa1190322015-08-06 22:56:48 +00004328``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004329refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004330types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004331represents a function with no return value (such as ``void foo() {}`` in C++).
4332
Renato Golin124f2592016-07-20 12:16:38 +00004333.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004334
4335 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4336 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004337 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004338
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004339.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004340
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004341DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004342"""""""""""""
4343
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004344``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004345qualified types.
4346
Renato Golin124f2592016-07-20 12:16:38 +00004347.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004348
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004349 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004350 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004351 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004352 align: 32)
4353
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004354The following ``tag:`` values are valid:
4355
Renato Golin124f2592016-07-20 12:16:38 +00004356.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004357
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004358 DW_TAG_member = 13
4359 DW_TAG_pointer_type = 15
4360 DW_TAG_reference_type = 16
4361 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004362 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004363 DW_TAG_ptr_to_member_type = 31
4364 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004365 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004366 DW_TAG_volatile_type = 53
4367 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004368 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004369
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004370.. _DIDerivedTypeMember:
4371
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004372``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004373<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004374``offset:`` is the member's bit offset. If the composite type has an ODR
4375``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4376uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004377
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004378``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4379field of :ref:`composite types <DICompositeType>` to describe parents and
4380friends.
4381
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004382``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4383
4384``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004385``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4386are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004387
4388Note that the ``void *`` type is expressed as a type derived from NULL.
4389
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004390.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004391
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004392DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004393"""""""""""""""
4394
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004395``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004396structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004397
4398If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004399identifier used for type merging between modules. When specified,
4400:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4401derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4402``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004403
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004404For a given ``identifier:``, there should only be a single composite type that
4405does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4406together will unique such definitions at parse time via the ``identifier:``
4407field, even if the nodes are ``distinct``.
4408
Renato Golin124f2592016-07-20 12:16:38 +00004409.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004410
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004411 !0 = !DIEnumerator(name: "SixKind", value: 7)
4412 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4413 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4414 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004415 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4416 elements: !{!0, !1, !2})
4417
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004418The following ``tag:`` values are valid:
4419
Renato Golin124f2592016-07-20 12:16:38 +00004420.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004421
4422 DW_TAG_array_type = 1
4423 DW_TAG_class_type = 2
4424 DW_TAG_enumeration_type = 4
4425 DW_TAG_structure_type = 19
4426 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004427
4428For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004429descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004430level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004431array type is a native packed vector.
4432
4433For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004434descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004435value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004436``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004437
4438For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4439``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004440<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4441``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4442``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004443
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004444.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004445
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004446DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004447""""""""""
4448
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004449``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sander de Smalen1cb94312018-01-24 10:30:23 +00004450:ref:`DICompositeType`.
4451
4452- ``count: -1`` indicates an empty array.
4453- ``count: !9`` describes the count with a :ref:`DILocalVariable`.
4454- ``count: !11`` describes the count with a :ref:`DIGlobalVariable`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004455
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004456.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004457
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004458 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4459 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4460 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004461
Sander de Smalenfdf40912018-01-24 09:56:07 +00004462 ; Scopes used in rest of example
4463 !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
Chandler Carruth24dd2112018-08-06 02:30:01 +00004464 !7 = distinct !DICompileUnit(language: DW_LANG_C99, file: !6)
4465 !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004466
4467 ; Use of local variable as count value
4468 !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
4469 !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
Chandler Carruth24dd2112018-08-06 02:30:01 +00004470 !11 = !DISubrange(count: !10, lowerBound: 0)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004471
4472 ; Use of global variable as count value
4473 !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
Chandler Carruth24dd2112018-08-06 02:30:01 +00004474 !13 = !DISubrange(count: !12, lowerBound: 0)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004475
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004476.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004477
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004478DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004479""""""""""""
4480
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004481``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4482variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004483
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004484.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004485
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004486 !0 = !DIEnumerator(name: "SixKind", value: 7)
4487 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4488 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004489
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004490DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004491"""""""""""""""""""""""
4492
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004493``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004494language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004495:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004496
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004497.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004498
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004499 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004500
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004501DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004502""""""""""""""""""""""""
4503
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004504``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004505language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004506but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004507``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004508:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004509
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004510.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004511
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004512 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004513
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004514DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004515"""""""""""
4516
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004517``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004518
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004519.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004520
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004521 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004522
Sander de Smalen1cb94312018-01-24 10:30:23 +00004523.. _DIGlobalVariable:
4524
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004525DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004526""""""""""""""""
4527
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004528``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004529
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004530.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004531
Adrian Prantl6f0ec692019-01-22 16:40:18 +00004532 @foo = global i32, !dbg !0
4533 !0 = !DIGlobalVariableExpression(var: !1, expr: !DIExpression())
4534 !1 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !2,
4535 file: !3, line: 7, type: !4, isLocal: true,
4536 isDefinition: false, declaration: !5)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004537
Adrian Prantl6f0ec692019-01-22 16:40:18 +00004538
4539DIGlobalVariableExpression
4540""""""""""""""""""""""""""
4541
4542``DIGlobalVariableExpression`` nodes tie a :ref:`DIGlobalVariable` together
4543with a :ref:`DIExpression`.
4544
4545.. code-block:: text
4546
4547 @lower = global i32, !dbg !0
4548 @upper = global i32, !dbg !1
4549 !0 = !DIGlobalVariableExpression(
4550 var: !2,
4551 expr: !DIExpression(DW_OP_LLVM_fragment, 0, 32)
4552 )
4553 !1 = !DIGlobalVariableExpression(
4554 var: !2,
4555 expr: !DIExpression(DW_OP_LLVM_fragment, 32, 32)
4556 )
4557 !2 = !DIGlobalVariable(name: "split64", linkageName: "split64", scope: !3,
4558 file: !4, line: 8, type: !5, declaration: !6)
4559
4560All global variable expressions should be referenced by the `globals:` field of
4561a :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004562
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004563.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004564
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004565DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004566""""""""""""
4567
Peter Collingbourne50108682015-11-06 02:41:02 +00004568``DISubprogram`` nodes represent functions from the source language. A
4569``DISubprogram`` may be attached to a function definition using ``!dbg``
4570metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4571that must be retained, even if their IR counterparts are optimized out of
4572the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004573
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004574.. _DISubprogramDeclaration:
4575
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004576When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004577tree as opposed to a definition of a function. If the scope is a composite
4578type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4579then the subprogram declaration is uniqued based only on its ``linkageName:``
4580and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004581
Renato Golin124f2592016-07-20 12:16:38 +00004582.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004583
Peter Collingbourne50108682015-11-06 02:41:02 +00004584 define void @_Z3foov() !dbg !0 {
4585 ...
4586 }
4587
4588 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4589 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004590 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004591 containingType: !4,
4592 virtuality: DW_VIRTUALITY_pure_virtual,
4593 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004594 isOptimized: true, unit: !5, templateParams: !6,
4595 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004596
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004597.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004598
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004599DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004600""""""""""""""
4601
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004602``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004603<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004604two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004605fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004606
Renato Golin124f2592016-07-20 12:16:38 +00004607.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004608
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004609 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004610
4611Usually lexical blocks are ``distinct`` to prevent node merging based on
4612operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004613
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004614.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004615
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004616DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004617""""""""""""""""""
4618
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004619``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004620:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004621indicate textual inclusion, or the ``discriminator:`` field can be used to
4622discriminate between control flow within a single block in the source language.
4623
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004624.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004625
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004626 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4627 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4628 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004629
Michael Kuperstein605308a2015-05-14 10:58:59 +00004630.. _DILocation:
4631
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004632DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004633""""""""""
4634
Sean Silvaa1190322015-08-06 22:56:48 +00004635``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004636mandatory, and points at an :ref:`DILexicalBlockFile`, an
4637:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004638
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004639.. code-block:: text
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004640
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004641 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004642
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004643.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004644
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004645DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004646"""""""""""""""
4647
Sean Silvaa1190322015-08-06 22:56:48 +00004648``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004649the ``arg:`` field is set to non-zero, then this variable is a subprogram
4650parameter, and it will be included in the ``variables:`` field of its
4651:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004652
Renato Golin124f2592016-07-20 12:16:38 +00004653.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004654
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004655 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4656 type: !3, flags: DIFlagArtificial)
4657 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4658 type: !3)
4659 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004660
James Y Knight94b97092019-02-01 17:06:41 +00004661.. _DIExpression:
4662
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004663DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004664""""""""""""
4665
Adrian Prantlb44c7762017-03-22 18:01:01 +00004666``DIExpression`` nodes represent expressions that are inspired by the DWARF
4667expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4668(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
Vedant Kumar8a05b012018-07-28 00:33:47 +00004669referenced LLVM variable relates to the source language variable. Debug
4670intrinsics are interpreted left-to-right: start by pushing the value/address
4671operand of the intrinsic onto a stack, then repeatedly push and evaluate
4672opcodes from the DIExpression until the final variable description is produced.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004673
Vedant Kumar8a05b012018-07-28 00:33:47 +00004674The current supported opcode vocabulary is limited:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004675
Adrian Prantl6825fb62017-04-18 01:21:53 +00004676- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004677- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4678 them together and appends the result to the expression stack.
4679- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4680 the last entry from the second last entry and appends the result to the
4681 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004682- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004683- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4684 here, respectively) of the variable fragment from the working expression. Note
Hiroshi Inoue760c0c92018-01-16 13:19:48 +00004685 that contrary to DW_OP_bit_piece, the offset is describing the location
Adrian Prantlb44c7762017-03-22 18:01:01 +00004686 within the described source variable.
Markus Lavinb86ce212019-03-19 13:16:28 +00004687- ``DW_OP_LLVM_convert, 16, DW_ATE_signed`` specifies a bit size and encoding
4688 (``16`` and ``DW_ATE_signed`` here, respectively) to which the top of the
4689 expression stack is to be converted. Maps into a ``DW_OP_convert`` operation
4690 that references a base type constructed from the supplied values.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004691- ``DW_OP_swap`` swaps top two stack entries.
4692- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4693 of the stack is treated as an address. The second stack entry is treated as an
4694 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004695- ``DW_OP_stack_value`` marks a constant value.
4696
Adrian Prantl6825fb62017-04-18 01:21:53 +00004697DWARF specifies three kinds of simple location descriptions: Register, memory,
Vedant Kumar8a05b012018-07-28 00:33:47 +00004698and implicit location descriptions. Note that a location description is
4699defined over certain ranges of a program, i.e the location of a variable may
4700change over the course of the program. Register and memory location
4701descriptions describe the *concrete location* of a source variable (in the
4702sense that a debugger might modify its value), whereas *implicit locations*
4703describe merely the actual *value* of a source variable which might not exist
4704in registers or in memory (see ``DW_OP_stack_value``).
4705
4706A ``llvm.dbg.addr`` or ``llvm.dbg.declare`` intrinsic describes an indirect
4707value (the address) of a source variable. The first operand of the intrinsic
4708must be an address of some kind. A DIExpression attached to the intrinsic
4709refines this address to produce a concrete location for the source variable.
4710
4711A ``llvm.dbg.value`` intrinsic describes the direct value of a source variable.
4712The first operand of the intrinsic may be a direct or indirect value. A
4713DIExpresion attached to the intrinsic refines the first operand to produce a
4714direct value. For example, if the first operand is an indirect value, it may be
4715necessary to insert ``DW_OP_deref`` into the DIExpresion in order to produce a
4716valid debug intrinsic.
4717
4718.. note::
4719
4720 A DIExpression is interpreted in the same way regardless of which kind of
4721 debug intrinsic it's attached to.
Adrian Prantl6825fb62017-04-18 01:21:53 +00004722
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004723.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004724
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004725 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004726 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004727 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004728 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004729 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004730 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004731 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004732
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004733DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004734""""""""""""""
4735
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004736``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004737
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004738.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004739
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004740 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004741 getter: "getFoo", attributes: 7, type: !2)
4742
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004743DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004744""""""""""""""""
4745
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004746``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004747compile unit.
4748
Renato Golin124f2592016-07-20 12:16:38 +00004749.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004750
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004751 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004752 entity: !1, line: 7)
4753
Amjad Abouda9bcf162015-12-10 12:56:35 +00004754DIMacro
4755"""""""
4756
4757``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4758The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004759defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004760used to expand the macro identifier.
4761
Renato Golin124f2592016-07-20 12:16:38 +00004762.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004763
4764 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4765 value: "((x) + 1)")
4766 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4767
4768DIMacroFile
4769"""""""""""
4770
4771``DIMacroFile`` nodes represent inclusion of source files.
4772The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4773appear in the included source file.
4774
Renato Golin124f2592016-07-20 12:16:38 +00004775.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004776
4777 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4778 nodes: !3)
4779
Sean Silvab084af42012-12-07 10:36:55 +00004780'``tbaa``' Metadata
4781^^^^^^^^^^^^^^^^^^^
4782
4783In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004784suitable for doing type based alias analysis (TBAA). Instead, metadata is
4785added to the IR to describe a type system of a higher level language. This
4786can be used to implement C/C++ strict type aliasing rules, but it can also
4787be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004788
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004789This description of LLVM's TBAA system is broken into two parts:
4790:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4791:ref:`Representation<tbaa_node_representation>` talks about the metadata
4792encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004793
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004794It is always possible to trace any TBAA node to a "root" TBAA node (details
4795in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4796nodes with different roots have an unknown aliasing relationship, and LLVM
4797conservatively infers ``MayAlias`` between them. The rules mentioned in
4798this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004799
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004800.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004801
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004802Semantics
4803"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004804
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004805The TBAA metadata system, referred to as "struct path TBAA" (not to be
4806confused with ``tbaa.struct``), consists of the following high level
4807concepts: *Type Descriptors*, further subdivided into scalar type
4808descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004809
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004810**Type descriptors** describe the type system of the higher level language
4811being compiled. **Scalar type descriptors** describe types that do not
4812contain other types. Each scalar type has a parent type, which must also
4813be a scalar type or the TBAA root. Via this parent relation, scalar types
4814within a TBAA root form a tree. **Struct type descriptors** denote types
4815that contain a sequence of other type descriptors, at known offsets. These
4816contained type descriptors can either be struct type descriptors themselves
4817or scalar type descriptors.
4818
4819**Access tags** are metadata nodes attached to load and store instructions.
4820Access tags use type descriptors to describe the *location* being accessed
4821in terms of the type system of the higher level language. Access tags are
4822tuples consisting of a base type, an access type and an offset. The base
4823type is a scalar type descriptor or a struct type descriptor, the access
4824type is a scalar type descriptor, and the offset is a constant integer.
4825
4826The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4827things:
4828
4829 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4830 or store) of a value of type ``AccessTy`` contained in the struct type
4831 ``BaseTy`` at offset ``Offset``.
4832
4833 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4834 ``AccessTy`` must be the same; and the access tag describes a scalar
4835 access with scalar type ``AccessTy``.
4836
4837We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4838tuples this way:
4839
4840 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4841 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4842 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4843 undefined if ``Offset`` is non-zero.
4844
4845 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4846 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4847 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4848 to be relative within that inner type.
4849
4850A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4851aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4852Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4853Offset2)`` via the ``Parent`` relation or vice versa.
4854
4855As a concrete example, the type descriptor graph for the following program
4856
4857.. code-block:: c
4858
4859 struct Inner {
4860 int i; // offset 0
4861 float f; // offset 4
4862 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004863
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004864 struct Outer {
4865 float f; // offset 0
4866 double d; // offset 4
4867 struct Inner inner_a; // offset 12
4868 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004869
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004870 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4871 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4872 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
Fangrui Song74d6a742018-05-29 05:38:05 +00004873 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, FloatScalarTy, 16)
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004874 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4875 }
4876
4877is (note that in C and C++, ``char`` can be used to access any arbitrary
4878type):
4879
4880.. code-block:: text
4881
4882 Root = "TBAA Root"
4883 CharScalarTy = ("char", Root, 0)
4884 FloatScalarTy = ("float", CharScalarTy, 0)
4885 DoubleScalarTy = ("double", CharScalarTy, 0)
4886 IntScalarTy = ("int", CharScalarTy, 0)
4887 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4888 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4889 (InnerStructTy, 12)}
4890
4891
4892with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
48930)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4894``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4895
4896.. _tbaa_node_representation:
4897
4898Representation
4899""""""""""""""
4900
4901The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4902with exactly one ``MDString`` operand.
4903
4904Scalar type descriptors are represented as an ``MDNode`` s with two
4905operands. The first operand is an ``MDString`` denoting the name of the
4906struct type. LLVM does not assign meaning to the value of this operand, it
4907only cares about it being an ``MDString``. The second operand is an
4908``MDNode`` which points to the parent for said scalar type descriptor,
4909which is either another scalar type descriptor or the TBAA root. Scalar
4910type descriptors can have an optional third argument, but that must be the
4911constant integer zero.
4912
4913Struct type descriptors are represented as ``MDNode`` s with an odd number
4914of operands greater than 1. The first operand is an ``MDString`` denoting
4915the name of the struct type. Like in scalar type descriptors the actual
4916value of this name operand is irrelevant to LLVM. After the name operand,
4917the struct type descriptors have a sequence of alternating ``MDNode`` and
4918``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4919an ``MDNode``, denotes a contained field, and the 2N th operand, a
4920``ConstantInt``, is the offset of the said contained field. The offsets
4921must be in non-decreasing order.
4922
4923Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4924The first operand is an ``MDNode`` pointing to the node representing the
4925base type. The second operand is an ``MDNode`` pointing to the node
4926representing the access type. The third operand is a ``ConstantInt`` that
4927states the offset of the access. If a fourth field is present, it must be
4928a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4929that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004930``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004931AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4932the access type and the base type of an access tag must be the same, and
4933that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004934
4935'``tbaa.struct``' Metadata
4936^^^^^^^^^^^^^^^^^^^^^^^^^^
4937
4938The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4939aggregate assignment operations in C and similar languages, however it
4940is defined to copy a contiguous region of memory, which is more than
4941strictly necessary for aggregate types which contain holes due to
4942padding. Also, it doesn't contain any TBAA information about the fields
4943of the aggregate.
4944
4945``!tbaa.struct`` metadata can describe which memory subregions in a
4946memcpy are padding and what the TBAA tags of the struct are.
4947
4948The current metadata format is very simple. ``!tbaa.struct`` metadata
4949nodes are a list of operands which are in conceptual groups of three.
4950For each group of three, the first operand gives the byte offset of a
4951field in bytes, the second gives its size in bytes, and the third gives
4952its tbaa tag. e.g.:
4953
4954.. code-block:: llvm
4955
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004956 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004957
4958This describes a struct with two fields. The first is at offset 0 bytes
4959with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4960and has size 4 bytes and has tbaa tag !2.
4961
4962Note that the fields need not be contiguous. In this example, there is a
49634 byte gap between the two fields. This gap represents padding which
4964does not carry useful data and need not be preserved.
4965
Hal Finkel94146652014-07-24 14:25:39 +00004966'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004968
4969``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4970noalias memory-access sets. This means that some collection of memory access
4971instructions (loads, stores, memory-accessing calls, etc.) that carry
4972``noalias`` metadata can specifically be specified not to alias with some other
4973collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004974Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004975a domain.
4976
4977When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004978of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004979subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004980instruction's ``noalias`` list, then the two memory accesses are assumed not to
4981alias.
Hal Finkel94146652014-07-24 14:25:39 +00004982
Adam Nemet569a5b32016-04-27 00:52:48 +00004983Because scopes in one domain don't affect scopes in other domains, separate
4984domains can be used to compose multiple independent noalias sets. This is
4985used for example during inlining. As the noalias function parameters are
4986turned into noalias scope metadata, a new domain is used every time the
4987function is inlined.
4988
Hal Finkel029cde62014-07-25 15:50:02 +00004989The metadata identifying each domain is itself a list containing one or two
4990entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004991string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004992self-reference can be used to create globally unique domain names. A
4993descriptive string may optionally be provided as a second list entry.
4994
4995The metadata identifying each scope is also itself a list containing two or
4996three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004997is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004998self-reference can be used to create globally unique scope names. A metadata
4999reference to the scope's domain is the second entry. A descriptive string may
5000optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00005001
5002For example,
5003
5004.. code-block:: llvm
5005
Hal Finkel029cde62014-07-25 15:50:02 +00005006 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005007 !0 = !{!0}
5008 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00005009
Hal Finkel029cde62014-07-25 15:50:02 +00005010 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005011 !2 = !{!2, !0}
5012 !3 = !{!3, !0}
5013 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00005014
Hal Finkel029cde62014-07-25 15:50:02 +00005015 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005016 !5 = !{!4} ; A list containing only scope !4
5017 !6 = !{!4, !3, !2}
5018 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00005019
5020 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00005021 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00005022 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00005023
Hal Finkel029cde62014-07-25 15:50:02 +00005024 ; These two instructions also don't alias (for domain !1, the set of scopes
5025 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00005026 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00005027 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00005028
Adam Nemet0a8416f2015-05-11 08:30:28 +00005029 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00005030 ; the !noalias list is not a superset of, or equal to, the scopes in the
5031 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00005032 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00005033 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00005034
Sean Silvab084af42012-12-07 10:36:55 +00005035'``fpmath``' Metadata
5036^^^^^^^^^^^^^^^^^^^^^
5037
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00005038``fpmath`` metadata may be attached to any instruction of floating-point
Sean Silvab084af42012-12-07 10:36:55 +00005039type. It can be used to express the maximum acceptable error in the
5040result of that instruction, in ULPs, thus potentially allowing the
5041compiler to use a more efficient but less accurate method of computing
5042it. ULP is defined as follows:
5043
5044 If ``x`` is a real number that lies between two finite consecutive
5045 floating-point numbers ``a`` and ``b``, without being equal to one
5046 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
5047 distance between the two non-equal finite floating-point numbers
5048 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
5049
Matt Arsenault82f41512016-06-27 19:43:15 +00005050The metadata node shall consist of a single positive float type number
5051representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00005052
5053.. code-block:: llvm
5054
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005055 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00005056
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00005057.. _range-metadata:
5058
Sean Silvab084af42012-12-07 10:36:55 +00005059'``range``' Metadata
5060^^^^^^^^^^^^^^^^^^^^
5061
Jingyue Wu37fcb592014-06-19 16:50:16 +00005062``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
5063integer types. It expresses the possible ranges the loaded value or the value
Eli Friedmane15a1112018-07-17 20:38:11 +00005064returned by the called function at this call site is in. If the loaded or
5065returned value is not in the specified range, the behavior is undefined. The
5066ranges are represented with a flattened list of integers. The loaded value or
5067the value returned is known to be in the union of the ranges defined by each
5068consecutive pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00005069
5070- The type must match the type loaded by the instruction.
5071- The pair ``a,b`` represents the range ``[a,b)``.
5072- Both ``a`` and ``b`` are constants.
5073- The range is allowed to wrap.
5074- The range should not represent the full or empty set. That is,
5075 ``a!=b``.
5076
5077In addition, the pairs must be in signed order of the lower bound and
5078they must be non-contiguous.
5079
5080Examples:
5081
5082.. code-block:: llvm
5083
David Blaikiec7aabbb2015-03-04 22:06:14 +00005084 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
5085 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00005086 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
5087 %d = invoke i8 @bar() to label %cont
5088 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00005089 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005090 !0 = !{ i8 0, i8 2 }
5091 !1 = !{ i8 255, i8 2 }
5092 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
5093 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00005094
Peter Collingbourne235c2752016-12-08 19:01:00 +00005095'``absolute_symbol``' Metadata
5096^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5097
5098``absolute_symbol`` metadata may be attached to a global variable
5099declaration. It marks the declaration as a reference to an absolute symbol,
5100which causes the backend to use absolute relocations for the symbol even
5101in position independent code, and expresses the possible ranges that the
5102global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00005103``range`` metadata, with the extension that the pair ``all-ones,all-ones``
5104may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00005105
Peter Collingbourned88f9282017-01-20 21:56:37 +00005106Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00005107
5108.. code-block:: llvm
5109
5110 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00005111 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00005112
5113 ...
5114 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00005115 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00005116
Matthew Simpson36bbc8c2017-10-16 22:22:11 +00005117'``callees``' Metadata
5118^^^^^^^^^^^^^^^^^^^^^^
5119
5120``callees`` metadata may be attached to indirect call sites. If ``callees``
5121metadata is attached to a call site, and any callee is not among the set of
5122functions provided by the metadata, the behavior is undefined. The intent of
5123this metadata is to facilitate optimizations such as indirect-call promotion.
5124For example, in the code below, the call instruction may only target the
5125``add`` or ``sub`` functions:
5126
5127.. code-block:: llvm
5128
5129 %result = call i64 %binop(i64 %x, i64 %y), !callees !0
5130
5131 ...
5132 !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
5133
Johannes Doerfert18251842019-01-19 05:19:06 +00005134'``callback``' Metadata
Johannes Doerfert0b029072019-01-19 09:40:14 +00005135^^^^^^^^^^^^^^^^^^^^^^^
Johannes Doerfert18251842019-01-19 05:19:06 +00005136
5137``callback`` metadata may be attached to a function declaration, or definition.
5138(Call sites are excluded only due to the lack of a use case.) For ease of
5139exposition, we'll refer to the function annotated w/ metadata as a broker
5140function. The metadata describes how the arguments of a call to the broker are
5141in turn passed to the callback function specified by the metadata. Thus, the
5142``callback`` metadata provides a partial description of a call site inside the
5143broker function with regards to the arguments of a call to the broker. The only
5144semantic restriction on the broker function itself is that it is not allowed to
5145inspect or modify arguments referenced in the ``callback`` metadata as
5146pass-through to the callback function.
5147
5148The broker is not required to actually invoke the callback function at runtime.
5149However, the assumptions about not inspecting or modifying arguments that would
5150be passed to the specified callback function still hold, even if the callback
5151function is not dynamically invoked. The broker is allowed to invoke the
5152callback function more than once per invocation of the broker. The broker is
5153also allowed to invoke (directly or indirectly) the function passed as a
5154callback through another use. Finally, the broker is also allowed to relay the
5155callback callee invocation to a different thread.
5156
5157The metadata is structured as follows: At the outer level, ``callback``
5158metadata is a list of ``callback`` encodings. Each encoding starts with a
5159constant ``i64`` which describes the argument position of the callback function
5160in the call to the broker. The following elements, except the last, describe
5161what arguments are passed to the callback function. Each element is again an
5162``i64`` constant identifying the argument of the broker that is passed through,
5163or ``i64 -1`` to indicate an unknown or inspected argument. The order in which
5164they are listed has to be the same in which they are passed to the callback
5165callee. The last element of the encoding is a boolean which specifies how
5166variadic arguments of the broker are handled. If it is true, all variadic
5167arguments of the broker are passed through to the callback function *after* the
5168arguments encoded explicitly before.
5169
5170In the code below, the ``pthread_create`` function is marked as a broker
5171through the ``!callback !1`` metadata. In the example, there is only one
5172callback encoding, namely ``!2``, associated with the broker. This encoding
5173identifies the callback function as the second argument of the broker (``i64
51742``) and the sole argument of the callback function as the third one of the
5175broker function (``i64 3``).
5176
James Y Knight6e75c7e2019-02-01 19:40:07 +00005177.. FIXME why does the llvm-sphinx-docs builder give a highlighting
5178 error if the below is set to highlight as 'llvm', despite that we
5179 have misc.highlighting_failure set?
5180
5181.. code-block:: text
Johannes Doerfert18251842019-01-19 05:19:06 +00005182
5183 declare !callback !1 dso_local i32 @pthread_create(i64*, %union.pthread_attr_t*, i8* (i8*)*, i8*)
5184
5185 ...
5186 !2 = !{i64 2, i64 3, i1 false}
5187 !1 = !{!2}
5188
5189Another example is shown below. The callback callee is the second argument of
5190the ``__kmpc_fork_call`` function (``i64 2``). The callee is given two unknown
5191values (each identified by a ``i64 -1``) and afterwards all
5192variadic arguments that are passed to the ``__kmpc_fork_call`` call (due to the
5193final ``i1 true``).
5194
James Y Knight6e75c7e2019-02-01 19:40:07 +00005195.. FIXME why does the llvm-sphinx-docs builder give a highlighting
5196 error if the below is set to highlight as 'llvm', despite that we
5197 have misc.highlighting_failure set?
5198
5199.. code-block:: text
Johannes Doerfert18251842019-01-19 05:19:06 +00005200
5201 declare !callback !0 dso_local void @__kmpc_fork_call(%struct.ident_t*, i32, void (i32*, i32*, ...)*, ...)
5202
5203 ...
5204 !1 = !{i64 2, i64 -1, i64 -1, i1 true}
5205 !0 = !{!1}
5206
5207
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005208'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00005209^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005210
5211``unpredictable`` metadata may be attached to any branch or switch
5212instruction. It can be used to express the unpredictability of control
5213flow. Similar to the llvm.expect intrinsic, it may be used to alter
5214optimizations related to compare and branch instructions. The metadata
5215is treated as a boolean value; if it exists, it signals that the branch
5216or switch that it is attached to is completely unpredictable.
5217
Michael Kruse72448522018-12-12 17:32:52 +00005218.. _llvm.loop:
5219
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005220'``llvm.loop``'
5221^^^^^^^^^^^^^^^
5222
5223It is sometimes useful to attach information to loop constructs. Currently,
5224loop metadata is implemented as metadata attached to the branch instruction
5225in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00005226guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00005227specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005228
5229The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00005230itself to avoid merging it with any other identifier metadata, e.g.,
5231during module linkage or function inlining. That is, each loop should refer
5232to their own identification metadata even if they reside in separate functions.
5233The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005234constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005235
5236.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00005237
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005238 !0 = !{!0}
5239 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005240
Mark Heffernan893752a2014-07-18 19:24:51 +00005241The loop identifier metadata can be used to specify additional
5242per-loop metadata. Any operands after the first operand can be treated
5243as user-defined metadata. For example the ``llvm.loop.unroll.count``
5244suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005245
Paul Redmond5fdf8362013-05-28 20:00:34 +00005246.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005247
Paul Redmond5fdf8362013-05-28 20:00:34 +00005248 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
5249 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005250 !0 = !{!0, !1}
5251 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005252
Michael Kruse72448522018-12-12 17:32:52 +00005253'``llvm.loop.disable_nonforced``'
5254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5255
5256This metadata disables all optional loop transformations unless
5257explicitly instructed using other transformation metdata such as
Michael Kruse82dd71e2018-12-12 17:59:01 +00005258``llvm.loop.unroll.enable``. That is, no heuristic will try to determine
Michael Kruse72448522018-12-12 17:32:52 +00005259whether a transformation is profitable. The purpose is to avoid that the
5260loop is transformed to a different loop before an explicitly requested
5261(forced) transformation is applied. For instance, loop fusion can make
5262other transformations impossible. Mandatory loop canonicalizations such
5263as loop rotation are still applied.
5264
5265It is recommended to use this metadata in addition to any llvm.loop.*
5266transformation directive. Also, any loop should have at most one
5267directive applied to it (and a sequence of transformations built using
5268followup-attributes). Otherwise, which transformation will be applied
5269depends on implementation details such as the pass pipeline order.
5270
5271See :ref:`transformation-metadata` for details.
5272
Mark Heffernan9d20e422014-07-21 23:11:03 +00005273'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
5274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00005275
Mark Heffernan9d20e422014-07-21 23:11:03 +00005276Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
5277used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00005278vectorization width and interleave count. These metadata should be used in
5279conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00005280``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
5281optimization hints and the optimizer will only interleave and vectorize loops if
Michael Kruse978ba612018-12-20 04:58:07 +00005282it believes it is safe to do so. The ``llvm.loop.parallel_accesses`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00005283which contains information about loop-carried memory dependencies can be helpful
5284in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00005285
Mark Heffernan9d20e422014-07-21 23:11:03 +00005286'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00005287^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5288
Mark Heffernan9d20e422014-07-21 23:11:03 +00005289This metadata suggests an interleave count to the loop interleaver.
5290The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00005291second operand is an integer specifying the interleave count. For
5292example:
5293
5294.. code-block:: llvm
5295
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005296 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005297
Mark Heffernan9d20e422014-07-21 23:11:03 +00005298Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00005299multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00005300then the interleave count will be determined automatically.
5301
5302'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00005303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00005304
5305This metadata selectively enables or disables vectorization for the loop. The
5306first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00005307is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000053080 disables vectorization:
5309
5310.. code-block:: llvm
5311
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005312 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5313 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00005314
5315'``llvm.loop.vectorize.width``' Metadata
5316^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5317
5318This metadata sets the target width of the vectorizer. The first
5319operand is the string ``llvm.loop.vectorize.width`` and the second
5320operand is an integer specifying the width. For example:
5321
5322.. code-block:: llvm
5323
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005324 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005325
5326Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00005327vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000053280 or if the loop does not have this metadata the width will be
5329determined automatically.
5330
Michael Kruse72448522018-12-12 17:32:52 +00005331'``llvm.loop.vectorize.followup_vectorized``' Metadata
5332^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5333
5334This metadata defines which loop attributes the vectorized loop will
5335have. See :ref:`transformation-metadata` for details.
5336
5337'``llvm.loop.vectorize.followup_epilogue``' Metadata
5338^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5339
5340This metadata defines which loop attributes the epilogue will have. The
5341epilogue is not vectorized and is executed when either the vectorized
5342loop is not known to preserve semantics (because e.g., it processes two
5343arrays that are found to alias by a runtime check) or for the last
5344iterations that do not fill a complete set of vector lanes. See
5345:ref:`Transformation Metadata <transformation-metadata>` for details.
5346
5347'``llvm.loop.vectorize.followup_all``' Metadata
5348^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5349
5350Attributes in the metadata will be added to both the vectorized and
5351epilogue loop.
5352See :ref:`Transformation Metadata <transformation-metadata>` for details.
5353
Mark Heffernan893752a2014-07-18 19:24:51 +00005354'``llvm.loop.unroll``'
5355^^^^^^^^^^^^^^^^^^^^^^
5356
5357Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5358optimization hints such as the unroll factor. ``llvm.loop.unroll``
5359metadata should be used in conjunction with ``llvm.loop`` loop
5360identification metadata. The ``llvm.loop.unroll`` metadata are only
5361optimization hints and the unrolling will only be performed if the
5362optimizer believes it is safe to do so.
5363
Mark Heffernan893752a2014-07-18 19:24:51 +00005364'``llvm.loop.unroll.count``' Metadata
5365^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5366
5367This metadata suggests an unroll factor to the loop unroller. The
5368first operand is the string ``llvm.loop.unroll.count`` and the second
5369operand is a positive integer specifying the unroll factor. For
5370example:
5371
5372.. code-block:: llvm
5373
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005374 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005375
5376If the trip count of the loop is less than the unroll count the loop
5377will be partially unrolled.
5378
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005379'``llvm.loop.unroll.disable``' Metadata
5380^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5381
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005382This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00005383which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005384
5385.. code-block:: llvm
5386
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005387 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005388
Kevin Qin715b01e2015-03-09 06:14:18 +00005389'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00005390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00005391
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005392This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005393operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005394
5395.. code-block:: llvm
5396
5397 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5398
Mark Heffernan89391542015-08-10 17:28:08 +00005399'``llvm.loop.unroll.enable``' Metadata
5400^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5401
5402This metadata suggests that the loop should be fully unrolled if the trip count
5403is known at compile time and partially unrolled if the trip count is not known
5404at compile time. The metadata has a single operand which is the string
5405``llvm.loop.unroll.enable``. For example:
5406
5407.. code-block:: llvm
5408
5409 !0 = !{!"llvm.loop.unroll.enable"}
5410
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005411'``llvm.loop.unroll.full``' Metadata
5412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5413
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005414This metadata suggests that the loop should be unrolled fully. The
5415metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005416For example:
5417
5418.. code-block:: llvm
5419
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005420 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005421
Michael Kruse72448522018-12-12 17:32:52 +00005422'``llvm.loop.unroll.followup``' Metadata
5423^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5424
5425This metadata defines which loop attributes the unrolled loop will have.
5426See :ref:`Transformation Metadata <transformation-metadata>` for details.
5427
5428'``llvm.loop.unroll.followup_remainder``' Metadata
5429^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5430
5431This metadata defines which loop attributes the remainder loop after
5432partial/runtime unrolling will have. See
5433:ref:`Transformation Metadata <transformation-metadata>` for details.
5434
David Green7fbf06c2018-07-19 12:37:00 +00005435'``llvm.loop.unroll_and_jam``'
5436^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5437
5438This metadata is treated very similarly to the ``llvm.loop.unroll`` metadata
5439above, but affect the unroll and jam pass. In addition any loop with
5440``llvm.loop.unroll`` metadata but no ``llvm.loop.unroll_and_jam`` metadata will
5441disable unroll and jam (so ``llvm.loop.unroll`` metadata will be left to the
5442unroller, plus ``llvm.loop.unroll.disable`` metadata will disable unroll and jam
5443too.)
5444
5445The metadata for unroll and jam otherwise is the same as for ``unroll``.
5446``llvm.loop.unroll_and_jam.enable``, ``llvm.loop.unroll_and_jam.disable`` and
5447``llvm.loop.unroll_and_jam.count`` do the same as for unroll.
5448``llvm.loop.unroll_and_jam.full`` is not supported. Again these are only hints
5449and the normal safety checks will still be performed.
5450
5451'``llvm.loop.unroll_and_jam.count``' Metadata
5452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5453
5454This metadata suggests an unroll and jam factor to use, similarly to
5455``llvm.loop.unroll.count``. The first operand is the string
5456``llvm.loop.unroll_and_jam.count`` and the second operand is a positive integer
5457specifying the unroll factor. For example:
5458
5459.. code-block:: llvm
5460
5461 !0 = !{!"llvm.loop.unroll_and_jam.count", i32 4}
5462
5463If the trip count of the loop is less than the unroll count the loop
5464will be partially unroll and jammed.
5465
5466'``llvm.loop.unroll_and_jam.disable``' Metadata
5467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5468
5469This metadata disables loop unroll and jamming. The metadata has a single
5470operand which is the string ``llvm.loop.unroll_and_jam.disable``. For example:
5471
5472.. code-block:: llvm
5473
5474 !0 = !{!"llvm.loop.unroll_and_jam.disable"}
5475
5476'``llvm.loop.unroll_and_jam.enable``' Metadata
5477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5478
5479This metadata suggests that the loop should be fully unroll and jammed if the
5480trip count is known at compile time and partially unrolled if the trip count is
5481not known at compile time. The metadata has a single operand which is the
5482string ``llvm.loop.unroll_and_jam.enable``. For example:
5483
5484.. code-block:: llvm
5485
5486 !0 = !{!"llvm.loop.unroll_and_jam.enable"}
5487
Michael Kruse72448522018-12-12 17:32:52 +00005488'``llvm.loop.unroll_and_jam.followup_outer``' Metadata
5489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5490
5491This metadata defines which loop attributes the outer unrolled loop will
5492have. See :ref:`Transformation Metadata <transformation-metadata>` for
5493details.
5494
5495'``llvm.loop.unroll_and_jam.followup_inner``' Metadata
5496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5497
5498This metadata defines which loop attributes the inner jammed loop will
5499have. See :ref:`Transformation Metadata <transformation-metadata>` for
5500details.
5501
5502'``llvm.loop.unroll_and_jam.followup_remainder_outer``' Metadata
5503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5504
5505This metadata defines which attributes the epilogue of the outer loop
5506will have. This loop is usually unrolled, meaning there is no such
5507loop. This attribute will be ignored in this case. See
5508:ref:`Transformation Metadata <transformation-metadata>` for details.
5509
5510'``llvm.loop.unroll_and_jam.followup_remainder_inner``' Metadata
5511^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5512
5513This metadata defines which attributes the inner loop of the epilogue
5514will have. The outer epilogue will usually be unrolled, meaning there
5515can be multiple inner remainder loops. See
5516:ref:`Transformation Metadata <transformation-metadata>` for details.
5517
5518'``llvm.loop.unroll_and_jam.followup_all``' Metadata
5519^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5520
5521Attributes specified in the metadata is added to all
5522``llvm.loop.unroll_and_jam.*`` loops. See
5523:ref:`Transformation Metadata <transformation-metadata>` for details.
5524
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005525'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005526^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005527
5528This metadata indicates that the loop should not be versioned for the purpose
5529of enabling loop-invariant code motion (LICM). The metadata has a single operand
5530which is the string ``llvm.loop.licm_versioning.disable``. For example:
5531
5532.. code-block:: llvm
5533
5534 !0 = !{!"llvm.loop.licm_versioning.disable"}
5535
Adam Nemetd2fa4142016-04-27 05:28:18 +00005536'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005538
5539Loop distribution allows splitting a loop into multiple loops. Currently,
5540this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005541memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005542dependencies into their own loop.
5543
5544This metadata can be used to selectively enable or disable distribution of the
5545loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5546second operand is a bit. If the bit operand value is 1 distribution is
5547enabled. A value of 0 disables distribution:
5548
5549.. code-block:: llvm
5550
5551 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5552 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5553
5554This metadata should be used in conjunction with ``llvm.loop`` loop
5555identification metadata.
5556
Michael Kruse72448522018-12-12 17:32:52 +00005557'``llvm.loop.distribute.followup_coincident``' Metadata
5558^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5559
5560This metadata defines which attributes extracted loops with no cyclic
5561dependencies will have (i.e. can be vectorized). See
5562:ref:`Transformation Metadata <transformation-metadata>` for details.
5563
5564'``llvm.loop.distribute.followup_sequential``' Metadata
5565^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5566
5567This metadata defines which attributes the isolated loops with unsafe
5568memory dependencies will have. See
5569:ref:`Transformation Metadata <transformation-metadata>` for details.
5570
5571'``llvm.loop.distribute.followup_fallback``' Metadata
5572^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5573
5574If loop versioning is necessary, this metadata defined the attributes
5575the non-distributed fallback version will have. See
5576:ref:`Transformation Metadata <transformation-metadata>` for details.
5577
5578'``llvm.loop.distribute.followup_all``' Metadata
5579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5580
5581Thes attributes in this metdata is added to all followup loops of the
5582loop distribution pass. See
5583:ref:`Transformation Metadata <transformation-metadata>` for details.
5584
Michael Kruse978ba612018-12-20 04:58:07 +00005585'``llvm.access.group``' Metadata
5586^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005587
Michael Kruse978ba612018-12-20 04:58:07 +00005588``llvm.access.group`` metadata can be attached to any instruction that
5589potentially accesses memory. It can point to a single distinct metadata
5590node, which we call access group. This node represents all memory access
5591instructions referring to it via ``llvm.access.group``. When an
5592instruction belongs to multiple access groups, it can also point to a
5593list of accesses groups, illustrated by the following example.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005594
Michael Kruse978ba612018-12-20 04:58:07 +00005595.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005596
Michael Kruse978ba612018-12-20 04:58:07 +00005597 %val = load i32, i32* %arrayidx, !llvm.access.group !0
5598 ...
5599 !0 = !{!1, !2}
5600 !1 = distinct !{}
5601 !2 = distinct !{}
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005602
Michael Kruse978ba612018-12-20 04:58:07 +00005603It is illegal for the list node to be empty since it might be confused
5604with an access group.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005605
Michael Kruse978ba612018-12-20 04:58:07 +00005606The access group metadata node must be 'distinct' to avoid collapsing
5607multiple access groups by content. A access group metadata node must
5608always be empty which can be used to distinguish an access group
5609metadata node from a list of access groups. Being empty avoids the
5610situation that the content must be updated which, because metadata is
5611immutable by design, would required finding and updating all references
5612to the access group node.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005613
Michael Kruse978ba612018-12-20 04:58:07 +00005614The access group can be used to refer to a memory access instruction
5615without pointing to it directly (which is not possible in global
5616metadata). Currently, the only metadata making use of it is
5617``llvm.loop.parallel_accesses``.
5618
5619'``llvm.loop.parallel_accesses``' Metadata
5620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5621
5622The ``llvm.loop.parallel_accesses`` metadata refers to one or more
5623access group metadata nodes (see ``llvm.access.group``). It denotes that
5624no loop-carried memory dependence exist between it and other instructions
5625in the loop with this metadata.
5626
5627Let ``m1`` and ``m2`` be two instructions that both have the
5628``llvm.access.group`` metadata to the access group ``g1``, respectively
5629``g2`` (which might be identical). If a loop contains both access groups
5630in its ``llvm.loop.parallel_accesses`` metadata, then the compiler can
5631assume that there is no dependency between ``m1`` and ``m2`` carried by
5632this loop. Instructions that belong to multiple access groups are
5633considered having this property if at least one of the access groups
5634matches the ``llvm.loop.parallel_accesses`` list.
5635
5636If all memory-accessing instructions in a loop have
5637``llvm.loop.parallel_accesses`` metadata that refers to that loop, then the
5638loop has no loop carried memory dependences and is considered to be a
5639parallel loop.
5640
5641Note that if not all memory access instructions belong to an access
5642group referred to by ``llvm.loop.parallel_accesses``, then the loop must
5643not be considered trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005644memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005645safe mechanism, this causes loops that were originally parallel to be considered
5646sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005647insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005648
5649Example of a loop that is considered parallel due to its correct use of
Michael Kruse978ba612018-12-20 04:58:07 +00005650both ``llvm.access.group`` and ``llvm.loop.parallel_accesses``
5651metadata types.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005652
5653.. code-block:: llvm
5654
5655 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005656 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005657 %val0 = load i32, i32* %arrayidx, !llvm.access.group !1
Paul Redmond5fdf8362013-05-28 20:00:34 +00005658 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005659 store i32 %val0, i32* %arrayidx1, !llvm.access.group !1
Paul Redmond5fdf8362013-05-28 20:00:34 +00005660 ...
5661 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005662
5663 for.end:
5664 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005665 !0 = distinct !{!0, !{!"llvm.loop.parallel_accesses", !1}}
5666 !1 = distinct !{}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005667
Michael Kruse978ba612018-12-20 04:58:07 +00005668It is also possible to have nested parallel loops:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005669
5670.. code-block:: llvm
5671
5672 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005673 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005674 %val1 = load i32, i32* %arrayidx3, !llvm.access.group !4
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005675 ...
5676 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005677
5678 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005679 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005680 %val0 = load i32, i32* %arrayidx1, !llvm.access.group !3
Paul Redmond5fdf8362013-05-28 20:00:34 +00005681 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005682 store i32 %val0, i32* %arrayidx2, !llvm.access.group !3
Paul Redmond5fdf8362013-05-28 20:00:34 +00005683 ...
5684 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005685
5686 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005687 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005688 store i32 %val1, i32* %arrayidx4, !llvm.access.group !4
Paul Redmond5fdf8362013-05-28 20:00:34 +00005689 ...
5690 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005691
5692 outer.for.end: ; preds = %for.body
5693 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005694 !1 = distinct !{!1, !{!"llvm.loop.parallel_accesses", !3}} ; metadata for the inner loop
5695 !2 = distinct !{!2, !{!"llvm.loop.parallel_accesses", !3, !4}} ; metadata for the outer loop
5696 !3 = distinct !{} ; access group for instructions in the inner loop (which are implicitly contained in outer loop as well)
5697 !4 = distinct !{} ; access group for instructions in the outer, but not the inner loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005698
Hiroshi Yamauchidce9def2017-11-02 22:26:51 +00005699'``irr_loop``' Metadata
5700^^^^^^^^^^^^^^^^^^^^^^^
5701
5702``irr_loop`` metadata may be attached to the terminator instruction of a basic
5703block that's an irreducible loop header (note that an irreducible loop has more
5704than once header basic blocks.) If ``irr_loop`` metadata is attached to the
5705terminator instruction of a basic block that is not really an irreducible loop
5706header, the behavior is undefined. The intent of this metadata is to improve the
5707accuracy of the block frequency propagation. For example, in the code below, the
5708block ``header0`` may have a loop header weight (relative to the other headers of
5709the irreducible loop) of 100:
5710
5711.. code-block:: llvm
5712
5713 header0:
5714 ...
5715 br i1 %cmp, label %t1, label %t2, !irr_loop !0
5716
5717 ...
5718 !0 = !{"loop_header_weight", i64 100}
5719
5720Irreducible loop header weights are typically based on profile data.
5721
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005722'``invariant.group``' Metadata
5723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5724
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00005725The experimental ``invariant.group`` metadata may be attached to
Piotr Padlewskice358262018-05-18 23:53:46 +00005726``load``/``store`` instructions referencing a single metadata with no entries.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005727The existence of the ``invariant.group`` metadata on the instruction tells
5728the optimizer that every ``load`` and ``store`` to the same pointer operand
Piotr Padlewskice358262018-05-18 23:53:46 +00005729can be assumed to load or store the same
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005730value (but see the ``llvm.launder.invariant.group`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005731when two pointers are considered the same). Pointers returned by bitcast or
5732getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005733
5734Examples:
5735
5736.. code-block:: llvm
5737
5738 @unknownPtr = external global i8
5739 ...
5740 %ptr = alloca i8
5741 store i8 42, i8* %ptr, !invariant.group !0
5742 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005743
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005744 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5745 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005746
5747 %newPtr = call i8* @getPointer(i8* %ptr)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005748 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005749
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005750 %unknownValue = load i8, i8* @unknownPtr
5751 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005752
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005753 call void @foo(i8* %ptr)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005754 %newPtr2 = call i8* @llvm.launder.invariant.group(i8* %ptr)
5755 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through launder.invariant.group to get value of %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005756
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005757 ...
5758 declare void @foo(i8*)
5759 declare i8* @getPointer(i8*)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005760 declare i8* @llvm.launder.invariant.group(i8*)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005761
Piotr Padlewskice358262018-05-18 23:53:46 +00005762 !0 = !{}
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005763
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005764The invariant.group metadata must be dropped when replacing one pointer by
5765another based on aliasing information. This is because invariant.group is tied
5766to the SSA value of the pointer operand.
5767
5768.. code-block:: llvm
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005769
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005770 %v = load i8, i8* %x, !invariant.group !0
5771 ; if %x mustalias %y then we can replace the above instruction with
5772 %v = load i8, i8* %y
5773
Piotr Padlewski74b155f2018-04-08 13:53:04 +00005774Note that this is an experimental feature, which means that its semantics might
5775change in the future.
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005776
Peter Collingbournea333db82016-07-26 22:31:30 +00005777'``type``' Metadata
5778^^^^^^^^^^^^^^^^^^^
5779
5780See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005781
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005782'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005783^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005784
5785The ``associated`` metadata may be attached to a global object
5786declaration with a single argument that references another global object.
5787
5788This metadata prevents discarding of the global object in linker GC
5789unless the referenced object is also discarded. The linker support for
5790this feature is spotty. For best compatibility, globals carrying this
5791metadata may also:
5792
5793- Be in a comdat with the referenced global.
5794- Be in @llvm.compiler.used.
5795- Have an explicit section with a name which is a valid C identifier.
5796
5797It does not have any effect on non-ELF targets.
5798
5799Example:
5800
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005801.. code-block:: text
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005802
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005803 $a = comdat any
5804 @a = global i32 1, comdat $a
5805 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5806 !0 = !{i32* @a}
5807
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005808
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005809'``prof``' Metadata
5810^^^^^^^^^^^^^^^^^^^
5811
5812The ``prof`` metadata is used to record profile data in the IR.
5813The first operand of the metadata node indicates the profile metadata
5814type. There are currently 3 types:
5815:ref:`branch_weights<prof_node_branch_weights>`,
5816:ref:`function_entry_count<prof_node_function_entry_count>`, and
5817:ref:`VP<prof_node_VP>`.
5818
5819.. _prof_node_branch_weights:
5820
5821branch_weights
5822""""""""""""""
5823
5824Branch weight metadata attached to a branch, select, switch or call instruction
5825represents the likeliness of the associated branch being taken.
5826For more information, see :doc:`BranchWeightMetadata`.
5827
5828.. _prof_node_function_entry_count:
5829
5830function_entry_count
5831""""""""""""""""""""
5832
5833Function entry count metadata can be attached to function definitions
5834to record the number of times the function is called. Used with BFI
5835information, it is also used to derive the basic block profile count.
5836For more information, see :doc:`BranchWeightMetadata`.
5837
5838.. _prof_node_VP:
5839
5840VP
5841""
5842
5843VP (value profile) metadata can be attached to instructions that have
5844value profile information. Currently this is indirect calls (where it
5845records the hottest callees) and calls to memory intrinsics such as memcpy,
5846memmove, and memset (where it records the hottest byte lengths).
5847
5848Each VP metadata node contains "VP" string, then a uint32_t value for the value
5849profiling kind, a uint64_t value for the total number of times the instruction
5850is executed, followed by uint64_t value and execution count pairs.
5851The value profiling kind is 0 for indirect call targets and 1 for memory
5852operations. For indirect call targets, each profile value is a hash
5853of the callee function name, and for memory operations each value is the
5854byte length.
5855
5856Note that the value counts do not need to add up to the total count
5857listed in the third operand (in practice only the top hottest values
5858are tracked and reported).
5859
5860Indirect call example:
5861
5862.. code-block:: llvm
5863
5864 call void %f(), !prof !1
5865 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5866
5867Note that the VP type is 0 (the second operand), which indicates this is
5868an indirect call value profile data. The third operand indicates that the
5869indirect call executed 1600 times. The 4th and 6th operands give the
5870hashes of the 2 hottest target functions' names (this is the same hash used
5871to represent function names in the profile database), and the 5th and 7th
5872operands give the execution count that each of the respective prior target
5873functions was called.
5874
Sean Silvab084af42012-12-07 10:36:55 +00005875Module Flags Metadata
5876=====================
5877
5878Information about the module as a whole is difficult to convey to LLVM's
5879subsystems. The LLVM IR isn't sufficient to transmit this information.
5880The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005881this. These flags are in the form of key / value pairs --- much like a
5882dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005883look it up.
5884
5885The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5886Each triplet has the following form:
5887
5888- The first element is a *behavior* flag, which specifies the behavior
5889 when two (or more) modules are merged together, and it encounters two
5890 (or more) metadata with the same ID. The supported behaviors are
5891 described below.
5892- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005893 metadata. Each module may only have one flag entry for each unique ID (not
5894 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005895- The third element is the value of the flag.
5896
5897When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005898``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5899each unique metadata ID string, there will be exactly one entry in the merged
5900modules ``llvm.module.flags`` metadata table, and the value for that entry will
5901be determined by the merge behavior flag, as described below. The only exception
5902is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005903
5904The following behaviors are supported:
5905
5906.. list-table::
5907 :header-rows: 1
5908 :widths: 10 90
5909
5910 * - Value
5911 - Behavior
5912
5913 * - 1
5914 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005915 Emits an error if two values disagree, otherwise the resulting value
5916 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005917
5918 * - 2
5919 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005920 Emits a warning if two values disagree. The result value will be the
5921 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005922
5923 * - 3
5924 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005925 Adds a requirement that another module flag be present and have a
5926 specified value after linking is performed. The value must be a
5927 metadata pair, where the first element of the pair is the ID of the
5928 module flag to be restricted, and the second element of the pair is
5929 the value the module flag should be restricted to. This behavior can
5930 be used to restrict the allowable results (via triggering of an
5931 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005932
5933 * - 4
5934 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005935 Uses the specified value, regardless of the behavior or value of the
5936 other module. If both modules specify **Override**, but the values
5937 differ, an error will be emitted.
5938
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005939 * - 5
5940 - **Append**
5941 Appends the two values, which are required to be metadata nodes.
5942
5943 * - 6
5944 - **AppendUnique**
5945 Appends the two values, which are required to be metadata
5946 nodes. However, duplicate entries in the second list are dropped
5947 during the append operation.
5948
Steven Wu86a511e2017-08-15 16:16:33 +00005949 * - 7
5950 - **Max**
5951 Takes the max of the two values, which are required to be integers.
5952
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005953It is an error for a particular unique flag ID to have multiple behaviors,
5954except in the case of **Require** (which adds restrictions on another metadata
5955value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005956
5957An example of module flags:
5958
5959.. code-block:: llvm
5960
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005961 !0 = !{ i32 1, !"foo", i32 1 }
5962 !1 = !{ i32 4, !"bar", i32 37 }
5963 !2 = !{ i32 2, !"qux", i32 42 }
5964 !3 = !{ i32 3, !"qux",
5965 !{
5966 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005967 }
5968 }
5969 !llvm.module.flags = !{ !0, !1, !2, !3 }
5970
5971- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5972 if two or more ``!"foo"`` flags are seen is to emit an error if their
5973 values are not equal.
5974
5975- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5976 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005977 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005978
5979- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5980 behavior if two or more ``!"qux"`` flags are seen is to emit a
5981 warning if their values are not equal.
5982
5983- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5984
5985 ::
5986
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005987 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005988
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005989 The behavior is to emit an error if the ``llvm.module.flags`` does not
5990 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5991 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005992
5993Objective-C Garbage Collection Module Flags Metadata
5994----------------------------------------------------
5995
5996On the Mach-O platform, Objective-C stores metadata about garbage
5997collection in a special section called "image info". The metadata
5998consists of a version number and a bitmask specifying what types of
5999garbage collection are supported (if any) by the file. If two or more
6000modules are linked together their garbage collection metadata needs to
6001be merged rather than appended together.
6002
6003The Objective-C garbage collection module flags metadata consists of the
6004following key-value pairs:
6005
6006.. list-table::
6007 :header-rows: 1
6008 :widths: 30 70
6009
6010 * - Key
6011 - Value
6012
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00006013 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006014 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00006015
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00006016 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006017 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00006018 always 0.
6019
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00006020 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006021 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00006022 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
6023 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
6024 Objective-C ABI version 2.
6025
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00006026 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006027 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00006028 not. Valid values are 0, for no garbage collection, and 2, for garbage
6029 collection supported.
6030
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00006031 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006032 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00006033 If present, its value must be 6. This flag requires that the
6034 ``Objective-C Garbage Collection`` flag have the value 2.
6035
6036Some important flag interactions:
6037
6038- If a module with ``Objective-C Garbage Collection`` set to 0 is
6039 merged with a module with ``Objective-C Garbage Collection`` set to
6040 2, then the resulting module has the
6041 ``Objective-C Garbage Collection`` flag set to 0.
6042- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
6043 merged with a module with ``Objective-C GC Only`` set to 6.
6044
Oliver Stannard5dc29342014-06-20 10:08:11 +00006045C type width Module Flags Metadata
6046----------------------------------
6047
6048The ARM backend emits a section into each generated object file describing the
6049options that it was compiled with (in a compiler-independent way) to prevent
6050linking incompatible objects, and to allow automatic library selection. Some
6051of these options are not visible at the IR level, namely wchar_t width and enum
6052width.
6053
6054To pass this information to the backend, these options are encoded in module
6055flags metadata, using the following key-value pairs:
6056
6057.. list-table::
6058 :header-rows: 1
6059 :widths: 30 70
6060
6061 * - Key
6062 - Value
6063
6064 * - short_wchar
6065 - * 0 --- sizeof(wchar_t) == 4
6066 * 1 --- sizeof(wchar_t) == 2
6067
6068 * - short_enum
6069 - * 0 --- Enums are at least as large as an ``int``.
6070 * 1 --- Enums are stored in the smallest integer type which can
6071 represent all of its values.
6072
6073For example, the following metadata section specifies that the module was
6074compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
6075enum is the smallest type which can represent all of its values::
6076
6077 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00006078 !0 = !{i32 1, !"short_wchar", i32 1}
6079 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00006080
Peter Collingbourne89061b22017-06-12 20:10:48 +00006081Automatic Linker Flags Named Metadata
6082=====================================
6083
Ben Dunbobbin1d165152019-05-17 03:44:15 +00006084Some targets support embedding of flags to the linker inside individual object
Peter Collingbourne89061b22017-06-12 20:10:48 +00006085files. Typically this is used in conjunction with language extensions which
Ben Dunbobbin1d165152019-05-17 03:44:15 +00006086allow source files to contain linker command line options, and have these
6087automatically be transmitted to the linker via object files.
Peter Collingbourne89061b22017-06-12 20:10:48 +00006088
6089These flags are encoded in the IR using named metadata with the name
6090``!llvm.linker.options``. Each operand is expected to be a metadata node
6091which should be a list of other metadata nodes, each of which should be a
6092list of metadata strings defining linker options.
6093
6094For example, the following metadata section specifies two separate sets of
6095linker options, presumably to link against ``libz`` and the ``Cocoa``
6096framework::
6097
Ben Dunbobbin1d165152019-05-17 03:44:15 +00006098 !0 = !{ !"-lz" }
6099 !1 = !{ !"-framework", !"Cocoa" }
Peter Collingbourne89061b22017-06-12 20:10:48 +00006100 !llvm.linker.options = !{ !0, !1 }
6101
6102The metadata encoding as lists of lists of options, as opposed to a collapsed
6103list of options, is chosen so that the IR encoding can use multiple option
6104strings to specify e.g., a single library, while still having that specifier be
6105preserved as an atomic element that can be recognized by a target specific
6106assembly writer or object file emitter.
6107
6108Each individual option is required to be either a valid option for the target's
6109linker, or an option that is reserved by the target specific assembly writer or
6110object file emitter. No other aspect of these options is defined by the IR.
6111
Ben Dunbobbin1d165152019-05-17 03:44:15 +00006112Dependent Libs Named Metadata
6113=============================
6114
6115Some targets support embedding of strings into object files to indicate
6116a set of libraries to add to the link. Typically this is used in conjunction
6117with language extensions which allow source files to explicitly declare the
6118libraries they depend on, and have these automatically be transmitted to the
6119linker via object files.
6120
6121The list is encoded in the IR using named metadata with the name
6122``!llvm.dependent-libraries``. Each operand is expected to be a metadata node
6123which should contain a single string operand.
6124
6125For example, the following metadata section contains two library specfiers::
6126
6127 !0 = !{!"a library specifier"}
6128 !1 = !{!"another library specifier"}
6129 !llvm.dependent-libraries = !{ !0, !1 }
6130
6131Each library specifier will be handled independently by the consuming linker.
6132The effect of the library specifiers are defined by the consuming linker.
6133
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006134.. _summary:
6135
6136ThinLTO Summary
6137===============
6138
6139Compiling with `ThinLTO <https://clang.llvm.org/docs/ThinLTO.html>`_
6140causes the building of a compact summary of the module that is emitted into
6141the bitcode. The summary is emitted into the LLVM assembly and identified
6142in syntax by a caret ('``^``').
6143
Teresa Johnsonab2a7f02018-09-18 13:44:13 +00006144The summary is parsed into a bitcode output, along with the Module
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006145IR, via the "``llvm-as``" tool. Tools that parse the Module IR for the purposes
6146of optimization (e.g. "``clang -x ir``" and "``opt``"), will ignore the
6147summary entries (just as they currently ignore summary entries in a bitcode
6148input file).
6149
Teresa Johnsonab2a7f02018-09-18 13:44:13 +00006150Eventually, the summary will be parsed into a ModuleSummaryIndex object under
6151the same conditions where summary index is currently built from bitcode.
6152Specifically, tools that test the Thin Link portion of a ThinLTO compile
6153(i.e. llvm-lto and llvm-lto2), or when parsing a combined index
6154for a distributed ThinLTO backend via clang's "``-fthinlto-index=<>``" flag
6155(this part is not yet implemented, use llvm-as to create a bitcode object
6156before feeding into thin link tools for now).
6157
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006158There are currently 3 types of summary entries in the LLVM assembly:
6159:ref:`module paths<module_path_summary>`,
6160:ref:`global values<gv_summary>`, and
6161:ref:`type identifiers<typeid_summary>`.
6162
6163.. _module_path_summary:
6164
6165Module Path Summary Entry
6166-------------------------
6167
6168Each module path summary entry lists a module containing global values included
6169in the summary. For a single IR module there will be one such entry, but
6170in a combined summary index produced during the thin link, there will be
6171one module path entry per linked module with summary.
6172
6173Example:
6174
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006175.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006176
6177 ^0 = module: (path: "/path/to/file.o", hash: (2468601609, 1329373163, 1565878005, 638838075, 3148790418))
6178
6179The ``path`` field is a string path to the bitcode file, and the ``hash``
6180field is the 160-bit SHA-1 hash of the IR bitcode contents, used for
6181incremental builds and caching.
6182
6183.. _gv_summary:
6184
6185Global Value Summary Entry
6186--------------------------
6187
6188Each global value summary entry corresponds to a global value defined or
6189referenced by a summarized module.
6190
6191Example:
6192
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006193.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006194
6195 ^4 = gv: (name: "f"[, summaries: (Summary)[, (Summary)]*]?) ; guid = 14740650423002898831
6196
6197For declarations, there will not be a summary list. For definitions, a
6198global value will contain a list of summaries, one per module containing
6199a definition. There can be multiple entries in a combined summary index
6200for symbols with weak linkage.
6201
6202Each ``Summary`` format will depend on whether the global value is a
6203:ref:`function<function_summary>`, :ref:`variable<variable_summary>`, or
6204:ref:`alias<alias_summary>`.
6205
6206.. _function_summary:
6207
6208Function Summary
6209^^^^^^^^^^^^^^^^
6210
6211If the global value is a function, the ``Summary`` entry will look like:
6212
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006213.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006214
6215 function: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), insts: 2[, FuncFlags]?[, Calls]?[, TypeIdInfo]?[, Refs]?
6216
6217The ``module`` field includes the summary entry id for the module containing
6218this definition, and the ``flags`` field contains information such as
6219the linkage type, a flag indicating whether it is legal to import the
6220definition, whether it is globally live and whether the linker resolved it
6221to a local definition (the latter two are populated during the thin link).
6222The ``insts`` field contains the number of IR instructions in the function.
6223Finally, there are several optional fields: :ref:`FuncFlags<funcflags_summary>`,
6224:ref:`Calls<calls_summary>`, :ref:`TypeIdInfo<typeidinfo_summary>`,
6225:ref:`Refs<refs_summary>`.
6226
6227.. _variable_summary:
6228
6229Global Variable Summary
6230^^^^^^^^^^^^^^^^^^^^^^^
6231
6232If the global value is a variable, the ``Summary`` entry will look like:
6233
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006234.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006235
6236 variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0)[, Refs]?
6237
6238The variable entry contains a subset of the fields in a
6239:ref:`function summary <function_summary>`, see the descriptions there.
6240
6241.. _alias_summary:
6242
6243Alias Summary
6244^^^^^^^^^^^^^
6245
6246If the global value is an alias, the ``Summary`` entry will look like:
6247
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006248.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006249
6250 alias: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), aliasee: ^2)
6251
6252The ``module`` and ``flags`` fields are as described for a
6253:ref:`function summary <function_summary>`. The ``aliasee`` field
6254contains a reference to the global value summary entry of the aliasee.
6255
6256.. _funcflags_summary:
6257
6258Function Flags
6259^^^^^^^^^^^^^^
6260
6261The optional ``FuncFlags`` field looks like:
6262
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006263.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006264
6265 funcFlags: (readNone: 0, readOnly: 0, noRecurse: 0, returnDoesNotAlias: 0)
6266
6267If unspecified, flags are assumed to hold the conservative ``false`` value of
6268``0``.
6269
6270.. _calls_summary:
6271
6272Calls
6273^^^^^
6274
6275The optional ``Calls`` field looks like:
6276
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006277.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006278
6279 calls: ((Callee)[, (Callee)]*)
6280
6281where each ``Callee`` looks like:
6282
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006283.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006284
6285 callee: ^1[, hotness: None]?[, relbf: 0]?
6286
6287The ``callee`` refers to the summary entry id of the callee. At most one
6288of ``hotness`` (which can take the values ``Unknown``, ``Cold``, ``None``,
6289``Hot``, and ``Critical``), and ``relbf`` (which holds the integer
6290branch frequency relative to the entry frequency, scaled down by 2^8)
6291may be specified. The defaults are ``Unknown`` and ``0``, respectively.
6292
6293.. _refs_summary:
6294
6295Refs
6296^^^^
6297
6298The optional ``Refs`` field looks like:
6299
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006300.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006301
6302 refs: ((Ref)[, (Ref)]*)
6303
6304where each ``Ref`` contains a reference to the summary id of the referenced
6305value (e.g. ``^1``).
6306
6307.. _typeidinfo_summary:
6308
6309TypeIdInfo
6310^^^^^^^^^^
6311
6312The optional ``TypeIdInfo`` field, used for
6313`Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
6314looks like:
6315
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006316.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006317
6318 typeIdInfo: [(TypeTests)]?[, (TypeTestAssumeVCalls)]?[, (TypeCheckedLoadVCalls)]?[, (TypeTestAssumeConstVCalls)]?[, (TypeCheckedLoadConstVCalls)]?
6319
6320These optional fields have the following forms:
6321
6322TypeTests
6323"""""""""
6324
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006325.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006326
6327 typeTests: (TypeIdRef[, TypeIdRef]*)
6328
6329Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
6330by summary id or ``GUID``.
6331
6332TypeTestAssumeVCalls
6333""""""""""""""""""""
6334
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006335.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006336
6337 typeTestAssumeVCalls: (VFuncId[, VFuncId]*)
6338
6339Where each VFuncId has the format:
6340
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006341.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006342
6343 vFuncId: (TypeIdRef, offset: 16)
6344
6345Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
6346by summary id or ``GUID`` preceeded by a ``guid:`` tag.
6347
6348TypeCheckedLoadVCalls
6349"""""""""""""""""""""
6350
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006351.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006352
6353 typeCheckedLoadVCalls: (VFuncId[, VFuncId]*)
6354
6355Where each VFuncId has the format described for ``TypeTestAssumeVCalls``.
6356
6357TypeTestAssumeConstVCalls
6358"""""""""""""""""""""""""
6359
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006360.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006361
6362 typeTestAssumeConstVCalls: (ConstVCall[, ConstVCall]*)
6363
6364Where each ConstVCall has the format:
6365
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006366.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006367
Teresa Johnsonab2a7f02018-09-18 13:44:13 +00006368 (VFuncId, args: (Arg[, Arg]*))
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006369
6370and where each VFuncId has the format described for ``TypeTestAssumeVCalls``,
6371and each Arg is an integer argument number.
6372
6373TypeCheckedLoadConstVCalls
6374""""""""""""""""""""""""""
6375
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006376.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006377
6378 typeCheckedLoadConstVCalls: (ConstVCall[, ConstVCall]*)
6379
6380Where each ConstVCall has the format described for
6381``TypeTestAssumeConstVCalls``.
6382
6383.. _typeid_summary:
6384
6385Type ID Summary Entry
6386---------------------
6387
6388Each type id summary entry corresponds to a type identifier resolution
6389which is generated during the LTO link portion of the compile when building
6390with `Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
6391so these are only present in a combined summary index.
6392
6393Example:
6394
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006395.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006396
6397 ^4 = typeid: (name: "_ZTS1A", summary: (typeTestRes: (kind: allOnes, sizeM1BitWidth: 7[, alignLog2: 0]?[, sizeM1: 0]?[, bitMask: 0]?[, inlineBits: 0]?)[, WpdResolutions]?)) ; guid = 7004155349499253778
6398
6399The ``typeTestRes`` gives the type test resolution ``kind`` (which may
6400be ``unsat``, ``byteArray``, ``inline``, ``single``, or ``allOnes``), and
6401the ``size-1`` bit width. It is followed by optional flags, which default to 0,
6402and an optional WpdResolutions (whole program devirtualization resolution)
6403field that looks like:
6404
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006405.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006406
6407 wpdResolutions: ((offset: 0, WpdRes)[, (offset: 1, WpdRes)]*
6408
6409where each entry is a mapping from the given byte offset to the whole-program
6410devirtualization resolution WpdRes, that has one of the following formats:
6411
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006412.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006413
6414 wpdRes: (kind: branchFunnel)
6415 wpdRes: (kind: singleImpl, singleImplName: "_ZN1A1nEi")
6416 wpdRes: (kind: indir)
6417
6418Additionally, each wpdRes has an optional ``resByArg`` field, which
6419describes the resolutions for calls with all constant integer arguments:
6420
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006421.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006422
6423 resByArg: (ResByArg[, ResByArg]*)
6424
6425where ResByArg is:
6426
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006427.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006428
6429 args: (Arg[, Arg]*), byArg: (kind: UniformRetVal[, info: 0][, byte: 0][, bit: 0])
6430
6431Where the ``kind`` can be ``Indir``, ``UniformRetVal``, ``UniqueRetVal``
6432or ``VirtualConstProp``. The ``info`` field is only used if the kind
6433is ``UniformRetVal`` (indicates the uniform return value), or
6434``UniqueRetVal`` (holds the return value associated with the unique vtable
6435(0 or 1)). The ``byte`` and ``bit`` fields are only used if the target does
6436not support the use of absolute symbols to store constants.
6437
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006438.. _intrinsicglobalvariables:
6439
Sean Silvab084af42012-12-07 10:36:55 +00006440Intrinsic Global Variables
6441==========================
6442
6443LLVM has a number of "magic" global variables that contain data that
6444affect code generation or other IR semantics. These are documented here.
6445All globals of this sort should have a section specified as
6446"``llvm.metadata``". This section and all globals that start with
6447"``llvm.``" are reserved for use by LLVM.
6448
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006449.. _gv_llvmused:
6450
Sean Silvab084af42012-12-07 10:36:55 +00006451The '``llvm.used``' Global Variable
6452-----------------------------------
6453
Rafael Espindola74f2e462013-04-22 14:58:02 +00006454The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00006455:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00006456pointers to named global variables, functions and aliases which may optionally
6457have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00006458use of it is:
6459
6460.. code-block:: llvm
6461
6462 @X = global i8 4
6463 @Y = global i32 123
6464
6465 @llvm.used = appending global [2 x i8*] [
6466 i8* @X,
6467 i8* bitcast (i32* @Y to i8*)
6468 ], section "llvm.metadata"
6469
Rafael Espindola74f2e462013-04-22 14:58:02 +00006470If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
6471and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00006472symbol that it cannot see (which is why they have to be named). For example, if
6473a variable has internal linkage and no references other than that from the
6474``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
6475references from inline asms and other things the compiler cannot "see", and
6476corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00006477
6478On some targets, the code generator must emit a directive to the
6479assembler or object file to prevent the assembler and linker from
6480molesting the symbol.
6481
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006482.. _gv_llvmcompilerused:
6483
Sean Silvab084af42012-12-07 10:36:55 +00006484The '``llvm.compiler.used``' Global Variable
6485--------------------------------------------
6486
6487The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
6488directive, except that it only prevents the compiler from touching the
6489symbol. On targets that support it, this allows an intelligent linker to
6490optimize references to the symbol without being impeded as it would be
6491by ``@llvm.used``.
6492
6493This is a rare construct that should only be used in rare circumstances,
6494and should not be exposed to source languages.
6495
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006496.. _gv_llvmglobalctors:
6497
Sean Silvab084af42012-12-07 10:36:55 +00006498The '``llvm.global_ctors``' Global Variable
6499-------------------------------------------
6500
6501.. code-block:: llvm
6502
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006503 %0 = type { i32, void ()*, i8* }
6504 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006505
6506The ``@llvm.global_ctors`` array contains a list of constructor
Fangrui Songf4dfd632019-05-15 02:35:32 +00006507functions, priorities, and an associated global or function.
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006508The functions referenced by this array will be called in ascending order
6509of priority (i.e. lowest first) when the module is loaded. The order of
6510functions with the same priority is not defined.
6511
Fangrui Songf4dfd632019-05-15 02:35:32 +00006512If the third field is non-null, and points to a global variable
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006513or function, the initializer function will only run if the associated
6514data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006515
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006516.. _llvmglobaldtors:
6517
Sean Silvab084af42012-12-07 10:36:55 +00006518The '``llvm.global_dtors``' Global Variable
6519-------------------------------------------
6520
6521.. code-block:: llvm
6522
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006523 %0 = type { i32, void ()*, i8* }
6524 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006525
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006526The ``@llvm.global_dtors`` array contains a list of destructor
Fangrui Songf4dfd632019-05-15 02:35:32 +00006527functions, priorities, and an associated global or function.
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006528The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00006529order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006530order of functions with the same priority is not defined.
6531
Fangrui Songf4dfd632019-05-15 02:35:32 +00006532If the third field is non-null, and points to a global variable
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006533or function, the destructor function will only run if the associated
6534data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006535
6536Instruction Reference
6537=====================
6538
6539The LLVM instruction set consists of several different classifications
6540of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
6541instructions <binaryops>`, :ref:`bitwise binary
6542instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
6543:ref:`other instructions <otherops>`.
6544
6545.. _terminators:
6546
6547Terminator Instructions
6548-----------------------
6549
6550As mentioned :ref:`previously <functionstructure>`, every basic block in a
6551program ends with a "Terminator" instruction, which indicates which
6552block should be executed after the current block is finished. These
6553terminator instructions typically yield a '``void``' value: they produce
6554control flow, not values (the one exception being the
6555':ref:`invoke <i_invoke>`' instruction).
6556
6557The terminator instructions are: ':ref:`ret <i_ret>`',
6558':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
6559':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
Craig Topper784929d2019-02-08 20:48:56 +00006560':ref:`callbr <i_callbr>`'
David Majnemer8a1c45d2015-12-12 05:38:55 +00006561':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00006562':ref:`catchret <i_catchret>`',
6563':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00006564and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00006565
6566.. _i_ret:
6567
6568'``ret``' Instruction
6569^^^^^^^^^^^^^^^^^^^^^
6570
6571Syntax:
6572"""""""
6573
6574::
6575
6576 ret <type> <value> ; Return a value from a non-void function
6577 ret void ; Return from void function
6578
6579Overview:
6580"""""""""
6581
6582The '``ret``' instruction is used to return control flow (and optionally
6583a value) from a function back to the caller.
6584
6585There are two forms of the '``ret``' instruction: one that returns a
6586value and then causes control flow, and one that just causes control
6587flow to occur.
6588
6589Arguments:
6590""""""""""
6591
6592The '``ret``' instruction optionally accepts a single argument, the
6593return value. The type of the return value must be a ':ref:`first
6594class <t_firstclass>`' type.
6595
Xing GUO454e51b2019-01-18 03:56:37 +00006596A function is not :ref:`well formed <wellformed>` if it has a non-void
Sean Silvab084af42012-12-07 10:36:55 +00006597return type and contains a '``ret``' instruction with no return value or
6598a return value with a type that does not match its type, or if it has a
6599void return type and contains a '``ret``' instruction with a return
6600value.
6601
6602Semantics:
6603""""""""""
6604
6605When the '``ret``' instruction is executed, control flow returns back to
6606the calling function's context. If the caller is a
6607":ref:`call <i_call>`" instruction, execution continues at the
6608instruction after the call. If the caller was an
6609":ref:`invoke <i_invoke>`" instruction, execution continues at the
6610beginning of the "normal" destination block. If the instruction returns
6611a value, that value shall set the call or invoke instruction's return
6612value.
6613
6614Example:
6615""""""""
6616
6617.. code-block:: llvm
6618
6619 ret i32 5 ; Return an integer value of 5
6620 ret void ; Return from a void function
6621 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
6622
6623.. _i_br:
6624
6625'``br``' Instruction
6626^^^^^^^^^^^^^^^^^^^^
6627
6628Syntax:
6629"""""""
6630
6631::
6632
6633 br i1 <cond>, label <iftrue>, label <iffalse>
6634 br label <dest> ; Unconditional branch
6635
6636Overview:
6637"""""""""
6638
6639The '``br``' instruction is used to cause control flow to transfer to a
6640different basic block in the current function. There are two forms of
6641this instruction, corresponding to a conditional branch and an
6642unconditional branch.
6643
6644Arguments:
6645""""""""""
6646
6647The conditional branch form of the '``br``' instruction takes a single
6648'``i1``' value and two '``label``' values. The unconditional form of the
6649'``br``' instruction takes a single '``label``' value as a target.
6650
6651Semantics:
6652""""""""""
6653
6654Upon execution of a conditional '``br``' instruction, the '``i1``'
6655argument is evaluated. If the value is ``true``, control flows to the
6656'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
6657to the '``iffalse``' ``label`` argument.
6658
6659Example:
6660""""""""
6661
6662.. code-block:: llvm
6663
6664 Test:
6665 %cond = icmp eq i32 %a, %b
6666 br i1 %cond, label %IfEqual, label %IfUnequal
6667 IfEqual:
6668 ret i32 1
6669 IfUnequal:
6670 ret i32 0
6671
6672.. _i_switch:
6673
6674'``switch``' Instruction
6675^^^^^^^^^^^^^^^^^^^^^^^^
6676
6677Syntax:
6678"""""""
6679
6680::
6681
6682 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
6683
6684Overview:
6685"""""""""
6686
6687The '``switch``' instruction is used to transfer control flow to one of
6688several different places. It is a generalization of the '``br``'
6689instruction, allowing a branch to occur to one of many possible
6690destinations.
6691
6692Arguments:
6693""""""""""
6694
6695The '``switch``' instruction uses three parameters: an integer
6696comparison value '``value``', a default '``label``' destination, and an
6697array of pairs of comparison value constants and '``label``'s. The table
6698is not allowed to contain duplicate constant entries.
6699
6700Semantics:
6701""""""""""
6702
6703The ``switch`` instruction specifies a table of values and destinations.
6704When the '``switch``' instruction is executed, this table is searched
6705for the given value. If the value is found, control flow is transferred
6706to the corresponding destination; otherwise, control flow is transferred
6707to the default destination.
6708
6709Implementation:
6710"""""""""""""""
6711
6712Depending on properties of the target machine and the particular
6713``switch`` instruction, this instruction may be code generated in
6714different ways. For example, it could be generated as a series of
6715chained conditional branches or with a lookup table.
6716
6717Example:
6718""""""""
6719
6720.. code-block:: llvm
6721
6722 ; Emulate a conditional br instruction
6723 %Val = zext i1 %value to i32
6724 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
6725
6726 ; Emulate an unconditional br instruction
6727 switch i32 0, label %dest [ ]
6728
6729 ; Implement a jump table:
6730 switch i32 %val, label %otherwise [ i32 0, label %onzero
6731 i32 1, label %onone
6732 i32 2, label %ontwo ]
6733
6734.. _i_indirectbr:
6735
6736'``indirectbr``' Instruction
6737^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6738
6739Syntax:
6740"""""""
6741
6742::
6743
6744 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
6745
6746Overview:
6747"""""""""
6748
6749The '``indirectbr``' instruction implements an indirect branch to a
6750label within the current function, whose address is specified by
6751"``address``". Address must be derived from a
6752:ref:`blockaddress <blockaddress>` constant.
6753
6754Arguments:
6755""""""""""
6756
6757The '``address``' argument is the address of the label to jump to. The
6758rest of the arguments indicate the full set of possible destinations
6759that the address may point to. Blocks are allowed to occur multiple
6760times in the destination list, though this isn't particularly useful.
6761
6762This destination list is required so that dataflow analysis has an
6763accurate understanding of the CFG.
6764
6765Semantics:
6766""""""""""
6767
6768Control transfers to the block specified in the address argument. All
6769possible destination blocks must be listed in the label list, otherwise
6770this instruction has undefined behavior. This implies that jumps to
6771labels defined in other functions have undefined behavior as well.
6772
6773Implementation:
6774"""""""""""""""
6775
6776This is typically implemented with a jump through a register.
6777
6778Example:
6779""""""""
6780
6781.. code-block:: llvm
6782
6783 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
6784
6785.. _i_invoke:
6786
6787'``invoke``' Instruction
6788^^^^^^^^^^^^^^^^^^^^^^^^
6789
6790Syntax:
6791"""""""
6792
6793::
6794
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00006795 <result> = invoke [cconv] [ret attrs] [addrspace(<num>)] [<ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006796 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00006797
6798Overview:
6799"""""""""
6800
6801The '``invoke``' instruction causes control to transfer to a specified
6802function, with the possibility of control flow transfer to either the
6803'``normal``' label or the '``exception``' label. If the callee function
6804returns with the "``ret``" instruction, control flow will return to the
6805"normal" label. If the callee (or any indirect callees) returns via the
6806":ref:`resume <i_resume>`" instruction or other exception handling
6807mechanism, control is interrupted and continued at the dynamically
6808nearest "exception" label.
6809
6810The '``exception``' label is a `landing
6811pad <ExceptionHandling.html#overview>`_ for the exception. As such,
6812'``exception``' label is required to have the
6813":ref:`landingpad <i_landingpad>`" instruction, which contains the
6814information about the behavior of the program after unwinding happens,
6815as its first non-PHI instruction. The restrictions on the
6816"``landingpad``" instruction's tightly couples it to the "``invoke``"
6817instruction, so that the important information contained within the
6818"``landingpad``" instruction can't be lost through normal code motion.
6819
6820Arguments:
6821""""""""""
6822
6823This instruction requires several arguments:
6824
6825#. The optional "cconv" marker indicates which :ref:`calling
6826 convention <callingconv>` the call should use. If none is
6827 specified, the call defaults to using C calling conventions.
6828#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6829 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6830 are valid here.
Craig Topper78e7fff2019-01-16 00:21:59 +00006831#. The optional addrspace attribute can be used to indicate the address space
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00006832 of the called function. If it is not specified, the program address space
6833 from the :ref:`datalayout string<langref_datalayout>` will be used.
David Blaikieb83cf102016-07-13 17:21:34 +00006834#. '``ty``': the type of the call instruction itself which is also the
6835 type of the return value. Functions that return no value are marked
6836 ``void``.
6837#. '``fnty``': shall be the signature of the function being invoked. The
6838 argument types must match the types implied by this signature. This
6839 type can be omitted if the function is not varargs.
6840#. '``fnptrval``': An LLVM value containing a pointer to a function to
6841 be invoked. In most cases, this is a direct function invocation, but
6842 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
6843 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00006844#. '``function args``': argument list whose types match the function
6845 signature argument types and parameter attributes. All arguments must
6846 be of :ref:`first class <t_firstclass>` type. If the function signature
6847 indicates the function accepts a variable number of arguments, the
6848 extra arguments can be specified.
6849#. '``normal label``': the label reached when the called function
6850 executes a '``ret``' instruction.
6851#. '``exception label``': the label reached when a callee returns via
6852 the :ref:`resume <i_resume>` instruction or other exception handling
6853 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00006854#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006855#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00006856
6857Semantics:
6858""""""""""
6859
6860This instruction is designed to operate as a standard '``call``'
6861instruction in most regards. The primary difference is that it
6862establishes an association with a label, which is used by the runtime
6863library to unwind the stack.
6864
6865This instruction is used in languages with destructors to ensure that
6866proper cleanup is performed in the case of either a ``longjmp`` or a
6867thrown exception. Additionally, this is important for implementation of
6868'``catch``' clauses in high-level languages that support them.
6869
6870For the purposes of the SSA form, the definition of the value returned
6871by the '``invoke``' instruction is deemed to occur on the edge from the
6872current block to the "normal" label. If the callee unwinds then no
6873return value is available.
6874
6875Example:
6876""""""""
6877
6878.. code-block:: llvm
6879
6880 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006881 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006882 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006883 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006884
Craig Topper784929d2019-02-08 20:48:56 +00006885.. _i_callbr:
6886
6887'``callbr``' Instruction
6888^^^^^^^^^^^^^^^^^^^^^^^^
6889
6890Syntax:
6891"""""""
6892
6893::
6894
6895 <result> = callbr [cconv] [ret attrs] [addrspace(<num>)] [<ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
6896 [operand bundles] to label <normal label> or jump [other labels]
6897
6898Overview:
6899"""""""""
6900
6901The '``callbr``' instruction causes control to transfer to a specified
6902function, with the possibility of control flow transfer to either the
6903'``normal``' label or one of the '``other``' labels.
6904
6905This instruction should only be used to implement the "goto" feature of gcc
6906style inline assembly. Any other usage is an error in the IR verifier.
6907
6908Arguments:
6909""""""""""
6910
6911This instruction requires several arguments:
6912
6913#. The optional "cconv" marker indicates which :ref:`calling
6914 convention <callingconv>` the call should use. If none is
6915 specified, the call defaults to using C calling conventions.
6916#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6917 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6918 are valid here.
6919#. The optional addrspace attribute can be used to indicate the address space
6920 of the called function. If it is not specified, the program address space
6921 from the :ref:`datalayout string<langref_datalayout>` will be used.
6922#. '``ty``': the type of the call instruction itself which is also the
6923 type of the return value. Functions that return no value are marked
6924 ``void``.
6925#. '``fnty``': shall be the signature of the function being called. The
6926 argument types must match the types implied by this signature. This
6927 type can be omitted if the function is not varargs.
6928#. '``fnptrval``': An LLVM value containing a pointer to a function to
6929 be called. In most cases, this is a direct function call, but
6930 indirect ``callbr``'s are just as possible, calling an arbitrary pointer
6931 to function value.
6932#. '``function args``': argument list whose types match the function
6933 signature argument types and parameter attributes. All arguments must
6934 be of :ref:`first class <t_firstclass>` type. If the function signature
6935 indicates the function accepts a variable number of arguments, the
6936 extra arguments can be specified.
6937#. '``normal label``': the label reached when the called function
6938 executes a '``ret``' instruction.
6939#. '``other labels``': the labels reached when a callee transfers control
6940 to a location other than the normal '``normal label``'
6941#. The optional :ref:`function attributes <fnattrs>` list.
6942#. The optional :ref:`operand bundles <opbundles>` list.
6943
6944Semantics:
6945""""""""""
6946
6947This instruction is designed to operate as a standard '``call``'
6948instruction in most regards. The primary difference is that it
6949establishes an association with additional labels to define where control
6950flow goes after the call.
6951
6952The only use of this today is to implement the "goto" feature of gcc inline
6953assembly where additional labels can be provided as locations for the inline
6954assembly to jump to.
6955
6956Example:
6957""""""""
6958
Craig Toppere08e2b62019-02-08 21:09:33 +00006959.. code-block:: text
Craig Topper784929d2019-02-08 20:48:56 +00006960
6961 callbr void asm "", "r,x"(i32 %x, i8 *blockaddress(@foo, %fail))
6962 to label %normal or jump [label %fail]
6963
Sean Silvab084af42012-12-07 10:36:55 +00006964.. _i_resume:
6965
6966'``resume``' Instruction
6967^^^^^^^^^^^^^^^^^^^^^^^^
6968
6969Syntax:
6970"""""""
6971
6972::
6973
6974 resume <type> <value>
6975
6976Overview:
6977"""""""""
6978
6979The '``resume``' instruction is a terminator instruction that has no
6980successors.
6981
6982Arguments:
6983""""""""""
6984
6985The '``resume``' instruction requires one argument, which must have the
6986same type as the result of any '``landingpad``' instruction in the same
6987function.
6988
6989Semantics:
6990""""""""""
6991
6992The '``resume``' instruction resumes propagation of an existing
6993(in-flight) exception whose unwinding was interrupted with a
6994:ref:`landingpad <i_landingpad>` instruction.
6995
6996Example:
6997""""""""
6998
6999.. code-block:: llvm
7000
7001 resume { i8*, i32 } %exn
7002
David Majnemer8a1c45d2015-12-12 05:38:55 +00007003.. _i_catchswitch:
7004
7005'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00007006^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00007007
7008Syntax:
7009"""""""
7010
7011::
7012
7013 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
7014 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
7015
7016Overview:
7017"""""""""
7018
7019The '``catchswitch``' instruction is used by `LLVM's exception handling system
7020<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
7021that may be executed by the :ref:`EH personality routine <personalityfn>`.
7022
7023Arguments:
7024""""""""""
7025
7026The ``parent`` argument is the token of the funclet that contains the
7027``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
7028this operand may be the token ``none``.
7029
Joseph Tremoulete28885e2016-01-10 04:28:38 +00007030The ``default`` argument is the label of another basic block beginning with
7031either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
7032must be a legal target with respect to the ``parent`` links, as described in
7033the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00007034
Joseph Tremoulete28885e2016-01-10 04:28:38 +00007035The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00007036:ref:`catchpad <i_catchpad>` instruction.
7037
7038Semantics:
7039""""""""""
7040
7041Executing this instruction transfers control to one of the successors in
7042``handlers``, if appropriate, or continues to unwind via the unwind label if
7043present.
7044
7045The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
7046it must be both the first non-phi instruction and last instruction in the basic
7047block. Therefore, it must be the only non-phi instruction in the block.
7048
7049Example:
7050""""""""
7051
Renato Golin124f2592016-07-20 12:16:38 +00007052.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00007053
7054 dispatch1:
7055 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
7056 dispatch2:
7057 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
7058
David Majnemer654e1302015-07-31 17:58:14 +00007059.. _i_catchret:
7060
7061'``catchret``' Instruction
7062^^^^^^^^^^^^^^^^^^^^^^^^^^
7063
7064Syntax:
7065"""""""
7066
7067::
7068
David Majnemer8a1c45d2015-12-12 05:38:55 +00007069 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00007070
7071Overview:
7072"""""""""
7073
7074The '``catchret``' instruction is a terminator instruction that has a
7075single successor.
7076
7077
7078Arguments:
7079""""""""""
7080
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00007081The first argument to a '``catchret``' indicates which ``catchpad`` it
7082exits. It must be a :ref:`catchpad <i_catchpad>`.
7083The second argument to a '``catchret``' specifies where control will
7084transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00007085
7086Semantics:
7087""""""""""
7088
David Majnemer8a1c45d2015-12-12 05:38:55 +00007089The '``catchret``' instruction ends an existing (in-flight) exception whose
7090unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
7091:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
7092code to, for example, destroy the active exception. Control then transfers to
7093``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00007094
Joseph Tremoulete28885e2016-01-10 04:28:38 +00007095The ``token`` argument must be a token produced by a ``catchpad`` instruction.
7096If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
7097funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
7098the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00007099
7100Example:
7101""""""""
7102
Renato Golin124f2592016-07-20 12:16:38 +00007103.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00007104
David Majnemer8a1c45d2015-12-12 05:38:55 +00007105 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00007106
David Majnemer654e1302015-07-31 17:58:14 +00007107.. _i_cleanupret:
7108
7109'``cleanupret``' Instruction
7110^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7111
7112Syntax:
7113"""""""
7114
7115::
7116
David Majnemer8a1c45d2015-12-12 05:38:55 +00007117 cleanupret from <value> unwind label <continue>
7118 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00007119
7120Overview:
7121"""""""""
7122
7123The '``cleanupret``' instruction is a terminator instruction that has
7124an optional successor.
7125
7126
7127Arguments:
7128""""""""""
7129
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00007130The '``cleanupret``' instruction requires one argument, which indicates
7131which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00007132If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
7133funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
7134the ``cleanupret``'s behavior is undefined.
7135
7136The '``cleanupret``' instruction also has an optional successor, ``continue``,
7137which must be the label of another basic block beginning with either a
7138``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
7139be a legal target with respect to the ``parent`` links, as described in the
7140`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00007141
7142Semantics:
7143""""""""""
7144
7145The '``cleanupret``' instruction indicates to the
7146:ref:`personality function <personalityfn>` that one
7147:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
7148It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00007149
David Majnemer654e1302015-07-31 17:58:14 +00007150Example:
7151""""""""
7152
Renato Golin124f2592016-07-20 12:16:38 +00007153.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00007154
David Majnemer8a1c45d2015-12-12 05:38:55 +00007155 cleanupret from %cleanup unwind to caller
7156 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00007157
Sean Silvab084af42012-12-07 10:36:55 +00007158.. _i_unreachable:
7159
7160'``unreachable``' Instruction
7161^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7162
7163Syntax:
7164"""""""
7165
7166::
7167
7168 unreachable
7169
7170Overview:
7171"""""""""
7172
7173The '``unreachable``' instruction has no defined semantics. This
7174instruction is used to inform the optimizer that a particular portion of
7175the code is not reachable. This can be used to indicate that the code
7176after a no-return function cannot be reached, and other facts.
7177
7178Semantics:
7179""""""""""
7180
7181The '``unreachable``' instruction has no defined semantics.
7182
Cameron McInallye4ee9842018-11-16 19:52:59 +00007183.. _unaryops:
7184
7185Unary Operations
7186-----------------
7187
7188Unary operators require a single operand, execute an operation on
7189it, and produce a single value. The operand might represent multiple
7190data, as is the case with the :ref:`vector <t_vector>` data type. The
7191result value has the same type as its operand.
7192
7193.. _i_fneg:
7194
7195'``fneg``' Instruction
7196^^^^^^^^^^^^^^^^^^^^^^
7197
7198Syntax:
7199"""""""
7200
7201::
7202
7203 <result> = fneg [fast-math flags]* <ty> <op1> ; yields ty:result
7204
7205Overview:
7206"""""""""
7207
7208The '``fneg``' instruction returns the negation of its operand.
7209
7210Arguments:
7211""""""""""
7212
7213The argument to the '``fneg``' instruction must be a
7214:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Michael Kruse978ba612018-12-20 04:58:07 +00007215floating-point values.
Cameron McInallye4ee9842018-11-16 19:52:59 +00007216
7217Semantics:
7218""""""""""
7219
7220The value produced is a copy of the operand with its sign bit flipped.
7221This instruction can also take any number of :ref:`fast-math
7222flags <fastmath>`, which are optimization hints to enable otherwise
7223unsafe floating-point optimizations:
7224
7225Example:
7226""""""""
7227
7228.. code-block:: text
7229
7230 <result> = fneg float %val ; yields float:result = -%var
7231
Sean Silvab084af42012-12-07 10:36:55 +00007232.. _binaryops:
7233
7234Binary Operations
7235-----------------
7236
7237Binary operators are used to do most of the computation in a program.
7238They require two operands of the same type, execute an operation on
7239them, and produce a single value. The operands might represent multiple
7240data, as is the case with the :ref:`vector <t_vector>` data type. The
7241result value has the same type as its operands.
7242
7243There are several different binary operators:
7244
7245.. _i_add:
7246
7247'``add``' Instruction
7248^^^^^^^^^^^^^^^^^^^^^
7249
7250Syntax:
7251"""""""
7252
7253::
7254
Tim Northover675a0962014-06-13 14:24:23 +00007255 <result> = add <ty> <op1>, <op2> ; yields ty:result
7256 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
7257 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
7258 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007259
7260Overview:
7261"""""""""
7262
7263The '``add``' instruction returns the sum of its two operands.
7264
7265Arguments:
7266""""""""""
7267
7268The two arguments to the '``add``' instruction must be
7269:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7270arguments must have identical types.
7271
7272Semantics:
7273""""""""""
7274
7275The value produced is the integer sum of the two operands.
7276
7277If the sum has unsigned overflow, the result returned is the
7278mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
7279the result.
7280
7281Because LLVM integers use a two's complement representation, this
7282instruction is appropriate for both signed and unsigned integers.
7283
7284``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7285respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7286result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
7287unsigned and/or signed overflow, respectively, occurs.
7288
7289Example:
7290""""""""
7291
Renato Golin124f2592016-07-20 12:16:38 +00007292.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007293
Tim Northover675a0962014-06-13 14:24:23 +00007294 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00007295
7296.. _i_fadd:
7297
7298'``fadd``' Instruction
7299^^^^^^^^^^^^^^^^^^^^^^
7300
7301Syntax:
7302"""""""
7303
7304::
7305
Tim Northover675a0962014-06-13 14:24:23 +00007306 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007307
7308Overview:
7309"""""""""
7310
7311The '``fadd``' instruction returns the sum of its two operands.
7312
7313Arguments:
7314""""""""""
7315
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007316The two arguments to the '``fadd``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007317:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007318floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007319
7320Semantics:
7321""""""""""
7322
Sanjay Patel7b722402018-03-07 17:18:22 +00007323The value produced is the floating-point sum of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007324This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007325environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00007326This instruction can also take any number of :ref:`fast-math
7327flags <fastmath>`, which are optimization hints to enable otherwise
7328unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007329
7330Example:
7331""""""""
7332
Renato Golin124f2592016-07-20 12:16:38 +00007333.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007334
Tim Northover675a0962014-06-13 14:24:23 +00007335 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00007336
7337'``sub``' Instruction
7338^^^^^^^^^^^^^^^^^^^^^
7339
7340Syntax:
7341"""""""
7342
7343::
7344
Tim Northover675a0962014-06-13 14:24:23 +00007345 <result> = sub <ty> <op1>, <op2> ; yields ty:result
7346 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
7347 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
7348 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007349
7350Overview:
7351"""""""""
7352
7353The '``sub``' instruction returns the difference of its two operands.
7354
7355Note that the '``sub``' instruction is used to represent the '``neg``'
7356instruction present in most other intermediate representations.
7357
7358Arguments:
7359""""""""""
7360
7361The two arguments to the '``sub``' instruction must be
7362:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7363arguments must have identical types.
7364
7365Semantics:
7366""""""""""
7367
7368The value produced is the integer difference of the two operands.
7369
7370If the difference has unsigned overflow, the result returned is the
7371mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
7372the result.
7373
7374Because LLVM integers use a two's complement representation, this
7375instruction is appropriate for both signed and unsigned integers.
7376
7377``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7378respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7379result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
7380unsigned and/or signed overflow, respectively, occurs.
7381
7382Example:
7383""""""""
7384
Renato Golin124f2592016-07-20 12:16:38 +00007385.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007386
Tim Northover675a0962014-06-13 14:24:23 +00007387 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
7388 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00007389
7390.. _i_fsub:
7391
7392'``fsub``' Instruction
7393^^^^^^^^^^^^^^^^^^^^^^
7394
7395Syntax:
7396"""""""
7397
7398::
7399
Tim Northover675a0962014-06-13 14:24:23 +00007400 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007401
7402Overview:
7403"""""""""
7404
7405The '``fsub``' instruction returns the difference of its two operands.
7406
Sean Silvab084af42012-12-07 10:36:55 +00007407Arguments:
7408""""""""""
7409
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007410The two arguments to the '``fsub``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007411:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007412floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007413
7414Semantics:
7415""""""""""
7416
Sanjay Patel7b722402018-03-07 17:18:22 +00007417The value produced is the floating-point difference of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007418This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007419environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007420This instruction can also take any number of :ref:`fast-math
7421flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007422unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007423
7424Example:
7425""""""""
7426
Renato Golin124f2592016-07-20 12:16:38 +00007427.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007428
Tim Northover675a0962014-06-13 14:24:23 +00007429 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
7430 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00007431
7432'``mul``' Instruction
7433^^^^^^^^^^^^^^^^^^^^^
7434
7435Syntax:
7436"""""""
7437
7438::
7439
Tim Northover675a0962014-06-13 14:24:23 +00007440 <result> = mul <ty> <op1>, <op2> ; yields ty:result
7441 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
7442 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
7443 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007444
7445Overview:
7446"""""""""
7447
7448The '``mul``' instruction returns the product of its two operands.
7449
7450Arguments:
7451""""""""""
7452
7453The two arguments to the '``mul``' instruction must be
7454:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7455arguments must have identical types.
7456
7457Semantics:
7458""""""""""
7459
7460The value produced is the integer product of the two operands.
7461
7462If the result of the multiplication has unsigned overflow, the result
7463returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
7464bit width of the result.
7465
7466Because LLVM integers use a two's complement representation, and the
7467result is the same width as the operands, this instruction returns the
7468correct result for both signed and unsigned integers. If a full product
7469(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
7470sign-extended or zero-extended as appropriate to the width of the full
7471product.
7472
7473``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7474respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7475result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
7476unsigned and/or signed overflow, respectively, occurs.
7477
7478Example:
7479""""""""
7480
Renato Golin124f2592016-07-20 12:16:38 +00007481.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007482
Tim Northover675a0962014-06-13 14:24:23 +00007483 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00007484
7485.. _i_fmul:
7486
7487'``fmul``' Instruction
7488^^^^^^^^^^^^^^^^^^^^^^
7489
7490Syntax:
7491"""""""
7492
7493::
7494
Tim Northover675a0962014-06-13 14:24:23 +00007495 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007496
7497Overview:
7498"""""""""
7499
7500The '``fmul``' instruction returns the product of its two operands.
7501
7502Arguments:
7503""""""""""
7504
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007505The two arguments to the '``fmul``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007506:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007507floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007508
7509Semantics:
7510""""""""""
7511
Sanjay Patel7b722402018-03-07 17:18:22 +00007512The value produced is the floating-point product of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007513This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007514environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007515This instruction can also take any number of :ref:`fast-math
7516flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007517unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007518
7519Example:
7520""""""""
7521
Renato Golin124f2592016-07-20 12:16:38 +00007522.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007523
Tim Northover675a0962014-06-13 14:24:23 +00007524 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00007525
7526'``udiv``' Instruction
7527^^^^^^^^^^^^^^^^^^^^^^
7528
7529Syntax:
7530"""""""
7531
7532::
7533
Tim Northover675a0962014-06-13 14:24:23 +00007534 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
7535 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007536
7537Overview:
7538"""""""""
7539
7540The '``udiv``' instruction returns the quotient of its two operands.
7541
7542Arguments:
7543""""""""""
7544
7545The two arguments to the '``udiv``' instruction must be
7546:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7547arguments must have identical types.
7548
7549Semantics:
7550""""""""""
7551
7552The value produced is the unsigned integer quotient of the two operands.
7553
7554Note that unsigned integer division and signed integer division are
7555distinct operations; for signed integer division, use '``sdiv``'.
7556
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007557Division by zero is undefined behavior. For vectors, if any element
7558of the divisor is zero, the operation has undefined behavior.
7559
Sean Silvab084af42012-12-07 10:36:55 +00007560
7561If the ``exact`` keyword is present, the result value of the ``udiv`` is
7562a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
7563such, "((a udiv exact b) mul b) == a").
7564
7565Example:
7566""""""""
7567
Renato Golin124f2592016-07-20 12:16:38 +00007568.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007569
Tim Northover675a0962014-06-13 14:24:23 +00007570 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007571
7572'``sdiv``' Instruction
7573^^^^^^^^^^^^^^^^^^^^^^
7574
7575Syntax:
7576"""""""
7577
7578::
7579
Tim Northover675a0962014-06-13 14:24:23 +00007580 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
7581 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007582
7583Overview:
7584"""""""""
7585
7586The '``sdiv``' instruction returns the quotient of its two operands.
7587
7588Arguments:
7589""""""""""
7590
7591The two arguments to the '``sdiv``' instruction must be
7592:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7593arguments must have identical types.
7594
7595Semantics:
7596""""""""""
7597
7598The value produced is the signed integer quotient of the two operands
7599rounded towards zero.
7600
7601Note that signed integer division and unsigned integer division are
7602distinct operations; for unsigned integer division, use '``udiv``'.
7603
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007604Division by zero is undefined behavior. For vectors, if any element
7605of the divisor is zero, the operation has undefined behavior.
7606Overflow also leads to undefined behavior; this is a rare case, but can
7607occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00007608
7609If the ``exact`` keyword is present, the result value of the ``sdiv`` is
7610a :ref:`poison value <poisonvalues>` if the result would be rounded.
7611
7612Example:
7613""""""""
7614
Renato Golin124f2592016-07-20 12:16:38 +00007615.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007616
Tim Northover675a0962014-06-13 14:24:23 +00007617 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007618
7619.. _i_fdiv:
7620
7621'``fdiv``' Instruction
7622^^^^^^^^^^^^^^^^^^^^^^
7623
7624Syntax:
7625"""""""
7626
7627::
7628
Tim Northover675a0962014-06-13 14:24:23 +00007629 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007630
7631Overview:
7632"""""""""
7633
7634The '``fdiv``' instruction returns the quotient of its two operands.
7635
7636Arguments:
7637""""""""""
7638
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007639The two arguments to the '``fdiv``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007640:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007641floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007642
7643Semantics:
7644""""""""""
7645
Sanjay Patel7b722402018-03-07 17:18:22 +00007646The value produced is the floating-point quotient of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007647This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007648environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007649This instruction can also take any number of :ref:`fast-math
7650flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007651unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007652
7653Example:
7654""""""""
7655
Renato Golin124f2592016-07-20 12:16:38 +00007656.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007657
Tim Northover675a0962014-06-13 14:24:23 +00007658 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007659
7660'``urem``' Instruction
7661^^^^^^^^^^^^^^^^^^^^^^
7662
7663Syntax:
7664"""""""
7665
7666::
7667
Tim Northover675a0962014-06-13 14:24:23 +00007668 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007669
7670Overview:
7671"""""""""
7672
7673The '``urem``' instruction returns the remainder from the unsigned
7674division of its two arguments.
7675
7676Arguments:
7677""""""""""
7678
7679The two arguments to the '``urem``' instruction must be
7680:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7681arguments must have identical types.
7682
7683Semantics:
7684""""""""""
7685
7686This instruction returns the unsigned integer *remainder* of a division.
7687This instruction always performs an unsigned division to get the
7688remainder.
7689
7690Note that unsigned integer remainder and signed integer remainder are
7691distinct operations; for signed integer remainder, use '``srem``'.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007692
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007693Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007694For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007695undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007696
7697Example:
7698""""""""
7699
Renato Golin124f2592016-07-20 12:16:38 +00007700.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007701
Tim Northover675a0962014-06-13 14:24:23 +00007702 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007703
7704'``srem``' Instruction
7705^^^^^^^^^^^^^^^^^^^^^^
7706
7707Syntax:
7708"""""""
7709
7710::
7711
Tim Northover675a0962014-06-13 14:24:23 +00007712 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007713
7714Overview:
7715"""""""""
7716
7717The '``srem``' instruction returns the remainder from the signed
7718division of its two operands. This instruction can also take
7719:ref:`vector <t_vector>` versions of the values in which case the elements
7720must be integers.
7721
7722Arguments:
7723""""""""""
7724
7725The two arguments to the '``srem``' instruction must be
7726:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7727arguments must have identical types.
7728
7729Semantics:
7730""""""""""
7731
7732This instruction returns the *remainder* of a division (where the result
7733is either zero or has the same sign as the dividend, ``op1``), not the
7734*modulo* operator (where the result is either zero or has the same sign
7735as the divisor, ``op2``) of a value. For more information about the
7736difference, see `The Math
7737Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
7738table of how this is implemented in various languages, please see
7739`Wikipedia: modulo
7740operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
7741
7742Note that signed integer remainder and unsigned integer remainder are
7743distinct operations; for unsigned integer remainder, use '``urem``'.
7744
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007745Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007746For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007747undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007748Overflow also leads to undefined behavior; this is a rare case, but can
7749occur, for example, by taking the remainder of a 32-bit division of
7750-2147483648 by -1. (The remainder doesn't actually overflow, but this
7751rule lets srem be implemented using instructions that return both the
7752result of the division and the remainder.)
7753
7754Example:
7755""""""""
7756
Renato Golin124f2592016-07-20 12:16:38 +00007757.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007758
Tim Northover675a0962014-06-13 14:24:23 +00007759 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007760
7761.. _i_frem:
7762
7763'``frem``' Instruction
7764^^^^^^^^^^^^^^^^^^^^^^
7765
7766Syntax:
7767"""""""
7768
7769::
7770
Tim Northover675a0962014-06-13 14:24:23 +00007771 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007772
7773Overview:
7774"""""""""
7775
7776The '``frem``' instruction returns the remainder from the division of
7777its two operands.
7778
7779Arguments:
7780""""""""""
7781
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007782The two arguments to the '``frem``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007783:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007784floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007785
7786Semantics:
7787""""""""""
7788
Sanjay Patel7b722402018-03-07 17:18:22 +00007789The value produced is the floating-point remainder of the two operands.
7790This is the same output as a libm '``fmod``' function, but without any
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007791possibility of setting ``errno``. The remainder has the same sign as the
Sanjay Patel7b722402018-03-07 17:18:22 +00007792dividend.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007793This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007794environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00007795This instruction can also take any number of :ref:`fast-math
7796flags <fastmath>`, which are optimization hints to enable otherwise
7797unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007798
7799Example:
7800""""""""
7801
Renato Golin124f2592016-07-20 12:16:38 +00007802.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007803
Tim Northover675a0962014-06-13 14:24:23 +00007804 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007805
7806.. _bitwiseops:
7807
7808Bitwise Binary Operations
7809-------------------------
7810
7811Bitwise binary operators are used to do various forms of bit-twiddling
7812in a program. They are generally very efficient instructions and can
7813commonly be strength reduced from other instructions. They require two
7814operands of the same type, execute an operation on them, and produce a
7815single value. The resulting value is the same type as its operands.
7816
7817'``shl``' Instruction
7818^^^^^^^^^^^^^^^^^^^^^
7819
7820Syntax:
7821"""""""
7822
7823::
7824
Tim Northover675a0962014-06-13 14:24:23 +00007825 <result> = shl <ty> <op1>, <op2> ; yields ty:result
7826 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
7827 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
7828 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007829
7830Overview:
7831"""""""""
7832
7833The '``shl``' instruction returns the first operand shifted to the left
7834a specified number of bits.
7835
7836Arguments:
7837""""""""""
7838
7839Both arguments to the '``shl``' instruction must be the same
7840:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7841'``op2``' is treated as an unsigned value.
7842
7843Semantics:
7844""""""""""
7845
7846The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
7847where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00007848dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007849``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
7850If the arguments are vectors, each vector element of ``op1`` is shifted
7851by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007852
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007853If the ``nuw`` keyword is present, then the shift produces a poison
7854value if it shifts out any non-zero bits.
7855If the ``nsw`` keyword is present, then the shift produces a poison
Sanjay Patel2896c772018-06-01 15:21:14 +00007856value if it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00007857
7858Example:
7859""""""""
7860
Renato Golin124f2592016-07-20 12:16:38 +00007861.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007862
Tim Northover675a0962014-06-13 14:24:23 +00007863 <result> = shl i32 4, %var ; yields i32: 4 << %var
7864 <result> = shl i32 4, 2 ; yields i32: 16
7865 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00007866 <result> = shl i32 1, 32 ; undefined
7867 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
7868
7869'``lshr``' Instruction
7870^^^^^^^^^^^^^^^^^^^^^^
7871
7872Syntax:
7873"""""""
7874
7875::
7876
Tim Northover675a0962014-06-13 14:24:23 +00007877 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
7878 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007879
7880Overview:
7881"""""""""
7882
7883The '``lshr``' instruction (logical shift right) returns the first
7884operand shifted to the right a specified number of bits with zero fill.
7885
7886Arguments:
7887""""""""""
7888
7889Both arguments to the '``lshr``' instruction must be the same
7890:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7891'``op2``' is treated as an unsigned value.
7892
7893Semantics:
7894""""""""""
7895
7896This instruction always performs a logical shift right operation. The
7897most significant bits of the result will be filled with zero bits after
7898the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007899than the number of bits in ``op1``, this instruction returns a :ref:`poison
7900value <poisonvalues>`. If the arguments are vectors, each vector element
7901of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007902
7903If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007904a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007905
7906Example:
7907""""""""
7908
Renato Golin124f2592016-07-20 12:16:38 +00007909.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007910
Tim Northover675a0962014-06-13 14:24:23 +00007911 <result> = lshr i32 4, 1 ; yields i32:result = 2
7912 <result> = lshr i32 4, 2 ; yields i32:result = 1
7913 <result> = lshr i8 4, 3 ; yields i8:result = 0
7914 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00007915 <result> = lshr i32 1, 32 ; undefined
7916 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
7917
7918'``ashr``' Instruction
7919^^^^^^^^^^^^^^^^^^^^^^
7920
7921Syntax:
7922"""""""
7923
7924::
7925
Tim Northover675a0962014-06-13 14:24:23 +00007926 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
7927 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007928
7929Overview:
7930"""""""""
7931
7932The '``ashr``' instruction (arithmetic shift right) returns the first
7933operand shifted to the right a specified number of bits with sign
7934extension.
7935
7936Arguments:
7937""""""""""
7938
7939Both arguments to the '``ashr``' instruction must be the same
7940:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7941'``op2``' is treated as an unsigned value.
7942
7943Semantics:
7944""""""""""
7945
7946This instruction always performs an arithmetic shift right operation,
7947The most significant bits of the result will be filled with the sign bit
7948of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007949than the number of bits in ``op1``, this instruction returns a :ref:`poison
7950value <poisonvalues>`. If the arguments are vectors, each vector element
7951of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007952
7953If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007954a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007955
7956Example:
7957""""""""
7958
Renato Golin124f2592016-07-20 12:16:38 +00007959.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007960
Tim Northover675a0962014-06-13 14:24:23 +00007961 <result> = ashr i32 4, 1 ; yields i32:result = 2
7962 <result> = ashr i32 4, 2 ; yields i32:result = 1
7963 <result> = ashr i8 4, 3 ; yields i8:result = 0
7964 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00007965 <result> = ashr i32 1, 32 ; undefined
7966 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
7967
7968'``and``' Instruction
7969^^^^^^^^^^^^^^^^^^^^^
7970
7971Syntax:
7972"""""""
7973
7974::
7975
Tim Northover675a0962014-06-13 14:24:23 +00007976 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007977
7978Overview:
7979"""""""""
7980
7981The '``and``' instruction returns the bitwise logical and of its two
7982operands.
7983
7984Arguments:
7985""""""""""
7986
7987The two arguments to the '``and``' instruction must be
7988:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7989arguments must have identical types.
7990
7991Semantics:
7992""""""""""
7993
7994The truth table used for the '``and``' instruction is:
7995
7996+-----+-----+-----+
7997| In0 | In1 | Out |
7998+-----+-----+-----+
7999| 0 | 0 | 0 |
8000+-----+-----+-----+
8001| 0 | 1 | 0 |
8002+-----+-----+-----+
8003| 1 | 0 | 0 |
8004+-----+-----+-----+
8005| 1 | 1 | 1 |
8006+-----+-----+-----+
8007
8008Example:
8009""""""""
8010
Renato Golin124f2592016-07-20 12:16:38 +00008011.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008012
Tim Northover675a0962014-06-13 14:24:23 +00008013 <result> = and i32 4, %var ; yields i32:result = 4 & %var
8014 <result> = and i32 15, 40 ; yields i32:result = 8
8015 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00008016
8017'``or``' Instruction
8018^^^^^^^^^^^^^^^^^^^^
8019
8020Syntax:
8021"""""""
8022
8023::
8024
Tim Northover675a0962014-06-13 14:24:23 +00008025 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00008026
8027Overview:
8028"""""""""
8029
8030The '``or``' instruction returns the bitwise logical inclusive or of its
8031two operands.
8032
8033Arguments:
8034""""""""""
8035
8036The two arguments to the '``or``' instruction must be
8037:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
8038arguments must have identical types.
8039
8040Semantics:
8041""""""""""
8042
8043The truth table used for the '``or``' instruction is:
8044
8045+-----+-----+-----+
8046| In0 | In1 | Out |
8047+-----+-----+-----+
8048| 0 | 0 | 0 |
8049+-----+-----+-----+
8050| 0 | 1 | 1 |
8051+-----+-----+-----+
8052| 1 | 0 | 1 |
8053+-----+-----+-----+
8054| 1 | 1 | 1 |
8055+-----+-----+-----+
8056
8057Example:
8058""""""""
8059
8060::
8061
Tim Northover675a0962014-06-13 14:24:23 +00008062 <result> = or i32 4, %var ; yields i32:result = 4 | %var
8063 <result> = or i32 15, 40 ; yields i32:result = 47
8064 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00008065
8066'``xor``' Instruction
8067^^^^^^^^^^^^^^^^^^^^^
8068
8069Syntax:
8070"""""""
8071
8072::
8073
Tim Northover675a0962014-06-13 14:24:23 +00008074 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00008075
8076Overview:
8077"""""""""
8078
8079The '``xor``' instruction returns the bitwise logical exclusive or of
8080its two operands. The ``xor`` is used to implement the "one's
8081complement" operation, which is the "~" operator in C.
8082
8083Arguments:
8084""""""""""
8085
8086The two arguments to the '``xor``' instruction must be
8087:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
8088arguments must have identical types.
8089
8090Semantics:
8091""""""""""
8092
8093The truth table used for the '``xor``' instruction is:
8094
8095+-----+-----+-----+
8096| In0 | In1 | Out |
8097+-----+-----+-----+
8098| 0 | 0 | 0 |
8099+-----+-----+-----+
8100| 0 | 1 | 1 |
8101+-----+-----+-----+
8102| 1 | 0 | 1 |
8103+-----+-----+-----+
8104| 1 | 1 | 0 |
8105+-----+-----+-----+
8106
8107Example:
8108""""""""
8109
Renato Golin124f2592016-07-20 12:16:38 +00008110.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008111
Tim Northover675a0962014-06-13 14:24:23 +00008112 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
8113 <result> = xor i32 15, 40 ; yields i32:result = 39
8114 <result> = xor i32 4, 8 ; yields i32:result = 12
8115 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00008116
8117Vector Operations
8118-----------------
8119
8120LLVM supports several instructions to represent vector operations in a
8121target-independent manner. These instructions cover the element-access
8122and vector-specific operations needed to process vectors effectively.
8123While LLVM does directly support these vector operations, many
8124sophisticated algorithms will want to use target-specific intrinsics to
8125take full advantage of a specific target.
8126
8127.. _i_extractelement:
8128
8129'``extractelement``' Instruction
8130^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8131
8132Syntax:
8133"""""""
8134
8135::
8136
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00008137 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00008138
8139Overview:
8140"""""""""
8141
8142The '``extractelement``' instruction extracts a single scalar element
8143from a vector at a specified index.
8144
8145Arguments:
8146""""""""""
8147
8148The first operand of an '``extractelement``' instruction is a value of
8149:ref:`vector <t_vector>` type. The second operand is an index indicating
8150the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00008151variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00008152
8153Semantics:
8154""""""""""
8155
8156The result is a scalar of the same type as the element type of ``val``.
8157Its value is the value at position ``idx`` of ``val``. If ``idx``
Eli Friedman2c7a81b2018-06-08 21:23:09 +00008158exceeds the length of ``val``, the result is a
8159:ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008160
8161Example:
8162""""""""
8163
Renato Golin124f2592016-07-20 12:16:38 +00008164.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008165
8166 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
8167
8168.. _i_insertelement:
8169
8170'``insertelement``' Instruction
8171^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8172
8173Syntax:
8174"""""""
8175
8176::
8177
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00008178 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00008179
8180Overview:
8181"""""""""
8182
8183The '``insertelement``' instruction inserts a scalar element into a
8184vector at a specified index.
8185
8186Arguments:
8187""""""""""
8188
8189The first operand of an '``insertelement``' instruction is a value of
8190:ref:`vector <t_vector>` type. The second operand is a scalar value whose
8191type must equal the element type of the first operand. The third operand
8192is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00008193index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00008194
8195Semantics:
8196""""""""""
8197
8198The result is a vector of the same type as ``val``. Its element values
8199are those of ``val`` except at position ``idx``, where it gets the value
Eli Friedman2c7a81b2018-06-08 21:23:09 +00008200``elt``. If ``idx`` exceeds the length of ``val``, the result
8201is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008202
8203Example:
8204""""""""
8205
Renato Golin124f2592016-07-20 12:16:38 +00008206.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008207
8208 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
8209
8210.. _i_shufflevector:
8211
8212'``shufflevector``' Instruction
8213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8214
8215Syntax:
8216"""""""
8217
8218::
8219
8220 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
8221
8222Overview:
8223"""""""""
8224
8225The '``shufflevector``' instruction constructs a permutation of elements
8226from two input vectors, returning a vector with the same element type as
8227the input and length that is the same as the shuffle mask.
8228
8229Arguments:
8230""""""""""
8231
8232The first two operands of a '``shufflevector``' instruction are vectors
8233with the same type. The third argument is a shuffle mask whose element
8234type is always 'i32'. The result of the instruction is a vector whose
8235length is the same as the shuffle mask and whose element type is the
8236same as the element type of the first two operands.
8237
8238The shuffle mask operand is required to be a constant vector with either
8239constant integer or undef values.
8240
8241Semantics:
8242""""""""""
8243
8244The elements of the two input vectors are numbered from left to right
8245across both of the vectors. The shuffle mask operand specifies, for each
8246element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00008247result element gets. If the shuffle mask is undef, the result vector is
8248undef. If any element of the mask operand is undef, that element of the
8249result is undef. If the shuffle mask selects an undef element from one
8250of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00008251
8252Example:
8253""""""""
8254
Renato Golin124f2592016-07-20 12:16:38 +00008255.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008256
8257 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
8258 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
8259 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
8260 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
8261 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
8262 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
8263 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
8264 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
8265
8266Aggregate Operations
8267--------------------
8268
8269LLVM supports several instructions for working with
8270:ref:`aggregate <t_aggregate>` values.
8271
8272.. _i_extractvalue:
8273
8274'``extractvalue``' Instruction
8275^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8276
8277Syntax:
8278"""""""
8279
8280::
8281
8282 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
8283
8284Overview:
8285"""""""""
8286
8287The '``extractvalue``' instruction extracts the value of a member field
8288from an :ref:`aggregate <t_aggregate>` value.
8289
8290Arguments:
8291""""""""""
8292
8293The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00008294:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00008295constant indices to specify which value to extract in a similar manner
8296as indices in a '``getelementptr``' instruction.
8297
8298The major differences to ``getelementptr`` indexing are:
8299
8300- Since the value being indexed is not a pointer, the first index is
8301 omitted and assumed to be zero.
8302- At least one index must be specified.
8303- Not only struct indices but also array indices must be in bounds.
8304
8305Semantics:
8306""""""""""
8307
8308The result is the value at the position in the aggregate specified by
8309the index operands.
8310
8311Example:
8312""""""""
8313
Renato Golin124f2592016-07-20 12:16:38 +00008314.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008315
8316 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
8317
8318.. _i_insertvalue:
8319
8320'``insertvalue``' Instruction
8321^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8322
8323Syntax:
8324"""""""
8325
8326::
8327
8328 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
8329
8330Overview:
8331"""""""""
8332
8333The '``insertvalue``' instruction inserts a value into a member field in
8334an :ref:`aggregate <t_aggregate>` value.
8335
8336Arguments:
8337""""""""""
8338
8339The first operand of an '``insertvalue``' instruction is a value of
8340:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
8341a first-class value to insert. The following operands are constant
8342indices indicating the position at which to insert the value in a
8343similar manner as indices in a '``extractvalue``' instruction. The value
8344to insert must have the same type as the value identified by the
8345indices.
8346
8347Semantics:
8348""""""""""
8349
8350The result is an aggregate of the same type as ``val``. Its value is
8351that of ``val`` except that the value at the position specified by the
8352indices is that of ``elt``.
8353
8354Example:
8355""""""""
8356
8357.. code-block:: llvm
8358
8359 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
8360 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00008361 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00008362
8363.. _memoryops:
8364
8365Memory Access and Addressing Operations
8366---------------------------------------
8367
8368A key design point of an SSA-based representation is how it represents
8369memory. In LLVM, no memory locations are in SSA form, which makes things
8370very simple. This section describes how to read, write, and allocate
8371memory in LLVM.
8372
8373.. _i_alloca:
8374
8375'``alloca``' Instruction
8376^^^^^^^^^^^^^^^^^^^^^^^^
8377
8378Syntax:
8379"""""""
8380
8381::
8382
Matt Arsenault3c1fc762017-04-10 22:27:50 +00008383 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00008384
8385Overview:
8386"""""""""
8387
8388The '``alloca``' instruction allocates memory on the stack frame of the
8389currently executing function, to be automatically released when this
8390function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00008391address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00008392
8393Arguments:
8394""""""""""
8395
8396The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
8397bytes of memory on the runtime stack, returning a pointer of the
8398appropriate type to the program. If "NumElements" is specified, it is
8399the number of elements allocated, otherwise "NumElements" is defaulted
8400to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00008401allocation is guaranteed to be aligned to at least that boundary. The
8402alignment may not be greater than ``1 << 29``. If not specified, or if
8403zero, the target can choose to align the allocation on any convenient
8404boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00008405
8406'``type``' may be any sized type.
8407
8408Semantics:
8409""""""""""
8410
Sanjay Patelb6bc11d2019-02-19 22:35:12 +00008411Memory is allocated; a pointer is returned. The allocated memory is
8412uninitialized, and loading from uninitialized memory produces an undefined
8413value. The operation itself is undefined if there is insufficient stack
8414space for the allocation.'``alloca``'d memory is automatically released
8415when the function returns. The '``alloca``' instruction is commonly used
8416to represent automatic variables that must have an address available. When
8417the function returns (either with the ``ret`` or ``resume`` instructions),
8418the memory is reclaimed. Allocating zero bytes is legal, but the returned
8419pointer may not be unique. The order in which memory is allocated (ie.,
8420which way the stack grows) is not specified.
Sean Silvab084af42012-12-07 10:36:55 +00008421
8422Example:
8423""""""""
8424
8425.. code-block:: llvm
8426
Tim Northover675a0962014-06-13 14:24:23 +00008427 %ptr = alloca i32 ; yields i32*:ptr
8428 %ptr = alloca i32, i32 4 ; yields i32*:ptr
8429 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
8430 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00008431
8432.. _i_load:
8433
8434'``load``' Instruction
8435^^^^^^^^^^^^^^^^^^^^^^
8436
8437Syntax:
8438"""""""
8439
8440::
8441
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008442 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008443 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00008444 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008445 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008446 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00008447
8448Overview:
8449"""""""""
8450
8451The '``load``' instruction is used to read from memory.
8452
8453Arguments:
8454""""""""""
8455
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00008456The argument to the ``load`` instruction specifies the memory address from which
8457to load. The type specified must be a :ref:`first class <t_firstclass>` type of
8458known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
8459the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
8460modify the number or order of execution of this ``load`` with other
8461:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008462
JF Bastiend1fb5852015-12-17 22:09:19 +00008463If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008464<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8465``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
8466Atomic loads produce :ref:`defined <memmodel>` results when they may see
8467multiple atomic stores. The type of the pointee must be an integer, pointer, or
8468floating-point type whose bit width is a power of two greater than or equal to
8469eight and less than or equal to a target-specific size limit. ``align`` must be
8470explicitly specified on atomic loads, and the load has undefined behavior if the
8471alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00008472pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00008473
8474The optional constant ``align`` argument specifies the alignment of the
8475operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00008476or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00008477alignment for the target. It is the responsibility of the code emitter
8478to ensure that the alignment information is correct. Overestimating the
8479alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00008480may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00008481maximum possible alignment is ``1 << 29``. An alignment value higher
8482than the size of the loaded type implies memory up to the alignment
8483value bytes can be safely loaded without trapping in the default
8484address space. Access of the high bytes can interfere with debugging
8485tools, so should not be accessed if the function has the
8486``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00008487
8488The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008489metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00008490``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008491metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00008492that this load is not expected to be reused in the cache. The code
8493generator may select special instructions to save cache bandwidth, such
8494as the ``MOVNT`` instruction on x86.
8495
8496The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008497metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00008498entries. If a load instruction tagged with the ``!invariant.load``
8499metadata is executed, the optimizer may assume the memory location
8500referenced by the load contains the same value at all points in the
Eli Friedmane15a1112018-07-17 20:38:11 +00008501program where the memory location is known to be dereferenceable;
8502otherwise, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008503
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008504The optional ``!invariant.group`` metadata must reference a single metadata name
Piotr Padlewskice358262018-05-18 23:53:46 +00008505 ``<index>`` corresponding to a metadata node with no entries.
8506 See ``invariant.group`` metadata.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008507
Philip Reamescdb72f32014-10-20 22:40:55 +00008508The optional ``!nonnull`` metadata must reference a single
8509metadata name ``<index>`` corresponding to a metadata node with no
8510entries. The existence of the ``!nonnull`` metadata on the
8511instruction tells the optimizer that the value loaded is known to
Eli Friedmane15a1112018-07-17 20:38:11 +00008512never be null. If the value is null at runtime, the behavior is undefined.
8513This is analogous to the ``nonnull`` attribute on parameters and return
8514values. This metadata can only be applied to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00008515
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008516The optional ``!dereferenceable`` metadata must reference a single metadata
8517name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00008518entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00008519tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00008520The number of bytes known to be dereferenceable is specified by the integer
8521value in the metadata node. This is analogous to the ''dereferenceable''
8522attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00008523to loads of a pointer type.
8524
8525The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008526metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
8527``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00008528instruction tells the optimizer that the value loaded is known to be either
8529dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00008530The number of bytes known to be dereferenceable is specified by the integer
8531value in the metadata node. This is analogous to the ''dereferenceable_or_null''
8532attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00008533to loads of a pointer type.
8534
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008535The optional ``!align`` metadata must reference a single metadata name
8536``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
8537The existence of the ``!align`` metadata on the instruction tells the
8538optimizer that the value loaded is known to be aligned to a boundary specified
8539by the integer value in the metadata node. The alignment must be a power of 2.
8540This is analogous to the ''align'' attribute on parameters and return values.
Eli Friedmane15a1112018-07-17 20:38:11 +00008541This metadata can only be applied to loads of a pointer type. If the returned
8542value is not appropriately aligned at runtime, the behavior is undefined.
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008543
Sean Silvab084af42012-12-07 10:36:55 +00008544Semantics:
8545""""""""""
8546
8547The location of memory pointed to is loaded. If the value being loaded
8548is of scalar type then the number of bytes read does not exceed the
8549minimum number of bytes needed to hold all bits of the type. For
8550example, loading an ``i24`` reads at most three bytes. When loading a
8551value of a type like ``i20`` with a size that is not an integral number
8552of bytes, the result is undefined if the value was not originally
8553written using a store of the same type.
8554
8555Examples:
8556"""""""""
8557
8558.. code-block:: llvm
8559
Tim Northover675a0962014-06-13 14:24:23 +00008560 %ptr = alloca i32 ; yields i32*:ptr
8561 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00008562 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008563
8564.. _i_store:
8565
8566'``store``' Instruction
8567^^^^^^^^^^^^^^^^^^^^^^^
8568
8569Syntax:
8570"""""""
8571
8572::
8573
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008574 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008575 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008576
8577Overview:
8578"""""""""
8579
8580The '``store``' instruction is used to write to memory.
8581
8582Arguments:
8583""""""""""
8584
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00008585There are two arguments to the ``store`` instruction: a value to store and an
8586address at which to store it. The type of the ``<pointer>`` operand must be a
8587pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
8588operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
8589allowed to modify the number or order of execution of this ``store`` with other
8590:ref:`volatile operations <volatile>`. Only values of :ref:`first class
8591<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
8592structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00008593
JF Bastiend1fb5852015-12-17 22:09:19 +00008594If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008595<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8596``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
8597Atomic loads produce :ref:`defined <memmodel>` results when they may see
8598multiple atomic stores. The type of the pointee must be an integer, pointer, or
8599floating-point type whose bit width is a power of two greater than or equal to
8600eight and less than or equal to a target-specific size limit. ``align`` must be
8601explicitly specified on atomic stores, and the store has undefined behavior if
8602the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00008603pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00008604
Eli Benderskyca380842013-04-17 17:17:20 +00008605The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00008606operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00008607or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00008608alignment for the target. It is the responsibility of the code emitter
8609to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00008610alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00008611alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00008612safe. The maximum possible alignment is ``1 << 29``. An alignment
8613value higher than the size of the stored type implies memory up to the
8614alignment value bytes can be stored to without trapping in the default
8615address space. Storing to the higher bytes however may result in data
8616races if another thread can access the same address. Introducing a
8617data race is not allowed. Storing to the extra bytes is not allowed
8618even in situations where a data race is known to not exist if the
8619function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00008620
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008621The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00008622name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008623value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00008624tells the optimizer and code generator that this load is not expected to
8625be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00008626instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00008627x86.
8628
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008629The optional ``!invariant.group`` metadata must reference a
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008630single metadata name ``<index>``. See ``invariant.group`` metadata.
8631
Sean Silvab084af42012-12-07 10:36:55 +00008632Semantics:
8633""""""""""
8634
Eli Benderskyca380842013-04-17 17:17:20 +00008635The contents of memory are updated to contain ``<value>`` at the
8636location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00008637of scalar type then the number of bytes written does not exceed the
8638minimum number of bytes needed to hold all bits of the type. For
8639example, storing an ``i24`` writes at most three bytes. When writing a
8640value of a type like ``i20`` with a size that is not an integral number
8641of bytes, it is unspecified what happens to the extra bits that do not
8642belong to the type, but they will typically be overwritten.
8643
8644Example:
8645""""""""
8646
8647.. code-block:: llvm
8648
Tim Northover675a0962014-06-13 14:24:23 +00008649 %ptr = alloca i32 ; yields i32*:ptr
8650 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00008651 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008652
8653.. _i_fence:
8654
8655'``fence``' Instruction
8656^^^^^^^^^^^^^^^^^^^^^^^
8657
8658Syntax:
8659"""""""
8660
8661::
8662
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008663 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008664
8665Overview:
8666"""""""""
8667
8668The '``fence``' instruction is used to introduce happens-before edges
8669between operations.
8670
8671Arguments:
8672""""""""""
8673
8674'``fence``' instructions take an :ref:`ordering <ordering>` argument which
8675defines what *synchronizes-with* edges they add. They can only be given
8676``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
8677
8678Semantics:
8679""""""""""
8680
8681A fence A which has (at least) ``release`` ordering semantics
8682*synchronizes with* a fence B with (at least) ``acquire`` ordering
8683semantics if and only if there exist atomic operations X and Y, both
8684operating on some atomic object M, such that A is sequenced before X, X
8685modifies M (either directly or through some side effect of a sequence
8686headed by X), Y is sequenced before B, and Y observes M. This provides a
8687*happens-before* dependency between A and B. Rather than an explicit
8688``fence``, one (but not both) of the atomic operations X or Y might
8689provide a ``release`` or ``acquire`` (resp.) ordering constraint and
8690still *synchronize-with* the explicit ``fence`` and establish the
8691*happens-before* edge.
8692
8693A ``fence`` which has ``seq_cst`` ordering, in addition to having both
8694``acquire`` and ``release`` semantics specified above, participates in
8695the global program order of other ``seq_cst`` operations and/or fences.
8696
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008697A ``fence`` instruction can also take an optional
8698":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008699
8700Example:
8701""""""""
8702
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008703.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008704
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008705 fence acquire ; yields void
8706 fence syncscope("singlethread") seq_cst ; yields void
8707 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008708
8709.. _i_cmpxchg:
8710
8711'``cmpxchg``' Instruction
8712^^^^^^^^^^^^^^^^^^^^^^^^^
8713
8714Syntax:
8715"""""""
8716
8717::
8718
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008719 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00008720
8721Overview:
8722"""""""""
8723
8724The '``cmpxchg``' instruction is used to atomically modify memory. It
8725loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00008726equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00008727
8728Arguments:
8729""""""""""
8730
8731There are three arguments to the '``cmpxchg``' instruction: an address
8732to operate on, a value to compare to the value currently be at that
8733address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00008734are equal. The type of '<cmp>' must be an integer or pointer type whose
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008735bit width is a power of two greater than or equal to eight and less
Philip Reames1960cfd2016-02-19 00:06:41 +00008736than or equal to a target-specific size limit. '<cmp>' and '<new>' must
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008737have the same type, and the type of '<pointer>' must be a pointer to
8738that type. If the ``cmpxchg`` is marked as ``volatile``, then the
Philip Reames1960cfd2016-02-19 00:06:41 +00008739optimizer is not allowed to modify the number or order of execution of
8740this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008741
Tim Northovere94a5182014-03-11 10:48:52 +00008742The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00008743``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
8744must be at least ``monotonic``, the ordering constraint on failure must be no
8745stronger than that on success, and the failure ordering cannot be either
8746``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00008747
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008748A ``cmpxchg`` instruction can also take an optional
8749":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008750
8751The pointer passed into cmpxchg must have alignment greater than or
8752equal to the size in memory of the operand.
8753
8754Semantics:
8755""""""""""
8756
Tim Northover420a2162014-06-13 14:24:07 +00008757The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun93f2b4b2017-08-09 22:22:04 +00008758is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
8759written to the location. The original value at the location is returned,
8760together with a flag indicating success (true) or failure (false).
Tim Northover420a2162014-06-13 14:24:07 +00008761
8762If the cmpxchg operation is marked as ``weak`` then a spurious failure is
8763permitted: the operation may not write ``<new>`` even if the comparison
8764matched.
8765
8766If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
8767if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00008768
Tim Northovere94a5182014-03-11 10:48:52 +00008769A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
8770identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
8771load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00008772
8773Example:
8774""""""""
8775
8776.. code-block:: llvm
8777
8778 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008779 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008780 br label %loop
8781
8782 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008783 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00008784 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00008785 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00008786 %value_loaded = extractvalue { i32, i1 } %val_success, 0
8787 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00008788 br i1 %success, label %done, label %loop
8789
8790 done:
8791 ...
8792
8793.. _i_atomicrmw:
8794
8795'``atomicrmw``' Instruction
8796^^^^^^^^^^^^^^^^^^^^^^^^^^^
8797
8798Syntax:
8799"""""""
8800
8801::
8802
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008803 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00008804
8805Overview:
8806"""""""""
8807
8808The '``atomicrmw``' instruction is used to atomically modify memory.
8809
8810Arguments:
8811""""""""""
8812
8813There are three arguments to the '``atomicrmw``' instruction: an
8814operation to apply, an address whose value to modify, an argument to the
8815operation. The operation must be one of the following keywords:
8816
8817- xchg
8818- add
8819- sub
8820- and
8821- nand
8822- or
8823- xor
8824- max
8825- min
8826- umax
8827- umin
Matt Arsenault39508332019-01-22 18:18:02 +00008828- fadd
8829- fsub
Sean Silvab084af42012-12-07 10:36:55 +00008830
Matt Arsenault0cb08e42019-01-17 10:49:01 +00008831For most of these operations, the type of '<value>' must be an integer
8832type whose bit width is a power of two greater than or equal to eight
8833and less than or equal to a target-specific size limit. For xchg, this
8834may also be a floating point type with the same size constraints as
Matt Arsenault39508332019-01-22 18:18:02 +00008835integers. For fadd/fsub, this must be a floating point type. The
8836type of the '``<pointer>``' operand must be a pointer to that type. If
8837the ``atomicrmw`` is marked as ``volatile``, then the optimizer is not
8838allowed to modify the number or order of execution of this
8839``atomicrmw`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008840
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008841A ``atomicrmw`` instruction can also take an optional
8842":ref:`syncscope <syncscope>`" argument.
8843
Sean Silvab084af42012-12-07 10:36:55 +00008844Semantics:
8845""""""""""
8846
8847The contents of memory at the location specified by the '``<pointer>``'
8848operand are atomically read, modified, and written back. The original
8849value at the location is returned. The modification is specified by the
8850operation argument:
8851
8852- xchg: ``*ptr = val``
8853- add: ``*ptr = *ptr + val``
8854- sub: ``*ptr = *ptr - val``
8855- and: ``*ptr = *ptr & val``
8856- nand: ``*ptr = ~(*ptr & val)``
8857- or: ``*ptr = *ptr | val``
8858- xor: ``*ptr = *ptr ^ val``
8859- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
8860- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
8861- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
8862 comparison)
8863- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
8864 comparison)
Matt Arsenault39508332019-01-22 18:18:02 +00008865- fadd: ``*ptr = *ptr + val`` (using floating point arithmetic)
8866- fsub: ``*ptr = *ptr - val`` (using floating point arithmetic)
Sean Silvab084af42012-12-07 10:36:55 +00008867
8868Example:
8869""""""""
8870
8871.. code-block:: llvm
8872
Tim Northover675a0962014-06-13 14:24:23 +00008873 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008874
8875.. _i_getelementptr:
8876
8877'``getelementptr``' Instruction
8878^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8879
8880Syntax:
8881"""""""
8882
8883::
8884
Peter Collingbourned93620b2016-11-10 22:34:55 +00008885 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8886 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8887 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00008888
8889Overview:
8890"""""""""
8891
8892The '``getelementptr``' instruction is used to get the address of a
8893subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008894address calculation only and does not access memory. The instruction can also
8895be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00008896
8897Arguments:
8898""""""""""
8899
David Blaikie16a97eb2015-03-04 22:02:58 +00008900The first argument is always a type used as the basis for the calculations.
8901The second argument is always a pointer or a vector of pointers, and is the
8902base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00008903that indicate which of the elements of the aggregate object are indexed.
8904The interpretation of each index is dependent on the type being indexed
8905into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00008906second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00008907(not necessarily the value directly pointed to, since the first index
8908can be non-zero), etc. The first type indexed into must be a pointer
8909value, subsequent types can be arrays, vectors, and structs. Note that
8910subsequent types being indexed into can never be pointers, since that
8911would require loading the pointer before continuing calculation.
8912
8913The type of each index argument depends on the type it is indexing into.
8914When indexing into a (optionally packed) structure, only ``i32`` integer
8915**constants** are allowed (when using a vector of indices they must all
8916be the **same** ``i32`` integer constant). When indexing into an array,
8917pointer or vector, integers of any width are allowed, and they are not
8918required to be constant. These integers are treated as signed values
8919where relevant.
8920
8921For example, let's consider a C code fragment and how it gets compiled
8922to LLVM:
8923
8924.. code-block:: c
8925
8926 struct RT {
8927 char A;
8928 int B[10][20];
8929 char C;
8930 };
8931 struct ST {
8932 int X;
8933 double Y;
8934 struct RT Z;
8935 };
8936
8937 int *foo(struct ST *s) {
8938 return &s[1].Z.B[5][13];
8939 }
8940
8941The LLVM code generated by Clang is:
8942
8943.. code-block:: llvm
8944
8945 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
8946 %struct.ST = type { i32, double, %struct.RT }
8947
8948 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
8949 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00008950 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00008951 ret i32* %arrayidx
8952 }
8953
8954Semantics:
8955""""""""""
8956
8957In the example above, the first index is indexing into the
8958'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
8959= '``{ i32, double, %struct.RT }``' type, a structure. The second index
8960indexes into the third element of the structure, yielding a
8961'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
8962structure. The third index indexes into the second element of the
8963structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
8964dimensions of the array are subscripted into, yielding an '``i32``'
8965type. The '``getelementptr``' instruction returns a pointer to this
8966element, thus computing a value of '``i32*``' type.
8967
8968Note that it is perfectly legal to index partially through a structure,
8969returning a pointer to an inner element. Because of this, the LLVM code
8970for the given testcase is equivalent to:
8971
8972.. code-block:: llvm
8973
8974 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00008975 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
8976 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
8977 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
8978 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
8979 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00008980 ret i32* %t5
8981 }
8982
8983If the ``inbounds`` keyword is present, the result value of the
8984``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
8985pointer is not an *in bounds* address of an allocated object, or if any
8986of the addresses that would be formed by successive addition of the
8987offsets implied by the indices to the base address with infinitely
8988precise signed arithmetic are not an *in bounds* address of that
8989allocated object. The *in bounds* addresses for an allocated object are
8990all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00008991past the end. The only *in bounds* address for a null pointer in the
8992default address-space is the null pointer itself. In cases where the
8993base is a vector of pointers the ``inbounds`` keyword applies to each
8994of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00008995
8996If the ``inbounds`` keyword is not present, the offsets are added to the
8997base address with silently-wrapping two's complement arithmetic. If the
8998offsets have a different width from the pointer, they are sign-extended
8999or truncated to the width of the pointer. The result value of the
9000``getelementptr`` may be outside the object pointed to by the base
9001pointer. The result value may not necessarily be used to access memory
9002though, even if it happens to point into allocated storage. See the
9003:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
9004information.
9005
Peter Collingbourned93620b2016-11-10 22:34:55 +00009006If the ``inrange`` keyword is present before any index, loading from or
9007storing to any pointer derived from the ``getelementptr`` has undefined
9008behavior if the load or store would access memory outside of the bounds of
9009the element selected by the index marked as ``inrange``. The result of a
9010pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
9011involving memory) involving a pointer derived from a ``getelementptr`` with
9012the ``inrange`` keyword is undefined, with the exception of comparisons
9013in the case where both operands are in the range of the element selected
9014by the ``inrange`` keyword, inclusive of the address one past the end of
9015that element. Note that the ``inrange`` keyword is currently only allowed
9016in constant ``getelementptr`` expressions.
9017
Sean Silvab084af42012-12-07 10:36:55 +00009018The getelementptr instruction is often confusing. For some more insight
9019into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
9020
9021Example:
9022""""""""
9023
9024.. code-block:: llvm
9025
9026 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00009027 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00009028 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00009029 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00009030 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00009031 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00009032 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00009033 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00009034
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00009035Vector of pointers:
9036"""""""""""""""""""
9037
9038The ``getelementptr`` returns a vector of pointers, instead of a single address,
9039when one or more of its arguments is a vector. In such cases, all vector
9040arguments should have the same number of elements, and every scalar argument
9041will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00009042
9043.. code-block:: llvm
9044
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00009045 ; All arguments are vectors:
9046 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
9047 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00009048
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00009049 ; Add the same scalar offset to each pointer of a vector:
9050 ; A[i] = ptrs[i] + offset*sizeof(i8)
9051 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00009052
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00009053 ; Add distinct offsets to the same pointer:
9054 ; A[i] = ptr + offsets[i]*sizeof(i8)
9055 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00009056
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00009057 ; In all cases described above the type of the result is <4 x i8*>
9058
9059The two following instructions are equivalent:
9060
9061.. code-block:: llvm
9062
9063 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
9064 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
9065 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
9066 <4 x i32> %ind4,
9067 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00009068
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00009069 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
9070 i32 2, i32 1, <4 x i32> %ind4, i64 13
9071
9072Let's look at the C code, where the vector version of ``getelementptr``
9073makes sense:
9074
9075.. code-block:: c
9076
9077 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00009078 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00009079 for (int i = 0; i < size; ++i) {
9080 A[i] = B[C[i]];
9081 }
9082
9083.. code-block:: llvm
9084
9085 ; get pointers for 8 elements from array B
9086 %ptrs = getelementptr double, double* %B, <8 x i32> %C
9087 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00009088 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00009089 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00009090
9091Conversion Operations
9092---------------------
9093
9094The instructions in this category are the conversion instructions
9095(casting) which all take a single operand and a type. They perform
9096various bit conversions on the operand.
9097
Bjorn Petterssone1285e32017-10-24 11:59:20 +00009098.. _i_trunc:
9099
Sean Silvab084af42012-12-07 10:36:55 +00009100'``trunc .. to``' Instruction
9101^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9102
9103Syntax:
9104"""""""
9105
9106::
9107
9108 <result> = trunc <ty> <value> to <ty2> ; yields ty2
9109
9110Overview:
9111"""""""""
9112
9113The '``trunc``' instruction truncates its operand to the type ``ty2``.
9114
9115Arguments:
9116""""""""""
9117
9118The '``trunc``' instruction takes a value to trunc, and a type to trunc
9119it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
9120of the same number of integers. The bit size of the ``value`` must be
9121larger than the bit size of the destination type, ``ty2``. Equal sized
9122types are not allowed.
9123
9124Semantics:
9125""""""""""
9126
9127The '``trunc``' instruction truncates the high order bits in ``value``
9128and converts the remaining bits to ``ty2``. Since the source size must
9129be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
9130It will always truncate bits.
9131
9132Example:
9133""""""""
9134
9135.. code-block:: llvm
9136
9137 %X = trunc i32 257 to i8 ; yields i8:1
9138 %Y = trunc i32 123 to i1 ; yields i1:true
9139 %Z = trunc i32 122 to i1 ; yields i1:false
9140 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
9141
Bjorn Petterssone1285e32017-10-24 11:59:20 +00009142.. _i_zext:
9143
Sean Silvab084af42012-12-07 10:36:55 +00009144'``zext .. to``' Instruction
9145^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9146
9147Syntax:
9148"""""""
9149
9150::
9151
9152 <result> = zext <ty> <value> to <ty2> ; yields ty2
9153
9154Overview:
9155"""""""""
9156
9157The '``zext``' instruction zero extends its operand to type ``ty2``.
9158
9159Arguments:
9160""""""""""
9161
9162The '``zext``' instruction takes a value to cast, and a type to cast it
9163to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
9164the same number of integers. The bit size of the ``value`` must be
9165smaller than the bit size of the destination type, ``ty2``.
9166
9167Semantics:
9168""""""""""
9169
9170The ``zext`` fills the high order bits of the ``value`` with zero bits
9171until it reaches the size of the destination type, ``ty2``.
9172
9173When zero extending from i1, the result will always be either 0 or 1.
9174
9175Example:
9176""""""""
9177
9178.. code-block:: llvm
9179
9180 %X = zext i32 257 to i64 ; yields i64:257
9181 %Y = zext i1 true to i32 ; yields i32:1
9182 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
9183
Bjorn Petterssone1285e32017-10-24 11:59:20 +00009184.. _i_sext:
9185
Sean Silvab084af42012-12-07 10:36:55 +00009186'``sext .. to``' Instruction
9187^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9188
9189Syntax:
9190"""""""
9191
9192::
9193
9194 <result> = sext <ty> <value> to <ty2> ; yields ty2
9195
9196Overview:
9197"""""""""
9198
9199The '``sext``' sign extends ``value`` to the type ``ty2``.
9200
9201Arguments:
9202""""""""""
9203
9204The '``sext``' instruction takes a value to cast, and a type to cast it
9205to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
9206the same number of integers. The bit size of the ``value`` must be
9207smaller than the bit size of the destination type, ``ty2``.
9208
9209Semantics:
9210""""""""""
9211
9212The '``sext``' instruction performs a sign extension by copying the sign
9213bit (highest order bit) of the ``value`` until it reaches the bit size
9214of the type ``ty2``.
9215
9216When sign extending from i1, the extension always results in -1 or 0.
9217
9218Example:
9219""""""""
9220
9221.. code-block:: llvm
9222
9223 %X = sext i8 -1 to i16 ; yields i16 :65535
9224 %Y = sext i1 true to i32 ; yields i32:-1
9225 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
9226
9227'``fptrunc .. to``' Instruction
9228^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9229
9230Syntax:
9231"""""""
9232
9233::
9234
9235 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
9236
9237Overview:
9238"""""""""
9239
9240The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
9241
9242Arguments:
9243""""""""""
9244
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009245The '``fptrunc``' instruction takes a :ref:`floating-point <t_floating>`
9246value to cast and a :ref:`floating-point <t_floating>` type to cast it to.
Sean Silvab084af42012-12-07 10:36:55 +00009247The size of ``value`` must be larger than the size of ``ty2``. This
9248implies that ``fptrunc`` cannot be used to make a *no-op cast*.
9249
9250Semantics:
9251""""""""""
9252
Dan Liew50456fb2015-09-03 18:43:56 +00009253The '``fptrunc``' instruction casts a ``value`` from a larger
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009254:ref:`floating-point <t_floating>` type to a smaller :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00009255<t_floating>` type.
Sanjay Pateld96a3632018-04-03 13:05:20 +00009256This instruction is assumed to execute in the default :ref:`floating-point
9257environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00009258
9259Example:
9260""""""""
9261
9262.. code-block:: llvm
9263
Sanjay Pateld96a3632018-04-03 13:05:20 +00009264 %X = fptrunc double 16777217.0 to float ; yields float:16777216.0
9265 %Y = fptrunc double 1.0E+300 to half ; yields half:+infinity
Sean Silvab084af42012-12-07 10:36:55 +00009266
9267'``fpext .. to``' Instruction
9268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9269
9270Syntax:
9271"""""""
9272
9273::
9274
9275 <result> = fpext <ty> <value> to <ty2> ; yields ty2
9276
9277Overview:
9278"""""""""
9279
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009280The '``fpext``' extends a floating-point ``value`` to a larger floating-point
9281value.
Sean Silvab084af42012-12-07 10:36:55 +00009282
9283Arguments:
9284""""""""""
9285
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009286The '``fpext``' instruction takes a :ref:`floating-point <t_floating>`
9287``value`` to cast, and a :ref:`floating-point <t_floating>` type to cast it
Sean Silvab084af42012-12-07 10:36:55 +00009288to. The source type must be smaller than the destination type.
9289
9290Semantics:
9291""""""""""
9292
9293The '``fpext``' instruction extends the ``value`` from a smaller
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009294:ref:`floating-point <t_floating>` type to a larger :ref:`floating-point
9295<t_floating>` type. The ``fpext`` cannot be used to make a
Sean Silvab084af42012-12-07 10:36:55 +00009296*no-op cast* because it always changes bits. Use ``bitcast`` to make a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009297*no-op cast* for a floating-point cast.
Sean Silvab084af42012-12-07 10:36:55 +00009298
9299Example:
9300""""""""
9301
9302.. code-block:: llvm
9303
9304 %X = fpext float 3.125 to double ; yields double:3.125000e+00
9305 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
9306
9307'``fptoui .. to``' Instruction
9308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9309
9310Syntax:
9311"""""""
9312
9313::
9314
9315 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
9316
9317Overview:
9318"""""""""
9319
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009320The '``fptoui``' converts a floating-point ``value`` to its unsigned
Sean Silvab084af42012-12-07 10:36:55 +00009321integer equivalent of type ``ty2``.
9322
9323Arguments:
9324""""""""""
9325
9326The '``fptoui``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009327scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00009328cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009329``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00009330type with the same number of elements as ``ty``
9331
9332Semantics:
9333""""""""""
9334
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009335The '``fptoui``' instruction converts its :ref:`floating-point
9336<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00009337unsigned integer value. If the value cannot fit in ``ty2``, the result
9338is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00009339
9340Example:
9341""""""""
9342
9343.. code-block:: llvm
9344
9345 %X = fptoui double 123.0 to i32 ; yields i32:123
9346 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
9347 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
9348
9349'``fptosi .. to``' Instruction
9350^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9351
9352Syntax:
9353"""""""
9354
9355::
9356
9357 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
9358
9359Overview:
9360"""""""""
9361
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009362The '``fptosi``' instruction converts :ref:`floating-point <t_floating>`
Sean Silvab084af42012-12-07 10:36:55 +00009363``value`` to type ``ty2``.
9364
9365Arguments:
9366""""""""""
9367
9368The '``fptosi``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009369scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00009370cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009371``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00009372type with the same number of elements as ``ty``
9373
9374Semantics:
9375""""""""""
9376
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009377The '``fptosi``' instruction converts its :ref:`floating-point
9378<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00009379signed integer value. If the value cannot fit in ``ty2``, the result
9380is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00009381
9382Example:
9383""""""""
9384
9385.. code-block:: llvm
9386
9387 %X = fptosi double -123.0 to i32 ; yields i32:-123
9388 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
9389 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
9390
9391'``uitofp .. to``' Instruction
9392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9393
9394Syntax:
9395"""""""
9396
9397::
9398
9399 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
9400
9401Overview:
9402"""""""""
9403
9404The '``uitofp``' instruction regards ``value`` as an unsigned integer
9405and converts that value to the ``ty2`` type.
9406
9407Arguments:
9408""""""""""
9409
9410The '``uitofp``' instruction takes a value to cast, which must be a
9411scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009412``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
9413``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00009414type with the same number of elements as ``ty``
9415
9416Semantics:
9417""""""""""
9418
9419The '``uitofp``' instruction interprets its operand as an unsigned
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009420integer quantity and converts it to the corresponding floating-point
Eli Friedman3f1ce092018-06-14 22:58:48 +00009421value. If the value cannot be exactly represented, it is rounded using
9422the default rounding mode.
9423
Sean Silvab084af42012-12-07 10:36:55 +00009424
9425Example:
9426""""""""
9427
9428.. code-block:: llvm
9429
9430 %X = uitofp i32 257 to float ; yields float:257.0
9431 %Y = uitofp i8 -1 to double ; yields double:255.0
9432
9433'``sitofp .. to``' Instruction
9434^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9435
9436Syntax:
9437"""""""
9438
9439::
9440
9441 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
9442
9443Overview:
9444"""""""""
9445
9446The '``sitofp``' instruction regards ``value`` as a signed integer and
9447converts that value to the ``ty2`` type.
9448
9449Arguments:
9450""""""""""
9451
9452The '``sitofp``' instruction takes a value to cast, which must be a
9453scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009454``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
9455``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00009456type with the same number of elements as ``ty``
9457
9458Semantics:
9459""""""""""
9460
9461The '``sitofp``' instruction interprets its operand as a signed integer
Eli Friedman3f1ce092018-06-14 22:58:48 +00009462quantity and converts it to the corresponding floating-point value. If the
9463value cannot be exactly represented, it is rounded using the default rounding
9464mode.
Sean Silvab084af42012-12-07 10:36:55 +00009465
9466Example:
9467""""""""
9468
9469.. code-block:: llvm
9470
9471 %X = sitofp i32 257 to float ; yields float:257.0
9472 %Y = sitofp i8 -1 to double ; yields double:-1.0
9473
9474.. _i_ptrtoint:
9475
9476'``ptrtoint .. to``' Instruction
9477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9478
9479Syntax:
9480"""""""
9481
9482::
9483
9484 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
9485
9486Overview:
9487"""""""""
9488
9489The '``ptrtoint``' instruction converts the pointer or a vector of
9490pointers ``value`` to the integer (or vector of integers) type ``ty2``.
9491
9492Arguments:
9493""""""""""
9494
9495The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00009496a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00009497type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
9498a vector of integers type.
9499
9500Semantics:
9501""""""""""
9502
9503The '``ptrtoint``' instruction converts ``value`` to integer type
9504``ty2`` by interpreting the pointer value as an integer and either
9505truncating or zero extending that value to the size of the integer type.
9506If ``value`` is smaller than ``ty2`` then a zero extension is done. If
9507``value`` is larger than ``ty2`` then a truncation is done. If they are
9508the same size, then nothing is done (*no-op cast*) other than a type
9509change.
9510
9511Example:
9512""""""""
9513
9514.. code-block:: llvm
9515
9516 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
9517 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
9518 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
9519
9520.. _i_inttoptr:
9521
9522'``inttoptr .. to``' Instruction
9523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9524
9525Syntax:
9526"""""""
9527
9528::
9529
9530 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
9531
9532Overview:
9533"""""""""
9534
9535The '``inttoptr``' instruction converts an integer ``value`` to a
9536pointer type, ``ty2``.
9537
9538Arguments:
9539""""""""""
9540
9541The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
9542cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
9543type.
9544
9545Semantics:
9546""""""""""
9547
9548The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
9549applying either a zero extension or a truncation depending on the size
9550of the integer ``value``. If ``value`` is larger than the size of a
9551pointer then a truncation is done. If ``value`` is smaller than the size
9552of a pointer then a zero extension is done. If they are the same size,
9553nothing is done (*no-op cast*).
9554
9555Example:
9556""""""""
9557
9558.. code-block:: llvm
9559
9560 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
9561 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
9562 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
9563 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
9564
9565.. _i_bitcast:
9566
9567'``bitcast .. to``' Instruction
9568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9569
9570Syntax:
9571"""""""
9572
9573::
9574
9575 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
9576
9577Overview:
9578"""""""""
9579
9580The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
9581changing any bits.
9582
9583Arguments:
9584""""""""""
9585
9586The '``bitcast``' instruction takes a value to cast, which must be a
9587non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009588also be a non-aggregate :ref:`first class <t_firstclass>` type. The
9589bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00009590identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009591also be a pointer of the same size. This instruction supports bitwise
9592conversion of vectors to integers and to vectors of other types (as
9593long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00009594
9595Semantics:
9596""""""""""
9597
Matt Arsenault24b49c42013-07-31 17:49:08 +00009598The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
9599is always a *no-op cast* because no bits change with this
9600conversion. The conversion is done as if the ``value`` had been stored
9601to memory and read back as type ``ty2``. Pointer (or vector of
9602pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009603pointers) types with the same address space through this instruction.
9604To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
9605or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00009606
9607Example:
9608""""""""
9609
Renato Golin124f2592016-07-20 12:16:38 +00009610.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009611
9612 %X = bitcast i8 255 to i8 ; yields i8 :-1
9613 %Y = bitcast i32* %x to sint* ; yields sint*:%x
9614 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
9615 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
9616
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009617.. _i_addrspacecast:
9618
9619'``addrspacecast .. to``' Instruction
9620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9621
9622Syntax:
9623"""""""
9624
9625::
9626
9627 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
9628
9629Overview:
9630"""""""""
9631
9632The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
9633address space ``n`` to type ``pty2`` in address space ``m``.
9634
9635Arguments:
9636""""""""""
9637
9638The '``addrspacecast``' instruction takes a pointer or vector of pointer value
9639to cast and a pointer type to cast it to, which must have a different
9640address space.
9641
9642Semantics:
9643""""""""""
9644
9645The '``addrspacecast``' instruction converts the pointer value
9646``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00009647value modification, depending on the target and the address space
9648pair. Pointer conversions within the same address space must be
9649performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009650conversion is legal then both result and operand refer to the same memory
9651location.
9652
9653Example:
9654""""""""
9655
9656.. code-block:: llvm
9657
Matt Arsenault9c13dd02013-11-15 22:43:50 +00009658 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
9659 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
9660 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009661
Sean Silvab084af42012-12-07 10:36:55 +00009662.. _otherops:
9663
9664Other Operations
9665----------------
9666
9667The instructions in this category are the "miscellaneous" instructions,
9668which defy better classification.
9669
9670.. _i_icmp:
9671
9672'``icmp``' Instruction
9673^^^^^^^^^^^^^^^^^^^^^^
9674
9675Syntax:
9676"""""""
9677
9678::
9679
Tim Northover675a0962014-06-13 14:24:23 +00009680 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009681
9682Overview:
9683"""""""""
9684
9685The '``icmp``' instruction returns a boolean value or a vector of
9686boolean values based on comparison of its two integer, integer vector,
9687pointer, or pointer vector operands.
9688
9689Arguments:
9690""""""""""
9691
9692The '``icmp``' instruction takes three operands. The first operand is
9693the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009694not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009695
9696#. ``eq``: equal
9697#. ``ne``: not equal
9698#. ``ugt``: unsigned greater than
9699#. ``uge``: unsigned greater or equal
9700#. ``ult``: unsigned less than
9701#. ``ule``: unsigned less or equal
9702#. ``sgt``: signed greater than
9703#. ``sge``: signed greater or equal
9704#. ``slt``: signed less than
9705#. ``sle``: signed less or equal
9706
9707The remaining two arguments must be :ref:`integer <t_integer>` or
9708:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
9709must also be identical types.
9710
9711Semantics:
9712""""""""""
9713
9714The '``icmp``' compares ``op1`` and ``op2`` according to the condition
9715code given as ``cond``. The comparison performed always yields either an
9716:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
9717
9718#. ``eq``: yields ``true`` if the operands are equal, ``false``
9719 otherwise. No sign interpretation is necessary or performed.
9720#. ``ne``: yields ``true`` if the operands are unequal, ``false``
9721 otherwise. No sign interpretation is necessary or performed.
9722#. ``ugt``: interprets the operands as unsigned values and yields
9723 ``true`` if ``op1`` is greater than ``op2``.
9724#. ``uge``: interprets the operands as unsigned values and yields
9725 ``true`` if ``op1`` is greater than or equal to ``op2``.
9726#. ``ult``: interprets the operands as unsigned values and yields
9727 ``true`` if ``op1`` is less than ``op2``.
9728#. ``ule``: interprets the operands as unsigned values and yields
9729 ``true`` if ``op1`` is less than or equal to ``op2``.
9730#. ``sgt``: interprets the operands as signed values and yields ``true``
9731 if ``op1`` is greater than ``op2``.
9732#. ``sge``: interprets the operands as signed values and yields ``true``
9733 if ``op1`` is greater than or equal to ``op2``.
9734#. ``slt``: interprets the operands as signed values and yields ``true``
9735 if ``op1`` is less than ``op2``.
9736#. ``sle``: interprets the operands as signed values and yields ``true``
9737 if ``op1`` is less than or equal to ``op2``.
9738
9739If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
9740are compared as if they were integers.
9741
9742If the operands are integer vectors, then they are compared element by
9743element. The result is an ``i1`` vector with the same number of elements
9744as the values being compared. Otherwise, the result is an ``i1``.
9745
9746Example:
9747""""""""
9748
Renato Golin124f2592016-07-20 12:16:38 +00009749.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009750
9751 <result> = icmp eq i32 4, 5 ; yields: result=false
9752 <result> = icmp ne float* %X, %X ; yields: result=false
9753 <result> = icmp ult i16 4, 5 ; yields: result=true
9754 <result> = icmp sgt i16 4, 5 ; yields: result=false
9755 <result> = icmp ule i16 -4, 5 ; yields: result=false
9756 <result> = icmp sge i16 4, 5 ; yields: result=false
9757
Sean Silvab084af42012-12-07 10:36:55 +00009758.. _i_fcmp:
9759
9760'``fcmp``' Instruction
9761^^^^^^^^^^^^^^^^^^^^^^
9762
9763Syntax:
9764"""""""
9765
9766::
9767
James Molloy88eb5352015-07-10 12:52:00 +00009768 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009769
9770Overview:
9771"""""""""
9772
9773The '``fcmp``' instruction returns a boolean value or vector of boolean
9774values based on comparison of its operands.
9775
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009776If the operands are floating-point scalars, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009777boolean (:ref:`i1 <t_integer>`).
9778
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009779If the operands are floating-point vectors, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009780vector of boolean with the same number of elements as the operands being
9781compared.
9782
9783Arguments:
9784""""""""""
9785
9786The '``fcmp``' instruction takes three operands. The first operand is
9787the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009788not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009789
9790#. ``false``: no comparison, always returns false
9791#. ``oeq``: ordered and equal
9792#. ``ogt``: ordered and greater than
9793#. ``oge``: ordered and greater than or equal
9794#. ``olt``: ordered and less than
9795#. ``ole``: ordered and less than or equal
9796#. ``one``: ordered and not equal
9797#. ``ord``: ordered (no nans)
9798#. ``ueq``: unordered or equal
9799#. ``ugt``: unordered or greater than
9800#. ``uge``: unordered or greater than or equal
9801#. ``ult``: unordered or less than
9802#. ``ule``: unordered or less than or equal
9803#. ``une``: unordered or not equal
9804#. ``uno``: unordered (either nans)
9805#. ``true``: no comparison, always returns true
9806
9807*Ordered* means that neither operand is a QNAN while *unordered* means
9808that either operand may be a QNAN.
9809
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009810Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating-point
9811<t_floating>` type or a :ref:`vector <t_vector>` of floating-point type.
9812They must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00009813
9814Semantics:
9815""""""""""
9816
9817The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
9818condition code given as ``cond``. If the operands are vectors, then the
9819vectors are compared element by element. Each comparison performed
9820always yields an :ref:`i1 <t_integer>` result, as follows:
9821
9822#. ``false``: always yields ``false``, regardless of operands.
9823#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
9824 is equal to ``op2``.
9825#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
9826 is greater than ``op2``.
9827#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
9828 is greater than or equal to ``op2``.
9829#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
9830 is less than ``op2``.
9831#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
9832 is less than or equal to ``op2``.
9833#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
9834 is not equal to ``op2``.
9835#. ``ord``: yields ``true`` if both operands are not a QNAN.
9836#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
9837 equal to ``op2``.
9838#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
9839 greater than ``op2``.
9840#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
9841 greater than or equal to ``op2``.
9842#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
9843 less than ``op2``.
9844#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
9845 less than or equal to ``op2``.
9846#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
9847 not equal to ``op2``.
9848#. ``uno``: yields ``true`` if either operand is a QNAN.
9849#. ``true``: always yields ``true``, regardless of operands.
9850
James Molloy88eb5352015-07-10 12:52:00 +00009851The ``fcmp`` instruction can also optionally take any number of
9852:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009853otherwise unsafe floating-point optimizations.
James Molloy88eb5352015-07-10 12:52:00 +00009854
9855Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
9856only flags that have any effect on its semantics are those that allow
9857assumptions to be made about the values of input arguments; namely
Eli Friedman8bb43262018-07-17 20:28:31 +00009858``nnan``, ``ninf``, and ``reassoc``. See :ref:`fastmath` for more information.
James Molloy88eb5352015-07-10 12:52:00 +00009859
Sean Silvab084af42012-12-07 10:36:55 +00009860Example:
9861""""""""
9862
Renato Golin124f2592016-07-20 12:16:38 +00009863.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009864
9865 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
9866 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
9867 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
9868 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
9869
Sean Silvab084af42012-12-07 10:36:55 +00009870.. _i_phi:
9871
9872'``phi``' Instruction
9873^^^^^^^^^^^^^^^^^^^^^
9874
9875Syntax:
9876"""""""
9877
9878::
9879
9880 <result> = phi <ty> [ <val0>, <label0>], ...
9881
9882Overview:
9883"""""""""
9884
9885The '``phi``' instruction is used to implement the φ node in the SSA
9886graph representing the function.
9887
9888Arguments:
9889""""""""""
9890
9891The type of the incoming values is specified with the first type field.
9892After this, the '``phi``' instruction takes a list of pairs as
9893arguments, with one pair for each predecessor basic block of the current
9894block. Only values of :ref:`first class <t_firstclass>` type may be used as
9895the value arguments to the PHI node. Only labels may be used as the
9896label arguments.
9897
9898There must be no non-phi instructions between the start of a basic block
9899and the PHI instructions: i.e. PHI instructions must be first in a basic
9900block.
9901
9902For the purposes of the SSA form, the use of each incoming value is
9903deemed to occur on the edge from the corresponding predecessor block to
9904the current block (but after any definition of an '``invoke``'
9905instruction's return value on the same edge).
9906
9907Semantics:
9908""""""""""
9909
9910At runtime, the '``phi``' instruction logically takes on the value
9911specified by the pair corresponding to the predecessor basic block that
9912executed just prior to the current block.
9913
9914Example:
9915""""""""
9916
9917.. code-block:: llvm
9918
9919 Loop: ; Infinite loop that counts from 0 on up...
9920 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
9921 %nextindvar = add i32 %indvar, 1
9922 br label %Loop
9923
9924.. _i_select:
9925
9926'``select``' Instruction
9927^^^^^^^^^^^^^^^^^^^^^^^^
9928
9929Syntax:
9930"""""""
9931
9932::
9933
9934 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
9935
9936 selty is either i1 or {<N x i1>}
9937
9938Overview:
9939"""""""""
9940
9941The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00009942condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00009943
9944Arguments:
9945""""""""""
9946
9947The '``select``' instruction requires an 'i1' value or a vector of 'i1'
9948values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00009949class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00009950
9951Semantics:
9952""""""""""
9953
9954If the condition is an i1 and it evaluates to 1, the instruction returns
9955the first value argument; otherwise, it returns the second value
9956argument.
9957
9958If the condition is a vector of i1, then the value arguments must be
9959vectors of the same size, and the selection is done element by element.
9960
David Majnemer40a0b592015-03-03 22:45:47 +00009961If the condition is an i1 and the value arguments are vectors of the
9962same size, then an entire vector is selected.
9963
Sean Silvab084af42012-12-07 10:36:55 +00009964Example:
9965""""""""
9966
9967.. code-block:: llvm
9968
9969 %X = select i1 true, i8 17, i8 42 ; yields i8:17
9970
9971.. _i_call:
9972
9973'``call``' Instruction
9974^^^^^^^^^^^^^^^^^^^^^^
9975
9976Syntax:
9977"""""""
9978
9979::
9980
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00009981 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] [addrspace(<num>)]
9982 [<ty>|<fnty> <fnptrval>(<function args>) [fn attrs] [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00009983
9984Overview:
9985"""""""""
9986
9987The '``call``' instruction represents a simple function call.
9988
9989Arguments:
9990""""""""""
9991
9992This instruction requires several arguments:
9993
Reid Kleckner5772b772014-04-24 20:14:34 +00009994#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00009995 should perform tail call optimization. The ``tail`` marker is a hint that
9996 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00009997 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00009998 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00009999
10000 #. The call will not cause unbounded stack growth if it is part of a
10001 recursive cycle in the call graph.
10002 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
10003 forwarded in place.
10004
Florian Hahnedae5a62018-01-17 23:29:25 +000010005 Both markers imply that the callee does not access allocas from the caller.
10006 The ``tail`` marker additionally implies that the callee does not access
10007 varargs from the caller, while ``musttail`` implies that varargs from the
10008 caller are passed to the callee. Calls marked ``musttail`` must obey the
10009 following additional rules:
Reid Kleckner5772b772014-04-24 20:14:34 +000010010
10011 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
10012 or a pointer bitcast followed by a ret instruction.
10013 - The ret instruction must return the (possibly bitcasted) value
10014 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +000010015 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +000010016 parameters or return types may differ in pointee type, but not
10017 in address space.
10018 - The calling conventions of the caller and callee must match.
10019 - All ABI-impacting function attributes, such as sret, byval, inreg,
10020 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +000010021 - The callee must be varargs iff the caller is varargs. Bitcasting a
10022 non-varargs function to the appropriate varargs type is legal so
10023 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +000010024
10025 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
10026 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +000010027
10028 - Caller and callee both have the calling convention ``fastcc``.
10029 - The call is in tail position (ret immediately follows call and ret
10030 uses value of call or is void).
10031 - Option ``-tailcallopt`` is enabled, or
10032 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +000010033 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +000010034 met. <CodeGenerator.html#tailcallopt>`_
10035
Akira Hatanaka5cfcce122015-11-06 23:55:38 +000010036#. The optional ``notail`` marker indicates that the optimizers should not add
10037 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
10038 call optimization from being performed on the call.
10039
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000010040#. The optional ``fast-math flags`` marker indicates that the call has one or more
Sanjay Patelfa54ace2015-12-14 21:59:03 +000010041 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
10042 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
10043 for calls that return a floating-point scalar or vector type.
10044
Sean Silvab084af42012-12-07 10:36:55 +000010045#. The optional "cconv" marker indicates which :ref:`calling
10046 convention <callingconv>` the call should use. If none is
10047 specified, the call defaults to using C calling conventions. The
10048 calling convention of the call must match the calling convention of
10049 the target function, or else the behavior is undefined.
10050#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
10051 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
10052 are valid here.
Craig Topper78e7fff2019-01-16 00:21:59 +000010053#. The optional addrspace attribute can be used to indicate the address space
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +000010054 of the called function. If it is not specified, the program address space
10055 from the :ref:`datalayout string<langref_datalayout>` will be used.
Sean Silvab084af42012-12-07 10:36:55 +000010056#. '``ty``': the type of the call instruction itself which is also the
10057 type of the return value. Functions that return no value are marked
10058 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +000010059#. '``fnty``': shall be the signature of the function being called. The
10060 argument types must match the types implied by this signature. This
10061 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +000010062#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +000010063 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +000010064 indirect ``call``'s are just as possible, calling an arbitrary pointer
10065 to function value.
10066#. '``function args``': argument list whose types match the function
10067 signature argument types and parameter attributes. All arguments must
10068 be of :ref:`first class <t_firstclass>` type. If the function signature
10069 indicates the function accepts a variable number of arguments, the
10070 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +000010071#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +000010072#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +000010073
10074Semantics:
10075""""""""""
10076
10077The '``call``' instruction is used to cause control flow to transfer to
10078a specified function, with its incoming arguments bound to the specified
10079values. Upon a '``ret``' instruction in the called function, control
10080flow continues with the instruction after the function call, and the
10081return value of the function is bound to the result argument.
10082
10083Example:
10084""""""""
10085
10086.. code-block:: llvm
10087
10088 %retval = call i32 @test(i32 %argc)
10089 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
10090 %X = tail call i32 @foo() ; yields i32
10091 %Y = tail call fastcc i32 @foo() ; yields i32
10092 call void %foo(i8 97 signext)
10093
10094 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +000010095 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +000010096 %gr = extractvalue %struct.A %r, 0 ; yields i32
10097 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
10098 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
10099 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
10100
10101llvm treats calls to some functions with names and arguments that match
10102the standard C99 library as being the C99 library functions, and may
10103perform optimizations or generate code for them under that assumption.
10104This is something we'd like to change in the future to provide better
10105support for freestanding environments and non-C-based languages.
10106
10107.. _i_va_arg:
10108
10109'``va_arg``' Instruction
10110^^^^^^^^^^^^^^^^^^^^^^^^
10111
10112Syntax:
10113"""""""
10114
10115::
10116
10117 <resultval> = va_arg <va_list*> <arglist>, <argty>
10118
10119Overview:
10120"""""""""
10121
10122The '``va_arg``' instruction is used to access arguments passed through
10123the "variable argument" area of a function call. It is used to implement
10124the ``va_arg`` macro in C.
10125
10126Arguments:
10127""""""""""
10128
10129This instruction takes a ``va_list*`` value and the type of the
10130argument. It returns a value of the specified argument type and
10131increments the ``va_list`` to point to the next argument. The actual
10132type of ``va_list`` is target specific.
10133
10134Semantics:
10135""""""""""
10136
10137The '``va_arg``' instruction loads an argument of the specified type
10138from the specified ``va_list`` and causes the ``va_list`` to point to
10139the next argument. For more information, see the variable argument
10140handling :ref:`Intrinsic Functions <int_varargs>`.
10141
10142It is legal for this instruction to be called in a function which does
10143not take a variable number of arguments, for example, the ``vfprintf``
10144function.
10145
10146``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
10147function <intrinsics>` because it takes a type as an argument.
10148
10149Example:
10150""""""""
10151
10152See the :ref:`variable argument processing <int_varargs>` section.
10153
10154Note that the code generator does not yet fully support va\_arg on many
10155targets. Also, it does not currently support va\_arg with aggregate
10156types on any target.
10157
10158.. _i_landingpad:
10159
10160'``landingpad``' Instruction
10161^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10162
10163Syntax:
10164"""""""
10165
10166::
10167
David Majnemer7fddecc2015-06-17 20:52:32 +000010168 <resultval> = landingpad <resultty> <clause>+
10169 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +000010170
10171 <clause> := catch <type> <value>
10172 <clause> := filter <array constant type> <array constant>
10173
10174Overview:
10175"""""""""
10176
10177The '``landingpad``' instruction is used by `LLVM's exception handling
10178system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010179is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +000010180code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +000010181defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +000010182re-entry to the function. The ``resultval`` has the type ``resultty``.
10183
10184Arguments:
10185""""""""""
10186
David Majnemer7fddecc2015-06-17 20:52:32 +000010187The optional
Sean Silvab084af42012-12-07 10:36:55 +000010188``cleanup`` flag indicates that the landing pad block is a cleanup.
10189
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010190A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +000010191contains the global variable representing the "type" that may be caught
10192or filtered respectively. Unlike the ``catch`` clause, the ``filter``
10193clause takes an array constant as its argument. Use
10194"``[0 x i8**] undef``" for a filter which cannot throw. The
10195'``landingpad``' instruction must contain *at least* one ``clause`` or
10196the ``cleanup`` flag.
10197
10198Semantics:
10199""""""""""
10200
10201The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +000010202:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +000010203therefore the "result type" of the ``landingpad`` instruction. As with
10204calling conventions, how the personality function results are
10205represented in LLVM IR is target specific.
10206
10207The clauses are applied in order from top to bottom. If two
10208``landingpad`` instructions are merged together through inlining, the
10209clauses from the calling function are appended to the list of clauses.
10210When the call stack is being unwound due to an exception being thrown,
10211the exception is compared against each ``clause`` in turn. If it doesn't
10212match any of the clauses, and the ``cleanup`` flag is not set, then
10213unwinding continues further up the call stack.
10214
10215The ``landingpad`` instruction has several restrictions:
10216
10217- A landing pad block is a basic block which is the unwind destination
10218 of an '``invoke``' instruction.
10219- A landing pad block must have a '``landingpad``' instruction as its
10220 first non-PHI instruction.
10221- There can be only one '``landingpad``' instruction within the landing
10222 pad block.
10223- A basic block that is not a landing pad block may not include a
10224 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +000010225
10226Example:
10227""""""""
10228
10229.. code-block:: llvm
10230
10231 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +000010232 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +000010233 catch i8** @_ZTIi
10234 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +000010235 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +000010236 cleanup
10237 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +000010238 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +000010239 catch i8** @_ZTIi
10240 filter [1 x i8**] [@_ZTId]
10241
Joseph Tremoulet2adaa982016-01-10 04:46:10 +000010242.. _i_catchpad:
10243
10244'``catchpad``' Instruction
10245^^^^^^^^^^^^^^^^^^^^^^^^^^
10246
10247Syntax:
10248"""""""
10249
10250::
10251
10252 <resultval> = catchpad within <catchswitch> [<args>*]
10253
10254Overview:
10255"""""""""
10256
10257The '``catchpad``' instruction is used by `LLVM's exception handling
10258system <ExceptionHandling.html#overview>`_ to specify that a basic block
10259begins a catch handler --- one where a personality routine attempts to transfer
10260control to catch an exception.
10261
10262Arguments:
10263""""""""""
10264
10265The ``catchswitch`` operand must always be a token produced by a
10266:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
10267ensures that each ``catchpad`` has exactly one predecessor block, and it always
10268terminates in a ``catchswitch``.
10269
10270The ``args`` correspond to whatever information the personality routine
10271requires to know if this is an appropriate handler for the exception. Control
10272will transfer to the ``catchpad`` if this is the first appropriate handler for
10273the exception.
10274
10275The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
10276``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
10277pads.
10278
10279Semantics:
10280""""""""""
10281
10282When the call stack is being unwound due to an exception being thrown, the
10283exception is compared against the ``args``. If it doesn't match, control will
10284not reach the ``catchpad`` instruction. The representation of ``args`` is
10285entirely target and personality function-specific.
10286
10287Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
10288instruction must be the first non-phi of its parent basic block.
10289
10290The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
10291instructions is described in the
10292`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
10293
10294When a ``catchpad`` has been "entered" but not yet "exited" (as
10295described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
10296it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
10297that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
10298
10299Example:
10300""""""""
10301
Renato Golin124f2592016-07-20 12:16:38 +000010302.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +000010303
10304 dispatch:
10305 %cs = catchswitch within none [label %handler0] unwind to caller
10306 ;; A catch block which can catch an integer.
10307 handler0:
10308 %tok = catchpad within %cs [i8** @_ZTIi]
10309
David Majnemer654e1302015-07-31 17:58:14 +000010310.. _i_cleanuppad:
10311
10312'``cleanuppad``' Instruction
10313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10314
10315Syntax:
10316"""""""
10317
10318::
10319
David Majnemer8a1c45d2015-12-12 05:38:55 +000010320 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +000010321
10322Overview:
10323"""""""""
10324
10325The '``cleanuppad``' instruction is used by `LLVM's exception handling
10326system <ExceptionHandling.html#overview>`_ to specify that a basic block
10327is a cleanup block --- one where a personality routine attempts to
10328transfer control to run cleanup actions.
10329The ``args`` correspond to whatever additional
10330information the :ref:`personality function <personalityfn>` requires to
10331execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +000010332The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +000010333match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
10334The ``parent`` argument is the token of the funclet that contains the
10335``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
10336this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +000010337
10338Arguments:
10339""""""""""
10340
10341The instruction takes a list of arbitrary values which are interpreted
10342by the :ref:`personality function <personalityfn>`.
10343
10344Semantics:
10345""""""""""
10346
David Majnemer654e1302015-07-31 17:58:14 +000010347When the call stack is being unwound due to an exception being thrown,
10348the :ref:`personality function <personalityfn>` transfers control to the
10349``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +000010350As with calling conventions, how the personality function results are
10351represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +000010352
10353The ``cleanuppad`` instruction has several restrictions:
10354
10355- A cleanup block is a basic block which is the unwind destination of
10356 an exceptional instruction.
10357- A cleanup block must have a '``cleanuppad``' instruction as its
10358 first non-PHI instruction.
10359- There can be only one '``cleanuppad``' instruction within the
10360 cleanup block.
10361- A basic block that is not a cleanup block may not include a
10362 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +000010363
Joseph Tremoulete28885e2016-01-10 04:28:38 +000010364When a ``cleanuppad`` has been "entered" but not yet "exited" (as
10365described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
10366it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
10367that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +000010368
David Majnemer654e1302015-07-31 17:58:14 +000010369Example:
10370""""""""
10371
Renato Golin124f2592016-07-20 12:16:38 +000010372.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +000010373
David Majnemer8a1c45d2015-12-12 05:38:55 +000010374 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +000010375
Sean Silvab084af42012-12-07 10:36:55 +000010376.. _intrinsics:
10377
10378Intrinsic Functions
10379===================
10380
10381LLVM supports the notion of an "intrinsic function". These functions
10382have well known names and semantics and are required to follow certain
10383restrictions. Overall, these intrinsics represent an extension mechanism
10384for the LLVM language that does not require changing all of the
10385transformations in LLVM when adding to the language (or the bitcode
10386reader/writer, the parser, etc...).
10387
10388Intrinsic function names must all start with an "``llvm.``" prefix. This
10389prefix is reserved in LLVM for intrinsic names; thus, function names may
10390not begin with this prefix. Intrinsic functions must always be external
10391functions: you cannot define the body of intrinsic functions. Intrinsic
10392functions may only be used in call or invoke instructions: it is illegal
10393to take the address of an intrinsic function. Additionally, because
10394intrinsic functions are part of the LLVM language, it is required if any
10395are added that they be documented here.
10396
10397Some intrinsic functions can be overloaded, i.e., the intrinsic
10398represents a family of functions that perform the same operation but on
10399different data types. Because LLVM can represent over 8 million
10400different integer types, overloading is used commonly to allow an
10401intrinsic function to operate on any integer type. One or more of the
10402argument types or the result type can be overloaded to accept any
10403integer type. Argument types may also be defined as exactly matching a
10404previous argument's type or the result type. This allows an intrinsic
10405function which accepts multiple arguments, but needs all of them to be
10406of the same type, to only be overloaded with respect to a single
10407argument or the result.
10408
10409Overloaded intrinsics will have the names of its overloaded argument
10410types encoded into its function name, each preceded by a period. Only
10411those types which are overloaded result in a name suffix. Arguments
10412whose type is matched against another type do not. For example, the
10413``llvm.ctpop`` function can take an integer of any width and returns an
10414integer of exactly the same integer width. This leads to a family of
10415functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
10416``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
10417overloaded, and only one type suffix is required. Because the argument's
10418type is matched against the return type, it does not require its own
10419name suffix.
10420
10421To learn how to add an intrinsic function, please see the `Extending
10422LLVM Guide <ExtendingLLVM.html>`_.
10423
10424.. _int_varargs:
10425
10426Variable Argument Handling Intrinsics
10427-------------------------------------
10428
10429Variable argument support is defined in LLVM with the
10430:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
10431functions. These functions are related to the similarly named macros
10432defined in the ``<stdarg.h>`` header file.
10433
10434All of these functions operate on arguments that use a target-specific
10435value type "``va_list``". The LLVM assembly language reference manual
10436does not define what this type is, so all transformations should be
10437prepared to handle these functions regardless of the type used.
10438
10439This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
10440variable argument handling intrinsic functions are used.
10441
10442.. code-block:: llvm
10443
Tim Northoverab60bb92014-11-02 01:21:51 +000010444 ; This struct is different for every platform. For most platforms,
10445 ; it is merely an i8*.
10446 %struct.va_list = type { i8* }
10447
10448 ; For Unix x86_64 platforms, va_list is the following struct:
10449 ; %struct.va_list = type { i32, i32, i8*, i8* }
10450
Sean Silvab084af42012-12-07 10:36:55 +000010451 define i32 @test(i32 %X, ...) {
10452 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +000010453 %ap = alloca %struct.va_list
10454 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +000010455 call void @llvm.va_start(i8* %ap2)
10456
10457 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +000010458 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +000010459
10460 ; Demonstrate usage of llvm.va_copy and llvm.va_end
10461 %aq = alloca i8*
10462 %aq2 = bitcast i8** %aq to i8*
10463 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
10464 call void @llvm.va_end(i8* %aq2)
10465
10466 ; Stop processing of arguments.
10467 call void @llvm.va_end(i8* %ap2)
10468 ret i32 %tmp
10469 }
10470
10471 declare void @llvm.va_start(i8*)
10472 declare void @llvm.va_copy(i8*, i8*)
10473 declare void @llvm.va_end(i8*)
10474
10475.. _int_va_start:
10476
10477'``llvm.va_start``' Intrinsic
10478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10479
10480Syntax:
10481"""""""
10482
10483::
10484
Nick Lewycky04f6de02013-09-11 22:04:52 +000010485 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +000010486
10487Overview:
10488"""""""""
10489
10490The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
10491subsequent use by ``va_arg``.
10492
10493Arguments:
10494""""""""""
10495
10496The argument is a pointer to a ``va_list`` element to initialize.
10497
10498Semantics:
10499""""""""""
10500
10501The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
10502available in C. In a target-dependent way, it initializes the
10503``va_list`` element to which the argument points, so that the next call
10504to ``va_arg`` will produce the first variable argument passed to the
10505function. Unlike the C ``va_start`` macro, this intrinsic does not need
10506to know the last argument of the function as the compiler can figure
10507that out.
10508
10509'``llvm.va_end``' Intrinsic
10510^^^^^^^^^^^^^^^^^^^^^^^^^^^
10511
10512Syntax:
10513"""""""
10514
10515::
10516
10517 declare void @llvm.va_end(i8* <arglist>)
10518
10519Overview:
10520"""""""""
10521
10522The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
10523initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
10524
10525Arguments:
10526""""""""""
10527
10528The argument is a pointer to a ``va_list`` to destroy.
10529
10530Semantics:
10531""""""""""
10532
10533The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
10534available in C. In a target-dependent way, it destroys the ``va_list``
10535element to which the argument points. Calls to
10536:ref:`llvm.va_start <int_va_start>` and
10537:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
10538``llvm.va_end``.
10539
10540.. _int_va_copy:
10541
10542'``llvm.va_copy``' Intrinsic
10543^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10544
10545Syntax:
10546"""""""
10547
10548::
10549
10550 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
10551
10552Overview:
10553"""""""""
10554
10555The '``llvm.va_copy``' intrinsic copies the current argument position
10556from the source argument list to the destination argument list.
10557
10558Arguments:
10559""""""""""
10560
10561The first argument is a pointer to a ``va_list`` element to initialize.
10562The second argument is a pointer to a ``va_list`` element to copy from.
10563
10564Semantics:
10565""""""""""
10566
10567The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
10568available in C. In a target-dependent way, it copies the source
10569``va_list`` element into the destination ``va_list`` element. This
10570intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
10571arbitrarily complex and require, for example, memory allocation.
10572
10573Accurate Garbage Collection Intrinsics
10574--------------------------------------
10575
Philip Reamesc5b0f562015-02-25 23:52:06 +000010576LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010577(GC) requires the frontend to generate code containing appropriate intrinsic
10578calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +000010579intrinsics in a manner which is appropriate for the target collector.
10580
Sean Silvab084af42012-12-07 10:36:55 +000010581These intrinsics allow identification of :ref:`GC roots on the
10582stack <int_gcroot>`, as well as garbage collector implementations that
10583require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +000010584Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +000010585these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +000010586details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +000010587
Philip Reamesf80bbff2015-02-25 23:45:20 +000010588Experimental Statepoint Intrinsics
10589^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10590
10591LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +000010592collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010593to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +000010594:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010595differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +000010596<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +000010597described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +000010598
10599.. _int_gcroot:
10600
10601'``llvm.gcroot``' Intrinsic
10602^^^^^^^^^^^^^^^^^^^^^^^^^^^
10603
10604Syntax:
10605"""""""
10606
10607::
10608
10609 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
10610
10611Overview:
10612"""""""""
10613
10614The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
10615the code generator, and allows some metadata to be associated with it.
10616
10617Arguments:
10618""""""""""
10619
10620The first argument specifies the address of a stack object that contains
10621the root pointer. The second pointer (which must be either a constant or
10622a global value address) contains the meta-data to be associated with the
10623root.
10624
10625Semantics:
10626""""""""""
10627
10628At runtime, a call to this intrinsic stores a null pointer into the
10629"ptrloc" location. At compile-time, the code generator generates
10630information to allow the runtime to find the pointer at GC safe points.
10631The '``llvm.gcroot``' intrinsic may only be used in a function which
10632:ref:`specifies a GC algorithm <gc>`.
10633
10634.. _int_gcread:
10635
10636'``llvm.gcread``' Intrinsic
10637^^^^^^^^^^^^^^^^^^^^^^^^^^^
10638
10639Syntax:
10640"""""""
10641
10642::
10643
10644 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
10645
10646Overview:
10647"""""""""
10648
10649The '``llvm.gcread``' intrinsic identifies reads of references from heap
10650locations, allowing garbage collector implementations that require read
10651barriers.
10652
10653Arguments:
10654""""""""""
10655
10656The second argument is the address to read from, which should be an
10657address allocated from the garbage collector. The first object is a
10658pointer to the start of the referenced object, if needed by the language
10659runtime (otherwise null).
10660
10661Semantics:
10662""""""""""
10663
10664The '``llvm.gcread``' intrinsic has the same semantics as a load
10665instruction, but may be replaced with substantially more complex code by
10666the garbage collector runtime, as needed. The '``llvm.gcread``'
10667intrinsic may only be used in a function which :ref:`specifies a GC
10668algorithm <gc>`.
10669
10670.. _int_gcwrite:
10671
10672'``llvm.gcwrite``' Intrinsic
10673^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10674
10675Syntax:
10676"""""""
10677
10678::
10679
10680 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
10681
10682Overview:
10683"""""""""
10684
10685The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
10686locations, allowing garbage collector implementations that require write
10687barriers (such as generational or reference counting collectors).
10688
10689Arguments:
10690""""""""""
10691
10692The first argument is the reference to store, the second is the start of
10693the object to store it to, and the third is the address of the field of
10694Obj to store to. If the runtime does not require a pointer to the
10695object, Obj may be null.
10696
10697Semantics:
10698""""""""""
10699
10700The '``llvm.gcwrite``' intrinsic has the same semantics as a store
10701instruction, but may be replaced with substantially more complex code by
10702the garbage collector runtime, as needed. The '``llvm.gcwrite``'
10703intrinsic may only be used in a function which :ref:`specifies a GC
10704algorithm <gc>`.
10705
10706Code Generator Intrinsics
10707-------------------------
10708
10709These intrinsics are provided by LLVM to expose special features that
10710may only be implemented with code generator support.
10711
10712'``llvm.returnaddress``' Intrinsic
10713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10714
10715Syntax:
10716"""""""
10717
10718::
10719
George Burgess IVfbc34982017-05-20 04:52:29 +000010720 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +000010721
10722Overview:
10723"""""""""
10724
10725The '``llvm.returnaddress``' intrinsic attempts to compute a
10726target-specific value indicating the return address of the current
10727function or one of its callers.
10728
10729Arguments:
10730""""""""""
10731
10732The argument to this intrinsic indicates which function to return the
10733address for. Zero indicates the calling function, one indicates its
10734caller, etc. The argument is **required** to be a constant integer
10735value.
10736
10737Semantics:
10738""""""""""
10739
10740The '``llvm.returnaddress``' intrinsic either returns a pointer
10741indicating the return address of the specified call frame, or zero if it
10742cannot be identified. The value returned by this intrinsic is likely to
10743be incorrect or 0 for arguments other than zero, so it should only be
10744used for debugging purposes.
10745
10746Note that calling this intrinsic does not prevent function inlining or
10747other aggressive transformations, so the value returned may not be that
10748of the obvious source-language caller.
10749
Albert Gutowski795d7d62016-10-12 22:13:19 +000010750'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +000010751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +000010752
10753Syntax:
10754"""""""
10755
10756::
10757
George Burgess IVfbc34982017-05-20 04:52:29 +000010758 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +000010759
10760Overview:
10761"""""""""
10762
10763The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
10764pointer to the place in the stack frame where the return address of the
10765current function is stored.
10766
10767Semantics:
10768""""""""""
10769
10770Note that calling this intrinsic does not prevent function inlining or
10771other aggressive transformations, so the value returned may not be that
10772of the obvious source-language caller.
10773
Mandeep Singh Grangdf19e572018-11-01 21:23:47 +000010774This intrinsic is only implemented for x86 and aarch64.
Albert Gutowski795d7d62016-10-12 22:13:19 +000010775
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000010776'``llvm.sponentry``' Intrinsic
10777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10778
10779Syntax:
10780"""""""
10781
10782::
10783
10784 declare i8* @llvm.sponentry()
10785
10786Overview:
10787"""""""""
10788
10789The '``llvm.sponentry``' intrinsic returns the stack pointer value at
10790the entry of the current function calling this intrinsic.
10791
10792Semantics:
10793""""""""""
10794
10795Note this intrinsic is only verified on AArch64.
10796
Sean Silvab084af42012-12-07 10:36:55 +000010797'``llvm.frameaddress``' Intrinsic
10798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10799
10800Syntax:
10801"""""""
10802
10803::
10804
10805 declare i8* @llvm.frameaddress(i32 <level>)
10806
10807Overview:
10808"""""""""
10809
10810The '``llvm.frameaddress``' intrinsic attempts to return the
10811target-specific frame pointer value for the specified stack frame.
10812
10813Arguments:
10814""""""""""
10815
10816The argument to this intrinsic indicates which function to return the
10817frame pointer for. Zero indicates the calling function, one indicates
10818its caller, etc. The argument is **required** to be a constant integer
10819value.
10820
10821Semantics:
10822""""""""""
10823
10824The '``llvm.frameaddress``' intrinsic either returns a pointer
10825indicating the frame address of the specified call frame, or zero if it
10826cannot be identified. The value returned by this intrinsic is likely to
10827be incorrect or 0 for arguments other than zero, so it should only be
10828used for debugging purposes.
10829
10830Note that calling this intrinsic does not prevent function inlining or
10831other aggressive transformations, so the value returned may not be that
10832of the obvious source-language caller.
10833
Reid Kleckner60381792015-07-07 22:25:32 +000010834'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +000010835^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10836
10837Syntax:
10838"""""""
10839
10840::
10841
Reid Kleckner60381792015-07-07 22:25:32 +000010842 declare void @llvm.localescape(...)
10843 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +000010844
10845Overview:
10846"""""""""
10847
Reid Kleckner60381792015-07-07 22:25:32 +000010848The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
10849allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010850live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +000010851computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +000010852
10853Arguments:
10854""""""""""
10855
Reid Kleckner60381792015-07-07 22:25:32 +000010856All arguments to '``llvm.localescape``' must be pointers to static allocas or
10857casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010858once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +000010859
Reid Kleckner60381792015-07-07 22:25:32 +000010860The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +000010861bitcasted pointer to a function defined in the current module. The code
10862generator cannot determine the frame allocation offset of functions defined in
10863other modules.
10864
Reid Klecknerd5afc62f2015-07-07 23:23:03 +000010865The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
10866call frame that is currently live. The return value of '``llvm.localaddress``'
10867is one way to produce such a value, but various runtimes also expose a suitable
10868pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +000010869
Reid Kleckner60381792015-07-07 22:25:32 +000010870The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
10871'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010872
Reid Klecknere9b89312015-01-13 00:48:10 +000010873Semantics:
10874""""""""""
10875
Reid Kleckner60381792015-07-07 22:25:32 +000010876These intrinsics allow a group of functions to share access to a set of local
10877stack allocations of a one parent function. The parent function may call the
10878'``llvm.localescape``' intrinsic once from the function entry block, and the
10879child functions can use '``llvm.localrecover``' to access the escaped allocas.
10880The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
10881the escaped allocas are allocated, which would break attempts to use
10882'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +000010883
Renato Golinc7aea402014-05-06 16:51:25 +000010884.. _int_read_register:
10885.. _int_write_register:
10886
10887'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
10888^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10889
10890Syntax:
10891"""""""
10892
10893::
10894
10895 declare i32 @llvm.read_register.i32(metadata)
10896 declare i64 @llvm.read_register.i64(metadata)
10897 declare void @llvm.write_register.i32(metadata, i32 @value)
10898 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +000010899 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +000010900
10901Overview:
10902"""""""""
10903
10904The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
10905provides access to the named register. The register must be valid on
10906the architecture being compiled to. The type needs to be compatible
10907with the register being read.
10908
10909Semantics:
10910""""""""""
10911
10912The '``llvm.read_register``' intrinsic returns the current value of the
10913register, where possible. The '``llvm.write_register``' intrinsic sets
10914the current value of the register, where possible.
10915
10916This is useful to implement named register global variables that need
10917to always be mapped to a specific register, as is common practice on
10918bare-metal programs including OS kernels.
10919
10920The compiler doesn't check for register availability or use of the used
10921register in surrounding code, including inline assembly. Because of that,
10922allocatable registers are not supported.
10923
10924Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +000010925architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +000010926work is needed to support other registers and even more so, allocatable
10927registers.
10928
Sean Silvab084af42012-12-07 10:36:55 +000010929.. _int_stacksave:
10930
10931'``llvm.stacksave``' Intrinsic
10932^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10933
10934Syntax:
10935"""""""
10936
10937::
10938
10939 declare i8* @llvm.stacksave()
10940
10941Overview:
10942"""""""""
10943
10944The '``llvm.stacksave``' intrinsic is used to remember the current state
10945of the function stack, for use with
10946:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
10947implementing language features like scoped automatic variable sized
10948arrays in C99.
10949
10950Semantics:
10951""""""""""
10952
10953This intrinsic returns a opaque pointer value that can be passed to
10954:ref:`llvm.stackrestore <int_stackrestore>`. When an
10955``llvm.stackrestore`` intrinsic is executed with a value saved from
10956``llvm.stacksave``, it effectively restores the state of the stack to
10957the state it was in when the ``llvm.stacksave`` intrinsic executed. In
10958practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
10959were allocated after the ``llvm.stacksave`` was executed.
10960
10961.. _int_stackrestore:
10962
10963'``llvm.stackrestore``' Intrinsic
10964^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10965
10966Syntax:
10967"""""""
10968
10969::
10970
10971 declare void @llvm.stackrestore(i8* %ptr)
10972
10973Overview:
10974"""""""""
10975
10976The '``llvm.stackrestore``' intrinsic is used to restore the state of
10977the function stack to the state it was in when the corresponding
10978:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
10979useful for implementing language features like scoped automatic variable
10980sized arrays in C99.
10981
10982Semantics:
10983""""""""""
10984
10985See the description for :ref:`llvm.stacksave <int_stacksave>`.
10986
Yury Gribovd7dbb662015-12-01 11:40:55 +000010987.. _int_get_dynamic_area_offset:
10988
10989'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +000010990^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +000010991
10992Syntax:
10993"""""""
10994
10995::
10996
10997 declare i32 @llvm.get.dynamic.area.offset.i32()
10998 declare i64 @llvm.get.dynamic.area.offset.i64()
10999
Lang Hames10239932016-10-08 00:20:42 +000011000Overview:
11001"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +000011002
11003 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
11004 get the offset from native stack pointer to the address of the most
11005 recent dynamic alloca on the caller's stack. These intrinsics are
11006 intendend for use in combination with
11007 :ref:`llvm.stacksave <int_stacksave>` to get a
11008 pointer to the most recent dynamic alloca. This is useful, for example,
11009 for AddressSanitizer's stack unpoisoning routines.
11010
11011Semantics:
11012""""""""""
11013
11014 These intrinsics return a non-negative integer value that can be used to
11015 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
11016 on the caller's stack. In particular, for targets where stack grows downwards,
11017 adding this offset to the native stack pointer would get the address of the most
11018 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +000011019 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +000011020 one past the end of the most recent dynamic alloca.
11021
11022 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
11023 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
11024 compile-time-known constant value.
11025
11026 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +000011027 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +000011028
Sean Silvab084af42012-12-07 10:36:55 +000011029'``llvm.prefetch``' Intrinsic
11030^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11031
11032Syntax:
11033"""""""
11034
11035::
11036
11037 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
11038
11039Overview:
11040"""""""""
11041
11042The '``llvm.prefetch``' intrinsic is a hint to the code generator to
11043insert a prefetch instruction if supported; otherwise, it is a noop.
11044Prefetches have no effect on the behavior of the program but can change
11045its performance characteristics.
11046
11047Arguments:
11048""""""""""
11049
11050``address`` is the address to be prefetched, ``rw`` is the specifier
11051determining if the fetch should be for a read (0) or write (1), and
11052``locality`` is a temporal locality specifier ranging from (0) - no
11053locality, to (3) - extremely local keep in cache. The ``cache type``
11054specifies whether the prefetch is performed on the data (1) or
11055instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
11056arguments must be constant integers.
11057
11058Semantics:
11059""""""""""
11060
11061This intrinsic does not modify the behavior of the program. In
11062particular, prefetches cannot trap and do not produce a value. On
11063targets that support this intrinsic, the prefetch can provide hints to
11064the processor cache for better performance.
11065
11066'``llvm.pcmarker``' Intrinsic
11067^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11068
11069Syntax:
11070"""""""
11071
11072::
11073
11074 declare void @llvm.pcmarker(i32 <id>)
11075
11076Overview:
11077"""""""""
11078
11079The '``llvm.pcmarker``' intrinsic is a method to export a Program
11080Counter (PC) in a region of code to simulators and other tools. The
11081method is target specific, but it is expected that the marker will use
11082exported symbols to transmit the PC of the marker. The marker makes no
11083guarantees that it will remain with any specific instruction after
11084optimizations. It is possible that the presence of a marker will inhibit
11085optimizations. The intended use is to be inserted after optimizations to
11086allow correlations of simulation runs.
11087
11088Arguments:
11089""""""""""
11090
11091``id`` is a numerical id identifying the marker.
11092
11093Semantics:
11094""""""""""
11095
11096This intrinsic does not modify the behavior of the program. Backends
11097that do not support this intrinsic may ignore it.
11098
11099'``llvm.readcyclecounter``' Intrinsic
11100^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11101
11102Syntax:
11103"""""""
11104
11105::
11106
11107 declare i64 @llvm.readcyclecounter()
11108
11109Overview:
11110"""""""""
11111
11112The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
11113counter register (or similar low latency, high accuracy clocks) on those
11114targets that support it. On X86, it should map to RDTSC. On Alpha, it
11115should map to RPCC. As the backing counters overflow quickly (on the
11116order of 9 seconds on alpha), this should only be used for small
11117timings.
11118
11119Semantics:
11120""""""""""
11121
11122When directly supported, reading the cycle counter should not modify any
11123memory. Implementations are allowed to either return a application
11124specific value or a system wide value. On backends without support, this
11125is lowered to a constant 0.
11126
Tim Northoverbc933082013-05-23 19:11:20 +000011127Note that runtime support may be conditional on the privilege-level code is
11128running at and the host platform.
11129
Renato Golinc0a3c1d2014-03-26 12:52:28 +000011130'``llvm.clear_cache``' Intrinsic
11131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11132
11133Syntax:
11134"""""""
11135
11136::
11137
11138 declare void @llvm.clear_cache(i8*, i8*)
11139
11140Overview:
11141"""""""""
11142
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011143The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
11144in the specified range to the execution unit of the processor. On
11145targets with non-unified instruction and data cache, the implementation
11146flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000011147
11148Semantics:
11149""""""""""
11150
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011151On platforms with coherent instruction and data caches (e.g. x86), this
11152intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000011153cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011154instructions or a system call, if cache flushing requires special
11155privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000011156
Sean Silvad02bf3e2014-04-07 22:29:53 +000011157The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011158time library.
Renato Golin93010e62014-03-26 14:01:32 +000011159
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011160This instrinsic does *not* empty the instruction pipeline. Modifications
11161of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000011162
Vedant Kumar51ce6682018-01-26 23:54:25 +000011163'``llvm.instrprof.increment``' Intrinsic
Justin Bogner61ba2e32014-12-08 18:02:35 +000011164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11165
11166Syntax:
11167"""""""
11168
11169::
11170
Vedant Kumar51ce6682018-01-26 23:54:25 +000011171 declare void @llvm.instrprof.increment(i8* <name>, i64 <hash>,
Justin Bogner61ba2e32014-12-08 18:02:35 +000011172 i32 <num-counters>, i32 <index>)
11173
11174Overview:
11175"""""""""
11176
Vedant Kumar51ce6682018-01-26 23:54:25 +000011177The '``llvm.instrprof.increment``' intrinsic can be emitted by a
Justin Bogner61ba2e32014-12-08 18:02:35 +000011178frontend for use with instrumentation based profiling. These will be
11179lowered by the ``-instrprof`` pass to generate execution counts of a
11180program at runtime.
11181
11182Arguments:
11183""""""""""
11184
11185The first argument is a pointer to a global variable containing the
11186name of the entity being instrumented. This should generally be the
11187(mangled) function name for a set of counters.
11188
11189The second argument is a hash value that can be used by the consumer
11190of the profile data to detect changes to the instrumented source, and
11191the third is the number of counters associated with ``name``. It is an
11192error if ``hash`` or ``num-counters`` differ between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000011193``instrprof.increment`` that refer to the same name.
Justin Bogner61ba2e32014-12-08 18:02:35 +000011194
11195The last argument refers to which of the counters for ``name`` should
11196be incremented. It should be a value between 0 and ``num-counters``.
11197
11198Semantics:
11199""""""""""
11200
11201This intrinsic represents an increment of a profiling counter. It will
11202cause the ``-instrprof`` pass to generate the appropriate data
11203structures and the code to increment the appropriate value, in a
11204format that can be written out by a compiler runtime and consumed via
11205the ``llvm-profdata`` tool.
11206
Vedant Kumar51ce6682018-01-26 23:54:25 +000011207'``llvm.instrprof.increment.step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000011208^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000011209
11210Syntax:
11211"""""""
11212
11213::
11214
Vedant Kumar51ce6682018-01-26 23:54:25 +000011215 declare void @llvm.instrprof.increment.step(i8* <name>, i64 <hash>,
Xinliang David Li4ca17332016-09-18 18:34:07 +000011216 i32 <num-counters>,
11217 i32 <index>, i64 <step>)
11218
11219Overview:
11220"""""""""
11221
Vedant Kumar51ce6682018-01-26 23:54:25 +000011222The '``llvm.instrprof.increment.step``' intrinsic is an extension to
11223the '``llvm.instrprof.increment``' intrinsic with an additional fifth
Xinliang David Li4ca17332016-09-18 18:34:07 +000011224argument to specify the step of the increment.
11225
11226Arguments:
11227""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000011228The first four arguments are the same as '``llvm.instrprof.increment``'
Pete Couperused9569d2017-08-23 20:58:22 +000011229intrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000011230
11231The last argument specifies the value of the increment of the counter variable.
11232
11233Semantics:
11234""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000011235See description of '``llvm.instrprof.increment``' instrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000011236
11237
Vedant Kumar51ce6682018-01-26 23:54:25 +000011238'``llvm.instrprof.value.profile``' Intrinsic
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11240
11241Syntax:
11242"""""""
11243
11244::
11245
Vedant Kumar51ce6682018-01-26 23:54:25 +000011246 declare void @llvm.instrprof.value.profile(i8* <name>, i64 <hash>,
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011247 i64 <value>, i32 <value_kind>,
11248 i32 <index>)
11249
11250Overview:
11251"""""""""
11252
Vedant Kumar51ce6682018-01-26 23:54:25 +000011253The '``llvm.instrprof.value.profile``' intrinsic can be emitted by a
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011254frontend for use with instrumentation based profiling. This will be
11255lowered by the ``-instrprof`` pass to find out the target values,
11256instrumented expressions take in a program at runtime.
11257
11258Arguments:
11259""""""""""
11260
11261The first argument is a pointer to a global variable containing the
11262name of the entity being instrumented. ``name`` should generally be the
11263(mangled) function name for a set of counters.
11264
11265The second argument is a hash value that can be used by the consumer
11266of the profile data to detect changes to the instrumented source. It
11267is an error if ``hash`` differs between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000011268``llvm.instrprof.*`` that refer to the same name.
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011269
11270The third argument is the value of the expression being profiled. The profiled
11271expression's value should be representable as an unsigned 64-bit value. The
11272fourth argument represents the kind of value profiling that is being done. The
11273supported value profiling kinds are enumerated through the
11274``InstrProfValueKind`` type declared in the
11275``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
11276index of the instrumented expression within ``name``. It should be >= 0.
11277
11278Semantics:
11279""""""""""
11280
11281This intrinsic represents the point where a call to a runtime routine
11282should be inserted for value profiling of target expressions. ``-instrprof``
11283pass will generate the appropriate data structures and replace the
Vedant Kumar51ce6682018-01-26 23:54:25 +000011284``llvm.instrprof.value.profile`` intrinsic with the call to the profile
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011285runtime library with proper arguments.
11286
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000011287'``llvm.thread.pointer``' Intrinsic
11288^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11289
11290Syntax:
11291"""""""
11292
11293::
11294
11295 declare i8* @llvm.thread.pointer()
11296
11297Overview:
11298"""""""""
11299
11300The '``llvm.thread.pointer``' intrinsic returns the value of the thread
11301pointer.
11302
11303Semantics:
11304""""""""""
11305
11306The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
11307for the current thread. The exact semantics of this value are target
11308specific: it may point to the start of TLS area, to the end, or somewhere
11309in the middle. Depending on the target, this intrinsic may read a register,
11310call a helper function, read from an alternate memory space, or perform
11311other operations necessary to locate the TLS area. Not all targets support
11312this intrinsic.
11313
Sean Silvab084af42012-12-07 10:36:55 +000011314Standard C Library Intrinsics
11315-----------------------------
11316
11317LLVM provides intrinsics for a few important standard C library
11318functions. These intrinsics allow source-language front-ends to pass
11319information about the alignment of the pointer arguments to the code
11320generator, providing opportunity for more efficient code generation.
11321
11322.. _int_memcpy:
11323
11324'``llvm.memcpy``' Intrinsic
11325^^^^^^^^^^^^^^^^^^^^^^^^^^^
11326
11327Syntax:
11328"""""""
11329
11330This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
11331integer bit width and for different address spaces. Not all targets
11332support all bit widths however.
11333
11334::
11335
11336 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011337 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011338 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011339 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011340
11341Overview:
11342"""""""""
11343
11344The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
11345source location to the destination location.
11346
11347Note that, unlike the standard libc function, the ``llvm.memcpy.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000011348intrinsics do not return a value, takes extra isvolatile
Sean Silvab084af42012-12-07 10:36:55 +000011349arguments and the pointers can be in specified address spaces.
11350
11351Arguments:
11352""""""""""
11353
11354The first argument is a pointer to the destination, the second is a
11355pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000011356specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000011357boolean indicating a volatile access.
11358
Daniel Neilson39eb6a52018-01-19 17:24:21 +000011359The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000011360for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000011361
11362If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
11363a :ref:`volatile operation <volatile>`. The detailed access behavior is not
11364very cleanly specified and it is unwise to depend on it.
11365
11366Semantics:
11367""""""""""
11368
11369The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
11370source location to the destination location, which are not allowed to
11371overlap. It copies "len" bytes of memory over. If the argument is known
Kristina Brooks76eb4b02019-02-26 18:53:13 +000011372to be aligned to some boundary, this can be specified as an attribute on
11373the argument.
11374
11375If "len" is 0, the pointers may be NULL or dangling. However, they must still
11376be appropriately aligned.
Sean Silvab084af42012-12-07 10:36:55 +000011377
Daniel Neilson57226ef2017-07-12 15:25:26 +000011378.. _int_memmove:
11379
Sean Silvab084af42012-12-07 10:36:55 +000011380'``llvm.memmove``' Intrinsic
11381^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11382
11383Syntax:
11384"""""""
11385
11386This is an overloaded intrinsic. You can use llvm.memmove on any integer
11387bit width and for different address space. Not all targets support all
11388bit widths however.
11389
11390::
11391
11392 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011393 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011394 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011395 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011396
11397Overview:
11398"""""""""
11399
11400The '``llvm.memmove.*``' intrinsics move a block of memory from the
11401source location to the destination location. It is similar to the
11402'``llvm.memcpy``' intrinsic but allows the two memory locations to
11403overlap.
11404
11405Note that, unlike the standard libc function, the ``llvm.memmove.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000011406intrinsics do not return a value, takes an extra isvolatile
11407argument and the pointers can be in specified address spaces.
Sean Silvab084af42012-12-07 10:36:55 +000011408
11409Arguments:
11410""""""""""
11411
11412The first argument is a pointer to the destination, the second is a
11413pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000011414specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000011415boolean indicating a volatile access.
11416
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000011417The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000011418for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000011419
11420If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
11421is a :ref:`volatile operation <volatile>`. The detailed access behavior is
11422not very cleanly specified and it is unwise to depend on it.
11423
11424Semantics:
11425""""""""""
11426
11427The '``llvm.memmove.*``' intrinsics copy a block of memory from the
11428source location to the destination location, which may overlap. It
11429copies "len" bytes of memory over. If the argument is known to be
Kristina Brooks76eb4b02019-02-26 18:53:13 +000011430aligned to some boundary, this can be specified as an attribute on
11431the argument.
11432
11433If "len" is 0, the pointers may be NULL or dangling. However, they must still
11434be appropriately aligned.
Sean Silvab084af42012-12-07 10:36:55 +000011435
Daniel Neilson965613e2017-07-12 21:57:23 +000011436.. _int_memset:
11437
Sean Silvab084af42012-12-07 10:36:55 +000011438'``llvm.memset.*``' Intrinsics
11439^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11440
11441Syntax:
11442"""""""
11443
11444This is an overloaded intrinsic. You can use llvm.memset on any integer
11445bit width and for different address spaces. However, not all targets
11446support all bit widths.
11447
11448::
11449
11450 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011451 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011452 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011453 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011454
11455Overview:
11456"""""""""
11457
11458The '``llvm.memset.*``' intrinsics fill a block of memory with a
11459particular byte value.
11460
11461Note that, unlike the standard libc function, the ``llvm.memset``
Daniel Neilson1e687242018-01-19 17:13:12 +000011462intrinsic does not return a value and takes an extra volatile
11463argument. Also, the destination can be in an arbitrary address space.
Sean Silvab084af42012-12-07 10:36:55 +000011464
11465Arguments:
11466""""""""""
11467
11468The first argument is a pointer to the destination to fill, the second
11469is the byte value with which to fill it, the third argument is an
11470integer argument specifying the number of bytes to fill, and the fourth
Daniel Neilson1e687242018-01-19 17:13:12 +000011471is a boolean indicating a volatile access.
Sean Silvab084af42012-12-07 10:36:55 +000011472
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000011473The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000011474for the first arguments.
Sean Silvab084af42012-12-07 10:36:55 +000011475
11476If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
11477a :ref:`volatile operation <volatile>`. The detailed access behavior is not
11478very cleanly specified and it is unwise to depend on it.
11479
11480Semantics:
11481""""""""""
11482
11483The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
Kristina Brooks76eb4b02019-02-26 18:53:13 +000011484at the destination location. If the argument is known to be
11485aligned to some boundary, this can be specified as an attribute on
11486the argument.
11487
11488If "len" is 0, the pointers may be NULL or dangling. However, they must still
11489be appropriately aligned.
Sean Silvab084af42012-12-07 10:36:55 +000011490
11491'``llvm.sqrt.*``' Intrinsic
11492^^^^^^^^^^^^^^^^^^^^^^^^^^^
11493
11494Syntax:
11495"""""""
11496
11497This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011498floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011499all types however.
11500
11501::
11502
11503 declare float @llvm.sqrt.f32(float %Val)
11504 declare double @llvm.sqrt.f64(double %Val)
11505 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
11506 declare fp128 @llvm.sqrt.f128(fp128 %Val)
11507 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
11508
11509Overview:
11510"""""""""
11511
Sanjay Patel629c4112017-11-06 16:27:15 +000011512The '``llvm.sqrt``' intrinsics return the square root of the specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011513
11514Arguments:
11515""""""""""
11516
Sanjay Patel629c4112017-11-06 16:27:15 +000011517The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011518
11519Semantics:
11520""""""""""
11521
Sanjay Patel629c4112017-11-06 16:27:15 +000011522Return the same value as a corresponding libm '``sqrt``' function but without
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011523trapping or setting ``errno``. For types specified by IEEE-754, the result
Sanjay Patel629c4112017-11-06 16:27:15 +000011524matches a conforming libm implementation.
11525
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011526When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011527using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011528
11529'``llvm.powi.*``' Intrinsic
11530^^^^^^^^^^^^^^^^^^^^^^^^^^^
11531
11532Syntax:
11533"""""""
11534
11535This is an overloaded intrinsic. You can use ``llvm.powi`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011536floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011537all types however.
11538
11539::
11540
11541 declare float @llvm.powi.f32(float %Val, i32 %power)
11542 declare double @llvm.powi.f64(double %Val, i32 %power)
11543 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
11544 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
11545 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
11546
11547Overview:
11548"""""""""
11549
11550The '``llvm.powi.*``' intrinsics return the first operand raised to the
11551specified (positive or negative) power. The order of evaluation of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011552multiplications is not defined. When a vector of floating-point type is
Sean Silvab084af42012-12-07 10:36:55 +000011553used, the second argument remains a scalar integer value.
11554
11555Arguments:
11556""""""""""
11557
11558The second argument is an integer power, and the first is a value to
11559raise to that power.
11560
11561Semantics:
11562""""""""""
11563
11564This function returns the first value raised to the second power with an
11565unspecified sequence of rounding operations.
11566
11567'``llvm.sin.*``' Intrinsic
11568^^^^^^^^^^^^^^^^^^^^^^^^^^
11569
11570Syntax:
11571"""""""
11572
11573This is an overloaded intrinsic. You can use ``llvm.sin`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011574floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011575all types however.
11576
11577::
11578
11579 declare float @llvm.sin.f32(float %Val)
11580 declare double @llvm.sin.f64(double %Val)
11581 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
11582 declare fp128 @llvm.sin.f128(fp128 %Val)
11583 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
11584
11585Overview:
11586"""""""""
11587
11588The '``llvm.sin.*``' intrinsics return the sine of the operand.
11589
11590Arguments:
11591""""""""""
11592
Sanjay Patel629c4112017-11-06 16:27:15 +000011593The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011594
11595Semantics:
11596""""""""""
11597
Sanjay Patel629c4112017-11-06 16:27:15 +000011598Return the same value as a corresponding libm '``sin``' function but without
11599trapping or setting ``errno``.
11600
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011601When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011602using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011603
11604'``llvm.cos.*``' Intrinsic
11605^^^^^^^^^^^^^^^^^^^^^^^^^^
11606
11607Syntax:
11608"""""""
11609
11610This is an overloaded intrinsic. You can use ``llvm.cos`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011611floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011612all types however.
11613
11614::
11615
11616 declare float @llvm.cos.f32(float %Val)
11617 declare double @llvm.cos.f64(double %Val)
11618 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
11619 declare fp128 @llvm.cos.f128(fp128 %Val)
11620 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
11621
11622Overview:
11623"""""""""
11624
11625The '``llvm.cos.*``' intrinsics return the cosine of the operand.
11626
11627Arguments:
11628""""""""""
11629
Sanjay Patel629c4112017-11-06 16:27:15 +000011630The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011631
11632Semantics:
11633""""""""""
11634
Sanjay Patel629c4112017-11-06 16:27:15 +000011635Return the same value as a corresponding libm '``cos``' function but without
11636trapping or setting ``errno``.
11637
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011638When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011639using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011640
11641'``llvm.pow.*``' Intrinsic
11642^^^^^^^^^^^^^^^^^^^^^^^^^^
11643
11644Syntax:
11645"""""""
11646
11647This is an overloaded intrinsic. You can use ``llvm.pow`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011648floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011649all types however.
11650
11651::
11652
11653 declare float @llvm.pow.f32(float %Val, float %Power)
11654 declare double @llvm.pow.f64(double %Val, double %Power)
11655 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
11656 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
11657 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
11658
11659Overview:
11660"""""""""
11661
11662The '``llvm.pow.*``' intrinsics return the first operand raised to the
11663specified (positive or negative) power.
11664
11665Arguments:
11666""""""""""
11667
Sanjay Patel629c4112017-11-06 16:27:15 +000011668The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011669
11670Semantics:
11671""""""""""
11672
Sanjay Patel629c4112017-11-06 16:27:15 +000011673Return the same value as a corresponding libm '``pow``' function but without
11674trapping or setting ``errno``.
11675
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011676When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011677using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011678
11679'``llvm.exp.*``' Intrinsic
11680^^^^^^^^^^^^^^^^^^^^^^^^^^
11681
11682Syntax:
11683"""""""
11684
11685This is an overloaded intrinsic. You can use ``llvm.exp`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011686floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011687all types however.
11688
11689::
11690
11691 declare float @llvm.exp.f32(float %Val)
11692 declare double @llvm.exp.f64(double %Val)
11693 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
11694 declare fp128 @llvm.exp.f128(fp128 %Val)
11695 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
11696
11697Overview:
11698"""""""""
11699
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011700The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
11701value.
Sean Silvab084af42012-12-07 10:36:55 +000011702
11703Arguments:
11704""""""""""
11705
Sanjay Patel629c4112017-11-06 16:27:15 +000011706The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011707
11708Semantics:
11709""""""""""
11710
Sanjay Patel629c4112017-11-06 16:27:15 +000011711Return the same value as a corresponding libm '``exp``' function but without
11712trapping or setting ``errno``.
11713
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011714When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011715using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011716
11717'``llvm.exp2.*``' Intrinsic
11718^^^^^^^^^^^^^^^^^^^^^^^^^^^
11719
11720Syntax:
11721"""""""
11722
11723This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011724floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011725all types however.
11726
11727::
11728
11729 declare float @llvm.exp2.f32(float %Val)
11730 declare double @llvm.exp2.f64(double %Val)
11731 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
11732 declare fp128 @llvm.exp2.f128(fp128 %Val)
11733 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
11734
11735Overview:
11736"""""""""
11737
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011738The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
11739specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011740
11741Arguments:
11742""""""""""
11743
Sanjay Patel629c4112017-11-06 16:27:15 +000011744The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011745
11746Semantics:
11747""""""""""
11748
Sanjay Patel629c4112017-11-06 16:27:15 +000011749Return the same value as a corresponding libm '``exp2``' function but without
11750trapping or setting ``errno``.
11751
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011752When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011753using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011754
11755'``llvm.log.*``' Intrinsic
11756^^^^^^^^^^^^^^^^^^^^^^^^^^
11757
11758Syntax:
11759"""""""
11760
11761This is an overloaded intrinsic. You can use ``llvm.log`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011762floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011763all types however.
11764
11765::
11766
11767 declare float @llvm.log.f32(float %Val)
11768 declare double @llvm.log.f64(double %Val)
11769 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
11770 declare fp128 @llvm.log.f128(fp128 %Val)
11771 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
11772
11773Overview:
11774"""""""""
11775
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011776The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
11777value.
Sean Silvab084af42012-12-07 10:36:55 +000011778
11779Arguments:
11780""""""""""
11781
Sanjay Patel629c4112017-11-06 16:27:15 +000011782The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011783
11784Semantics:
11785""""""""""
11786
Sanjay Patel629c4112017-11-06 16:27:15 +000011787Return the same value as a corresponding libm '``log``' function but without
11788trapping or setting ``errno``.
11789
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011790When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011791using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011792
11793'``llvm.log10.*``' Intrinsic
11794^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11795
11796Syntax:
11797"""""""
11798
11799This is an overloaded intrinsic. You can use ``llvm.log10`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011800floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011801all types however.
11802
11803::
11804
11805 declare float @llvm.log10.f32(float %Val)
11806 declare double @llvm.log10.f64(double %Val)
11807 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
11808 declare fp128 @llvm.log10.f128(fp128 %Val)
11809 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
11810
11811Overview:
11812"""""""""
11813
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011814The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
11815specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011816
11817Arguments:
11818""""""""""
11819
Sanjay Patel629c4112017-11-06 16:27:15 +000011820The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011821
11822Semantics:
11823""""""""""
11824
Sanjay Patel629c4112017-11-06 16:27:15 +000011825Return the same value as a corresponding libm '``log10``' function but without
11826trapping or setting ``errno``.
11827
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011828When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011829using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011830
11831'``llvm.log2.*``' Intrinsic
11832^^^^^^^^^^^^^^^^^^^^^^^^^^^
11833
11834Syntax:
11835"""""""
11836
11837This is an overloaded intrinsic. You can use ``llvm.log2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011838floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011839all types however.
11840
11841::
11842
11843 declare float @llvm.log2.f32(float %Val)
11844 declare double @llvm.log2.f64(double %Val)
11845 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
11846 declare fp128 @llvm.log2.f128(fp128 %Val)
11847 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
11848
11849Overview:
11850"""""""""
11851
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011852The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
11853value.
Sean Silvab084af42012-12-07 10:36:55 +000011854
11855Arguments:
11856""""""""""
11857
Sanjay Patel629c4112017-11-06 16:27:15 +000011858The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011859
11860Semantics:
11861""""""""""
11862
Sanjay Patel629c4112017-11-06 16:27:15 +000011863Return the same value as a corresponding libm '``log2``' function but without
11864trapping or setting ``errno``.
11865
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011866When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011867using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011868
11869'``llvm.fma.*``' Intrinsic
11870^^^^^^^^^^^^^^^^^^^^^^^^^^
11871
11872Syntax:
11873"""""""
11874
11875This is an overloaded intrinsic. You can use ``llvm.fma`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011876floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011877all types however.
11878
11879::
11880
11881 declare float @llvm.fma.f32(float %a, float %b, float %c)
11882 declare double @llvm.fma.f64(double %a, double %b, double %c)
11883 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
11884 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
11885 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
11886
11887Overview:
11888"""""""""
11889
Sanjay Patel629c4112017-11-06 16:27:15 +000011890The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
Sean Silvab084af42012-12-07 10:36:55 +000011891
11892Arguments:
11893""""""""""
11894
Sanjay Patel629c4112017-11-06 16:27:15 +000011895The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011896
11897Semantics:
11898""""""""""
11899
Sanjay Patel629c4112017-11-06 16:27:15 +000011900Return the same value as a corresponding libm '``fma``' function but without
11901trapping or setting ``errno``.
11902
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011903When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011904using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011905
11906'``llvm.fabs.*``' Intrinsic
11907^^^^^^^^^^^^^^^^^^^^^^^^^^^
11908
11909Syntax:
11910"""""""
11911
11912This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011913floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011914all types however.
11915
11916::
11917
11918 declare float @llvm.fabs.f32(float %Val)
11919 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011920 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011921 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011922 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011923
11924Overview:
11925"""""""""
11926
11927The '``llvm.fabs.*``' intrinsics return the absolute value of the
11928operand.
11929
11930Arguments:
11931""""""""""
11932
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011933The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011934type.
11935
11936Semantics:
11937""""""""""
11938
11939This function returns the same values as the libm ``fabs`` functions
11940would, and handles error conditions in the same way.
11941
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011942'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011943^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011944
11945Syntax:
11946"""""""
11947
11948This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011949floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011950all types however.
11951
11952::
11953
Matt Arsenault64313c92014-10-22 18:25:02 +000011954 declare float @llvm.minnum.f32(float %Val0, float %Val1)
11955 declare double @llvm.minnum.f64(double %Val0, double %Val1)
11956 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11957 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
11958 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011959
11960Overview:
11961"""""""""
11962
11963The '``llvm.minnum.*``' intrinsics return the minimum of the two
11964arguments.
11965
11966
11967Arguments:
11968""""""""""
11969
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011970The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011971type.
11972
11973Semantics:
11974""""""""""
11975
Matt Arsenault937003c2018-08-27 17:40:07 +000011976Follows the IEEE-754 semantics for minNum, except for handling of
11977signaling NaNs. This match's the behavior of libm's fmin.
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011978
11979If either operand is a NaN, returns the other non-NaN operand. Returns
Matt Arsenault937003c2018-08-27 17:40:07 +000011980NaN only if both operands are NaN. The returned NaN is always
11981quiet. If the operands compare equal, returns a value that compares
11982equal to both operands. This means that fmin(+/-0.0, +/-0.0) could
11983return either -0.0 or 0.0.
11984
11985Unlike the IEEE-754 2008 behavior, this does not distinguish between
11986signaling and quiet NaN inputs. If a target's implementation follows
11987the standard and returns a quiet NaN if either input is a signaling
11988NaN, the intrinsic lowering is responsible for quieting the inputs to
11989correctly return the non-NaN input (e.g. by using the equivalent of
11990``llvm.canonicalize``).
11991
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011992
11993'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011995
11996Syntax:
11997"""""""
11998
11999This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012000floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000012001all types however.
12002
12003::
12004
Matt Arsenault64313c92014-10-22 18:25:02 +000012005 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
12006 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
12007 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
12008 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
12009 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000012010
12011Overview:
12012"""""""""
12013
12014The '``llvm.maxnum.*``' intrinsics return the maximum of the two
12015arguments.
12016
12017
12018Arguments:
12019""""""""""
12020
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012021The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000012022type.
12023
12024Semantics:
12025""""""""""
Matt Arsenault937003c2018-08-27 17:40:07 +000012026Follows the IEEE-754 semantics for maxNum except for the handling of
12027signaling NaNs. This matches the behavior of libm's fmax.
Matt Arsenaultd6511b42014-10-21 23:00:20 +000012028
12029If either operand is a NaN, returns the other non-NaN operand. Returns
Matt Arsenault937003c2018-08-27 17:40:07 +000012030NaN only if both operands are NaN. The returned NaN is always
12031quiet. If the operands compare equal, returns a value that compares
12032equal to both operands. This means that fmax(+/-0.0, +/-0.0) could
12033return either -0.0 or 0.0.
12034
12035Unlike the IEEE-754 2008 behavior, this does not distinguish between
12036signaling and quiet NaN inputs. If a target's implementation follows
12037the standard and returns a quiet NaN if either input is a signaling
12038NaN, the intrinsic lowering is responsible for quieting the inputs to
12039correctly return the non-NaN input (e.g. by using the equivalent of
12040``llvm.canonicalize``).
Matt Arsenaultd6511b42014-10-21 23:00:20 +000012041
Thomas Lively16c349d2018-10-13 07:21:44 +000012042'``llvm.minimum.*``' Intrinsic
12043^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12044
12045Syntax:
12046"""""""
12047
12048This is an overloaded intrinsic. You can use ``llvm.minimum`` on any
12049floating-point or vector of floating-point type. Not all targets support
12050all types however.
12051
12052::
12053
12054 declare float @llvm.minimum.f32(float %Val0, float %Val1)
12055 declare double @llvm.minimum.f64(double %Val0, double %Val1)
12056 declare x86_fp80 @llvm.minimum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
12057 declare fp128 @llvm.minimum.f128(fp128 %Val0, fp128 %Val1)
12058 declare ppc_fp128 @llvm.minimum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
12059
12060Overview:
12061"""""""""
12062
12063The '``llvm.minimum.*``' intrinsics return the minimum of the two
12064arguments, propagating NaNs and treating -0.0 as less than +0.0.
12065
12066
12067Arguments:
12068""""""""""
12069
12070The arguments and return value are floating-point numbers of the same
12071type.
12072
12073Semantics:
12074""""""""""
12075If either operand is a NaN, returns NaN. Otherwise returns the lesser
12076of the two arguments. -0.0 is considered to be less than +0.0 for this
12077intrinsic. Note that these are the semantics specified in the draft of
12078IEEE 754-2018.
12079
12080'``llvm.maximum.*``' Intrinsic
12081^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12082
12083Syntax:
12084"""""""
12085
12086This is an overloaded intrinsic. You can use ``llvm.maximum`` on any
12087floating-point or vector of floating-point type. Not all targets support
12088all types however.
12089
12090::
12091
12092 declare float @llvm.maximum.f32(float %Val0, float %Val1)
12093 declare double @llvm.maximum.f64(double %Val0, double %Val1)
12094 declare x86_fp80 @llvm.maximum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
12095 declare fp128 @llvm.maximum.f128(fp128 %Val0, fp128 %Val1)
12096 declare ppc_fp128 @llvm.maximum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
12097
12098Overview:
12099"""""""""
12100
12101The '``llvm.maximum.*``' intrinsics return the maximum of the two
12102arguments, propagating NaNs and treating -0.0 as less than +0.0.
12103
12104
12105Arguments:
12106""""""""""
12107
12108The arguments and return value are floating-point numbers of the same
12109type.
12110
12111Semantics:
12112""""""""""
12113If either operand is a NaN, returns NaN. Otherwise returns the greater
12114of the two arguments. -0.0 is considered to be less than +0.0 for this
12115intrinsic. Note that these are the semantics specified in the draft of
12116IEEE 754-2018.
12117
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000012118'``llvm.copysign.*``' Intrinsic
12119^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12120
12121Syntax:
12122"""""""
12123
12124This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012125floating-point or vector of floating-point type. Not all targets support
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000012126all types however.
12127
12128::
12129
12130 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
12131 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
12132 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
12133 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
12134 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
12135
12136Overview:
12137"""""""""
12138
12139The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
12140first operand and the sign of the second operand.
12141
12142Arguments:
12143""""""""""
12144
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012145The arguments and return value are floating-point numbers of the same
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000012146type.
12147
12148Semantics:
12149""""""""""
12150
12151This function returns the same values as the libm ``copysign``
12152functions would, and handles error conditions in the same way.
12153
Sean Silvab084af42012-12-07 10:36:55 +000012154'``llvm.floor.*``' Intrinsic
12155^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12156
12157Syntax:
12158"""""""
12159
12160This is an overloaded intrinsic. You can use ``llvm.floor`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012161floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012162all types however.
12163
12164::
12165
12166 declare float @llvm.floor.f32(float %Val)
12167 declare double @llvm.floor.f64(double %Val)
12168 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
12169 declare fp128 @llvm.floor.f128(fp128 %Val)
12170 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
12171
12172Overview:
12173"""""""""
12174
12175The '``llvm.floor.*``' intrinsics return the floor of the operand.
12176
12177Arguments:
12178""""""""""
12179
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012180The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012181type.
12182
12183Semantics:
12184""""""""""
12185
12186This function returns the same values as the libm ``floor`` functions
12187would, and handles error conditions in the same way.
12188
12189'``llvm.ceil.*``' Intrinsic
12190^^^^^^^^^^^^^^^^^^^^^^^^^^^
12191
12192Syntax:
12193"""""""
12194
12195This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012196floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012197all types however.
12198
12199::
12200
12201 declare float @llvm.ceil.f32(float %Val)
12202 declare double @llvm.ceil.f64(double %Val)
12203 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
12204 declare fp128 @llvm.ceil.f128(fp128 %Val)
12205 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
12206
12207Overview:
12208"""""""""
12209
12210The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
12211
12212Arguments:
12213""""""""""
12214
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012215The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012216type.
12217
12218Semantics:
12219""""""""""
12220
12221This function returns the same values as the libm ``ceil`` functions
12222would, and handles error conditions in the same way.
12223
12224'``llvm.trunc.*``' Intrinsic
12225^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12226
12227Syntax:
12228"""""""
12229
12230This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012231floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012232all types however.
12233
12234::
12235
12236 declare float @llvm.trunc.f32(float %Val)
12237 declare double @llvm.trunc.f64(double %Val)
12238 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
12239 declare fp128 @llvm.trunc.f128(fp128 %Val)
12240 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
12241
12242Overview:
12243"""""""""
12244
12245The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
12246nearest integer not larger in magnitude than the operand.
12247
12248Arguments:
12249""""""""""
12250
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012251The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012252type.
12253
12254Semantics:
12255""""""""""
12256
12257This function returns the same values as the libm ``trunc`` functions
12258would, and handles error conditions in the same way.
12259
12260'``llvm.rint.*``' Intrinsic
12261^^^^^^^^^^^^^^^^^^^^^^^^^^^
12262
12263Syntax:
12264"""""""
12265
12266This is an overloaded intrinsic. You can use ``llvm.rint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012267floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012268all types however.
12269
12270::
12271
12272 declare float @llvm.rint.f32(float %Val)
12273 declare double @llvm.rint.f64(double %Val)
12274 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
12275 declare fp128 @llvm.rint.f128(fp128 %Val)
12276 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
12277
12278Overview:
12279"""""""""
12280
12281The '``llvm.rint.*``' intrinsics returns the operand rounded to the
12282nearest integer. It may raise an inexact floating-point exception if the
12283operand isn't an integer.
12284
12285Arguments:
12286""""""""""
12287
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012288The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012289type.
12290
12291Semantics:
12292""""""""""
12293
12294This function returns the same values as the libm ``rint`` functions
12295would, and handles error conditions in the same way.
12296
12297'``llvm.nearbyint.*``' Intrinsic
12298^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12299
12300Syntax:
12301"""""""
12302
12303This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012304floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012305all types however.
12306
12307::
12308
12309 declare float @llvm.nearbyint.f32(float %Val)
12310 declare double @llvm.nearbyint.f64(double %Val)
12311 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
12312 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
12313 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
12314
12315Overview:
12316"""""""""
12317
12318The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
12319nearest integer.
12320
12321Arguments:
12322""""""""""
12323
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012324The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012325type.
12326
12327Semantics:
12328""""""""""
12329
12330This function returns the same values as the libm ``nearbyint``
12331functions would, and handles error conditions in the same way.
12332
Hal Finkel171817e2013-08-07 22:49:12 +000012333'``llvm.round.*``' Intrinsic
12334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12335
12336Syntax:
12337"""""""
12338
12339This is an overloaded intrinsic. You can use ``llvm.round`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012340floating-point or vector of floating-point type. Not all targets support
Hal Finkel171817e2013-08-07 22:49:12 +000012341all types however.
12342
12343::
12344
12345 declare float @llvm.round.f32(float %Val)
12346 declare double @llvm.round.f64(double %Val)
12347 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
12348 declare fp128 @llvm.round.f128(fp128 %Val)
12349 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
12350
12351Overview:
12352"""""""""
12353
12354The '``llvm.round.*``' intrinsics returns the operand rounded to the
12355nearest integer.
12356
12357Arguments:
12358""""""""""
12359
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012360The argument and return value are floating-point numbers of the same
Hal Finkel171817e2013-08-07 22:49:12 +000012361type.
12362
12363Semantics:
12364""""""""""
12365
12366This function returns the same values as the libm ``round``
12367functions would, and handles error conditions in the same way.
12368
Adhemerval Zanella73643b52019-05-16 13:15:27 +000012369'``llvm.lround.*``' Intrinsic
12370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12371
12372Syntax:
12373"""""""
12374
12375This is an overloaded intrinsic. You can use ``llvm.lround`` on any
12376floating-point type. Not all targets support all types however.
12377
12378::
12379
12380 declare i32 @llvm.lround.i32.f32(float %Val)
12381 declare i32 @llvm.lround.i32.f64(double %Val)
12382 declare i32 @llvm.lround.i32.f80(float %Val)
12383 declare i32 @llvm.lround.i32.f128(double %Val)
12384 declare i32 @llvm.lround.i32.ppcf128(double %Val)
12385
12386 declare i64 @llvm.lround.i64.f32(float %Val)
12387 declare i64 @llvm.lround.i64.f64(double %Val)
12388 declare i64 @llvm.lround.i64.f80(float %Val)
12389 declare i64 @llvm.lround.i64.f128(double %Val)
12390 declare i64 @llvm.lround.i64.ppcf128(double %Val)
12391
12392Overview:
12393"""""""""
12394
12395The '``llvm.lround.*``' intrinsics returns the operand rounded to the
12396nearest integer.
12397
12398Arguments:
12399""""""""""
12400
Craig Topperaf7a1882019-05-20 16:27:09 +000012401The argument is a floating-point number and return is an integer type.
Adhemerval Zanella73643b52019-05-16 13:15:27 +000012402
12403Semantics:
12404""""""""""
12405
12406This function returns the same values as the libm ``lround``
12407functions would, but without setting errno.
12408
12409'``llvm.llround.*``' Intrinsic
12410^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12411
12412Syntax:
12413"""""""
12414
12415This is an overloaded intrinsic. You can use ``llvm.llround`` on any
12416floating-point type. Not all targets support all types however.
12417
12418::
12419
Craig Topperaf7a1882019-05-20 16:27:09 +000012420 declare i64 @llvm.lround.i64.f32(float %Val)
12421 declare i64 @llvm.lround.i64.f64(double %Val)
12422 declare i64 @llvm.lround.i64.f80(float %Val)
12423 declare i64 @llvm.lround.i64.f128(double %Val)
12424 declare i64 @llvm.lround.i64.ppcf128(double %Val)
Adhemerval Zanella73643b52019-05-16 13:15:27 +000012425
12426Overview:
12427"""""""""
12428
12429The '``llvm.llround.*``' intrinsics returns the operand rounded to the
12430nearest integer.
12431
12432Arguments:
12433""""""""""
12434
Craig Topperaf7a1882019-05-20 16:27:09 +000012435The argument is a floating-point number and return is an integer type.
Adhemerval Zanella73643b52019-05-16 13:15:27 +000012436
12437Semantics:
12438""""""""""
12439
12440This function returns the same values as the libm ``llround``
12441functions would, but without setting errno.
12442
Sean Silvab084af42012-12-07 10:36:55 +000012443Bit Manipulation Intrinsics
12444---------------------------
12445
12446LLVM provides intrinsics for a few important bit manipulation
12447operations. These allow efficient code generation for some algorithms.
12448
James Molloy90111f72015-11-12 12:29:09 +000012449'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000012450^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000012451
12452Syntax:
12453"""""""
12454
12455This is an overloaded intrinsic function. You can use bitreverse on any
12456integer type.
12457
12458::
12459
12460 declare i16 @llvm.bitreverse.i16(i16 <id>)
12461 declare i32 @llvm.bitreverse.i32(i32 <id>)
12462 declare i64 @llvm.bitreverse.i64(i64 <id>)
Simon Pilgrimf4268172019-01-28 16:56:38 +000012463 declare <4 x i32> @llvm.bitreverse.v4i32(<4 x i32> <id>)
James Molloy90111f72015-11-12 12:29:09 +000012464
12465Overview:
12466"""""""""
12467
12468The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Simon Pilgrimf4268172019-01-28 16:56:38 +000012469bitpattern of an integer value or vector of integer values; for example
12470``0b10110110`` becomes ``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000012471
12472Semantics:
12473""""""""""
12474
Yichao Yu5abf14b2016-11-23 16:25:31 +000012475The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
Simon Pilgrimf4268172019-01-28 16:56:38 +000012476``M`` in the input moved to bit ``N-M`` in the output. The vector
12477intrinsics, such as ``llvm.bitreverse.v4i32``, operate on a per-element
12478basis and the element order is not affected.
James Molloy90111f72015-11-12 12:29:09 +000012479
Sean Silvab084af42012-12-07 10:36:55 +000012480'``llvm.bswap.*``' Intrinsics
12481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12482
12483Syntax:
12484"""""""
12485
12486This is an overloaded intrinsic function. You can use bswap on any
12487integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
12488
12489::
12490
12491 declare i16 @llvm.bswap.i16(i16 <id>)
12492 declare i32 @llvm.bswap.i32(i32 <id>)
12493 declare i64 @llvm.bswap.i64(i64 <id>)
Simon Pilgrimf4268172019-01-28 16:56:38 +000012494 declare <4 x i32> @llvm.bswap.v4i32(<4 x i32> <id>)
Sean Silvab084af42012-12-07 10:36:55 +000012495
12496Overview:
12497"""""""""
12498
Simon Pilgrimf4268172019-01-28 16:56:38 +000012499The '``llvm.bswap``' family of intrinsics is used to byte swap an integer
12500value or vector of integer values with an even number of bytes (positive
12501multiple of 16 bits).
Sean Silvab084af42012-12-07 10:36:55 +000012502
12503Semantics:
12504""""""""""
12505
12506The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
12507and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
12508intrinsic returns an i32 value that has the four bytes of the input i32
12509swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
12510returned i32 will have its bytes in 3, 2, 1, 0 order. The
12511``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
12512concept to additional even-byte lengths (6 bytes, 8 bytes and more,
Simon Pilgrimf4268172019-01-28 16:56:38 +000012513respectively). The vector intrinsics, such as ``llvm.bswap.v4i32``,
12514operate on a per-element basis and the element order is not affected.
Sean Silvab084af42012-12-07 10:36:55 +000012515
12516'``llvm.ctpop.*``' Intrinsic
12517^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12518
12519Syntax:
12520"""""""
12521
12522This is an overloaded intrinsic. You can use llvm.ctpop on any integer
12523bit width, or on any vector with integer elements. Not all targets
12524support all bit widths or vector types, however.
12525
12526::
12527
12528 declare i8 @llvm.ctpop.i8(i8 <src>)
12529 declare i16 @llvm.ctpop.i16(i16 <src>)
12530 declare i32 @llvm.ctpop.i32(i32 <src>)
12531 declare i64 @llvm.ctpop.i64(i64 <src>)
12532 declare i256 @llvm.ctpop.i256(i256 <src>)
12533 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
12534
12535Overview:
12536"""""""""
12537
12538The '``llvm.ctpop``' family of intrinsics counts the number of bits set
12539in a value.
12540
12541Arguments:
12542""""""""""
12543
12544The only argument is the value to be counted. The argument may be of any
12545integer type, or a vector with integer elements. The return type must
12546match the argument type.
12547
12548Semantics:
12549""""""""""
12550
12551The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
12552each element of a vector.
12553
12554'``llvm.ctlz.*``' Intrinsic
12555^^^^^^^^^^^^^^^^^^^^^^^^^^^
12556
12557Syntax:
12558"""""""
12559
12560This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
12561integer bit width, or any vector whose elements are integers. Not all
12562targets support all bit widths or vector types, however.
12563
12564::
12565
12566 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
12567 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
12568 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
12569 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
12570 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000012571 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000012572
12573Overview:
12574"""""""""
12575
12576The '``llvm.ctlz``' family of intrinsic functions counts the number of
12577leading zeros in a variable.
12578
12579Arguments:
12580""""""""""
12581
12582The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000012583any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000012584type must match the first argument type.
12585
12586The second argument must be a constant and is a flag to indicate whether
12587the intrinsic should ensure that a zero as the first argument produces a
12588defined result. Historically some architectures did not provide a
12589defined result for zero values as efficiently, and many algorithms are
12590now predicated on avoiding zero-value inputs.
12591
12592Semantics:
12593""""""""""
12594
12595The '``llvm.ctlz``' intrinsic counts the leading (most significant)
12596zeros in a variable, or within each element of the vector. If
12597``src == 0`` then the result is the size in bits of the type of ``src``
12598if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
12599``llvm.ctlz(i32 2) = 30``.
12600
12601'``llvm.cttz.*``' Intrinsic
12602^^^^^^^^^^^^^^^^^^^^^^^^^^^
12603
12604Syntax:
12605"""""""
12606
12607This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
12608integer bit width, or any vector of integer elements. Not all targets
12609support all bit widths or vector types, however.
12610
12611::
12612
12613 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
12614 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
12615 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
12616 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
12617 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000012618 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000012619
12620Overview:
12621"""""""""
12622
12623The '``llvm.cttz``' family of intrinsic functions counts the number of
12624trailing zeros.
12625
12626Arguments:
12627""""""""""
12628
12629The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000012630any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000012631type must match the first argument type.
12632
12633The second argument must be a constant and is a flag to indicate whether
12634the intrinsic should ensure that a zero as the first argument produces a
12635defined result. Historically some architectures did not provide a
12636defined result for zero values as efficiently, and many algorithms are
12637now predicated on avoiding zero-value inputs.
12638
12639Semantics:
12640""""""""""
12641
12642The '``llvm.cttz``' intrinsic counts the trailing (least significant)
12643zeros in a variable, or within each element of a vector. If ``src == 0``
12644then the result is the size in bits of the type of ``src`` if
12645``is_zero_undef == 0`` and ``undef`` otherwise. For example,
12646``llvm.cttz(2) = 1``.
12647
Philip Reames34843ae2015-03-05 05:55:55 +000012648.. _int_overflow:
12649
Sanjay Patelc71adc82018-07-16 22:59:31 +000012650'``llvm.fshl.*``' Intrinsic
12651^^^^^^^^^^^^^^^^^^^^^^^^^^^
12652
12653Syntax:
12654"""""""
12655
12656This is an overloaded intrinsic. You can use ``llvm.fshl`` on any
12657integer bit width or any vector of integer elements. Not all targets
12658support all bit widths or vector types, however.
12659
12660::
12661
12662 declare i8 @llvm.fshl.i8 (i8 %a, i8 %b, i8 %c)
12663 declare i67 @llvm.fshl.i67(i67 %a, i67 %b, i67 %c)
12664 declare <2 x i32> @llvm.fshl.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
12665
12666Overview:
12667"""""""""
12668
12669The '``llvm.fshl``' family of intrinsic functions performs a funnel shift left:
12670the first two values are concatenated as { %a : %b } (%a is the most significant
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000012671bits of the wide value), the combined value is shifted left, and the most
12672significant bits are extracted to produce a result that is the same size as the
12673original arguments. If the first 2 arguments are identical, this is equivalent
12674to a rotate left operation. For vector types, the operation occurs for each
12675element of the vector. The shift argument is treated as an unsigned amount
Sanjay Patelc71adc82018-07-16 22:59:31 +000012676modulo the element size of the arguments.
12677
12678Arguments:
12679""""""""""
12680
12681The first two arguments are the values to be concatenated. The third
12682argument is the shift amount. The arguments may be any integer type or a
12683vector with integer element type. All arguments and the return value must
12684have the same type.
12685
12686Example:
12687""""""""
12688
12689.. code-block:: text
12690
12691 %r = call i8 @llvm.fshl.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: msb_extract((concat(x, y) << (z % 8)), 8)
12692 %r = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 15) ; %r = i8: 128 (0b10000000)
12693 %r = call i8 @llvm.fshl.i8(i8 15, i8 15, i8 11) ; %r = i8: 120 (0b01111000)
12694 %r = call i8 @llvm.fshl.i8(i8 0, i8 255, i8 8) ; %r = i8: 0 (0b00000000)
12695
12696'``llvm.fshr.*``' Intrinsic
12697^^^^^^^^^^^^^^^^^^^^^^^^^^^
12698
12699Syntax:
12700"""""""
12701
12702This is an overloaded intrinsic. You can use ``llvm.fshr`` on any
12703integer bit width or any vector of integer elements. Not all targets
12704support all bit widths or vector types, however.
12705
12706::
12707
12708 declare i8 @llvm.fshr.i8 (i8 %a, i8 %b, i8 %c)
12709 declare i67 @llvm.fshr.i67(i67 %a, i67 %b, i67 %c)
12710 declare <2 x i32> @llvm.fshr.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
12711
12712Overview:
12713"""""""""
12714
12715The '``llvm.fshr``' family of intrinsic functions performs a funnel shift right:
12716the first two values are concatenated as { %a : %b } (%a is the most significant
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000012717bits of the wide value), the combined value is shifted right, and the least
12718significant bits are extracted to produce a result that is the same size as the
12719original arguments. If the first 2 arguments are identical, this is equivalent
12720to a rotate right operation. For vector types, the operation occurs for each
12721element of the vector. The shift argument is treated as an unsigned amount
Sanjay Patelc71adc82018-07-16 22:59:31 +000012722modulo the element size of the arguments.
12723
12724Arguments:
12725""""""""""
12726
12727The first two arguments are the values to be concatenated. The third
12728argument is the shift amount. The arguments may be any integer type or a
12729vector with integer element type. All arguments and the return value must
12730have the same type.
12731
12732Example:
12733""""""""
12734
12735.. code-block:: text
12736
12737 %r = call i8 @llvm.fshr.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: lsb_extract((concat(x, y) >> (z % 8)), 8)
12738 %r = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 15) ; %r = i8: 254 (0b11111110)
12739 %r = call i8 @llvm.fshr.i8(i8 15, i8 15, i8 11) ; %r = i8: 225 (0b11100001)
12740 %r = call i8 @llvm.fshr.i8(i8 0, i8 255, i8 8) ; %r = i8: 255 (0b11111111)
12741
Sean Silvab084af42012-12-07 10:36:55 +000012742Arithmetic with Overflow Intrinsics
12743-----------------------------------
12744
John Regehr6a493f22016-05-12 20:55:09 +000012745LLVM provides intrinsics for fast arithmetic overflow checking.
12746
12747Each of these intrinsics returns a two-element struct. The first
12748element of this struct contains the result of the corresponding
12749arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
12750the result. Therefore, for example, the first element of the struct
12751returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
12752result of a 32-bit ``add`` instruction with the same operands, where
12753the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
12754
12755The second element of the result is an ``i1`` that is 1 if the
12756arithmetic operation overflowed and 0 otherwise. An operation
12757overflows if, for any values of its operands ``A`` and ``B`` and for
12758any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
12759not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
12760``sext`` for signed overflow and ``zext`` for unsigned overflow, and
12761``op`` is the underlying arithmetic operation.
12762
12763The behavior of these intrinsics is well-defined for all argument
12764values.
Sean Silvab084af42012-12-07 10:36:55 +000012765
12766'``llvm.sadd.with.overflow.*``' Intrinsics
12767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12768
12769Syntax:
12770"""""""
12771
12772This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
Simon Pilgrim7166ab42019-02-25 21:05:09 +000012773on any integer bit width or vectors of integers.
Sean Silvab084af42012-12-07 10:36:55 +000012774
12775::
12776
12777 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
12778 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12779 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
Simon Pilgrim7166ab42019-02-25 21:05:09 +000012780 declare {<4 x i32>, <4 x i1>} @llvm.sadd.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)
Sean Silvab084af42012-12-07 10:36:55 +000012781
12782Overview:
12783"""""""""
12784
12785The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
12786a signed addition of the two arguments, and indicate whether an overflow
12787occurred during the signed summation.
12788
12789Arguments:
12790""""""""""
12791
12792The arguments (%a and %b) and the first element of the result structure
12793may be of integer types of any bit width, but they must have the same
12794bit width. The second element of the result structure must be of type
12795``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12796addition.
12797
12798Semantics:
12799""""""""""
12800
12801The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012802a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012803first element of which is the signed summation, and the second element
12804of which is a bit specifying if the signed summation resulted in an
12805overflow.
12806
12807Examples:
12808"""""""""
12809
12810.. code-block:: llvm
12811
12812 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12813 %sum = extractvalue {i32, i1} %res, 0
12814 %obit = extractvalue {i32, i1} %res, 1
12815 br i1 %obit, label %overflow, label %normal
12816
12817'``llvm.uadd.with.overflow.*``' Intrinsics
12818^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12819
12820Syntax:
12821"""""""
12822
12823This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
Simon Pilgrim7166ab42019-02-25 21:05:09 +000012824on any integer bit width or vectors of integers.
Sean Silvab084af42012-12-07 10:36:55 +000012825
12826::
12827
12828 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
12829 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12830 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
Simon Pilgrim7166ab42019-02-25 21:05:09 +000012831 declare {<4 x i32>, <4 x i1>} @llvm.uadd.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)
Sean Silvab084af42012-12-07 10:36:55 +000012832
12833Overview:
12834"""""""""
12835
12836The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
12837an unsigned addition of the two arguments, and indicate whether a carry
12838occurred during the unsigned summation.
12839
12840Arguments:
12841""""""""""
12842
12843The arguments (%a and %b) and the first element of the result structure
12844may be of integer types of any bit width, but they must have the same
12845bit width. The second element of the result structure must be of type
12846``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12847addition.
12848
12849Semantics:
12850""""""""""
12851
12852The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012853an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012854first element of which is the sum, and the second element of which is a
12855bit specifying if the unsigned summation resulted in a carry.
12856
12857Examples:
12858"""""""""
12859
12860.. code-block:: llvm
12861
12862 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12863 %sum = extractvalue {i32, i1} %res, 0
12864 %obit = extractvalue {i32, i1} %res, 1
12865 br i1 %obit, label %carry, label %normal
12866
12867'``llvm.ssub.with.overflow.*``' Intrinsics
12868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12869
12870Syntax:
12871"""""""
12872
12873This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
Simon Pilgrim7166ab42019-02-25 21:05:09 +000012874on any integer bit width or vectors of integers.
Sean Silvab084af42012-12-07 10:36:55 +000012875
12876::
12877
12878 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
12879 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12880 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
Simon Pilgrim7166ab42019-02-25 21:05:09 +000012881 declare {<4 x i32>, <4 x i1>} @llvm.ssub.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)
Sean Silvab084af42012-12-07 10:36:55 +000012882
12883Overview:
12884"""""""""
12885
12886The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
12887a signed subtraction of the two arguments, and indicate whether an
12888overflow occurred during the signed subtraction.
12889
12890Arguments:
12891""""""""""
12892
12893The arguments (%a and %b) and the first element of the result structure
12894may be of integer types of any bit width, but they must have the same
12895bit width. The second element of the result structure must be of type
12896``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12897subtraction.
12898
12899Semantics:
12900""""""""""
12901
12902The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012903a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012904first element of which is the subtraction, and the second element of
12905which is a bit specifying if the signed subtraction resulted in an
12906overflow.
12907
12908Examples:
12909"""""""""
12910
12911.. code-block:: llvm
12912
12913 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12914 %sum = extractvalue {i32, i1} %res, 0
12915 %obit = extractvalue {i32, i1} %res, 1
12916 br i1 %obit, label %overflow, label %normal
12917
12918'``llvm.usub.with.overflow.*``' Intrinsics
12919^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12920
12921Syntax:
12922"""""""
12923
12924This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
Simon Pilgrim7166ab42019-02-25 21:05:09 +000012925on any integer bit width or vectors of integers.
Sean Silvab084af42012-12-07 10:36:55 +000012926
12927::
12928
12929 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
12930 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12931 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
Simon Pilgrim7166ab42019-02-25 21:05:09 +000012932 declare {<4 x i32>, <4 x i1>} @llvm.usub.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)
Sean Silvab084af42012-12-07 10:36:55 +000012933
12934Overview:
12935"""""""""
12936
12937The '``llvm.usub.with.overflow``' family of intrinsic functions perform
12938an unsigned subtraction of the two arguments, and indicate whether an
12939overflow occurred during the unsigned subtraction.
12940
12941Arguments:
12942""""""""""
12943
12944The arguments (%a and %b) and the first element of the result structure
12945may be of integer types of any bit width, but they must have the same
12946bit width. The second element of the result structure must be of type
12947``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12948subtraction.
12949
12950Semantics:
12951""""""""""
12952
12953The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012954an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012955the first element of which is the subtraction, and the second element of
12956which is a bit specifying if the unsigned subtraction resulted in an
12957overflow.
12958
12959Examples:
12960"""""""""
12961
12962.. code-block:: llvm
12963
12964 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12965 %sum = extractvalue {i32, i1} %res, 0
12966 %obit = extractvalue {i32, i1} %res, 1
12967 br i1 %obit, label %overflow, label %normal
12968
12969'``llvm.smul.with.overflow.*``' Intrinsics
12970^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12971
12972Syntax:
12973"""""""
12974
12975This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
Simon Pilgrim7166ab42019-02-25 21:05:09 +000012976on any integer bit width or vectors of integers.
Sean Silvab084af42012-12-07 10:36:55 +000012977
12978::
12979
12980 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
12981 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12982 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
Simon Pilgrim7166ab42019-02-25 21:05:09 +000012983 declare {<4 x i32>, <4 x i1>} @llvm.smul.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)
Sean Silvab084af42012-12-07 10:36:55 +000012984
12985Overview:
12986"""""""""
12987
12988The '``llvm.smul.with.overflow``' family of intrinsic functions perform
12989a signed multiplication of the two arguments, and indicate whether an
12990overflow occurred during the signed multiplication.
12991
12992Arguments:
12993""""""""""
12994
12995The arguments (%a and %b) and the first element of the result structure
12996may be of integer types of any bit width, but they must have the same
12997bit width. The second element of the result structure must be of type
12998``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12999multiplication.
13000
13001Semantics:
13002""""""""""
13003
13004The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000013005a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000013006the first element of which is the multiplication, and the second element
13007of which is a bit specifying if the signed multiplication resulted in an
13008overflow.
13009
13010Examples:
13011"""""""""
13012
13013.. code-block:: llvm
13014
13015 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
13016 %sum = extractvalue {i32, i1} %res, 0
13017 %obit = extractvalue {i32, i1} %res, 1
13018 br i1 %obit, label %overflow, label %normal
13019
13020'``llvm.umul.with.overflow.*``' Intrinsics
13021^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13022
13023Syntax:
13024"""""""
13025
13026This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
Simon Pilgrim7166ab42019-02-25 21:05:09 +000013027on any integer bit width or vectors of integers.
Sean Silvab084af42012-12-07 10:36:55 +000013028
13029::
13030
13031 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
13032 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
13033 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
Simon Pilgrim7166ab42019-02-25 21:05:09 +000013034 declare {<4 x i32>, <4 x i1>} @llvm.umul.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)
Sean Silvab084af42012-12-07 10:36:55 +000013035
13036Overview:
13037"""""""""
13038
13039The '``llvm.umul.with.overflow``' family of intrinsic functions perform
13040a unsigned multiplication of the two arguments, and indicate whether an
13041overflow occurred during the unsigned multiplication.
13042
13043Arguments:
13044""""""""""
13045
13046The arguments (%a and %b) and the first element of the result structure
13047may be of integer types of any bit width, but they must have the same
13048bit width. The second element of the result structure must be of type
13049``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
13050multiplication.
13051
13052Semantics:
13053""""""""""
13054
13055The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000013056an unsigned multiplication of the two arguments. They return a structure ---
13057the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000013058element of which is a bit specifying if the unsigned multiplication
13059resulted in an overflow.
13060
13061Examples:
13062"""""""""
13063
13064.. code-block:: llvm
13065
13066 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
13067 %sum = extractvalue {i32, i1} %res, 0
13068 %obit = extractvalue {i32, i1} %res, 1
13069 br i1 %obit, label %overflow, label %normal
13070
Leonard Chan9ede9532018-11-20 18:01:24 +000013071Saturation Arithmetic Intrinsics
13072---------------------------------
13073
13074Saturation arithmetic is a version of arithmetic in which operations are
13075limited to a fixed range between a minimum and maximum value. If the result of
13076an operation is greater than the maximum value, the result is set (or
13077"clamped") to this maximum. If it is below the minimum, it is clamped to this
13078minimum.
13079
13080
13081'``llvm.sadd.sat.*``' Intrinsics
13082^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13083
13084Syntax
13085"""""""
13086
13087This is an overloaded intrinsic. You can use ``llvm.sadd.sat``
13088on any integer bit width or vectors of integers.
13089
13090::
13091
13092 declare i16 @llvm.sadd.sat.i16(i16 %a, i16 %b)
13093 declare i32 @llvm.sadd.sat.i32(i32 %a, i32 %b)
13094 declare i64 @llvm.sadd.sat.i64(i64 %a, i64 %b)
13095 declare <4 x i32> @llvm.sadd.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
13096
13097Overview
13098"""""""""
13099
13100The '``llvm.sadd.sat``' family of intrinsic functions perform signed
13101saturation addition on the 2 arguments.
13102
13103Arguments
13104""""""""""
13105
13106The arguments (%a and %b) and the result may be of integer types of any bit
13107width, but they must have the same bit width. ``%a`` and ``%b`` are the two
13108values that will undergo signed addition.
13109
13110Semantics:
13111""""""""""
13112
13113The maximum value this operation can clamp to is the largest signed value
13114representable by the bit width of the arguments. The minimum value is the
13115smallest signed value representable by this bit width.
13116
13117
13118Examples
13119"""""""""
13120
13121.. code-block:: llvm
13122
13123 %res = call i4 @llvm.sadd.sat.i4(i4 1, i4 2) ; %res = 3
13124 %res = call i4 @llvm.sadd.sat.i4(i4 5, i4 6) ; %res = 7
13125 %res = call i4 @llvm.sadd.sat.i4(i4 -4, i4 2) ; %res = -2
13126 %res = call i4 @llvm.sadd.sat.i4(i4 -4, i4 -5) ; %res = -8
13127
13128
13129'``llvm.uadd.sat.*``' Intrinsics
13130^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13131
13132Syntax
13133"""""""
13134
13135This is an overloaded intrinsic. You can use ``llvm.uadd.sat``
13136on any integer bit width or vectors of integers.
13137
13138::
13139
13140 declare i16 @llvm.uadd.sat.i16(i16 %a, i16 %b)
13141 declare i32 @llvm.uadd.sat.i32(i32 %a, i32 %b)
13142 declare i64 @llvm.uadd.sat.i64(i64 %a, i64 %b)
13143 declare <4 x i32> @llvm.uadd.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
13144
13145Overview
13146"""""""""
13147
13148The '``llvm.uadd.sat``' family of intrinsic functions perform unsigned
13149saturation addition on the 2 arguments.
13150
13151Arguments
13152""""""""""
13153
13154The arguments (%a and %b) and the result may be of integer types of any bit
13155width, but they must have the same bit width. ``%a`` and ``%b`` are the two
13156values that will undergo unsigned addition.
13157
13158Semantics:
13159""""""""""
13160
13161The maximum value this operation can clamp to is the largest unsigned value
13162representable by the bit width of the arguments. Because this is an unsigned
13163operation, the result will never saturate towards zero.
13164
13165
13166Examples
13167"""""""""
13168
13169.. code-block:: llvm
13170
13171 %res = call i4 @llvm.uadd.sat.i4(i4 1, i4 2) ; %res = 3
13172 %res = call i4 @llvm.uadd.sat.i4(i4 5, i4 6) ; %res = 11
13173 %res = call i4 @llvm.uadd.sat.i4(i4 8, i4 8) ; %res = 15
13174
13175
13176'``llvm.ssub.sat.*``' Intrinsics
13177^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13178
13179Syntax
13180"""""""
13181
13182This is an overloaded intrinsic. You can use ``llvm.ssub.sat``
13183on any integer bit width or vectors of integers.
13184
13185::
13186
13187 declare i16 @llvm.ssub.sat.i16(i16 %a, i16 %b)
13188 declare i32 @llvm.ssub.sat.i32(i32 %a, i32 %b)
13189 declare i64 @llvm.ssub.sat.i64(i64 %a, i64 %b)
13190 declare <4 x i32> @llvm.ssub.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
13191
13192Overview
13193"""""""""
13194
13195The '``llvm.ssub.sat``' family of intrinsic functions perform signed
13196saturation subtraction on the 2 arguments.
13197
13198Arguments
13199""""""""""
13200
13201The arguments (%a and %b) and the result may be of integer types of any bit
13202width, but they must have the same bit width. ``%a`` and ``%b`` are the two
13203values that will undergo signed subtraction.
13204
13205Semantics:
13206""""""""""
13207
13208The maximum value this operation can clamp to is the largest signed value
13209representable by the bit width of the arguments. The minimum value is the
13210smallest signed value representable by this bit width.
13211
13212
13213Examples
13214"""""""""
13215
13216.. code-block:: llvm
13217
13218 %res = call i4 @llvm.ssub.sat.i4(i4 2, i4 1) ; %res = 1
13219 %res = call i4 @llvm.ssub.sat.i4(i4 2, i4 6) ; %res = -4
13220 %res = call i4 @llvm.ssub.sat.i4(i4 -4, i4 5) ; %res = -8
13221 %res = call i4 @llvm.ssub.sat.i4(i4 4, i4 -5) ; %res = 7
13222
13223
13224'``llvm.usub.sat.*``' Intrinsics
13225^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13226
13227Syntax
13228"""""""
13229
13230This is an overloaded intrinsic. You can use ``llvm.usub.sat``
13231on any integer bit width or vectors of integers.
13232
13233::
13234
13235 declare i16 @llvm.usub.sat.i16(i16 %a, i16 %b)
13236 declare i32 @llvm.usub.sat.i32(i32 %a, i32 %b)
13237 declare i64 @llvm.usub.sat.i64(i64 %a, i64 %b)
13238 declare <4 x i32> @llvm.usub.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
13239
13240Overview
13241"""""""""
13242
13243The '``llvm.usub.sat``' family of intrinsic functions perform unsigned
13244saturation subtraction on the 2 arguments.
13245
13246Arguments
13247""""""""""
13248
13249The arguments (%a and %b) and the result may be of integer types of any bit
13250width, but they must have the same bit width. ``%a`` and ``%b`` are the two
13251values that will undergo unsigned subtraction.
13252
13253Semantics:
13254""""""""""
13255
13256The minimum value this operation can clamp to is 0, which is the smallest
13257unsigned value representable by the bit width of the unsigned arguments.
13258Because this is an unsigned operation, the result will never saturate towards
13259the largest possible value representable by this bit width.
13260
13261
13262Examples
13263"""""""""
13264
13265.. code-block:: llvm
13266
13267 %res = call i4 @llvm.usub.sat.i4(i4 2, i4 1) ; %res = 1
13268 %res = call i4 @llvm.usub.sat.i4(i4 2, i4 6) ; %res = 0
13269
13270
Leonard Chan118e53f2018-12-12 06:29:14 +000013271Fixed Point Arithmetic Intrinsics
13272---------------------------------
13273
13274A fixed point number represents a real data type for a number that has a fixed
13275number of digits after a radix point (equivalent to the decimal point '.').
13276The number of digits after the radix point is referred as the ``scale``. These
13277are useful for representing fractional values to a specific precision. The
13278following intrinsics perform fixed point arithmetic operations on 2 operands
13279of the same scale, specified as the third argument.
13280
13281
13282'``llvm.smul.fix.*``' Intrinsics
13283^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13284
13285Syntax
13286"""""""
13287
13288This is an overloaded intrinsic. You can use ``llvm.smul.fix``
13289on any integer bit width or vectors of integers.
13290
13291::
13292
13293 declare i16 @llvm.smul.fix.i16(i16 %a, i16 %b, i32 %scale)
13294 declare i32 @llvm.smul.fix.i32(i32 %a, i32 %b, i32 %scale)
13295 declare i64 @llvm.smul.fix.i64(i64 %a, i64 %b, i32 %scale)
13296 declare <4 x i32> @llvm.smul.fix.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
13297
13298Overview
13299"""""""""
13300
13301The '``llvm.smul.fix``' family of intrinsic functions perform signed
13302fixed point multiplication on 2 arguments of the same scale.
13303
13304Arguments
13305""""""""""
13306
13307The arguments (%a and %b) and the result may be of integer types of any bit
Leonard Chan68d428e2019-02-04 17:18:11 +000013308width, but they must have the same bit width. The arguments may also work with
13309int vectors of the same length and int size. ``%a`` and ``%b`` are the two
Leonard Chan118e53f2018-12-12 06:29:14 +000013310values that will undergo signed fixed point multiplication. The argument
13311``%scale`` represents the scale of both operands, and must be a constant
13312integer.
13313
13314Semantics:
13315""""""""""
13316
13317This operation performs fixed point multiplication on the 2 arguments of a
13318specified scale. The result will also be returned in the same scale specified
13319in the third argument.
13320
13321If the result value cannot be precisely represented in the given scale, the
13322value is rounded up or down to the closest representable value. The rounding
13323direction is unspecified.
13324
Leonard Chan68d428e2019-02-04 17:18:11 +000013325It is undefined behavior if the result value does not fit within the range of
Leonard Chan118e53f2018-12-12 06:29:14 +000013326the fixed point type.
13327
13328
13329Examples
13330"""""""""
13331
13332.. code-block:: llvm
13333
13334 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 2, i32 0) ; %res = 6 (2 x 3 = 6)
13335 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 2, i32 1) ; %res = 3 (1.5 x 1 = 1.5)
13336 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 -2, i32 1) ; %res = -3 (1.5 x -1 = -1.5)
13337
13338 ; The result in the following could be rounded up to -2 or down to -2.5
13339 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 -3, i32 1) ; %res = -5 (or -4) (1.5 x -1.5 = -2.25)
13340
13341
Leonard Chan68d428e2019-02-04 17:18:11 +000013342'``llvm.umul.fix.*``' Intrinsics
13343^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13344
13345Syntax
13346"""""""
13347
13348This is an overloaded intrinsic. You can use ``llvm.umul.fix``
13349on any integer bit width or vectors of integers.
13350
13351::
13352
13353 declare i16 @llvm.umul.fix.i16(i16 %a, i16 %b, i32 %scale)
13354 declare i32 @llvm.umul.fix.i32(i32 %a, i32 %b, i32 %scale)
13355 declare i64 @llvm.umul.fix.i64(i64 %a, i64 %b, i32 %scale)
13356 declare <4 x i32> @llvm.umul.fix.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
13357
13358Overview
13359"""""""""
13360
13361The '``llvm.umul.fix``' family of intrinsic functions perform unsigned
13362fixed point multiplication on 2 arguments of the same scale.
13363
13364Arguments
13365""""""""""
13366
13367The arguments (%a and %b) and the result may be of integer types of any bit
13368width, but they must have the same bit width. The arguments may also work with
13369int vectors of the same length and int size. ``%a`` and ``%b`` are the two
13370values that will undergo unsigned fixed point multiplication. The argument
13371``%scale`` represents the scale of both operands, and must be a constant
13372integer.
13373
13374Semantics:
13375""""""""""
13376
13377This operation performs unsigned fixed point multiplication on the 2 arguments of a
13378specified scale. The result will also be returned in the same scale specified
13379in the third argument.
13380
13381If the result value cannot be precisely represented in the given scale, the
13382value is rounded up or down to the closest representable value. The rounding
13383direction is unspecified.
13384
13385It is undefined behavior if the result value does not fit within the range of
13386the fixed point type.
13387
13388
13389Examples
13390"""""""""
13391
13392.. code-block:: llvm
13393
13394 %res = call i4 @llvm.umul.fix.i4(i4 3, i4 2, i32 0) ; %res = 6 (2 x 3 = 6)
13395 %res = call i4 @llvm.umul.fix.i4(i4 3, i4 2, i32 1) ; %res = 3 (1.5 x 1 = 1.5)
13396
13397 ; The result in the following could be rounded down to 3.5 or up to 4
13398 %res = call i4 @llvm.umul.fix.i4(i4 15, i4 1, i32 1) ; %res = 7 (or 8) (7.5 x 0.5 = 3.75)
13399
13400
Sean Silvab084af42012-12-07 10:36:55 +000013401Specialised Arithmetic Intrinsics
13402---------------------------------
13403
Owen Anderson1056a922015-07-11 07:01:27 +000013404'``llvm.canonicalize.*``' Intrinsic
13405^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13406
13407Syntax:
13408"""""""
13409
13410::
13411
13412 declare float @llvm.canonicalize.f32(float %a)
13413 declare double @llvm.canonicalize.f64(double %b)
13414
13415Overview:
13416"""""""""
13417
13418The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013419encoding of a floating-point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000013420implementing certain numeric primitives such as frexp. The canonical encoding is
13421defined by IEEE-754-2008 to be:
13422
13423::
13424
13425 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000013426 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000013427 numbers, infinities, and NaNs, especially in decimal formats.
13428
13429This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000013430conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000013431according to section 6.2.
13432
13433Examples of non-canonical encodings:
13434
Sean Silvaa1190322015-08-06 22:56:48 +000013435- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000013436 converted to a canonical representation per hardware-specific protocol.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013437- Many normal decimal floating-point numbers have non-canonical alternative
Owen Anderson1056a922015-07-11 07:01:27 +000013438 encodings.
13439- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000013440 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000013441 a zero of the same sign by this operation.
13442
13443Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
13444default exception handling must signal an invalid exception, and produce a
13445quiet NaN result.
13446
13447This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000013448that the compiler does not constant fold the operation. Likewise, division by
134491.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000013450-0.0 is also sufficient provided that the rounding mode is not -Infinity.
13451
Sean Silvaa1190322015-08-06 22:56:48 +000013452``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000013453
13454- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
13455- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
13456 to ``(x == y)``
13457
13458Additionally, the sign of zero must be conserved:
13459``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
13460
13461The payload bits of a NaN must be conserved, with two exceptions.
13462First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000013463must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000013464usual methods.
13465
13466The canonicalization operation may be optimized away if:
13467
Sean Silvaa1190322015-08-06 22:56:48 +000013468- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000013469 floating-point operation that is required by the standard to be canonical.
13470- The result is consumed only by (or fused with) other floating-point
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013471 operations. That is, the bits of the floating-point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000013472
Sean Silvab084af42012-12-07 10:36:55 +000013473'``llvm.fmuladd.*``' Intrinsic
13474^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13475
13476Syntax:
13477"""""""
13478
13479::
13480
13481 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
13482 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
13483
13484Overview:
13485"""""""""
13486
13487The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000013488expressions that can be fused if the code generator determines that (a) the
13489target instruction set has support for a fused operation, and (b) that the
13490fused operation is more efficient than the equivalent, separate pair of mul
13491and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000013492
13493Arguments:
13494""""""""""
13495
13496The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
13497multiplicands, a and b, and an addend c.
13498
13499Semantics:
13500""""""""""
13501
13502The expression:
13503
13504::
13505
13506 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
13507
13508is equivalent to the expression a \* b + c, except that rounding will
13509not be performed between the multiplication and addition steps if the
13510code generator fuses the operations. Fusion is not guaranteed, even if
13511the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000013512corresponding llvm.fma.\* intrinsic function should be used
13513instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000013514
13515Examples:
13516"""""""""
13517
13518.. code-block:: llvm
13519
Tim Northover675a0962014-06-13 14:24:23 +000013520 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000013521
Amara Emersoncf9daa32017-05-09 10:43:25 +000013522
13523Experimental Vector Reduction Intrinsics
13524----------------------------------------
13525
13526Horizontal reductions of vectors can be expressed using the following
13527intrinsics. Each one takes a vector operand as an input and applies its
13528respective operation across all elements of the vector, returning a single
13529scalar result of the same element type.
13530
13531
13532'``llvm.experimental.vector.reduce.add.*``' Intrinsic
13533^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13534
13535Syntax:
13536"""""""
13537
13538::
13539
13540 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
13541 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
13542
13543Overview:
13544"""""""""
13545
13546The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
13547reduction of a vector, returning the result as a scalar. The return type matches
13548the element-type of the vector input.
13549
13550Arguments:
13551""""""""""
13552The argument to this intrinsic must be a vector of integer values.
13553
13554'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
13555^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13556
13557Syntax:
13558"""""""
13559
13560::
13561
13562 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
13563 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
13564
13565Overview:
13566"""""""""
13567
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013568The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000013569``ADD`` reduction of a vector, returning the result as a scalar. The return type
13570matches the element-type of the vector input.
13571
13572If the intrinsic call has fast-math flags, then the reduction will not preserve
13573the associativity of an equivalent scalarized counterpart. If it does not have
13574fast-math flags, then the reduction will be *ordered*, implying that the
13575operation respects the associativity of a scalarized reduction.
13576
13577
13578Arguments:
13579""""""""""
13580The first argument to this intrinsic is a scalar accumulator value, which is
13581only used when there are no fast-math flags attached. This argument may be undef
Sander de Smalenf83cccf2019-05-20 09:54:06 +000013582when fast-math flags are used. The type of the accumulator matches the
13583element-type of the vector input.
Amara Emersoncf9daa32017-05-09 10:43:25 +000013584
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013585The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000013586
13587Examples:
13588"""""""""
13589
13590.. code-block:: llvm
13591
13592 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
13593 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
13594
13595
13596'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
13597^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13598
13599Syntax:
13600"""""""
13601
13602::
13603
13604 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
13605 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
13606
13607Overview:
13608"""""""""
13609
13610The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
13611reduction of a vector, returning the result as a scalar. The return type matches
13612the element-type of the vector input.
13613
13614Arguments:
13615""""""""""
13616The argument to this intrinsic must be a vector of integer values.
13617
13618'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
13619^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13620
13621Syntax:
13622"""""""
13623
13624::
13625
13626 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
13627 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
13628
13629Overview:
13630"""""""""
13631
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013632The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000013633``MUL`` reduction of a vector, returning the result as a scalar. The return type
13634matches the element-type of the vector input.
13635
13636If the intrinsic call has fast-math flags, then the reduction will not preserve
13637the associativity of an equivalent scalarized counterpart. If it does not have
13638fast-math flags, then the reduction will be *ordered*, implying that the
13639operation respects the associativity of a scalarized reduction.
13640
13641
13642Arguments:
13643""""""""""
13644The first argument to this intrinsic is a scalar accumulator value, which is
13645only used when there are no fast-math flags attached. This argument may be undef
Sander de Smalenf83cccf2019-05-20 09:54:06 +000013646when fast-math flags are used. The type of the accumulator matches the
13647element-type of the vector input.
Amara Emersoncf9daa32017-05-09 10:43:25 +000013648
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013649The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000013650
13651Examples:
13652"""""""""
13653
13654.. code-block:: llvm
13655
13656 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
13657 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
13658
13659'``llvm.experimental.vector.reduce.and.*``' Intrinsic
13660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13661
13662Syntax:
13663"""""""
13664
13665::
13666
13667 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
13668
13669Overview:
13670"""""""""
13671
13672The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
13673reduction of a vector, returning the result as a scalar. The return type matches
13674the element-type of the vector input.
13675
13676Arguments:
13677""""""""""
13678The argument to this intrinsic must be a vector of integer values.
13679
13680'``llvm.experimental.vector.reduce.or.*``' Intrinsic
13681^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13682
13683Syntax:
13684"""""""
13685
13686::
13687
13688 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
13689
13690Overview:
13691"""""""""
13692
13693The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
13694of a vector, returning the result as a scalar. The return type matches the
13695element-type of the vector input.
13696
13697Arguments:
13698""""""""""
13699The argument to this intrinsic must be a vector of integer values.
13700
13701'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
13702^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13703
13704Syntax:
13705"""""""
13706
13707::
13708
13709 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
13710
13711Overview:
13712"""""""""
13713
13714The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
13715reduction of a vector, returning the result as a scalar. The return type matches
13716the element-type of the vector input.
13717
13718Arguments:
13719""""""""""
13720The argument to this intrinsic must be a vector of integer values.
13721
13722'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
13723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13724
13725Syntax:
13726"""""""
13727
13728::
13729
13730 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
13731
13732Overview:
13733"""""""""
13734
13735The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
13736``MAX`` reduction of a vector, returning the result as a scalar. The return type
13737matches the element-type of the vector input.
13738
13739Arguments:
13740""""""""""
13741The argument to this intrinsic must be a vector of integer values.
13742
13743'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
13744^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13745
13746Syntax:
13747"""""""
13748
13749::
13750
13751 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
13752
13753Overview:
13754"""""""""
13755
13756The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
13757``MIN`` reduction of a vector, returning the result as a scalar. The return type
13758matches the element-type of the vector input.
13759
13760Arguments:
13761""""""""""
13762The argument to this intrinsic must be a vector of integer values.
13763
13764'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
13765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13766
13767Syntax:
13768"""""""
13769
13770::
13771
13772 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
13773
13774Overview:
13775"""""""""
13776
13777The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
13778integer ``MAX`` reduction of a vector, returning the result as a scalar. The
13779return type matches the element-type of the vector input.
13780
13781Arguments:
13782""""""""""
13783The argument to this intrinsic must be a vector of integer values.
13784
13785'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
13786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13787
13788Syntax:
13789"""""""
13790
13791::
13792
13793 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
13794
13795Overview:
13796"""""""""
13797
13798The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
13799integer ``MIN`` reduction of a vector, returning the result as a scalar. The
13800return type matches the element-type of the vector input.
13801
13802Arguments:
13803""""""""""
13804The argument to this intrinsic must be a vector of integer values.
13805
13806'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
13807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13808
13809Syntax:
13810"""""""
13811
13812::
13813
13814 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
13815 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
13816
13817Overview:
13818"""""""""
13819
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013820The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000013821``MAX`` reduction of a vector, returning the result as a scalar. The return type
13822matches the element-type of the vector input.
13823
13824If the intrinsic call has the ``nnan`` fast-math flag then the operation can
13825assume that NaNs are not present in the input vector.
13826
13827Arguments:
13828""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013829The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000013830
13831'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
13832^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13833
13834Syntax:
13835"""""""
13836
13837::
13838
13839 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
13840 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
13841
13842Overview:
13843"""""""""
13844
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013845The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000013846``MIN`` reduction of a vector, returning the result as a scalar. The return type
13847matches the element-type of the vector input.
13848
13849If the intrinsic call has the ``nnan`` fast-math flag then the operation can
13850assume that NaNs are not present in the input vector.
13851
13852Arguments:
13853""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013854The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000013855
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013856Half Precision Floating-Point Intrinsics
Sean Silvab084af42012-12-07 10:36:55 +000013857----------------------------------------
13858
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013859For most target platforms, half precision floating-point is a
Sean Silvab084af42012-12-07 10:36:55 +000013860storage-only format. This means that it is a dense encoding (in memory)
13861but does not support computation in the format.
13862
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013863This means that code must first load the half-precision floating-point
Sean Silvab084af42012-12-07 10:36:55 +000013864value as an i16, then convert it to float with
13865:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
13866then be performed on the float value (including extending to double
13867etc). To store the value back to memory, it is first converted to float
13868if needed, then converted to i16 with
13869:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
13870i16 value.
13871
13872.. _int_convert_to_fp16:
13873
13874'``llvm.convert.to.fp16``' Intrinsic
13875^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13876
13877Syntax:
13878"""""""
13879
13880::
13881
Tim Northoverfd7e4242014-07-17 10:51:23 +000013882 declare i16 @llvm.convert.to.fp16.f32(float %a)
13883 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000013884
13885Overview:
13886"""""""""
13887
Tim Northoverfd7e4242014-07-17 10:51:23 +000013888The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013889conventional floating-point type to half precision floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000013890
13891Arguments:
13892""""""""""
13893
13894The intrinsic function contains single argument - the value to be
13895converted.
13896
13897Semantics:
13898""""""""""
13899
Tim Northoverfd7e4242014-07-17 10:51:23 +000013900The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013901conventional floating-point format to half precision floating-point format. The
Tim Northoverfd7e4242014-07-17 10:51:23 +000013902return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000013903
13904Examples:
13905"""""""""
13906
13907.. code-block:: llvm
13908
Tim Northoverfd7e4242014-07-17 10:51:23 +000013909 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000013910 store i16 %res, i16* @x, align 2
13911
13912.. _int_convert_from_fp16:
13913
13914'``llvm.convert.from.fp16``' Intrinsic
13915^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13916
13917Syntax:
13918"""""""
13919
13920::
13921
Tim Northoverfd7e4242014-07-17 10:51:23 +000013922 declare float @llvm.convert.from.fp16.f32(i16 %a)
13923 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000013924
13925Overview:
13926"""""""""
13927
13928The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013929conversion from half precision floating-point format to single precision
13930floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000013931
13932Arguments:
13933""""""""""
13934
13935The intrinsic function contains single argument - the value to be
13936converted.
13937
13938Semantics:
13939""""""""""
13940
13941The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013942conversion from half single precision floating-point format to single
13943precision floating-point format. The input half-float value is
Sean Silvab084af42012-12-07 10:36:55 +000013944represented by an ``i16`` value.
13945
13946Examples:
13947"""""""""
13948
13949.. code-block:: llvm
13950
David Blaikiec7aabbb2015-03-04 22:06:14 +000013951 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000013952 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000013953
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000013954.. _dbg_intrinsics:
13955
Sean Silvab084af42012-12-07 10:36:55 +000013956Debugger Intrinsics
13957-------------------
13958
13959The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
13960prefix), are described in the `LLVM Source Level
Hans Wennborg65195622017-09-28 15:16:37 +000013961Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
Sean Silvab084af42012-12-07 10:36:55 +000013962document.
13963
13964Exception Handling Intrinsics
13965-----------------------------
13966
13967The LLVM exception handling intrinsics (which all start with
13968``llvm.eh.`` prefix), are described in the `LLVM Exception
Hans Wennborg65195622017-09-28 15:16:37 +000013969Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
Sean Silvab084af42012-12-07 10:36:55 +000013970
13971.. _int_trampoline:
13972
13973Trampoline Intrinsics
13974---------------------
13975
13976These intrinsics make it possible to excise one parameter, marked with
13977the :ref:`nest <nest>` attribute, from a function. The result is a
13978callable function pointer lacking the nest parameter - the caller does
13979not need to provide a value for it. Instead, the value to use is stored
13980in advance in a "trampoline", a block of memory usually allocated on the
13981stack, which also contains code to splice the nest value into the
13982argument list. This is used to implement the GCC nested function address
13983extension.
13984
13985For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
13986then the resulting function pointer has signature ``i32 (i32, i32)*``.
13987It can be created as follows:
13988
13989.. code-block:: llvm
13990
13991 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000013992 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000013993 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
13994 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
13995 %fp = bitcast i8* %p to i32 (i32, i32)*
13996
13997The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
13998``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
13999
14000.. _int_it:
14001
14002'``llvm.init.trampoline``' Intrinsic
14003^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14004
14005Syntax:
14006"""""""
14007
14008::
14009
14010 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
14011
14012Overview:
14013"""""""""
14014
14015This fills the memory pointed to by ``tramp`` with executable code,
14016turning it into a trampoline.
14017
14018Arguments:
14019""""""""""
14020
14021The ``llvm.init.trampoline`` intrinsic takes three arguments, all
14022pointers. The ``tramp`` argument must point to a sufficiently large and
14023sufficiently aligned block of memory; this memory is written to by the
14024intrinsic. Note that the size and the alignment are target-specific -
14025LLVM currently provides no portable way of determining them, so a
14026front-end that generates this intrinsic needs to have some
14027target-specific knowledge. The ``func`` argument must hold a function
14028bitcast to an ``i8*``.
14029
14030Semantics:
14031""""""""""
14032
14033The block of memory pointed to by ``tramp`` is filled with target
14034dependent code, turning it into a function. Then ``tramp`` needs to be
14035passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
14036be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
14037function's signature is the same as that of ``func`` with any arguments
14038marked with the ``nest`` attribute removed. At most one such ``nest``
14039argument is allowed, and it must be of pointer type. Calling the new
14040function is equivalent to calling ``func`` with the same argument list,
14041but with ``nval`` used for the missing ``nest`` argument. If, after
14042calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
14043modified, then the effect of any later call to the returned function
14044pointer is undefined.
14045
14046.. _int_at:
14047
14048'``llvm.adjust.trampoline``' Intrinsic
14049^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14050
14051Syntax:
14052"""""""
14053
14054::
14055
14056 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
14057
14058Overview:
14059"""""""""
14060
14061This performs any required machine-specific adjustment to the address of
14062a trampoline (passed as ``tramp``).
14063
14064Arguments:
14065""""""""""
14066
14067``tramp`` must point to a block of memory which already has trampoline
14068code filled in by a previous call to
14069:ref:`llvm.init.trampoline <int_it>`.
14070
14071Semantics:
14072""""""""""
14073
14074On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000014075different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000014076intrinsic returns the executable address corresponding to ``tramp``
14077after performing the required machine specific adjustments. The pointer
14078returned can then be :ref:`bitcast and executed <int_trampoline>`.
14079
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014080.. _int_mload_mstore:
14081
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000014082Masked Vector Load and Store Intrinsics
14083---------------------------------------
14084
14085LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
14086
14087.. _int_mload:
14088
14089'``llvm.masked.load.*``' Intrinsics
14090^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14091
14092Syntax:
14093"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014094This is an overloaded intrinsic. The loaded data is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000014095
14096::
14097
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000014098 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
14099 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000014100 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000014101 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000014102 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000014103 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000014104
14105Overview:
14106"""""""""
14107
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014108Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000014109
14110
14111Arguments:
14112""""""""""
14113
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014114The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000014115
14116
14117Semantics:
14118""""""""""
14119
14120The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
14121The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
14122
14123
14124::
14125
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000014126 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000014127
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000014128 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000014129 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000014130 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000014131
14132.. _int_mstore:
14133
14134'``llvm.masked.store.*``' Intrinsics
14135^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14136
14137Syntax:
14138"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014139This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000014140
14141::
14142
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000014143 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
14144 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000014145 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000014146 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000014147 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000014148 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000014149
14150Overview:
14151"""""""""
14152
14153Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
14154
14155Arguments:
14156""""""""""
14157
14158The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
14159
14160
14161Semantics:
14162""""""""""
14163
14164The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
14165The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
14166
14167::
14168
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000014169 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000014170
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000014171 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000014172 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000014173 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
14174 store <16 x float> %res, <16 x float>* %ptr, align 4
14175
14176
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014177Masked Vector Gather and Scatter Intrinsics
14178-------------------------------------------
14179
14180LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
14181
14182.. _int_mgather:
14183
14184'``llvm.masked.gather.*``' Intrinsics
14185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14186
14187Syntax:
14188"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014189This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating-point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014190
14191::
14192
Elad Cohenef5798a2017-05-03 12:28:54 +000014193 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
14194 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
14195 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014196
14197Overview:
14198"""""""""
14199
14200Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
14201
14202
14203Arguments:
14204""""""""""
14205
14206The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
14207
14208
14209Semantics:
14210""""""""""
14211
14212The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
14213The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
14214
14215
14216::
14217
Elad Cohenef5798a2017-05-03 12:28:54 +000014218 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014219
14220 ;; The gather with all-true mask is equivalent to the following instruction sequence
14221 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
14222 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
14223 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
14224 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
14225
14226 %val0 = load double, double* %ptr0, align 8
14227 %val1 = load double, double* %ptr1, align 8
14228 %val2 = load double, double* %ptr2, align 8
14229 %val3 = load double, double* %ptr3, align 8
14230
14231 %vec0 = insertelement <4 x double>undef, %val0, 0
14232 %vec01 = insertelement <4 x double>%vec0, %val1, 1
14233 %vec012 = insertelement <4 x double>%vec01, %val2, 2
14234 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
14235
14236.. _int_mscatter:
14237
14238'``llvm.masked.scatter.*``' Intrinsics
14239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14240
14241Syntax:
14242"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014243This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014244
14245::
14246
Elad Cohenef5798a2017-05-03 12:28:54 +000014247 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
14248 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
14249 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014250
14251Overview:
14252"""""""""
14253
14254Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
14255
14256Arguments:
14257""""""""""
14258
14259The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
14260
14261
14262Semantics:
14263""""""""""
14264
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000014265The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014266
14267::
14268
Sylvestre Ledru84666a12016-02-14 20:16:22 +000014269 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000014270 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014271
14272 ;; It is equivalent to a list of scalar stores
14273 %val0 = extractelement <8 x i32> %value, i32 0
14274 %val1 = extractelement <8 x i32> %value, i32 1
14275 ..
14276 %val7 = extractelement <8 x i32> %value, i32 7
14277 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
14278 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
14279 ..
14280 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
14281 ;; Note: the order of the following stores is important when they overlap:
14282 store i32 %val0, i32* %ptr0, align 4
14283 store i32 %val1, i32* %ptr1, align 4
14284 ..
14285 store i32 %val7, i32* %ptr7, align 4
14286
14287
Elena Demikhovsky0ef2ce32018-06-06 09:11:46 +000014288Masked Vector Expanding Load and Compressing Store Intrinsics
14289-------------------------------------------------------------
14290
14291LLVM provides intrinsics for expanding load and compressing store operations. Data selected from a vector according to a mask is stored in consecutive memory addresses (compressed store), and vice-versa (expanding load). These operations effective map to "if (cond.i) a[j++] = v.i" and "if (cond.i) v.i = a[j++]" patterns, respectively. Note that when the mask starts with '1' bits followed by '0' bits, these operations are identical to :ref:`llvm.masked.store <int_mstore>` and :ref:`llvm.masked.load <int_mload>`.
14292
14293.. _int_expandload:
14294
14295'``llvm.masked.expandload.*``' Intrinsics
14296^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14297
14298Syntax:
14299"""""""
14300This is an overloaded intrinsic. Several values of integer, floating point or pointer data type are loaded from consecutive memory addresses and stored into the elements of a vector according to the mask.
14301
14302::
14303
14304 declare <16 x float> @llvm.masked.expandload.v16f32 (float* <ptr>, <16 x i1> <mask>, <16 x float> <passthru>)
14305 declare <2 x i64> @llvm.masked.expandload.v2i64 (i64* <ptr>, <2 x i1> <mask>, <2 x i64> <passthru>)
14306
14307Overview:
14308"""""""""
14309
14310Reads a number of scalar values sequentially from memory location provided in '``ptr``' and spreads them in a vector. The '``mask``' holds a bit for each vector lane. The number of elements read from memory is equal to the number of '1' bits in the mask. The loaded elements are positioned in the destination vector according to the sequence of '1' and '0' bits in the mask. E.g., if the mask vector is '10010001', "explandload" reads 3 values from memory addresses ptr, ptr+1, ptr+2 and places them in lanes 0, 3 and 7 accordingly. The masked-off lanes are filled by elements from the corresponding lanes of the '``passthru``' operand.
14311
14312
14313Arguments:
14314""""""""""
14315
14316The first operand is the base pointer for the load. It has the same underlying type as the element of the returned vector. The second operand, mask, is a vector of boolean values with the same number of elements as the return type. The third is a pass-through value that is used to fill the masked-off lanes of the result. The return type and the type of the '``passthru``' operand have the same vector type.
14317
14318Semantics:
14319""""""""""
14320
14321The '``llvm.masked.expandload``' intrinsic is designed for reading multiple scalar values from adjacent memory addresses into possibly non-adjacent vector lanes. It is useful for targets that support vector expanding loads and allows vectorizing loop with cross-iteration dependency like in the following example:
14322
14323.. code-block:: c
14324
14325 // In this loop we load from B and spread the elements into array A.
14326 double *A, B; int *C;
14327 for (int i = 0; i < size; ++i) {
14328 if (C[i] != 0)
14329 A[i] = B[j++];
14330 }
14331
14332
14333.. code-block:: llvm
14334
14335 ; Load several elements from array B and expand them in a vector.
14336 ; The number of loaded elements is equal to the number of '1' elements in the Mask.
14337 %Tmp = call <8 x double> @llvm.masked.expandload.v8f64(double* %Bptr, <8 x i1> %Mask, <8 x double> undef)
14338 ; Store the result in A
14339 call void @llvm.masked.store.v8f64.p0v8f64(<8 x double> %Tmp, <8 x double>* %Aptr, i32 8, <8 x i1> %Mask)
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000014340
Elena Demikhovsky0ef2ce32018-06-06 09:11:46 +000014341 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
14342 %MaskI = bitcast <8 x i1> %Mask to i8
14343 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
14344 %MaskI64 = zext i8 %MaskIPopcnt to i64
14345 %BNextInd = add i64 %BInd, %MaskI64
14346
14347
14348Other targets may support this intrinsic differently, for example, by lowering it into a sequence of conditional scalar load operations and shuffles.
14349If all mask elements are '1', the intrinsic behavior is equivalent to the regular unmasked vector load.
14350
14351.. _int_compressstore:
14352
14353'``llvm.masked.compressstore.*``' Intrinsics
14354^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14355
14356Syntax:
14357"""""""
14358This is an overloaded intrinsic. A number of scalar values of integer, floating point or pointer data type are collected from an input vector and stored into adjacent memory addresses. A mask defines which elements to collect from the vector.
14359
14360::
14361
14362 declare void @llvm.masked.compressstore.v8i32 (<8 x i32> <value>, i32* <ptr>, <8 x i1> <mask>)
14363 declare void @llvm.masked.compressstore.v16f32 (<16 x float> <value>, float* <ptr>, <16 x i1> <mask>)
14364
14365Overview:
14366"""""""""
14367
14368Selects elements from input vector '``value``' according to the '``mask``'. All selected elements are written into adjacent memory addresses starting at address '`ptr`', from lower to higher. The mask holds a bit for each vector lane, and is used to select elements to be stored. The number of elements to be stored is equal to the number of active bits in the mask.
14369
14370Arguments:
14371""""""""""
14372
14373The first operand is the input vector, from which elements are collected and written to memory. The second operand is the base pointer for the store, it has the same underlying type as the element of the input vector operand. The third operand is the mask, a vector of boolean values. The mask and the input vector must have the same number of vector elements.
14374
14375
14376Semantics:
14377""""""""""
14378
14379The '``llvm.masked.compressstore``' intrinsic is designed for compressing data in memory. It allows to collect elements from possibly non-adjacent lanes of a vector and store them contiguously in memory in one IR operation. It is useful for targets that support compressing store operations and allows vectorizing loops with cross-iteration dependences like in the following example:
14380
14381.. code-block:: c
14382
14383 // In this loop we load elements from A and store them consecutively in B
14384 double *A, B; int *C;
14385 for (int i = 0; i < size; ++i) {
14386 if (C[i] != 0)
14387 B[j++] = A[i]
14388 }
14389
14390
14391.. code-block:: llvm
14392
14393 ; Load elements from A.
14394 %Tmp = call <8 x double> @llvm.masked.load.v8f64.p0v8f64(<8 x double>* %Aptr, i32 8, <8 x i1> %Mask, <8 x double> undef)
14395 ; Store all selected elements consecutively in array B
14396 call <void> @llvm.masked.compressstore.v8f64(<8 x double> %Tmp, double* %Bptr, <8 x i1> %Mask)
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000014397
Elena Demikhovsky0ef2ce32018-06-06 09:11:46 +000014398 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
14399 %MaskI = bitcast <8 x i1> %Mask to i8
14400 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
14401 %MaskI64 = zext i8 %MaskIPopcnt to i64
14402 %BNextInd = add i64 %BInd, %MaskI64
14403
14404
14405Other targets may support this intrinsic differently, for example, by lowering it into a sequence of branches that guard scalar store operations.
14406
14407
Sean Silvab084af42012-12-07 10:36:55 +000014408Memory Use Markers
14409------------------
14410
Sanjay Patel69bf48e2014-07-04 19:40:43 +000014411This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000014412memory objects and ranges where variables are immutable.
14413
Reid Klecknera534a382013-12-19 02:14:12 +000014414.. _int_lifestart:
14415
Sean Silvab084af42012-12-07 10:36:55 +000014416'``llvm.lifetime.start``' Intrinsic
14417^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14418
14419Syntax:
14420"""""""
14421
14422::
14423
14424 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
14425
14426Overview:
14427"""""""""
14428
14429The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
14430object's lifetime.
14431
14432Arguments:
14433""""""""""
14434
14435The first argument is a constant integer representing the size of the
14436object, or -1 if it is variable sized. The second argument is a pointer
14437to the object.
14438
14439Semantics:
14440""""""""""
14441
14442This intrinsic indicates that before this point in the code, the value
14443of the memory pointed to by ``ptr`` is dead. This means that it is known
14444to never be used and has an undefined value. A load from the pointer
14445that precedes this intrinsic can be replaced with ``'undef'``.
14446
Reid Klecknera534a382013-12-19 02:14:12 +000014447.. _int_lifeend:
14448
Sean Silvab084af42012-12-07 10:36:55 +000014449'``llvm.lifetime.end``' Intrinsic
14450^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14451
14452Syntax:
14453"""""""
14454
14455::
14456
14457 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
14458
14459Overview:
14460"""""""""
14461
14462The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
14463object's lifetime.
14464
14465Arguments:
14466""""""""""
14467
14468The first argument is a constant integer representing the size of the
14469object, or -1 if it is variable sized. The second argument is a pointer
14470to the object.
14471
14472Semantics:
14473""""""""""
14474
14475This intrinsic indicates that after this point in the code, the value of
14476the memory pointed to by ``ptr`` is dead. This means that it is known to
14477never be used and has an undefined value. Any stores into the memory
14478object following this intrinsic may be removed as dead.
14479
14480'``llvm.invariant.start``' Intrinsic
14481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14482
14483Syntax:
14484"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000014485This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000014486
14487::
14488
Mehdi Amini8c629ec2016-08-13 23:31:24 +000014489 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000014490
14491Overview:
14492"""""""""
14493
14494The '``llvm.invariant.start``' intrinsic specifies that the contents of
14495a memory object will not change.
14496
14497Arguments:
14498""""""""""
14499
14500The first argument is a constant integer representing the size of the
14501object, or -1 if it is variable sized. The second argument is a pointer
14502to the object.
14503
14504Semantics:
14505""""""""""
14506
14507This intrinsic indicates that until an ``llvm.invariant.end`` that uses
14508the return value, the referenced memory location is constant and
14509unchanging.
14510
14511'``llvm.invariant.end``' Intrinsic
14512^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14513
14514Syntax:
14515"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000014516This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000014517
14518::
14519
Mehdi Amini8c629ec2016-08-13 23:31:24 +000014520 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000014521
14522Overview:
14523"""""""""
14524
14525The '``llvm.invariant.end``' intrinsic specifies that the contents of a
14526memory object are mutable.
14527
14528Arguments:
14529""""""""""
14530
14531The first argument is the matching ``llvm.invariant.start`` intrinsic.
14532The second argument is a constant integer representing the size of the
14533object, or -1 if it is variable sized and the third argument is a
14534pointer to the object.
14535
14536Semantics:
14537""""""""""
14538
14539This intrinsic indicates that the memory is mutable again.
14540
Piotr Padlewski5dde8092018-05-03 11:03:01 +000014541'``llvm.launder.invariant.group``' Intrinsic
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014542^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14543
14544Syntax:
14545"""""""
Yaxun Liu407ca362017-11-16 16:32:16 +000014546This is an overloaded intrinsic. The memory object can belong to any address
14547space. The returned pointer must belong to the same address space as the
14548argument.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014549
14550::
14551
Piotr Padlewski5dde8092018-05-03 11:03:01 +000014552 declare i8* @llvm.launder.invariant.group.p0i8(i8* <ptr>)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014553
14554Overview:
14555"""""""""
14556
Piotr Padlewski5dde8092018-05-03 11:03:01 +000014557The '``llvm.launder.invariant.group``' intrinsic can be used when an invariant
Piotr Padlewski5b3db452018-07-02 04:49:30 +000014558established by ``invariant.group`` metadata no longer holds, to obtain a new
14559pointer value that carries fresh invariant group information. It is an
14560experimental intrinsic, which means that its semantics might change in the
14561future.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014562
14563
14564Arguments:
14565""""""""""
14566
Piotr Padlewski5b3db452018-07-02 04:49:30 +000014567The ``llvm.launder.invariant.group`` takes only one argument, which is a pointer
14568to the memory.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014569
14570Semantics:
14571""""""""""
14572
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014573Returns another pointer that aliases its argument but which is considered different
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014574for the purposes of ``load``/``store`` ``invariant.group`` metadata.
Piotr Padlewski5dde8092018-05-03 11:03:01 +000014575It does not read any accessible memory and the execution can be speculated.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014576
Piotr Padlewski5b3db452018-07-02 04:49:30 +000014577'``llvm.strip.invariant.group``' Intrinsic
14578^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14579
14580Syntax:
14581"""""""
14582This is an overloaded intrinsic. The memory object can belong to any address
14583space. The returned pointer must belong to the same address space as the
14584argument.
14585
14586::
14587
14588 declare i8* @llvm.strip.invariant.group.p0i8(i8* <ptr>)
14589
14590Overview:
14591"""""""""
14592
14593The '``llvm.strip.invariant.group``' intrinsic can be used when an invariant
14594established by ``invariant.group`` metadata no longer holds, to obtain a new pointer
14595value that does not carry the invariant information. It is an experimental
14596intrinsic, which means that its semantics might change in the future.
14597
14598
14599Arguments:
14600""""""""""
14601
14602The ``llvm.strip.invariant.group`` takes only one argument, which is a pointer
14603to the memory.
14604
14605Semantics:
14606""""""""""
14607
14608Returns another pointer that aliases its argument but which has no associated
14609``invariant.group`` metadata.
14610It does not read any memory and can be speculated.
14611
14612
14613
Sanjay Patel54b161e2018-03-20 16:38:22 +000014614.. _constrainedfp:
14615
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014616Constrained Floating-Point Intrinsics
Andrew Kaylora0a11642017-01-26 23:27:59 +000014617-------------------------------------
14618
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014619These intrinsics are used to provide special handling of floating-point
14620operations when specific rounding mode or floating-point exception behavior is
Andrew Kaylora0a11642017-01-26 23:27:59 +000014621required. By default, LLVM optimization passes assume that the rounding mode is
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014622round-to-nearest and that floating-point exceptions will not be monitored.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014623Constrained FP intrinsics are used to support non-default rounding modes and
14624accurately preserve exception behavior without compromising LLVM's ability to
14625optimize FP code when the default behavior is used.
14626
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014627Each of these intrinsics corresponds to a normal floating-point operation. The
Andrew Kaylora0a11642017-01-26 23:27:59 +000014628first two arguments and the return value are the same as the corresponding FP
14629operation.
14630
14631The third argument is a metadata argument specifying the rounding mode to be
14632assumed. This argument must be one of the following strings:
14633
14634::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000014635
Andrew Kaylora0a11642017-01-26 23:27:59 +000014636 "round.dynamic"
14637 "round.tonearest"
14638 "round.downward"
14639 "round.upward"
14640 "round.towardzero"
14641
14642If this argument is "round.dynamic" optimization passes must assume that the
14643rounding mode is unknown and may change at runtime. No transformations that
14644depend on rounding mode may be performed in this case.
14645
14646The other possible values for the rounding mode argument correspond to the
14647similarly named IEEE rounding modes. If the argument is any of these values
14648optimization passes may perform transformations as long as they are consistent
14649with the specified rounding mode.
14650
14651For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
14652"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
14653'x-0' should evaluate to '-0' when rounding downward. However, this
14654transformation is legal for all other rounding modes.
14655
14656For values other than "round.dynamic" optimization passes may assume that the
14657actual runtime rounding mode (as defined in a target-specific manner) matches
14658the specified rounding mode, but this is not guaranteed. Using a specific
14659non-dynamic rounding mode which does not match the actual rounding mode at
14660runtime results in undefined behavior.
14661
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014662The fourth argument to the constrained floating-point intrinsics specifies the
Andrew Kaylora0a11642017-01-26 23:27:59 +000014663required exception behavior. This argument must be one of the following
14664strings:
14665
14666::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000014667
Andrew Kaylora0a11642017-01-26 23:27:59 +000014668 "fpexcept.ignore"
14669 "fpexcept.maytrap"
14670 "fpexcept.strict"
14671
14672If this argument is "fpexcept.ignore" optimization passes may assume that the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014673exception status flags will not be read and that floating-point exceptions will
Andrew Kaylora0a11642017-01-26 23:27:59 +000014674be masked. This allows transformations to be performed that may change the
14675exception semantics of the original code. For example, FP operations may be
14676speculatively executed in this case whereas they must not be for either of the
14677other possible values of this argument.
14678
14679If the exception behavior argument is "fpexcept.maytrap" optimization passes
14680must avoid transformations that may raise exceptions that would not have been
14681raised by the original code (such as speculatively executing FP operations), but
14682passes are not required to preserve all exceptions that are implied by the
14683original code. For example, exceptions may be potentially hidden by constant
14684folding.
14685
14686If the exception behavior argument is "fpexcept.strict" all transformations must
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014687strictly preserve the floating-point exception semantics of the original code.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014688Any FP exception that would have been raised by the original code must be raised
14689by the transformed code, and the transformed code must not raise any FP
14690exceptions that would not have been raised by the original code. This is the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014691exception behavior argument that will be used if the code being compiled reads
Andrew Kaylora0a11642017-01-26 23:27:59 +000014692the FP exception status flags, but this mode can also be used with code that
14693unmasks FP exceptions.
14694
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014695The number and order of floating-point exceptions is NOT guaranteed. For
Andrew Kaylora0a11642017-01-26 23:27:59 +000014696example, a series of FP operations that each may raise exceptions may be
14697vectorized into a single instruction that raises each unique exception a single
14698time.
14699
14700
14701'``llvm.experimental.constrained.fadd``' Intrinsic
14702^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14703
14704Syntax:
14705"""""""
14706
14707::
14708
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014709 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014710 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
14711 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014712 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014713
14714Overview:
14715"""""""""
14716
14717The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
14718two operands.
14719
14720
14721Arguments:
14722""""""""""
14723
14724The first two arguments to the '``llvm.experimental.constrained.fadd``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014725intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14726of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014727
14728The third and fourth arguments specify the rounding mode and exception
14729behavior as described above.
14730
14731Semantics:
14732""""""""""
14733
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014734The value produced is the floating-point sum of the two value operands and has
Andrew Kaylora0a11642017-01-26 23:27:59 +000014735the same type as the operands.
14736
14737
14738'``llvm.experimental.constrained.fsub``' Intrinsic
14739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14740
14741Syntax:
14742"""""""
14743
14744::
14745
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014746 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014747 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
14748 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014749 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014750
14751Overview:
14752"""""""""
14753
14754The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
14755of its two operands.
14756
14757
14758Arguments:
14759""""""""""
14760
14761The first two arguments to the '``llvm.experimental.constrained.fsub``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014762intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14763of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014764
14765The third and fourth arguments specify the rounding mode and exception
14766behavior as described above.
14767
14768Semantics:
14769""""""""""
14770
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014771The value produced is the floating-point difference of the two value operands
Andrew Kaylora0a11642017-01-26 23:27:59 +000014772and has the same type as the operands.
14773
14774
14775'``llvm.experimental.constrained.fmul``' Intrinsic
14776^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14777
14778Syntax:
14779"""""""
14780
14781::
14782
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014783 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014784 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
14785 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014786 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014787
14788Overview:
14789"""""""""
14790
14791The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
14792its two operands.
14793
14794
14795Arguments:
14796""""""""""
14797
14798The first two arguments to the '``llvm.experimental.constrained.fmul``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014799intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14800of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014801
14802The third and fourth arguments specify the rounding mode and exception
14803behavior as described above.
14804
14805Semantics:
14806""""""""""
14807
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014808The value produced is the floating-point product of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000014809has the same type as the operands.
14810
14811
14812'``llvm.experimental.constrained.fdiv``' Intrinsic
14813^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14814
14815Syntax:
14816"""""""
14817
14818::
14819
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014820 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014821 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
14822 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014823 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014824
14825Overview:
14826"""""""""
14827
14828The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
14829its two operands.
14830
14831
14832Arguments:
14833""""""""""
14834
14835The first two arguments to the '``llvm.experimental.constrained.fdiv``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014836intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14837of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014838
14839The third and fourth arguments specify the rounding mode and exception
14840behavior as described above.
14841
14842Semantics:
14843""""""""""
14844
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014845The value produced is the floating-point quotient of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000014846has the same type as the operands.
14847
14848
14849'``llvm.experimental.constrained.frem``' Intrinsic
14850^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14851
14852Syntax:
14853"""""""
14854
14855::
14856
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014857 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014858 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
14859 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014860 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014861
14862Overview:
14863"""""""""
14864
14865The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
14866from the division of its two operands.
14867
14868
14869Arguments:
14870""""""""""
14871
14872The first two arguments to the '``llvm.experimental.constrained.frem``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014873intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14874of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014875
14876The third and fourth arguments specify the rounding mode and exception
14877behavior as described above. The rounding mode argument has no effect, since
14878the result of frem is never rounded, but the argument is included for
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014879consistency with the other constrained floating-point intrinsics.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014880
14881Semantics:
14882""""""""""
14883
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014884The value produced is the floating-point remainder from the division of the two
Andrew Kaylora0a11642017-01-26 23:27:59 +000014885value operands and has the same type as the operands. The remainder has the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014886same sign as the dividend.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014887
Wei Dinga131d3f2017-08-24 04:18:24 +000014888'``llvm.experimental.constrained.fma``' Intrinsic
Cameron McInally10056792018-11-02 15:51:43 +000014889^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Wei Dinga131d3f2017-08-24 04:18:24 +000014890
14891Syntax:
14892"""""""
14893
14894::
14895
14896 declare <type>
14897 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
14898 metadata <rounding mode>,
14899 metadata <exception behavior>)
14900
14901Overview:
14902"""""""""
14903
14904The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
14905fused-multiply-add operation on its operands.
14906
14907Arguments:
14908""""""""""
14909
14910The first three arguments to the '``llvm.experimental.constrained.fma``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014911intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector
14912<t_vector>` of floating-point values. All arguments must have identical types.
Wei Dinga131d3f2017-08-24 04:18:24 +000014913
14914The fourth and fifth arguments specify the rounding mode and exception behavior
14915as described above.
14916
14917Semantics:
14918""""""""""
14919
14920The result produced is the product of the first two operands added to the third
14921operand computed with infinite precision, and then rounded to the target
14922precision.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014923
Kevin P. Neal59877492019-05-13 13:23:30 +000014924'``llvm.experimental.constrained.fptrunc``' Intrinsic
14925^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14926
14927Syntax:
14928"""""""
14929
14930::
14931
14932 declare <ty2>
14933 @llvm.experimental.constrained.fptrunc(<type> <value>,
14934 metadata <rounding mode>,
14935 metadata <exception behavior>)
14936
14937Overview:
14938"""""""""
14939
14940The '``llvm.experimental.constrained.fptrunc``' intrinsic truncates ``value``
14941to type ``ty2``.
14942
14943Arguments:
14944""""""""""
14945
14946The first argument to the '``llvm.experimental.constrained.fptrunc``'
14947intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
14948<t_vector>` of floating point values. This argument must be larger in size
14949than the result.
14950
14951The second and third arguments specify the rounding mode and exception
14952behavior as described above.
14953
14954Semantics:
14955""""""""""
14956
14957The result produced is a floating point value truncated to be smaller in size
14958than the operand.
14959
14960'``llvm.experimental.constrained.fpext``' Intrinsic
14961^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14962
14963Syntax:
14964"""""""
14965
14966::
14967
14968 declare <ty2>
14969 @llvm.experimental.constrained.fpext(<type> <value>,
14970 metadata <exception behavior>)
14971
14972Overview:
14973"""""""""
14974
14975The '``llvm.experimental.constrained.fpext``' intrinsic extends a
14976floating-point ``value`` to a larger floating-point value.
14977
14978Arguments:
14979""""""""""
14980
14981The first argument to the '``llvm.experimental.constrained.fpext``'
14982intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
14983<t_vector>` of floating point values. This argument must be smaller in size
14984than the result.
14985
14986The second argument specifies the exception behavior as described above.
14987
14988Semantics:
14989""""""""""
14990
14991The result produced is a floating point value extended to be larger in size
14992than the operand. All restrictions that apply to the fpext instruction also
14993apply to this intrinsic.
14994
Andrew Kaylorf4660012017-05-25 21:31:00 +000014995Constrained libm-equivalent Intrinsics
14996--------------------------------------
14997
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014998In addition to the basic floating-point operations for which constrained
Andrew Kaylorf4660012017-05-25 21:31:00 +000014999intrinsics are described above, there are constrained versions of various
15000operations which provide equivalent behavior to a corresponding libm function.
15001These intrinsics allow the precise behavior of these operations with respect to
15002rounding mode and exception behavior to be controlled.
15003
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015004As with the basic constrained floating-point intrinsics, the rounding mode
Andrew Kaylorf4660012017-05-25 21:31:00 +000015005and exception behavior arguments only control the behavior of the optimizer.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015006They do not change the runtime floating-point environment.
Andrew Kaylorf4660012017-05-25 21:31:00 +000015007
15008
15009'``llvm.experimental.constrained.sqrt``' Intrinsic
15010^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15011
15012Syntax:
15013"""""""
15014
15015::
15016
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015017 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015018 @llvm.experimental.constrained.sqrt(<type> <op1>,
15019 metadata <rounding mode>,
15020 metadata <exception behavior>)
15021
15022Overview:
15023"""""""""
15024
15025The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
15026of the specified value, returning the same value as the libm '``sqrt``'
15027functions would, but without setting ``errno``.
15028
15029Arguments:
15030""""""""""
15031
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015032The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015033type.
15034
15035The second and third arguments specify the rounding mode and exception
15036behavior as described above.
15037
15038Semantics:
15039""""""""""
15040
15041This function returns the nonnegative square root of the specified value.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015042If the value is less than negative zero, a floating-point exception occurs
Hiroshi Inoue760c0c92018-01-16 13:19:48 +000015043and the return value is architecture specific.
Andrew Kaylorf4660012017-05-25 21:31:00 +000015044
15045
15046'``llvm.experimental.constrained.pow``' Intrinsic
15047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15048
15049Syntax:
15050"""""""
15051
15052::
15053
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015054 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015055 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
15056 metadata <rounding mode>,
15057 metadata <exception behavior>)
15058
15059Overview:
15060"""""""""
15061
15062The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
15063raised to the (positive or negative) power specified by the second operand.
15064
15065Arguments:
15066""""""""""
15067
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015068The first two arguments and the return value are floating-point numbers of the
Andrew Kaylorf4660012017-05-25 21:31:00 +000015069same type. The second argument specifies the power to which the first argument
15070should be raised.
15071
15072The third and fourth arguments specify the rounding mode and exception
15073behavior as described above.
15074
15075Semantics:
15076""""""""""
15077
15078This function returns the first value raised to the second power,
15079returning the same values as the libm ``pow`` functions would, and
15080handles error conditions in the same way.
15081
15082
15083'``llvm.experimental.constrained.powi``' Intrinsic
15084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15085
15086Syntax:
15087"""""""
15088
15089::
15090
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015091 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015092 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
15093 metadata <rounding mode>,
15094 metadata <exception behavior>)
15095
15096Overview:
15097"""""""""
15098
15099The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
15100raised to the (positive or negative) power specified by the second operand. The
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000015101order of evaluation of multiplications is not defined. When a vector of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015102floating-point type is used, the second argument remains a scalar integer value.
Andrew Kaylorf4660012017-05-25 21:31:00 +000015103
15104
15105Arguments:
15106""""""""""
15107
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015108The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015109type. The second argument is a 32-bit signed integer specifying the power to
15110which the first argument should be raised.
15111
15112The third and fourth arguments specify the rounding mode and exception
15113behavior as described above.
15114
15115Semantics:
15116""""""""""
15117
15118This function returns the first value raised to the second power with an
15119unspecified sequence of rounding operations.
15120
15121
15122'``llvm.experimental.constrained.sin``' Intrinsic
15123^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15124
15125Syntax:
15126"""""""
15127
15128::
15129
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015130 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015131 @llvm.experimental.constrained.sin(<type> <op1>,
15132 metadata <rounding mode>,
15133 metadata <exception behavior>)
15134
15135Overview:
15136"""""""""
15137
15138The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
15139first operand.
15140
15141Arguments:
15142""""""""""
15143
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015144The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015145type.
15146
15147The second and third arguments specify the rounding mode and exception
15148behavior as described above.
15149
15150Semantics:
15151""""""""""
15152
15153This function returns the sine of the specified operand, returning the
15154same values as the libm ``sin`` functions would, and handles error
15155conditions in the same way.
15156
15157
15158'``llvm.experimental.constrained.cos``' Intrinsic
15159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15160
15161Syntax:
15162"""""""
15163
15164::
15165
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015166 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015167 @llvm.experimental.constrained.cos(<type> <op1>,
15168 metadata <rounding mode>,
15169 metadata <exception behavior>)
15170
15171Overview:
15172"""""""""
15173
15174The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
15175first operand.
15176
15177Arguments:
15178""""""""""
15179
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015180The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015181type.
15182
15183The second and third arguments specify the rounding mode and exception
15184behavior as described above.
15185
15186Semantics:
15187""""""""""
15188
15189This function returns the cosine of the specified operand, returning the
15190same values as the libm ``cos`` functions would, and handles error
15191conditions in the same way.
15192
15193
15194'``llvm.experimental.constrained.exp``' Intrinsic
15195^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15196
15197Syntax:
15198"""""""
15199
15200::
15201
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015202 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015203 @llvm.experimental.constrained.exp(<type> <op1>,
15204 metadata <rounding mode>,
15205 metadata <exception behavior>)
15206
15207Overview:
15208"""""""""
15209
15210The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
15211exponential of the specified value.
15212
15213Arguments:
15214""""""""""
15215
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015216The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015217type.
15218
15219The second and third arguments specify the rounding mode and exception
15220behavior as described above.
15221
15222Semantics:
15223""""""""""
15224
15225This function returns the same values as the libm ``exp`` functions
15226would, and handles error conditions in the same way.
15227
15228
15229'``llvm.experimental.constrained.exp2``' Intrinsic
15230^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15231
15232Syntax:
15233"""""""
15234
15235::
15236
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015237 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015238 @llvm.experimental.constrained.exp2(<type> <op1>,
15239 metadata <rounding mode>,
15240 metadata <exception behavior>)
15241
15242Overview:
15243"""""""""
15244
15245The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
15246exponential of the specified value.
15247
15248
15249Arguments:
15250""""""""""
15251
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015252The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015253type.
15254
15255The second and third arguments specify the rounding mode and exception
15256behavior as described above.
15257
15258Semantics:
15259""""""""""
15260
15261This function returns the same values as the libm ``exp2`` functions
15262would, and handles error conditions in the same way.
15263
15264
15265'``llvm.experimental.constrained.log``' Intrinsic
15266^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15267
15268Syntax:
15269"""""""
15270
15271::
15272
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015273 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015274 @llvm.experimental.constrained.log(<type> <op1>,
15275 metadata <rounding mode>,
15276 metadata <exception behavior>)
15277
15278Overview:
15279"""""""""
15280
15281The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
15282logarithm of the specified value.
15283
15284Arguments:
15285""""""""""
15286
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015287The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015288type.
15289
15290The second and third arguments specify the rounding mode and exception
15291behavior as described above.
15292
15293
15294Semantics:
15295""""""""""
15296
15297This function returns the same values as the libm ``log`` functions
15298would, and handles error conditions in the same way.
15299
15300
15301'``llvm.experimental.constrained.log10``' Intrinsic
15302^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15303
15304Syntax:
15305"""""""
15306
15307::
15308
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015309 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015310 @llvm.experimental.constrained.log10(<type> <op1>,
15311 metadata <rounding mode>,
15312 metadata <exception behavior>)
15313
15314Overview:
15315"""""""""
15316
15317The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
15318logarithm of the specified value.
15319
15320Arguments:
15321""""""""""
15322
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015323The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015324type.
15325
15326The second and third arguments specify the rounding mode and exception
15327behavior as described above.
15328
15329Semantics:
15330""""""""""
15331
15332This function returns the same values as the libm ``log10`` functions
15333would, and handles error conditions in the same way.
15334
15335
15336'``llvm.experimental.constrained.log2``' Intrinsic
15337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15338
15339Syntax:
15340"""""""
15341
15342::
15343
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015344 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015345 @llvm.experimental.constrained.log2(<type> <op1>,
15346 metadata <rounding mode>,
15347 metadata <exception behavior>)
15348
15349Overview:
15350"""""""""
15351
15352The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
15353logarithm of the specified value.
15354
15355Arguments:
15356""""""""""
15357
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015358The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015359type.
15360
15361The second and third arguments specify the rounding mode and exception
15362behavior as described above.
15363
15364Semantics:
15365""""""""""
15366
15367This function returns the same values as the libm ``log2`` functions
15368would, and handles error conditions in the same way.
15369
15370
15371'``llvm.experimental.constrained.rint``' Intrinsic
15372^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15373
15374Syntax:
15375"""""""
15376
15377::
15378
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015379 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015380 @llvm.experimental.constrained.rint(<type> <op1>,
15381 metadata <rounding mode>,
15382 metadata <exception behavior>)
15383
15384Overview:
15385"""""""""
15386
15387The '``llvm.experimental.constrained.rint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015388operand rounded to the nearest integer. It may raise an inexact floating-point
Andrew Kaylorf4660012017-05-25 21:31:00 +000015389exception if the operand is not an integer.
15390
15391Arguments:
15392""""""""""
15393
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015394The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015395type.
15396
15397The second and third arguments specify the rounding mode and exception
15398behavior as described above.
15399
15400Semantics:
15401""""""""""
15402
15403This function returns the same values as the libm ``rint`` functions
15404would, and handles error conditions in the same way. The rounding mode is
15405described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015406mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000015407mode argument is only intended as information to the compiler.
15408
15409
15410'``llvm.experimental.constrained.nearbyint``' Intrinsic
15411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15412
15413Syntax:
15414"""""""
15415
15416::
15417
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015418 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015419 @llvm.experimental.constrained.nearbyint(<type> <op1>,
15420 metadata <rounding mode>,
15421 metadata <exception behavior>)
15422
15423Overview:
15424"""""""""
15425
15426The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000015427operand rounded to the nearest integer. It will not raise an inexact
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015428floating-point exception if the operand is not an integer.
Andrew Kaylorf4660012017-05-25 21:31:00 +000015429
15430
15431Arguments:
15432""""""""""
15433
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015434The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015435type.
15436
15437The second and third arguments specify the rounding mode and exception
15438behavior as described above.
15439
15440Semantics:
15441""""""""""
15442
15443This function returns the same values as the libm ``nearbyint`` functions
15444would, and handles error conditions in the same way. The rounding mode is
15445described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015446mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000015447mode argument is only intended as information to the compiler.
15448
15449
Cameron McInally2ad870e2018-10-30 21:01:29 +000015450'``llvm.experimental.constrained.maxnum``' Intrinsic
Cameron McInally10056792018-11-02 15:51:43 +000015451^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Cameron McInally2ad870e2018-10-30 21:01:29 +000015452
15453Syntax:
15454"""""""
15455
15456::
15457
15458 declare <type>
15459 @llvm.experimental.constrained.maxnum(<type> <op1>, <type> <op2>
15460 metadata <rounding mode>,
15461 metadata <exception behavior>)
15462
15463Overview:
15464"""""""""
15465
Michael Kruse978ba612018-12-20 04:58:07 +000015466The '``llvm.experimental.constrained.maxnum``' intrinsic returns the maximum
Cameron McInally2ad870e2018-10-30 21:01:29 +000015467of the two arguments.
15468
15469Arguments:
15470""""""""""
15471
Michael Kruse978ba612018-12-20 04:58:07 +000015472The first two arguments and the return value are floating-point numbers
Cameron McInally2ad870e2018-10-30 21:01:29 +000015473of the same type.
15474
15475The third and forth arguments specify the rounding mode and exception
15476behavior as described above.
15477
15478Semantics:
15479""""""""""
15480
15481This function follows the IEEE-754 semantics for maxNum. The rounding mode is
15482described, not determined, by the rounding mode argument. The actual rounding
15483mode is determined by the runtime floating-point environment. The rounding
15484mode argument is only intended as information to the compiler.
15485
15486
15487'``llvm.experimental.constrained.minnum``' Intrinsic
Cameron McInally10056792018-11-02 15:51:43 +000015488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Cameron McInally2ad870e2018-10-30 21:01:29 +000015489
15490Syntax:
15491"""""""
15492
15493::
15494
15495 declare <type>
15496 @llvm.experimental.constrained.minnum(<type> <op1>, <type> <op2>
15497 metadata <rounding mode>,
15498 metadata <exception behavior>)
15499
15500Overview:
15501"""""""""
15502
15503The '``llvm.experimental.constrained.minnum``' intrinsic returns the minimum
15504of the two arguments.
15505
15506Arguments:
15507""""""""""
15508
15509The first two arguments and the return value are floating-point numbers
15510of the same type.
15511
15512The third and forth arguments specify the rounding mode and exception
15513behavior as described above.
15514
15515Semantics:
15516""""""""""
15517
15518This function follows the IEEE-754 semantics for minNum. The rounding mode is
15519described, not determined, by the rounding mode argument. The actual rounding
15520mode is determined by the runtime floating-point environment. The rounding
15521mode argument is only intended as information to the compiler.
15522
15523
Cameron McInally9757d5d2018-11-05 15:59:49 +000015524'``llvm.experimental.constrained.ceil``' Intrinsic
15525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15526
15527Syntax:
15528"""""""
15529
15530::
15531
15532 declare <type>
15533 @llvm.experimental.constrained.ceil(<type> <op1>,
15534 metadata <rounding mode>,
15535 metadata <exception behavior>)
15536
15537Overview:
15538"""""""""
15539
Michael Kruse978ba612018-12-20 04:58:07 +000015540The '``llvm.experimental.constrained.ceil``' intrinsic returns the ceiling of the
Cameron McInally9757d5d2018-11-05 15:59:49 +000015541first operand.
15542
15543Arguments:
15544""""""""""
15545
15546The first argument and the return value are floating-point numbers of the same
15547type.
15548
15549The second and third arguments specify the rounding mode and exception
15550behavior as described above. The rounding mode is currently unused for this
15551intrinsic.
15552
15553Semantics:
15554""""""""""
15555
15556This function returns the same values as the libm ``ceil`` functions
15557would and handles error conditions in the same way.
15558
15559
15560'``llvm.experimental.constrained.floor``' Intrinsic
15561^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15562
15563Syntax:
15564"""""""
15565
15566::
15567
15568 declare <type>
15569 @llvm.experimental.constrained.floor(<type> <op1>,
15570 metadata <rounding mode>,
15571 metadata <exception behavior>)
15572
15573Overview:
15574"""""""""
15575
Michael Kruse978ba612018-12-20 04:58:07 +000015576The '``llvm.experimental.constrained.floor``' intrinsic returns the floor of the
Cameron McInally9757d5d2018-11-05 15:59:49 +000015577first operand.
15578
15579Arguments:
15580""""""""""
15581
15582The first argument and the return value are floating-point numbers of the same
15583type.
15584
15585The second and third arguments specify the rounding mode and exception
15586behavior as described above. The rounding mode is currently unused for this
15587intrinsic.
15588
15589Semantics:
15590""""""""""
15591
15592This function returns the same values as the libm ``floor`` functions
Michael Kruse978ba612018-12-20 04:58:07 +000015593would and handles error conditions in the same way.
Cameron McInally9757d5d2018-11-05 15:59:49 +000015594
15595
15596'``llvm.experimental.constrained.round``' Intrinsic
15597^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15598
15599Syntax:
15600"""""""
15601
15602::
15603
15604 declare <type>
15605 @llvm.experimental.constrained.round(<type> <op1>,
15606 metadata <rounding mode>,
15607 metadata <exception behavior>)
15608
15609Overview:
15610"""""""""
15611
Michael Kruse978ba612018-12-20 04:58:07 +000015612The '``llvm.experimental.constrained.round``' intrinsic returns the first
Cameron McInally9757d5d2018-11-05 15:59:49 +000015613operand rounded to the nearest integer.
15614
15615Arguments:
15616""""""""""
15617
15618The first argument and the return value are floating-point numbers of the same
15619type.
15620
15621The second and third arguments specify the rounding mode and exception
15622behavior as described above. The rounding mode is currently unused for this
15623intrinsic.
15624
15625Semantics:
15626""""""""""
15627
15628This function returns the same values as the libm ``round`` functions
15629would and handles error conditions in the same way.
15630
15631
15632'``llvm.experimental.constrained.trunc``' Intrinsic
15633^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15634
15635Syntax:
15636"""""""
15637
15638::
15639
15640 declare <type>
15641 @llvm.experimental.constrained.trunc(<type> <op1>,
15642 metadata <truncing mode>,
15643 metadata <exception behavior>)
15644
15645Overview:
15646"""""""""
15647
Michael Kruse978ba612018-12-20 04:58:07 +000015648The '``llvm.experimental.constrained.trunc``' intrinsic returns the first
15649operand rounded to the nearest integer not larger in magnitude than the
Cameron McInally9757d5d2018-11-05 15:59:49 +000015650operand.
15651
15652Arguments:
15653""""""""""
15654
15655The first argument and the return value are floating-point numbers of the same
15656type.
15657
15658The second and third arguments specify the truncing mode and exception
15659behavior as described above. The truncing mode is currently unused for this
15660intrinsic.
15661
15662Semantics:
15663""""""""""
15664
15665This function returns the same values as the libm ``trunc`` functions
15666would and handles error conditions in the same way.
15667
15668
Sean Silvab084af42012-12-07 10:36:55 +000015669General Intrinsics
15670------------------
15671
15672This class of intrinsics is designed to be generic and has no specific
15673purpose.
15674
15675'``llvm.var.annotation``' Intrinsic
15676^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15677
15678Syntax:
15679"""""""
15680
15681::
15682
15683 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
15684
15685Overview:
15686"""""""""
15687
15688The '``llvm.var.annotation``' intrinsic.
15689
15690Arguments:
15691""""""""""
15692
15693The first argument is a pointer to a value, the second is a pointer to a
15694global string, the third is a pointer to a global string which is the
15695source file name, and the last argument is the line number.
15696
15697Semantics:
15698""""""""""
15699
15700This intrinsic allows annotation of local variables with arbitrary
15701strings. This can be useful for special purpose optimizations that want
15702to look for these annotations. These have no other defined use; they are
15703ignored by code generation and optimization.
15704
Michael Gottesman88d18832013-03-26 00:34:27 +000015705'``llvm.ptr.annotation.*``' Intrinsic
15706^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15707
15708Syntax:
15709"""""""
15710
15711This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
15712pointer to an integer of any width. *NOTE* you must specify an address space for
15713the pointer. The identifier for the default address space is the integer
15714'``0``'.
15715
15716::
15717
15718 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
15719 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
15720 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
15721 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
15722 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
15723
15724Overview:
15725"""""""""
15726
15727The '``llvm.ptr.annotation``' intrinsic.
15728
15729Arguments:
15730""""""""""
15731
15732The first argument is a pointer to an integer value of arbitrary bitwidth
15733(result of some expression), the second is a pointer to a global string, the
15734third is a pointer to a global string which is the source file name, and the
15735last argument is the line number. It returns the value of the first argument.
15736
15737Semantics:
15738""""""""""
15739
15740This intrinsic allows annotation of a pointer to an integer with arbitrary
15741strings. This can be useful for special purpose optimizations that want to look
15742for these annotations. These have no other defined use; they are ignored by code
15743generation and optimization.
15744
Sean Silvab084af42012-12-07 10:36:55 +000015745'``llvm.annotation.*``' Intrinsic
15746^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15747
15748Syntax:
15749"""""""
15750
15751This is an overloaded intrinsic. You can use '``llvm.annotation``' on
15752any integer bit width.
15753
15754::
15755
15756 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
15757 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
15758 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
15759 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
15760 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
15761
15762Overview:
15763"""""""""
15764
15765The '``llvm.annotation``' intrinsic.
15766
15767Arguments:
15768""""""""""
15769
15770The first argument is an integer value (result of some expression), the
15771second is a pointer to a global string, the third is a pointer to a
15772global string which is the source file name, and the last argument is
15773the line number. It returns the value of the first argument.
15774
15775Semantics:
15776""""""""""
15777
15778This intrinsic allows annotations to be put on arbitrary expressions
15779with arbitrary strings. This can be useful for special purpose
15780optimizations that want to look for these annotations. These have no
15781other defined use; they are ignored by code generation and optimization.
15782
Reid Klecknere33c94f2017-09-05 20:14:58 +000015783'``llvm.codeview.annotation``' Intrinsic
Reid Klecknerd4523682017-09-05 20:26:25 +000015784^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknere33c94f2017-09-05 20:14:58 +000015785
15786Syntax:
15787"""""""
15788
15789This annotation emits a label at its program point and an associated
15790``S_ANNOTATION`` codeview record with some additional string metadata. This is
15791used to implement MSVC's ``__annotation`` intrinsic. It is marked
15792``noduplicate``, so calls to this intrinsic prevent inlining and should be
15793considered expensive.
15794
15795::
15796
15797 declare void @llvm.codeview.annotation(metadata)
15798
15799Arguments:
15800""""""""""
15801
15802The argument should be an MDTuple containing any number of MDStrings.
15803
Sean Silvab084af42012-12-07 10:36:55 +000015804'``llvm.trap``' Intrinsic
15805^^^^^^^^^^^^^^^^^^^^^^^^^
15806
15807Syntax:
15808"""""""
15809
15810::
15811
Vedant Kumar808e1572018-11-14 19:53:41 +000015812 declare void @llvm.trap() cold noreturn nounwind
Sean Silvab084af42012-12-07 10:36:55 +000015813
15814Overview:
15815"""""""""
15816
15817The '``llvm.trap``' intrinsic.
15818
15819Arguments:
15820""""""""""
15821
15822None.
15823
15824Semantics:
15825""""""""""
15826
15827This intrinsic is lowered to the target dependent trap instruction. If
15828the target does not have a trap instruction, this intrinsic will be
15829lowered to a call of the ``abort()`` function.
15830
15831'``llvm.debugtrap``' Intrinsic
15832^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15833
15834Syntax:
15835"""""""
15836
15837::
15838
15839 declare void @llvm.debugtrap() nounwind
15840
15841Overview:
15842"""""""""
15843
15844The '``llvm.debugtrap``' intrinsic.
15845
15846Arguments:
15847""""""""""
15848
15849None.
15850
15851Semantics:
15852""""""""""
15853
15854This intrinsic is lowered to code which is intended to cause an
15855execution trap with the intention of requesting the attention of a
15856debugger.
15857
15858'``llvm.stackprotector``' Intrinsic
15859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15860
15861Syntax:
15862"""""""
15863
15864::
15865
15866 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
15867
15868Overview:
15869"""""""""
15870
15871The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
15872onto the stack at ``slot``. The stack slot is adjusted to ensure that it
15873is placed on the stack before local variables.
15874
15875Arguments:
15876""""""""""
15877
15878The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
15879The first argument is the value loaded from the stack guard
15880``@__stack_chk_guard``. The second variable is an ``alloca`` that has
15881enough space to hold the value of the guard.
15882
15883Semantics:
15884""""""""""
15885
Michael Gottesmandafc7d92013-08-12 18:35:32 +000015886This intrinsic causes the prologue/epilogue inserter to force the position of
15887the ``AllocaInst`` stack slot to be before local variables on the stack. This is
15888to ensure that if a local variable on the stack is overwritten, it will destroy
15889the value of the guard. When the function exits, the guard on the stack is
15890checked against the original guard by ``llvm.stackprotectorcheck``. If they are
15891different, then ``llvm.stackprotectorcheck`` causes the program to abort by
15892calling the ``__stack_chk_fail()`` function.
15893
Tim Shene885d5e2016-04-19 19:40:37 +000015894'``llvm.stackguard``' Intrinsic
15895^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15896
15897Syntax:
15898"""""""
15899
15900::
15901
15902 declare i8* @llvm.stackguard()
15903
15904Overview:
15905"""""""""
15906
15907The ``llvm.stackguard`` intrinsic returns the system stack guard value.
15908
15909It should not be generated by frontends, since it is only for internal usage.
15910The reason why we create this intrinsic is that we still support IR form Stack
15911Protector in FastISel.
15912
15913Arguments:
15914""""""""""
15915
15916None.
15917
15918Semantics:
15919""""""""""
15920
15921On some platforms, the value returned by this intrinsic remains unchanged
15922between loads in the same thread. On other platforms, it returns the same
15923global variable value, if any, e.g. ``@__stack_chk_guard``.
15924
15925Currently some platforms have IR-level customized stack guard loading (e.g.
15926X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
15927in the future.
15928
Sean Silvab084af42012-12-07 10:36:55 +000015929'``llvm.objectsize``' Intrinsic
15930^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15931
15932Syntax:
15933"""""""
15934
15935::
15936
Erik Pilkington600e9de2019-01-30 20:34:35 +000015937 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>, i1 <dynamic>)
15938 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>, i1 <dynamic>)
Sean Silvab084af42012-12-07 10:36:55 +000015939
15940Overview:
15941"""""""""
15942
Erik Pilkington600e9de2019-01-30 20:34:35 +000015943The ``llvm.objectsize`` intrinsic is designed to provide information to the
15944optimizer to determine whether a) an operation (like memcpy) will overflow a
15945buffer that corresponds to an object, or b) that a runtime check for overflow
15946isn't necessary. An object in this context means an allocation of a specific
15947class, structure, array, or other object.
Sean Silvab084af42012-12-07 10:36:55 +000015948
15949Arguments:
15950""""""""""
15951
Erik Pilkington600e9de2019-01-30 20:34:35 +000015952The ``llvm.objectsize`` intrinsic takes four arguments. The first argument is a
15953pointer to or into the ``object``. The second argument determines whether
15954``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size is
15955unknown. The third argument controls how ``llvm.objectsize`` acts when ``null``
15956in address space 0 is used as its pointer argument. If it's ``false``,
George Burgess IV3fbfa9c42018-07-09 22:21:16 +000015957``llvm.objectsize`` reports 0 bytes available when given ``null``. Otherwise, if
15958the ``null`` is in a non-zero address space or if ``true`` is given for the
Erik Pilkington600e9de2019-01-30 20:34:35 +000015959third argument of ``llvm.objectsize``, we assume its size is unknown. The fourth
15960argument to ``llvm.objectsize`` determines if the value should be evaluated at
15961runtime.
George Burgess IV56c7e882017-03-21 20:08:59 +000015962
Erik Pilkington600e9de2019-01-30 20:34:35 +000015963The second, third, and fourth arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000015964
15965Semantics:
15966""""""""""
15967
Erik Pilkington600e9de2019-01-30 20:34:35 +000015968The ``llvm.objectsize`` intrinsic is lowered to a value representing the size of
15969the object concerned. If the size cannot be determined, ``llvm.objectsize``
15970returns ``i32/i64 -1 or 0`` (depending on the ``min`` argument).
Sean Silvab084af42012-12-07 10:36:55 +000015971
15972'``llvm.expect``' Intrinsic
15973^^^^^^^^^^^^^^^^^^^^^^^^^^^
15974
15975Syntax:
15976"""""""
15977
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000015978This is an overloaded intrinsic. You can use ``llvm.expect`` on any
15979integer bit width.
15980
Sean Silvab084af42012-12-07 10:36:55 +000015981::
15982
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000015983 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000015984 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
15985 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
15986
15987Overview:
15988"""""""""
15989
15990The ``llvm.expect`` intrinsic provides information about expected (the
15991most probable) value of ``val``, which can be used by optimizers.
15992
15993Arguments:
15994""""""""""
15995
15996The ``llvm.expect`` intrinsic takes two arguments. The first argument is
Matt Arsenault48730562019-03-17 23:16:18 +000015997a value. The second argument is an expected value.
Sean Silvab084af42012-12-07 10:36:55 +000015998
15999Semantics:
16000""""""""""
16001
16002This intrinsic is lowered to the ``val``.
16003
Philip Reamese0e90832015-04-26 22:23:12 +000016004.. _int_assume:
16005
Hal Finkel93046912014-07-25 21:13:35 +000016006'``llvm.assume``' Intrinsic
16007^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16008
16009Syntax:
16010"""""""
16011
16012::
16013
16014 declare void @llvm.assume(i1 %cond)
16015
16016Overview:
16017"""""""""
16018
16019The ``llvm.assume`` allows the optimizer to assume that the provided
16020condition is true. This information can then be used in simplifying other parts
16021of the code.
16022
16023Arguments:
16024""""""""""
16025
16026The condition which the optimizer may assume is always true.
16027
16028Semantics:
16029""""""""""
16030
16031The intrinsic allows the optimizer to assume that the provided condition is
16032always true whenever the control flow reaches the intrinsic call. No code is
16033generated for this intrinsic, and instructions that contribute only to the
16034provided condition are not used for code generation. If the condition is
16035violated during execution, the behavior is undefined.
16036
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000016037Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000016038used by the ``llvm.assume`` intrinsic in order to preserve the instructions
16039only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000016040if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000016041sufficient overall improvement in code quality. For this reason,
16042``llvm.assume`` should not be used to document basic mathematical invariants
16043that the optimizer can otherwise deduce or facts that are of little use to the
16044optimizer.
16045
Daniel Berlin2c438a32017-02-07 19:29:25 +000016046.. _int_ssa_copy:
16047
16048'``llvm.ssa_copy``' Intrinsic
16049^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16050
16051Syntax:
16052"""""""
16053
16054::
16055
16056 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
16057
16058Arguments:
16059""""""""""
16060
16061The first argument is an operand which is used as the returned value.
16062
16063Overview:
16064""""""""""
16065
16066The ``llvm.ssa_copy`` intrinsic can be used to attach information to
16067operations by copying them and giving them new names. For example,
16068the PredicateInfo utility uses it to build Extended SSA form, and
16069attach various forms of information to operands that dominate specific
16070uses. It is not meant for general use, only for building temporary
16071renaming forms that require value splits at certain points.
16072
Peter Collingbourne7efd7502016-06-24 21:21:32 +000016073.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000016074
Peter Collingbourne7efd7502016-06-24 21:21:32 +000016075'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000016076^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16077
16078Syntax:
16079"""""""
16080
16081::
16082
Peter Collingbourne7efd7502016-06-24 21:21:32 +000016083 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000016084
16085
16086Arguments:
16087""""""""""
16088
16089The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000016090metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000016091
16092Overview:
16093"""""""""
16094
Peter Collingbourne7efd7502016-06-24 21:21:32 +000016095The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
16096with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000016097
Peter Collingbourne0312f612016-06-25 00:23:04 +000016098'``llvm.type.checked.load``' Intrinsic
16099^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16100
16101Syntax:
16102"""""""
16103
16104::
16105
16106 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
16107
16108
16109Arguments:
16110""""""""""
16111
16112The first argument is a pointer from which to load a function pointer. The
16113second argument is the byte offset from which to load the function pointer. The
16114third argument is a metadata object representing a :doc:`type identifier
16115<TypeMetadata>`.
16116
16117Overview:
16118"""""""""
16119
16120The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
16121virtual table pointer using type metadata. This intrinsic is used to implement
16122control flow integrity in conjunction with virtual call optimization. The
16123virtual call optimization pass will optimize away ``llvm.type.checked.load``
16124intrinsics associated with devirtualized calls, thereby removing the type
16125check in cases where it is not needed to enforce the control flow integrity
16126constraint.
16127
16128If the given pointer is associated with a type metadata identifier, this
16129function returns true as the second element of its return value. (Note that
16130the function may also return true if the given pointer is not associated
16131with a type metadata identifier.) If the function's return value's second
16132element is true, the following rules apply to the first element:
16133
16134- If the given pointer is associated with the given type metadata identifier,
16135 it is the function pointer loaded from the given byte offset from the given
16136 pointer.
16137
16138- If the given pointer is not associated with the given type metadata
16139 identifier, it is one of the following (the choice of which is unspecified):
16140
16141 1. The function pointer that would have been loaded from an arbitrarily chosen
16142 (through an unspecified mechanism) pointer associated with the type
16143 metadata.
16144
16145 2. If the function has a non-void return type, a pointer to a function that
16146 returns an unspecified value without causing side effects.
16147
16148If the function's return value's second element is false, the value of the
16149first element is undefined.
16150
16151
Sean Silvab084af42012-12-07 10:36:55 +000016152'``llvm.donothing``' Intrinsic
16153^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16154
16155Syntax:
16156"""""""
16157
16158::
16159
16160 declare void @llvm.donothing() nounwind readnone
16161
16162Overview:
16163"""""""""
16164
Juergen Ributzkac9161192014-10-23 22:36:13 +000016165The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000016166three intrinsics (besides ``llvm.experimental.patchpoint`` and
16167``llvm.experimental.gc.statepoint``) that can be called with an invoke
16168instruction.
Sean Silvab084af42012-12-07 10:36:55 +000016169
16170Arguments:
16171""""""""""
16172
16173None.
16174
16175Semantics:
16176""""""""""
16177
16178This intrinsic does nothing, and it's removed by optimizers and ignored
16179by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000016180
Sanjoy Dasb51325d2016-03-11 19:08:34 +000016181'``llvm.experimental.deoptimize``' Intrinsic
16182^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16183
16184Syntax:
16185"""""""
16186
16187::
16188
16189 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
16190
16191Overview:
16192"""""""""
16193
16194This intrinsic, together with :ref:`deoptimization operand bundles
16195<deopt_opbundles>`, allow frontends to express transfer of control and
16196frame-local state from the currently executing (typically more specialized,
16197hence faster) version of a function into another (typically more generic, hence
16198slower) version.
16199
16200In languages with a fully integrated managed runtime like Java and JavaScript
16201this intrinsic can be used to implement "uncommon trap" or "side exit" like
16202functionality. In unmanaged languages like C and C++, this intrinsic can be
16203used to represent the slow paths of specialized functions.
16204
16205
16206Arguments:
16207""""""""""
16208
16209The intrinsic takes an arbitrary number of arguments, whose meaning is
16210decided by the :ref:`lowering strategy<deoptimize_lowering>`.
16211
16212Semantics:
16213""""""""""
16214
16215The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
16216deoptimization continuation (denoted using a :ref:`deoptimization
16217operand bundle <deopt_opbundles>`) and returns the value returned by
16218the deoptimization continuation. Defining the semantic properties of
16219the continuation itself is out of scope of the language reference --
16220as far as LLVM is concerned, the deoptimization continuation can
16221invoke arbitrary side effects, including reading from and writing to
16222the entire heap.
16223
16224Deoptimization continuations expressed using ``"deopt"`` operand bundles always
16225continue execution to the end of the physical frame containing them, so all
16226calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
16227
16228 - ``@llvm.experimental.deoptimize`` cannot be invoked.
16229 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
16230 - The ``ret`` instruction must return the value produced by the
16231 ``@llvm.experimental.deoptimize`` call if there is one, or void.
16232
16233Note that the above restrictions imply that the return type for a call to
16234``@llvm.experimental.deoptimize`` will match the return type of its immediate
16235caller.
16236
16237The inliner composes the ``"deopt"`` continuations of the caller into the
16238``"deopt"`` continuations present in the inlinee, and also updates calls to this
16239intrinsic to return directly from the frame of the function it inlined into.
16240
Sanjoy Dase0aa4142016-05-12 01:17:38 +000016241All declarations of ``@llvm.experimental.deoptimize`` must share the
16242same calling convention.
16243
Sanjoy Dasb51325d2016-03-11 19:08:34 +000016244.. _deoptimize_lowering:
16245
16246Lowering:
16247"""""""""
16248
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000016249Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
16250symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
16251ensure that this symbol is defined). The call arguments to
16252``@llvm.experimental.deoptimize`` are lowered as if they were formal
16253arguments of the specified types, and not as varargs.
16254
Sanjoy Dasb51325d2016-03-11 19:08:34 +000016255
Sanjoy Das021de052016-03-31 00:18:46 +000016256'``llvm.experimental.guard``' Intrinsic
16257^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16258
16259Syntax:
16260"""""""
16261
16262::
16263
16264 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
16265
16266Overview:
16267"""""""""
16268
16269This intrinsic, together with :ref:`deoptimization operand bundles
16270<deopt_opbundles>`, allows frontends to express guards or checks on
16271optimistic assumptions made during compilation. The semantics of
16272``@llvm.experimental.guard`` is defined in terms of
16273``@llvm.experimental.deoptimize`` -- its body is defined to be
16274equivalent to:
16275
Renato Golin124f2592016-07-20 12:16:38 +000016276.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000016277
Renato Golin124f2592016-07-20 12:16:38 +000016278 define void @llvm.experimental.guard(i1 %pred, <args...>) {
16279 %realPred = and i1 %pred, undef
16280 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000016281
Renato Golin124f2592016-07-20 12:16:38 +000016282 leave:
16283 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
16284 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000016285
Renato Golin124f2592016-07-20 12:16:38 +000016286 continue:
16287 ret void
16288 }
Sanjoy Das021de052016-03-31 00:18:46 +000016289
Sanjoy Das47cf2af2016-04-30 00:55:59 +000016290
16291with the optional ``[, !make.implicit !{}]`` present if and only if it
16292is present on the call site. For more details on ``!make.implicit``,
16293see :doc:`FaultMaps`.
16294
Sanjoy Das021de052016-03-31 00:18:46 +000016295In words, ``@llvm.experimental.guard`` executes the attached
16296``"deopt"`` continuation if (but **not** only if) its first argument
16297is ``false``. Since the optimizer is allowed to replace the ``undef``
16298with an arbitrary value, it can optimize guard to fail "spuriously",
16299i.e. without the original condition being false (hence the "not only
16300if"); and this allows for "check widening" type optimizations.
16301
16302``@llvm.experimental.guard`` cannot be invoked.
16303
16304
Max Kazantsevb9e65cb2018-12-07 14:39:46 +000016305'``llvm.experimental.widenable.condition``' Intrinsic
16306^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16307
16308Syntax:
16309"""""""
16310
16311::
16312
16313 declare i1 @llvm.experimental.widenable.condition()
16314
16315Overview:
16316"""""""""
16317
16318This intrinsic represents a "widenable condition" which is
16319boolean expressions with the following property: whether this
16320expression is `true` or `false`, the program is correct and
16321well-defined.
16322
16323Together with :ref:`deoptimization operand bundles <deopt_opbundles>`,
16324``@llvm.experimental.widenable.condition`` allows frontends to
16325express guards or checks on optimistic assumptions made during
16326compilation and represent them as branch instructions on special
16327conditions.
16328
16329While this may appear similar in semantics to `undef`, it is very
16330different in that an invocation produces a particular, singular
16331value. It is also intended to be lowered late, and remain available
16332for specific optimizations and transforms that can benefit from its
16333special properties.
16334
16335Arguments:
16336""""""""""
16337
16338None.
16339
16340Semantics:
16341""""""""""
16342
16343The intrinsic ``@llvm.experimental.widenable.condition()``
16344returns either `true` or `false`. For each evaluation of a call
16345to this intrinsic, the program must be valid and correct both if
16346it returns `true` and if it returns `false`. This allows
16347transformation passes to replace evaluations of this intrinsic
16348with either value whenever one is beneficial.
16349
16350When used in a branch condition, it allows us to choose between
16351two alternative correct solutions for the same problem, like
16352in example below:
16353
16354.. code-block:: text
16355
16356 %cond = call i1 @llvm.experimental.widenable.condition()
16357 br i1 %cond, label %solution_1, label %solution_2
16358
16359 label %fast_path:
16360 ; Apply memory-consuming but fast solution for a task.
16361
16362 label %slow_path:
16363 ; Cheap in memory but slow solution.
16364
16365Whether the result of intrinsic's call is `true` or `false`,
16366it should be correct to pick either solution. We can switch
16367between them by replacing the result of
16368``@llvm.experimental.widenable.condition`` with different
16369`i1` expressions.
16370
16371This is how it can be used to represent guards as widenable branches:
16372
16373.. code-block:: text
16374
16375 block:
16376 ; Unguarded instructions
16377 call void @llvm.experimental.guard(i1 %cond, <args...>) ["deopt"(<deopt_args...>)]
16378 ; Guarded instructions
16379
16380Can be expressed in an alternative equivalent form of explicit branch using
16381``@llvm.experimental.widenable.condition``:
16382
16383.. code-block:: text
16384
16385 block:
16386 ; Unguarded instructions
16387 %widenable_condition = call i1 @llvm.experimental.widenable.condition()
16388 %guard_condition = and i1 %cond, %widenable_condition
16389 br i1 %guard_condition, label %guarded, label %deopt
16390
16391 guarded:
16392 ; Guarded instructions
16393
16394 deopt:
16395 call type @llvm.experimental.deoptimize(<args...>) [ "deopt"(<deopt_args...>) ]
16396
16397So the block `guarded` is only reachable when `%cond` is `true`,
16398and it should be valid to go to the block `deopt` whenever `%cond`
16399is `true` or `false`.
16400
16401``@llvm.experimental.widenable.condition`` will never throw, thus
16402it cannot be invoked.
16403
16404Guard widening:
16405"""""""""""""""
16406
16407When ``@llvm.experimental.widenable.condition()`` is used in
16408condition of a guard represented as explicit branch, it is
16409legal to widen the guard's condition with any additional
16410conditions.
16411
16412Guard widening looks like replacement of
16413
16414.. code-block:: text
16415
16416 %widenable_cond = call i1 @llvm.experimental.widenable.condition()
16417 %guard_cond = and i1 %cond, %widenable_cond
16418 br i1 %guard_cond, label %guarded, label %deopt
16419
16420with
16421
16422.. code-block:: text
16423
16424 %widenable_cond = call i1 @llvm.experimental.widenable.condition()
16425 %new_cond = and i1 %any_other_cond, %widenable_cond
16426 %new_guard_cond = and i1 %cond, %new_cond
16427 br i1 %new_guard_cond, label %guarded, label %deopt
16428
16429for this branch. Here `%any_other_cond` is an arbitrarily chosen
16430well-defined `i1` value. By making guard widening, we may
16431impose stricter conditions on `guarded` block and bail to the
16432deopt when the new condition is not met.
16433
16434Lowering:
16435"""""""""
16436
16437Default lowering strategy is replacing the result of
16438call of ``@llvm.experimental.widenable.condition`` with
16439constant `true`. However it is always correct to replace
16440it with any other `i1` value. Any pass can
16441freely do it if it can benefit from non-default lowering.
16442
16443
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000016444'``llvm.load.relative``' Intrinsic
16445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16446
16447Syntax:
16448"""""""
16449
16450::
16451
16452 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
16453
16454Overview:
16455"""""""""
16456
16457This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
16458adds ``%ptr`` to that value and returns it. The constant folder specifically
16459recognizes the form of this intrinsic and the constant initializers it may
16460load from; if a loaded constant initializer is known to have the form
16461``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
16462
16463LLVM provides that the calculation of such a constant initializer will
16464not overflow at link time under the medium code model if ``x`` is an
16465``unnamed_addr`` function. However, it does not provide this guarantee for
16466a constant initializer folded into a function body. This intrinsic can be
16467used to avoid the possibility of overflows when loading from such a constant.
16468
Dan Gohman2c74fe92017-11-08 21:59:51 +000016469'``llvm.sideeffect``' Intrinsic
16470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16471
16472Syntax:
16473"""""""
16474
16475::
16476
16477 declare void @llvm.sideeffect() inaccessiblememonly nounwind
16478
16479Overview:
16480"""""""""
16481
16482The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
16483treat it as having side effects, so it can be inserted into a loop to
16484indicate that the loop shouldn't be assumed to terminate (which could
16485potentially lead to the loop being optimized away entirely), even if it's
16486an infinite loop with no other side effects.
16487
16488Arguments:
16489""""""""""
16490
16491None.
16492
16493Semantics:
16494""""""""""
16495
16496This intrinsic actually does nothing, but optimizers must assume that it
16497has externally observable side effects.
16498
James Y Knight72f76bf2018-11-07 15:24:12 +000016499'``llvm.is.constant.*``' Intrinsic
16500^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16501
16502Syntax:
16503"""""""
16504
16505This is an overloaded intrinsic. You can use llvm.is.constant with any argument type.
16506
16507::
16508
16509 declare i1 @llvm.is.constant.i32(i32 %operand) nounwind readnone
16510 declare i1 @llvm.is.constant.f32(float %operand) nounwind readnone
16511 declare i1 @llvm.is.constant.TYPENAME(TYPE %operand) nounwind readnone
16512
16513Overview:
16514"""""""""
16515
16516The '``llvm.is.constant``' intrinsic will return true if the argument
16517is known to be a manifest compile-time constant. It is guaranteed to
16518fold to either true or false before generating machine code.
16519
16520Semantics:
16521""""""""""
16522
16523This intrinsic generates no code. If its argument is known to be a
16524manifest compile-time constant value, then the intrinsic will be
16525converted to a constant true value. Otherwise, it will be converted to
16526a constant false value.
16527
16528In particular, note that if the argument is a constant expression
16529which refers to a global (the address of which _is_ a constant, but
16530not manifest during the compile), then the intrinsic evaluates to
16531false.
16532
16533The result also intentionally depends on the result of optimization
16534passes -- e.g., the result can change depending on whether a
16535function gets inlined or not. A function's parameters are
16536obviously not constant. However, a call like
16537``llvm.is.constant.i32(i32 %param)`` *can* return true after the
16538function is inlined, if the value passed to the function parameter was
16539a constant.
16540
16541On the other hand, if constant folding is not run, it will never
16542evaluate to true, even in simple cases.
16543
Andrew Trick5e029ce2013-12-24 02:57:25 +000016544Stack Map Intrinsics
16545--------------------
16546
16547LLVM provides experimental intrinsics to support runtime patching
16548mechanisms commonly desired in dynamic language JITs. These intrinsics
16549are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016550
16551Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000016552-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000016553
16554These intrinsics are similar to the standard library memory intrinsics except
16555that they perform memory transfer as a sequence of atomic memory accesses.
16556
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016557.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000016558
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016559'``llvm.memcpy.element.unordered.atomic``' Intrinsic
16560^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000016561
16562Syntax:
16563"""""""
16564
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016565This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000016566any integer bit width and for different address spaces. Not all targets
16567support all bit widths however.
16568
16569::
16570
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016571 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
16572 i8* <src>,
16573 i32 <len>,
16574 i32 <element_size>)
16575 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
16576 i8* <src>,
16577 i64 <len>,
16578 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000016579
16580Overview:
16581"""""""""
16582
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016583The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
16584'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
16585as arrays with elements that are exactly ``element_size`` bytes, and the copy between
16586buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
16587that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016588
16589Arguments:
16590""""""""""
16591
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016592The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
16593intrinsic, with the added constraint that ``len`` is required to be a positive integer
16594multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
16595``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016596
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016597``element_size`` must be a compile-time constant positive power of two no greater than
16598target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016599
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016600For each of the input pointers ``align`` parameter attribute must be specified. It
16601must be a power of two no less than the ``element_size``. Caller guarantees that
16602both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016603
16604Semantics:
16605""""""""""
16606
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016607The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
16608memory from the source location to the destination location. These locations are not
16609allowed to overlap. The memory copy is performed as a sequence of load/store operations
16610where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000016611aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016612
16613The order of the copy is unspecified. The same value may be read from the source
16614buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016615element. It is well defined to have concurrent reads and writes to both source and
16616destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016617
16618This intrinsic does not provide any additional ordering guarantees over those
16619provided by a set of unordered loads from the source location and stores to the
16620destination.
16621
16622Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000016623"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000016624
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016625In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
16626lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
16627is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016628
Daniel Neilson57226ef2017-07-12 15:25:26 +000016629Optimizer is allowed to inline memory copy when it's profitable to do so.
16630
16631'``llvm.memmove.element.unordered.atomic``' Intrinsic
16632^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16633
16634Syntax:
16635"""""""
16636
16637This is an overloaded intrinsic. You can use
16638``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
16639different address spaces. Not all targets support all bit widths however.
16640
16641::
16642
16643 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
16644 i8* <src>,
16645 i32 <len>,
16646 i32 <element_size>)
16647 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
16648 i8* <src>,
16649 i64 <len>,
16650 i32 <element_size>)
16651
16652Overview:
16653"""""""""
16654
16655The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
16656of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
16657``src`` are treated as arrays with elements that are exactly ``element_size``
16658bytes, and the copy between buffers uses a sequence of
16659:ref:`unordered atomic <ordering>` load/store operations that are a positive
16660integer multiple of the ``element_size`` in size.
16661
16662Arguments:
16663""""""""""
16664
16665The first three arguments are the same as they are in the
16666:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
16667``len`` is required to be a positive integer multiple of the ``element_size``.
16668If ``len`` is not a positive integer multiple of ``element_size``, then the
16669behaviour of the intrinsic is undefined.
16670
16671``element_size`` must be a compile-time constant positive power of two no
16672greater than a target-specific atomic access size limit.
16673
16674For each of the input pointers the ``align`` parameter attribute must be
16675specified. It must be a power of two no less than the ``element_size``. Caller
16676guarantees that both the source and destination pointers are aligned to that
16677boundary.
16678
16679Semantics:
16680""""""""""
16681
16682The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
16683of memory from the source location to the destination location. These locations
16684are allowed to overlap. The memory copy is performed as a sequence of load/store
16685operations where each access is guaranteed to be a multiple of ``element_size``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000016686bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson57226ef2017-07-12 15:25:26 +000016687
16688The order of the copy is unspecified. The same value may be read from the source
16689buffer many times, but only one write is issued to the destination buffer per
16690element. It is well defined to have concurrent reads and writes to both source
16691and destination provided those reads and writes are unordered atomic when
16692specified.
16693
16694This intrinsic does not provide any additional ordering guarantees over those
16695provided by a set of unordered loads from the source location and stores to the
16696destination.
16697
16698Lowering:
16699"""""""""
16700
16701In the most general case call to the
16702'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
16703``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
16704actual element size.
16705
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016706The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000016707
16708.. _int_memset_element_unordered_atomic:
16709
16710'``llvm.memset.element.unordered.atomic``' Intrinsic
16711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16712
16713Syntax:
16714"""""""
16715
16716This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
16717any integer bit width and for different address spaces. Not all targets
16718support all bit widths however.
16719
16720::
16721
16722 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
16723 i8 <value>,
16724 i32 <len>,
16725 i32 <element_size>)
16726 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
16727 i8 <value>,
16728 i64 <len>,
16729 i32 <element_size>)
16730
16731Overview:
16732"""""""""
16733
16734The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
16735'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
16736with elements that are exactly ``element_size`` bytes, and the assignment to that array
16737uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
16738that are a positive integer multiple of the ``element_size`` in size.
16739
16740Arguments:
16741""""""""""
16742
16743The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
16744intrinsic, with the added constraint that ``len`` is required to be a positive integer
16745multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
16746``element_size``, then the behaviour of the intrinsic is undefined.
16747
16748``element_size`` must be a compile-time constant positive power of two no greater than
16749target-specific atomic access size limit.
16750
16751The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
16752must be a power of two no less than the ``element_size``. Caller guarantees that
16753the destination pointer is aligned to that boundary.
16754
16755Semantics:
16756""""""""""
16757
16758The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
16759memory starting at the destination location to the given ``value``. The memory is
16760set with a sequence of store operations where each access is guaranteed to be a
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000016761multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson965613e2017-07-12 21:57:23 +000016762
16763The order of the assignment is unspecified. Only one write is issued to the
16764destination buffer per element. It is well defined to have concurrent reads and
16765writes to the destination provided those reads and writes are unordered atomic
16766when specified.
16767
16768This intrinsic does not provide any additional ordering guarantees over those
16769provided by a set of unordered stores to the destination.
16770
16771Lowering:
16772"""""""""
16773
16774In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
16775lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
16776is replaced with an actual element size.
16777
16778The optimizer is allowed to inline the memory assignment when it's profitable to do so.
Erik Pilkingtonbdad92a2018-12-10 18:19:43 +000016779
16780Objective-C ARC Runtime Intrinsics
16781----------------------------------
16782
16783LLVM provides intrinsics that lower to Objective-C ARC runtime entry points.
16784LLVM is aware of the semantics of these functions, and optimizes based on that
16785knowledge. You can read more about the details of Objective-C ARC `here
16786<https://clang.llvm.org/docs/AutomaticReferenceCounting.html>`_.
16787
16788'``llvm.objc.autorelease``' Intrinsic
16789^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16790
16791Syntax:
16792"""""""
16793::
16794
16795 declare i8* @llvm.objc.autorelease(i8*)
16796
16797Lowering:
16798"""""""""
16799
16800Lowers to a call to `objc_autorelease <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autorelease>`_.
16801
16802'``llvm.objc.autoreleasePoolPop``' Intrinsic
16803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16804
16805Syntax:
16806"""""""
16807::
16808
16809 declare void @llvm.objc.autoreleasePoolPop(i8*)
16810
16811Lowering:
16812"""""""""
16813
16814Lowers to a call to `objc_autoreleasePoolPop <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-autoreleasepoolpop-void-pool>`_.
16815
16816'``llvm.objc.autoreleasePoolPush``' Intrinsic
16817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16818
16819Syntax:
16820"""""""
16821::
16822
16823 declare i8* @llvm.objc.autoreleasePoolPush()
16824
16825Lowering:
16826"""""""""
16827
16828Lowers to a call to `objc_autoreleasePoolPush <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-autoreleasepoolpush-void>`_.
16829
16830'``llvm.objc.autoreleaseReturnValue``' Intrinsic
16831^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16832
16833Syntax:
16834"""""""
16835::
16836
16837 declare i8* @llvm.objc.autoreleaseReturnValue(i8*)
16838
16839Lowering:
16840"""""""""
16841
16842Lowers to a call to `objc_autoreleaseReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue>`_.
16843
16844'``llvm.objc.copyWeak``' Intrinsic
16845^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16846
16847Syntax:
16848"""""""
16849::
16850
16851 declare void @llvm.objc.copyWeak(i8**, i8**)
16852
16853Lowering:
16854"""""""""
16855
16856Lowers to a call to `objc_copyWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-copyweak-id-dest-id-src>`_.
16857
16858'``llvm.objc.destroyWeak``' Intrinsic
16859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16860
16861Syntax:
16862"""""""
16863::
16864
16865 declare void @llvm.objc.destroyWeak(i8**)
16866
16867Lowering:
16868"""""""""
16869
16870Lowers to a call to `objc_destroyWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-destroyweak-id-object>`_.
16871
16872'``llvm.objc.initWeak``' Intrinsic
16873^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16874
16875Syntax:
16876"""""""
16877::
16878
16879 declare i8* @llvm.objc.initWeak(i8**, i8*)
16880
16881Lowering:
16882"""""""""
16883
16884Lowers to a call to `objc_initWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-initweak>`_.
16885
16886'``llvm.objc.loadWeak``' Intrinsic
16887^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16888
16889Syntax:
16890"""""""
16891::
16892
16893 declare i8* @llvm.objc.loadWeak(i8**)
16894
16895Lowering:
16896"""""""""
16897
16898Lowers to a call to `objc_loadWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-loadweak>`_.
16899
16900'``llvm.objc.loadWeakRetained``' Intrinsic
16901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16902
16903Syntax:
16904"""""""
16905::
16906
16907 declare i8* @llvm.objc.loadWeakRetained(i8**)
16908
16909Lowering:
16910"""""""""
16911
16912Lowers to a call to `objc_loadWeakRetained <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-loadweakretained>`_.
16913
16914'``llvm.objc.moveWeak``' Intrinsic
16915^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16916
16917Syntax:
16918"""""""
16919::
16920
16921 declare void @llvm.objc.moveWeak(i8**, i8**)
16922
16923Lowering:
16924"""""""""
16925
16926Lowers to a call to `objc_moveWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-moveweak-id-dest-id-src>`_.
16927
16928'``llvm.objc.release``' Intrinsic
16929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16930
16931Syntax:
16932"""""""
16933::
16934
16935 declare void @llvm.objc.release(i8*)
16936
16937Lowering:
16938"""""""""
16939
16940Lowers to a call to `objc_release <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-release-id-value>`_.
16941
16942'``llvm.objc.retain``' Intrinsic
16943^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16944
16945Syntax:
16946"""""""
16947::
16948
16949 declare i8* @llvm.objc.retain(i8*)
16950
16951Lowering:
16952"""""""""
16953
16954Lowers to a call to `objc_retain <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retain>`_.
16955
16956'``llvm.objc.retainAutorelease``' Intrinsic
16957^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16958
16959Syntax:
16960"""""""
16961::
16962
16963 declare i8* @llvm.objc.retainAutorelease(i8*)
16964
16965Lowering:
16966"""""""""
16967
16968Lowers to a call to `objc_retainAutorelease <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautorelease>`_.
16969
16970'``llvm.objc.retainAutoreleaseReturnValue``' Intrinsic
16971^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16972
16973Syntax:
16974"""""""
16975::
16976
16977 declare i8* @llvm.objc.retainAutoreleaseReturnValue(i8*)
16978
16979Lowering:
16980"""""""""
16981
16982Lowers to a call to `objc_retainAutoreleaseReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautoreleasereturnvalue>`_.
16983
16984'``llvm.objc.retainAutoreleasedReturnValue``' Intrinsic
16985^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16986
16987Syntax:
16988"""""""
16989::
16990
16991 declare i8* @llvm.objc.retainAutoreleasedReturnValue(i8*)
16992
16993Lowering:
16994"""""""""
16995
16996Lowers to a call to `objc_retainAutoreleasedReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautoreleasedreturnvalue>`_.
16997
16998'``llvm.objc.retainBlock``' Intrinsic
16999^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17000
17001Syntax:
17002"""""""
17003::
17004
17005 declare i8* @llvm.objc.retainBlock(i8*)
17006
17007Lowering:
17008"""""""""
17009
17010Lowers to a call to `objc_retainBlock <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainblock>`_.
17011
17012'``llvm.objc.storeStrong``' Intrinsic
17013^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17014
17015Syntax:
17016"""""""
17017::
17018
17019 declare void @llvm.objc.storeStrong(i8**, i8*)
17020
17021Lowering:
17022"""""""""
17023
17024Lowers to a call to `objc_storeStrong <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-storestrong-id-object-id-value>`_.
17025
17026'``llvm.objc.storeWeak``' Intrinsic
17027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17028
17029Syntax:
17030"""""""
17031::
17032
17033 declare i8* @llvm.objc.storeWeak(i8**, i8*)
17034
17035Lowering:
17036"""""""""
17037
17038Lowers to a call to `objc_storeWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-storeweak>`_.