blob: 044f3521ce6cfebda46a37812a38870bd69b82cf [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
Hans Wennborg2cfcc012018-05-22 10:14:07 +000083 can be used on global values to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000327 floating-point types are supported.
Sean Silvab084af42012-12-07 10:36:55 +0000328 - On *X86-64* only supports up to 10 bit type parameters and 6
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000329 floating-point parameters.
Sean Silvab084af42012-12-07 10:36:55 +0000330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Sean Fertilec70d28b2017-10-26 15:00:26 +0000530.. _runtime_preemption_model:
531
532Runtime Preemption Specifiers
533-----------------------------
534
535Global variables, functions and aliases may have an optional runtime preemption
536specifier. If a preemption specifier isn't given explicitly, then a
537symbol is assumed to be ``dso_preemptable``.
538
539``dso_preemptable``
540 Indicates that the function or variable may be replaced by a symbol from
541 outside the linkage unit at runtime.
542
543``dso_local``
544 The compiler may assume that a function or variable marked as ``dso_local``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000545 will resolve to a symbol within the same linkage unit. Direct access will
Sean Fertilec70d28b2017-10-26 15:00:26 +0000546 be generated even if the definition is not within this compilation unit.
547
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000548.. _namedtypes:
549
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000550Structure Types
551---------------
Sean Silvab084af42012-12-07 10:36:55 +0000552
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000553LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000554types <t_struct>`. Literal types are uniqued structurally, but identified types
555are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000556to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000557
Sean Silva706fba52015-08-06 22:56:24 +0000558An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000559
560.. code-block:: llvm
561
562 %mytype = type { %mytype*, i32 }
563
Sean Silvaa1190322015-08-06 22:56:48 +0000564Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000565literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000566
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000567.. _nointptrtype:
568
569Non-Integral Pointer Type
570-------------------------
571
572Note: non-integral pointer types are a work in progress, and they should be
573considered experimental at this time.
574
575LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000576spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
577Non-integral pointer types represent pointers that have an *unspecified* bitwise
578representation; that is, the integral representation may be target dependent or
579unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000580
581``inttoptr`` instructions converting integers to non-integral pointer types are
582ill-typed, and so are ``ptrtoint`` instructions converting values of
583non-integral pointer types to integers. Vector versions of said instructions
584are ill-typed as well.
585
Sean Silvab084af42012-12-07 10:36:55 +0000586.. _globalvars:
587
588Global Variables
589----------------
590
591Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000592instead of run-time.
593
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000594Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000595
596Global variables in other translation units can also be declared, in which
597case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000598
Bob Wilson85b24f22014-06-12 20:40:33 +0000599Either global variable definitions or declarations may have an explicit section
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000600to be placed in and may have an optional explicit alignment specified. If there
601is a mismatch between the explicit or inferred section information for the
602variable declaration and its definition the resulting behavior is undefined.
Bob Wilson85b24f22014-06-12 20:40:33 +0000603
Michael Gottesman006039c2013-01-31 05:48:48 +0000604A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000605the contents of the variable will **never** be modified (enabling better
606optimization, allowing the global data to be placed in the read-only
607section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000608initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000609variable.
610
611LLVM explicitly allows *declarations* of global variables to be marked
612constant, even if the final definition of the global is not. This
613capability can be used to enable slightly better optimization of the
614program, but requires the language definition to guarantee that
615optimizations based on the 'constantness' are valid for the translation
616units that do not include the definition.
617
618As SSA values, global variables define pointer values that are in scope
619(i.e. they dominate) all basic blocks in the program. Global variables
620always define a pointer to their "content" type because they describe a
621region of memory, and all memory objects in LLVM are accessed through
622pointers.
623
624Global variables can be marked with ``unnamed_addr`` which indicates
625that the address is not significant, only the content. Constants marked
626like this can be merged with other constants if they have the same
627initializer. Note that a constant with significant address *can* be
628merged with a ``unnamed_addr`` constant, the result being a constant
629whose address is significant.
630
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000631If the ``local_unnamed_addr`` attribute is given, the address is known to
632not be significant within the module.
633
Sean Silvab084af42012-12-07 10:36:55 +0000634A global variable may be declared to reside in a target-specific
635numbered address space. For targets that support them, address spaces
636may affect how optimizations are performed and/or what target
637instructions are used to access the variable. The default address space
638is zero. The address space qualifier must precede any other attributes.
639
640LLVM allows an explicit section to be specified for globals. If the
641target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000642Additionally, the global can placed in a comdat if the target has the necessary
643support.
Sean Silvab084af42012-12-07 10:36:55 +0000644
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000645External declarations may have an explicit section specified. Section
646information is retained in LLVM IR for targets that make use of this
647information. Attaching section information to an external declaration is an
648assertion that its definition is located in the specified section. If the
649definition is located in a different section, the behavior is undefined.
Erich Keane0343ef82017-08-22 15:30:43 +0000650
Michael Gottesmane743a302013-02-04 03:22:00 +0000651By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000652variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000653initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000654true even for variables potentially accessible from outside the
655module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000656``@llvm.used`` or dllexported variables. This assumption may be suppressed
657by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659An explicit alignment may be specified for a global, which must be a
660power of 2. If not present, or if the alignment is set to zero, the
661alignment of the global is set by the target to whatever it feels
662convenient. If an explicit alignment is specified, the global is forced
663to have exactly that alignment. Targets and optimizers are not allowed
664to over-align the global if the global has an assigned section. In this
665case, the extra alignment could be observable: for example, code could
666assume that the globals are densely packed in their section and try to
667iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000668iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000669
Javed Absarf3d79042017-05-11 12:28:08 +0000670Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
Sean Fertilec70d28b2017-10-26 15:00:26 +0000671an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
Javed Absarf3d79042017-05-11 12:28:08 +0000672an optional :ref:`global attributes <glattrs>` and
673an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000674
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000675Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000676:ref:`Thread Local Storage Model <tls_model>`.
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678Syntax::
679
Sean Fertilec70d28b2017-10-26 15:00:26 +0000680 @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
681 [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
683 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000684 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000686 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000687
Sean Silvab084af42012-12-07 10:36:55 +0000688For example, the following defines a global in a numbered address space
689with an initializer, section, and alignment:
690
691.. code-block:: llvm
692
693 @G = addrspace(5) constant float 1.0, section "foo", align 4
694
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000695The following example just declares a global variable
696
697.. code-block:: llvm
698
699 @G = external global i32
700
Sean Silvab084af42012-12-07 10:36:55 +0000701The following example defines a thread-local global with the
702``initialexec`` TLS model:
703
704.. code-block:: llvm
705
706 @G = thread_local(initialexec) global i32 0, align 4
707
708.. _functionstructure:
709
710Functions
711---------
712
713LLVM function definitions consist of the "``define``" keyword, an
Sean Fertilec70d28b2017-10-26 15:00:26 +0000714optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
715specifier <runtime_preemption_model>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000716style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
717an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000718an optional ``unnamed_addr`` attribute, a return type, an optional
719:ref:`parameter attribute <paramattrs>` for the return type, a function
720name, a (possibly empty) argument list (each with optional :ref:`parameter
721attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000722an optional address space, an optional section, an optional alignment,
David Majnemerdad0a642014-06-27 18:19:56 +0000723an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000724an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000725an optional :ref:`prologue <prologuedata>`,
726an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000727an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000728an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000731optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
732<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
733optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000734or ``local_unnamed_addr`` attribute, an optional address space, a return type,
735an optional :ref:`parameter attribute <paramattrs>` for the return type, a function name, a possibly
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000736empty list of arguments, an optional alignment, an optional :ref:`garbage
737collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
738:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000739
Bill Wendling6822ecb2013-10-27 05:09:12 +0000740A function definition contains a list of basic blocks, forming the CFG (Control
741Flow Graph) for the function. Each basic block may optionally start with a label
742(giving the basic block a symbol table entry), contains a list of instructions,
743and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
744function return). If an explicit label is not provided, a block is assigned an
745implicit numbered label, using the next value from the same counter as used for
746unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
747entry block does not have an explicit label, it will be assigned label "%0",
748then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000749
750The first basic block in a function is special in two ways: it is
751immediately executed on entrance to the function, and it is not allowed
752to have predecessor basic blocks (i.e. there can not be any branches to
753the entry block of a function). Because the block can have no
754predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
755
756LLVM allows an explicit section to be specified for functions. If the
757target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000758Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000759
760An explicit alignment may be specified for a function. If not present,
761or if the alignment is set to zero, the alignment of the function is set
762by the target to whatever it feels convenient. If an explicit alignment
763is specified, the function is forced to have at least that much
764alignment. All alignments must be a power of 2.
765
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000766If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000767be significant and two identical functions can be merged.
768
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000769If the ``local_unnamed_addr`` attribute is given, the address is known to
770not be significant within the module.
771
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000772If an explicit address space is not given, it will default to the program
773address space from the :ref:`datalayout string<langref_datalayout>`.
774
Sean Silvab084af42012-12-07 10:36:55 +0000775Syntax::
776
Sean Fertilec70d28b2017-10-26 15:00:26 +0000777 define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000778 [cconv] [ret attrs]
779 <ResultType> @<FunctionName> ([argument list])
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000780 [(unnamed_addr|local_unnamed_addr)] [AddrSpace] [fn Attrs]
781 [section "name"] [comdat [($name)]] [align N] [gc] [prefix Constant]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000782 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000783
Sean Silva706fba52015-08-06 22:56:24 +0000784The argument list is a comma separated sequence of arguments where each
785argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000786
787Syntax::
788
789 <type> [parameter Attrs] [name]
790
791
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000792.. _langref_aliases:
793
Sean Silvab084af42012-12-07 10:36:55 +0000794Aliases
795-------
796
Rafael Espindola64c1e182014-06-03 02:41:57 +0000797Aliases, unlike function or variables, don't create any new data. They
798are just a new symbol and metadata for an existing position.
799
800Aliases have a name and an aliasee that is either a global value or a
801constant expression.
802
Nico Rieck7157bb72014-01-14 15:22:47 +0000803Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Sean Fertilec70d28b2017-10-26 15:00:26 +0000804:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000805:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
806<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000807
808Syntax::
809
Sean Fertilec70d28b2017-10-26 15:00:26 +0000810 @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000811
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000812The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000813``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000814might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000815
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000816Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000817the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
818to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000819
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000820If the ``local_unnamed_addr`` attribute is given, the address is known to
821not be significant within the module.
822
Rafael Espindola64c1e182014-06-03 02:41:57 +0000823Since aliases are only a second name, some restrictions apply, of which
824some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000825
Rafael Espindola64c1e182014-06-03 02:41:57 +0000826* The expression defining the aliasee must be computable at assembly
827 time. Since it is just a name, no relocations can be used.
828
829* No alias in the expression can be weak as the possibility of the
830 intermediate alias being overridden cannot be represented in an
831 object file.
832
833* No global value in the expression can be a declaration, since that
834 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000835
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000836.. _langref_ifunc:
837
838IFuncs
839-------
840
841IFuncs, like as aliases, don't create any new data or func. They are just a new
842symbol that dynamic linker resolves at runtime by calling a resolver function.
843
844IFuncs have a name and a resolver that is a function called by dynamic linker
845that returns address of another function associated with the name.
846
847IFunc may have an optional :ref:`linkage type <linkage>` and an optional
848:ref:`visibility style <visibility>`.
849
850Syntax::
851
852 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
853
854
David Majnemerdad0a642014-06-27 18:19:56 +0000855.. _langref_comdats:
856
857Comdats
858-------
859
860Comdat IR provides access to COFF and ELF object file COMDAT functionality.
861
Sean Silvaa1190322015-08-06 22:56:48 +0000862Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000863specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000864that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000865aliasee computes to, if any.
866
867Comdats have a selection kind to provide input on how the linker should
868choose between keys in two different object files.
869
870Syntax::
871
872 $<Name> = comdat SelectionKind
873
874The selection kind must be one of the following:
875
876``any``
877 The linker may choose any COMDAT key, the choice is arbitrary.
878``exactmatch``
879 The linker may choose any COMDAT key but the sections must contain the
880 same data.
881``largest``
882 The linker will choose the section containing the largest COMDAT key.
883``noduplicates``
884 The linker requires that only section with this COMDAT key exist.
885``samesize``
886 The linker may choose any COMDAT key but the sections must contain the
887 same amount of data.
888
Sam Cleggea7cace2018-01-09 23:43:14 +0000889Note that the Mach-O platform doesn't support COMDATs, and ELF and WebAssembly
890only support ``any`` as a selection kind.
David Majnemerdad0a642014-06-27 18:19:56 +0000891
892Here is an example of a COMDAT group where a function will only be selected if
893the COMDAT key's section is the largest:
894
Renato Golin124f2592016-07-20 12:16:38 +0000895.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000896
897 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000898 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000899
Rafael Espindola83a362c2015-01-06 22:55:16 +0000900 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000901 ret void
902 }
903
Rafael Espindola83a362c2015-01-06 22:55:16 +0000904As a syntactic sugar the ``$name`` can be omitted if the name is the same as
905the global name:
906
Renato Golin124f2592016-07-20 12:16:38 +0000907.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000908
909 $foo = comdat any
910 @foo = global i32 2, comdat
911
912
David Majnemerdad0a642014-06-27 18:19:56 +0000913In a COFF object file, this will create a COMDAT section with selection kind
914``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
915and another COMDAT section with selection kind
916``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000917section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000918
919There are some restrictions on the properties of the global object.
920It, or an alias to it, must have the same name as the COMDAT group when
921targeting COFF.
922The contents and size of this object may be used during link-time to determine
923which COMDAT groups get selected depending on the selection kind.
924Because the name of the object must match the name of the COMDAT group, the
925linkage of the global object must not be local; local symbols can get renamed
926if a collision occurs in the symbol table.
927
928The combined use of COMDATS and section attributes may yield surprising results.
929For example:
930
Renato Golin124f2592016-07-20 12:16:38 +0000931.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000932
933 $foo = comdat any
934 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000935 @g1 = global i32 42, section "sec", comdat($foo)
936 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000937
938From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000939with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000940COMDAT groups and COMDATs, at the object file level, are represented by
941sections.
942
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000943Note that certain IR constructs like global variables and functions may
944create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000945COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000946in individual sections (e.g. when `-data-sections` or `-function-sections`
947is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000948
Sean Silvab084af42012-12-07 10:36:55 +0000949.. _namedmetadatastructure:
950
951Named Metadata
952--------------
953
954Named metadata is a collection of metadata. :ref:`Metadata
955nodes <metadata>` (but not metadata strings) are the only valid
956operands for a named metadata.
957
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000958#. Named metadata are represented as a string of characters with the
959 metadata prefix. The rules for metadata names are the same as for
960 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
961 are still valid, which allows any character to be part of a name.
962
Sean Silvab084af42012-12-07 10:36:55 +0000963Syntax::
964
965 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000966 !0 = !{!"zero"}
967 !1 = !{!"one"}
968 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000969 ; A named metadata.
970 !name = !{!0, !1, !2}
971
972.. _paramattrs:
973
974Parameter Attributes
975--------------------
976
977The return type and each parameter of a function type may have a set of
978*parameter attributes* associated with them. Parameter attributes are
979used to communicate additional information about the result or
980parameters of a function. Parameter attributes are considered to be part
981of the function, not of the function type, so functions with different
982parameter attributes can have the same function type.
983
984Parameter attributes are simple keywords that follow the type specified.
985If multiple parameter attributes are needed, they are space separated.
986For example:
987
988.. code-block:: llvm
989
990 declare i32 @printf(i8* noalias nocapture, ...)
991 declare i32 @atoi(i8 zeroext)
992 declare signext i8 @returns_signed_char()
993
994Note that any attributes for the function result (``nounwind``,
995``readonly``) come immediately after the argument list.
996
997Currently, only the following parameter attributes are defined:
998
999``zeroext``
1000 This indicates to the code generator that the parameter or return
1001 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +00001002 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +00001003``signext``
1004 This indicates to the code generator that the parameter or return
1005 value should be sign-extended to the extent required by the target's
1006 ABI (which is usually 32-bits) by the caller (for a parameter) or
1007 the callee (for a return value).
1008``inreg``
1009 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +00001010 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +00001011 a function call or return (usually, by putting it in a register as
1012 opposed to memory, though some targets use it to distinguish between
1013 two different kinds of registers). Use of this attribute is
1014 target-specific.
1015``byval``
1016 This indicates that the pointer parameter should really be passed by
1017 value to the function. The attribute implies that a hidden copy of
1018 the pointee is made between the caller and the callee, so the callee
1019 is unable to modify the value in the caller. This attribute is only
1020 valid on LLVM pointer arguments. It is generally used to pass
1021 structs and arrays by value, but is also valid on pointers to
1022 scalars. The copy is considered to belong to the caller not the
1023 callee (for example, ``readonly`` functions should not write to
1024 ``byval`` parameters). This is not a valid attribute for return
1025 values.
1026
1027 The byval attribute also supports specifying an alignment with the
1028 align attribute. It indicates the alignment of the stack slot to
1029 form and the known alignment of the pointer specified to the call
1030 site. If the alignment is not specified, then the code generator
1031 makes a target-specific assumption.
1032
Reid Klecknera534a382013-12-19 02:14:12 +00001033.. _attr_inalloca:
1034
1035``inalloca``
1036
Reid Kleckner60d3a832014-01-16 22:59:24 +00001037 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001038 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001039 be a pointer to stack memory produced by an ``alloca`` instruction.
1040 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001041 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001042 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001043
Reid Kleckner436c42e2014-01-17 23:58:17 +00001044 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001045 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001046 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001047 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001048 ``inalloca`` attribute also disables LLVM's implicit lowering of
1049 large aggregate return values, which means that frontend authors
1050 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001051
Reid Kleckner60d3a832014-01-16 22:59:24 +00001052 When the call site is reached, the argument allocation must have
1053 been the most recent stack allocation that is still live, or the
Eli Friedman0f522bd2018-07-25 18:26:38 +00001054 behavior is undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001055 space after an argument allocation and before its call site, but it
1056 must be cleared off with :ref:`llvm.stackrestore
1057 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001058
1059 See :doc:`InAlloca` for more information on how to use this
1060 attribute.
1061
Sean Silvab084af42012-12-07 10:36:55 +00001062``sret``
1063 This indicates that the pointer parameter specifies the address of a
1064 structure that is the return value of the function in the source
1065 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001066 loads and stores to the structure may be assumed by the callee not
1067 to trap and to be properly aligned. This is not a valid attribute
1068 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001069
Daniel Neilson1e687242018-01-19 17:13:12 +00001070.. _attr_align:
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001071
Hal Finkelccc70902014-07-22 16:58:55 +00001072``align <n>``
1073 This indicates that the pointer value may be assumed by the optimizer to
1074 have the specified alignment.
1075
1076 Note that this attribute has additional semantics when combined with the
1077 ``byval`` attribute.
1078
Sean Silva1703e702014-04-08 21:06:22 +00001079.. _noalias:
1080
Sean Silvab084af42012-12-07 10:36:55 +00001081``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001082 This indicates that objects accessed via pointer values
1083 :ref:`based <pointeraliasing>` on the argument or return value are not also
1084 accessed, during the execution of the function, via pointer values not
1085 *based* on the argument or return value. The attribute on a return value
1086 also has additional semantics described below. The caller shares the
1087 responsibility with the callee for ensuring that these requirements are met.
1088 For further details, please see the discussion of the NoAlias response in
1089 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001090
1091 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001092 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001093
1094 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001095 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1096 attribute on return values are stronger than the semantics of the attribute
1097 when used on function arguments. On function return values, the ``noalias``
1098 attribute indicates that the function acts like a system memory allocation
1099 function, returning a pointer to allocated storage disjoint from the
1100 storage for any other object accessible to the caller.
1101
Sean Silvab084af42012-12-07 10:36:55 +00001102``nocapture``
1103 This indicates that the callee does not make any copies of the
1104 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001105 attribute for return values. Addresses used in volatile operations
1106 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001107
1108.. _nest:
1109
1110``nest``
1111 This indicates that the pointer parameter can be excised using the
1112 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001113 attribute for return values and can only be applied to one parameter.
1114
1115``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001116 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001117 value. This is a hint to the optimizer and code generator used when
1118 generating the caller, allowing value propagation, tail call optimization,
1119 and omission of register saves and restores in some cases; it is not
1120 checked or enforced when generating the callee. The parameter and the
1121 function return type must be valid operands for the
1122 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1123 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001124
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001125``nonnull``
1126 This indicates that the parameter or return pointer is not null. This
1127 attribute may only be applied to pointer typed parameters. This is not
Eli Friedman0f522bd2018-07-25 18:26:38 +00001128 checked or enforced by LLVM; if the parameter or return pointer is null,
1129 the behavior is undefined.
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001130
Hal Finkelb0407ba2014-07-18 15:51:28 +00001131``dereferenceable(<n>)``
1132 This indicates that the parameter or return pointer is dereferenceable. This
1133 attribute may only be applied to pointer typed parameters. A pointer that
1134 is dereferenceable can be loaded from speculatively without a risk of
1135 trapping. The number of bytes known to be dereferenceable must be provided
1136 in parentheses. It is legal for the number of bytes to be less than the
1137 size of the pointee type. The ``nonnull`` attribute does not imply
1138 dereferenceability (consider a pointer to one element past the end of an
1139 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1140 ``addrspace(0)`` (which is the default address space).
1141
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001142``dereferenceable_or_null(<n>)``
1143 This indicates that the parameter or return value isn't both
1144 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001145 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001146 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1147 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1148 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1149 and in other address spaces ``dereferenceable_or_null(<n>)``
1150 implies that a pointer is at least one of ``dereferenceable(<n>)``
1151 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001152 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001153 pointer typed parameters.
1154
Manman Renf46262e2016-03-29 17:37:21 +00001155``swiftself``
1156 This indicates that the parameter is the self/context parameter. This is not
1157 a valid attribute for return values and can only be applied to one
1158 parameter.
1159
Manman Ren9bfd0d02016-04-01 21:41:15 +00001160``swifterror``
1161 This attribute is motivated to model and optimize Swift error handling. It
1162 can be applied to a parameter with pointer to pointer type or a
1163 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001164 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1165 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1166 the parameter or the alloca) can only be loaded and stored from, or used as
1167 a ``swifterror`` argument. This is not a valid attribute for return values
1168 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001169
1170 These constraints allow the calling convention to optimize access to
1171 ``swifterror`` variables by associating them with a specific register at
1172 call boundaries rather than placing them in memory. Since this does change
1173 the calling convention, a function which uses the ``swifterror`` attribute
1174 on a parameter is not ABI-compatible with one which does not.
1175
1176 These constraints also allow LLVM to assume that a ``swifterror`` argument
1177 does not alias any other memory visible within a function and that a
1178 ``swifterror`` alloca passed as an argument does not escape.
1179
Sean Silvab084af42012-12-07 10:36:55 +00001180.. _gc:
1181
Philip Reamesf80bbff2015-02-25 23:45:20 +00001182Garbage Collector Strategy Names
1183--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001184
Philip Reamesf80bbff2015-02-25 23:45:20 +00001185Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001186string:
1187
1188.. code-block:: llvm
1189
1190 define void @f() gc "name" { ... }
1191
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001192The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001193<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001194strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001195named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001196garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001197which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001198
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001199.. _prefixdata:
1200
1201Prefix Data
1202-----------
1203
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001204Prefix data is data associated with a function which the code
1205generator will emit immediately before the function's entrypoint.
1206The purpose of this feature is to allow frontends to associate
1207language-specific runtime metadata with specific functions and make it
1208available through the function pointer while still allowing the
1209function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001210
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001211To access the data for a given function, a program may bitcast the
1212function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001213index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001214the prefix data. For instance, take the example of a function annotated
1215with a single ``i32``,
1216
1217.. code-block:: llvm
1218
1219 define void @f() prefix i32 123 { ... }
1220
1221The prefix data can be referenced as,
1222
1223.. code-block:: llvm
1224
David Blaikie16a97eb2015-03-04 22:02:58 +00001225 %0 = bitcast void* () @f to i32*
1226 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001227 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001228
1229Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001230of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231beginning of the prefix data is aligned. This means that if the size
1232of the prefix data is not a multiple of the alignment size, the
1233function's entrypoint will not be aligned. If alignment of the
1234function's entrypoint is desired, padding must be added to the prefix
1235data.
1236
Sean Silvaa1190322015-08-06 22:56:48 +00001237A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001238to the ``available_externally`` linkage in that the data may be used by the
1239optimizers but will not be emitted in the object file.
1240
1241.. _prologuedata:
1242
1243Prologue Data
1244-------------
1245
1246The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1247be inserted prior to the function body. This can be used for enabling
1248function hot-patching and instrumentation.
1249
1250To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001251have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001252bytes which decode to a sequence of machine instructions, valid for the
1253module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001254the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001255the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001256definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001257makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001258
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001259A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001260which encodes the ``nop`` instruction:
1261
Renato Golin124f2592016-07-20 12:16:38 +00001262.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001263
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001264 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001265
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001266Generally prologue data can be formed by encoding a relative branch instruction
1267which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001268x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1269
Renato Golin124f2592016-07-20 12:16:38 +00001270.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001271
1272 %0 = type <{ i8, i8, i8* }>
1273
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001274 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001275
Sean Silvaa1190322015-08-06 22:56:48 +00001276A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001277to the ``available_externally`` linkage in that the data may be used by the
1278optimizers but will not be emitted in the object file.
1279
David Majnemer7fddecc2015-06-17 20:52:32 +00001280.. _personalityfn:
1281
1282Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001283--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001284
1285The ``personality`` attribute permits functions to specify what function
1286to use for exception handling.
1287
Bill Wendling63b88192013-02-06 06:52:58 +00001288.. _attrgrp:
1289
1290Attribute Groups
1291----------------
1292
1293Attribute groups are groups of attributes that are referenced by objects within
1294the IR. They are important for keeping ``.ll`` files readable, because a lot of
1295functions will use the same set of attributes. In the degenerative case of a
1296``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1297group will capture the important command line flags used to build that file.
1298
1299An attribute group is a module-level object. To use an attribute group, an
1300object references the attribute group's ID (e.g. ``#37``). An object may refer
1301to more than one attribute group. In that situation, the attributes from the
1302different groups are merged.
1303
1304Here is an example of attribute groups for a function that should always be
1305inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1306
1307.. code-block:: llvm
1308
1309 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001310 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001311
1312 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001313 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001314
1315 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1316 define void @f() #0 #1 { ... }
1317
Sean Silvab084af42012-12-07 10:36:55 +00001318.. _fnattrs:
1319
1320Function Attributes
1321-------------------
1322
1323Function attributes are set to communicate additional information about
1324a function. Function attributes are considered to be part of the
1325function, not of the function type, so functions with different function
1326attributes can have the same function type.
1327
1328Function attributes are simple keywords that follow the type specified.
1329If multiple attributes are needed, they are space separated. For
1330example:
1331
1332.. code-block:: llvm
1333
1334 define void @f() noinline { ... }
1335 define void @f() alwaysinline { ... }
1336 define void @f() alwaysinline optsize { ... }
1337 define void @f() optsize { ... }
1338
Sean Silvab084af42012-12-07 10:36:55 +00001339``alignstack(<n>)``
1340 This attribute indicates that, when emitting the prologue and
1341 epilogue, the backend should forcibly align the stack pointer.
1342 Specify the desired alignment, which must be a power of two, in
1343 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001344``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1345 This attribute indicates that the annotated function will always return at
1346 least a given number of bytes (or null). Its arguments are zero-indexed
1347 parameter numbers; if one argument is provided, then it's assumed that at
1348 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1349 returned pointer. If two are provided, then it's assumed that
1350 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1351 available. The referenced parameters must be integer types. No assumptions
1352 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001353``alwaysinline``
1354 This attribute indicates that the inliner should attempt to inline
1355 this function into callers whenever possible, ignoring any active
1356 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001357``builtin``
1358 This indicates that the callee function at a call site should be
1359 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001360 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001361 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001362 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001363``cold``
1364 This attribute indicates that this function is rarely called. When
1365 computing edge weights, basic blocks post-dominated by a cold
1366 function call are also considered to be cold; and, thus, given low
1367 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001368``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001369 In some parallel execution models, there exist operations that cannot be
1370 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001371 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001372
Justin Lebar58535b12016-02-17 17:46:41 +00001373 The ``convergent`` attribute may appear on functions or call/invoke
1374 instructions. When it appears on a function, it indicates that calls to
1375 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001376 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001377 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001378 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001379
Justin Lebar58535b12016-02-17 17:46:41 +00001380 When it appears on a call/invoke, the ``convergent`` attribute indicates
1381 that we should treat the call as though we're calling a convergent
1382 function. This is particularly useful on indirect calls; without this we
1383 may treat such calls as though the target is non-convergent.
1384
1385 The optimizer may remove the ``convergent`` attribute on functions when it
1386 can prove that the function does not execute any convergent operations.
1387 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1388 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001389``inaccessiblememonly``
1390 This attribute indicates that the function may only access memory that
1391 is not accessible by the module being compiled. This is a weaker form
Eli Friedman0f522bd2018-07-25 18:26:38 +00001392 of ``readnone``. If the function reads or writes other memory, the
1393 behavior is undefined.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001394``inaccessiblemem_or_argmemonly``
1395 This attribute indicates that the function may only access memory that is
1396 either not accessible by the module being compiled, or is pointed to
Eli Friedman0f522bd2018-07-25 18:26:38 +00001397 by its pointer arguments. This is a weaker form of ``argmemonly``. If the
1398 function reads or writes other memory, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001399``inlinehint``
1400 This attribute indicates that the source code contained a hint that
1401 inlining this function is desirable (such as the "inline" keyword in
1402 C/C++). It is just a hint; it imposes no requirements on the
1403 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001404``jumptable``
1405 This attribute indicates that the function should be added to a
1406 jump-instruction table at code-generation time, and that all address-taken
1407 references to this function should be replaced with a reference to the
1408 appropriate jump-instruction-table function pointer. Note that this creates
1409 a new pointer for the original function, which means that code that depends
1410 on function-pointer identity can break. So, any function annotated with
1411 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001412``minsize``
1413 This attribute suggests that optimization passes and code generator
1414 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001415 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001416 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001417``naked``
1418 This attribute disables prologue / epilogue emission for the
1419 function. This can have very system-specific consequences.
Sumanth Gundapaneni6af104e2017-07-28 22:26:22 +00001420``no-jump-tables``
1421 When this attribute is set to true, the jump tables and lookup tables that
1422 can be generated from a switch case lowering are disabled.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001423``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001424 This indicates that the callee function at a call site is not recognized as
1425 a built-in function. LLVM will retain the original call and not replace it
1426 with equivalent code based on the semantics of the built-in function, unless
1427 the call site uses the ``builtin`` attribute. This is valid at call sites
1428 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001429``noduplicate``
1430 This attribute indicates that calls to the function cannot be
1431 duplicated. A call to a ``noduplicate`` function may be moved
1432 within its parent function, but may not be duplicated within
1433 its parent function.
1434
1435 A function containing a ``noduplicate`` call may still
1436 be an inlining candidate, provided that the call is not
1437 duplicated by inlining. That implies that the function has
1438 internal linkage and only has one call site, so the original
1439 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001440``noimplicitfloat``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001441 This attributes disables implicit floating-point instructions.
Sean Silvab084af42012-12-07 10:36:55 +00001442``noinline``
1443 This attribute indicates that the inliner should never inline this
1444 function in any situation. This attribute may not be used together
1445 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001446``nonlazybind``
1447 This attribute suppresses lazy symbol binding for the function. This
1448 may make calls to the function faster, at the cost of extra program
1449 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001450``noredzone``
1451 This attribute indicates that the code generator should not use a
1452 red zone, even if the target-specific ABI normally permits it.
Kristina Brooks312fcc12018-10-18 03:14:37 +00001453``indirect-tls-seg-refs``
1454 This attribute indicates that the code generator should not use
1455 direct TLS access through segment registers, even if the
1456 target-specific ABI normally permits it.
Sean Silvab084af42012-12-07 10:36:55 +00001457``noreturn``
1458 This function attribute indicates that the function never returns
1459 normally. This produces undefined behavior at runtime if the
1460 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001461``norecurse``
1462 This function attribute indicates that the function does not call itself
1463 either directly or indirectly down any possible call path. This produces
1464 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001465``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001466 This function attribute indicates that the function never raises an
1467 exception. If the function does raise an exception, its runtime
1468 behavior is undefined. However, functions marked nounwind may still
1469 trap or generate asynchronous exceptions. Exception handling schemes
1470 that are recognized by LLVM to handle asynchronous exceptions, such
1471 as SEH, will still provide their implementation defined semantics.
Manoj Gupta77eeac32018-07-09 22:27:23 +00001472``"null-pointer-is-valid"``
1473 If ``"null-pointer-is-valid"`` is set to ``"true"``, then ``null`` address
1474 in address-space 0 is considered to be a valid address for memory loads and
1475 stores. Any analysis or optimization should not treat dereferencing a
1476 pointer to ``null`` as undefined behavior in this function.
1477 Note: Comparing address of a global variable to ``null`` may still
1478 evaluate to false because of a limitation in querying this attribute inside
1479 constant expressions.
Matt Morehouse31819412018-03-22 19:50:10 +00001480``optforfuzzing``
1481 This attribute indicates that this function should be optimized
1482 for maximum fuzzing signal.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001483``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001484 This function attribute indicates that most optimization passes will skip
1485 this function, with the exception of interprocedural optimization passes.
1486 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001487 This attribute cannot be used together with the ``alwaysinline``
1488 attribute; this attribute is also incompatible
1489 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001490
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001491 This attribute requires the ``noinline`` attribute to be specified on
1492 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001493 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001494 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001495``optsize``
1496 This attribute suggests that optimization passes and code generator
1497 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001498 and otherwise do optimizations specifically to reduce code size as
1499 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001500``"patchable-function"``
1501 This attribute tells the code generator that the code
1502 generated for this function needs to follow certain conventions that
1503 make it possible for a runtime function to patch over it later.
1504 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001505 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001506
1507 * ``"prologue-short-redirect"`` - This style of patchable
1508 function is intended to support patching a function prologue to
1509 redirect control away from the function in a thread safe
1510 manner. It guarantees that the first instruction of the
1511 function will be large enough to accommodate a short jump
1512 instruction, and will be sufficiently aligned to allow being
1513 fully changed via an atomic compare-and-swap instruction.
1514 While the first requirement can be satisfied by inserting large
1515 enough NOP, LLVM can and will try to re-purpose an existing
1516 instruction (i.e. one that would have to be emitted anyway) as
1517 the patchable instruction larger than a short jump.
1518
1519 ``"prologue-short-redirect"`` is currently only supported on
1520 x86-64.
1521
1522 This attribute by itself does not imply restrictions on
1523 inter-procedural optimizations. All of the semantic effects the
1524 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001525``"probe-stack"``
1526 This attribute indicates that the function will trigger a guard region
1527 in the end of the stack. It ensures that accesses to the stack must be
1528 no further apart than the size of the guard region to a previous
1529 access of the stack. It takes one required string value, the name of
1530 the stack probing function that will be called.
1531
1532 If a function that has a ``"probe-stack"`` attribute is inlined into
1533 a function with another ``"probe-stack"`` attribute, the resulting
1534 function has the ``"probe-stack"`` attribute of the caller. If a
1535 function that has a ``"probe-stack"`` attribute is inlined into a
1536 function that has no ``"probe-stack"`` attribute at all, the resulting
1537 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001538``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001539 On a function, this attribute indicates that the function computes its
1540 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001541 without dereferencing any pointer arguments or otherwise accessing
1542 any mutable state (e.g. memory, control registers, etc) visible to
1543 caller functions. It does not write through any pointer arguments
1544 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001545 to callers. This means while it cannot unwind exceptions by calling
1546 the ``C++`` exception throwing methods (since they write to memory), there may
1547 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1548 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001549
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001550 On an argument, this attribute indicates that the function does not
1551 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001552 memory that the pointer points to if accessed through other pointers.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001553
1554 If a readnone function reads or writes memory visible to the program, or
1555 has other side-effects, the behavior is undefined. If a function reads from
1556 or writes to a readnone pointer argument, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001557``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001558 On a function, this attribute indicates that the function does not write
1559 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001560 modify any state (e.g. memory, control registers, etc) visible to
1561 caller functions. It may dereference pointer arguments and read
1562 state that may be set in the caller. A readonly function always
1563 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001564 called with the same set of arguments and global state. This means while it
1565 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1566 (since they write to memory), there may be non-``C++`` mechanisms that throw
1567 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001568
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001569 On an argument, this attribute indicates that the function does not write
1570 through this pointer argument, even though it may write to the memory that
1571 the pointer points to.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001572
1573 If a readonly function writes memory visible to the program, or
1574 has other side-effects, the behavior is undefined. If a function writes to
1575 a readonly pointer argument, the behavior is undefined.
whitequark08b20352017-06-22 23:22:36 +00001576``"stack-probe-size"``
1577 This attribute controls the behavior of stack probes: either
1578 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1579 It defines the size of the guard region. It ensures that if the function
1580 may use more stack space than the size of the guard region, stack probing
1581 sequence will be emitted. It takes one required integer value, which
1582 is 4096 by default.
1583
1584 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1585 a function with another ``"stack-probe-size"`` attribute, the resulting
1586 function has the ``"stack-probe-size"`` attribute that has the lower
1587 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1588 inlined into a function that has no ``"stack-probe-size"`` attribute
1589 at all, the resulting function has the ``"stack-probe-size"`` attribute
1590 of the callee.
Hans Wennborg89c35fc2018-02-23 13:46:25 +00001591``"no-stack-arg-probe"``
1592 This attribute disables ABI-required stack probes, if any.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001593``writeonly``
1594 On a function, this attribute indicates that the function may write to but
1595 does not read from memory.
1596
1597 On an argument, this attribute indicates that the function may write to but
1598 does not read through this pointer argument (even though it may read from
1599 the memory that the pointer points to).
Eli Friedman0f522bd2018-07-25 18:26:38 +00001600
1601 If a writeonly function reads memory visible to the program, or
1602 has other side-effects, the behavior is undefined. If a function reads
1603 from a writeonly pointer argument, the behavior is undefined.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001604``argmemonly``
1605 This attribute indicates that the only memory accesses inside function are
1606 loads and stores from objects pointed to by its pointer-typed arguments,
1607 with arbitrary offsets. Or in other words, all memory operations in the
1608 function can refer to memory only using pointers based on its function
1609 arguments.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001610
Igor Laevsky39d662f2015-07-11 10:30:36 +00001611 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1612 in order to specify that function reads only from its arguments.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001613
1614 If an argmemonly function reads or writes memory other than the pointer
1615 arguments, or has other side-effects, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001616``returns_twice``
1617 This attribute indicates that this function can return twice. The C
1618 ``setjmp`` is an example of such a function. The compiler disables
1619 some optimizations (like tail calls) in the caller of these
1620 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001621``safestack``
1622 This attribute indicates that
1623 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1624 protection is enabled for this function.
1625
1626 If a function that has a ``safestack`` attribute is inlined into a
1627 function that doesn't have a ``safestack`` attribute or which has an
1628 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1629 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001630``sanitize_address``
1631 This attribute indicates that AddressSanitizer checks
1632 (dynamic address safety analysis) are enabled for this function.
1633``sanitize_memory``
1634 This attribute indicates that MemorySanitizer checks (dynamic detection
1635 of accesses to uninitialized memory) are enabled for this function.
1636``sanitize_thread``
1637 This attribute indicates that ThreadSanitizer checks
1638 (dynamic thread safety analysis) are enabled for this function.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00001639``sanitize_hwaddress``
1640 This attribute indicates that HWAddressSanitizer checks
1641 (dynamic address safety analysis based on tagged pointers) are enabled for
1642 this function.
Chandler Carruth664aa862018-09-04 12:38:00 +00001643``speculative_load_hardening``
1644 This attribute indicates that
1645 `Speculative Load Hardening <https://llvm.org/docs/SpeculativeLoadHardening.html>`_
Zola Bridgescbac3ad2018-11-27 19:56:46 +00001646 should be enabled for the function body.
1647
1648 Speculative Load Hardening is a best-effort mitigation against
1649 information leak attacks that make use of control flow
1650 miss-speculation - specifically miss-speculation of whether a branch
1651 is taken or not. Typically vulnerabilities enabling such attacks are
1652 classified as "Spectre variant #1". Notably, this does not attempt to
1653 mitigate against miss-speculation of branch target, classified as
1654 "Spectre variant #2" vulnerabilities.
Chandler Carruth664aa862018-09-04 12:38:00 +00001655
1656 When inlining, the attribute is sticky. Inlining a function that carries
1657 this attribute will cause the caller to gain the attribute. This is intended
1658 to provide a maximally conservative model where the code in a function
1659 annotated with this attribute will always (even after inlining) end up
1660 hardened.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001661``speculatable``
1662 This function attribute indicates that the function does not have any
1663 effects besides calculating its result and does not have undefined behavior.
1664 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001665 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001666 externally observable. This attribute is only valid on functions
1667 and declarations, not on individual call sites. If a function is
1668 incorrectly marked as speculatable and really does exhibit
1669 undefined behavior, the undefined behavior may be observed even
1670 if the call site is dead code.
1671
Sean Silvab084af42012-12-07 10:36:55 +00001672``ssp``
1673 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001674 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001675 placed on the stack before the local variables that's checked upon
1676 return from the function to see if it has been overwritten. A
1677 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001678 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001679
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001680 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1681 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1682 - Calls to alloca() with variable sizes or constant sizes greater than
1683 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001684
Josh Magee24c7f062014-02-01 01:36:16 +00001685 Variables that are identified as requiring a protector will be arranged
1686 on the stack such that they are adjacent to the stack protector guard.
1687
Sean Silvab084af42012-12-07 10:36:55 +00001688 If a function that has an ``ssp`` attribute is inlined into a
1689 function that doesn't have an ``ssp`` attribute, then the resulting
1690 function will have an ``ssp`` attribute.
1691``sspreq``
1692 This attribute indicates that the function should *always* emit a
1693 stack smashing protector. This overrides the ``ssp`` function
1694 attribute.
1695
Josh Magee24c7f062014-02-01 01:36:16 +00001696 Variables that are identified as requiring a protector will be arranged
1697 on the stack such that they are adjacent to the stack protector guard.
1698 The specific layout rules are:
1699
1700 #. Large arrays and structures containing large arrays
1701 (``>= ssp-buffer-size``) are closest to the stack protector.
1702 #. Small arrays and structures containing small arrays
1703 (``< ssp-buffer-size``) are 2nd closest to the protector.
1704 #. Variables that have had their address taken are 3rd closest to the
1705 protector.
1706
Sean Silvab084af42012-12-07 10:36:55 +00001707 If a function that has an ``sspreq`` attribute is inlined into a
1708 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001709 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1710 an ``sspreq`` attribute.
1711``sspstrong``
1712 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001713 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001714 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001715 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001716
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001717 - Arrays of any size and type
1718 - Aggregates containing an array of any size and type.
1719 - Calls to alloca().
1720 - Local variables that have had their address taken.
1721
Josh Magee24c7f062014-02-01 01:36:16 +00001722 Variables that are identified as requiring a protector will be arranged
1723 on the stack such that they are adjacent to the stack protector guard.
1724 The specific layout rules are:
1725
1726 #. Large arrays and structures containing large arrays
1727 (``>= ssp-buffer-size``) are closest to the stack protector.
1728 #. Small arrays and structures containing small arrays
1729 (``< ssp-buffer-size``) are 2nd closest to the protector.
1730 #. Variables that have had their address taken are 3rd closest to the
1731 protector.
1732
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001733 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001734
1735 If a function that has an ``sspstrong`` attribute is inlined into a
1736 function that doesn't have an ``sspstrong`` attribute, then the
1737 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001738``strictfp``
1739 This attribute indicates that the function was called from a scope that
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001740 requires strict floating-point semantics. LLVM will not attempt any
1741 optimizations that require assumptions about the floating-point rounding
1742 mode or that might alter the state of floating-point status flags that
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001743 might otherwise be set or cleared by calling this function.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001744``"thunk"``
1745 This attribute indicates that the function will delegate to some other
1746 function with a tail call. The prototype of a thunk should not be used for
1747 optimization purposes. The caller is expected to cast the thunk prototype to
1748 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001749``uwtable``
1750 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001751 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001752 show that no exceptions passes by it. This is normally the case for
1753 the ELF x86-64 abi, but it can be disabled for some compilation
1754 units.
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001755``nocf_check``
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001756 This attribute indicates that no control-flow check will be performed on
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001757 the attributed entity. It disables -fcf-protection=<> for a specific
1758 entity to fine grain the HW control flow protection mechanism. The flag
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001759 is target independent and currently appertains to a function or function
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001760 pointer.
Vlad Tsyrklevichd17f61e2018-04-03 20:10:40 +00001761``shadowcallstack``
1762 This attribute indicates that the ShadowCallStack checks are enabled for
1763 the function. The instrumentation checks that the return address for the
1764 function has not changed between the function prolog and eiplog. It is
1765 currently x86_64-specific.
Sean Silvab084af42012-12-07 10:36:55 +00001766
Javed Absarf3d79042017-05-11 12:28:08 +00001767.. _glattrs:
1768
1769Global Attributes
1770-----------------
1771
1772Attributes may be set to communicate additional information about a global variable.
1773Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1774are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001775
1776.. _opbundles:
1777
1778Operand Bundles
1779---------------
1780
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001781Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001782with certain LLVM instructions (currently only ``call`` s and
1783``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001784incorrect and will change program semantics.
1785
1786Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001787
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001788 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001789 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1790 bundle operand ::= SSA value
1791 tag ::= string constant
1792
1793Operand bundles are **not** part of a function's signature, and a
1794given function may be called from multiple places with different kinds
1795of operand bundles. This reflects the fact that the operand bundles
1796are conceptually a part of the ``call`` (or ``invoke``), not the
1797callee being dispatched to.
1798
1799Operand bundles are a generic mechanism intended to support
1800runtime-introspection-like functionality for managed languages. While
1801the exact semantics of an operand bundle depend on the bundle tag,
1802there are certain limitations to how much the presence of an operand
1803bundle can influence the semantics of a program. These restrictions
1804are described as the semantics of an "unknown" operand bundle. As
1805long as the behavior of an operand bundle is describable within these
1806restrictions, LLVM does not need to have special knowledge of the
1807operand bundle to not miscompile programs containing it.
1808
David Majnemer34cacb42015-10-22 01:46:38 +00001809- The bundle operands for an unknown operand bundle escape in unknown
1810 ways before control is transferred to the callee or invokee.
1811- Calls and invokes with operand bundles have unknown read / write
1812 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001813 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001814 callsite specific attributes.
1815- An operand bundle at a call site cannot change the implementation
1816 of the called function. Inter-procedural optimizations work as
1817 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001818
Sanjoy Dascdafd842015-11-11 21:38:02 +00001819More specific types of operand bundles are described below.
1820
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001821.. _deopt_opbundles:
1822
Sanjoy Dascdafd842015-11-11 21:38:02 +00001823Deoptimization Operand Bundles
1824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1825
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001826Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001827operand bundle tag. These operand bundles represent an alternate
1828"safe" continuation for the call site they're attached to, and can be
1829used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001830specified call site. There can be at most one ``"deopt"`` operand
1831bundle attached to a call site. Exact details of deoptimization is
1832out of scope for the language reference, but it usually involves
1833rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001834
1835From the compiler's perspective, deoptimization operand bundles make
1836the call sites they're attached to at least ``readonly``. They read
1837through all of their pointer typed operands (even if they're not
1838otherwise escaped) and the entire visible heap. Deoptimization
1839operand bundles do not capture their operands except during
1840deoptimization, in which case control will not be returned to the
1841compiled frame.
1842
Sanjoy Das2d161452015-11-18 06:23:38 +00001843The inliner knows how to inline through calls that have deoptimization
1844operand bundles. Just like inlining through a normal call site
1845involves composing the normal and exceptional continuations, inlining
1846through a call site with a deoptimization operand bundle needs to
1847appropriately compose the "safe" deoptimization continuation. The
1848inliner does this by prepending the parent's deoptimization
1849continuation to every deoptimization continuation in the inlined body.
1850E.g. inlining ``@f`` into ``@g`` in the following example
1851
1852.. code-block:: llvm
1853
1854 define void @f() {
1855 call void @x() ;; no deopt state
1856 call void @y() [ "deopt"(i32 10) ]
1857 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1858 ret void
1859 }
1860
1861 define void @g() {
1862 call void @f() [ "deopt"(i32 20) ]
1863 ret void
1864 }
1865
1866will result in
1867
1868.. code-block:: llvm
1869
1870 define void @g() {
1871 call void @x() ;; still no deopt state
1872 call void @y() [ "deopt"(i32 20, i32 10) ]
1873 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1874 ret void
1875 }
1876
1877It is the frontend's responsibility to structure or encode the
1878deoptimization state in a way that syntactically prepending the
1879caller's deoptimization state to the callee's deoptimization state is
1880semantically equivalent to composing the caller's deoptimization
1881continuation after the callee's deoptimization continuation.
1882
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001883.. _ob_funclet:
1884
David Majnemer3bb88c02015-12-15 21:27:27 +00001885Funclet Operand Bundles
1886^^^^^^^^^^^^^^^^^^^^^^^
1887
1888Funclet operand bundles are characterized by the ``"funclet"``
1889operand bundle tag. These operand bundles indicate that a call site
1890is within a particular funclet. There can be at most one
1891``"funclet"`` operand bundle attached to a call site and it must have
1892exactly one bundle operand.
1893
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001894If any funclet EH pads have been "entered" but not "exited" (per the
1895`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1896it is undefined behavior to execute a ``call`` or ``invoke`` which:
1897
1898* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1899 intrinsic, or
1900* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1901 not-yet-exited funclet EH pad.
1902
1903Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1904executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1905
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001906GC Transition Operand Bundles
1907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1908
1909GC transition operand bundles are characterized by the
1910``"gc-transition"`` operand bundle tag. These operand bundles mark a
1911call as a transition between a function with one GC strategy to a
1912function with a different GC strategy. If coordinating the transition
1913between GC strategies requires additional code generation at the call
1914site, these bundles may contain any values that are needed by the
1915generated code. For more details, see :ref:`GC Transitions
1916<gc_transition_args>`.
1917
Sean Silvab084af42012-12-07 10:36:55 +00001918.. _moduleasm:
1919
1920Module-Level Inline Assembly
1921----------------------------
1922
1923Modules may contain "module-level inline asm" blocks, which corresponds
1924to the GCC "file scope inline asm" blocks. These blocks are internally
1925concatenated by LLVM and treated as a single unit, but may be separated
1926in the ``.ll`` file if desired. The syntax is very simple:
1927
1928.. code-block:: llvm
1929
1930 module asm "inline asm code goes here"
1931 module asm "more can go here"
1932
1933The strings can contain any character by escaping non-printable
1934characters. The escape sequence used is simply "\\xx" where "xx" is the
1935two digit hex code for the number.
1936
James Y Knightbc832ed2015-07-08 18:08:36 +00001937Note that the assembly string *must* be parseable by LLVM's integrated assembler
1938(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001939
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001940.. _langref_datalayout:
1941
Sean Silvab084af42012-12-07 10:36:55 +00001942Data Layout
1943-----------
1944
1945A module may specify a target specific data layout string that specifies
1946how data is to be laid out in memory. The syntax for the data layout is
1947simply:
1948
1949.. code-block:: llvm
1950
1951 target datalayout = "layout specification"
1952
1953The *layout specification* consists of a list of specifications
1954separated by the minus sign character ('-'). Each specification starts
1955with a letter and may include other information after the letter to
1956define some aspect of the data layout. The specifications accepted are
1957as follows:
1958
1959``E``
1960 Specifies that the target lays out data in big-endian form. That is,
1961 the bits with the most significance have the lowest address
1962 location.
1963``e``
1964 Specifies that the target lays out data in little-endian form. That
1965 is, the bits with the least significance have the lowest address
1966 location.
1967``S<size>``
1968 Specifies the natural alignment of the stack in bits. Alignment
1969 promotion of stack variables is limited to the natural stack
1970 alignment to avoid dynamic stack realignment. The stack alignment
1971 must be a multiple of 8-bits. If omitted, the natural stack
1972 alignment defaults to "unspecified", which does not prevent any
1973 alignment promotions.
Dylan McKayced2fe62018-02-19 09:56:22 +00001974``P<address space>``
1975 Specifies the address space that corresponds to program memory.
1976 Harvard architectures can use this to specify what space LLVM
1977 should place things such as functions into. If omitted, the
1978 program memory space defaults to the default address space of 0,
1979 which corresponds to a Von Neumann architecture that has code
1980 and data in the same space.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001981``A<address space>``
Dylan McKayced2fe62018-02-19 09:56:22 +00001982 Specifies the address space of objects created by '``alloca``'.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001983 Defaults to the default address space of 0.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001984``p[n]:<size>:<abi>:<pref>:<idx>``
Sean Silvab084af42012-12-07 10:36:55 +00001985 This specifies the *size* of a pointer and its ``<abi>`` and
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001986 ``<pref>``\erred alignments for address space ``n``. The fourth parameter
1987 ``<idx>`` is a size of index that used for address calculation. If not
1988 specified, the default index size is equal to the pointer size. All sizes
1989 are in bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001990 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001991 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001992``i<size>:<abi>:<pref>``
1993 This specifies the alignment for an integer type of a given bit
1994 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1995``v<size>:<abi>:<pref>``
1996 This specifies the alignment for a vector type of a given bit
1997 ``<size>``.
1998``f<size>:<abi>:<pref>``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001999 This specifies the alignment for a floating-point type of a given bit
Sean Silvab084af42012-12-07 10:36:55 +00002000 ``<size>``. Only values of ``<size>`` that are supported by the target
2001 will work. 32 (float) and 64 (double) are supported on all targets; 80
2002 or 128 (different flavors of long double) are also supported on some
2003 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00002004``a:<abi>:<pref>``
2005 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00002006``m:<mangling>``
Reid Klecknerf8b51c52018-03-16 20:13:32 +00002007 If present, specifies that llvm names are mangled in the output. Symbols
2008 prefixed with the mangling escape character ``\01`` are passed through
2009 directly to the assembler without the escape character. The mangling style
Hans Wennborgd4245ac2014-01-15 02:49:17 +00002010 options are
2011
2012 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
2013 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
2014 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
2015 symbols get a ``_`` prefix.
Reid Klecknerf8b51c52018-03-16 20:13:32 +00002016 * ``x``: Windows x86 COFF mangling: Private symbols get the usual prefix.
2017 Regular C symbols get a ``_`` prefix. Functions with ``__stdcall``,
2018 ``__fastcall``, and ``__vectorcall`` have custom mangling that appends
2019 ``@N`` where N is the number of bytes used to pass parameters. C++ symbols
2020 starting with ``?`` are not mangled in any way.
2021 * ``w``: Windows COFF mangling: Similar to ``x``, except that normal C
2022 symbols do not receive a ``_`` prefix.
Sean Silvab084af42012-12-07 10:36:55 +00002023``n<size1>:<size2>:<size3>...``
2024 This specifies a set of native integer widths for the target CPU in
2025 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
2026 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
2027 this set are considered to support most general arithmetic operations
2028 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00002029``ni:<address space0>:<address space1>:<address space2>...``
2030 This specifies pointer types with the specified address spaces
2031 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
2032 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00002033
Rafael Espindolaabdd7262014-01-06 21:40:24 +00002034On every specification that takes a ``<abi>:<pref>``, specifying the
2035``<pref>`` alignment is optional. If omitted, the preceding ``:``
2036should be omitted too and ``<pref>`` will be equal to ``<abi>``.
2037
Sean Silvab084af42012-12-07 10:36:55 +00002038When constructing the data layout for a given target, LLVM starts with a
2039default set of specifications which are then (possibly) overridden by
2040the specifications in the ``datalayout`` keyword. The default
2041specifications are given in this list:
2042
2043- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00002044- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
2045- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
2046 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002047- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00002048- ``i1:8:8`` - i1 is 8-bit (byte) aligned
2049- ``i8:8:8`` - i8 is 8-bit (byte) aligned
2050- ``i16:16:16`` - i16 is 16-bit aligned
2051- ``i32:32:32`` - i32 is 32-bit aligned
2052- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
2053 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002054- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002055- ``f32:32:32`` - float is 32-bit aligned
2056- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002057- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002058- ``v64:64:64`` - 64-bit vector is 64-bit aligned
2059- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00002060- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002061
2062When LLVM is determining the alignment for a given type, it uses the
2063following rules:
2064
2065#. If the type sought is an exact match for one of the specifications,
2066 that specification is used.
2067#. If no match is found, and the type sought is an integer type, then
2068 the smallest integer type that is larger than the bitwidth of the
2069 sought type is used. If none of the specifications are larger than
2070 the bitwidth then the largest integer type is used. For example,
2071 given the default specifications above, the i7 type will use the
2072 alignment of i8 (next largest) while both i65 and i256 will use the
2073 alignment of i64 (largest specified).
2074#. If no match is found, and the type sought is a vector type, then the
2075 largest vector type that is smaller than the sought vector type will
2076 be used as a fall back. This happens because <128 x double> can be
2077 implemented in terms of 64 <2 x double>, for example.
2078
2079The function of the data layout string may not be what you expect.
2080Notably, this is not a specification from the frontend of what alignment
2081the code generator should use.
2082
2083Instead, if specified, the target data layout is required to match what
2084the ultimate *code generator* expects. This string is used by the
2085mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00002086what the ultimate code generator uses. There is no way to generate IR
2087that does not embed this target-specific detail into the IR. If you
2088don't specify the string, the default specifications will be used to
2089generate a Data Layout and the optimization phases will operate
2090accordingly and introduce target specificity into the IR with respect to
2091these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00002092
Bill Wendling5cc90842013-10-18 23:41:25 +00002093.. _langref_triple:
2094
2095Target Triple
2096-------------
2097
2098A module may specify a target triple string that describes the target
2099host. The syntax for the target triple is simply:
2100
2101.. code-block:: llvm
2102
2103 target triple = "x86_64-apple-macosx10.7.0"
2104
2105The *target triple* string consists of a series of identifiers delimited
2106by the minus sign character ('-'). The canonical forms are:
2107
2108::
2109
2110 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2111 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2112
2113This information is passed along to the backend so that it generates
2114code for the proper architecture. It's possible to override this on the
2115command line with the ``-mtriple`` command line option.
2116
Sean Silvab084af42012-12-07 10:36:55 +00002117.. _pointeraliasing:
2118
2119Pointer Aliasing Rules
2120----------------------
2121
2122Any memory access must be done through a pointer value associated with
2123an address range of the memory access, otherwise the behavior is
2124undefined. Pointer values are associated with address ranges according
2125to the following rules:
2126
2127- A pointer value is associated with the addresses associated with any
2128 value it is *based* on.
2129- An address of a global variable is associated with the address range
2130 of the variable's storage.
2131- The result value of an allocation instruction is associated with the
2132 address range of the allocated storage.
2133- A null pointer in the default address-space is associated with no
2134 address.
2135- An integer constant other than zero or a pointer value returned from
2136 a function not defined within LLVM may be associated with address
2137 ranges allocated through mechanisms other than those provided by
2138 LLVM. Such ranges shall not overlap with any ranges of addresses
2139 allocated by mechanisms provided by LLVM.
2140
2141A pointer value is *based* on another pointer value according to the
2142following rules:
2143
Sanjoy Das6d489492017-09-13 18:49:22 +00002144- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2145 the pointer-typed operand of the ``getelementptr``.
2146- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2147 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2148 of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002149- The result value of a ``bitcast`` is *based* on the operand of the
2150 ``bitcast``.
2151- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2152 values that contribute (directly or indirectly) to the computation of
2153 the pointer's value.
2154- The "*based* on" relationship is transitive.
2155
2156Note that this definition of *"based"* is intentionally similar to the
2157definition of *"based"* in C99, though it is slightly weaker.
2158
2159LLVM IR does not associate types with memory. The result type of a
2160``load`` merely indicates the size and alignment of the memory from
2161which to load, as well as the interpretation of the value. The first
2162operand type of a ``store`` similarly only indicates the size and
2163alignment of the store.
2164
2165Consequently, type-based alias analysis, aka TBAA, aka
2166``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2167:ref:`Metadata <metadata>` may be used to encode additional information
2168which specialized optimization passes may use to implement type-based
2169alias analysis.
2170
2171.. _volatile:
2172
2173Volatile Memory Accesses
2174------------------------
2175
2176Certain memory accesses, such as :ref:`load <i_load>`'s,
2177:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2178marked ``volatile``. The optimizers must not change the number of
2179volatile operations or change their order of execution relative to other
2180volatile operations. The optimizers *may* change the order of volatile
2181operations relative to non-volatile operations. This is not Java's
2182"volatile" and has no cross-thread synchronization behavior.
2183
Eli Friedman9ba16822019-01-22 00:42:20 +00002184A volatile load or store may have additional target-specific semantics.
2185Any volatile operation can have side effects, and any volatile operation
2186can read and/or modify state which is not accessible via a regular load
Eli Friedmanf0e67682019-01-28 23:03:41 +00002187or store in this module. Volatile operations may use addresses which do
Eli Friedman9ba16822019-01-22 00:42:20 +00002188not point to memory (like MMIO registers). This means the compiler may
2189not use a volatile operation to prove a non-volatile access to that
2190address has defined behavior.
2191
2192The allowed side-effects for volatile accesses are limited. If a
2193non-volatile store to a given address would be legal, a volatile
2194operation may modify the memory at that address. A volatile operation
2195may not modify any other memory accessible by the module being compiled.
2196A volatile operation may not call any code in the current module.
2197
2198The compiler may assume execution will continue after a volatile operation,
2199so operations which modify memory or may have undefined behavior can be
2200hoisted past a volatile operation.
2201
Andrew Trick89fc5a62013-01-30 21:19:35 +00002202IR-level volatile loads and stores cannot safely be optimized into
2203llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2204flagged volatile. Likewise, the backend should never split or merge
2205target-legal volatile load/store instructions.
2206
Andrew Trick7e6f9282013-01-31 00:49:39 +00002207.. admonition:: Rationale
2208
2209 Platforms may rely on volatile loads and stores of natively supported
2210 data width to be executed as single instruction. For example, in C
2211 this holds for an l-value of volatile primitive type with native
2212 hardware support, but not necessarily for aggregate types. The
2213 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002214 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002215 do not violate the frontend's contract with the language.
2216
Sean Silvab084af42012-12-07 10:36:55 +00002217.. _memmodel:
2218
2219Memory Model for Concurrent Operations
2220--------------------------------------
2221
2222The LLVM IR does not define any way to start parallel threads of
2223execution or to register signal handlers. Nonetheless, there are
2224platform-specific ways to create them, and we define LLVM IR's behavior
2225in their presence. This model is inspired by the C++0x memory model.
2226
2227For a more informal introduction to this model, see the :doc:`Atomics`.
2228
2229We define a *happens-before* partial order as the least partial order
2230that
2231
2232- Is a superset of single-thread program order, and
2233- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2234 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2235 techniques, like pthread locks, thread creation, thread joining,
2236 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2237 Constraints <ordering>`).
2238
2239Note that program order does not introduce *happens-before* edges
2240between a thread and signals executing inside that thread.
2241
2242Every (defined) read operation (load instructions, memcpy, atomic
2243loads/read-modify-writes, etc.) R reads a series of bytes written by
2244(defined) write operations (store instructions, atomic
2245stores/read-modify-writes, memcpy, etc.). For the purposes of this
2246section, initialized globals are considered to have a write of the
2247initializer which is atomic and happens before any other read or write
2248of the memory in question. For each byte of a read R, R\ :sub:`byte`
2249may see any write to the same byte, except:
2250
2251- If write\ :sub:`1` happens before write\ :sub:`2`, and
2252 write\ :sub:`2` happens before R\ :sub:`byte`, then
2253 R\ :sub:`byte` does not see write\ :sub:`1`.
2254- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2255 R\ :sub:`byte` does not see write\ :sub:`3`.
2256
2257Given that definition, R\ :sub:`byte` is defined as follows:
2258
2259- If R is volatile, the result is target-dependent. (Volatile is
2260 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002261 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002262 like normal memory. It does not generally provide cross-thread
2263 synchronization.)
2264- Otherwise, if there is no write to the same byte that happens before
2265 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2266- Otherwise, if R\ :sub:`byte` may see exactly one write,
2267 R\ :sub:`byte` returns the value written by that write.
2268- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2269 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2270 Memory Ordering Constraints <ordering>` section for additional
2271 constraints on how the choice is made.
2272- Otherwise R\ :sub:`byte` returns ``undef``.
2273
2274R returns the value composed of the series of bytes it read. This
2275implies that some bytes within the value may be ``undef`` **without**
2276the entire value being ``undef``. Note that this only defines the
2277semantics of the operation; it doesn't mean that targets will emit more
2278than one instruction to read the series of bytes.
2279
2280Note that in cases where none of the atomic intrinsics are used, this
2281model places only one restriction on IR transformations on top of what
2282is required for single-threaded execution: introducing a store to a byte
2283which might not otherwise be stored is not allowed in general.
2284(Specifically, in the case where another thread might write to and read
2285from an address, introducing a store can change a load that may see
2286exactly one write into a load that may see multiple writes.)
2287
2288.. _ordering:
2289
2290Atomic Memory Ordering Constraints
2291----------------------------------
2292
2293Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2294:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2295:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002296ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002297the same address they *synchronize with*. These semantics are borrowed
2298from Java and C++0x, but are somewhat more colloquial. If these
2299descriptions aren't precise enough, check those specs (see spec
2300references in the :doc:`atomics guide <Atomics>`).
2301:ref:`fence <i_fence>` instructions treat these orderings somewhat
2302differently since they don't take an address. See that instruction's
2303documentation for details.
2304
2305For a simpler introduction to the ordering constraints, see the
2306:doc:`Atomics`.
2307
2308``unordered``
2309 The set of values that can be read is governed by the happens-before
2310 partial order. A value cannot be read unless some operation wrote
2311 it. This is intended to provide a guarantee strong enough to model
2312 Java's non-volatile shared variables. This ordering cannot be
2313 specified for read-modify-write operations; it is not strong enough
2314 to make them atomic in any interesting way.
2315``monotonic``
2316 In addition to the guarantees of ``unordered``, there is a single
2317 total order for modifications by ``monotonic`` operations on each
2318 address. All modification orders must be compatible with the
2319 happens-before order. There is no guarantee that the modification
2320 orders can be combined to a global total order for the whole program
2321 (and this often will not be possible). The read in an atomic
2322 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2323 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2324 order immediately before the value it writes. If one atomic read
2325 happens before another atomic read of the same address, the later
2326 read must see the same value or a later value in the address's
2327 modification order. This disallows reordering of ``monotonic`` (or
2328 stronger) operations on the same address. If an address is written
2329 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2330 read that address repeatedly, the other threads must eventually see
2331 the write. This corresponds to the C++0x/C1x
2332 ``memory_order_relaxed``.
2333``acquire``
2334 In addition to the guarantees of ``monotonic``, a
2335 *synchronizes-with* edge may be formed with a ``release`` operation.
2336 This is intended to model C++'s ``memory_order_acquire``.
2337``release``
2338 In addition to the guarantees of ``monotonic``, if this operation
2339 writes a value which is subsequently read by an ``acquire``
2340 operation, it *synchronizes-with* that operation. (This isn't a
2341 complete description; see the C++0x definition of a release
2342 sequence.) This corresponds to the C++0x/C1x
2343 ``memory_order_release``.
2344``acq_rel`` (acquire+release)
2345 Acts as both an ``acquire`` and ``release`` operation on its
2346 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2347``seq_cst`` (sequentially consistent)
2348 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002349 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002350 writes), there is a global total order on all
2351 sequentially-consistent operations on all addresses, which is
2352 consistent with the *happens-before* partial order and with the
2353 modification orders of all the affected addresses. Each
2354 sequentially-consistent read sees the last preceding write to the
2355 same address in this global order. This corresponds to the C++0x/C1x
2356 ``memory_order_seq_cst`` and Java volatile.
2357
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002358.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002359
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002360If an atomic operation is marked ``syncscope("singlethread")``, it only
2361*synchronizes with* and only participates in the seq\_cst total orderings of
2362other operations running in the same thread (for example, in signal handlers).
2363
2364If an atomic operation is marked ``syncscope("<target-scope>")``, where
2365``<target-scope>`` is a target specific synchronization scope, then it is target
2366dependent if it *synchronizes with* and participates in the seq\_cst total
2367orderings of other operations.
2368
2369Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2370or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2371seq\_cst total orderings of other operations that are not marked
2372``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002373
Sanjay Patel54b161e2018-03-20 16:38:22 +00002374.. _floatenv:
2375
2376Floating-Point Environment
2377--------------------------
2378
2379The default LLVM floating-point environment assumes that floating-point
2380instructions do not have side effects. Results assume the round-to-nearest
2381rounding mode. No floating-point exception state is maintained in this
2382environment. Therefore, there is no attempt to create or preserve invalid
Chandler Carruth297620d2018-08-06 02:02:09 +00002383operation (SNaN) or division-by-zero exceptions.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002384
2385The benefit of this exception-free assumption is that floating-point
2386operations may be speculated freely without any other fast-math relaxations
2387to the floating-point model.
2388
2389Code that requires different behavior than this should use the
Sanjay Patelec95e0e2018-03-20 17:05:19 +00002390:ref:`Constrained Floating-Point Intrinsics <constrainedfp>`.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002391
Sean Silvab084af42012-12-07 10:36:55 +00002392.. _fastmath:
2393
2394Fast-Math Flags
2395---------------
2396
Sanjay Patel629c4112017-11-06 16:27:15 +00002397LLVM IR floating-point operations (:ref:`fadd <i_fadd>`,
Sean Silvab084af42012-12-07 10:36:55 +00002398:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002399:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002400may use the following flags to enable otherwise unsafe
Sanjay Patel629c4112017-11-06 16:27:15 +00002401floating-point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002402
2403``nnan``
2404 No NaNs - Allow optimizations to assume the arguments and result are not
Eli Friedmand3a30872018-07-17 20:31:42 +00002405 NaN. If an argument is a nan, or the result would be a nan, it produces
2406 a :ref:`poison value <poisonvalues>` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002407
2408``ninf``
2409 No Infs - Allow optimizations to assume the arguments and result are not
Eli Friedmand3a30872018-07-17 20:31:42 +00002410 +/-Inf. If an argument is +/-Inf, or the result would be +/-Inf, it
2411 produces a :ref:`poison value <poisonvalues>` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002412
2413``nsz``
2414 No Signed Zeros - Allow optimizations to treat the sign of a zero
2415 argument or result as insignificant.
2416
2417``arcp``
2418 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2419 argument rather than perform division.
2420
Adam Nemetcd847a82017-03-28 20:11:52 +00002421``contract``
2422 Allow floating-point contraction (e.g. fusing a multiply followed by an
2423 addition into a fused multiply-and-add).
2424
Sanjay Patel629c4112017-11-06 16:27:15 +00002425``afn``
2426 Approximate functions - Allow substitution of approximate calculations for
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002427 functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2428 for places where this can apply to LLVM's intrinsic math functions.
Sanjay Patel629c4112017-11-06 16:27:15 +00002429
2430``reassoc``
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002431 Allow reassociation transformations for floating-point instructions.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002432 This may dramatically change results in floating-point.
Sanjay Patel629c4112017-11-06 16:27:15 +00002433
Sean Silvab084af42012-12-07 10:36:55 +00002434``fast``
Sanjay Patel629c4112017-11-06 16:27:15 +00002435 This flag implies all of the others.
Sean Silvab084af42012-12-07 10:36:55 +00002436
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002437.. _uselistorder:
2438
2439Use-list Order Directives
2440-------------------------
2441
2442Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002443order to be recreated. ``<order-indexes>`` is a comma-separated list of
2444indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002445value's use-list is immediately sorted by these indexes.
2446
Sean Silvaa1190322015-08-06 22:56:48 +00002447Use-list directives may appear at function scope or global scope. They are not
2448instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002449function scope, they must appear after the terminator of the final basic block.
2450
2451If basic blocks have their address taken via ``blockaddress()`` expressions,
2452``uselistorder_bb`` can be used to reorder their use-lists from outside their
2453function's scope.
2454
2455:Syntax:
2456
2457::
2458
2459 uselistorder <ty> <value>, { <order-indexes> }
2460 uselistorder_bb @function, %block { <order-indexes> }
2461
2462:Examples:
2463
2464::
2465
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002466 define void @foo(i32 %arg1, i32 %arg2) {
2467 entry:
2468 ; ... instructions ...
2469 bb:
2470 ; ... instructions ...
2471
2472 ; At function scope.
2473 uselistorder i32 %arg1, { 1, 0, 2 }
2474 uselistorder label %bb, { 1, 0 }
2475 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002476
2477 ; At global scope.
2478 uselistorder i32* @global, { 1, 2, 0 }
2479 uselistorder i32 7, { 1, 0 }
2480 uselistorder i32 (i32) @bar, { 1, 0 }
2481 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2482
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002483.. _source_filename:
2484
2485Source Filename
2486---------------
2487
2488The *source filename* string is set to the original module identifier,
2489which will be the name of the compiled source file when compiling from
2490source through the clang front end, for example. It is then preserved through
2491the IR and bitcode.
2492
2493This is currently necessary to generate a consistent unique global
2494identifier for local functions used in profile data, which prepends the
2495source file name to the local function name.
2496
2497The syntax for the source file name is simply:
2498
Renato Golin124f2592016-07-20 12:16:38 +00002499.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002500
2501 source_filename = "/path/to/source.c"
2502
Sean Silvab084af42012-12-07 10:36:55 +00002503.. _typesystem:
2504
2505Type System
2506===========
2507
2508The LLVM type system is one of the most important features of the
2509intermediate representation. Being typed enables a number of
2510optimizations to be performed on the intermediate representation
2511directly, without having to do extra analyses on the side before the
2512transformation. A strong type system makes it easier to read the
2513generated code and enables novel analyses and transformations that are
2514not feasible to perform on normal three address code representations.
2515
Rafael Espindola08013342013-12-07 19:34:20 +00002516.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002517
Rafael Espindola08013342013-12-07 19:34:20 +00002518Void Type
2519---------
Sean Silvab084af42012-12-07 10:36:55 +00002520
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002521:Overview:
2522
Rafael Espindola08013342013-12-07 19:34:20 +00002523
2524The void type does not represent any value and has no size.
2525
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002526:Syntax:
2527
Rafael Espindola08013342013-12-07 19:34:20 +00002528
2529::
2530
2531 void
Sean Silvab084af42012-12-07 10:36:55 +00002532
2533
Rafael Espindola08013342013-12-07 19:34:20 +00002534.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002535
Rafael Espindola08013342013-12-07 19:34:20 +00002536Function Type
2537-------------
Sean Silvab084af42012-12-07 10:36:55 +00002538
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002539:Overview:
2540
Sean Silvab084af42012-12-07 10:36:55 +00002541
Rafael Espindola08013342013-12-07 19:34:20 +00002542The function type can be thought of as a function signature. It consists of a
2543return type and a list of formal parameter types. The return type of a function
2544type is a void type or first class type --- except for :ref:`label <t_label>`
2545and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002546
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002547:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002548
Rafael Espindola08013342013-12-07 19:34:20 +00002549::
Sean Silvab084af42012-12-07 10:36:55 +00002550
Rafael Espindola08013342013-12-07 19:34:20 +00002551 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002552
Rafael Espindola08013342013-12-07 19:34:20 +00002553...where '``<parameter list>``' is a comma-separated list of type
2554specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002555indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002556argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002557handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002558except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002559
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002560:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002561
Rafael Espindola08013342013-12-07 19:34:20 +00002562+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2563| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2564+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2565| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2566+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2567| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2568+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2569| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2570+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2571
2572.. _t_firstclass:
2573
2574First Class Types
2575-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002576
2577The :ref:`first class <t_firstclass>` types are perhaps the most important.
2578Values of these types are the only ones which can be produced by
2579instructions.
2580
Rafael Espindola08013342013-12-07 19:34:20 +00002581.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002582
Rafael Espindola08013342013-12-07 19:34:20 +00002583Single Value Types
2584^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002585
Rafael Espindola08013342013-12-07 19:34:20 +00002586These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002587
2588.. _t_integer:
2589
2590Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002591""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002592
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002593:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002594
2595The integer type is a very simple type that simply specifies an
2596arbitrary bit width for the integer type desired. Any bit width from 1
2597bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2598
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002599:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002600
2601::
2602
2603 iN
2604
2605The number of bits the integer will occupy is specified by the ``N``
2606value.
2607
2608Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002609*********
Sean Silvab084af42012-12-07 10:36:55 +00002610
2611+----------------+------------------------------------------------+
2612| ``i1`` | a single-bit integer. |
2613+----------------+------------------------------------------------+
2614| ``i32`` | a 32-bit integer. |
2615+----------------+------------------------------------------------+
2616| ``i1942652`` | a really big integer of over 1 million bits. |
2617+----------------+------------------------------------------------+
2618
2619.. _t_floating:
2620
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002621Floating-Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002622""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002623
2624.. list-table::
2625 :header-rows: 1
2626
2627 * - Type
2628 - Description
2629
2630 * - ``half``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002631 - 16-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002632
2633 * - ``float``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002634 - 32-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002635
2636 * - ``double``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002637 - 64-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002638
2639 * - ``fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002640 - 128-bit floating-point value (112-bit mantissa)
Sean Silvab084af42012-12-07 10:36:55 +00002641
2642 * - ``x86_fp80``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002643 - 80-bit floating-point value (X87)
Sean Silvab084af42012-12-07 10:36:55 +00002644
2645 * - ``ppc_fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002646 - 128-bit floating-point value (two 64-bits)
Sean Silvab084af42012-12-07 10:36:55 +00002647
Sanjay Patelbab6ce02018-03-21 15:22:09 +00002648The binary format of half, float, double, and fp128 correspond to the
2649IEEE-754-2008 specifications for binary16, binary32, binary64, and binary128
2650respectively.
2651
Reid Kleckner9a16d082014-03-05 02:41:37 +00002652X86_mmx Type
2653""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002654
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002655:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002656
Reid Kleckner9a16d082014-03-05 02:41:37 +00002657The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002658machine. The operations allowed on it are quite limited: parameters and
2659return values, load and store, and bitcast. User-specified MMX
2660instructions are represented as intrinsic or asm calls with arguments
2661and/or results of this type. There are no arrays, vectors or constants
2662of this type.
2663
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002664:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002665
2666::
2667
Reid Kleckner9a16d082014-03-05 02:41:37 +00002668 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002669
Sean Silvab084af42012-12-07 10:36:55 +00002670
Rafael Espindola08013342013-12-07 19:34:20 +00002671.. _t_pointer:
2672
2673Pointer Type
2674""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002675
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002676:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002677
Rafael Espindola08013342013-12-07 19:34:20 +00002678The pointer type is used to specify memory locations. Pointers are
2679commonly used to reference objects in memory.
2680
2681Pointer types may have an optional address space attribute defining the
2682numbered address space where the pointed-to object resides. The default
2683address space is number zero. The semantics of non-zero address spaces
2684are target-specific.
2685
2686Note that LLVM does not permit pointers to void (``void*``) nor does it
2687permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002688
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002689:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002690
2691::
2692
Rafael Espindola08013342013-12-07 19:34:20 +00002693 <type> *
2694
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002695:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002696
2697+-------------------------+--------------------------------------------------------------------------------------------------------------+
2698| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2699+-------------------------+--------------------------------------------------------------------------------------------------------------+
2700| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2701+-------------------------+--------------------------------------------------------------------------------------------------------------+
2702| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2703+-------------------------+--------------------------------------------------------------------------------------------------------------+
2704
2705.. _t_vector:
2706
2707Vector Type
2708"""""""""""
2709
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002710:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002711
2712A vector type is a simple derived type that represents a vector of
2713elements. Vector types are used when multiple primitive data are
2714operated in parallel using a single instruction (SIMD). A vector type
2715requires a size (number of elements) and an underlying primitive data
2716type. Vector types are considered :ref:`first class <t_firstclass>`.
2717
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002718:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002719
2720::
2721
2722 < <# elements> x <elementtype> >
2723
2724The number of elements is a constant integer value larger than 0;
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002725elementtype may be any integer, floating-point or pointer type. Vectors
Manuel Jacob961f7872014-07-30 12:30:06 +00002726of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002727
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002728:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002729
2730+-------------------+--------------------------------------------------+
2731| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2732+-------------------+--------------------------------------------------+
2733| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2734+-------------------+--------------------------------------------------+
2735| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2736+-------------------+--------------------------------------------------+
2737| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2738+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002739
2740.. _t_label:
2741
2742Label Type
2743^^^^^^^^^^
2744
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002745:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002746
2747The label type represents code labels.
2748
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002749:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002750
2751::
2752
2753 label
2754
David Majnemerb611e3f2015-08-14 05:09:07 +00002755.. _t_token:
2756
2757Token Type
2758^^^^^^^^^^
2759
2760:Overview:
2761
2762The token type is used when a value is associated with an instruction
2763but all uses of the value must not attempt to introspect or obscure it.
2764As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2765:ref:`select <i_select>` of type token.
2766
2767:Syntax:
2768
2769::
2770
2771 token
2772
2773
2774
Sean Silvab084af42012-12-07 10:36:55 +00002775.. _t_metadata:
2776
2777Metadata Type
2778^^^^^^^^^^^^^
2779
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002780:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002781
2782The metadata type represents embedded metadata. No derived types may be
2783created from metadata except for :ref:`function <t_function>` arguments.
2784
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002785:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002786
2787::
2788
2789 metadata
2790
Sean Silvab084af42012-12-07 10:36:55 +00002791.. _t_aggregate:
2792
2793Aggregate Types
2794^^^^^^^^^^^^^^^
2795
2796Aggregate Types are a subset of derived types that can contain multiple
2797member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2798aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2799aggregate types.
2800
2801.. _t_array:
2802
2803Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002804""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002805
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002806:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002807
2808The array type is a very simple derived type that arranges elements
2809sequentially in memory. The array type requires a size (number of
2810elements) and an underlying data type.
2811
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002812:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002813
2814::
2815
2816 [<# elements> x <elementtype>]
2817
2818The number of elements is a constant integer value; ``elementtype`` may
2819be any type with a size.
2820
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002821:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002822
2823+------------------+--------------------------------------+
2824| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2825+------------------+--------------------------------------+
2826| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2827+------------------+--------------------------------------+
2828| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2829+------------------+--------------------------------------+
2830
2831Here are some examples of multidimensional arrays:
2832
2833+-----------------------------+----------------------------------------------------------+
2834| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2835+-----------------------------+----------------------------------------------------------+
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002836| ``[12 x [10 x float]]`` | 12x10 array of single precision floating-point values. |
Sean Silvab084af42012-12-07 10:36:55 +00002837+-----------------------------+----------------------------------------------------------+
2838| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2839+-----------------------------+----------------------------------------------------------+
2840
2841There is no restriction on indexing beyond the end of the array implied
2842by a static type (though there are restrictions on indexing beyond the
2843bounds of an allocated object in some cases). This means that
2844single-dimension 'variable sized array' addressing can be implemented in
2845LLVM with a zero length array type. An implementation of 'pascal style
2846arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2847example.
2848
Sean Silvab084af42012-12-07 10:36:55 +00002849.. _t_struct:
2850
2851Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002852""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002853
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002854:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002855
2856The structure type is used to represent a collection of data members
2857together in memory. The elements of a structure may be any type that has
2858a size.
2859
2860Structures in memory are accessed using '``load``' and '``store``' by
2861getting a pointer to a field with the '``getelementptr``' instruction.
2862Structures in registers are accessed using the '``extractvalue``' and
2863'``insertvalue``' instructions.
2864
2865Structures may optionally be "packed" structures, which indicate that
2866the alignment of the struct is one byte, and that there is no padding
2867between the elements. In non-packed structs, padding between field types
2868is inserted as defined by the DataLayout string in the module, which is
2869required to match what the underlying code generator expects.
2870
2871Structures can either be "literal" or "identified". A literal structure
2872is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2873identified types are always defined at the top level with a name.
2874Literal types are uniqued by their contents and can never be recursive
2875or opaque since there is no way to write one. Identified types can be
2876recursive, can be opaqued, and are never uniqued.
2877
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002878:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002879
2880::
2881
2882 %T1 = type { <type list> } ; Identified normal struct type
2883 %T2 = type <{ <type list> }> ; Identified packed struct type
2884
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002885:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002886
2887+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2888| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2889+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002890| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002891+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2892| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2893+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2894
2895.. _t_opaque:
2896
2897Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002898""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002899
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002900:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002901
2902Opaque structure types are used to represent named structure types that
2903do not have a body specified. This corresponds (for example) to the C
2904notion of a forward declared structure.
2905
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002906:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002907
2908::
2909
2910 %X = type opaque
2911 %52 = type opaque
2912
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002913:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002914
2915+--------------+-------------------+
2916| ``opaque`` | An opaque type. |
2917+--------------+-------------------+
2918
Sean Silva1703e702014-04-08 21:06:22 +00002919.. _constants:
2920
Sean Silvab084af42012-12-07 10:36:55 +00002921Constants
2922=========
2923
2924LLVM has several different basic types of constants. This section
2925describes them all and their syntax.
2926
2927Simple Constants
2928----------------
2929
2930**Boolean constants**
2931 The two strings '``true``' and '``false``' are both valid constants
2932 of the ``i1`` type.
2933**Integer constants**
2934 Standard integers (such as '4') are constants of the
2935 :ref:`integer <t_integer>` type. Negative numbers may be used with
2936 integer types.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002937**Floating-point constants**
2938 Floating-point constants use standard decimal notation (e.g.
Sean Silvab084af42012-12-07 10:36:55 +00002939 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2940 hexadecimal notation (see below). The assembler requires the exact
2941 decimal value of a floating-point constant. For example, the
2942 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00002943 decimal in binary. Floating-point constants must have a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002944 :ref:`floating-point <t_floating>` type.
Sean Silvab084af42012-12-07 10:36:55 +00002945**Null pointer constants**
2946 The identifier '``null``' is recognized as a null pointer constant
2947 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002948**Token constants**
2949 The identifier '``none``' is recognized as an empty token constant
2950 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002951
2952The one non-intuitive notation for constants is the hexadecimal form of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002953floating-point constants. For example, the form
Sean Silvab084af42012-12-07 10:36:55 +00002954'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002955than) '``double 4.5e+15``'. The only time hexadecimal floating-point
Sean Silvab084af42012-12-07 10:36:55 +00002956constants are required (and the only time that they are generated by the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002957disassembler) is when a floating-point constant must be emitted but it
2958cannot be represented as a decimal floating-point number in a reasonable
Sean Silvab084af42012-12-07 10:36:55 +00002959number of digits. For example, NaN's, infinities, and other special
2960values are represented in their IEEE hexadecimal format so that assembly
2961and disassembly do not cause any bits to change in the constants.
2962
2963When using the hexadecimal form, constants of types half, float, and
2964double are represented using the 16-digit form shown above (which
2965matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002966must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002967precision, respectively. Hexadecimal format is always used for long
2968double, and there are three forms of long double. The 80-bit format used
2969by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2970128-bit format used by PowerPC (two adjacent doubles) is represented by
2971``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002972represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2973will only work if they match the long double format on your target.
2974The IEEE 16-bit format (half precision) is represented by ``0xH``
2975followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2976(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002977
Reid Kleckner9a16d082014-03-05 02:41:37 +00002978There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002979
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002980.. _complexconstants:
2981
Sean Silvab084af42012-12-07 10:36:55 +00002982Complex Constants
2983-----------------
2984
2985Complex constants are a (potentially recursive) combination of simple
2986constants and smaller complex constants.
2987
2988**Structure constants**
2989 Structure constants are represented with notation similar to
2990 structure type definitions (a comma separated list of elements,
2991 surrounded by braces (``{}``)). For example:
2992 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2993 "``@G = external global i32``". Structure constants must have
2994 :ref:`structure type <t_struct>`, and the number and types of elements
2995 must match those specified by the type.
2996**Array constants**
2997 Array constants are represented with notation similar to array type
2998 definitions (a comma separated list of elements, surrounded by
2999 square brackets (``[]``)). For example:
3000 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
3001 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00003002 match those specified by the type. As a special case, character array
3003 constants may also be represented as a double-quoted string using the ``c``
3004 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00003005**Vector constants**
3006 Vector constants are represented with notation similar to vector
3007 type definitions (a comma separated list of elements, surrounded by
3008 less-than/greater-than's (``<>``)). For example:
3009 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
3010 must have :ref:`vector type <t_vector>`, and the number and types of
3011 elements must match those specified by the type.
3012**Zero initialization**
3013 The string '``zeroinitializer``' can be used to zero initialize a
3014 value to zero of *any* type, including scalar and
3015 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
3016 having to print large zero initializers (e.g. for large arrays) and
3017 is always exactly equivalent to using explicit zero initializers.
3018**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00003019 A metadata node is a constant tuple without types. For example:
3020 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003021 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
3022 Unlike other typed constants that are meant to be interpreted as part of
3023 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00003024 information such as debug info.
3025
3026Global Variable and Function Addresses
3027--------------------------------------
3028
3029The addresses of :ref:`global variables <globalvars>` and
3030:ref:`functions <functionstructure>` are always implicitly valid
3031(link-time) constants. These constants are explicitly referenced when
3032the :ref:`identifier for the global <identifiers>` is used and always have
3033:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
3034file:
3035
3036.. code-block:: llvm
3037
3038 @X = global i32 17
3039 @Y = global i32 42
3040 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
3041
3042.. _undefvalues:
3043
3044Undefined Values
3045----------------
3046
3047The string '``undef``' can be used anywhere a constant is expected, and
3048indicates that the user of the value may receive an unspecified
3049bit-pattern. Undefined values may be of any type (other than '``label``'
3050or '``void``') and be used anywhere a constant is permitted.
3051
3052Undefined values are useful because they indicate to the compiler that
3053the program is well defined no matter what value is used. This gives the
3054compiler more freedom to optimize. Here are some examples of
3055(potentially surprising) transformations that are valid (in pseudo IR):
3056
3057.. code-block:: llvm
3058
3059 %A = add %X, undef
3060 %B = sub %X, undef
3061 %C = xor %X, undef
3062 Safe:
3063 %A = undef
3064 %B = undef
3065 %C = undef
3066
3067This is safe because all of the output bits are affected by the undef
3068bits. Any output bit can have a zero or one depending on the input bits.
3069
3070.. code-block:: llvm
3071
3072 %A = or %X, undef
3073 %B = and %X, undef
3074 Safe:
3075 %A = -1
3076 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00003077 Safe:
3078 %A = %X ;; By choosing undef as 0
3079 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00003080 Unsafe:
3081 %A = undef
3082 %B = undef
3083
3084These logical operations have bits that are not always affected by the
3085input. For example, if ``%X`` has a zero bit, then the output of the
3086'``and``' operation will always be a zero for that bit, no matter what
3087the corresponding bit from the '``undef``' is. As such, it is unsafe to
3088optimize or assume that the result of the '``and``' is '``undef``'.
3089However, it is safe to assume that all bits of the '``undef``' could be
30900, and optimize the '``and``' to 0. Likewise, it is safe to assume that
3091all the bits of the '``undef``' operand to the '``or``' could be set,
3092allowing the '``or``' to be folded to -1.
3093
3094.. code-block:: llvm
3095
3096 %A = select undef, %X, %Y
3097 %B = select undef, 42, %Y
3098 %C = select %X, %Y, undef
3099 Safe:
3100 %A = %X (or %Y)
3101 %B = 42 (or %Y)
3102 %C = %Y
3103 Unsafe:
3104 %A = undef
3105 %B = undef
3106 %C = undef
3107
3108This set of examples shows that undefined '``select``' (and conditional
3109branch) conditions can go *either way*, but they have to come from one
3110of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
3111both known to have a clear low bit, then ``%A`` would have to have a
3112cleared low bit. However, in the ``%C`` example, the optimizer is
3113allowed to assume that the '``undef``' operand could be the same as
3114``%Y``, allowing the whole '``select``' to be eliminated.
3115
Renato Golin124f2592016-07-20 12:16:38 +00003116.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003117
3118 %A = xor undef, undef
3119
3120 %B = undef
3121 %C = xor %B, %B
3122
3123 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00003124 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00003125 %F = icmp gte %D, 4
3126
3127 Safe:
3128 %A = undef
3129 %B = undef
3130 %C = undef
3131 %D = undef
3132 %E = undef
3133 %F = undef
3134
3135This example points out that two '``undef``' operands are not
3136necessarily the same. This can be surprising to people (and also matches
3137C semantics) where they assume that "``X^X``" is always zero, even if
3138``X`` is undefined. This isn't true for a number of reasons, but the
3139short answer is that an '``undef``' "variable" can arbitrarily change
3140its value over its "live range". This is true because the variable
3141doesn't actually *have a live range*. Instead, the value is logically
3142read from arbitrary registers that happen to be around when needed, so
3143the value is not necessarily consistent over time. In fact, ``%A`` and
3144``%C`` need to have the same semantics or the core LLVM "replace all
3145uses with" concept would not hold.
3146
3147.. code-block:: llvm
3148
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003149 %A = sdiv undef, %X
3150 %B = sdiv %X, undef
Sean Silvab084af42012-12-07 10:36:55 +00003151 Safe:
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003152 %A = 0
Sean Silvab084af42012-12-07 10:36:55 +00003153 b: unreachable
3154
3155These examples show the crucial difference between an *undefined value*
3156and *undefined behavior*. An undefined value (like '``undef``') is
3157allowed to have an arbitrary bit-pattern. This means that the ``%A``
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003158operation can be constant folded to '``0``', because the '``undef``'
3159could be zero, and zero divided by any value is zero.
Sean Silvab084af42012-12-07 10:36:55 +00003160However, in the second example, we can make a more aggressive
3161assumption: because the ``undef`` is allowed to be an arbitrary value,
3162we are allowed to assume that it could be zero. Since a divide by zero
3163has *undefined behavior*, we are allowed to assume that the operation
3164does not execute at all. This allows us to delete the divide and all
3165code after it. Because the undefined operation "can't happen", the
3166optimizer can assume that it occurs in dead code.
3167
Renato Golin124f2592016-07-20 12:16:38 +00003168.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003169
3170 a: store undef -> %X
3171 b: store %X -> undef
3172 Safe:
3173 a: <deleted>
3174 b: unreachable
3175
Sanjay Patel7b722402018-03-07 17:18:22 +00003176A store *of* an undefined value can be assumed to not have any effect;
3177we can assume that the value is overwritten with bits that happen to
3178match what was already there. However, a store *to* an undefined
3179location could clobber arbitrary memory, therefore, it has undefined
3180behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003181
3182.. _poisonvalues:
3183
3184Poison Values
3185-------------
3186
3187Poison values are similar to :ref:`undef values <undefvalues>`, however
3188they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003189that cannot evoke side effects has nevertheless detected a condition
3190that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003191
3192There is currently no way of representing a poison value in the IR; they
3193only exist when produced by operations such as :ref:`add <i_add>` with
3194the ``nsw`` flag.
3195
3196Poison value behavior is defined in terms of value *dependence*:
3197
3198- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3199- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3200 their dynamic predecessor basic block.
3201- Function arguments depend on the corresponding actual argument values
3202 in the dynamic callers of their functions.
3203- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3204 instructions that dynamically transfer control back to them.
3205- :ref:`Invoke <i_invoke>` instructions depend on the
3206 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3207 call instructions that dynamically transfer control back to them.
3208- Non-volatile loads and stores depend on the most recent stores to all
3209 of the referenced memory addresses, following the order in the IR
3210 (including loads and stores implied by intrinsics such as
3211 :ref:`@llvm.memcpy <int_memcpy>`.)
3212- An instruction with externally visible side effects depends on the
3213 most recent preceding instruction with externally visible side
3214 effects, following the order in the IR. (This includes :ref:`volatile
3215 operations <volatile>`.)
3216- An instruction *control-depends* on a :ref:`terminator
3217 instruction <terminators>` if the terminator instruction has
3218 multiple successors and the instruction is always executed when
3219 control transfers to one of the successors, and may not be executed
3220 when control is transferred to another.
3221- Additionally, an instruction also *control-depends* on a terminator
3222 instruction if the set of instructions it otherwise depends on would
3223 be different if the terminator had transferred control to a different
3224 successor.
3225- Dependence is transitive.
3226
Richard Smith32dbdf62014-07-31 04:25:36 +00003227Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3228with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003229on a poison value has undefined behavior.
3230
3231Here are some examples:
3232
3233.. code-block:: llvm
3234
3235 entry:
3236 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3237 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003238 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003239 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3240
3241 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003242 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003243
3244 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3245
3246 %narrowaddr = bitcast i32* @g to i16*
3247 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003248 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3249 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003250
3251 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3252 br i1 %cmp, label %true, label %end ; Branch to either destination.
3253
3254 true:
3255 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3256 ; it has undefined behavior.
3257 br label %end
3258
3259 end:
3260 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3261 ; Both edges into this PHI are
3262 ; control-dependent on %cmp, so this
3263 ; always results in a poison value.
3264
3265 store volatile i32 0, i32* @g ; This would depend on the store in %true
3266 ; if %cmp is true, or the store in %entry
3267 ; otherwise, so this is undefined behavior.
3268
3269 br i1 %cmp, label %second_true, label %second_end
3270 ; The same branch again, but this time the
3271 ; true block doesn't have side effects.
3272
3273 second_true:
3274 ; No side effects!
3275 ret void
3276
3277 second_end:
3278 store volatile i32 0, i32* @g ; This time, the instruction always depends
3279 ; on the store in %end. Also, it is
3280 ; control-equivalent to %end, so this is
3281 ; well-defined (ignoring earlier undefined
3282 ; behavior in this example).
3283
3284.. _blockaddress:
3285
3286Addresses of Basic Blocks
3287-------------------------
3288
3289``blockaddress(@function, %block)``
3290
3291The '``blockaddress``' constant computes the address of the specified
3292basic block in the specified function, and always has an ``i8*`` type.
3293Taking the address of the entry block is illegal.
3294
3295This value only has defined behavior when used as an operand to the
3296':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3297against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003298undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003299no label is equal to the null pointer. This may be passed around as an
3300opaque pointer sized value as long as the bits are not inspected. This
3301allows ``ptrtoint`` and arithmetic to be performed on these values so
3302long as the original value is reconstituted before the ``indirectbr``
3303instruction.
3304
3305Finally, some targets may provide defined semantics when using the value
3306as the operand to an inline assembly, but that is target specific.
3307
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003308.. _constantexprs:
3309
Sean Silvab084af42012-12-07 10:36:55 +00003310Constant Expressions
3311--------------------
3312
3313Constant expressions are used to allow expressions involving other
3314constants to be used as constants. Constant expressions may be of any
3315:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3316that does not have side effects (e.g. load and call are not supported).
3317The following is the syntax for constant expressions:
3318
3319``trunc (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003320 Perform the :ref:`trunc operation <i_trunc>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003321``zext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003322 Perform the :ref:`zext operation <i_zext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003323``sext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003324 Perform the :ref:`sext operation <i_sext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003325``fptrunc (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003326 Truncate a floating-point constant to another floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003327 The size of CST must be larger than the size of TYPE. Both types
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003328 must be floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003329``fpext (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003330 Floating-point extend a constant to another type. The size of CST
Sean Silvab084af42012-12-07 10:36:55 +00003331 must be smaller or equal to the size of TYPE. Both types must be
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003332 floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003333``fptoui (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003334 Convert a floating-point constant to the corresponding unsigned
Sean Silvab084af42012-12-07 10:36:55 +00003335 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003336 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003337 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003338 value won't fit in the integer type, the result is a
3339 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003340``fptosi (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003341 Convert a floating-point constant to the corresponding signed
Sean Silvab084af42012-12-07 10:36:55 +00003342 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003343 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003344 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003345 value won't fit in the integer type, the result is a
3346 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003347``uitofp (CST to TYPE)``
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00003348 Convert an unsigned integer constant to the corresponding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003349 floating-point constant. TYPE must be a scalar or vector floating-point
3350 type. CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003351 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003352``sitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003353 Convert a signed integer constant to the corresponding floating-point
3354 constant. TYPE must be a scalar or vector floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003355 CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003356 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003357``ptrtoint (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003358 Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003359``inttoptr (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003360 Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003361 This one is *really* dangerous!
3362``bitcast (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003363 Convert a constant, CST, to another TYPE.
3364 The constraints of the operands are the same as those for the
3365 :ref:`bitcast instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003366``addrspacecast (CST to TYPE)``
3367 Convert a constant pointer or constant vector of pointer, CST, to another
3368 TYPE in a different address space. The constraints of the operands are the
3369 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003370``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003371 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3372 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003373 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003374 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003375``select (COND, VAL1, VAL2)``
3376 Perform the :ref:`select operation <i_select>` on constants.
3377``icmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003378 Perform the :ref:`icmp operation <i_icmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003379``fcmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003380 Perform the :ref:`fcmp operation <i_fcmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003381``extractelement (VAL, IDX)``
3382 Perform the :ref:`extractelement operation <i_extractelement>` on
3383 constants.
3384``insertelement (VAL, ELT, IDX)``
3385 Perform the :ref:`insertelement operation <i_insertelement>` on
3386 constants.
3387``shufflevector (VEC1, VEC2, IDXMASK)``
3388 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3389 constants.
3390``extractvalue (VAL, IDX0, IDX1, ...)``
3391 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3392 constants. The index list is interpreted in a similar manner as
3393 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3394 least one index value must be specified.
3395``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3396 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3397 The index list is interpreted in a similar manner as indices in a
3398 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3399 value must be specified.
3400``OPCODE (LHS, RHS)``
3401 Perform the specified operation of the LHS and RHS constants. OPCODE
3402 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3403 binary <bitwiseops>` operations. The constraints on operands are
3404 the same as those for the corresponding instruction (e.g. no bitwise
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003405 operations on floating-point values are allowed).
Sean Silvab084af42012-12-07 10:36:55 +00003406
3407Other Values
3408============
3409
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003410.. _inlineasmexprs:
3411
Sean Silvab084af42012-12-07 10:36:55 +00003412Inline Assembler Expressions
3413----------------------------
3414
3415LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003416Inline Assembly <moduleasm>`) through the use of a special value. This value
3417represents the inline assembler as a template string (containing the
3418instructions to emit), a list of operand constraints (stored as a string), a
3419flag that indicates whether or not the inline asm expression has side effects,
3420and a flag indicating whether the function containing the asm needs to align its
3421stack conservatively.
3422
3423The template string supports argument substitution of the operands using "``$``"
3424followed by a number, to indicate substitution of the given register/memory
3425location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3426be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3427operand (See :ref:`inline-asm-modifiers`).
3428
3429A literal "``$``" may be included by using "``$$``" in the template. To include
3430other special characters into the output, the usual "``\XX``" escapes may be
3431used, just as in other strings. Note that after template substitution, the
3432resulting assembly string is parsed by LLVM's integrated assembler unless it is
3433disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3434syntax known to LLVM.
3435
Reid Kleckner71cb1642017-02-06 18:08:45 +00003436LLVM also supports a few more substitions useful for writing inline assembly:
3437
3438- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3439 This substitution is useful when declaring a local label. Many standard
3440 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3441 Adding a blob-unique identifier ensures that the two labels will not conflict
3442 during assembly. This is used to implement `GCC's %= special format
3443 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3444- ``${:comment}``: Expands to the comment character of the current target's
3445 assembly dialect. This is usually ``#``, but many targets use other strings,
3446 such as ``;``, ``//``, or ``!``.
3447- ``${:private}``: Expands to the assembler private label prefix. Labels with
3448 this prefix will not appear in the symbol table of the assembled object.
3449 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3450 relatively popular.
3451
James Y Knightbc832ed2015-07-08 18:08:36 +00003452LLVM's support for inline asm is modeled closely on the requirements of Clang's
3453GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3454modifier codes listed here are similar or identical to those in GCC's inline asm
3455support. However, to be clear, the syntax of the template and constraint strings
3456described here is *not* the same as the syntax accepted by GCC and Clang, and,
3457while most constraint letters are passed through as-is by Clang, some get
3458translated to other codes when converting from the C source to the LLVM
3459assembly.
3460
3461An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003462
3463.. code-block:: llvm
3464
3465 i32 (i32) asm "bswap $0", "=r,r"
3466
3467Inline assembler expressions may **only** be used as the callee operand
3468of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3469Thus, typically we have:
3470
3471.. code-block:: llvm
3472
3473 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3474
3475Inline asms with side effects not visible in the constraint list must be
3476marked as having side effects. This is done through the use of the
3477'``sideeffect``' keyword, like so:
3478
3479.. code-block:: llvm
3480
3481 call void asm sideeffect "eieio", ""()
3482
3483In some cases inline asms will contain code that will not work unless
3484the stack is aligned in some way, such as calls or SSE instructions on
3485x86, yet will not contain code that does that alignment within the asm.
3486The compiler should make conservative assumptions about what the asm
3487might contain and should generate its usual stack alignment code in the
3488prologue if the '``alignstack``' keyword is present:
3489
3490.. code-block:: llvm
3491
3492 call void asm alignstack "eieio", ""()
3493
3494Inline asms also support using non-standard assembly dialects. The
3495assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3496the inline asm is using the Intel dialect. Currently, ATT and Intel are
3497the only supported dialects. An example is:
3498
3499.. code-block:: llvm
3500
3501 call void asm inteldialect "eieio", ""()
3502
3503If multiple keywords appear the '``sideeffect``' keyword must come
3504first, the '``alignstack``' keyword second and the '``inteldialect``'
3505keyword last.
3506
James Y Knightbc832ed2015-07-08 18:08:36 +00003507Inline Asm Constraint String
3508^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3509
3510The constraint list is a comma-separated string, each element containing one or
3511more constraint codes.
3512
3513For each element in the constraint list an appropriate register or memory
3514operand will be chosen, and it will be made available to assembly template
3515string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3516second, etc.
3517
3518There are three different types of constraints, which are distinguished by a
3519prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3520constraints must always be given in that order: outputs first, then inputs, then
3521clobbers. They cannot be intermingled.
3522
3523There are also three different categories of constraint codes:
3524
3525- Register constraint. This is either a register class, or a fixed physical
3526 register. This kind of constraint will allocate a register, and if necessary,
3527 bitcast the argument or result to the appropriate type.
3528- Memory constraint. This kind of constraint is for use with an instruction
3529 taking a memory operand. Different constraints allow for different addressing
3530 modes used by the target.
3531- Immediate value constraint. This kind of constraint is for an integer or other
3532 immediate value which can be rendered directly into an instruction. The
3533 various target-specific constraints allow the selection of a value in the
3534 proper range for the instruction you wish to use it with.
3535
3536Output constraints
3537""""""""""""""""""
3538
3539Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3540indicates that the assembly will write to this operand, and the operand will
3541then be made available as a return value of the ``asm`` expression. Output
3542constraints do not consume an argument from the call instruction. (Except, see
3543below about indirect outputs).
3544
3545Normally, it is expected that no output locations are written to by the assembly
3546expression until *all* of the inputs have been read. As such, LLVM may assign
3547the same register to an output and an input. If this is not safe (e.g. if the
3548assembly contains two instructions, where the first writes to one output, and
3549the second reads an input and writes to a second output), then the "``&``"
3550modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003551"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003552will not use the same register for any inputs (other than an input tied to this
3553output).
3554
3555Input constraints
3556"""""""""""""""""
3557
3558Input constraints do not have a prefix -- just the constraint codes. Each input
3559constraint will consume one argument from the call instruction. It is not
3560permitted for the asm to write to any input register or memory location (unless
3561that input is tied to an output). Note also that multiple inputs may all be
3562assigned to the same register, if LLVM can determine that they necessarily all
3563contain the same value.
3564
3565Instead of providing a Constraint Code, input constraints may also "tie"
3566themselves to an output constraint, by providing an integer as the constraint
3567string. Tied inputs still consume an argument from the call instruction, and
3568take up a position in the asm template numbering as is usual -- they will simply
3569be constrained to always use the same register as the output they've been tied
3570to. For example, a constraint string of "``=r,0``" says to assign a register for
3571output, and use that register as an input as well (it being the 0'th
3572constraint).
3573
3574It is permitted to tie an input to an "early-clobber" output. In that case, no
3575*other* input may share the same register as the input tied to the early-clobber
3576(even when the other input has the same value).
3577
3578You may only tie an input to an output which has a register constraint, not a
3579memory constraint. Only a single input may be tied to an output.
3580
3581There is also an "interesting" feature which deserves a bit of explanation: if a
3582register class constraint allocates a register which is too small for the value
3583type operand provided as input, the input value will be split into multiple
3584registers, and all of them passed to the inline asm.
3585
3586However, this feature is often not as useful as you might think.
3587
3588Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3589architectures that have instructions which operate on multiple consecutive
3590instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3591SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3592hardware then loads into both the named register, and the next register. This
3593feature of inline asm would not be useful to support that.)
3594
3595A few of the targets provide a template string modifier allowing explicit access
3596to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3597``D``). On such an architecture, you can actually access the second allocated
3598register (yet, still, not any subsequent ones). But, in that case, you're still
3599probably better off simply splitting the value into two separate operands, for
3600clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3601despite existing only for use with this feature, is not really a good idea to
3602use)
3603
3604Indirect inputs and outputs
3605"""""""""""""""""""""""""""
3606
3607Indirect output or input constraints can be specified by the "``*``" modifier
3608(which goes after the "``=``" in case of an output). This indicates that the asm
3609will write to or read from the contents of an *address* provided as an input
3610argument. (Note that in this way, indirect outputs act more like an *input* than
3611an output: just like an input, they consume an argument of the call expression,
3612rather than producing a return value. An indirect output constraint is an
3613"output" only in that the asm is expected to write to the contents of the input
3614memory location, instead of just read from it).
3615
3616This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3617address of a variable as a value.
3618
3619It is also possible to use an indirect *register* constraint, but only on output
3620(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3621value normally, and then, separately emit a store to the address provided as
3622input, after the provided inline asm. (It's not clear what value this
3623functionality provides, compared to writing the store explicitly after the asm
3624statement, and it can only produce worse code, since it bypasses many
3625optimization passes. I would recommend not using it.)
3626
3627
3628Clobber constraints
3629"""""""""""""""""""
3630
3631A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3632consume an input operand, nor generate an output. Clobbers cannot use any of the
3633general constraint code letters -- they may use only explicit register
3634constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3635"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3636memory locations -- not only the memory pointed to by a declared indirect
3637output.
3638
Peter Zotov00257232016-08-30 10:48:31 +00003639Note that clobbering named registers that are also present in output
3640constraints is not legal.
3641
James Y Knightbc832ed2015-07-08 18:08:36 +00003642
3643Constraint Codes
3644""""""""""""""""
3645After a potential prefix comes constraint code, or codes.
3646
3647A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3648followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3649(e.g. "``{eax}``").
3650
3651The one and two letter constraint codes are typically chosen to be the same as
3652GCC's constraint codes.
3653
3654A single constraint may include one or more than constraint code in it, leaving
3655it up to LLVM to choose which one to use. This is included mainly for
3656compatibility with the translation of GCC inline asm coming from clang.
3657
3658There are two ways to specify alternatives, and either or both may be used in an
3659inline asm constraint list:
3660
36611) Append the codes to each other, making a constraint code set. E.g. "``im``"
3662 or "``{eax}m``". This means "choose any of the options in the set". The
3663 choice of constraint is made independently for each constraint in the
3664 constraint list.
3665
36662) Use "``|``" between constraint code sets, creating alternatives. Every
3667 constraint in the constraint list must have the same number of alternative
3668 sets. With this syntax, the same alternative in *all* of the items in the
3669 constraint list will be chosen together.
3670
3671Putting those together, you might have a two operand constraint string like
3672``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3673operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3674may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3675
3676However, the use of either of the alternatives features is *NOT* recommended, as
3677LLVM is not able to make an intelligent choice about which one to use. (At the
3678point it currently needs to choose, not enough information is available to do so
3679in a smart way.) Thus, it simply tries to make a choice that's most likely to
3680compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3681always choose to use memory, not registers). And, if given multiple registers,
3682or multiple register classes, it will simply choose the first one. (In fact, it
3683doesn't currently even ensure explicitly specified physical registers are
3684unique, so specifying multiple physical registers as alternatives, like
3685``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3686intended.)
3687
3688Supported Constraint Code List
3689""""""""""""""""""""""""""""""
3690
3691The constraint codes are, in general, expected to behave the same way they do in
3692GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3693inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3694and GCC likely indicates a bug in LLVM.
3695
3696Some constraint codes are typically supported by all targets:
3697
3698- ``r``: A register in the target's general purpose register class.
3699- ``m``: A memory address operand. It is target-specific what addressing modes
3700 are supported, typical examples are register, or register + register offset,
3701 or register + immediate offset (of some target-specific size).
3702- ``i``: An integer constant (of target-specific width). Allows either a simple
3703 immediate, or a relocatable value.
3704- ``n``: An integer constant -- *not* including relocatable values.
3705- ``s``: An integer constant, but allowing *only* relocatable values.
3706- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3707 useful to pass a label for an asm branch or call.
3708
3709 .. FIXME: but that surely isn't actually okay to jump out of an asm
3710 block without telling llvm about the control transfer???)
3711
3712- ``{register-name}``: Requires exactly the named physical register.
3713
3714Other constraints are target-specific:
3715
3716AArch64:
3717
3718- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3719- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3720 i.e. 0 to 4095 with optional shift by 12.
3721- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3722 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3723- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3724 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3725- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3726 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3727- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3728 32-bit register. This is a superset of ``K``: in addition to the bitmask
3729 immediate, also allows immediate integers which can be loaded with a single
3730 ``MOVZ`` or ``MOVL`` instruction.
3731- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3732 64-bit register. This is a superset of ``L``.
3733- ``Q``: Memory address operand must be in a single register (no
3734 offsets). (However, LLVM currently does this for the ``m`` constraint as
3735 well.)
3736- ``r``: A 32 or 64-bit integer register (W* or X*).
3737- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3738- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3739
3740AMDGPU:
3741
3742- ``r``: A 32 or 64-bit integer register.
3743- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3744- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3745
3746
3747All ARM modes:
3748
3749- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3750 operand. Treated the same as operand ``m``, at the moment.
3751
3752ARM and ARM's Thumb2 mode:
3753
3754- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3755- ``I``: An immediate integer valid for a data-processing instruction.
3756- ``J``: An immediate integer between -4095 and 4095.
3757- ``K``: An immediate integer whose bitwise inverse is valid for a
3758 data-processing instruction. (Can be used with template modifier "``B``" to
3759 print the inverted value).
3760- ``L``: An immediate integer whose negation is valid for a data-processing
3761 instruction. (Can be used with template modifier "``n``" to print the negated
3762 value).
3763- ``M``: A power of two or a integer between 0 and 32.
3764- ``N``: Invalid immediate constraint.
3765- ``O``: Invalid immediate constraint.
3766- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3767- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3768 as ``r``.
3769- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3770 invalid.
3771- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3772 ``d0-d31``, or ``q0-q15``.
3773- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3774 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003775- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3776 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003777
3778ARM's Thumb1 mode:
3779
3780- ``I``: An immediate integer between 0 and 255.
3781- ``J``: An immediate integer between -255 and -1.
3782- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3783 some amount.
3784- ``L``: An immediate integer between -7 and 7.
3785- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3786- ``N``: An immediate integer between 0 and 31.
3787- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3788- ``r``: A low 32-bit GPR register (``r0-r7``).
3789- ``l``: A low 32-bit GPR register (``r0-r7``).
3790- ``h``: A high GPR register (``r0-r7``).
3791- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3792 ``d0-d31``, or ``q0-q15``.
3793- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3794 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003795- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3796 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003797
3798
3799Hexagon:
3800
3801- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3802 at the moment.
3803- ``r``: A 32 or 64-bit register.
3804
3805MSP430:
3806
3807- ``r``: An 8 or 16-bit register.
3808
3809MIPS:
3810
3811- ``I``: An immediate signed 16-bit integer.
3812- ``J``: An immediate integer zero.
3813- ``K``: An immediate unsigned 16-bit integer.
3814- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3815- ``N``: An immediate integer between -65535 and -1.
3816- ``O``: An immediate signed 15-bit integer.
3817- ``P``: An immediate integer between 1 and 65535.
3818- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3819 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3820- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3821 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3822 ``m``.
3823- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3824 ``sc`` instruction on the given subtarget (details vary).
3825- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3826- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003827 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3828 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003829- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3830 ``25``).
3831- ``l``: The ``lo`` register, 32 or 64-bit.
3832- ``x``: Invalid.
3833
3834NVPTX:
3835
3836- ``b``: A 1-bit integer register.
3837- ``c`` or ``h``: A 16-bit integer register.
3838- ``r``: A 32-bit integer register.
3839- ``l`` or ``N``: A 64-bit integer register.
3840- ``f``: A 32-bit float register.
3841- ``d``: A 64-bit float register.
3842
3843
3844PowerPC:
3845
3846- ``I``: An immediate signed 16-bit integer.
3847- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3848- ``K``: An immediate unsigned 16-bit integer.
3849- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3850- ``M``: An immediate integer greater than 31.
3851- ``N``: An immediate integer that is an exact power of 2.
3852- ``O``: The immediate integer constant 0.
3853- ``P``: An immediate integer constant whose negation is a signed 16-bit
3854 constant.
3855- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3856 treated the same as ``m``.
3857- ``r``: A 32 or 64-bit integer register.
3858- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3859 ``R1-R31``).
3860- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3861 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3862- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3863 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3864 altivec vector register (``V0-V31``).
3865
3866 .. FIXME: is this a bug that v accepts QPX registers? I think this
3867 is supposed to only use the altivec vector registers?
3868
3869- ``y``: Condition register (``CR0-CR7``).
3870- ``wc``: An individual CR bit in a CR register.
3871- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3872 register set (overlapping both the floating-point and vector register files).
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003873- ``ws``: A 32 or 64-bit floating-point register, from the full VSX register
James Y Knightbc832ed2015-07-08 18:08:36 +00003874 set.
3875
3876Sparc:
3877
3878- ``I``: An immediate 13-bit signed integer.
3879- ``r``: A 32-bit integer register.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003880- ``f``: Any floating-point register on SparcV8, or a floating-point
James Y Knightd4e1b002017-05-12 15:59:10 +00003881 register in the "low" half of the registers on SparcV9.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003882- ``e``: Any floating-point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003883
3884SystemZ:
3885
3886- ``I``: An immediate unsigned 8-bit integer.
3887- ``J``: An immediate unsigned 12-bit integer.
3888- ``K``: An immediate signed 16-bit integer.
3889- ``L``: An immediate signed 20-bit integer.
3890- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003891- ``Q``: A memory address operand with a base address and a 12-bit immediate
3892 unsigned displacement.
3893- ``R``: A memory address operand with a base address, a 12-bit immediate
3894 unsigned displacement, and an index register.
3895- ``S``: A memory address operand with a base address and a 20-bit immediate
3896 signed displacement.
3897- ``T``: A memory address operand with a base address, a 20-bit immediate
3898 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003899- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3900- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3901 address context evaluates as zero).
3902- ``h``: A 32-bit value in the high part of a 64bit data register
3903 (LLVM-specific)
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003904- ``f``: A 32, 64, or 128-bit floating-point register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003905
3906X86:
3907
3908- ``I``: An immediate integer between 0 and 31.
3909- ``J``: An immediate integer between 0 and 64.
3910- ``K``: An immediate signed 8-bit integer.
3911- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3912 0xffffffff.
3913- ``M``: An immediate integer between 0 and 3.
3914- ``N``: An immediate unsigned 8-bit integer.
3915- ``O``: An immediate integer between 0 and 127.
3916- ``e``: An immediate 32-bit signed integer.
3917- ``Z``: An immediate 32-bit unsigned integer.
3918- ``o``, ``v``: Treated the same as ``m``, at the moment.
3919- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3920 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3921 registers, and on X86-64, it is all of the integer registers.
3922- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3923 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3924- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3925- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3926 existed since i386, and can be accessed without the REX prefix.
3927- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3928- ``y``: A 64-bit MMX register, if MMX is enabled.
3929- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3930 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3931 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3932 512-bit vector operand in an AVX512 register, Otherwise, an error.
3933- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3934- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3935 32-bit mode, a 64-bit integer operand will get split into two registers). It
3936 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3937 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3938 you're better off splitting it yourself, before passing it to the asm
3939 statement.
3940
3941XCore:
3942
3943- ``r``: A 32-bit integer register.
3944
3945
3946.. _inline-asm-modifiers:
3947
3948Asm template argument modifiers
3949^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3950
3951In the asm template string, modifiers can be used on the operand reference, like
3952"``${0:n}``".
3953
3954The modifiers are, in general, expected to behave the same way they do in
3955GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3956inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3957and GCC likely indicates a bug in LLVM.
3958
3959Target-independent:
3960
Sean Silvaa1190322015-08-06 22:56:48 +00003961- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003962 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3963- ``n``: Negate and print immediate integer constant unadorned, without the
3964 target-specific immediate punctuation (e.g. no ``$`` prefix).
3965- ``l``: Print as an unadorned label, without the target-specific label
3966 punctuation (e.g. no ``$`` prefix).
3967
3968AArch64:
3969
3970- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3971 instead of ``x30``, print ``w30``.
3972- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3973- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3974 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3975 ``v*``.
3976
3977AMDGPU:
3978
3979- ``r``: No effect.
3980
3981ARM:
3982
3983- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3984 register).
3985- ``P``: No effect.
3986- ``q``: No effect.
3987- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3988 as ``d4[1]`` instead of ``s9``)
3989- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3990 prefix.
3991- ``L``: Print the low 16-bits of an immediate integer constant.
3992- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3993 register operands subsequent to the specified one (!), so use carefully.
3994- ``Q``: Print the low-order register of a register-pair, or the low-order
3995 register of a two-register operand.
3996- ``R``: Print the high-order register of a register-pair, or the high-order
3997 register of a two-register operand.
3998- ``H``: Print the second register of a register-pair. (On a big-endian system,
3999 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
4000 to ``R``.)
4001
4002 .. FIXME: H doesn't currently support printing the second register
4003 of a two-register operand.
4004
4005- ``e``: Print the low doubleword register of a NEON quad register.
4006- ``f``: Print the high doubleword register of a NEON quad register.
4007- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
4008 adornment.
4009
4010Hexagon:
4011
4012- ``L``: Print the second register of a two-register operand. Requires that it
4013 has been allocated consecutively to the first.
4014
4015 .. FIXME: why is it restricted to consecutive ones? And there's
4016 nothing that ensures that happens, is there?
4017
4018- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4019 nothing. Used to print 'addi' vs 'add' instructions.
4020
4021MSP430:
4022
4023No additional modifiers.
4024
4025MIPS:
4026
4027- ``X``: Print an immediate integer as hexadecimal
4028- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
4029- ``d``: Print an immediate integer as decimal.
4030- ``m``: Subtract one and print an immediate integer as decimal.
4031- ``z``: Print $0 if an immediate zero, otherwise print normally.
4032- ``L``: Print the low-order register of a two-register operand, or prints the
4033 address of the low-order word of a double-word memory operand.
4034
4035 .. FIXME: L seems to be missing memory operand support.
4036
4037- ``M``: Print the high-order register of a two-register operand, or prints the
4038 address of the high-order word of a double-word memory operand.
4039
4040 .. FIXME: M seems to be missing memory operand support.
4041
4042- ``D``: Print the second register of a two-register operand, or prints the
4043 second word of a double-word memory operand. (On a big-endian system, ``D`` is
4044 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
4045 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00004046- ``w``: No effect. Provided for compatibility with GCC which requires this
4047 modifier in order to print MSA registers (``W0-W31``) with the ``f``
4048 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00004049
4050NVPTX:
4051
4052- ``r``: No effect.
4053
4054PowerPC:
4055
4056- ``L``: Print the second register of a two-register operand. Requires that it
4057 has been allocated consecutively to the first.
4058
4059 .. FIXME: why is it restricted to consecutive ones? And there's
4060 nothing that ensures that happens, is there?
4061
4062- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4063 nothing. Used to print 'addi' vs 'add' instructions.
4064- ``y``: For a memory operand, prints formatter for a two-register X-form
4065 instruction. (Currently always prints ``r0,OPERAND``).
4066- ``U``: Prints 'u' if the memory operand is an update form, and nothing
4067 otherwise. (NOTE: LLVM does not support update form, so this will currently
4068 always print nothing)
4069- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
4070 not support indexed form, so this will currently always print nothing)
4071
4072Sparc:
4073
4074- ``r``: No effect.
4075
4076SystemZ:
4077
4078SystemZ implements only ``n``, and does *not* support any of the other
4079target-independent modifiers.
4080
4081X86:
4082
4083- ``c``: Print an unadorned integer or symbol name. (The latter is
4084 target-specific behavior for this typically target-independent modifier).
4085- ``A``: Print a register name with a '``*``' before it.
4086- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
4087 operand.
4088- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
4089 memory operand.
4090- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
4091 operand.
4092- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
4093 operand.
4094- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
4095 available, otherwise the 32-bit register name; do nothing on a memory operand.
4096- ``n``: Negate and print an unadorned integer, or, for operands other than an
4097 immediate integer (e.g. a relocatable symbol expression), print a '-' before
4098 the operand. (The behavior for relocatable symbol expressions is a
4099 target-specific behavior for this typically target-independent modifier)
4100- ``H``: Print a memory reference with additional offset +8.
4101- ``P``: Print a memory reference or operand for use as the argument of a call
4102 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
4103
4104XCore:
4105
4106No additional modifiers.
4107
4108
Sean Silvab084af42012-12-07 10:36:55 +00004109Inline Asm Metadata
4110^^^^^^^^^^^^^^^^^^^
4111
4112The call instructions that wrap inline asm nodes may have a
4113"``!srcloc``" MDNode attached to it that contains a list of constant
4114integers. If present, the code generator will use the integer as the
4115location cookie value when report errors through the ``LLVMContext``
4116error reporting mechanisms. This allows a front-end to correlate backend
4117errors that occur with inline asm back to the source code that produced
4118it. For example:
4119
4120.. code-block:: llvm
4121
4122 call void asm sideeffect "something bad", ""(), !srcloc !42
4123 ...
4124 !42 = !{ i32 1234567 }
4125
4126It is up to the front-end to make sense of the magic numbers it places
4127in the IR. If the MDNode contains multiple constants, the code generator
4128will use the one that corresponds to the line of the asm that the error
4129occurs on.
4130
4131.. _metadata:
4132
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004133Metadata
4134========
Sean Silvab084af42012-12-07 10:36:55 +00004135
4136LLVM IR allows metadata to be attached to instructions in the program
4137that can convey extra information about the code to the optimizers and
4138code generator. One example application of metadata is source-level
4139debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004140
Sean Silvaa1190322015-08-06 22:56:48 +00004141Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004142``call`` instruction, it uses the ``metadata`` type.
4143
4144All metadata are identified in syntax by a exclamation point ('``!``').
4145
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004146.. _metadata-string:
4147
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004148Metadata Nodes and Metadata Strings
4149-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00004150
4151A metadata string is a string surrounded by double quotes. It can
4152contain any character by escaping non-printable characters with
4153"``\xx``" where "``xx``" is the two digit hex code. For example:
4154"``!"test\00"``".
4155
4156Metadata nodes are represented with notation similar to structure
4157constants (a comma separated list of elements, surrounded by braces and
4158preceded by an exclamation point). Metadata nodes can have any values as
4159their operand. For example:
4160
4161.. code-block:: llvm
4162
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004163 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00004164
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004165Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4166
Renato Golin124f2592016-07-20 12:16:38 +00004167.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004168
4169 !0 = distinct !{!"test\00", i32 10}
4170
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004171``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004172content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004173when metadata operands change.
4174
Sean Silvab084af42012-12-07 10:36:55 +00004175A :ref:`named metadata <namedmetadatastructure>` is a collection of
4176metadata nodes, which can be looked up in the module symbol table. For
4177example:
4178
4179.. code-block:: llvm
4180
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004181 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004182
Adrian Prantl1b842da2017-07-28 20:44:29 +00004183Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4184intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004185
4186.. code-block:: llvm
4187
Adrian Prantlabe04752017-07-28 20:21:02 +00004188 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004189
Peter Collingbourne50108682015-11-06 02:41:02 +00004190Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4191to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004192
4193.. code-block:: llvm
4194
4195 %indvar.next = add i64 %indvar, 1, !dbg !21
4196
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004197Metadata can also be attached to a function or a global variable. Here metadata
4198``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4199and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004200
4201.. code-block:: llvm
4202
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004203 declare !dbg !22 void @f1()
4204 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004205 ret void
4206 }
4207
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004208 @g1 = global i32 0, !dbg !22
4209 @g2 = external global i32, !dbg !22
4210
4211A transformation is required to drop any metadata attachment that it does not
4212know or know it can't preserve. Currently there is an exception for metadata
4213attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4214unconditionally dropped unless the global is itself deleted.
4215
4216Metadata attached to a module using named metadata may not be dropped, with
4217the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4218
Sean Silvab084af42012-12-07 10:36:55 +00004219More information about specific metadata nodes recognized by the
4220optimizers and code generator is found below.
4221
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004222.. _specialized-metadata:
4223
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004224Specialized Metadata Nodes
4225^^^^^^^^^^^^^^^^^^^^^^^^^^
4226
4227Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004228to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004229order.
4230
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004231These aren't inherently debug info centric, but currently all the specialized
4232metadata nodes are related to debug info.
4233
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004234.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004235
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004236DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004237"""""""""""""
4238
Sean Silvaa1190322015-08-06 22:56:48 +00004239``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004240``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4241containing the debug info to be emitted along with the compile unit, regardless
4242of code optimizations (some nodes are only emitted if there are references to
4243them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4244indicating whether or not line-table discriminators are updated to provide
4245more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004246
Renato Golin124f2592016-07-20 12:16:38 +00004247.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004248
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004249 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004250 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004251 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004252 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4253 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004254
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004255Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004256specific compilation unit. File descriptors are defined using this scope. These
4257descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4258track of global variables, type information, and imported entities (declarations
4259and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004260
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004261.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004262
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004263DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004264""""""
4265
Sean Silvaa1190322015-08-06 22:56:48 +00004266``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004267
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004268.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004269
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004270 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4271 checksumkind: CSK_MD5,
4272 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004273
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004274Files are sometimes used in ``scope:`` fields, and are the only valid target
4275for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004276Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004277
Michael Kuperstein605308a2015-05-14 10:58:59 +00004278.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004279
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004280DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004281"""""""""""
4282
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004283``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004284``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004285
Renato Golin124f2592016-07-20 12:16:38 +00004286.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004287
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004288 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004289 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004290 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004291
Sean Silvaa1190322015-08-06 22:56:48 +00004292The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004293following:
4294
Renato Golin124f2592016-07-20 12:16:38 +00004295.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004296
4297 DW_ATE_address = 1
4298 DW_ATE_boolean = 2
4299 DW_ATE_float = 4
4300 DW_ATE_signed = 5
4301 DW_ATE_signed_char = 6
4302 DW_ATE_unsigned = 7
4303 DW_ATE_unsigned_char = 8
4304
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004305.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004306
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004307DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004308""""""""""""""""
4309
Sean Silvaa1190322015-08-06 22:56:48 +00004310``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004311refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004312types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004313represents a function with no return value (such as ``void foo() {}`` in C++).
4314
Renato Golin124f2592016-07-20 12:16:38 +00004315.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004316
4317 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4318 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004319 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004320
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004321.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004322
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004323DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004324"""""""""""""
4325
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004326``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004327qualified types.
4328
Renato Golin124f2592016-07-20 12:16:38 +00004329.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004330
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004331 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004332 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004333 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004334 align: 32)
4335
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004336The following ``tag:`` values are valid:
4337
Renato Golin124f2592016-07-20 12:16:38 +00004338.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004339
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004340 DW_TAG_member = 13
4341 DW_TAG_pointer_type = 15
4342 DW_TAG_reference_type = 16
4343 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004344 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004345 DW_TAG_ptr_to_member_type = 31
4346 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004347 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004348 DW_TAG_volatile_type = 53
4349 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004350 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004351
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004352.. _DIDerivedTypeMember:
4353
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004354``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004355<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004356``offset:`` is the member's bit offset. If the composite type has an ODR
4357``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4358uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004359
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004360``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4361field of :ref:`composite types <DICompositeType>` to describe parents and
4362friends.
4363
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004364``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4365
4366``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004367``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4368are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004369
4370Note that the ``void *`` type is expressed as a type derived from NULL.
4371
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004372.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004373
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004374DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004375"""""""""""""""
4376
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004377``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004378structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004379
4380If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004381identifier used for type merging between modules. When specified,
4382:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4383derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4384``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004385
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004386For a given ``identifier:``, there should only be a single composite type that
4387does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4388together will unique such definitions at parse time via the ``identifier:``
4389field, even if the nodes are ``distinct``.
4390
Renato Golin124f2592016-07-20 12:16:38 +00004391.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004392
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004393 !0 = !DIEnumerator(name: "SixKind", value: 7)
4394 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4395 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4396 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004397 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4398 elements: !{!0, !1, !2})
4399
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004400The following ``tag:`` values are valid:
4401
Renato Golin124f2592016-07-20 12:16:38 +00004402.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004403
4404 DW_TAG_array_type = 1
4405 DW_TAG_class_type = 2
4406 DW_TAG_enumeration_type = 4
4407 DW_TAG_structure_type = 19
4408 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004409
4410For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004411descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004412level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004413array type is a native packed vector.
4414
4415For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004416descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004417value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004418``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004419
4420For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4421``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004422<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4423``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4424``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004425
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004426.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004427
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004428DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004429""""""""""
4430
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004431``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sander de Smalen1cb94312018-01-24 10:30:23 +00004432:ref:`DICompositeType`.
4433
4434- ``count: -1`` indicates an empty array.
4435- ``count: !9`` describes the count with a :ref:`DILocalVariable`.
4436- ``count: !11`` describes the count with a :ref:`DIGlobalVariable`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004437
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004438.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004439
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004440 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4441 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4442 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004443
Sander de Smalenfdf40912018-01-24 09:56:07 +00004444 ; Scopes used in rest of example
4445 !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
Chandler Carruth24dd2112018-08-06 02:30:01 +00004446 !7 = distinct !DICompileUnit(language: DW_LANG_C99, file: !6)
4447 !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004448
4449 ; Use of local variable as count value
4450 !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
4451 !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
Chandler Carruth24dd2112018-08-06 02:30:01 +00004452 !11 = !DISubrange(count: !10, lowerBound: 0)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004453
4454 ; Use of global variable as count value
4455 !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
Chandler Carruth24dd2112018-08-06 02:30:01 +00004456 !13 = !DISubrange(count: !12, lowerBound: 0)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004457
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004458.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004459
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004460DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004461""""""""""""
4462
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004463``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4464variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004465
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004466.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004467
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004468 !0 = !DIEnumerator(name: "SixKind", value: 7)
4469 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4470 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004471
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004472DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004473"""""""""""""""""""""""
4474
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004475``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004476language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004477:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004478
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004479.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004480
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004481 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004482
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004483DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004484""""""""""""""""""""""""
4485
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004486``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004487language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004488but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004489``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004490:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004491
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004492.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004493
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004494 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004495
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004496DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004497"""""""""""
4498
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004499``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004500
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004501.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004502
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004503 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004504
Sander de Smalen1cb94312018-01-24 10:30:23 +00004505.. _DIGlobalVariable:
4506
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004507DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004508""""""""""""""""
4509
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004510``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004511
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004512.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004513
Adrian Prantl6f0ec692019-01-22 16:40:18 +00004514 @foo = global i32, !dbg !0
4515 !0 = !DIGlobalVariableExpression(var: !1, expr: !DIExpression())
4516 !1 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !2,
4517 file: !3, line: 7, type: !4, isLocal: true,
4518 isDefinition: false, declaration: !5)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004519
Adrian Prantl6f0ec692019-01-22 16:40:18 +00004520
4521DIGlobalVariableExpression
4522""""""""""""""""""""""""""
4523
4524``DIGlobalVariableExpression`` nodes tie a :ref:`DIGlobalVariable` together
4525with a :ref:`DIExpression`.
4526
4527.. code-block:: text
4528
4529 @lower = global i32, !dbg !0
4530 @upper = global i32, !dbg !1
4531 !0 = !DIGlobalVariableExpression(
4532 var: !2,
4533 expr: !DIExpression(DW_OP_LLVM_fragment, 0, 32)
4534 )
4535 !1 = !DIGlobalVariableExpression(
4536 var: !2,
4537 expr: !DIExpression(DW_OP_LLVM_fragment, 32, 32)
4538 )
4539 !2 = !DIGlobalVariable(name: "split64", linkageName: "split64", scope: !3,
4540 file: !4, line: 8, type: !5, declaration: !6)
4541
4542All global variable expressions should be referenced by the `globals:` field of
4543a :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004544
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004545.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004546
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004547DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004548""""""""""""
4549
Peter Collingbourne50108682015-11-06 02:41:02 +00004550``DISubprogram`` nodes represent functions from the source language. A
4551``DISubprogram`` may be attached to a function definition using ``!dbg``
4552metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4553that must be retained, even if their IR counterparts are optimized out of
4554the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004555
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004556.. _DISubprogramDeclaration:
4557
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004558When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004559tree as opposed to a definition of a function. If the scope is a composite
4560type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4561then the subprogram declaration is uniqued based only on its ``linkageName:``
4562and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004563
Renato Golin124f2592016-07-20 12:16:38 +00004564.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004565
Peter Collingbourne50108682015-11-06 02:41:02 +00004566 define void @_Z3foov() !dbg !0 {
4567 ...
4568 }
4569
4570 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4571 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004572 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004573 containingType: !4,
4574 virtuality: DW_VIRTUALITY_pure_virtual,
4575 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004576 isOptimized: true, unit: !5, templateParams: !6,
4577 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004578
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004579.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004580
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004581DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004582""""""""""""""
4583
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004584``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004585<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004586two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004587fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004588
Renato Golin124f2592016-07-20 12:16:38 +00004589.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004590
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004591 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004592
4593Usually lexical blocks are ``distinct`` to prevent node merging based on
4594operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004595
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004596.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004597
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004598DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004599""""""""""""""""""
4600
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004601``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004602:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004603indicate textual inclusion, or the ``discriminator:`` field can be used to
4604discriminate between control flow within a single block in the source language.
4605
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004606.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004607
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004608 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4609 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4610 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004611
Michael Kuperstein605308a2015-05-14 10:58:59 +00004612.. _DILocation:
4613
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004614DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004615""""""""""
4616
Sean Silvaa1190322015-08-06 22:56:48 +00004617``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004618mandatory, and points at an :ref:`DILexicalBlockFile`, an
4619:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004620
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004621.. code-block:: text
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004622
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004623 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004624
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004625.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004626
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004627DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004628"""""""""""""""
4629
Sean Silvaa1190322015-08-06 22:56:48 +00004630``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004631the ``arg:`` field is set to non-zero, then this variable is a subprogram
4632parameter, and it will be included in the ``variables:`` field of its
4633:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004634
Renato Golin124f2592016-07-20 12:16:38 +00004635.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004636
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004637 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4638 type: !3, flags: DIFlagArtificial)
4639 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4640 type: !3)
4641 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004642
James Y Knight94b97092019-02-01 17:06:41 +00004643.. _DIExpression:
4644
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004645DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004646""""""""""""
4647
Adrian Prantlb44c7762017-03-22 18:01:01 +00004648``DIExpression`` nodes represent expressions that are inspired by the DWARF
4649expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4650(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
Vedant Kumar8a05b012018-07-28 00:33:47 +00004651referenced LLVM variable relates to the source language variable. Debug
4652intrinsics are interpreted left-to-right: start by pushing the value/address
4653operand of the intrinsic onto a stack, then repeatedly push and evaluate
4654opcodes from the DIExpression until the final variable description is produced.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004655
Vedant Kumar8a05b012018-07-28 00:33:47 +00004656The current supported opcode vocabulary is limited:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004657
Adrian Prantl6825fb62017-04-18 01:21:53 +00004658- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004659- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4660 them together and appends the result to the expression stack.
4661- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4662 the last entry from the second last entry and appends the result to the
4663 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004664- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004665- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4666 here, respectively) of the variable fragment from the working expression. Note
Hiroshi Inoue760c0c92018-01-16 13:19:48 +00004667 that contrary to DW_OP_bit_piece, the offset is describing the location
Adrian Prantlb44c7762017-03-22 18:01:01 +00004668 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004669- ``DW_OP_swap`` swaps top two stack entries.
4670- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4671 of the stack is treated as an address. The second stack entry is treated as an
4672 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004673- ``DW_OP_stack_value`` marks a constant value.
4674
Adrian Prantl6825fb62017-04-18 01:21:53 +00004675DWARF specifies three kinds of simple location descriptions: Register, memory,
Vedant Kumar8a05b012018-07-28 00:33:47 +00004676and implicit location descriptions. Note that a location description is
4677defined over certain ranges of a program, i.e the location of a variable may
4678change over the course of the program. Register and memory location
4679descriptions describe the *concrete location* of a source variable (in the
4680sense that a debugger might modify its value), whereas *implicit locations*
4681describe merely the actual *value* of a source variable which might not exist
4682in registers or in memory (see ``DW_OP_stack_value``).
4683
4684A ``llvm.dbg.addr`` or ``llvm.dbg.declare`` intrinsic describes an indirect
4685value (the address) of a source variable. The first operand of the intrinsic
4686must be an address of some kind. A DIExpression attached to the intrinsic
4687refines this address to produce a concrete location for the source variable.
4688
4689A ``llvm.dbg.value`` intrinsic describes the direct value of a source variable.
4690The first operand of the intrinsic may be a direct or indirect value. A
4691DIExpresion attached to the intrinsic refines the first operand to produce a
4692direct value. For example, if the first operand is an indirect value, it may be
4693necessary to insert ``DW_OP_deref`` into the DIExpresion in order to produce a
4694valid debug intrinsic.
4695
4696.. note::
4697
4698 A DIExpression is interpreted in the same way regardless of which kind of
4699 debug intrinsic it's attached to.
Adrian Prantl6825fb62017-04-18 01:21:53 +00004700
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004701.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004702
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004703 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004704 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004705 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004706 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004707 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004708 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004709 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004710
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004711DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004712""""""""""""""
4713
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004714``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004715
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004716.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004717
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004718 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004719 getter: "getFoo", attributes: 7, type: !2)
4720
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004721DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004722""""""""""""""""
4723
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004724``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004725compile unit.
4726
Renato Golin124f2592016-07-20 12:16:38 +00004727.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004728
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004729 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004730 entity: !1, line: 7)
4731
Amjad Abouda9bcf162015-12-10 12:56:35 +00004732DIMacro
4733"""""""
4734
4735``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4736The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004737defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004738used to expand the macro identifier.
4739
Renato Golin124f2592016-07-20 12:16:38 +00004740.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004741
4742 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4743 value: "((x) + 1)")
4744 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4745
4746DIMacroFile
4747"""""""""""
4748
4749``DIMacroFile`` nodes represent inclusion of source files.
4750The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4751appear in the included source file.
4752
Renato Golin124f2592016-07-20 12:16:38 +00004753.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004754
4755 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4756 nodes: !3)
4757
Sean Silvab084af42012-12-07 10:36:55 +00004758'``tbaa``' Metadata
4759^^^^^^^^^^^^^^^^^^^
4760
4761In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004762suitable for doing type based alias analysis (TBAA). Instead, metadata is
4763added to the IR to describe a type system of a higher level language. This
4764can be used to implement C/C++ strict type aliasing rules, but it can also
4765be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004766
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004767This description of LLVM's TBAA system is broken into two parts:
4768:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4769:ref:`Representation<tbaa_node_representation>` talks about the metadata
4770encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004771
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004772It is always possible to trace any TBAA node to a "root" TBAA node (details
4773in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4774nodes with different roots have an unknown aliasing relationship, and LLVM
4775conservatively infers ``MayAlias`` between them. The rules mentioned in
4776this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004777
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004778.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004779
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004780Semantics
4781"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004782
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004783The TBAA metadata system, referred to as "struct path TBAA" (not to be
4784confused with ``tbaa.struct``), consists of the following high level
4785concepts: *Type Descriptors*, further subdivided into scalar type
4786descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004787
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004788**Type descriptors** describe the type system of the higher level language
4789being compiled. **Scalar type descriptors** describe types that do not
4790contain other types. Each scalar type has a parent type, which must also
4791be a scalar type or the TBAA root. Via this parent relation, scalar types
4792within a TBAA root form a tree. **Struct type descriptors** denote types
4793that contain a sequence of other type descriptors, at known offsets. These
4794contained type descriptors can either be struct type descriptors themselves
4795or scalar type descriptors.
4796
4797**Access tags** are metadata nodes attached to load and store instructions.
4798Access tags use type descriptors to describe the *location* being accessed
4799in terms of the type system of the higher level language. Access tags are
4800tuples consisting of a base type, an access type and an offset. The base
4801type is a scalar type descriptor or a struct type descriptor, the access
4802type is a scalar type descriptor, and the offset is a constant integer.
4803
4804The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4805things:
4806
4807 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4808 or store) of a value of type ``AccessTy`` contained in the struct type
4809 ``BaseTy`` at offset ``Offset``.
4810
4811 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4812 ``AccessTy`` must be the same; and the access tag describes a scalar
4813 access with scalar type ``AccessTy``.
4814
4815We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4816tuples this way:
4817
4818 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4819 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4820 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4821 undefined if ``Offset`` is non-zero.
4822
4823 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4824 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4825 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4826 to be relative within that inner type.
4827
4828A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4829aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4830Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4831Offset2)`` via the ``Parent`` relation or vice versa.
4832
4833As a concrete example, the type descriptor graph for the following program
4834
4835.. code-block:: c
4836
4837 struct Inner {
4838 int i; // offset 0
4839 float f; // offset 4
4840 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004841
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004842 struct Outer {
4843 float f; // offset 0
4844 double d; // offset 4
4845 struct Inner inner_a; // offset 12
4846 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004847
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004848 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4849 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4850 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
Fangrui Song74d6a742018-05-29 05:38:05 +00004851 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, FloatScalarTy, 16)
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004852 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4853 }
4854
4855is (note that in C and C++, ``char`` can be used to access any arbitrary
4856type):
4857
4858.. code-block:: text
4859
4860 Root = "TBAA Root"
4861 CharScalarTy = ("char", Root, 0)
4862 FloatScalarTy = ("float", CharScalarTy, 0)
4863 DoubleScalarTy = ("double", CharScalarTy, 0)
4864 IntScalarTy = ("int", CharScalarTy, 0)
4865 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4866 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4867 (InnerStructTy, 12)}
4868
4869
4870with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
48710)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4872``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4873
4874.. _tbaa_node_representation:
4875
4876Representation
4877""""""""""""""
4878
4879The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4880with exactly one ``MDString`` operand.
4881
4882Scalar type descriptors are represented as an ``MDNode`` s with two
4883operands. The first operand is an ``MDString`` denoting the name of the
4884struct type. LLVM does not assign meaning to the value of this operand, it
4885only cares about it being an ``MDString``. The second operand is an
4886``MDNode`` which points to the parent for said scalar type descriptor,
4887which is either another scalar type descriptor or the TBAA root. Scalar
4888type descriptors can have an optional third argument, but that must be the
4889constant integer zero.
4890
4891Struct type descriptors are represented as ``MDNode`` s with an odd number
4892of operands greater than 1. The first operand is an ``MDString`` denoting
4893the name of the struct type. Like in scalar type descriptors the actual
4894value of this name operand is irrelevant to LLVM. After the name operand,
4895the struct type descriptors have a sequence of alternating ``MDNode`` and
4896``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4897an ``MDNode``, denotes a contained field, and the 2N th operand, a
4898``ConstantInt``, is the offset of the said contained field. The offsets
4899must be in non-decreasing order.
4900
4901Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4902The first operand is an ``MDNode`` pointing to the node representing the
4903base type. The second operand is an ``MDNode`` pointing to the node
4904representing the access type. The third operand is a ``ConstantInt`` that
4905states the offset of the access. If a fourth field is present, it must be
4906a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4907that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004908``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004909AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4910the access type and the base type of an access tag must be the same, and
4911that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004912
4913'``tbaa.struct``' Metadata
4914^^^^^^^^^^^^^^^^^^^^^^^^^^
4915
4916The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4917aggregate assignment operations in C and similar languages, however it
4918is defined to copy a contiguous region of memory, which is more than
4919strictly necessary for aggregate types which contain holes due to
4920padding. Also, it doesn't contain any TBAA information about the fields
4921of the aggregate.
4922
4923``!tbaa.struct`` metadata can describe which memory subregions in a
4924memcpy are padding and what the TBAA tags of the struct are.
4925
4926The current metadata format is very simple. ``!tbaa.struct`` metadata
4927nodes are a list of operands which are in conceptual groups of three.
4928For each group of three, the first operand gives the byte offset of a
4929field in bytes, the second gives its size in bytes, and the third gives
4930its tbaa tag. e.g.:
4931
4932.. code-block:: llvm
4933
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004934 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004935
4936This describes a struct with two fields. The first is at offset 0 bytes
4937with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4938and has size 4 bytes and has tbaa tag !2.
4939
4940Note that the fields need not be contiguous. In this example, there is a
49414 byte gap between the two fields. This gap represents padding which
4942does not carry useful data and need not be preserved.
4943
Hal Finkel94146652014-07-24 14:25:39 +00004944'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004946
4947``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4948noalias memory-access sets. This means that some collection of memory access
4949instructions (loads, stores, memory-accessing calls, etc.) that carry
4950``noalias`` metadata can specifically be specified not to alias with some other
4951collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004952Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004953a domain.
4954
4955When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004956of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004957subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004958instruction's ``noalias`` list, then the two memory accesses are assumed not to
4959alias.
Hal Finkel94146652014-07-24 14:25:39 +00004960
Adam Nemet569a5b32016-04-27 00:52:48 +00004961Because scopes in one domain don't affect scopes in other domains, separate
4962domains can be used to compose multiple independent noalias sets. This is
4963used for example during inlining. As the noalias function parameters are
4964turned into noalias scope metadata, a new domain is used every time the
4965function is inlined.
4966
Hal Finkel029cde62014-07-25 15:50:02 +00004967The metadata identifying each domain is itself a list containing one or two
4968entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004969string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004970self-reference can be used to create globally unique domain names. A
4971descriptive string may optionally be provided as a second list entry.
4972
4973The metadata identifying each scope is also itself a list containing two or
4974three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004975is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004976self-reference can be used to create globally unique scope names. A metadata
4977reference to the scope's domain is the second entry. A descriptive string may
4978optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004979
4980For example,
4981
4982.. code-block:: llvm
4983
Hal Finkel029cde62014-07-25 15:50:02 +00004984 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004985 !0 = !{!0}
4986 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004987
Hal Finkel029cde62014-07-25 15:50:02 +00004988 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004989 !2 = !{!2, !0}
4990 !3 = !{!3, !0}
4991 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004992
Hal Finkel029cde62014-07-25 15:50:02 +00004993 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004994 !5 = !{!4} ; A list containing only scope !4
4995 !6 = !{!4, !3, !2}
4996 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004997
4998 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004999 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00005000 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00005001
Hal Finkel029cde62014-07-25 15:50:02 +00005002 ; These two instructions also don't alias (for domain !1, the set of scopes
5003 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00005004 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00005005 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00005006
Adam Nemet0a8416f2015-05-11 08:30:28 +00005007 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00005008 ; the !noalias list is not a superset of, or equal to, the scopes in the
5009 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00005010 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00005011 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00005012
Sean Silvab084af42012-12-07 10:36:55 +00005013'``fpmath``' Metadata
5014^^^^^^^^^^^^^^^^^^^^^
5015
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00005016``fpmath`` metadata may be attached to any instruction of floating-point
Sean Silvab084af42012-12-07 10:36:55 +00005017type. It can be used to express the maximum acceptable error in the
5018result of that instruction, in ULPs, thus potentially allowing the
5019compiler to use a more efficient but less accurate method of computing
5020it. ULP is defined as follows:
5021
5022 If ``x`` is a real number that lies between two finite consecutive
5023 floating-point numbers ``a`` and ``b``, without being equal to one
5024 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
5025 distance between the two non-equal finite floating-point numbers
5026 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
5027
Matt Arsenault82f41512016-06-27 19:43:15 +00005028The metadata node shall consist of a single positive float type number
5029representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00005030
5031.. code-block:: llvm
5032
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005033 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00005034
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00005035.. _range-metadata:
5036
Sean Silvab084af42012-12-07 10:36:55 +00005037'``range``' Metadata
5038^^^^^^^^^^^^^^^^^^^^
5039
Jingyue Wu37fcb592014-06-19 16:50:16 +00005040``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
5041integer types. It expresses the possible ranges the loaded value or the value
Eli Friedmane15a1112018-07-17 20:38:11 +00005042returned by the called function at this call site is in. If the loaded or
5043returned value is not in the specified range, the behavior is undefined. The
5044ranges are represented with a flattened list of integers. The loaded value or
5045the value returned is known to be in the union of the ranges defined by each
5046consecutive pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00005047
5048- The type must match the type loaded by the instruction.
5049- The pair ``a,b`` represents the range ``[a,b)``.
5050- Both ``a`` and ``b`` are constants.
5051- The range is allowed to wrap.
5052- The range should not represent the full or empty set. That is,
5053 ``a!=b``.
5054
5055In addition, the pairs must be in signed order of the lower bound and
5056they must be non-contiguous.
5057
5058Examples:
5059
5060.. code-block:: llvm
5061
David Blaikiec7aabbb2015-03-04 22:06:14 +00005062 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
5063 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00005064 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
5065 %d = invoke i8 @bar() to label %cont
5066 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00005067 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005068 !0 = !{ i8 0, i8 2 }
5069 !1 = !{ i8 255, i8 2 }
5070 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
5071 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00005072
Peter Collingbourne235c2752016-12-08 19:01:00 +00005073'``absolute_symbol``' Metadata
5074^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5075
5076``absolute_symbol`` metadata may be attached to a global variable
5077declaration. It marks the declaration as a reference to an absolute symbol,
5078which causes the backend to use absolute relocations for the symbol even
5079in position independent code, and expresses the possible ranges that the
5080global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00005081``range`` metadata, with the extension that the pair ``all-ones,all-ones``
5082may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00005083
Peter Collingbourned88f9282017-01-20 21:56:37 +00005084Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00005085
5086.. code-block:: llvm
5087
5088 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00005089 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00005090
5091 ...
5092 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00005093 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00005094
Matthew Simpson36bbc8c2017-10-16 22:22:11 +00005095'``callees``' Metadata
5096^^^^^^^^^^^^^^^^^^^^^^
5097
5098``callees`` metadata may be attached to indirect call sites. If ``callees``
5099metadata is attached to a call site, and any callee is not among the set of
5100functions provided by the metadata, the behavior is undefined. The intent of
5101this metadata is to facilitate optimizations such as indirect-call promotion.
5102For example, in the code below, the call instruction may only target the
5103``add`` or ``sub`` functions:
5104
5105.. code-block:: llvm
5106
5107 %result = call i64 %binop(i64 %x, i64 %y), !callees !0
5108
5109 ...
5110 !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
5111
Johannes Doerfert18251842019-01-19 05:19:06 +00005112'``callback``' Metadata
Johannes Doerfert0b029072019-01-19 09:40:14 +00005113^^^^^^^^^^^^^^^^^^^^^^^
Johannes Doerfert18251842019-01-19 05:19:06 +00005114
5115``callback`` metadata may be attached to a function declaration, or definition.
5116(Call sites are excluded only due to the lack of a use case.) For ease of
5117exposition, we'll refer to the function annotated w/ metadata as a broker
5118function. The metadata describes how the arguments of a call to the broker are
5119in turn passed to the callback function specified by the metadata. Thus, the
5120``callback`` metadata provides a partial description of a call site inside the
5121broker function with regards to the arguments of a call to the broker. The only
5122semantic restriction on the broker function itself is that it is not allowed to
5123inspect or modify arguments referenced in the ``callback`` metadata as
5124pass-through to the callback function.
5125
5126The broker is not required to actually invoke the callback function at runtime.
5127However, the assumptions about not inspecting or modifying arguments that would
5128be passed to the specified callback function still hold, even if the callback
5129function is not dynamically invoked. The broker is allowed to invoke the
5130callback function more than once per invocation of the broker. The broker is
5131also allowed to invoke (directly or indirectly) the function passed as a
5132callback through another use. Finally, the broker is also allowed to relay the
5133callback callee invocation to a different thread.
5134
5135The metadata is structured as follows: At the outer level, ``callback``
5136metadata is a list of ``callback`` encodings. Each encoding starts with a
5137constant ``i64`` which describes the argument position of the callback function
5138in the call to the broker. The following elements, except the last, describe
5139what arguments are passed to the callback function. Each element is again an
5140``i64`` constant identifying the argument of the broker that is passed through,
5141or ``i64 -1`` to indicate an unknown or inspected argument. The order in which
5142they are listed has to be the same in which they are passed to the callback
5143callee. The last element of the encoding is a boolean which specifies how
5144variadic arguments of the broker are handled. If it is true, all variadic
5145arguments of the broker are passed through to the callback function *after* the
5146arguments encoded explicitly before.
5147
5148In the code below, the ``pthread_create`` function is marked as a broker
5149through the ``!callback !1`` metadata. In the example, there is only one
5150callback encoding, namely ``!2``, associated with the broker. This encoding
5151identifies the callback function as the second argument of the broker (``i64
51522``) and the sole argument of the callback function as the third one of the
5153broker function (``i64 3``).
5154
James Y Knight6e75c7e2019-02-01 19:40:07 +00005155.. FIXME why does the llvm-sphinx-docs builder give a highlighting
5156 error if the below is set to highlight as 'llvm', despite that we
5157 have misc.highlighting_failure set?
5158
5159.. code-block:: text
Johannes Doerfert18251842019-01-19 05:19:06 +00005160
5161 declare !callback !1 dso_local i32 @pthread_create(i64*, %union.pthread_attr_t*, i8* (i8*)*, i8*)
5162
5163 ...
5164 !2 = !{i64 2, i64 3, i1 false}
5165 !1 = !{!2}
5166
5167Another example is shown below. The callback callee is the second argument of
5168the ``__kmpc_fork_call`` function (``i64 2``). The callee is given two unknown
5169values (each identified by a ``i64 -1``) and afterwards all
5170variadic arguments that are passed to the ``__kmpc_fork_call`` call (due to the
5171final ``i1 true``).
5172
James Y Knight6e75c7e2019-02-01 19:40:07 +00005173.. FIXME why does the llvm-sphinx-docs builder give a highlighting
5174 error if the below is set to highlight as 'llvm', despite that we
5175 have misc.highlighting_failure set?
5176
5177.. code-block:: text
Johannes Doerfert18251842019-01-19 05:19:06 +00005178
5179 declare !callback !0 dso_local void @__kmpc_fork_call(%struct.ident_t*, i32, void (i32*, i32*, ...)*, ...)
5180
5181 ...
5182 !1 = !{i64 2, i64 -1, i64 -1, i1 true}
5183 !0 = !{!1}
5184
5185
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005186'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00005187^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005188
5189``unpredictable`` metadata may be attached to any branch or switch
5190instruction. It can be used to express the unpredictability of control
5191flow. Similar to the llvm.expect intrinsic, it may be used to alter
5192optimizations related to compare and branch instructions. The metadata
5193is treated as a boolean value; if it exists, it signals that the branch
5194or switch that it is attached to is completely unpredictable.
5195
Michael Kruse72448522018-12-12 17:32:52 +00005196.. _llvm.loop:
5197
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005198'``llvm.loop``'
5199^^^^^^^^^^^^^^^
5200
5201It is sometimes useful to attach information to loop constructs. Currently,
5202loop metadata is implemented as metadata attached to the branch instruction
5203in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00005204guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00005205specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005206
5207The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00005208itself to avoid merging it with any other identifier metadata, e.g.,
5209during module linkage or function inlining. That is, each loop should refer
5210to their own identification metadata even if they reside in separate functions.
5211The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005212constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005213
5214.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00005215
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005216 !0 = !{!0}
5217 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005218
Mark Heffernan893752a2014-07-18 19:24:51 +00005219The loop identifier metadata can be used to specify additional
5220per-loop metadata. Any operands after the first operand can be treated
5221as user-defined metadata. For example the ``llvm.loop.unroll.count``
5222suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005223
Paul Redmond5fdf8362013-05-28 20:00:34 +00005224.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005225
Paul Redmond5fdf8362013-05-28 20:00:34 +00005226 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
5227 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005228 !0 = !{!0, !1}
5229 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005230
Michael Kruse72448522018-12-12 17:32:52 +00005231'``llvm.loop.disable_nonforced``'
5232^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5233
5234This metadata disables all optional loop transformations unless
5235explicitly instructed using other transformation metdata such as
Michael Kruse82dd71e2018-12-12 17:59:01 +00005236``llvm.loop.unroll.enable``. That is, no heuristic will try to determine
Michael Kruse72448522018-12-12 17:32:52 +00005237whether a transformation is profitable. The purpose is to avoid that the
5238loop is transformed to a different loop before an explicitly requested
5239(forced) transformation is applied. For instance, loop fusion can make
5240other transformations impossible. Mandatory loop canonicalizations such
5241as loop rotation are still applied.
5242
5243It is recommended to use this metadata in addition to any llvm.loop.*
5244transformation directive. Also, any loop should have at most one
5245directive applied to it (and a sequence of transformations built using
5246followup-attributes). Otherwise, which transformation will be applied
5247depends on implementation details such as the pass pipeline order.
5248
5249See :ref:`transformation-metadata` for details.
5250
Mark Heffernan9d20e422014-07-21 23:11:03 +00005251'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
5252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00005253
Mark Heffernan9d20e422014-07-21 23:11:03 +00005254Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
5255used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00005256vectorization width and interleave count. These metadata should be used in
5257conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00005258``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
5259optimization hints and the optimizer will only interleave and vectorize loops if
Michael Kruse978ba612018-12-20 04:58:07 +00005260it believes it is safe to do so. The ``llvm.loop.parallel_accesses`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00005261which contains information about loop-carried memory dependencies can be helpful
5262in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00005263
Mark Heffernan9d20e422014-07-21 23:11:03 +00005264'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00005265^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5266
Mark Heffernan9d20e422014-07-21 23:11:03 +00005267This metadata suggests an interleave count to the loop interleaver.
5268The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00005269second operand is an integer specifying the interleave count. For
5270example:
5271
5272.. code-block:: llvm
5273
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005274 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005275
Mark Heffernan9d20e422014-07-21 23:11:03 +00005276Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00005277multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00005278then the interleave count will be determined automatically.
5279
5280'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00005281^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00005282
5283This metadata selectively enables or disables vectorization for the loop. The
5284first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00005285is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000052860 disables vectorization:
5287
5288.. code-block:: llvm
5289
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005290 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5291 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00005292
5293'``llvm.loop.vectorize.width``' Metadata
5294^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5295
5296This metadata sets the target width of the vectorizer. The first
5297operand is the string ``llvm.loop.vectorize.width`` and the second
5298operand is an integer specifying the width. For example:
5299
5300.. code-block:: llvm
5301
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005302 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005303
5304Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00005305vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000053060 or if the loop does not have this metadata the width will be
5307determined automatically.
5308
Michael Kruse72448522018-12-12 17:32:52 +00005309'``llvm.loop.vectorize.followup_vectorized``' Metadata
5310^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5311
5312This metadata defines which loop attributes the vectorized loop will
5313have. See :ref:`transformation-metadata` for details.
5314
5315'``llvm.loop.vectorize.followup_epilogue``' Metadata
5316^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5317
5318This metadata defines which loop attributes the epilogue will have. The
5319epilogue is not vectorized and is executed when either the vectorized
5320loop is not known to preserve semantics (because e.g., it processes two
5321arrays that are found to alias by a runtime check) or for the last
5322iterations that do not fill a complete set of vector lanes. See
5323:ref:`Transformation Metadata <transformation-metadata>` for details.
5324
5325'``llvm.loop.vectorize.followup_all``' Metadata
5326^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5327
5328Attributes in the metadata will be added to both the vectorized and
5329epilogue loop.
5330See :ref:`Transformation Metadata <transformation-metadata>` for details.
5331
Mark Heffernan893752a2014-07-18 19:24:51 +00005332'``llvm.loop.unroll``'
5333^^^^^^^^^^^^^^^^^^^^^^
5334
5335Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5336optimization hints such as the unroll factor. ``llvm.loop.unroll``
5337metadata should be used in conjunction with ``llvm.loop`` loop
5338identification metadata. The ``llvm.loop.unroll`` metadata are only
5339optimization hints and the unrolling will only be performed if the
5340optimizer believes it is safe to do so.
5341
Mark Heffernan893752a2014-07-18 19:24:51 +00005342'``llvm.loop.unroll.count``' Metadata
5343^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5344
5345This metadata suggests an unroll factor to the loop unroller. The
5346first operand is the string ``llvm.loop.unroll.count`` and the second
5347operand is a positive integer specifying the unroll factor. For
5348example:
5349
5350.. code-block:: llvm
5351
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005352 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005353
5354If the trip count of the loop is less than the unroll count the loop
5355will be partially unrolled.
5356
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005357'``llvm.loop.unroll.disable``' Metadata
5358^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5359
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005360This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00005361which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005362
5363.. code-block:: llvm
5364
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005365 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005366
Kevin Qin715b01e2015-03-09 06:14:18 +00005367'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00005368^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00005369
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005370This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005371operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005372
5373.. code-block:: llvm
5374
5375 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5376
Mark Heffernan89391542015-08-10 17:28:08 +00005377'``llvm.loop.unroll.enable``' Metadata
5378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5379
5380This metadata suggests that the loop should be fully unrolled if the trip count
5381is known at compile time and partially unrolled if the trip count is not known
5382at compile time. The metadata has a single operand which is the string
5383``llvm.loop.unroll.enable``. For example:
5384
5385.. code-block:: llvm
5386
5387 !0 = !{!"llvm.loop.unroll.enable"}
5388
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005389'``llvm.loop.unroll.full``' Metadata
5390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5391
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005392This metadata suggests that the loop should be unrolled fully. The
5393metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005394For example:
5395
5396.. code-block:: llvm
5397
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005398 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005399
Michael Kruse72448522018-12-12 17:32:52 +00005400'``llvm.loop.unroll.followup``' Metadata
5401^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5402
5403This metadata defines which loop attributes the unrolled loop will have.
5404See :ref:`Transformation Metadata <transformation-metadata>` for details.
5405
5406'``llvm.loop.unroll.followup_remainder``' Metadata
5407^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5408
5409This metadata defines which loop attributes the remainder loop after
5410partial/runtime unrolling will have. See
5411:ref:`Transformation Metadata <transformation-metadata>` for details.
5412
David Green7fbf06c2018-07-19 12:37:00 +00005413'``llvm.loop.unroll_and_jam``'
5414^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5415
5416This metadata is treated very similarly to the ``llvm.loop.unroll`` metadata
5417above, but affect the unroll and jam pass. In addition any loop with
5418``llvm.loop.unroll`` metadata but no ``llvm.loop.unroll_and_jam`` metadata will
5419disable unroll and jam (so ``llvm.loop.unroll`` metadata will be left to the
5420unroller, plus ``llvm.loop.unroll.disable`` metadata will disable unroll and jam
5421too.)
5422
5423The metadata for unroll and jam otherwise is the same as for ``unroll``.
5424``llvm.loop.unroll_and_jam.enable``, ``llvm.loop.unroll_and_jam.disable`` and
5425``llvm.loop.unroll_and_jam.count`` do the same as for unroll.
5426``llvm.loop.unroll_and_jam.full`` is not supported. Again these are only hints
5427and the normal safety checks will still be performed.
5428
5429'``llvm.loop.unroll_and_jam.count``' Metadata
5430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5431
5432This metadata suggests an unroll and jam factor to use, similarly to
5433``llvm.loop.unroll.count``. The first operand is the string
5434``llvm.loop.unroll_and_jam.count`` and the second operand is a positive integer
5435specifying the unroll factor. For example:
5436
5437.. code-block:: llvm
5438
5439 !0 = !{!"llvm.loop.unroll_and_jam.count", i32 4}
5440
5441If the trip count of the loop is less than the unroll count the loop
5442will be partially unroll and jammed.
5443
5444'``llvm.loop.unroll_and_jam.disable``' Metadata
5445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5446
5447This metadata disables loop unroll and jamming. The metadata has a single
5448operand which is the string ``llvm.loop.unroll_and_jam.disable``. For example:
5449
5450.. code-block:: llvm
5451
5452 !0 = !{!"llvm.loop.unroll_and_jam.disable"}
5453
5454'``llvm.loop.unroll_and_jam.enable``' Metadata
5455^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5456
5457This metadata suggests that the loop should be fully unroll and jammed if the
5458trip count is known at compile time and partially unrolled if the trip count is
5459not known at compile time. The metadata has a single operand which is the
5460string ``llvm.loop.unroll_and_jam.enable``. For example:
5461
5462.. code-block:: llvm
5463
5464 !0 = !{!"llvm.loop.unroll_and_jam.enable"}
5465
Michael Kruse72448522018-12-12 17:32:52 +00005466'``llvm.loop.unroll_and_jam.followup_outer``' Metadata
5467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5468
5469This metadata defines which loop attributes the outer unrolled loop will
5470have. See :ref:`Transformation Metadata <transformation-metadata>` for
5471details.
5472
5473'``llvm.loop.unroll_and_jam.followup_inner``' Metadata
5474^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5475
5476This metadata defines which loop attributes the inner jammed loop will
5477have. See :ref:`Transformation Metadata <transformation-metadata>` for
5478details.
5479
5480'``llvm.loop.unroll_and_jam.followup_remainder_outer``' Metadata
5481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5482
5483This metadata defines which attributes the epilogue of the outer loop
5484will have. This loop is usually unrolled, meaning there is no such
5485loop. This attribute will be ignored in this case. See
5486:ref:`Transformation Metadata <transformation-metadata>` for details.
5487
5488'``llvm.loop.unroll_and_jam.followup_remainder_inner``' Metadata
5489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5490
5491This metadata defines which attributes the inner loop of the epilogue
5492will have. The outer epilogue will usually be unrolled, meaning there
5493can be multiple inner remainder loops. See
5494:ref:`Transformation Metadata <transformation-metadata>` for details.
5495
5496'``llvm.loop.unroll_and_jam.followup_all``' Metadata
5497^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5498
5499Attributes specified in the metadata is added to all
5500``llvm.loop.unroll_and_jam.*`` loops. See
5501:ref:`Transformation Metadata <transformation-metadata>` for details.
5502
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005503'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005504^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005505
5506This metadata indicates that the loop should not be versioned for the purpose
5507of enabling loop-invariant code motion (LICM). The metadata has a single operand
5508which is the string ``llvm.loop.licm_versioning.disable``. For example:
5509
5510.. code-block:: llvm
5511
5512 !0 = !{!"llvm.loop.licm_versioning.disable"}
5513
Adam Nemetd2fa4142016-04-27 05:28:18 +00005514'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005516
5517Loop distribution allows splitting a loop into multiple loops. Currently,
5518this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005519memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005520dependencies into their own loop.
5521
5522This metadata can be used to selectively enable or disable distribution of the
5523loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5524second operand is a bit. If the bit operand value is 1 distribution is
5525enabled. A value of 0 disables distribution:
5526
5527.. code-block:: llvm
5528
5529 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5530 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5531
5532This metadata should be used in conjunction with ``llvm.loop`` loop
5533identification metadata.
5534
Michael Kruse72448522018-12-12 17:32:52 +00005535'``llvm.loop.distribute.followup_coincident``' Metadata
5536^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5537
5538This metadata defines which attributes extracted loops with no cyclic
5539dependencies will have (i.e. can be vectorized). See
5540:ref:`Transformation Metadata <transformation-metadata>` for details.
5541
5542'``llvm.loop.distribute.followup_sequential``' Metadata
5543^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5544
5545This metadata defines which attributes the isolated loops with unsafe
5546memory dependencies will have. See
5547:ref:`Transformation Metadata <transformation-metadata>` for details.
5548
5549'``llvm.loop.distribute.followup_fallback``' Metadata
5550^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5551
5552If loop versioning is necessary, this metadata defined the attributes
5553the non-distributed fallback version will have. See
5554:ref:`Transformation Metadata <transformation-metadata>` for details.
5555
5556'``llvm.loop.distribute.followup_all``' Metadata
5557^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5558
5559Thes attributes in this metdata is added to all followup loops of the
5560loop distribution pass. See
5561:ref:`Transformation Metadata <transformation-metadata>` for details.
5562
Michael Kruse978ba612018-12-20 04:58:07 +00005563'``llvm.access.group``' Metadata
5564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005565
Michael Kruse978ba612018-12-20 04:58:07 +00005566``llvm.access.group`` metadata can be attached to any instruction that
5567potentially accesses memory. It can point to a single distinct metadata
5568node, which we call access group. This node represents all memory access
5569instructions referring to it via ``llvm.access.group``. When an
5570instruction belongs to multiple access groups, it can also point to a
5571list of accesses groups, illustrated by the following example.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005572
Michael Kruse978ba612018-12-20 04:58:07 +00005573.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005574
Michael Kruse978ba612018-12-20 04:58:07 +00005575 %val = load i32, i32* %arrayidx, !llvm.access.group !0
5576 ...
5577 !0 = !{!1, !2}
5578 !1 = distinct !{}
5579 !2 = distinct !{}
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005580
Michael Kruse978ba612018-12-20 04:58:07 +00005581It is illegal for the list node to be empty since it might be confused
5582with an access group.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005583
Michael Kruse978ba612018-12-20 04:58:07 +00005584The access group metadata node must be 'distinct' to avoid collapsing
5585multiple access groups by content. A access group metadata node must
5586always be empty which can be used to distinguish an access group
5587metadata node from a list of access groups. Being empty avoids the
5588situation that the content must be updated which, because metadata is
5589immutable by design, would required finding and updating all references
5590to the access group node.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005591
Michael Kruse978ba612018-12-20 04:58:07 +00005592The access group can be used to refer to a memory access instruction
5593without pointing to it directly (which is not possible in global
5594metadata). Currently, the only metadata making use of it is
5595``llvm.loop.parallel_accesses``.
5596
5597'``llvm.loop.parallel_accesses``' Metadata
5598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5599
5600The ``llvm.loop.parallel_accesses`` metadata refers to one or more
5601access group metadata nodes (see ``llvm.access.group``). It denotes that
5602no loop-carried memory dependence exist between it and other instructions
5603in the loop with this metadata.
5604
5605Let ``m1`` and ``m2`` be two instructions that both have the
5606``llvm.access.group`` metadata to the access group ``g1``, respectively
5607``g2`` (which might be identical). If a loop contains both access groups
5608in its ``llvm.loop.parallel_accesses`` metadata, then the compiler can
5609assume that there is no dependency between ``m1`` and ``m2`` carried by
5610this loop. Instructions that belong to multiple access groups are
5611considered having this property if at least one of the access groups
5612matches the ``llvm.loop.parallel_accesses`` list.
5613
5614If all memory-accessing instructions in a loop have
5615``llvm.loop.parallel_accesses`` metadata that refers to that loop, then the
5616loop has no loop carried memory dependences and is considered to be a
5617parallel loop.
5618
5619Note that if not all memory access instructions belong to an access
5620group referred to by ``llvm.loop.parallel_accesses``, then the loop must
5621not be considered trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005622memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005623safe mechanism, this causes loops that were originally parallel to be considered
5624sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005625insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005626
5627Example of a loop that is considered parallel due to its correct use of
Michael Kruse978ba612018-12-20 04:58:07 +00005628both ``llvm.access.group`` and ``llvm.loop.parallel_accesses``
5629metadata types.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005630
5631.. code-block:: llvm
5632
5633 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005634 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005635 %val0 = load i32, i32* %arrayidx, !llvm.access.group !1
Paul Redmond5fdf8362013-05-28 20:00:34 +00005636 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005637 store i32 %val0, i32* %arrayidx1, !llvm.access.group !1
Paul Redmond5fdf8362013-05-28 20:00:34 +00005638 ...
5639 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005640
5641 for.end:
5642 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005643 !0 = distinct !{!0, !{!"llvm.loop.parallel_accesses", !1}}
5644 !1 = distinct !{}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005645
Michael Kruse978ba612018-12-20 04:58:07 +00005646It is also possible to have nested parallel loops:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005647
5648.. code-block:: llvm
5649
5650 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005651 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005652 %val1 = load i32, i32* %arrayidx3, !llvm.access.group !4
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005653 ...
5654 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005655
5656 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005657 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005658 %val0 = load i32, i32* %arrayidx1, !llvm.access.group !3
Paul Redmond5fdf8362013-05-28 20:00:34 +00005659 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005660 store i32 %val0, i32* %arrayidx2, !llvm.access.group !3
Paul Redmond5fdf8362013-05-28 20:00:34 +00005661 ...
5662 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005663
5664 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005665 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005666 store i32 %val1, i32* %arrayidx4, !llvm.access.group !4
Paul Redmond5fdf8362013-05-28 20:00:34 +00005667 ...
5668 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005669
5670 outer.for.end: ; preds = %for.body
5671 ...
Michael Kruse978ba612018-12-20 04:58:07 +00005672 !1 = distinct !{!1, !{!"llvm.loop.parallel_accesses", !3}} ; metadata for the inner loop
5673 !2 = distinct !{!2, !{!"llvm.loop.parallel_accesses", !3, !4}} ; metadata for the outer loop
5674 !3 = distinct !{} ; access group for instructions in the inner loop (which are implicitly contained in outer loop as well)
5675 !4 = distinct !{} ; access group for instructions in the outer, but not the inner loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005676
Hiroshi Yamauchidce9def2017-11-02 22:26:51 +00005677'``irr_loop``' Metadata
5678^^^^^^^^^^^^^^^^^^^^^^^
5679
5680``irr_loop`` metadata may be attached to the terminator instruction of a basic
5681block that's an irreducible loop header (note that an irreducible loop has more
5682than once header basic blocks.) If ``irr_loop`` metadata is attached to the
5683terminator instruction of a basic block that is not really an irreducible loop
5684header, the behavior is undefined. The intent of this metadata is to improve the
5685accuracy of the block frequency propagation. For example, in the code below, the
5686block ``header0`` may have a loop header weight (relative to the other headers of
5687the irreducible loop) of 100:
5688
5689.. code-block:: llvm
5690
5691 header0:
5692 ...
5693 br i1 %cmp, label %t1, label %t2, !irr_loop !0
5694
5695 ...
5696 !0 = !{"loop_header_weight", i64 100}
5697
5698Irreducible loop header weights are typically based on profile data.
5699
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005700'``invariant.group``' Metadata
5701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5702
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00005703The experimental ``invariant.group`` metadata may be attached to
Piotr Padlewskice358262018-05-18 23:53:46 +00005704``load``/``store`` instructions referencing a single metadata with no entries.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005705The existence of the ``invariant.group`` metadata on the instruction tells
5706the optimizer that every ``load`` and ``store`` to the same pointer operand
Piotr Padlewskice358262018-05-18 23:53:46 +00005707can be assumed to load or store the same
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005708value (but see the ``llvm.launder.invariant.group`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005709when two pointers are considered the same). Pointers returned by bitcast or
5710getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005711
5712Examples:
5713
5714.. code-block:: llvm
5715
5716 @unknownPtr = external global i8
5717 ...
5718 %ptr = alloca i8
5719 store i8 42, i8* %ptr, !invariant.group !0
5720 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005721
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005722 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5723 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005724
5725 %newPtr = call i8* @getPointer(i8* %ptr)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005726 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005727
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005728 %unknownValue = load i8, i8* @unknownPtr
5729 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005730
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005731 call void @foo(i8* %ptr)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005732 %newPtr2 = call i8* @llvm.launder.invariant.group(i8* %ptr)
5733 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through launder.invariant.group to get value of %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005734
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005735 ...
5736 declare void @foo(i8*)
5737 declare i8* @getPointer(i8*)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005738 declare i8* @llvm.launder.invariant.group(i8*)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005739
Piotr Padlewskice358262018-05-18 23:53:46 +00005740 !0 = !{}
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005741
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005742The invariant.group metadata must be dropped when replacing one pointer by
5743another based on aliasing information. This is because invariant.group is tied
5744to the SSA value of the pointer operand.
5745
5746.. code-block:: llvm
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005747
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005748 %v = load i8, i8* %x, !invariant.group !0
5749 ; if %x mustalias %y then we can replace the above instruction with
5750 %v = load i8, i8* %y
5751
Piotr Padlewski74b155f2018-04-08 13:53:04 +00005752Note that this is an experimental feature, which means that its semantics might
5753change in the future.
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005754
Peter Collingbournea333db82016-07-26 22:31:30 +00005755'``type``' Metadata
5756^^^^^^^^^^^^^^^^^^^
5757
5758See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005759
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005760'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005761^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005762
5763The ``associated`` metadata may be attached to a global object
5764declaration with a single argument that references another global object.
5765
5766This metadata prevents discarding of the global object in linker GC
5767unless the referenced object is also discarded. The linker support for
5768this feature is spotty. For best compatibility, globals carrying this
5769metadata may also:
5770
5771- Be in a comdat with the referenced global.
5772- Be in @llvm.compiler.used.
5773- Have an explicit section with a name which is a valid C identifier.
5774
5775It does not have any effect on non-ELF targets.
5776
5777Example:
5778
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005779.. code-block:: text
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005780
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005781 $a = comdat any
5782 @a = global i32 1, comdat $a
5783 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5784 !0 = !{i32* @a}
5785
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005786
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005787'``prof``' Metadata
5788^^^^^^^^^^^^^^^^^^^
5789
5790The ``prof`` metadata is used to record profile data in the IR.
5791The first operand of the metadata node indicates the profile metadata
5792type. There are currently 3 types:
5793:ref:`branch_weights<prof_node_branch_weights>`,
5794:ref:`function_entry_count<prof_node_function_entry_count>`, and
5795:ref:`VP<prof_node_VP>`.
5796
5797.. _prof_node_branch_weights:
5798
5799branch_weights
5800""""""""""""""
5801
5802Branch weight metadata attached to a branch, select, switch or call instruction
5803represents the likeliness of the associated branch being taken.
5804For more information, see :doc:`BranchWeightMetadata`.
5805
5806.. _prof_node_function_entry_count:
5807
5808function_entry_count
5809""""""""""""""""""""
5810
5811Function entry count metadata can be attached to function definitions
5812to record the number of times the function is called. Used with BFI
5813information, it is also used to derive the basic block profile count.
5814For more information, see :doc:`BranchWeightMetadata`.
5815
5816.. _prof_node_VP:
5817
5818VP
5819""
5820
5821VP (value profile) metadata can be attached to instructions that have
5822value profile information. Currently this is indirect calls (where it
5823records the hottest callees) and calls to memory intrinsics such as memcpy,
5824memmove, and memset (where it records the hottest byte lengths).
5825
5826Each VP metadata node contains "VP" string, then a uint32_t value for the value
5827profiling kind, a uint64_t value for the total number of times the instruction
5828is executed, followed by uint64_t value and execution count pairs.
5829The value profiling kind is 0 for indirect call targets and 1 for memory
5830operations. For indirect call targets, each profile value is a hash
5831of the callee function name, and for memory operations each value is the
5832byte length.
5833
5834Note that the value counts do not need to add up to the total count
5835listed in the third operand (in practice only the top hottest values
5836are tracked and reported).
5837
5838Indirect call example:
5839
5840.. code-block:: llvm
5841
5842 call void %f(), !prof !1
5843 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5844
5845Note that the VP type is 0 (the second operand), which indicates this is
5846an indirect call value profile data. The third operand indicates that the
5847indirect call executed 1600 times. The 4th and 6th operands give the
5848hashes of the 2 hottest target functions' names (this is the same hash used
5849to represent function names in the profile database), and the 5th and 7th
5850operands give the execution count that each of the respective prior target
5851functions was called.
5852
Sean Silvab084af42012-12-07 10:36:55 +00005853Module Flags Metadata
5854=====================
5855
5856Information about the module as a whole is difficult to convey to LLVM's
5857subsystems. The LLVM IR isn't sufficient to transmit this information.
5858The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005859this. These flags are in the form of key / value pairs --- much like a
5860dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005861look it up.
5862
5863The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5864Each triplet has the following form:
5865
5866- The first element is a *behavior* flag, which specifies the behavior
5867 when two (or more) modules are merged together, and it encounters two
5868 (or more) metadata with the same ID. The supported behaviors are
5869 described below.
5870- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005871 metadata. Each module may only have one flag entry for each unique ID (not
5872 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005873- The third element is the value of the flag.
5874
5875When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005876``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5877each unique metadata ID string, there will be exactly one entry in the merged
5878modules ``llvm.module.flags`` metadata table, and the value for that entry will
5879be determined by the merge behavior flag, as described below. The only exception
5880is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005881
5882The following behaviors are supported:
5883
5884.. list-table::
5885 :header-rows: 1
5886 :widths: 10 90
5887
5888 * - Value
5889 - Behavior
5890
5891 * - 1
5892 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005893 Emits an error if two values disagree, otherwise the resulting value
5894 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005895
5896 * - 2
5897 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005898 Emits a warning if two values disagree. The result value will be the
5899 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005900
5901 * - 3
5902 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005903 Adds a requirement that another module flag be present and have a
5904 specified value after linking is performed. The value must be a
5905 metadata pair, where the first element of the pair is the ID of the
5906 module flag to be restricted, and the second element of the pair is
5907 the value the module flag should be restricted to. This behavior can
5908 be used to restrict the allowable results (via triggering of an
5909 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005910
5911 * - 4
5912 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005913 Uses the specified value, regardless of the behavior or value of the
5914 other module. If both modules specify **Override**, but the values
5915 differ, an error will be emitted.
5916
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005917 * - 5
5918 - **Append**
5919 Appends the two values, which are required to be metadata nodes.
5920
5921 * - 6
5922 - **AppendUnique**
5923 Appends the two values, which are required to be metadata
5924 nodes. However, duplicate entries in the second list are dropped
5925 during the append operation.
5926
Steven Wu86a511e2017-08-15 16:16:33 +00005927 * - 7
5928 - **Max**
5929 Takes the max of the two values, which are required to be integers.
5930
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005931It is an error for a particular unique flag ID to have multiple behaviors,
5932except in the case of **Require** (which adds restrictions on another metadata
5933value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005934
5935An example of module flags:
5936
5937.. code-block:: llvm
5938
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005939 !0 = !{ i32 1, !"foo", i32 1 }
5940 !1 = !{ i32 4, !"bar", i32 37 }
5941 !2 = !{ i32 2, !"qux", i32 42 }
5942 !3 = !{ i32 3, !"qux",
5943 !{
5944 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005945 }
5946 }
5947 !llvm.module.flags = !{ !0, !1, !2, !3 }
5948
5949- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5950 if two or more ``!"foo"`` flags are seen is to emit an error if their
5951 values are not equal.
5952
5953- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5954 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005955 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005956
5957- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5958 behavior if two or more ``!"qux"`` flags are seen is to emit a
5959 warning if their values are not equal.
5960
5961- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5962
5963 ::
5964
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005965 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005966
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005967 The behavior is to emit an error if the ``llvm.module.flags`` does not
5968 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5969 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005970
5971Objective-C Garbage Collection Module Flags Metadata
5972----------------------------------------------------
5973
5974On the Mach-O platform, Objective-C stores metadata about garbage
5975collection in a special section called "image info". The metadata
5976consists of a version number and a bitmask specifying what types of
5977garbage collection are supported (if any) by the file. If two or more
5978modules are linked together their garbage collection metadata needs to
5979be merged rather than appended together.
5980
5981The Objective-C garbage collection module flags metadata consists of the
5982following key-value pairs:
5983
5984.. list-table::
5985 :header-rows: 1
5986 :widths: 30 70
5987
5988 * - Key
5989 - Value
5990
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005991 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005992 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005993
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005994 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005995 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005996 always 0.
5997
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005998 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005999 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00006000 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
6001 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
6002 Objective-C ABI version 2.
6003
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00006004 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006005 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00006006 not. Valid values are 0, for no garbage collection, and 2, for garbage
6007 collection supported.
6008
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00006009 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006010 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00006011 If present, its value must be 6. This flag requires that the
6012 ``Objective-C Garbage Collection`` flag have the value 2.
6013
6014Some important flag interactions:
6015
6016- If a module with ``Objective-C Garbage Collection`` set to 0 is
6017 merged with a module with ``Objective-C Garbage Collection`` set to
6018 2, then the resulting module has the
6019 ``Objective-C Garbage Collection`` flag set to 0.
6020- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
6021 merged with a module with ``Objective-C GC Only`` set to 6.
6022
Oliver Stannard5dc29342014-06-20 10:08:11 +00006023C type width Module Flags Metadata
6024----------------------------------
6025
6026The ARM backend emits a section into each generated object file describing the
6027options that it was compiled with (in a compiler-independent way) to prevent
6028linking incompatible objects, and to allow automatic library selection. Some
6029of these options are not visible at the IR level, namely wchar_t width and enum
6030width.
6031
6032To pass this information to the backend, these options are encoded in module
6033flags metadata, using the following key-value pairs:
6034
6035.. list-table::
6036 :header-rows: 1
6037 :widths: 30 70
6038
6039 * - Key
6040 - Value
6041
6042 * - short_wchar
6043 - * 0 --- sizeof(wchar_t) == 4
6044 * 1 --- sizeof(wchar_t) == 2
6045
6046 * - short_enum
6047 - * 0 --- Enums are at least as large as an ``int``.
6048 * 1 --- Enums are stored in the smallest integer type which can
6049 represent all of its values.
6050
6051For example, the following metadata section specifies that the module was
6052compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
6053enum is the smallest type which can represent all of its values::
6054
6055 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00006056 !0 = !{i32 1, !"short_wchar", i32 1}
6057 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00006058
Peter Collingbourne89061b22017-06-12 20:10:48 +00006059Automatic Linker Flags Named Metadata
6060=====================================
6061
6062Some targets support embedding flags to the linker inside individual object
6063files. Typically this is used in conjunction with language extensions which
6064allow source files to explicitly declare the libraries they depend on, and have
6065these automatically be transmitted to the linker via object files.
6066
6067These flags are encoded in the IR using named metadata with the name
6068``!llvm.linker.options``. Each operand is expected to be a metadata node
6069which should be a list of other metadata nodes, each of which should be a
6070list of metadata strings defining linker options.
6071
6072For example, the following metadata section specifies two separate sets of
6073linker options, presumably to link against ``libz`` and the ``Cocoa``
6074framework::
6075
6076 !0 = !{ !"-lz" },
6077 !1 = !{ !"-framework", !"Cocoa" } } }
6078 !llvm.linker.options = !{ !0, !1 }
6079
6080The metadata encoding as lists of lists of options, as opposed to a collapsed
6081list of options, is chosen so that the IR encoding can use multiple option
6082strings to specify e.g., a single library, while still having that specifier be
6083preserved as an atomic element that can be recognized by a target specific
6084assembly writer or object file emitter.
6085
6086Each individual option is required to be either a valid option for the target's
6087linker, or an option that is reserved by the target specific assembly writer or
6088object file emitter. No other aspect of these options is defined by the IR.
6089
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006090.. _summary:
6091
6092ThinLTO Summary
6093===============
6094
6095Compiling with `ThinLTO <https://clang.llvm.org/docs/ThinLTO.html>`_
6096causes the building of a compact summary of the module that is emitted into
6097the bitcode. The summary is emitted into the LLVM assembly and identified
6098in syntax by a caret ('``^``').
6099
Teresa Johnsonab2a7f02018-09-18 13:44:13 +00006100The summary is parsed into a bitcode output, along with the Module
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006101IR, via the "``llvm-as``" tool. Tools that parse the Module IR for the purposes
6102of optimization (e.g. "``clang -x ir``" and "``opt``"), will ignore the
6103summary entries (just as they currently ignore summary entries in a bitcode
6104input file).
6105
Teresa Johnsonab2a7f02018-09-18 13:44:13 +00006106Eventually, the summary will be parsed into a ModuleSummaryIndex object under
6107the same conditions where summary index is currently built from bitcode.
6108Specifically, tools that test the Thin Link portion of a ThinLTO compile
6109(i.e. llvm-lto and llvm-lto2), or when parsing a combined index
6110for a distributed ThinLTO backend via clang's "``-fthinlto-index=<>``" flag
6111(this part is not yet implemented, use llvm-as to create a bitcode object
6112before feeding into thin link tools for now).
6113
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006114There are currently 3 types of summary entries in the LLVM assembly:
6115:ref:`module paths<module_path_summary>`,
6116:ref:`global values<gv_summary>`, and
6117:ref:`type identifiers<typeid_summary>`.
6118
6119.. _module_path_summary:
6120
6121Module Path Summary Entry
6122-------------------------
6123
6124Each module path summary entry lists a module containing global values included
6125in the summary. For a single IR module there will be one such entry, but
6126in a combined summary index produced during the thin link, there will be
6127one module path entry per linked module with summary.
6128
6129Example:
6130
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006131.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006132
6133 ^0 = module: (path: "/path/to/file.o", hash: (2468601609, 1329373163, 1565878005, 638838075, 3148790418))
6134
6135The ``path`` field is a string path to the bitcode file, and the ``hash``
6136field is the 160-bit SHA-1 hash of the IR bitcode contents, used for
6137incremental builds and caching.
6138
6139.. _gv_summary:
6140
6141Global Value Summary Entry
6142--------------------------
6143
6144Each global value summary entry corresponds to a global value defined or
6145referenced by a summarized module.
6146
6147Example:
6148
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006149.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006150
6151 ^4 = gv: (name: "f"[, summaries: (Summary)[, (Summary)]*]?) ; guid = 14740650423002898831
6152
6153For declarations, there will not be a summary list. For definitions, a
6154global value will contain a list of summaries, one per module containing
6155a definition. There can be multiple entries in a combined summary index
6156for symbols with weak linkage.
6157
6158Each ``Summary`` format will depend on whether the global value is a
6159:ref:`function<function_summary>`, :ref:`variable<variable_summary>`, or
6160:ref:`alias<alias_summary>`.
6161
6162.. _function_summary:
6163
6164Function Summary
6165^^^^^^^^^^^^^^^^
6166
6167If the global value is a function, the ``Summary`` entry will look like:
6168
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006169.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006170
6171 function: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), insts: 2[, FuncFlags]?[, Calls]?[, TypeIdInfo]?[, Refs]?
6172
6173The ``module`` field includes the summary entry id for the module containing
6174this definition, and the ``flags`` field contains information such as
6175the linkage type, a flag indicating whether it is legal to import the
6176definition, whether it is globally live and whether the linker resolved it
6177to a local definition (the latter two are populated during the thin link).
6178The ``insts`` field contains the number of IR instructions in the function.
6179Finally, there are several optional fields: :ref:`FuncFlags<funcflags_summary>`,
6180:ref:`Calls<calls_summary>`, :ref:`TypeIdInfo<typeidinfo_summary>`,
6181:ref:`Refs<refs_summary>`.
6182
6183.. _variable_summary:
6184
6185Global Variable Summary
6186^^^^^^^^^^^^^^^^^^^^^^^
6187
6188If the global value is a variable, the ``Summary`` entry will look like:
6189
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006190.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006191
6192 variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0)[, Refs]?
6193
6194The variable entry contains a subset of the fields in a
6195:ref:`function summary <function_summary>`, see the descriptions there.
6196
6197.. _alias_summary:
6198
6199Alias Summary
6200^^^^^^^^^^^^^
6201
6202If the global value is an alias, the ``Summary`` entry will look like:
6203
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006204.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006205
6206 alias: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), aliasee: ^2)
6207
6208The ``module`` and ``flags`` fields are as described for a
6209:ref:`function summary <function_summary>`. The ``aliasee`` field
6210contains a reference to the global value summary entry of the aliasee.
6211
6212.. _funcflags_summary:
6213
6214Function Flags
6215^^^^^^^^^^^^^^
6216
6217The optional ``FuncFlags`` field looks like:
6218
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006219.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006220
6221 funcFlags: (readNone: 0, readOnly: 0, noRecurse: 0, returnDoesNotAlias: 0)
6222
6223If unspecified, flags are assumed to hold the conservative ``false`` value of
6224``0``.
6225
6226.. _calls_summary:
6227
6228Calls
6229^^^^^
6230
6231The optional ``Calls`` field looks like:
6232
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006233.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006234
6235 calls: ((Callee)[, (Callee)]*)
6236
6237where each ``Callee`` looks like:
6238
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006239.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006240
6241 callee: ^1[, hotness: None]?[, relbf: 0]?
6242
6243The ``callee`` refers to the summary entry id of the callee. At most one
6244of ``hotness`` (which can take the values ``Unknown``, ``Cold``, ``None``,
6245``Hot``, and ``Critical``), and ``relbf`` (which holds the integer
6246branch frequency relative to the entry frequency, scaled down by 2^8)
6247may be specified. The defaults are ``Unknown`` and ``0``, respectively.
6248
6249.. _refs_summary:
6250
6251Refs
6252^^^^
6253
6254The optional ``Refs`` field looks like:
6255
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006256.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006257
6258 refs: ((Ref)[, (Ref)]*)
6259
6260where each ``Ref`` contains a reference to the summary id of the referenced
6261value (e.g. ``^1``).
6262
6263.. _typeidinfo_summary:
6264
6265TypeIdInfo
6266^^^^^^^^^^
6267
6268The optional ``TypeIdInfo`` field, used for
6269`Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
6270looks like:
6271
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006272.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006273
6274 typeIdInfo: [(TypeTests)]?[, (TypeTestAssumeVCalls)]?[, (TypeCheckedLoadVCalls)]?[, (TypeTestAssumeConstVCalls)]?[, (TypeCheckedLoadConstVCalls)]?
6275
6276These optional fields have the following forms:
6277
6278TypeTests
6279"""""""""
6280
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006281.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006282
6283 typeTests: (TypeIdRef[, TypeIdRef]*)
6284
6285Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
6286by summary id or ``GUID``.
6287
6288TypeTestAssumeVCalls
6289""""""""""""""""""""
6290
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006291.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006292
6293 typeTestAssumeVCalls: (VFuncId[, VFuncId]*)
6294
6295Where each VFuncId has the format:
6296
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006297.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006298
6299 vFuncId: (TypeIdRef, offset: 16)
6300
6301Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
6302by summary id or ``GUID`` preceeded by a ``guid:`` tag.
6303
6304TypeCheckedLoadVCalls
6305"""""""""""""""""""""
6306
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006307.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006308
6309 typeCheckedLoadVCalls: (VFuncId[, VFuncId]*)
6310
6311Where each VFuncId has the format described for ``TypeTestAssumeVCalls``.
6312
6313TypeTestAssumeConstVCalls
6314"""""""""""""""""""""""""
6315
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006316.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006317
6318 typeTestAssumeConstVCalls: (ConstVCall[, ConstVCall]*)
6319
6320Where each ConstVCall has the format:
6321
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006322.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006323
Teresa Johnsonab2a7f02018-09-18 13:44:13 +00006324 (VFuncId, args: (Arg[, Arg]*))
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006325
6326and where each VFuncId has the format described for ``TypeTestAssumeVCalls``,
6327and each Arg is an integer argument number.
6328
6329TypeCheckedLoadConstVCalls
6330""""""""""""""""""""""""""
6331
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006332.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006333
6334 typeCheckedLoadConstVCalls: (ConstVCall[, ConstVCall]*)
6335
6336Where each ConstVCall has the format described for
6337``TypeTestAssumeConstVCalls``.
6338
6339.. _typeid_summary:
6340
6341Type ID Summary Entry
6342---------------------
6343
6344Each type id summary entry corresponds to a type identifier resolution
6345which is generated during the LTO link portion of the compile when building
6346with `Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
6347so these are only present in a combined summary index.
6348
6349Example:
6350
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006351.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006352
6353 ^4 = typeid: (name: "_ZTS1A", summary: (typeTestRes: (kind: allOnes, sizeM1BitWidth: 7[, alignLog2: 0]?[, sizeM1: 0]?[, bitMask: 0]?[, inlineBits: 0]?)[, WpdResolutions]?)) ; guid = 7004155349499253778
6354
6355The ``typeTestRes`` gives the type test resolution ``kind`` (which may
6356be ``unsat``, ``byteArray``, ``inline``, ``single``, or ``allOnes``), and
6357the ``size-1`` bit width. It is followed by optional flags, which default to 0,
6358and an optional WpdResolutions (whole program devirtualization resolution)
6359field that looks like:
6360
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006361.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006362
6363 wpdResolutions: ((offset: 0, WpdRes)[, (offset: 1, WpdRes)]*
6364
6365where each entry is a mapping from the given byte offset to the whole-program
6366devirtualization resolution WpdRes, that has one of the following formats:
6367
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006368.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006369
6370 wpdRes: (kind: branchFunnel)
6371 wpdRes: (kind: singleImpl, singleImplName: "_ZN1A1nEi")
6372 wpdRes: (kind: indir)
6373
6374Additionally, each wpdRes has an optional ``resByArg`` field, which
6375describes the resolutions for calls with all constant integer arguments:
6376
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006377.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006378
6379 resByArg: (ResByArg[, ResByArg]*)
6380
6381where ResByArg is:
6382
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006383.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006384
6385 args: (Arg[, Arg]*), byArg: (kind: UniformRetVal[, info: 0][, byte: 0][, bit: 0])
6386
6387Where the ``kind`` can be ``Indir``, ``UniformRetVal``, ``UniqueRetVal``
6388or ``VirtualConstProp``. The ``info`` field is only used if the kind
6389is ``UniformRetVal`` (indicates the uniform return value), or
6390``UniqueRetVal`` (holds the return value associated with the unique vtable
6391(0 or 1)). The ``byte`` and ``bit`` fields are only used if the target does
6392not support the use of absolute symbols to store constants.
6393
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006394.. _intrinsicglobalvariables:
6395
Sean Silvab084af42012-12-07 10:36:55 +00006396Intrinsic Global Variables
6397==========================
6398
6399LLVM has a number of "magic" global variables that contain data that
6400affect code generation or other IR semantics. These are documented here.
6401All globals of this sort should have a section specified as
6402"``llvm.metadata``". This section and all globals that start with
6403"``llvm.``" are reserved for use by LLVM.
6404
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006405.. _gv_llvmused:
6406
Sean Silvab084af42012-12-07 10:36:55 +00006407The '``llvm.used``' Global Variable
6408-----------------------------------
6409
Rafael Espindola74f2e462013-04-22 14:58:02 +00006410The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00006411:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00006412pointers to named global variables, functions and aliases which may optionally
6413have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00006414use of it is:
6415
6416.. code-block:: llvm
6417
6418 @X = global i8 4
6419 @Y = global i32 123
6420
6421 @llvm.used = appending global [2 x i8*] [
6422 i8* @X,
6423 i8* bitcast (i32* @Y to i8*)
6424 ], section "llvm.metadata"
6425
Rafael Espindola74f2e462013-04-22 14:58:02 +00006426If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
6427and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00006428symbol that it cannot see (which is why they have to be named). For example, if
6429a variable has internal linkage and no references other than that from the
6430``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
6431references from inline asms and other things the compiler cannot "see", and
6432corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00006433
6434On some targets, the code generator must emit a directive to the
6435assembler or object file to prevent the assembler and linker from
6436molesting the symbol.
6437
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006438.. _gv_llvmcompilerused:
6439
Sean Silvab084af42012-12-07 10:36:55 +00006440The '``llvm.compiler.used``' Global Variable
6441--------------------------------------------
6442
6443The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
6444directive, except that it only prevents the compiler from touching the
6445symbol. On targets that support it, this allows an intelligent linker to
6446optimize references to the symbol without being impeded as it would be
6447by ``@llvm.used``.
6448
6449This is a rare construct that should only be used in rare circumstances,
6450and should not be exposed to source languages.
6451
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006452.. _gv_llvmglobalctors:
6453
Sean Silvab084af42012-12-07 10:36:55 +00006454The '``llvm.global_ctors``' Global Variable
6455-------------------------------------------
6456
6457.. code-block:: llvm
6458
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006459 %0 = type { i32, void ()*, i8* }
6460 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006461
6462The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006463functions, priorities, and an optional associated global or function.
6464The functions referenced by this array will be called in ascending order
6465of priority (i.e. lowest first) when the module is loaded. The order of
6466functions with the same priority is not defined.
6467
6468If the third field is present, non-null, and points to a global variable
6469or function, the initializer function will only run if the associated
6470data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006471
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006472.. _llvmglobaldtors:
6473
Sean Silvab084af42012-12-07 10:36:55 +00006474The '``llvm.global_dtors``' Global Variable
6475-------------------------------------------
6476
6477.. code-block:: llvm
6478
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006479 %0 = type { i32, void ()*, i8* }
6480 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006481
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006482The ``@llvm.global_dtors`` array contains a list of destructor
6483functions, priorities, and an optional associated global or function.
6484The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00006485order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006486order of functions with the same priority is not defined.
6487
6488If the third field is present, non-null, and points to a global variable
6489or function, the destructor function will only run if the associated
6490data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006491
6492Instruction Reference
6493=====================
6494
6495The LLVM instruction set consists of several different classifications
6496of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
6497instructions <binaryops>`, :ref:`bitwise binary
6498instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
6499:ref:`other instructions <otherops>`.
6500
6501.. _terminators:
6502
6503Terminator Instructions
6504-----------------------
6505
6506As mentioned :ref:`previously <functionstructure>`, every basic block in a
6507program ends with a "Terminator" instruction, which indicates which
6508block should be executed after the current block is finished. These
6509terminator instructions typically yield a '``void``' value: they produce
6510control flow, not values (the one exception being the
6511':ref:`invoke <i_invoke>`' instruction).
6512
6513The terminator instructions are: ':ref:`ret <i_ret>`',
6514':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
6515':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
Craig Topper784929d2019-02-08 20:48:56 +00006516':ref:`callbr <i_callbr>`'
David Majnemer8a1c45d2015-12-12 05:38:55 +00006517':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00006518':ref:`catchret <i_catchret>`',
6519':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00006520and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00006521
6522.. _i_ret:
6523
6524'``ret``' Instruction
6525^^^^^^^^^^^^^^^^^^^^^
6526
6527Syntax:
6528"""""""
6529
6530::
6531
6532 ret <type> <value> ; Return a value from a non-void function
6533 ret void ; Return from void function
6534
6535Overview:
6536"""""""""
6537
6538The '``ret``' instruction is used to return control flow (and optionally
6539a value) from a function back to the caller.
6540
6541There are two forms of the '``ret``' instruction: one that returns a
6542value and then causes control flow, and one that just causes control
6543flow to occur.
6544
6545Arguments:
6546""""""""""
6547
6548The '``ret``' instruction optionally accepts a single argument, the
6549return value. The type of the return value must be a ':ref:`first
6550class <t_firstclass>`' type.
6551
Xing GUO454e51b2019-01-18 03:56:37 +00006552A function is not :ref:`well formed <wellformed>` if it has a non-void
Sean Silvab084af42012-12-07 10:36:55 +00006553return type and contains a '``ret``' instruction with no return value or
6554a return value with a type that does not match its type, or if it has a
6555void return type and contains a '``ret``' instruction with a return
6556value.
6557
6558Semantics:
6559""""""""""
6560
6561When the '``ret``' instruction is executed, control flow returns back to
6562the calling function's context. If the caller is a
6563":ref:`call <i_call>`" instruction, execution continues at the
6564instruction after the call. If the caller was an
6565":ref:`invoke <i_invoke>`" instruction, execution continues at the
6566beginning of the "normal" destination block. If the instruction returns
6567a value, that value shall set the call or invoke instruction's return
6568value.
6569
6570Example:
6571""""""""
6572
6573.. code-block:: llvm
6574
6575 ret i32 5 ; Return an integer value of 5
6576 ret void ; Return from a void function
6577 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
6578
6579.. _i_br:
6580
6581'``br``' Instruction
6582^^^^^^^^^^^^^^^^^^^^
6583
6584Syntax:
6585"""""""
6586
6587::
6588
6589 br i1 <cond>, label <iftrue>, label <iffalse>
6590 br label <dest> ; Unconditional branch
6591
6592Overview:
6593"""""""""
6594
6595The '``br``' instruction is used to cause control flow to transfer to a
6596different basic block in the current function. There are two forms of
6597this instruction, corresponding to a conditional branch and an
6598unconditional branch.
6599
6600Arguments:
6601""""""""""
6602
6603The conditional branch form of the '``br``' instruction takes a single
6604'``i1``' value and two '``label``' values. The unconditional form of the
6605'``br``' instruction takes a single '``label``' value as a target.
6606
6607Semantics:
6608""""""""""
6609
6610Upon execution of a conditional '``br``' instruction, the '``i1``'
6611argument is evaluated. If the value is ``true``, control flows to the
6612'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
6613to the '``iffalse``' ``label`` argument.
6614
6615Example:
6616""""""""
6617
6618.. code-block:: llvm
6619
6620 Test:
6621 %cond = icmp eq i32 %a, %b
6622 br i1 %cond, label %IfEqual, label %IfUnequal
6623 IfEqual:
6624 ret i32 1
6625 IfUnequal:
6626 ret i32 0
6627
6628.. _i_switch:
6629
6630'``switch``' Instruction
6631^^^^^^^^^^^^^^^^^^^^^^^^
6632
6633Syntax:
6634"""""""
6635
6636::
6637
6638 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
6639
6640Overview:
6641"""""""""
6642
6643The '``switch``' instruction is used to transfer control flow to one of
6644several different places. It is a generalization of the '``br``'
6645instruction, allowing a branch to occur to one of many possible
6646destinations.
6647
6648Arguments:
6649""""""""""
6650
6651The '``switch``' instruction uses three parameters: an integer
6652comparison value '``value``', a default '``label``' destination, and an
6653array of pairs of comparison value constants and '``label``'s. The table
6654is not allowed to contain duplicate constant entries.
6655
6656Semantics:
6657""""""""""
6658
6659The ``switch`` instruction specifies a table of values and destinations.
6660When the '``switch``' instruction is executed, this table is searched
6661for the given value. If the value is found, control flow is transferred
6662to the corresponding destination; otherwise, control flow is transferred
6663to the default destination.
6664
6665Implementation:
6666"""""""""""""""
6667
6668Depending on properties of the target machine and the particular
6669``switch`` instruction, this instruction may be code generated in
6670different ways. For example, it could be generated as a series of
6671chained conditional branches or with a lookup table.
6672
6673Example:
6674""""""""
6675
6676.. code-block:: llvm
6677
6678 ; Emulate a conditional br instruction
6679 %Val = zext i1 %value to i32
6680 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
6681
6682 ; Emulate an unconditional br instruction
6683 switch i32 0, label %dest [ ]
6684
6685 ; Implement a jump table:
6686 switch i32 %val, label %otherwise [ i32 0, label %onzero
6687 i32 1, label %onone
6688 i32 2, label %ontwo ]
6689
6690.. _i_indirectbr:
6691
6692'``indirectbr``' Instruction
6693^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6694
6695Syntax:
6696"""""""
6697
6698::
6699
6700 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
6701
6702Overview:
6703"""""""""
6704
6705The '``indirectbr``' instruction implements an indirect branch to a
6706label within the current function, whose address is specified by
6707"``address``". Address must be derived from a
6708:ref:`blockaddress <blockaddress>` constant.
6709
6710Arguments:
6711""""""""""
6712
6713The '``address``' argument is the address of the label to jump to. The
6714rest of the arguments indicate the full set of possible destinations
6715that the address may point to. Blocks are allowed to occur multiple
6716times in the destination list, though this isn't particularly useful.
6717
6718This destination list is required so that dataflow analysis has an
6719accurate understanding of the CFG.
6720
6721Semantics:
6722""""""""""
6723
6724Control transfers to the block specified in the address argument. All
6725possible destination blocks must be listed in the label list, otherwise
6726this instruction has undefined behavior. This implies that jumps to
6727labels defined in other functions have undefined behavior as well.
6728
6729Implementation:
6730"""""""""""""""
6731
6732This is typically implemented with a jump through a register.
6733
6734Example:
6735""""""""
6736
6737.. code-block:: llvm
6738
6739 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
6740
6741.. _i_invoke:
6742
6743'``invoke``' Instruction
6744^^^^^^^^^^^^^^^^^^^^^^^^
6745
6746Syntax:
6747"""""""
6748
6749::
6750
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00006751 <result> = invoke [cconv] [ret attrs] [addrspace(<num>)] [<ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006752 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00006753
6754Overview:
6755"""""""""
6756
6757The '``invoke``' instruction causes control to transfer to a specified
6758function, with the possibility of control flow transfer to either the
6759'``normal``' label or the '``exception``' label. If the callee function
6760returns with the "``ret``" instruction, control flow will return to the
6761"normal" label. If the callee (or any indirect callees) returns via the
6762":ref:`resume <i_resume>`" instruction or other exception handling
6763mechanism, control is interrupted and continued at the dynamically
6764nearest "exception" label.
6765
6766The '``exception``' label is a `landing
6767pad <ExceptionHandling.html#overview>`_ for the exception. As such,
6768'``exception``' label is required to have the
6769":ref:`landingpad <i_landingpad>`" instruction, which contains the
6770information about the behavior of the program after unwinding happens,
6771as its first non-PHI instruction. The restrictions on the
6772"``landingpad``" instruction's tightly couples it to the "``invoke``"
6773instruction, so that the important information contained within the
6774"``landingpad``" instruction can't be lost through normal code motion.
6775
6776Arguments:
6777""""""""""
6778
6779This instruction requires several arguments:
6780
6781#. The optional "cconv" marker indicates which :ref:`calling
6782 convention <callingconv>` the call should use. If none is
6783 specified, the call defaults to using C calling conventions.
6784#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6785 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6786 are valid here.
Craig Topper78e7fff2019-01-16 00:21:59 +00006787#. The optional addrspace attribute can be used to indicate the address space
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00006788 of the called function. If it is not specified, the program address space
6789 from the :ref:`datalayout string<langref_datalayout>` will be used.
David Blaikieb83cf102016-07-13 17:21:34 +00006790#. '``ty``': the type of the call instruction itself which is also the
6791 type of the return value. Functions that return no value are marked
6792 ``void``.
6793#. '``fnty``': shall be the signature of the function being invoked. The
6794 argument types must match the types implied by this signature. This
6795 type can be omitted if the function is not varargs.
6796#. '``fnptrval``': An LLVM value containing a pointer to a function to
6797 be invoked. In most cases, this is a direct function invocation, but
6798 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
6799 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00006800#. '``function args``': argument list whose types match the function
6801 signature argument types and parameter attributes. All arguments must
6802 be of :ref:`first class <t_firstclass>` type. If the function signature
6803 indicates the function accepts a variable number of arguments, the
6804 extra arguments can be specified.
6805#. '``normal label``': the label reached when the called function
6806 executes a '``ret``' instruction.
6807#. '``exception label``': the label reached when a callee returns via
6808 the :ref:`resume <i_resume>` instruction or other exception handling
6809 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00006810#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006811#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00006812
6813Semantics:
6814""""""""""
6815
6816This instruction is designed to operate as a standard '``call``'
6817instruction in most regards. The primary difference is that it
6818establishes an association with a label, which is used by the runtime
6819library to unwind the stack.
6820
6821This instruction is used in languages with destructors to ensure that
6822proper cleanup is performed in the case of either a ``longjmp`` or a
6823thrown exception. Additionally, this is important for implementation of
6824'``catch``' clauses in high-level languages that support them.
6825
6826For the purposes of the SSA form, the definition of the value returned
6827by the '``invoke``' instruction is deemed to occur on the edge from the
6828current block to the "normal" label. If the callee unwinds then no
6829return value is available.
6830
6831Example:
6832""""""""
6833
6834.. code-block:: llvm
6835
6836 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006837 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006838 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006839 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006840
Craig Topper784929d2019-02-08 20:48:56 +00006841.. _i_callbr:
6842
6843'``callbr``' Instruction
6844^^^^^^^^^^^^^^^^^^^^^^^^
6845
6846Syntax:
6847"""""""
6848
6849::
6850
6851 <result> = callbr [cconv] [ret attrs] [addrspace(<num>)] [<ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
6852 [operand bundles] to label <normal label> or jump [other labels]
6853
6854Overview:
6855"""""""""
6856
6857The '``callbr``' instruction causes control to transfer to a specified
6858function, with the possibility of control flow transfer to either the
6859'``normal``' label or one of the '``other``' labels.
6860
6861This instruction should only be used to implement the "goto" feature of gcc
6862style inline assembly. Any other usage is an error in the IR verifier.
6863
6864Arguments:
6865""""""""""
6866
6867This instruction requires several arguments:
6868
6869#. The optional "cconv" marker indicates which :ref:`calling
6870 convention <callingconv>` the call should use. If none is
6871 specified, the call defaults to using C calling conventions.
6872#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6873 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6874 are valid here.
6875#. The optional addrspace attribute can be used to indicate the address space
6876 of the called function. If it is not specified, the program address space
6877 from the :ref:`datalayout string<langref_datalayout>` will be used.
6878#. '``ty``': the type of the call instruction itself which is also the
6879 type of the return value. Functions that return no value are marked
6880 ``void``.
6881#. '``fnty``': shall be the signature of the function being called. The
6882 argument types must match the types implied by this signature. This
6883 type can be omitted if the function is not varargs.
6884#. '``fnptrval``': An LLVM value containing a pointer to a function to
6885 be called. In most cases, this is a direct function call, but
6886 indirect ``callbr``'s are just as possible, calling an arbitrary pointer
6887 to function value.
6888#. '``function args``': argument list whose types match the function
6889 signature argument types and parameter attributes. All arguments must
6890 be of :ref:`first class <t_firstclass>` type. If the function signature
6891 indicates the function accepts a variable number of arguments, the
6892 extra arguments can be specified.
6893#. '``normal label``': the label reached when the called function
6894 executes a '``ret``' instruction.
6895#. '``other labels``': the labels reached when a callee transfers control
6896 to a location other than the normal '``normal label``'
6897#. The optional :ref:`function attributes <fnattrs>` list.
6898#. The optional :ref:`operand bundles <opbundles>` list.
6899
6900Semantics:
6901""""""""""
6902
6903This instruction is designed to operate as a standard '``call``'
6904instruction in most regards. The primary difference is that it
6905establishes an association with additional labels to define where control
6906flow goes after the call.
6907
6908The only use of this today is to implement the "goto" feature of gcc inline
6909assembly where additional labels can be provided as locations for the inline
6910assembly to jump to.
6911
6912Example:
6913""""""""
6914
Craig Toppere08e2b62019-02-08 21:09:33 +00006915.. code-block:: text
Craig Topper784929d2019-02-08 20:48:56 +00006916
6917 callbr void asm "", "r,x"(i32 %x, i8 *blockaddress(@foo, %fail))
6918 to label %normal or jump [label %fail]
6919
Sean Silvab084af42012-12-07 10:36:55 +00006920.. _i_resume:
6921
6922'``resume``' Instruction
6923^^^^^^^^^^^^^^^^^^^^^^^^
6924
6925Syntax:
6926"""""""
6927
6928::
6929
6930 resume <type> <value>
6931
6932Overview:
6933"""""""""
6934
6935The '``resume``' instruction is a terminator instruction that has no
6936successors.
6937
6938Arguments:
6939""""""""""
6940
6941The '``resume``' instruction requires one argument, which must have the
6942same type as the result of any '``landingpad``' instruction in the same
6943function.
6944
6945Semantics:
6946""""""""""
6947
6948The '``resume``' instruction resumes propagation of an existing
6949(in-flight) exception whose unwinding was interrupted with a
6950:ref:`landingpad <i_landingpad>` instruction.
6951
6952Example:
6953""""""""
6954
6955.. code-block:: llvm
6956
6957 resume { i8*, i32 } %exn
6958
David Majnemer8a1c45d2015-12-12 05:38:55 +00006959.. _i_catchswitch:
6960
6961'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00006962^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00006963
6964Syntax:
6965"""""""
6966
6967::
6968
6969 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6970 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6971
6972Overview:
6973"""""""""
6974
6975The '``catchswitch``' instruction is used by `LLVM's exception handling system
6976<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6977that may be executed by the :ref:`EH personality routine <personalityfn>`.
6978
6979Arguments:
6980""""""""""
6981
6982The ``parent`` argument is the token of the funclet that contains the
6983``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6984this operand may be the token ``none``.
6985
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006986The ``default`` argument is the label of another basic block beginning with
6987either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6988must be a legal target with respect to the ``parent`` links, as described in
6989the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006990
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006991The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006992:ref:`catchpad <i_catchpad>` instruction.
6993
6994Semantics:
6995""""""""""
6996
6997Executing this instruction transfers control to one of the successors in
6998``handlers``, if appropriate, or continues to unwind via the unwind label if
6999present.
7000
7001The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
7002it must be both the first non-phi instruction and last instruction in the basic
7003block. Therefore, it must be the only non-phi instruction in the block.
7004
7005Example:
7006""""""""
7007
Renato Golin124f2592016-07-20 12:16:38 +00007008.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00007009
7010 dispatch1:
7011 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
7012 dispatch2:
7013 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
7014
David Majnemer654e1302015-07-31 17:58:14 +00007015.. _i_catchret:
7016
7017'``catchret``' Instruction
7018^^^^^^^^^^^^^^^^^^^^^^^^^^
7019
7020Syntax:
7021"""""""
7022
7023::
7024
David Majnemer8a1c45d2015-12-12 05:38:55 +00007025 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00007026
7027Overview:
7028"""""""""
7029
7030The '``catchret``' instruction is a terminator instruction that has a
7031single successor.
7032
7033
7034Arguments:
7035""""""""""
7036
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00007037The first argument to a '``catchret``' indicates which ``catchpad`` it
7038exits. It must be a :ref:`catchpad <i_catchpad>`.
7039The second argument to a '``catchret``' specifies where control will
7040transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00007041
7042Semantics:
7043""""""""""
7044
David Majnemer8a1c45d2015-12-12 05:38:55 +00007045The '``catchret``' instruction ends an existing (in-flight) exception whose
7046unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
7047:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
7048code to, for example, destroy the active exception. Control then transfers to
7049``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00007050
Joseph Tremoulete28885e2016-01-10 04:28:38 +00007051The ``token`` argument must be a token produced by a ``catchpad`` instruction.
7052If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
7053funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
7054the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00007055
7056Example:
7057""""""""
7058
Renato Golin124f2592016-07-20 12:16:38 +00007059.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00007060
David Majnemer8a1c45d2015-12-12 05:38:55 +00007061 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00007062
David Majnemer654e1302015-07-31 17:58:14 +00007063.. _i_cleanupret:
7064
7065'``cleanupret``' Instruction
7066^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7067
7068Syntax:
7069"""""""
7070
7071::
7072
David Majnemer8a1c45d2015-12-12 05:38:55 +00007073 cleanupret from <value> unwind label <continue>
7074 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00007075
7076Overview:
7077"""""""""
7078
7079The '``cleanupret``' instruction is a terminator instruction that has
7080an optional successor.
7081
7082
7083Arguments:
7084""""""""""
7085
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00007086The '``cleanupret``' instruction requires one argument, which indicates
7087which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00007088If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
7089funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
7090the ``cleanupret``'s behavior is undefined.
7091
7092The '``cleanupret``' instruction also has an optional successor, ``continue``,
7093which must be the label of another basic block beginning with either a
7094``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
7095be a legal target with respect to the ``parent`` links, as described in the
7096`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00007097
7098Semantics:
7099""""""""""
7100
7101The '``cleanupret``' instruction indicates to the
7102:ref:`personality function <personalityfn>` that one
7103:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
7104It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00007105
David Majnemer654e1302015-07-31 17:58:14 +00007106Example:
7107""""""""
7108
Renato Golin124f2592016-07-20 12:16:38 +00007109.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00007110
David Majnemer8a1c45d2015-12-12 05:38:55 +00007111 cleanupret from %cleanup unwind to caller
7112 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00007113
Sean Silvab084af42012-12-07 10:36:55 +00007114.. _i_unreachable:
7115
7116'``unreachable``' Instruction
7117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7118
7119Syntax:
7120"""""""
7121
7122::
7123
7124 unreachable
7125
7126Overview:
7127"""""""""
7128
7129The '``unreachable``' instruction has no defined semantics. This
7130instruction is used to inform the optimizer that a particular portion of
7131the code is not reachable. This can be used to indicate that the code
7132after a no-return function cannot be reached, and other facts.
7133
7134Semantics:
7135""""""""""
7136
7137The '``unreachable``' instruction has no defined semantics.
7138
Cameron McInallye4ee9842018-11-16 19:52:59 +00007139.. _unaryops:
7140
7141Unary Operations
7142-----------------
7143
7144Unary operators require a single operand, execute an operation on
7145it, and produce a single value. The operand might represent multiple
7146data, as is the case with the :ref:`vector <t_vector>` data type. The
7147result value has the same type as its operand.
7148
7149.. _i_fneg:
7150
7151'``fneg``' Instruction
7152^^^^^^^^^^^^^^^^^^^^^^
7153
7154Syntax:
7155"""""""
7156
7157::
7158
7159 <result> = fneg [fast-math flags]* <ty> <op1> ; yields ty:result
7160
7161Overview:
7162"""""""""
7163
7164The '``fneg``' instruction returns the negation of its operand.
7165
7166Arguments:
7167""""""""""
7168
7169The argument to the '``fneg``' instruction must be a
7170:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Michael Kruse978ba612018-12-20 04:58:07 +00007171floating-point values.
Cameron McInallye4ee9842018-11-16 19:52:59 +00007172
7173Semantics:
7174""""""""""
7175
7176The value produced is a copy of the operand with its sign bit flipped.
7177This instruction can also take any number of :ref:`fast-math
7178flags <fastmath>`, which are optimization hints to enable otherwise
7179unsafe floating-point optimizations:
7180
7181Example:
7182""""""""
7183
7184.. code-block:: text
7185
7186 <result> = fneg float %val ; yields float:result = -%var
7187
Sean Silvab084af42012-12-07 10:36:55 +00007188.. _binaryops:
7189
7190Binary Operations
7191-----------------
7192
7193Binary operators are used to do most of the computation in a program.
7194They require two operands of the same type, execute an operation on
7195them, and produce a single value. The operands might represent multiple
7196data, as is the case with the :ref:`vector <t_vector>` data type. The
7197result value has the same type as its operands.
7198
7199There are several different binary operators:
7200
7201.. _i_add:
7202
7203'``add``' Instruction
7204^^^^^^^^^^^^^^^^^^^^^
7205
7206Syntax:
7207"""""""
7208
7209::
7210
Tim Northover675a0962014-06-13 14:24:23 +00007211 <result> = add <ty> <op1>, <op2> ; yields ty:result
7212 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
7213 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
7214 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007215
7216Overview:
7217"""""""""
7218
7219The '``add``' instruction returns the sum of its two operands.
7220
7221Arguments:
7222""""""""""
7223
7224The two arguments to the '``add``' instruction must be
7225:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7226arguments must have identical types.
7227
7228Semantics:
7229""""""""""
7230
7231The value produced is the integer sum of the two operands.
7232
7233If the sum has unsigned overflow, the result returned is the
7234mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
7235the result.
7236
7237Because LLVM integers use a two's complement representation, this
7238instruction is appropriate for both signed and unsigned integers.
7239
7240``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7241respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7242result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
7243unsigned and/or signed overflow, respectively, occurs.
7244
7245Example:
7246""""""""
7247
Renato Golin124f2592016-07-20 12:16:38 +00007248.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007249
Tim Northover675a0962014-06-13 14:24:23 +00007250 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00007251
7252.. _i_fadd:
7253
7254'``fadd``' Instruction
7255^^^^^^^^^^^^^^^^^^^^^^
7256
7257Syntax:
7258"""""""
7259
7260::
7261
Tim Northover675a0962014-06-13 14:24:23 +00007262 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007263
7264Overview:
7265"""""""""
7266
7267The '``fadd``' instruction returns the sum of its two operands.
7268
7269Arguments:
7270""""""""""
7271
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007272The two arguments to the '``fadd``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007273:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007274floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007275
7276Semantics:
7277""""""""""
7278
Sanjay Patel7b722402018-03-07 17:18:22 +00007279The value produced is the floating-point sum of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007280This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007281environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00007282This instruction can also take any number of :ref:`fast-math
7283flags <fastmath>`, which are optimization hints to enable otherwise
7284unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007285
7286Example:
7287""""""""
7288
Renato Golin124f2592016-07-20 12:16:38 +00007289.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007290
Tim Northover675a0962014-06-13 14:24:23 +00007291 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00007292
7293'``sub``' Instruction
7294^^^^^^^^^^^^^^^^^^^^^
7295
7296Syntax:
7297"""""""
7298
7299::
7300
Tim Northover675a0962014-06-13 14:24:23 +00007301 <result> = sub <ty> <op1>, <op2> ; yields ty:result
7302 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
7303 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
7304 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007305
7306Overview:
7307"""""""""
7308
7309The '``sub``' instruction returns the difference of its two operands.
7310
7311Note that the '``sub``' instruction is used to represent the '``neg``'
7312instruction present in most other intermediate representations.
7313
7314Arguments:
7315""""""""""
7316
7317The two arguments to the '``sub``' instruction must be
7318:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7319arguments must have identical types.
7320
7321Semantics:
7322""""""""""
7323
7324The value produced is the integer difference of the two operands.
7325
7326If the difference has unsigned overflow, the result returned is the
7327mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
7328the result.
7329
7330Because LLVM integers use a two's complement representation, this
7331instruction is appropriate for both signed and unsigned integers.
7332
7333``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7334respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7335result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
7336unsigned and/or signed overflow, respectively, occurs.
7337
7338Example:
7339""""""""
7340
Renato Golin124f2592016-07-20 12:16:38 +00007341.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007342
Tim Northover675a0962014-06-13 14:24:23 +00007343 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
7344 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00007345
7346.. _i_fsub:
7347
7348'``fsub``' Instruction
7349^^^^^^^^^^^^^^^^^^^^^^
7350
7351Syntax:
7352"""""""
7353
7354::
7355
Tim Northover675a0962014-06-13 14:24:23 +00007356 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007357
7358Overview:
7359"""""""""
7360
7361The '``fsub``' instruction returns the difference of its two operands.
7362
Sean Silvab084af42012-12-07 10:36:55 +00007363Arguments:
7364""""""""""
7365
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007366The two arguments to the '``fsub``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007367:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007368floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007369
7370Semantics:
7371""""""""""
7372
Sanjay Patel7b722402018-03-07 17:18:22 +00007373The value produced is the floating-point difference of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007374This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007375environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007376This instruction can also take any number of :ref:`fast-math
7377flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007378unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007379
7380Example:
7381""""""""
7382
Renato Golin124f2592016-07-20 12:16:38 +00007383.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007384
Tim Northover675a0962014-06-13 14:24:23 +00007385 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
7386 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00007387
7388'``mul``' Instruction
7389^^^^^^^^^^^^^^^^^^^^^
7390
7391Syntax:
7392"""""""
7393
7394::
7395
Tim Northover675a0962014-06-13 14:24:23 +00007396 <result> = mul <ty> <op1>, <op2> ; yields ty:result
7397 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
7398 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
7399 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007400
7401Overview:
7402"""""""""
7403
7404The '``mul``' instruction returns the product of its two operands.
7405
7406Arguments:
7407""""""""""
7408
7409The two arguments to the '``mul``' instruction must be
7410:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7411arguments must have identical types.
7412
7413Semantics:
7414""""""""""
7415
7416The value produced is the integer product of the two operands.
7417
7418If the result of the multiplication has unsigned overflow, the result
7419returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
7420bit width of the result.
7421
7422Because LLVM integers use a two's complement representation, and the
7423result is the same width as the operands, this instruction returns the
7424correct result for both signed and unsigned integers. If a full product
7425(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
7426sign-extended or zero-extended as appropriate to the width of the full
7427product.
7428
7429``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7430respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7431result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
7432unsigned and/or signed overflow, respectively, occurs.
7433
7434Example:
7435""""""""
7436
Renato Golin124f2592016-07-20 12:16:38 +00007437.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007438
Tim Northover675a0962014-06-13 14:24:23 +00007439 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00007440
7441.. _i_fmul:
7442
7443'``fmul``' Instruction
7444^^^^^^^^^^^^^^^^^^^^^^
7445
7446Syntax:
7447"""""""
7448
7449::
7450
Tim Northover675a0962014-06-13 14:24:23 +00007451 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007452
7453Overview:
7454"""""""""
7455
7456The '``fmul``' instruction returns the product of its two operands.
7457
7458Arguments:
7459""""""""""
7460
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007461The two arguments to the '``fmul``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007462:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007463floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007464
7465Semantics:
7466""""""""""
7467
Sanjay Patel7b722402018-03-07 17:18:22 +00007468The value produced is the floating-point product of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007469This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007470environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007471This instruction can also take any number of :ref:`fast-math
7472flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007473unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007474
7475Example:
7476""""""""
7477
Renato Golin124f2592016-07-20 12:16:38 +00007478.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007479
Tim Northover675a0962014-06-13 14:24:23 +00007480 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00007481
7482'``udiv``' Instruction
7483^^^^^^^^^^^^^^^^^^^^^^
7484
7485Syntax:
7486"""""""
7487
7488::
7489
Tim Northover675a0962014-06-13 14:24:23 +00007490 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
7491 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007492
7493Overview:
7494"""""""""
7495
7496The '``udiv``' instruction returns the quotient of its two operands.
7497
7498Arguments:
7499""""""""""
7500
7501The two arguments to the '``udiv``' instruction must be
7502:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7503arguments must have identical types.
7504
7505Semantics:
7506""""""""""
7507
7508The value produced is the unsigned integer quotient of the two operands.
7509
7510Note that unsigned integer division and signed integer division are
7511distinct operations; for signed integer division, use '``sdiv``'.
7512
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007513Division by zero is undefined behavior. For vectors, if any element
7514of the divisor is zero, the operation has undefined behavior.
7515
Sean Silvab084af42012-12-07 10:36:55 +00007516
7517If the ``exact`` keyword is present, the result value of the ``udiv`` is
7518a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
7519such, "((a udiv exact b) mul b) == a").
7520
7521Example:
7522""""""""
7523
Renato Golin124f2592016-07-20 12:16:38 +00007524.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007525
Tim Northover675a0962014-06-13 14:24:23 +00007526 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007527
7528'``sdiv``' Instruction
7529^^^^^^^^^^^^^^^^^^^^^^
7530
7531Syntax:
7532"""""""
7533
7534::
7535
Tim Northover675a0962014-06-13 14:24:23 +00007536 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
7537 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007538
7539Overview:
7540"""""""""
7541
7542The '``sdiv``' instruction returns the quotient of its two operands.
7543
7544Arguments:
7545""""""""""
7546
7547The two arguments to the '``sdiv``' instruction must be
7548:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7549arguments must have identical types.
7550
7551Semantics:
7552""""""""""
7553
7554The value produced is the signed integer quotient of the two operands
7555rounded towards zero.
7556
7557Note that signed integer division and unsigned integer division are
7558distinct operations; for unsigned integer division, use '``udiv``'.
7559
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007560Division by zero is undefined behavior. For vectors, if any element
7561of the divisor is zero, the operation has undefined behavior.
7562Overflow also leads to undefined behavior; this is a rare case, but can
7563occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00007564
7565If the ``exact`` keyword is present, the result value of the ``sdiv`` is
7566a :ref:`poison value <poisonvalues>` if the result would be rounded.
7567
7568Example:
7569""""""""
7570
Renato Golin124f2592016-07-20 12:16:38 +00007571.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007572
Tim Northover675a0962014-06-13 14:24:23 +00007573 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007574
7575.. _i_fdiv:
7576
7577'``fdiv``' Instruction
7578^^^^^^^^^^^^^^^^^^^^^^
7579
7580Syntax:
7581"""""""
7582
7583::
7584
Tim Northover675a0962014-06-13 14:24:23 +00007585 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007586
7587Overview:
7588"""""""""
7589
7590The '``fdiv``' instruction returns the quotient of its two operands.
7591
7592Arguments:
7593""""""""""
7594
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007595The two arguments to the '``fdiv``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007596:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007597floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007598
7599Semantics:
7600""""""""""
7601
Sanjay Patel7b722402018-03-07 17:18:22 +00007602The value produced is the floating-point quotient of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007603This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007604environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007605This instruction can also take any number of :ref:`fast-math
7606flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007607unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007608
7609Example:
7610""""""""
7611
Renato Golin124f2592016-07-20 12:16:38 +00007612.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007613
Tim Northover675a0962014-06-13 14:24:23 +00007614 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007615
7616'``urem``' Instruction
7617^^^^^^^^^^^^^^^^^^^^^^
7618
7619Syntax:
7620"""""""
7621
7622::
7623
Tim Northover675a0962014-06-13 14:24:23 +00007624 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007625
7626Overview:
7627"""""""""
7628
7629The '``urem``' instruction returns the remainder from the unsigned
7630division of its two arguments.
7631
7632Arguments:
7633""""""""""
7634
7635The two arguments to the '``urem``' instruction must be
7636:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7637arguments must have identical types.
7638
7639Semantics:
7640""""""""""
7641
7642This instruction returns the unsigned integer *remainder* of a division.
7643This instruction always performs an unsigned division to get the
7644remainder.
7645
7646Note that unsigned integer remainder and signed integer remainder are
7647distinct operations; for signed integer remainder, use '``srem``'.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007648
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007649Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007650For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007651undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007652
7653Example:
7654""""""""
7655
Renato Golin124f2592016-07-20 12:16:38 +00007656.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007657
Tim Northover675a0962014-06-13 14:24:23 +00007658 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007659
7660'``srem``' Instruction
7661^^^^^^^^^^^^^^^^^^^^^^
7662
7663Syntax:
7664"""""""
7665
7666::
7667
Tim Northover675a0962014-06-13 14:24:23 +00007668 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007669
7670Overview:
7671"""""""""
7672
7673The '``srem``' instruction returns the remainder from the signed
7674division of its two operands. This instruction can also take
7675:ref:`vector <t_vector>` versions of the values in which case the elements
7676must be integers.
7677
7678Arguments:
7679""""""""""
7680
7681The two arguments to the '``srem``' instruction must be
7682:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7683arguments must have identical types.
7684
7685Semantics:
7686""""""""""
7687
7688This instruction returns the *remainder* of a division (where the result
7689is either zero or has the same sign as the dividend, ``op1``), not the
7690*modulo* operator (where the result is either zero or has the same sign
7691as the divisor, ``op2``) of a value. For more information about the
7692difference, see `The Math
7693Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
7694table of how this is implemented in various languages, please see
7695`Wikipedia: modulo
7696operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
7697
7698Note that signed integer remainder and unsigned integer remainder are
7699distinct operations; for unsigned integer remainder, use '``urem``'.
7700
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007701Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007702For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007703undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007704Overflow also leads to undefined behavior; this is a rare case, but can
7705occur, for example, by taking the remainder of a 32-bit division of
7706-2147483648 by -1. (The remainder doesn't actually overflow, but this
7707rule lets srem be implemented using instructions that return both the
7708result of the division and the remainder.)
7709
7710Example:
7711""""""""
7712
Renato Golin124f2592016-07-20 12:16:38 +00007713.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007714
Tim Northover675a0962014-06-13 14:24:23 +00007715 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007716
7717.. _i_frem:
7718
7719'``frem``' Instruction
7720^^^^^^^^^^^^^^^^^^^^^^
7721
7722Syntax:
7723"""""""
7724
7725::
7726
Tim Northover675a0962014-06-13 14:24:23 +00007727 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007728
7729Overview:
7730"""""""""
7731
7732The '``frem``' instruction returns the remainder from the division of
7733its two operands.
7734
7735Arguments:
7736""""""""""
7737
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007738The two arguments to the '``frem``' instruction must be
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007739:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007740floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007741
7742Semantics:
7743""""""""""
7744
Sanjay Patel7b722402018-03-07 17:18:22 +00007745The value produced is the floating-point remainder of the two operands.
7746This is the same output as a libm '``fmod``' function, but without any
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007747possibility of setting ``errno``. The remainder has the same sign as the
Sanjay Patel7b722402018-03-07 17:18:22 +00007748dividend.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007749This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00007750environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00007751This instruction can also take any number of :ref:`fast-math
7752flags <fastmath>`, which are optimization hints to enable otherwise
7753unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007754
7755Example:
7756""""""""
7757
Renato Golin124f2592016-07-20 12:16:38 +00007758.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007759
Tim Northover675a0962014-06-13 14:24:23 +00007760 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007761
7762.. _bitwiseops:
7763
7764Bitwise Binary Operations
7765-------------------------
7766
7767Bitwise binary operators are used to do various forms of bit-twiddling
7768in a program. They are generally very efficient instructions and can
7769commonly be strength reduced from other instructions. They require two
7770operands of the same type, execute an operation on them, and produce a
7771single value. The resulting value is the same type as its operands.
7772
7773'``shl``' Instruction
7774^^^^^^^^^^^^^^^^^^^^^
7775
7776Syntax:
7777"""""""
7778
7779::
7780
Tim Northover675a0962014-06-13 14:24:23 +00007781 <result> = shl <ty> <op1>, <op2> ; yields ty:result
7782 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
7783 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
7784 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007785
7786Overview:
7787"""""""""
7788
7789The '``shl``' instruction returns the first operand shifted to the left
7790a specified number of bits.
7791
7792Arguments:
7793""""""""""
7794
7795Both arguments to the '``shl``' instruction must be the same
7796:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7797'``op2``' is treated as an unsigned value.
7798
7799Semantics:
7800""""""""""
7801
7802The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
7803where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00007804dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007805``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
7806If the arguments are vectors, each vector element of ``op1`` is shifted
7807by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007808
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007809If the ``nuw`` keyword is present, then the shift produces a poison
7810value if it shifts out any non-zero bits.
7811If the ``nsw`` keyword is present, then the shift produces a poison
Sanjay Patel2896c772018-06-01 15:21:14 +00007812value if it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00007813
7814Example:
7815""""""""
7816
Renato Golin124f2592016-07-20 12:16:38 +00007817.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007818
Tim Northover675a0962014-06-13 14:24:23 +00007819 <result> = shl i32 4, %var ; yields i32: 4 << %var
7820 <result> = shl i32 4, 2 ; yields i32: 16
7821 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00007822 <result> = shl i32 1, 32 ; undefined
7823 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
7824
7825'``lshr``' Instruction
7826^^^^^^^^^^^^^^^^^^^^^^
7827
7828Syntax:
7829"""""""
7830
7831::
7832
Tim Northover675a0962014-06-13 14:24:23 +00007833 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
7834 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007835
7836Overview:
7837"""""""""
7838
7839The '``lshr``' instruction (logical shift right) returns the first
7840operand shifted to the right a specified number of bits with zero fill.
7841
7842Arguments:
7843""""""""""
7844
7845Both arguments to the '``lshr``' instruction must be the same
7846:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7847'``op2``' is treated as an unsigned value.
7848
7849Semantics:
7850""""""""""
7851
7852This instruction always performs a logical shift right operation. The
7853most significant bits of the result will be filled with zero bits after
7854the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007855than the number of bits in ``op1``, this instruction returns a :ref:`poison
7856value <poisonvalues>`. If the arguments are vectors, each vector element
7857of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007858
7859If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007860a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007861
7862Example:
7863""""""""
7864
Renato Golin124f2592016-07-20 12:16:38 +00007865.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007866
Tim Northover675a0962014-06-13 14:24:23 +00007867 <result> = lshr i32 4, 1 ; yields i32:result = 2
7868 <result> = lshr i32 4, 2 ; yields i32:result = 1
7869 <result> = lshr i8 4, 3 ; yields i8:result = 0
7870 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00007871 <result> = lshr i32 1, 32 ; undefined
7872 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
7873
7874'``ashr``' Instruction
7875^^^^^^^^^^^^^^^^^^^^^^
7876
7877Syntax:
7878"""""""
7879
7880::
7881
Tim Northover675a0962014-06-13 14:24:23 +00007882 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
7883 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007884
7885Overview:
7886"""""""""
7887
7888The '``ashr``' instruction (arithmetic shift right) returns the first
7889operand shifted to the right a specified number of bits with sign
7890extension.
7891
7892Arguments:
7893""""""""""
7894
7895Both arguments to the '``ashr``' instruction must be the same
7896:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7897'``op2``' is treated as an unsigned value.
7898
7899Semantics:
7900""""""""""
7901
7902This instruction always performs an arithmetic shift right operation,
7903The most significant bits of the result will be filled with the sign bit
7904of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007905than the number of bits in ``op1``, this instruction returns a :ref:`poison
7906value <poisonvalues>`. If the arguments are vectors, each vector element
7907of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007908
7909If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007910a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007911
7912Example:
7913""""""""
7914
Renato Golin124f2592016-07-20 12:16:38 +00007915.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007916
Tim Northover675a0962014-06-13 14:24:23 +00007917 <result> = ashr i32 4, 1 ; yields i32:result = 2
7918 <result> = ashr i32 4, 2 ; yields i32:result = 1
7919 <result> = ashr i8 4, 3 ; yields i8:result = 0
7920 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00007921 <result> = ashr i32 1, 32 ; undefined
7922 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
7923
7924'``and``' Instruction
7925^^^^^^^^^^^^^^^^^^^^^
7926
7927Syntax:
7928"""""""
7929
7930::
7931
Tim Northover675a0962014-06-13 14:24:23 +00007932 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007933
7934Overview:
7935"""""""""
7936
7937The '``and``' instruction returns the bitwise logical and of its two
7938operands.
7939
7940Arguments:
7941""""""""""
7942
7943The two arguments to the '``and``' instruction must be
7944:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7945arguments must have identical types.
7946
7947Semantics:
7948""""""""""
7949
7950The truth table used for the '``and``' instruction is:
7951
7952+-----+-----+-----+
7953| In0 | In1 | Out |
7954+-----+-----+-----+
7955| 0 | 0 | 0 |
7956+-----+-----+-----+
7957| 0 | 1 | 0 |
7958+-----+-----+-----+
7959| 1 | 0 | 0 |
7960+-----+-----+-----+
7961| 1 | 1 | 1 |
7962+-----+-----+-----+
7963
7964Example:
7965""""""""
7966
Renato Golin124f2592016-07-20 12:16:38 +00007967.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007968
Tim Northover675a0962014-06-13 14:24:23 +00007969 <result> = and i32 4, %var ; yields i32:result = 4 & %var
7970 <result> = and i32 15, 40 ; yields i32:result = 8
7971 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00007972
7973'``or``' Instruction
7974^^^^^^^^^^^^^^^^^^^^
7975
7976Syntax:
7977"""""""
7978
7979::
7980
Tim Northover675a0962014-06-13 14:24:23 +00007981 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007982
7983Overview:
7984"""""""""
7985
7986The '``or``' instruction returns the bitwise logical inclusive or of its
7987two operands.
7988
7989Arguments:
7990""""""""""
7991
7992The two arguments to the '``or``' instruction must be
7993:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7994arguments must have identical types.
7995
7996Semantics:
7997""""""""""
7998
7999The truth table used for the '``or``' instruction is:
8000
8001+-----+-----+-----+
8002| In0 | In1 | Out |
8003+-----+-----+-----+
8004| 0 | 0 | 0 |
8005+-----+-----+-----+
8006| 0 | 1 | 1 |
8007+-----+-----+-----+
8008| 1 | 0 | 1 |
8009+-----+-----+-----+
8010| 1 | 1 | 1 |
8011+-----+-----+-----+
8012
8013Example:
8014""""""""
8015
8016::
8017
Tim Northover675a0962014-06-13 14:24:23 +00008018 <result> = or i32 4, %var ; yields i32:result = 4 | %var
8019 <result> = or i32 15, 40 ; yields i32:result = 47
8020 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00008021
8022'``xor``' Instruction
8023^^^^^^^^^^^^^^^^^^^^^
8024
8025Syntax:
8026"""""""
8027
8028::
8029
Tim Northover675a0962014-06-13 14:24:23 +00008030 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00008031
8032Overview:
8033"""""""""
8034
8035The '``xor``' instruction returns the bitwise logical exclusive or of
8036its two operands. The ``xor`` is used to implement the "one's
8037complement" operation, which is the "~" operator in C.
8038
8039Arguments:
8040""""""""""
8041
8042The two arguments to the '``xor``' instruction must be
8043:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
8044arguments must have identical types.
8045
8046Semantics:
8047""""""""""
8048
8049The truth table used for the '``xor``' instruction is:
8050
8051+-----+-----+-----+
8052| In0 | In1 | Out |
8053+-----+-----+-----+
8054| 0 | 0 | 0 |
8055+-----+-----+-----+
8056| 0 | 1 | 1 |
8057+-----+-----+-----+
8058| 1 | 0 | 1 |
8059+-----+-----+-----+
8060| 1 | 1 | 0 |
8061+-----+-----+-----+
8062
8063Example:
8064""""""""
8065
Renato Golin124f2592016-07-20 12:16:38 +00008066.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008067
Tim Northover675a0962014-06-13 14:24:23 +00008068 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
8069 <result> = xor i32 15, 40 ; yields i32:result = 39
8070 <result> = xor i32 4, 8 ; yields i32:result = 12
8071 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00008072
8073Vector Operations
8074-----------------
8075
8076LLVM supports several instructions to represent vector operations in a
8077target-independent manner. These instructions cover the element-access
8078and vector-specific operations needed to process vectors effectively.
8079While LLVM does directly support these vector operations, many
8080sophisticated algorithms will want to use target-specific intrinsics to
8081take full advantage of a specific target.
8082
8083.. _i_extractelement:
8084
8085'``extractelement``' Instruction
8086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8087
8088Syntax:
8089"""""""
8090
8091::
8092
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00008093 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00008094
8095Overview:
8096"""""""""
8097
8098The '``extractelement``' instruction extracts a single scalar element
8099from a vector at a specified index.
8100
8101Arguments:
8102""""""""""
8103
8104The first operand of an '``extractelement``' instruction is a value of
8105:ref:`vector <t_vector>` type. The second operand is an index indicating
8106the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00008107variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00008108
8109Semantics:
8110""""""""""
8111
8112The result is a scalar of the same type as the element type of ``val``.
8113Its value is the value at position ``idx`` of ``val``. If ``idx``
Eli Friedman2c7a81b2018-06-08 21:23:09 +00008114exceeds the length of ``val``, the result is a
8115:ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008116
8117Example:
8118""""""""
8119
Renato Golin124f2592016-07-20 12:16:38 +00008120.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008121
8122 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
8123
8124.. _i_insertelement:
8125
8126'``insertelement``' Instruction
8127^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8128
8129Syntax:
8130"""""""
8131
8132::
8133
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00008134 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00008135
8136Overview:
8137"""""""""
8138
8139The '``insertelement``' instruction inserts a scalar element into a
8140vector at a specified index.
8141
8142Arguments:
8143""""""""""
8144
8145The first operand of an '``insertelement``' instruction is a value of
8146:ref:`vector <t_vector>` type. The second operand is a scalar value whose
8147type must equal the element type of the first operand. The third operand
8148is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00008149index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00008150
8151Semantics:
8152""""""""""
8153
8154The result is a vector of the same type as ``val``. Its element values
8155are those of ``val`` except at position ``idx``, where it gets the value
Eli Friedman2c7a81b2018-06-08 21:23:09 +00008156``elt``. If ``idx`` exceeds the length of ``val``, the result
8157is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008158
8159Example:
8160""""""""
8161
Renato Golin124f2592016-07-20 12:16:38 +00008162.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008163
8164 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
8165
8166.. _i_shufflevector:
8167
8168'``shufflevector``' Instruction
8169^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8170
8171Syntax:
8172"""""""
8173
8174::
8175
8176 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
8177
8178Overview:
8179"""""""""
8180
8181The '``shufflevector``' instruction constructs a permutation of elements
8182from two input vectors, returning a vector with the same element type as
8183the input and length that is the same as the shuffle mask.
8184
8185Arguments:
8186""""""""""
8187
8188The first two operands of a '``shufflevector``' instruction are vectors
8189with the same type. The third argument is a shuffle mask whose element
8190type is always 'i32'. The result of the instruction is a vector whose
8191length is the same as the shuffle mask and whose element type is the
8192same as the element type of the first two operands.
8193
8194The shuffle mask operand is required to be a constant vector with either
8195constant integer or undef values.
8196
8197Semantics:
8198""""""""""
8199
8200The elements of the two input vectors are numbered from left to right
8201across both of the vectors. The shuffle mask operand specifies, for each
8202element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00008203result element gets. If the shuffle mask is undef, the result vector is
8204undef. If any element of the mask operand is undef, that element of the
8205result is undef. If the shuffle mask selects an undef element from one
8206of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00008207
8208Example:
8209""""""""
8210
Renato Golin124f2592016-07-20 12:16:38 +00008211.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008212
8213 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
8214 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
8215 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
8216 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
8217 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
8218 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
8219 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
8220 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
8221
8222Aggregate Operations
8223--------------------
8224
8225LLVM supports several instructions for working with
8226:ref:`aggregate <t_aggregate>` values.
8227
8228.. _i_extractvalue:
8229
8230'``extractvalue``' Instruction
8231^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8232
8233Syntax:
8234"""""""
8235
8236::
8237
8238 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
8239
8240Overview:
8241"""""""""
8242
8243The '``extractvalue``' instruction extracts the value of a member field
8244from an :ref:`aggregate <t_aggregate>` value.
8245
8246Arguments:
8247""""""""""
8248
8249The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00008250:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00008251constant indices to specify which value to extract in a similar manner
8252as indices in a '``getelementptr``' instruction.
8253
8254The major differences to ``getelementptr`` indexing are:
8255
8256- Since the value being indexed is not a pointer, the first index is
8257 omitted and assumed to be zero.
8258- At least one index must be specified.
8259- Not only struct indices but also array indices must be in bounds.
8260
8261Semantics:
8262""""""""""
8263
8264The result is the value at the position in the aggregate specified by
8265the index operands.
8266
8267Example:
8268""""""""
8269
Renato Golin124f2592016-07-20 12:16:38 +00008270.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008271
8272 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
8273
8274.. _i_insertvalue:
8275
8276'``insertvalue``' Instruction
8277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8278
8279Syntax:
8280"""""""
8281
8282::
8283
8284 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
8285
8286Overview:
8287"""""""""
8288
8289The '``insertvalue``' instruction inserts a value into a member field in
8290an :ref:`aggregate <t_aggregate>` value.
8291
8292Arguments:
8293""""""""""
8294
8295The first operand of an '``insertvalue``' instruction is a value of
8296:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
8297a first-class value to insert. The following operands are constant
8298indices indicating the position at which to insert the value in a
8299similar manner as indices in a '``extractvalue``' instruction. The value
8300to insert must have the same type as the value identified by the
8301indices.
8302
8303Semantics:
8304""""""""""
8305
8306The result is an aggregate of the same type as ``val``. Its value is
8307that of ``val`` except that the value at the position specified by the
8308indices is that of ``elt``.
8309
8310Example:
8311""""""""
8312
8313.. code-block:: llvm
8314
8315 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
8316 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00008317 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00008318
8319.. _memoryops:
8320
8321Memory Access and Addressing Operations
8322---------------------------------------
8323
8324A key design point of an SSA-based representation is how it represents
8325memory. In LLVM, no memory locations are in SSA form, which makes things
8326very simple. This section describes how to read, write, and allocate
8327memory in LLVM.
8328
8329.. _i_alloca:
8330
8331'``alloca``' Instruction
8332^^^^^^^^^^^^^^^^^^^^^^^^
8333
8334Syntax:
8335"""""""
8336
8337::
8338
Matt Arsenault3c1fc762017-04-10 22:27:50 +00008339 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00008340
8341Overview:
8342"""""""""
8343
8344The '``alloca``' instruction allocates memory on the stack frame of the
8345currently executing function, to be automatically released when this
8346function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00008347address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00008348
8349Arguments:
8350""""""""""
8351
8352The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
8353bytes of memory on the runtime stack, returning a pointer of the
8354appropriate type to the program. If "NumElements" is specified, it is
8355the number of elements allocated, otherwise "NumElements" is defaulted
8356to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00008357allocation is guaranteed to be aligned to at least that boundary. The
8358alignment may not be greater than ``1 << 29``. If not specified, or if
8359zero, the target can choose to align the allocation on any convenient
8360boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00008361
8362'``type``' may be any sized type.
8363
8364Semantics:
8365""""""""""
8366
8367Memory is allocated; a pointer is returned. The operation is undefined
8368if there is insufficient stack space for the allocation. '``alloca``'d
8369memory is automatically released when the function returns. The
8370'``alloca``' instruction is commonly used to represent automatic
8371variables that must have an address available. When the function returns
8372(either with the ``ret`` or ``resume`` instructions), the memory is
Eli Friedman18f882c2018-07-11 00:02:01 +00008373reclaimed. Allocating zero bytes is legal, but the returned pointer may not
8374be unique. The order in which memory is allocated (ie., which way the stack
8375grows) is not specified.
Sean Silvab084af42012-12-07 10:36:55 +00008376
8377Example:
8378""""""""
8379
8380.. code-block:: llvm
8381
Tim Northover675a0962014-06-13 14:24:23 +00008382 %ptr = alloca i32 ; yields i32*:ptr
8383 %ptr = alloca i32, i32 4 ; yields i32*:ptr
8384 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
8385 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00008386
8387.. _i_load:
8388
8389'``load``' Instruction
8390^^^^^^^^^^^^^^^^^^^^^^
8391
8392Syntax:
8393"""""""
8394
8395::
8396
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008397 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008398 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00008399 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008400 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008401 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00008402
8403Overview:
8404"""""""""
8405
8406The '``load``' instruction is used to read from memory.
8407
8408Arguments:
8409""""""""""
8410
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00008411The argument to the ``load`` instruction specifies the memory address from which
8412to load. The type specified must be a :ref:`first class <t_firstclass>` type of
8413known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
8414the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
8415modify the number or order of execution of this ``load`` with other
8416:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008417
JF Bastiend1fb5852015-12-17 22:09:19 +00008418If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008419<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8420``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
8421Atomic loads produce :ref:`defined <memmodel>` results when they may see
8422multiple atomic stores. The type of the pointee must be an integer, pointer, or
8423floating-point type whose bit width is a power of two greater than or equal to
8424eight and less than or equal to a target-specific size limit. ``align`` must be
8425explicitly specified on atomic loads, and the load has undefined behavior if the
8426alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00008427pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00008428
8429The optional constant ``align`` argument specifies the alignment of the
8430operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00008431or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00008432alignment for the target. It is the responsibility of the code emitter
8433to ensure that the alignment information is correct. Overestimating the
8434alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00008435may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00008436maximum possible alignment is ``1 << 29``. An alignment value higher
8437than the size of the loaded type implies memory up to the alignment
8438value bytes can be safely loaded without trapping in the default
8439address space. Access of the high bytes can interfere with debugging
8440tools, so should not be accessed if the function has the
8441``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00008442
8443The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008444metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00008445``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008446metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00008447that this load is not expected to be reused in the cache. The code
8448generator may select special instructions to save cache bandwidth, such
8449as the ``MOVNT`` instruction on x86.
8450
8451The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008452metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00008453entries. If a load instruction tagged with the ``!invariant.load``
8454metadata is executed, the optimizer may assume the memory location
8455referenced by the load contains the same value at all points in the
Eli Friedmane15a1112018-07-17 20:38:11 +00008456program where the memory location is known to be dereferenceable;
8457otherwise, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008458
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008459The optional ``!invariant.group`` metadata must reference a single metadata name
Piotr Padlewskice358262018-05-18 23:53:46 +00008460 ``<index>`` corresponding to a metadata node with no entries.
8461 See ``invariant.group`` metadata.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008462
Philip Reamescdb72f32014-10-20 22:40:55 +00008463The optional ``!nonnull`` metadata must reference a single
8464metadata name ``<index>`` corresponding to a metadata node with no
8465entries. The existence of the ``!nonnull`` metadata on the
8466instruction tells the optimizer that the value loaded is known to
Eli Friedmane15a1112018-07-17 20:38:11 +00008467never be null. If the value is null at runtime, the behavior is undefined.
8468This is analogous to the ``nonnull`` attribute on parameters and return
8469values. This metadata can only be applied to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00008470
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008471The optional ``!dereferenceable`` metadata must reference a single metadata
8472name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00008473entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00008474tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00008475The number of bytes known to be dereferenceable is specified by the integer
8476value in the metadata node. This is analogous to the ''dereferenceable''
8477attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00008478to loads of a pointer type.
8479
8480The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008481metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
8482``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00008483instruction tells the optimizer that the value loaded is known to be either
8484dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00008485The number of bytes known to be dereferenceable is specified by the integer
8486value in the metadata node. This is analogous to the ''dereferenceable_or_null''
8487attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00008488to loads of a pointer type.
8489
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008490The optional ``!align`` metadata must reference a single metadata name
8491``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
8492The existence of the ``!align`` metadata on the instruction tells the
8493optimizer that the value loaded is known to be aligned to a boundary specified
8494by the integer value in the metadata node. The alignment must be a power of 2.
8495This is analogous to the ''align'' attribute on parameters and return values.
Eli Friedmane15a1112018-07-17 20:38:11 +00008496This metadata can only be applied to loads of a pointer type. If the returned
8497value is not appropriately aligned at runtime, the behavior is undefined.
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008498
Sean Silvab084af42012-12-07 10:36:55 +00008499Semantics:
8500""""""""""
8501
8502The location of memory pointed to is loaded. If the value being loaded
8503is of scalar type then the number of bytes read does not exceed the
8504minimum number of bytes needed to hold all bits of the type. For
8505example, loading an ``i24`` reads at most three bytes. When loading a
8506value of a type like ``i20`` with a size that is not an integral number
8507of bytes, the result is undefined if the value was not originally
8508written using a store of the same type.
8509
8510Examples:
8511"""""""""
8512
8513.. code-block:: llvm
8514
Tim Northover675a0962014-06-13 14:24:23 +00008515 %ptr = alloca i32 ; yields i32*:ptr
8516 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00008517 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008518
8519.. _i_store:
8520
8521'``store``' Instruction
8522^^^^^^^^^^^^^^^^^^^^^^^
8523
8524Syntax:
8525"""""""
8526
8527::
8528
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008529 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008530 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008531
8532Overview:
8533"""""""""
8534
8535The '``store``' instruction is used to write to memory.
8536
8537Arguments:
8538""""""""""
8539
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00008540There are two arguments to the ``store`` instruction: a value to store and an
8541address at which to store it. The type of the ``<pointer>`` operand must be a
8542pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
8543operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
8544allowed to modify the number or order of execution of this ``store`` with other
8545:ref:`volatile operations <volatile>`. Only values of :ref:`first class
8546<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
8547structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00008548
JF Bastiend1fb5852015-12-17 22:09:19 +00008549If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008550<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8551``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
8552Atomic loads produce :ref:`defined <memmodel>` results when they may see
8553multiple atomic stores. The type of the pointee must be an integer, pointer, or
8554floating-point type whose bit width is a power of two greater than or equal to
8555eight and less than or equal to a target-specific size limit. ``align`` must be
8556explicitly specified on atomic stores, and the store has undefined behavior if
8557the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00008558pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00008559
Eli Benderskyca380842013-04-17 17:17:20 +00008560The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00008561operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00008562or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00008563alignment for the target. It is the responsibility of the code emitter
8564to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00008565alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00008566alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00008567safe. The maximum possible alignment is ``1 << 29``. An alignment
8568value higher than the size of the stored type implies memory up to the
8569alignment value bytes can be stored to without trapping in the default
8570address space. Storing to the higher bytes however may result in data
8571races if another thread can access the same address. Introducing a
8572data race is not allowed. Storing to the extra bytes is not allowed
8573even in situations where a data race is known to not exist if the
8574function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00008575
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008576The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00008577name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008578value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00008579tells the optimizer and code generator that this load is not expected to
8580be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00008581instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00008582x86.
8583
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008584The optional ``!invariant.group`` metadata must reference a
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008585single metadata name ``<index>``. See ``invariant.group`` metadata.
8586
Sean Silvab084af42012-12-07 10:36:55 +00008587Semantics:
8588""""""""""
8589
Eli Benderskyca380842013-04-17 17:17:20 +00008590The contents of memory are updated to contain ``<value>`` at the
8591location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00008592of scalar type then the number of bytes written does not exceed the
8593minimum number of bytes needed to hold all bits of the type. For
8594example, storing an ``i24`` writes at most three bytes. When writing a
8595value of a type like ``i20`` with a size that is not an integral number
8596of bytes, it is unspecified what happens to the extra bits that do not
8597belong to the type, but they will typically be overwritten.
8598
8599Example:
8600""""""""
8601
8602.. code-block:: llvm
8603
Tim Northover675a0962014-06-13 14:24:23 +00008604 %ptr = alloca i32 ; yields i32*:ptr
8605 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00008606 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008607
8608.. _i_fence:
8609
8610'``fence``' Instruction
8611^^^^^^^^^^^^^^^^^^^^^^^
8612
8613Syntax:
8614"""""""
8615
8616::
8617
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008618 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008619
8620Overview:
8621"""""""""
8622
8623The '``fence``' instruction is used to introduce happens-before edges
8624between operations.
8625
8626Arguments:
8627""""""""""
8628
8629'``fence``' instructions take an :ref:`ordering <ordering>` argument which
8630defines what *synchronizes-with* edges they add. They can only be given
8631``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
8632
8633Semantics:
8634""""""""""
8635
8636A fence A which has (at least) ``release`` ordering semantics
8637*synchronizes with* a fence B with (at least) ``acquire`` ordering
8638semantics if and only if there exist atomic operations X and Y, both
8639operating on some atomic object M, such that A is sequenced before X, X
8640modifies M (either directly or through some side effect of a sequence
8641headed by X), Y is sequenced before B, and Y observes M. This provides a
8642*happens-before* dependency between A and B. Rather than an explicit
8643``fence``, one (but not both) of the atomic operations X or Y might
8644provide a ``release`` or ``acquire`` (resp.) ordering constraint and
8645still *synchronize-with* the explicit ``fence`` and establish the
8646*happens-before* edge.
8647
8648A ``fence`` which has ``seq_cst`` ordering, in addition to having both
8649``acquire`` and ``release`` semantics specified above, participates in
8650the global program order of other ``seq_cst`` operations and/or fences.
8651
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008652A ``fence`` instruction can also take an optional
8653":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008654
8655Example:
8656""""""""
8657
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008658.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008659
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008660 fence acquire ; yields void
8661 fence syncscope("singlethread") seq_cst ; yields void
8662 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008663
8664.. _i_cmpxchg:
8665
8666'``cmpxchg``' Instruction
8667^^^^^^^^^^^^^^^^^^^^^^^^^
8668
8669Syntax:
8670"""""""
8671
8672::
8673
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008674 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00008675
8676Overview:
8677"""""""""
8678
8679The '``cmpxchg``' instruction is used to atomically modify memory. It
8680loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00008681equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00008682
8683Arguments:
8684""""""""""
8685
8686There are three arguments to the '``cmpxchg``' instruction: an address
8687to operate on, a value to compare to the value currently be at that
8688address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00008689are equal. The type of '<cmp>' must be an integer or pointer type whose
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008690bit width is a power of two greater than or equal to eight and less
Philip Reames1960cfd2016-02-19 00:06:41 +00008691than or equal to a target-specific size limit. '<cmp>' and '<new>' must
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008692have the same type, and the type of '<pointer>' must be a pointer to
8693that type. If the ``cmpxchg`` is marked as ``volatile``, then the
Philip Reames1960cfd2016-02-19 00:06:41 +00008694optimizer is not allowed to modify the number or order of execution of
8695this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008696
Tim Northovere94a5182014-03-11 10:48:52 +00008697The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00008698``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
8699must be at least ``monotonic``, the ordering constraint on failure must be no
8700stronger than that on success, and the failure ordering cannot be either
8701``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00008702
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008703A ``cmpxchg`` instruction can also take an optional
8704":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008705
8706The pointer passed into cmpxchg must have alignment greater than or
8707equal to the size in memory of the operand.
8708
8709Semantics:
8710""""""""""
8711
Tim Northover420a2162014-06-13 14:24:07 +00008712The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun93f2b4b2017-08-09 22:22:04 +00008713is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
8714written to the location. The original value at the location is returned,
8715together with a flag indicating success (true) or failure (false).
Tim Northover420a2162014-06-13 14:24:07 +00008716
8717If the cmpxchg operation is marked as ``weak`` then a spurious failure is
8718permitted: the operation may not write ``<new>`` even if the comparison
8719matched.
8720
8721If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
8722if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00008723
Tim Northovere94a5182014-03-11 10:48:52 +00008724A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
8725identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
8726load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00008727
8728Example:
8729""""""""
8730
8731.. code-block:: llvm
8732
8733 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008734 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008735 br label %loop
8736
8737 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008738 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00008739 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00008740 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00008741 %value_loaded = extractvalue { i32, i1 } %val_success, 0
8742 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00008743 br i1 %success, label %done, label %loop
8744
8745 done:
8746 ...
8747
8748.. _i_atomicrmw:
8749
8750'``atomicrmw``' Instruction
8751^^^^^^^^^^^^^^^^^^^^^^^^^^^
8752
8753Syntax:
8754"""""""
8755
8756::
8757
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008758 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00008759
8760Overview:
8761"""""""""
8762
8763The '``atomicrmw``' instruction is used to atomically modify memory.
8764
8765Arguments:
8766""""""""""
8767
8768There are three arguments to the '``atomicrmw``' instruction: an
8769operation to apply, an address whose value to modify, an argument to the
8770operation. The operation must be one of the following keywords:
8771
8772- xchg
8773- add
8774- sub
8775- and
8776- nand
8777- or
8778- xor
8779- max
8780- min
8781- umax
8782- umin
Matt Arsenault39508332019-01-22 18:18:02 +00008783- fadd
8784- fsub
Sean Silvab084af42012-12-07 10:36:55 +00008785
Matt Arsenault0cb08e42019-01-17 10:49:01 +00008786For most of these operations, the type of '<value>' must be an integer
8787type whose bit width is a power of two greater than or equal to eight
8788and less than or equal to a target-specific size limit. For xchg, this
8789may also be a floating point type with the same size constraints as
Matt Arsenault39508332019-01-22 18:18:02 +00008790integers. For fadd/fsub, this must be a floating point type. The
8791type of the '``<pointer>``' operand must be a pointer to that type. If
8792the ``atomicrmw`` is marked as ``volatile``, then the optimizer is not
8793allowed to modify the number or order of execution of this
8794``atomicrmw`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008795
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008796A ``atomicrmw`` instruction can also take an optional
8797":ref:`syncscope <syncscope>`" argument.
8798
Sean Silvab084af42012-12-07 10:36:55 +00008799Semantics:
8800""""""""""
8801
8802The contents of memory at the location specified by the '``<pointer>``'
8803operand are atomically read, modified, and written back. The original
8804value at the location is returned. The modification is specified by the
8805operation argument:
8806
8807- xchg: ``*ptr = val``
8808- add: ``*ptr = *ptr + val``
8809- sub: ``*ptr = *ptr - val``
8810- and: ``*ptr = *ptr & val``
8811- nand: ``*ptr = ~(*ptr & val)``
8812- or: ``*ptr = *ptr | val``
8813- xor: ``*ptr = *ptr ^ val``
8814- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
8815- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
8816- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
8817 comparison)
8818- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
8819 comparison)
Matt Arsenault39508332019-01-22 18:18:02 +00008820- fadd: ``*ptr = *ptr + val`` (using floating point arithmetic)
8821- fsub: ``*ptr = *ptr - val`` (using floating point arithmetic)
Sean Silvab084af42012-12-07 10:36:55 +00008822
8823Example:
8824""""""""
8825
8826.. code-block:: llvm
8827
Tim Northover675a0962014-06-13 14:24:23 +00008828 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008829
8830.. _i_getelementptr:
8831
8832'``getelementptr``' Instruction
8833^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8834
8835Syntax:
8836"""""""
8837
8838::
8839
Peter Collingbourned93620b2016-11-10 22:34:55 +00008840 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8841 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8842 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00008843
8844Overview:
8845"""""""""
8846
8847The '``getelementptr``' instruction is used to get the address of a
8848subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008849address calculation only and does not access memory. The instruction can also
8850be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00008851
8852Arguments:
8853""""""""""
8854
David Blaikie16a97eb2015-03-04 22:02:58 +00008855The first argument is always a type used as the basis for the calculations.
8856The second argument is always a pointer or a vector of pointers, and is the
8857base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00008858that indicate which of the elements of the aggregate object are indexed.
8859The interpretation of each index is dependent on the type being indexed
8860into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00008861second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00008862(not necessarily the value directly pointed to, since the first index
8863can be non-zero), etc. The first type indexed into must be a pointer
8864value, subsequent types can be arrays, vectors, and structs. Note that
8865subsequent types being indexed into can never be pointers, since that
8866would require loading the pointer before continuing calculation.
8867
8868The type of each index argument depends on the type it is indexing into.
8869When indexing into a (optionally packed) structure, only ``i32`` integer
8870**constants** are allowed (when using a vector of indices they must all
8871be the **same** ``i32`` integer constant). When indexing into an array,
8872pointer or vector, integers of any width are allowed, and they are not
8873required to be constant. These integers are treated as signed values
8874where relevant.
8875
8876For example, let's consider a C code fragment and how it gets compiled
8877to LLVM:
8878
8879.. code-block:: c
8880
8881 struct RT {
8882 char A;
8883 int B[10][20];
8884 char C;
8885 };
8886 struct ST {
8887 int X;
8888 double Y;
8889 struct RT Z;
8890 };
8891
8892 int *foo(struct ST *s) {
8893 return &s[1].Z.B[5][13];
8894 }
8895
8896The LLVM code generated by Clang is:
8897
8898.. code-block:: llvm
8899
8900 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
8901 %struct.ST = type { i32, double, %struct.RT }
8902
8903 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
8904 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00008905 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00008906 ret i32* %arrayidx
8907 }
8908
8909Semantics:
8910""""""""""
8911
8912In the example above, the first index is indexing into the
8913'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
8914= '``{ i32, double, %struct.RT }``' type, a structure. The second index
8915indexes into the third element of the structure, yielding a
8916'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
8917structure. The third index indexes into the second element of the
8918structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
8919dimensions of the array are subscripted into, yielding an '``i32``'
8920type. The '``getelementptr``' instruction returns a pointer to this
8921element, thus computing a value of '``i32*``' type.
8922
8923Note that it is perfectly legal to index partially through a structure,
8924returning a pointer to an inner element. Because of this, the LLVM code
8925for the given testcase is equivalent to:
8926
8927.. code-block:: llvm
8928
8929 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00008930 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
8931 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
8932 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
8933 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
8934 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00008935 ret i32* %t5
8936 }
8937
8938If the ``inbounds`` keyword is present, the result value of the
8939``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
8940pointer is not an *in bounds* address of an allocated object, or if any
8941of the addresses that would be formed by successive addition of the
8942offsets implied by the indices to the base address with infinitely
8943precise signed arithmetic are not an *in bounds* address of that
8944allocated object. The *in bounds* addresses for an allocated object are
8945all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00008946past the end. The only *in bounds* address for a null pointer in the
8947default address-space is the null pointer itself. In cases where the
8948base is a vector of pointers the ``inbounds`` keyword applies to each
8949of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00008950
8951If the ``inbounds`` keyword is not present, the offsets are added to the
8952base address with silently-wrapping two's complement arithmetic. If the
8953offsets have a different width from the pointer, they are sign-extended
8954or truncated to the width of the pointer. The result value of the
8955``getelementptr`` may be outside the object pointed to by the base
8956pointer. The result value may not necessarily be used to access memory
8957though, even if it happens to point into allocated storage. See the
8958:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
8959information.
8960
Peter Collingbourned93620b2016-11-10 22:34:55 +00008961If the ``inrange`` keyword is present before any index, loading from or
8962storing to any pointer derived from the ``getelementptr`` has undefined
8963behavior if the load or store would access memory outside of the bounds of
8964the element selected by the index marked as ``inrange``. The result of a
8965pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
8966involving memory) involving a pointer derived from a ``getelementptr`` with
8967the ``inrange`` keyword is undefined, with the exception of comparisons
8968in the case where both operands are in the range of the element selected
8969by the ``inrange`` keyword, inclusive of the address one past the end of
8970that element. Note that the ``inrange`` keyword is currently only allowed
8971in constant ``getelementptr`` expressions.
8972
Sean Silvab084af42012-12-07 10:36:55 +00008973The getelementptr instruction is often confusing. For some more insight
8974into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
8975
8976Example:
8977""""""""
8978
8979.. code-block:: llvm
8980
8981 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008982 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008983 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008984 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008985 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008986 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008987 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008988 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00008989
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008990Vector of pointers:
8991"""""""""""""""""""
8992
8993The ``getelementptr`` returns a vector of pointers, instead of a single address,
8994when one or more of its arguments is a vector. In such cases, all vector
8995arguments should have the same number of elements, and every scalar argument
8996will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00008997
8998.. code-block:: llvm
8999
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00009000 ; All arguments are vectors:
9001 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
9002 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00009003
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00009004 ; Add the same scalar offset to each pointer of a vector:
9005 ; A[i] = ptrs[i] + offset*sizeof(i8)
9006 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00009007
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00009008 ; Add distinct offsets to the same pointer:
9009 ; A[i] = ptr + offsets[i]*sizeof(i8)
9010 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00009011
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00009012 ; In all cases described above the type of the result is <4 x i8*>
9013
9014The two following instructions are equivalent:
9015
9016.. code-block:: llvm
9017
9018 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
9019 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
9020 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
9021 <4 x i32> %ind4,
9022 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00009023
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00009024 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
9025 i32 2, i32 1, <4 x i32> %ind4, i64 13
9026
9027Let's look at the C code, where the vector version of ``getelementptr``
9028makes sense:
9029
9030.. code-block:: c
9031
9032 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00009033 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00009034 for (int i = 0; i < size; ++i) {
9035 A[i] = B[C[i]];
9036 }
9037
9038.. code-block:: llvm
9039
9040 ; get pointers for 8 elements from array B
9041 %ptrs = getelementptr double, double* %B, <8 x i32> %C
9042 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00009043 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00009044 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00009045
9046Conversion Operations
9047---------------------
9048
9049The instructions in this category are the conversion instructions
9050(casting) which all take a single operand and a type. They perform
9051various bit conversions on the operand.
9052
Bjorn Petterssone1285e32017-10-24 11:59:20 +00009053.. _i_trunc:
9054
Sean Silvab084af42012-12-07 10:36:55 +00009055'``trunc .. to``' Instruction
9056^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9057
9058Syntax:
9059"""""""
9060
9061::
9062
9063 <result> = trunc <ty> <value> to <ty2> ; yields ty2
9064
9065Overview:
9066"""""""""
9067
9068The '``trunc``' instruction truncates its operand to the type ``ty2``.
9069
9070Arguments:
9071""""""""""
9072
9073The '``trunc``' instruction takes a value to trunc, and a type to trunc
9074it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
9075of the same number of integers. The bit size of the ``value`` must be
9076larger than the bit size of the destination type, ``ty2``. Equal sized
9077types are not allowed.
9078
9079Semantics:
9080""""""""""
9081
9082The '``trunc``' instruction truncates the high order bits in ``value``
9083and converts the remaining bits to ``ty2``. Since the source size must
9084be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
9085It will always truncate bits.
9086
9087Example:
9088""""""""
9089
9090.. code-block:: llvm
9091
9092 %X = trunc i32 257 to i8 ; yields i8:1
9093 %Y = trunc i32 123 to i1 ; yields i1:true
9094 %Z = trunc i32 122 to i1 ; yields i1:false
9095 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
9096
Bjorn Petterssone1285e32017-10-24 11:59:20 +00009097.. _i_zext:
9098
Sean Silvab084af42012-12-07 10:36:55 +00009099'``zext .. to``' Instruction
9100^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9101
9102Syntax:
9103"""""""
9104
9105::
9106
9107 <result> = zext <ty> <value> to <ty2> ; yields ty2
9108
9109Overview:
9110"""""""""
9111
9112The '``zext``' instruction zero extends its operand to type ``ty2``.
9113
9114Arguments:
9115""""""""""
9116
9117The '``zext``' instruction takes a value to cast, and a type to cast it
9118to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
9119the same number of integers. The bit size of the ``value`` must be
9120smaller than the bit size of the destination type, ``ty2``.
9121
9122Semantics:
9123""""""""""
9124
9125The ``zext`` fills the high order bits of the ``value`` with zero bits
9126until it reaches the size of the destination type, ``ty2``.
9127
9128When zero extending from i1, the result will always be either 0 or 1.
9129
9130Example:
9131""""""""
9132
9133.. code-block:: llvm
9134
9135 %X = zext i32 257 to i64 ; yields i64:257
9136 %Y = zext i1 true to i32 ; yields i32:1
9137 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
9138
Bjorn Petterssone1285e32017-10-24 11:59:20 +00009139.. _i_sext:
9140
Sean Silvab084af42012-12-07 10:36:55 +00009141'``sext .. to``' Instruction
9142^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9143
9144Syntax:
9145"""""""
9146
9147::
9148
9149 <result> = sext <ty> <value> to <ty2> ; yields ty2
9150
9151Overview:
9152"""""""""
9153
9154The '``sext``' sign extends ``value`` to the type ``ty2``.
9155
9156Arguments:
9157""""""""""
9158
9159The '``sext``' instruction takes a value to cast, and a type to cast it
9160to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
9161the same number of integers. The bit size of the ``value`` must be
9162smaller than the bit size of the destination type, ``ty2``.
9163
9164Semantics:
9165""""""""""
9166
9167The '``sext``' instruction performs a sign extension by copying the sign
9168bit (highest order bit) of the ``value`` until it reaches the bit size
9169of the type ``ty2``.
9170
9171When sign extending from i1, the extension always results in -1 or 0.
9172
9173Example:
9174""""""""
9175
9176.. code-block:: llvm
9177
9178 %X = sext i8 -1 to i16 ; yields i16 :65535
9179 %Y = sext i1 true to i32 ; yields i32:-1
9180 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
9181
9182'``fptrunc .. to``' Instruction
9183^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9184
9185Syntax:
9186"""""""
9187
9188::
9189
9190 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
9191
9192Overview:
9193"""""""""
9194
9195The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
9196
9197Arguments:
9198""""""""""
9199
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009200The '``fptrunc``' instruction takes a :ref:`floating-point <t_floating>`
9201value to cast and a :ref:`floating-point <t_floating>` type to cast it to.
Sean Silvab084af42012-12-07 10:36:55 +00009202The size of ``value`` must be larger than the size of ``ty2``. This
9203implies that ``fptrunc`` cannot be used to make a *no-op cast*.
9204
9205Semantics:
9206""""""""""
9207
Dan Liew50456fb2015-09-03 18:43:56 +00009208The '``fptrunc``' instruction casts a ``value`` from a larger
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009209:ref:`floating-point <t_floating>` type to a smaller :ref:`floating-point
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +00009210<t_floating>` type.
Sanjay Pateld96a3632018-04-03 13:05:20 +00009211This instruction is assumed to execute in the default :ref:`floating-point
9212environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00009213
9214Example:
9215""""""""
9216
9217.. code-block:: llvm
9218
Sanjay Pateld96a3632018-04-03 13:05:20 +00009219 %X = fptrunc double 16777217.0 to float ; yields float:16777216.0
9220 %Y = fptrunc double 1.0E+300 to half ; yields half:+infinity
Sean Silvab084af42012-12-07 10:36:55 +00009221
9222'``fpext .. to``' Instruction
9223^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9224
9225Syntax:
9226"""""""
9227
9228::
9229
9230 <result> = fpext <ty> <value> to <ty2> ; yields ty2
9231
9232Overview:
9233"""""""""
9234
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009235The '``fpext``' extends a floating-point ``value`` to a larger floating-point
9236value.
Sean Silvab084af42012-12-07 10:36:55 +00009237
9238Arguments:
9239""""""""""
9240
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009241The '``fpext``' instruction takes a :ref:`floating-point <t_floating>`
9242``value`` to cast, and a :ref:`floating-point <t_floating>` type to cast it
Sean Silvab084af42012-12-07 10:36:55 +00009243to. The source type must be smaller than the destination type.
9244
9245Semantics:
9246""""""""""
9247
9248The '``fpext``' instruction extends the ``value`` from a smaller
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009249:ref:`floating-point <t_floating>` type to a larger :ref:`floating-point
9250<t_floating>` type. The ``fpext`` cannot be used to make a
Sean Silvab084af42012-12-07 10:36:55 +00009251*no-op cast* because it always changes bits. Use ``bitcast`` to make a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009252*no-op cast* for a floating-point cast.
Sean Silvab084af42012-12-07 10:36:55 +00009253
9254Example:
9255""""""""
9256
9257.. code-block:: llvm
9258
9259 %X = fpext float 3.125 to double ; yields double:3.125000e+00
9260 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
9261
9262'``fptoui .. to``' Instruction
9263^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9264
9265Syntax:
9266"""""""
9267
9268::
9269
9270 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
9271
9272Overview:
9273"""""""""
9274
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009275The '``fptoui``' converts a floating-point ``value`` to its unsigned
Sean Silvab084af42012-12-07 10:36:55 +00009276integer equivalent of type ``ty2``.
9277
9278Arguments:
9279""""""""""
9280
9281The '``fptoui``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009282scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00009283cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009284``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00009285type with the same number of elements as ``ty``
9286
9287Semantics:
9288""""""""""
9289
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009290The '``fptoui``' instruction converts its :ref:`floating-point
9291<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00009292unsigned integer value. If the value cannot fit in ``ty2``, the result
9293is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00009294
9295Example:
9296""""""""
9297
9298.. code-block:: llvm
9299
9300 %X = fptoui double 123.0 to i32 ; yields i32:123
9301 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
9302 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
9303
9304'``fptosi .. to``' Instruction
9305^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9306
9307Syntax:
9308"""""""
9309
9310::
9311
9312 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
9313
9314Overview:
9315"""""""""
9316
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009317The '``fptosi``' instruction converts :ref:`floating-point <t_floating>`
Sean Silvab084af42012-12-07 10:36:55 +00009318``value`` to type ``ty2``.
9319
9320Arguments:
9321""""""""""
9322
9323The '``fptosi``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009324scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00009325cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009326``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00009327type with the same number of elements as ``ty``
9328
9329Semantics:
9330""""""""""
9331
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009332The '``fptosi``' instruction converts its :ref:`floating-point
9333<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00009334signed integer value. If the value cannot fit in ``ty2``, the result
9335is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00009336
9337Example:
9338""""""""
9339
9340.. code-block:: llvm
9341
9342 %X = fptosi double -123.0 to i32 ; yields i32:-123
9343 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
9344 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
9345
9346'``uitofp .. to``' Instruction
9347^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9348
9349Syntax:
9350"""""""
9351
9352::
9353
9354 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
9355
9356Overview:
9357"""""""""
9358
9359The '``uitofp``' instruction regards ``value`` as an unsigned integer
9360and converts that value to the ``ty2`` type.
9361
9362Arguments:
9363""""""""""
9364
9365The '``uitofp``' instruction takes a value to cast, which must be a
9366scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009367``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
9368``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00009369type with the same number of elements as ``ty``
9370
9371Semantics:
9372""""""""""
9373
9374The '``uitofp``' instruction interprets its operand as an unsigned
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009375integer quantity and converts it to the corresponding floating-point
Eli Friedman3f1ce092018-06-14 22:58:48 +00009376value. If the value cannot be exactly represented, it is rounded using
9377the default rounding mode.
9378
Sean Silvab084af42012-12-07 10:36:55 +00009379
9380Example:
9381""""""""
9382
9383.. code-block:: llvm
9384
9385 %X = uitofp i32 257 to float ; yields float:257.0
9386 %Y = uitofp i8 -1 to double ; yields double:255.0
9387
9388'``sitofp .. to``' Instruction
9389^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9390
9391Syntax:
9392"""""""
9393
9394::
9395
9396 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
9397
9398Overview:
9399"""""""""
9400
9401The '``sitofp``' instruction regards ``value`` as a signed integer and
9402converts that value to the ``ty2`` type.
9403
9404Arguments:
9405""""""""""
9406
9407The '``sitofp``' instruction takes a value to cast, which must be a
9408scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009409``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
9410``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00009411type with the same number of elements as ``ty``
9412
9413Semantics:
9414""""""""""
9415
9416The '``sitofp``' instruction interprets its operand as a signed integer
Eli Friedman3f1ce092018-06-14 22:58:48 +00009417quantity and converts it to the corresponding floating-point value. If the
9418value cannot be exactly represented, it is rounded using the default rounding
9419mode.
Sean Silvab084af42012-12-07 10:36:55 +00009420
9421Example:
9422""""""""
9423
9424.. code-block:: llvm
9425
9426 %X = sitofp i32 257 to float ; yields float:257.0
9427 %Y = sitofp i8 -1 to double ; yields double:-1.0
9428
9429.. _i_ptrtoint:
9430
9431'``ptrtoint .. to``' Instruction
9432^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9433
9434Syntax:
9435"""""""
9436
9437::
9438
9439 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
9440
9441Overview:
9442"""""""""
9443
9444The '``ptrtoint``' instruction converts the pointer or a vector of
9445pointers ``value`` to the integer (or vector of integers) type ``ty2``.
9446
9447Arguments:
9448""""""""""
9449
9450The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00009451a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00009452type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
9453a vector of integers type.
9454
9455Semantics:
9456""""""""""
9457
9458The '``ptrtoint``' instruction converts ``value`` to integer type
9459``ty2`` by interpreting the pointer value as an integer and either
9460truncating or zero extending that value to the size of the integer type.
9461If ``value`` is smaller than ``ty2`` then a zero extension is done. If
9462``value`` is larger than ``ty2`` then a truncation is done. If they are
9463the same size, then nothing is done (*no-op cast*) other than a type
9464change.
9465
9466Example:
9467""""""""
9468
9469.. code-block:: llvm
9470
9471 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
9472 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
9473 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
9474
9475.. _i_inttoptr:
9476
9477'``inttoptr .. to``' Instruction
9478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9479
9480Syntax:
9481"""""""
9482
9483::
9484
9485 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
9486
9487Overview:
9488"""""""""
9489
9490The '``inttoptr``' instruction converts an integer ``value`` to a
9491pointer type, ``ty2``.
9492
9493Arguments:
9494""""""""""
9495
9496The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
9497cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
9498type.
9499
9500Semantics:
9501""""""""""
9502
9503The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
9504applying either a zero extension or a truncation depending on the size
9505of the integer ``value``. If ``value`` is larger than the size of a
9506pointer then a truncation is done. If ``value`` is smaller than the size
9507of a pointer then a zero extension is done. If they are the same size,
9508nothing is done (*no-op cast*).
9509
9510Example:
9511""""""""
9512
9513.. code-block:: llvm
9514
9515 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
9516 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
9517 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
9518 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
9519
9520.. _i_bitcast:
9521
9522'``bitcast .. to``' Instruction
9523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9524
9525Syntax:
9526"""""""
9527
9528::
9529
9530 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
9531
9532Overview:
9533"""""""""
9534
9535The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
9536changing any bits.
9537
9538Arguments:
9539""""""""""
9540
9541The '``bitcast``' instruction takes a value to cast, which must be a
9542non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009543also be a non-aggregate :ref:`first class <t_firstclass>` type. The
9544bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00009545identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009546also be a pointer of the same size. This instruction supports bitwise
9547conversion of vectors to integers and to vectors of other types (as
9548long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00009549
9550Semantics:
9551""""""""""
9552
Matt Arsenault24b49c42013-07-31 17:49:08 +00009553The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
9554is always a *no-op cast* because no bits change with this
9555conversion. The conversion is done as if the ``value`` had been stored
9556to memory and read back as type ``ty2``. Pointer (or vector of
9557pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009558pointers) types with the same address space through this instruction.
9559To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
9560or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00009561
9562Example:
9563""""""""
9564
Renato Golin124f2592016-07-20 12:16:38 +00009565.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009566
9567 %X = bitcast i8 255 to i8 ; yields i8 :-1
9568 %Y = bitcast i32* %x to sint* ; yields sint*:%x
9569 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
9570 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
9571
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009572.. _i_addrspacecast:
9573
9574'``addrspacecast .. to``' Instruction
9575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9576
9577Syntax:
9578"""""""
9579
9580::
9581
9582 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
9583
9584Overview:
9585"""""""""
9586
9587The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
9588address space ``n`` to type ``pty2`` in address space ``m``.
9589
9590Arguments:
9591""""""""""
9592
9593The '``addrspacecast``' instruction takes a pointer or vector of pointer value
9594to cast and a pointer type to cast it to, which must have a different
9595address space.
9596
9597Semantics:
9598""""""""""
9599
9600The '``addrspacecast``' instruction converts the pointer value
9601``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00009602value modification, depending on the target and the address space
9603pair. Pointer conversions within the same address space must be
9604performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009605conversion is legal then both result and operand refer to the same memory
9606location.
9607
9608Example:
9609""""""""
9610
9611.. code-block:: llvm
9612
Matt Arsenault9c13dd02013-11-15 22:43:50 +00009613 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
9614 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
9615 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009616
Sean Silvab084af42012-12-07 10:36:55 +00009617.. _otherops:
9618
9619Other Operations
9620----------------
9621
9622The instructions in this category are the "miscellaneous" instructions,
9623which defy better classification.
9624
9625.. _i_icmp:
9626
9627'``icmp``' Instruction
9628^^^^^^^^^^^^^^^^^^^^^^
9629
9630Syntax:
9631"""""""
9632
9633::
9634
Tim Northover675a0962014-06-13 14:24:23 +00009635 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009636
9637Overview:
9638"""""""""
9639
9640The '``icmp``' instruction returns a boolean value or a vector of
9641boolean values based on comparison of its two integer, integer vector,
9642pointer, or pointer vector operands.
9643
9644Arguments:
9645""""""""""
9646
9647The '``icmp``' instruction takes three operands. The first operand is
9648the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009649not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009650
9651#. ``eq``: equal
9652#. ``ne``: not equal
9653#. ``ugt``: unsigned greater than
9654#. ``uge``: unsigned greater or equal
9655#. ``ult``: unsigned less than
9656#. ``ule``: unsigned less or equal
9657#. ``sgt``: signed greater than
9658#. ``sge``: signed greater or equal
9659#. ``slt``: signed less than
9660#. ``sle``: signed less or equal
9661
9662The remaining two arguments must be :ref:`integer <t_integer>` or
9663:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
9664must also be identical types.
9665
9666Semantics:
9667""""""""""
9668
9669The '``icmp``' compares ``op1`` and ``op2`` according to the condition
9670code given as ``cond``. The comparison performed always yields either an
9671:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
9672
9673#. ``eq``: yields ``true`` if the operands are equal, ``false``
9674 otherwise. No sign interpretation is necessary or performed.
9675#. ``ne``: yields ``true`` if the operands are unequal, ``false``
9676 otherwise. No sign interpretation is necessary or performed.
9677#. ``ugt``: interprets the operands as unsigned values and yields
9678 ``true`` if ``op1`` is greater than ``op2``.
9679#. ``uge``: interprets the operands as unsigned values and yields
9680 ``true`` if ``op1`` is greater than or equal to ``op2``.
9681#. ``ult``: interprets the operands as unsigned values and yields
9682 ``true`` if ``op1`` is less than ``op2``.
9683#. ``ule``: interprets the operands as unsigned values and yields
9684 ``true`` if ``op1`` is less than or equal to ``op2``.
9685#. ``sgt``: interprets the operands as signed values and yields ``true``
9686 if ``op1`` is greater than ``op2``.
9687#. ``sge``: interprets the operands as signed values and yields ``true``
9688 if ``op1`` is greater than or equal to ``op2``.
9689#. ``slt``: interprets the operands as signed values and yields ``true``
9690 if ``op1`` is less than ``op2``.
9691#. ``sle``: interprets the operands as signed values and yields ``true``
9692 if ``op1`` is less than or equal to ``op2``.
9693
9694If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
9695are compared as if they were integers.
9696
9697If the operands are integer vectors, then they are compared element by
9698element. The result is an ``i1`` vector with the same number of elements
9699as the values being compared. Otherwise, the result is an ``i1``.
9700
9701Example:
9702""""""""
9703
Renato Golin124f2592016-07-20 12:16:38 +00009704.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009705
9706 <result> = icmp eq i32 4, 5 ; yields: result=false
9707 <result> = icmp ne float* %X, %X ; yields: result=false
9708 <result> = icmp ult i16 4, 5 ; yields: result=true
9709 <result> = icmp sgt i16 4, 5 ; yields: result=false
9710 <result> = icmp ule i16 -4, 5 ; yields: result=false
9711 <result> = icmp sge i16 4, 5 ; yields: result=false
9712
Sean Silvab084af42012-12-07 10:36:55 +00009713.. _i_fcmp:
9714
9715'``fcmp``' Instruction
9716^^^^^^^^^^^^^^^^^^^^^^
9717
9718Syntax:
9719"""""""
9720
9721::
9722
James Molloy88eb5352015-07-10 12:52:00 +00009723 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009724
9725Overview:
9726"""""""""
9727
9728The '``fcmp``' instruction returns a boolean value or vector of boolean
9729values based on comparison of its operands.
9730
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009731If the operands are floating-point scalars, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009732boolean (:ref:`i1 <t_integer>`).
9733
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009734If the operands are floating-point vectors, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009735vector of boolean with the same number of elements as the operands being
9736compared.
9737
9738Arguments:
9739""""""""""
9740
9741The '``fcmp``' instruction takes three operands. The first operand is
9742the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009743not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009744
9745#. ``false``: no comparison, always returns false
9746#. ``oeq``: ordered and equal
9747#. ``ogt``: ordered and greater than
9748#. ``oge``: ordered and greater than or equal
9749#. ``olt``: ordered and less than
9750#. ``ole``: ordered and less than or equal
9751#. ``one``: ordered and not equal
9752#. ``ord``: ordered (no nans)
9753#. ``ueq``: unordered or equal
9754#. ``ugt``: unordered or greater than
9755#. ``uge``: unordered or greater than or equal
9756#. ``ult``: unordered or less than
9757#. ``ule``: unordered or less than or equal
9758#. ``une``: unordered or not equal
9759#. ``uno``: unordered (either nans)
9760#. ``true``: no comparison, always returns true
9761
9762*Ordered* means that neither operand is a QNAN while *unordered* means
9763that either operand may be a QNAN.
9764
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009765Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating-point
9766<t_floating>` type or a :ref:`vector <t_vector>` of floating-point type.
9767They must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00009768
9769Semantics:
9770""""""""""
9771
9772The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
9773condition code given as ``cond``. If the operands are vectors, then the
9774vectors are compared element by element. Each comparison performed
9775always yields an :ref:`i1 <t_integer>` result, as follows:
9776
9777#. ``false``: always yields ``false``, regardless of operands.
9778#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
9779 is equal to ``op2``.
9780#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
9781 is greater than ``op2``.
9782#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
9783 is greater than or equal to ``op2``.
9784#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
9785 is less than ``op2``.
9786#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
9787 is less than or equal to ``op2``.
9788#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
9789 is not equal to ``op2``.
9790#. ``ord``: yields ``true`` if both operands are not a QNAN.
9791#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
9792 equal to ``op2``.
9793#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
9794 greater than ``op2``.
9795#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
9796 greater than or equal to ``op2``.
9797#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
9798 less than ``op2``.
9799#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
9800 less than or equal to ``op2``.
9801#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
9802 not equal to ``op2``.
9803#. ``uno``: yields ``true`` if either operand is a QNAN.
9804#. ``true``: always yields ``true``, regardless of operands.
9805
James Molloy88eb5352015-07-10 12:52:00 +00009806The ``fcmp`` instruction can also optionally take any number of
9807:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009808otherwise unsafe floating-point optimizations.
James Molloy88eb5352015-07-10 12:52:00 +00009809
9810Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
9811only flags that have any effect on its semantics are those that allow
9812assumptions to be made about the values of input arguments; namely
Eli Friedman8bb43262018-07-17 20:28:31 +00009813``nnan``, ``ninf``, and ``reassoc``. See :ref:`fastmath` for more information.
James Molloy88eb5352015-07-10 12:52:00 +00009814
Sean Silvab084af42012-12-07 10:36:55 +00009815Example:
9816""""""""
9817
Renato Golin124f2592016-07-20 12:16:38 +00009818.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009819
9820 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
9821 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
9822 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
9823 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
9824
Sean Silvab084af42012-12-07 10:36:55 +00009825.. _i_phi:
9826
9827'``phi``' Instruction
9828^^^^^^^^^^^^^^^^^^^^^
9829
9830Syntax:
9831"""""""
9832
9833::
9834
9835 <result> = phi <ty> [ <val0>, <label0>], ...
9836
9837Overview:
9838"""""""""
9839
9840The '``phi``' instruction is used to implement the φ node in the SSA
9841graph representing the function.
9842
9843Arguments:
9844""""""""""
9845
9846The type of the incoming values is specified with the first type field.
9847After this, the '``phi``' instruction takes a list of pairs as
9848arguments, with one pair for each predecessor basic block of the current
9849block. Only values of :ref:`first class <t_firstclass>` type may be used as
9850the value arguments to the PHI node. Only labels may be used as the
9851label arguments.
9852
9853There must be no non-phi instructions between the start of a basic block
9854and the PHI instructions: i.e. PHI instructions must be first in a basic
9855block.
9856
9857For the purposes of the SSA form, the use of each incoming value is
9858deemed to occur on the edge from the corresponding predecessor block to
9859the current block (but after any definition of an '``invoke``'
9860instruction's return value on the same edge).
9861
9862Semantics:
9863""""""""""
9864
9865At runtime, the '``phi``' instruction logically takes on the value
9866specified by the pair corresponding to the predecessor basic block that
9867executed just prior to the current block.
9868
9869Example:
9870""""""""
9871
9872.. code-block:: llvm
9873
9874 Loop: ; Infinite loop that counts from 0 on up...
9875 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
9876 %nextindvar = add i32 %indvar, 1
9877 br label %Loop
9878
9879.. _i_select:
9880
9881'``select``' Instruction
9882^^^^^^^^^^^^^^^^^^^^^^^^
9883
9884Syntax:
9885"""""""
9886
9887::
9888
9889 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
9890
9891 selty is either i1 or {<N x i1>}
9892
9893Overview:
9894"""""""""
9895
9896The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00009897condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00009898
9899Arguments:
9900""""""""""
9901
9902The '``select``' instruction requires an 'i1' value or a vector of 'i1'
9903values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00009904class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00009905
9906Semantics:
9907""""""""""
9908
9909If the condition is an i1 and it evaluates to 1, the instruction returns
9910the first value argument; otherwise, it returns the second value
9911argument.
9912
9913If the condition is a vector of i1, then the value arguments must be
9914vectors of the same size, and the selection is done element by element.
9915
David Majnemer40a0b592015-03-03 22:45:47 +00009916If the condition is an i1 and the value arguments are vectors of the
9917same size, then an entire vector is selected.
9918
Sean Silvab084af42012-12-07 10:36:55 +00009919Example:
9920""""""""
9921
9922.. code-block:: llvm
9923
9924 %X = select i1 true, i8 17, i8 42 ; yields i8:17
9925
9926.. _i_call:
9927
9928'``call``' Instruction
9929^^^^^^^^^^^^^^^^^^^^^^
9930
9931Syntax:
9932"""""""
9933
9934::
9935
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00009936 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] [addrspace(<num>)]
9937 [<ty>|<fnty> <fnptrval>(<function args>) [fn attrs] [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00009938
9939Overview:
9940"""""""""
9941
9942The '``call``' instruction represents a simple function call.
9943
9944Arguments:
9945""""""""""
9946
9947This instruction requires several arguments:
9948
Reid Kleckner5772b772014-04-24 20:14:34 +00009949#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00009950 should perform tail call optimization. The ``tail`` marker is a hint that
9951 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00009952 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00009953 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00009954
9955 #. The call will not cause unbounded stack growth if it is part of a
9956 recursive cycle in the call graph.
9957 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
9958 forwarded in place.
9959
Florian Hahnedae5a62018-01-17 23:29:25 +00009960 Both markers imply that the callee does not access allocas from the caller.
9961 The ``tail`` marker additionally implies that the callee does not access
9962 varargs from the caller, while ``musttail`` implies that varargs from the
9963 caller are passed to the callee. Calls marked ``musttail`` must obey the
9964 following additional rules:
Reid Kleckner5772b772014-04-24 20:14:34 +00009965
9966 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
9967 or a pointer bitcast followed by a ret instruction.
9968 - The ret instruction must return the (possibly bitcasted) value
9969 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00009970 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00009971 parameters or return types may differ in pointee type, but not
9972 in address space.
9973 - The calling conventions of the caller and callee must match.
9974 - All ABI-impacting function attributes, such as sret, byval, inreg,
9975 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00009976 - The callee must be varargs iff the caller is varargs. Bitcasting a
9977 non-varargs function to the appropriate varargs type is legal so
9978 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00009979
9980 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
9981 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00009982
9983 - Caller and callee both have the calling convention ``fastcc``.
9984 - The call is in tail position (ret immediately follows call and ret
9985 uses value of call or is void).
9986 - Option ``-tailcallopt`` is enabled, or
9987 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00009988 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00009989 met. <CodeGenerator.html#tailcallopt>`_
9990
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00009991#. The optional ``notail`` marker indicates that the optimizers should not add
9992 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
9993 call optimization from being performed on the call.
9994
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00009995#. The optional ``fast-math flags`` marker indicates that the call has one or more
Sanjay Patelfa54ace2015-12-14 21:59:03 +00009996 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
9997 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
9998 for calls that return a floating-point scalar or vector type.
9999
Sean Silvab084af42012-12-07 10:36:55 +000010000#. The optional "cconv" marker indicates which :ref:`calling
10001 convention <callingconv>` the call should use. If none is
10002 specified, the call defaults to using C calling conventions. The
10003 calling convention of the call must match the calling convention of
10004 the target function, or else the behavior is undefined.
10005#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
10006 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
10007 are valid here.
Craig Topper78e7fff2019-01-16 00:21:59 +000010008#. The optional addrspace attribute can be used to indicate the address space
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +000010009 of the called function. If it is not specified, the program address space
10010 from the :ref:`datalayout string<langref_datalayout>` will be used.
Sean Silvab084af42012-12-07 10:36:55 +000010011#. '``ty``': the type of the call instruction itself which is also the
10012 type of the return value. Functions that return no value are marked
10013 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +000010014#. '``fnty``': shall be the signature of the function being called. The
10015 argument types must match the types implied by this signature. This
10016 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +000010017#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +000010018 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +000010019 indirect ``call``'s are just as possible, calling an arbitrary pointer
10020 to function value.
10021#. '``function args``': argument list whose types match the function
10022 signature argument types and parameter attributes. All arguments must
10023 be of :ref:`first class <t_firstclass>` type. If the function signature
10024 indicates the function accepts a variable number of arguments, the
10025 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +000010026#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +000010027#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +000010028
10029Semantics:
10030""""""""""
10031
10032The '``call``' instruction is used to cause control flow to transfer to
10033a specified function, with its incoming arguments bound to the specified
10034values. Upon a '``ret``' instruction in the called function, control
10035flow continues with the instruction after the function call, and the
10036return value of the function is bound to the result argument.
10037
10038Example:
10039""""""""
10040
10041.. code-block:: llvm
10042
10043 %retval = call i32 @test(i32 %argc)
10044 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
10045 %X = tail call i32 @foo() ; yields i32
10046 %Y = tail call fastcc i32 @foo() ; yields i32
10047 call void %foo(i8 97 signext)
10048
10049 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +000010050 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +000010051 %gr = extractvalue %struct.A %r, 0 ; yields i32
10052 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
10053 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
10054 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
10055
10056llvm treats calls to some functions with names and arguments that match
10057the standard C99 library as being the C99 library functions, and may
10058perform optimizations or generate code for them under that assumption.
10059This is something we'd like to change in the future to provide better
10060support for freestanding environments and non-C-based languages.
10061
10062.. _i_va_arg:
10063
10064'``va_arg``' Instruction
10065^^^^^^^^^^^^^^^^^^^^^^^^
10066
10067Syntax:
10068"""""""
10069
10070::
10071
10072 <resultval> = va_arg <va_list*> <arglist>, <argty>
10073
10074Overview:
10075"""""""""
10076
10077The '``va_arg``' instruction is used to access arguments passed through
10078the "variable argument" area of a function call. It is used to implement
10079the ``va_arg`` macro in C.
10080
10081Arguments:
10082""""""""""
10083
10084This instruction takes a ``va_list*`` value and the type of the
10085argument. It returns a value of the specified argument type and
10086increments the ``va_list`` to point to the next argument. The actual
10087type of ``va_list`` is target specific.
10088
10089Semantics:
10090""""""""""
10091
10092The '``va_arg``' instruction loads an argument of the specified type
10093from the specified ``va_list`` and causes the ``va_list`` to point to
10094the next argument. For more information, see the variable argument
10095handling :ref:`Intrinsic Functions <int_varargs>`.
10096
10097It is legal for this instruction to be called in a function which does
10098not take a variable number of arguments, for example, the ``vfprintf``
10099function.
10100
10101``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
10102function <intrinsics>` because it takes a type as an argument.
10103
10104Example:
10105""""""""
10106
10107See the :ref:`variable argument processing <int_varargs>` section.
10108
10109Note that the code generator does not yet fully support va\_arg on many
10110targets. Also, it does not currently support va\_arg with aggregate
10111types on any target.
10112
10113.. _i_landingpad:
10114
10115'``landingpad``' Instruction
10116^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10117
10118Syntax:
10119"""""""
10120
10121::
10122
David Majnemer7fddecc2015-06-17 20:52:32 +000010123 <resultval> = landingpad <resultty> <clause>+
10124 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +000010125
10126 <clause> := catch <type> <value>
10127 <clause> := filter <array constant type> <array constant>
10128
10129Overview:
10130"""""""""
10131
10132The '``landingpad``' instruction is used by `LLVM's exception handling
10133system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010134is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +000010135code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +000010136defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +000010137re-entry to the function. The ``resultval`` has the type ``resultty``.
10138
10139Arguments:
10140""""""""""
10141
David Majnemer7fddecc2015-06-17 20:52:32 +000010142The optional
Sean Silvab084af42012-12-07 10:36:55 +000010143``cleanup`` flag indicates that the landing pad block is a cleanup.
10144
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010145A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +000010146contains the global variable representing the "type" that may be caught
10147or filtered respectively. Unlike the ``catch`` clause, the ``filter``
10148clause takes an array constant as its argument. Use
10149"``[0 x i8**] undef``" for a filter which cannot throw. The
10150'``landingpad``' instruction must contain *at least* one ``clause`` or
10151the ``cleanup`` flag.
10152
10153Semantics:
10154""""""""""
10155
10156The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +000010157:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +000010158therefore the "result type" of the ``landingpad`` instruction. As with
10159calling conventions, how the personality function results are
10160represented in LLVM IR is target specific.
10161
10162The clauses are applied in order from top to bottom. If two
10163``landingpad`` instructions are merged together through inlining, the
10164clauses from the calling function are appended to the list of clauses.
10165When the call stack is being unwound due to an exception being thrown,
10166the exception is compared against each ``clause`` in turn. If it doesn't
10167match any of the clauses, and the ``cleanup`` flag is not set, then
10168unwinding continues further up the call stack.
10169
10170The ``landingpad`` instruction has several restrictions:
10171
10172- A landing pad block is a basic block which is the unwind destination
10173 of an '``invoke``' instruction.
10174- A landing pad block must have a '``landingpad``' instruction as its
10175 first non-PHI instruction.
10176- There can be only one '``landingpad``' instruction within the landing
10177 pad block.
10178- A basic block that is not a landing pad block may not include a
10179 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +000010180
10181Example:
10182""""""""
10183
10184.. code-block:: llvm
10185
10186 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +000010187 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +000010188 catch i8** @_ZTIi
10189 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +000010190 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +000010191 cleanup
10192 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +000010193 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +000010194 catch i8** @_ZTIi
10195 filter [1 x i8**] [@_ZTId]
10196
Joseph Tremoulet2adaa982016-01-10 04:46:10 +000010197.. _i_catchpad:
10198
10199'``catchpad``' Instruction
10200^^^^^^^^^^^^^^^^^^^^^^^^^^
10201
10202Syntax:
10203"""""""
10204
10205::
10206
10207 <resultval> = catchpad within <catchswitch> [<args>*]
10208
10209Overview:
10210"""""""""
10211
10212The '``catchpad``' instruction is used by `LLVM's exception handling
10213system <ExceptionHandling.html#overview>`_ to specify that a basic block
10214begins a catch handler --- one where a personality routine attempts to transfer
10215control to catch an exception.
10216
10217Arguments:
10218""""""""""
10219
10220The ``catchswitch`` operand must always be a token produced by a
10221:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
10222ensures that each ``catchpad`` has exactly one predecessor block, and it always
10223terminates in a ``catchswitch``.
10224
10225The ``args`` correspond to whatever information the personality routine
10226requires to know if this is an appropriate handler for the exception. Control
10227will transfer to the ``catchpad`` if this is the first appropriate handler for
10228the exception.
10229
10230The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
10231``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
10232pads.
10233
10234Semantics:
10235""""""""""
10236
10237When the call stack is being unwound due to an exception being thrown, the
10238exception is compared against the ``args``. If it doesn't match, control will
10239not reach the ``catchpad`` instruction. The representation of ``args`` is
10240entirely target and personality function-specific.
10241
10242Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
10243instruction must be the first non-phi of its parent basic block.
10244
10245The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
10246instructions is described in the
10247`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
10248
10249When a ``catchpad`` has been "entered" but not yet "exited" (as
10250described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
10251it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
10252that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
10253
10254Example:
10255""""""""
10256
Renato Golin124f2592016-07-20 12:16:38 +000010257.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +000010258
10259 dispatch:
10260 %cs = catchswitch within none [label %handler0] unwind to caller
10261 ;; A catch block which can catch an integer.
10262 handler0:
10263 %tok = catchpad within %cs [i8** @_ZTIi]
10264
David Majnemer654e1302015-07-31 17:58:14 +000010265.. _i_cleanuppad:
10266
10267'``cleanuppad``' Instruction
10268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10269
10270Syntax:
10271"""""""
10272
10273::
10274
David Majnemer8a1c45d2015-12-12 05:38:55 +000010275 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +000010276
10277Overview:
10278"""""""""
10279
10280The '``cleanuppad``' instruction is used by `LLVM's exception handling
10281system <ExceptionHandling.html#overview>`_ to specify that a basic block
10282is a cleanup block --- one where a personality routine attempts to
10283transfer control to run cleanup actions.
10284The ``args`` correspond to whatever additional
10285information the :ref:`personality function <personalityfn>` requires to
10286execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +000010287The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +000010288match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
10289The ``parent`` argument is the token of the funclet that contains the
10290``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
10291this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +000010292
10293Arguments:
10294""""""""""
10295
10296The instruction takes a list of arbitrary values which are interpreted
10297by the :ref:`personality function <personalityfn>`.
10298
10299Semantics:
10300""""""""""
10301
David Majnemer654e1302015-07-31 17:58:14 +000010302When the call stack is being unwound due to an exception being thrown,
10303the :ref:`personality function <personalityfn>` transfers control to the
10304``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +000010305As with calling conventions, how the personality function results are
10306represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +000010307
10308The ``cleanuppad`` instruction has several restrictions:
10309
10310- A cleanup block is a basic block which is the unwind destination of
10311 an exceptional instruction.
10312- A cleanup block must have a '``cleanuppad``' instruction as its
10313 first non-PHI instruction.
10314- There can be only one '``cleanuppad``' instruction within the
10315 cleanup block.
10316- A basic block that is not a cleanup block may not include a
10317 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +000010318
Joseph Tremoulete28885e2016-01-10 04:28:38 +000010319When a ``cleanuppad`` has been "entered" but not yet "exited" (as
10320described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
10321it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
10322that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +000010323
David Majnemer654e1302015-07-31 17:58:14 +000010324Example:
10325""""""""
10326
Renato Golin124f2592016-07-20 12:16:38 +000010327.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +000010328
David Majnemer8a1c45d2015-12-12 05:38:55 +000010329 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +000010330
Sean Silvab084af42012-12-07 10:36:55 +000010331.. _intrinsics:
10332
10333Intrinsic Functions
10334===================
10335
10336LLVM supports the notion of an "intrinsic function". These functions
10337have well known names and semantics and are required to follow certain
10338restrictions. Overall, these intrinsics represent an extension mechanism
10339for the LLVM language that does not require changing all of the
10340transformations in LLVM when adding to the language (or the bitcode
10341reader/writer, the parser, etc...).
10342
10343Intrinsic function names must all start with an "``llvm.``" prefix. This
10344prefix is reserved in LLVM for intrinsic names; thus, function names may
10345not begin with this prefix. Intrinsic functions must always be external
10346functions: you cannot define the body of intrinsic functions. Intrinsic
10347functions may only be used in call or invoke instructions: it is illegal
10348to take the address of an intrinsic function. Additionally, because
10349intrinsic functions are part of the LLVM language, it is required if any
10350are added that they be documented here.
10351
10352Some intrinsic functions can be overloaded, i.e., the intrinsic
10353represents a family of functions that perform the same operation but on
10354different data types. Because LLVM can represent over 8 million
10355different integer types, overloading is used commonly to allow an
10356intrinsic function to operate on any integer type. One or more of the
10357argument types or the result type can be overloaded to accept any
10358integer type. Argument types may also be defined as exactly matching a
10359previous argument's type or the result type. This allows an intrinsic
10360function which accepts multiple arguments, but needs all of them to be
10361of the same type, to only be overloaded with respect to a single
10362argument or the result.
10363
10364Overloaded intrinsics will have the names of its overloaded argument
10365types encoded into its function name, each preceded by a period. Only
10366those types which are overloaded result in a name suffix. Arguments
10367whose type is matched against another type do not. For example, the
10368``llvm.ctpop`` function can take an integer of any width and returns an
10369integer of exactly the same integer width. This leads to a family of
10370functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
10371``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
10372overloaded, and only one type suffix is required. Because the argument's
10373type is matched against the return type, it does not require its own
10374name suffix.
10375
10376To learn how to add an intrinsic function, please see the `Extending
10377LLVM Guide <ExtendingLLVM.html>`_.
10378
10379.. _int_varargs:
10380
10381Variable Argument Handling Intrinsics
10382-------------------------------------
10383
10384Variable argument support is defined in LLVM with the
10385:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
10386functions. These functions are related to the similarly named macros
10387defined in the ``<stdarg.h>`` header file.
10388
10389All of these functions operate on arguments that use a target-specific
10390value type "``va_list``". The LLVM assembly language reference manual
10391does not define what this type is, so all transformations should be
10392prepared to handle these functions regardless of the type used.
10393
10394This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
10395variable argument handling intrinsic functions are used.
10396
10397.. code-block:: llvm
10398
Tim Northoverab60bb92014-11-02 01:21:51 +000010399 ; This struct is different for every platform. For most platforms,
10400 ; it is merely an i8*.
10401 %struct.va_list = type { i8* }
10402
10403 ; For Unix x86_64 platforms, va_list is the following struct:
10404 ; %struct.va_list = type { i32, i32, i8*, i8* }
10405
Sean Silvab084af42012-12-07 10:36:55 +000010406 define i32 @test(i32 %X, ...) {
10407 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +000010408 %ap = alloca %struct.va_list
10409 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +000010410 call void @llvm.va_start(i8* %ap2)
10411
10412 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +000010413 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +000010414
10415 ; Demonstrate usage of llvm.va_copy and llvm.va_end
10416 %aq = alloca i8*
10417 %aq2 = bitcast i8** %aq to i8*
10418 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
10419 call void @llvm.va_end(i8* %aq2)
10420
10421 ; Stop processing of arguments.
10422 call void @llvm.va_end(i8* %ap2)
10423 ret i32 %tmp
10424 }
10425
10426 declare void @llvm.va_start(i8*)
10427 declare void @llvm.va_copy(i8*, i8*)
10428 declare void @llvm.va_end(i8*)
10429
10430.. _int_va_start:
10431
10432'``llvm.va_start``' Intrinsic
10433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10434
10435Syntax:
10436"""""""
10437
10438::
10439
Nick Lewycky04f6de02013-09-11 22:04:52 +000010440 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +000010441
10442Overview:
10443"""""""""
10444
10445The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
10446subsequent use by ``va_arg``.
10447
10448Arguments:
10449""""""""""
10450
10451The argument is a pointer to a ``va_list`` element to initialize.
10452
10453Semantics:
10454""""""""""
10455
10456The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
10457available in C. In a target-dependent way, it initializes the
10458``va_list`` element to which the argument points, so that the next call
10459to ``va_arg`` will produce the first variable argument passed to the
10460function. Unlike the C ``va_start`` macro, this intrinsic does not need
10461to know the last argument of the function as the compiler can figure
10462that out.
10463
10464'``llvm.va_end``' Intrinsic
10465^^^^^^^^^^^^^^^^^^^^^^^^^^^
10466
10467Syntax:
10468"""""""
10469
10470::
10471
10472 declare void @llvm.va_end(i8* <arglist>)
10473
10474Overview:
10475"""""""""
10476
10477The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
10478initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
10479
10480Arguments:
10481""""""""""
10482
10483The argument is a pointer to a ``va_list`` to destroy.
10484
10485Semantics:
10486""""""""""
10487
10488The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
10489available in C. In a target-dependent way, it destroys the ``va_list``
10490element to which the argument points. Calls to
10491:ref:`llvm.va_start <int_va_start>` and
10492:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
10493``llvm.va_end``.
10494
10495.. _int_va_copy:
10496
10497'``llvm.va_copy``' Intrinsic
10498^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10499
10500Syntax:
10501"""""""
10502
10503::
10504
10505 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
10506
10507Overview:
10508"""""""""
10509
10510The '``llvm.va_copy``' intrinsic copies the current argument position
10511from the source argument list to the destination argument list.
10512
10513Arguments:
10514""""""""""
10515
10516The first argument is a pointer to a ``va_list`` element to initialize.
10517The second argument is a pointer to a ``va_list`` element to copy from.
10518
10519Semantics:
10520""""""""""
10521
10522The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
10523available in C. In a target-dependent way, it copies the source
10524``va_list`` element into the destination ``va_list`` element. This
10525intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
10526arbitrarily complex and require, for example, memory allocation.
10527
10528Accurate Garbage Collection Intrinsics
10529--------------------------------------
10530
Philip Reamesc5b0f562015-02-25 23:52:06 +000010531LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010532(GC) requires the frontend to generate code containing appropriate intrinsic
10533calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +000010534intrinsics in a manner which is appropriate for the target collector.
10535
Sean Silvab084af42012-12-07 10:36:55 +000010536These intrinsics allow identification of :ref:`GC roots on the
10537stack <int_gcroot>`, as well as garbage collector implementations that
10538require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +000010539Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +000010540these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +000010541details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +000010542
Philip Reamesf80bbff2015-02-25 23:45:20 +000010543Experimental Statepoint Intrinsics
10544^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10545
10546LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +000010547collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010548to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +000010549:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010550differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +000010551<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +000010552described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +000010553
10554.. _int_gcroot:
10555
10556'``llvm.gcroot``' Intrinsic
10557^^^^^^^^^^^^^^^^^^^^^^^^^^^
10558
10559Syntax:
10560"""""""
10561
10562::
10563
10564 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
10565
10566Overview:
10567"""""""""
10568
10569The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
10570the code generator, and allows some metadata to be associated with it.
10571
10572Arguments:
10573""""""""""
10574
10575The first argument specifies the address of a stack object that contains
10576the root pointer. The second pointer (which must be either a constant or
10577a global value address) contains the meta-data to be associated with the
10578root.
10579
10580Semantics:
10581""""""""""
10582
10583At runtime, a call to this intrinsic stores a null pointer into the
10584"ptrloc" location. At compile-time, the code generator generates
10585information to allow the runtime to find the pointer at GC safe points.
10586The '``llvm.gcroot``' intrinsic may only be used in a function which
10587:ref:`specifies a GC algorithm <gc>`.
10588
10589.. _int_gcread:
10590
10591'``llvm.gcread``' Intrinsic
10592^^^^^^^^^^^^^^^^^^^^^^^^^^^
10593
10594Syntax:
10595"""""""
10596
10597::
10598
10599 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
10600
10601Overview:
10602"""""""""
10603
10604The '``llvm.gcread``' intrinsic identifies reads of references from heap
10605locations, allowing garbage collector implementations that require read
10606barriers.
10607
10608Arguments:
10609""""""""""
10610
10611The second argument is the address to read from, which should be an
10612address allocated from the garbage collector. The first object is a
10613pointer to the start of the referenced object, if needed by the language
10614runtime (otherwise null).
10615
10616Semantics:
10617""""""""""
10618
10619The '``llvm.gcread``' intrinsic has the same semantics as a load
10620instruction, but may be replaced with substantially more complex code by
10621the garbage collector runtime, as needed. The '``llvm.gcread``'
10622intrinsic may only be used in a function which :ref:`specifies a GC
10623algorithm <gc>`.
10624
10625.. _int_gcwrite:
10626
10627'``llvm.gcwrite``' Intrinsic
10628^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10629
10630Syntax:
10631"""""""
10632
10633::
10634
10635 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
10636
10637Overview:
10638"""""""""
10639
10640The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
10641locations, allowing garbage collector implementations that require write
10642barriers (such as generational or reference counting collectors).
10643
10644Arguments:
10645""""""""""
10646
10647The first argument is the reference to store, the second is the start of
10648the object to store it to, and the third is the address of the field of
10649Obj to store to. If the runtime does not require a pointer to the
10650object, Obj may be null.
10651
10652Semantics:
10653""""""""""
10654
10655The '``llvm.gcwrite``' intrinsic has the same semantics as a store
10656instruction, but may be replaced with substantially more complex code by
10657the garbage collector runtime, as needed. The '``llvm.gcwrite``'
10658intrinsic may only be used in a function which :ref:`specifies a GC
10659algorithm <gc>`.
10660
10661Code Generator Intrinsics
10662-------------------------
10663
10664These intrinsics are provided by LLVM to expose special features that
10665may only be implemented with code generator support.
10666
10667'``llvm.returnaddress``' Intrinsic
10668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10669
10670Syntax:
10671"""""""
10672
10673::
10674
George Burgess IVfbc34982017-05-20 04:52:29 +000010675 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +000010676
10677Overview:
10678"""""""""
10679
10680The '``llvm.returnaddress``' intrinsic attempts to compute a
10681target-specific value indicating the return address of the current
10682function or one of its callers.
10683
10684Arguments:
10685""""""""""
10686
10687The argument to this intrinsic indicates which function to return the
10688address for. Zero indicates the calling function, one indicates its
10689caller, etc. The argument is **required** to be a constant integer
10690value.
10691
10692Semantics:
10693""""""""""
10694
10695The '``llvm.returnaddress``' intrinsic either returns a pointer
10696indicating the return address of the specified call frame, or zero if it
10697cannot be identified. The value returned by this intrinsic is likely to
10698be incorrect or 0 for arguments other than zero, so it should only be
10699used for debugging purposes.
10700
10701Note that calling this intrinsic does not prevent function inlining or
10702other aggressive transformations, so the value returned may not be that
10703of the obvious source-language caller.
10704
Albert Gutowski795d7d62016-10-12 22:13:19 +000010705'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +000010706^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +000010707
10708Syntax:
10709"""""""
10710
10711::
10712
George Burgess IVfbc34982017-05-20 04:52:29 +000010713 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +000010714
10715Overview:
10716"""""""""
10717
10718The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
10719pointer to the place in the stack frame where the return address of the
10720current function is stored.
10721
10722Semantics:
10723""""""""""
10724
10725Note that calling this intrinsic does not prevent function inlining or
10726other aggressive transformations, so the value returned may not be that
10727of the obvious source-language caller.
10728
Mandeep Singh Grangdf19e572018-11-01 21:23:47 +000010729This intrinsic is only implemented for x86 and aarch64.
Albert Gutowski795d7d62016-10-12 22:13:19 +000010730
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000010731'``llvm.sponentry``' Intrinsic
10732^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10733
10734Syntax:
10735"""""""
10736
10737::
10738
10739 declare i8* @llvm.sponentry()
10740
10741Overview:
10742"""""""""
10743
10744The '``llvm.sponentry``' intrinsic returns the stack pointer value at
10745the entry of the current function calling this intrinsic.
10746
10747Semantics:
10748""""""""""
10749
10750Note this intrinsic is only verified on AArch64.
10751
Sean Silvab084af42012-12-07 10:36:55 +000010752'``llvm.frameaddress``' Intrinsic
10753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10754
10755Syntax:
10756"""""""
10757
10758::
10759
10760 declare i8* @llvm.frameaddress(i32 <level>)
10761
10762Overview:
10763"""""""""
10764
10765The '``llvm.frameaddress``' intrinsic attempts to return the
10766target-specific frame pointer value for the specified stack frame.
10767
10768Arguments:
10769""""""""""
10770
10771The argument to this intrinsic indicates which function to return the
10772frame pointer for. Zero indicates the calling function, one indicates
10773its caller, etc. The argument is **required** to be a constant integer
10774value.
10775
10776Semantics:
10777""""""""""
10778
10779The '``llvm.frameaddress``' intrinsic either returns a pointer
10780indicating the frame address of the specified call frame, or zero if it
10781cannot be identified. The value returned by this intrinsic is likely to
10782be incorrect or 0 for arguments other than zero, so it should only be
10783used for debugging purposes.
10784
10785Note that calling this intrinsic does not prevent function inlining or
10786other aggressive transformations, so the value returned may not be that
10787of the obvious source-language caller.
10788
Reid Kleckner60381792015-07-07 22:25:32 +000010789'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +000010790^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10791
10792Syntax:
10793"""""""
10794
10795::
10796
Reid Kleckner60381792015-07-07 22:25:32 +000010797 declare void @llvm.localescape(...)
10798 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +000010799
10800Overview:
10801"""""""""
10802
Reid Kleckner60381792015-07-07 22:25:32 +000010803The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
10804allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010805live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +000010806computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +000010807
10808Arguments:
10809""""""""""
10810
Reid Kleckner60381792015-07-07 22:25:32 +000010811All arguments to '``llvm.localescape``' must be pointers to static allocas or
10812casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010813once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +000010814
Reid Kleckner60381792015-07-07 22:25:32 +000010815The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +000010816bitcasted pointer to a function defined in the current module. The code
10817generator cannot determine the frame allocation offset of functions defined in
10818other modules.
10819
Reid Klecknerd5afc62f2015-07-07 23:23:03 +000010820The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
10821call frame that is currently live. The return value of '``llvm.localaddress``'
10822is one way to produce such a value, but various runtimes also expose a suitable
10823pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +000010824
Reid Kleckner60381792015-07-07 22:25:32 +000010825The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
10826'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010827
Reid Klecknere9b89312015-01-13 00:48:10 +000010828Semantics:
10829""""""""""
10830
Reid Kleckner60381792015-07-07 22:25:32 +000010831These intrinsics allow a group of functions to share access to a set of local
10832stack allocations of a one parent function. The parent function may call the
10833'``llvm.localescape``' intrinsic once from the function entry block, and the
10834child functions can use '``llvm.localrecover``' to access the escaped allocas.
10835The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
10836the escaped allocas are allocated, which would break attempts to use
10837'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +000010838
Renato Golinc7aea402014-05-06 16:51:25 +000010839.. _int_read_register:
10840.. _int_write_register:
10841
10842'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
10843^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10844
10845Syntax:
10846"""""""
10847
10848::
10849
10850 declare i32 @llvm.read_register.i32(metadata)
10851 declare i64 @llvm.read_register.i64(metadata)
10852 declare void @llvm.write_register.i32(metadata, i32 @value)
10853 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +000010854 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +000010855
10856Overview:
10857"""""""""
10858
10859The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
10860provides access to the named register. The register must be valid on
10861the architecture being compiled to. The type needs to be compatible
10862with the register being read.
10863
10864Semantics:
10865""""""""""
10866
10867The '``llvm.read_register``' intrinsic returns the current value of the
10868register, where possible. The '``llvm.write_register``' intrinsic sets
10869the current value of the register, where possible.
10870
10871This is useful to implement named register global variables that need
10872to always be mapped to a specific register, as is common practice on
10873bare-metal programs including OS kernels.
10874
10875The compiler doesn't check for register availability or use of the used
10876register in surrounding code, including inline assembly. Because of that,
10877allocatable registers are not supported.
10878
10879Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +000010880architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +000010881work is needed to support other registers and even more so, allocatable
10882registers.
10883
Sean Silvab084af42012-12-07 10:36:55 +000010884.. _int_stacksave:
10885
10886'``llvm.stacksave``' Intrinsic
10887^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10888
10889Syntax:
10890"""""""
10891
10892::
10893
10894 declare i8* @llvm.stacksave()
10895
10896Overview:
10897"""""""""
10898
10899The '``llvm.stacksave``' intrinsic is used to remember the current state
10900of the function stack, for use with
10901:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
10902implementing language features like scoped automatic variable sized
10903arrays in C99.
10904
10905Semantics:
10906""""""""""
10907
10908This intrinsic returns a opaque pointer value that can be passed to
10909:ref:`llvm.stackrestore <int_stackrestore>`. When an
10910``llvm.stackrestore`` intrinsic is executed with a value saved from
10911``llvm.stacksave``, it effectively restores the state of the stack to
10912the state it was in when the ``llvm.stacksave`` intrinsic executed. In
10913practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
10914were allocated after the ``llvm.stacksave`` was executed.
10915
10916.. _int_stackrestore:
10917
10918'``llvm.stackrestore``' Intrinsic
10919^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10920
10921Syntax:
10922"""""""
10923
10924::
10925
10926 declare void @llvm.stackrestore(i8* %ptr)
10927
10928Overview:
10929"""""""""
10930
10931The '``llvm.stackrestore``' intrinsic is used to restore the state of
10932the function stack to the state it was in when the corresponding
10933:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
10934useful for implementing language features like scoped automatic variable
10935sized arrays in C99.
10936
10937Semantics:
10938""""""""""
10939
10940See the description for :ref:`llvm.stacksave <int_stacksave>`.
10941
Yury Gribovd7dbb662015-12-01 11:40:55 +000010942.. _int_get_dynamic_area_offset:
10943
10944'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +000010945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +000010946
10947Syntax:
10948"""""""
10949
10950::
10951
10952 declare i32 @llvm.get.dynamic.area.offset.i32()
10953 declare i64 @llvm.get.dynamic.area.offset.i64()
10954
Lang Hames10239932016-10-08 00:20:42 +000010955Overview:
10956"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +000010957
10958 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
10959 get the offset from native stack pointer to the address of the most
10960 recent dynamic alloca on the caller's stack. These intrinsics are
10961 intendend for use in combination with
10962 :ref:`llvm.stacksave <int_stacksave>` to get a
10963 pointer to the most recent dynamic alloca. This is useful, for example,
10964 for AddressSanitizer's stack unpoisoning routines.
10965
10966Semantics:
10967""""""""""
10968
10969 These intrinsics return a non-negative integer value that can be used to
10970 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
10971 on the caller's stack. In particular, for targets where stack grows downwards,
10972 adding this offset to the native stack pointer would get the address of the most
10973 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +000010974 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +000010975 one past the end of the most recent dynamic alloca.
10976
10977 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
10978 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
10979 compile-time-known constant value.
10980
10981 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +000010982 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +000010983
Sean Silvab084af42012-12-07 10:36:55 +000010984'``llvm.prefetch``' Intrinsic
10985^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10986
10987Syntax:
10988"""""""
10989
10990::
10991
10992 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
10993
10994Overview:
10995"""""""""
10996
10997The '``llvm.prefetch``' intrinsic is a hint to the code generator to
10998insert a prefetch instruction if supported; otherwise, it is a noop.
10999Prefetches have no effect on the behavior of the program but can change
11000its performance characteristics.
11001
11002Arguments:
11003""""""""""
11004
11005``address`` is the address to be prefetched, ``rw`` is the specifier
11006determining if the fetch should be for a read (0) or write (1), and
11007``locality`` is a temporal locality specifier ranging from (0) - no
11008locality, to (3) - extremely local keep in cache. The ``cache type``
11009specifies whether the prefetch is performed on the data (1) or
11010instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
11011arguments must be constant integers.
11012
11013Semantics:
11014""""""""""
11015
11016This intrinsic does not modify the behavior of the program. In
11017particular, prefetches cannot trap and do not produce a value. On
11018targets that support this intrinsic, the prefetch can provide hints to
11019the processor cache for better performance.
11020
11021'``llvm.pcmarker``' Intrinsic
11022^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11023
11024Syntax:
11025"""""""
11026
11027::
11028
11029 declare void @llvm.pcmarker(i32 <id>)
11030
11031Overview:
11032"""""""""
11033
11034The '``llvm.pcmarker``' intrinsic is a method to export a Program
11035Counter (PC) in a region of code to simulators and other tools. The
11036method is target specific, but it is expected that the marker will use
11037exported symbols to transmit the PC of the marker. The marker makes no
11038guarantees that it will remain with any specific instruction after
11039optimizations. It is possible that the presence of a marker will inhibit
11040optimizations. The intended use is to be inserted after optimizations to
11041allow correlations of simulation runs.
11042
11043Arguments:
11044""""""""""
11045
11046``id`` is a numerical id identifying the marker.
11047
11048Semantics:
11049""""""""""
11050
11051This intrinsic does not modify the behavior of the program. Backends
11052that do not support this intrinsic may ignore it.
11053
11054'``llvm.readcyclecounter``' Intrinsic
11055^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11056
11057Syntax:
11058"""""""
11059
11060::
11061
11062 declare i64 @llvm.readcyclecounter()
11063
11064Overview:
11065"""""""""
11066
11067The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
11068counter register (or similar low latency, high accuracy clocks) on those
11069targets that support it. On X86, it should map to RDTSC. On Alpha, it
11070should map to RPCC. As the backing counters overflow quickly (on the
11071order of 9 seconds on alpha), this should only be used for small
11072timings.
11073
11074Semantics:
11075""""""""""
11076
11077When directly supported, reading the cycle counter should not modify any
11078memory. Implementations are allowed to either return a application
11079specific value or a system wide value. On backends without support, this
11080is lowered to a constant 0.
11081
Tim Northoverbc933082013-05-23 19:11:20 +000011082Note that runtime support may be conditional on the privilege-level code is
11083running at and the host platform.
11084
Renato Golinc0a3c1d2014-03-26 12:52:28 +000011085'``llvm.clear_cache``' Intrinsic
11086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11087
11088Syntax:
11089"""""""
11090
11091::
11092
11093 declare void @llvm.clear_cache(i8*, i8*)
11094
11095Overview:
11096"""""""""
11097
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011098The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
11099in the specified range to the execution unit of the processor. On
11100targets with non-unified instruction and data cache, the implementation
11101flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000011102
11103Semantics:
11104""""""""""
11105
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011106On platforms with coherent instruction and data caches (e.g. x86), this
11107intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000011108cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011109instructions or a system call, if cache flushing requires special
11110privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000011111
Sean Silvad02bf3e2014-04-07 22:29:53 +000011112The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011113time library.
Renato Golin93010e62014-03-26 14:01:32 +000011114
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000011115This instrinsic does *not* empty the instruction pipeline. Modifications
11116of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000011117
Vedant Kumar51ce6682018-01-26 23:54:25 +000011118'``llvm.instrprof.increment``' Intrinsic
Justin Bogner61ba2e32014-12-08 18:02:35 +000011119^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11120
11121Syntax:
11122"""""""
11123
11124::
11125
Vedant Kumar51ce6682018-01-26 23:54:25 +000011126 declare void @llvm.instrprof.increment(i8* <name>, i64 <hash>,
Justin Bogner61ba2e32014-12-08 18:02:35 +000011127 i32 <num-counters>, i32 <index>)
11128
11129Overview:
11130"""""""""
11131
Vedant Kumar51ce6682018-01-26 23:54:25 +000011132The '``llvm.instrprof.increment``' intrinsic can be emitted by a
Justin Bogner61ba2e32014-12-08 18:02:35 +000011133frontend for use with instrumentation based profiling. These will be
11134lowered by the ``-instrprof`` pass to generate execution counts of a
11135program at runtime.
11136
11137Arguments:
11138""""""""""
11139
11140The first argument is a pointer to a global variable containing the
11141name of the entity being instrumented. This should generally be the
11142(mangled) function name for a set of counters.
11143
11144The second argument is a hash value that can be used by the consumer
11145of the profile data to detect changes to the instrumented source, and
11146the third is the number of counters associated with ``name``. It is an
11147error if ``hash`` or ``num-counters`` differ between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000011148``instrprof.increment`` that refer to the same name.
Justin Bogner61ba2e32014-12-08 18:02:35 +000011149
11150The last argument refers to which of the counters for ``name`` should
11151be incremented. It should be a value between 0 and ``num-counters``.
11152
11153Semantics:
11154""""""""""
11155
11156This intrinsic represents an increment of a profiling counter. It will
11157cause the ``-instrprof`` pass to generate the appropriate data
11158structures and the code to increment the appropriate value, in a
11159format that can be written out by a compiler runtime and consumed via
11160the ``llvm-profdata`` tool.
11161
Vedant Kumar51ce6682018-01-26 23:54:25 +000011162'``llvm.instrprof.increment.step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000011163^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000011164
11165Syntax:
11166"""""""
11167
11168::
11169
Vedant Kumar51ce6682018-01-26 23:54:25 +000011170 declare void @llvm.instrprof.increment.step(i8* <name>, i64 <hash>,
Xinliang David Li4ca17332016-09-18 18:34:07 +000011171 i32 <num-counters>,
11172 i32 <index>, i64 <step>)
11173
11174Overview:
11175"""""""""
11176
Vedant Kumar51ce6682018-01-26 23:54:25 +000011177The '``llvm.instrprof.increment.step``' intrinsic is an extension to
11178the '``llvm.instrprof.increment``' intrinsic with an additional fifth
Xinliang David Li4ca17332016-09-18 18:34:07 +000011179argument to specify the step of the increment.
11180
11181Arguments:
11182""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000011183The first four arguments are the same as '``llvm.instrprof.increment``'
Pete Couperused9569d2017-08-23 20:58:22 +000011184intrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000011185
11186The last argument specifies the value of the increment of the counter variable.
11187
11188Semantics:
11189""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000011190See description of '``llvm.instrprof.increment``' instrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000011191
11192
Vedant Kumar51ce6682018-01-26 23:54:25 +000011193'``llvm.instrprof.value.profile``' Intrinsic
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011194^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11195
11196Syntax:
11197"""""""
11198
11199::
11200
Vedant Kumar51ce6682018-01-26 23:54:25 +000011201 declare void @llvm.instrprof.value.profile(i8* <name>, i64 <hash>,
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011202 i64 <value>, i32 <value_kind>,
11203 i32 <index>)
11204
11205Overview:
11206"""""""""
11207
Vedant Kumar51ce6682018-01-26 23:54:25 +000011208The '``llvm.instrprof.value.profile``' intrinsic can be emitted by a
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011209frontend for use with instrumentation based profiling. This will be
11210lowered by the ``-instrprof`` pass to find out the target values,
11211instrumented expressions take in a program at runtime.
11212
11213Arguments:
11214""""""""""
11215
11216The first argument is a pointer to a global variable containing the
11217name of the entity being instrumented. ``name`` should generally be the
11218(mangled) function name for a set of counters.
11219
11220The second argument is a hash value that can be used by the consumer
11221of the profile data to detect changes to the instrumented source. It
11222is an error if ``hash`` differs between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000011223``llvm.instrprof.*`` that refer to the same name.
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011224
11225The third argument is the value of the expression being profiled. The profiled
11226expression's value should be representable as an unsigned 64-bit value. The
11227fourth argument represents the kind of value profiling that is being done. The
11228supported value profiling kinds are enumerated through the
11229``InstrProfValueKind`` type declared in the
11230``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
11231index of the instrumented expression within ``name``. It should be >= 0.
11232
11233Semantics:
11234""""""""""
11235
11236This intrinsic represents the point where a call to a runtime routine
11237should be inserted for value profiling of target expressions. ``-instrprof``
11238pass will generate the appropriate data structures and replace the
Vedant Kumar51ce6682018-01-26 23:54:25 +000011239``llvm.instrprof.value.profile`` intrinsic with the call to the profile
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000011240runtime library with proper arguments.
11241
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000011242'``llvm.thread.pointer``' Intrinsic
11243^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11244
11245Syntax:
11246"""""""
11247
11248::
11249
11250 declare i8* @llvm.thread.pointer()
11251
11252Overview:
11253"""""""""
11254
11255The '``llvm.thread.pointer``' intrinsic returns the value of the thread
11256pointer.
11257
11258Semantics:
11259""""""""""
11260
11261The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
11262for the current thread. The exact semantics of this value are target
11263specific: it may point to the start of TLS area, to the end, or somewhere
11264in the middle. Depending on the target, this intrinsic may read a register,
11265call a helper function, read from an alternate memory space, or perform
11266other operations necessary to locate the TLS area. Not all targets support
11267this intrinsic.
11268
Sean Silvab084af42012-12-07 10:36:55 +000011269Standard C Library Intrinsics
11270-----------------------------
11271
11272LLVM provides intrinsics for a few important standard C library
11273functions. These intrinsics allow source-language front-ends to pass
11274information about the alignment of the pointer arguments to the code
11275generator, providing opportunity for more efficient code generation.
11276
11277.. _int_memcpy:
11278
11279'``llvm.memcpy``' Intrinsic
11280^^^^^^^^^^^^^^^^^^^^^^^^^^^
11281
11282Syntax:
11283"""""""
11284
11285This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
11286integer bit width and for different address spaces. Not all targets
11287support all bit widths however.
11288
11289::
11290
11291 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011292 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011293 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011294 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011295
11296Overview:
11297"""""""""
11298
11299The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
11300source location to the destination location.
11301
11302Note that, unlike the standard libc function, the ``llvm.memcpy.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000011303intrinsics do not return a value, takes extra isvolatile
Sean Silvab084af42012-12-07 10:36:55 +000011304arguments and the pointers can be in specified address spaces.
11305
11306Arguments:
11307""""""""""
11308
11309The first argument is a pointer to the destination, the second is a
11310pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000011311specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000011312boolean indicating a volatile access.
11313
Daniel Neilson39eb6a52018-01-19 17:24:21 +000011314The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000011315for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000011316
11317If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
11318a :ref:`volatile operation <volatile>`. The detailed access behavior is not
11319very cleanly specified and it is unwise to depend on it.
11320
11321Semantics:
11322""""""""""
11323
11324The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
11325source location to the destination location, which are not allowed to
11326overlap. It copies "len" bytes of memory over. If the argument is known
11327to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000011328argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000011329
Daniel Neilson57226ef2017-07-12 15:25:26 +000011330.. _int_memmove:
11331
Sean Silvab084af42012-12-07 10:36:55 +000011332'``llvm.memmove``' Intrinsic
11333^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11334
11335Syntax:
11336"""""""
11337
11338This is an overloaded intrinsic. You can use llvm.memmove on any integer
11339bit width and for different address space. Not all targets support all
11340bit widths however.
11341
11342::
11343
11344 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011345 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011346 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011347 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011348
11349Overview:
11350"""""""""
11351
11352The '``llvm.memmove.*``' intrinsics move a block of memory from the
11353source location to the destination location. It is similar to the
11354'``llvm.memcpy``' intrinsic but allows the two memory locations to
11355overlap.
11356
11357Note that, unlike the standard libc function, the ``llvm.memmove.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000011358intrinsics do not return a value, takes an extra isvolatile
11359argument and the pointers can be in specified address spaces.
Sean Silvab084af42012-12-07 10:36:55 +000011360
11361Arguments:
11362""""""""""
11363
11364The first argument is a pointer to the destination, the second is a
11365pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000011366specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000011367boolean indicating a volatile access.
11368
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000011369The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000011370for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000011371
11372If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
11373is a :ref:`volatile operation <volatile>`. The detailed access behavior is
11374not very cleanly specified and it is unwise to depend on it.
11375
11376Semantics:
11377""""""""""
11378
11379The '``llvm.memmove.*``' intrinsics copy a block of memory from the
11380source location to the destination location, which may overlap. It
11381copies "len" bytes of memory over. If the argument is known to be
11382aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000011383otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000011384
Daniel Neilson965613e2017-07-12 21:57:23 +000011385.. _int_memset:
11386
Sean Silvab084af42012-12-07 10:36:55 +000011387'``llvm.memset.*``' Intrinsics
11388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11389
11390Syntax:
11391"""""""
11392
11393This is an overloaded intrinsic. You can use llvm.memset on any integer
11394bit width and for different address spaces. However, not all targets
11395support all bit widths.
11396
11397::
11398
11399 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011400 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011401 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000011402 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000011403
11404Overview:
11405"""""""""
11406
11407The '``llvm.memset.*``' intrinsics fill a block of memory with a
11408particular byte value.
11409
11410Note that, unlike the standard libc function, the ``llvm.memset``
Daniel Neilson1e687242018-01-19 17:13:12 +000011411intrinsic does not return a value and takes an extra volatile
11412argument. Also, the destination can be in an arbitrary address space.
Sean Silvab084af42012-12-07 10:36:55 +000011413
11414Arguments:
11415""""""""""
11416
11417The first argument is a pointer to the destination to fill, the second
11418is the byte value with which to fill it, the third argument is an
11419integer argument specifying the number of bytes to fill, and the fourth
Daniel Neilson1e687242018-01-19 17:13:12 +000011420is a boolean indicating a volatile access.
Sean Silvab084af42012-12-07 10:36:55 +000011421
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000011422The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000011423for the first arguments.
Sean Silvab084af42012-12-07 10:36:55 +000011424
11425If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
11426a :ref:`volatile operation <volatile>`. The detailed access behavior is not
11427very cleanly specified and it is unwise to depend on it.
11428
11429Semantics:
11430""""""""""
11431
11432The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011433at the destination location.
Sean Silvab084af42012-12-07 10:36:55 +000011434
11435'``llvm.sqrt.*``' Intrinsic
11436^^^^^^^^^^^^^^^^^^^^^^^^^^^
11437
11438Syntax:
11439"""""""
11440
11441This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011442floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011443all types however.
11444
11445::
11446
11447 declare float @llvm.sqrt.f32(float %Val)
11448 declare double @llvm.sqrt.f64(double %Val)
11449 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
11450 declare fp128 @llvm.sqrt.f128(fp128 %Val)
11451 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
11452
11453Overview:
11454"""""""""
11455
Sanjay Patel629c4112017-11-06 16:27:15 +000011456The '``llvm.sqrt``' intrinsics return the square root of the specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011457
11458Arguments:
11459""""""""""
11460
Sanjay Patel629c4112017-11-06 16:27:15 +000011461The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011462
11463Semantics:
11464""""""""""
11465
Sanjay Patel629c4112017-11-06 16:27:15 +000011466Return the same value as a corresponding libm '``sqrt``' function but without
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011467trapping or setting ``errno``. For types specified by IEEE-754, the result
Sanjay Patel629c4112017-11-06 16:27:15 +000011468matches a conforming libm implementation.
11469
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011470When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011471using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011472
11473'``llvm.powi.*``' Intrinsic
11474^^^^^^^^^^^^^^^^^^^^^^^^^^^
11475
11476Syntax:
11477"""""""
11478
11479This is an overloaded intrinsic. You can use ``llvm.powi`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011480floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011481all types however.
11482
11483::
11484
11485 declare float @llvm.powi.f32(float %Val, i32 %power)
11486 declare double @llvm.powi.f64(double %Val, i32 %power)
11487 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
11488 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
11489 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
11490
11491Overview:
11492"""""""""
11493
11494The '``llvm.powi.*``' intrinsics return the first operand raised to the
11495specified (positive or negative) power. The order of evaluation of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011496multiplications is not defined. When a vector of floating-point type is
Sean Silvab084af42012-12-07 10:36:55 +000011497used, the second argument remains a scalar integer value.
11498
11499Arguments:
11500""""""""""
11501
11502The second argument is an integer power, and the first is a value to
11503raise to that power.
11504
11505Semantics:
11506""""""""""
11507
11508This function returns the first value raised to the second power with an
11509unspecified sequence of rounding operations.
11510
11511'``llvm.sin.*``' Intrinsic
11512^^^^^^^^^^^^^^^^^^^^^^^^^^
11513
11514Syntax:
11515"""""""
11516
11517This is an overloaded intrinsic. You can use ``llvm.sin`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011518floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011519all types however.
11520
11521::
11522
11523 declare float @llvm.sin.f32(float %Val)
11524 declare double @llvm.sin.f64(double %Val)
11525 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
11526 declare fp128 @llvm.sin.f128(fp128 %Val)
11527 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
11528
11529Overview:
11530"""""""""
11531
11532The '``llvm.sin.*``' intrinsics return the sine of the operand.
11533
11534Arguments:
11535""""""""""
11536
Sanjay Patel629c4112017-11-06 16:27:15 +000011537The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011538
11539Semantics:
11540""""""""""
11541
Sanjay Patel629c4112017-11-06 16:27:15 +000011542Return the same value as a corresponding libm '``sin``' function but without
11543trapping or setting ``errno``.
11544
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011545When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011546using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011547
11548'``llvm.cos.*``' Intrinsic
11549^^^^^^^^^^^^^^^^^^^^^^^^^^
11550
11551Syntax:
11552"""""""
11553
11554This is an overloaded intrinsic. You can use ``llvm.cos`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011555floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011556all types however.
11557
11558::
11559
11560 declare float @llvm.cos.f32(float %Val)
11561 declare double @llvm.cos.f64(double %Val)
11562 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
11563 declare fp128 @llvm.cos.f128(fp128 %Val)
11564 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
11565
11566Overview:
11567"""""""""
11568
11569The '``llvm.cos.*``' intrinsics return the cosine of the operand.
11570
11571Arguments:
11572""""""""""
11573
Sanjay Patel629c4112017-11-06 16:27:15 +000011574The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011575
11576Semantics:
11577""""""""""
11578
Sanjay Patel629c4112017-11-06 16:27:15 +000011579Return the same value as a corresponding libm '``cos``' function but without
11580trapping or setting ``errno``.
11581
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011582When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011583using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011584
11585'``llvm.pow.*``' Intrinsic
11586^^^^^^^^^^^^^^^^^^^^^^^^^^
11587
11588Syntax:
11589"""""""
11590
11591This is an overloaded intrinsic. You can use ``llvm.pow`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011592floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011593all types however.
11594
11595::
11596
11597 declare float @llvm.pow.f32(float %Val, float %Power)
11598 declare double @llvm.pow.f64(double %Val, double %Power)
11599 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
11600 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
11601 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
11602
11603Overview:
11604"""""""""
11605
11606The '``llvm.pow.*``' intrinsics return the first operand raised to the
11607specified (positive or negative) power.
11608
11609Arguments:
11610""""""""""
11611
Sanjay Patel629c4112017-11-06 16:27:15 +000011612The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011613
11614Semantics:
11615""""""""""
11616
Sanjay Patel629c4112017-11-06 16:27:15 +000011617Return the same value as a corresponding libm '``pow``' function but without
11618trapping or setting ``errno``.
11619
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011620When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011621using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011622
11623'``llvm.exp.*``' Intrinsic
11624^^^^^^^^^^^^^^^^^^^^^^^^^^
11625
11626Syntax:
11627"""""""
11628
11629This is an overloaded intrinsic. You can use ``llvm.exp`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011630floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011631all types however.
11632
11633::
11634
11635 declare float @llvm.exp.f32(float %Val)
11636 declare double @llvm.exp.f64(double %Val)
11637 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
11638 declare fp128 @llvm.exp.f128(fp128 %Val)
11639 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
11640
11641Overview:
11642"""""""""
11643
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011644The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
11645value.
Sean Silvab084af42012-12-07 10:36:55 +000011646
11647Arguments:
11648""""""""""
11649
Sanjay Patel629c4112017-11-06 16:27:15 +000011650The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011651
11652Semantics:
11653""""""""""
11654
Sanjay Patel629c4112017-11-06 16:27:15 +000011655Return the same value as a corresponding libm '``exp``' function but without
11656trapping or setting ``errno``.
11657
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011658When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011659using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011660
11661'``llvm.exp2.*``' Intrinsic
11662^^^^^^^^^^^^^^^^^^^^^^^^^^^
11663
11664Syntax:
11665"""""""
11666
11667This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011668floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011669all types however.
11670
11671::
11672
11673 declare float @llvm.exp2.f32(float %Val)
11674 declare double @llvm.exp2.f64(double %Val)
11675 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
11676 declare fp128 @llvm.exp2.f128(fp128 %Val)
11677 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
11678
11679Overview:
11680"""""""""
11681
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011682The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
11683specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011684
11685Arguments:
11686""""""""""
11687
Sanjay Patel629c4112017-11-06 16:27:15 +000011688The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011689
11690Semantics:
11691""""""""""
11692
Sanjay Patel629c4112017-11-06 16:27:15 +000011693Return the same value as a corresponding libm '``exp2``' function but without
11694trapping or setting ``errno``.
11695
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011696When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011697using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011698
11699'``llvm.log.*``' Intrinsic
11700^^^^^^^^^^^^^^^^^^^^^^^^^^
11701
11702Syntax:
11703"""""""
11704
11705This is an overloaded intrinsic. You can use ``llvm.log`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011706floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011707all types however.
11708
11709::
11710
11711 declare float @llvm.log.f32(float %Val)
11712 declare double @llvm.log.f64(double %Val)
11713 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
11714 declare fp128 @llvm.log.f128(fp128 %Val)
11715 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
11716
11717Overview:
11718"""""""""
11719
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011720The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
11721value.
Sean Silvab084af42012-12-07 10:36:55 +000011722
11723Arguments:
11724""""""""""
11725
Sanjay Patel629c4112017-11-06 16:27:15 +000011726The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011727
11728Semantics:
11729""""""""""
11730
Sanjay Patel629c4112017-11-06 16:27:15 +000011731Return the same value as a corresponding libm '``log``' function but without
11732trapping or setting ``errno``.
11733
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011734When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011735using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011736
11737'``llvm.log10.*``' Intrinsic
11738^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11739
11740Syntax:
11741"""""""
11742
11743This is an overloaded intrinsic. You can use ``llvm.log10`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011744floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011745all types however.
11746
11747::
11748
11749 declare float @llvm.log10.f32(float %Val)
11750 declare double @llvm.log10.f64(double %Val)
11751 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
11752 declare fp128 @llvm.log10.f128(fp128 %Val)
11753 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
11754
11755Overview:
11756"""""""""
11757
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011758The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
11759specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011760
11761Arguments:
11762""""""""""
11763
Sanjay Patel629c4112017-11-06 16:27:15 +000011764The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011765
11766Semantics:
11767""""""""""
11768
Sanjay Patel629c4112017-11-06 16:27:15 +000011769Return the same value as a corresponding libm '``log10``' function but without
11770trapping or setting ``errno``.
11771
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011772When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011773using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011774
11775'``llvm.log2.*``' Intrinsic
11776^^^^^^^^^^^^^^^^^^^^^^^^^^^
11777
11778Syntax:
11779"""""""
11780
11781This is an overloaded intrinsic. You can use ``llvm.log2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011782floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011783all types however.
11784
11785::
11786
11787 declare float @llvm.log2.f32(float %Val)
11788 declare double @llvm.log2.f64(double %Val)
11789 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
11790 declare fp128 @llvm.log2.f128(fp128 %Val)
11791 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
11792
11793Overview:
11794"""""""""
11795
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011796The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
11797value.
Sean Silvab084af42012-12-07 10:36:55 +000011798
11799Arguments:
11800""""""""""
11801
Sanjay Patel629c4112017-11-06 16:27:15 +000011802The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011803
11804Semantics:
11805""""""""""
11806
Sanjay Patel629c4112017-11-06 16:27:15 +000011807Return the same value as a corresponding libm '``log2``' function but without
11808trapping or setting ``errno``.
11809
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011810When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011811using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011812
11813'``llvm.fma.*``' Intrinsic
11814^^^^^^^^^^^^^^^^^^^^^^^^^^
11815
11816Syntax:
11817"""""""
11818
11819This is an overloaded intrinsic. You can use ``llvm.fma`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011820floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011821all types however.
11822
11823::
11824
11825 declare float @llvm.fma.f32(float %a, float %b, float %c)
11826 declare double @llvm.fma.f64(double %a, double %b, double %c)
11827 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
11828 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
11829 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
11830
11831Overview:
11832"""""""""
11833
Sanjay Patel629c4112017-11-06 16:27:15 +000011834The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
Sean Silvab084af42012-12-07 10:36:55 +000011835
11836Arguments:
11837""""""""""
11838
Sanjay Patel629c4112017-11-06 16:27:15 +000011839The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011840
11841Semantics:
11842""""""""""
11843
Sanjay Patel629c4112017-11-06 16:27:15 +000011844Return the same value as a corresponding libm '``fma``' function but without
11845trapping or setting ``errno``.
11846
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011847When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011848using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011849
11850'``llvm.fabs.*``' Intrinsic
11851^^^^^^^^^^^^^^^^^^^^^^^^^^^
11852
11853Syntax:
11854"""""""
11855
11856This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011857floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011858all types however.
11859
11860::
11861
11862 declare float @llvm.fabs.f32(float %Val)
11863 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011864 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011865 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011866 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011867
11868Overview:
11869"""""""""
11870
11871The '``llvm.fabs.*``' intrinsics return the absolute value of the
11872operand.
11873
11874Arguments:
11875""""""""""
11876
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011877The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011878type.
11879
11880Semantics:
11881""""""""""
11882
11883This function returns the same values as the libm ``fabs`` functions
11884would, and handles error conditions in the same way.
11885
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011886'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011887^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011888
11889Syntax:
11890"""""""
11891
11892This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011893floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011894all types however.
11895
11896::
11897
Matt Arsenault64313c92014-10-22 18:25:02 +000011898 declare float @llvm.minnum.f32(float %Val0, float %Val1)
11899 declare double @llvm.minnum.f64(double %Val0, double %Val1)
11900 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11901 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
11902 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011903
11904Overview:
11905"""""""""
11906
11907The '``llvm.minnum.*``' intrinsics return the minimum of the two
11908arguments.
11909
11910
11911Arguments:
11912""""""""""
11913
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011914The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011915type.
11916
11917Semantics:
11918""""""""""
11919
Matt Arsenault937003c2018-08-27 17:40:07 +000011920Follows the IEEE-754 semantics for minNum, except for handling of
11921signaling NaNs. This match's the behavior of libm's fmin.
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011922
11923If either operand is a NaN, returns the other non-NaN operand. Returns
Matt Arsenault937003c2018-08-27 17:40:07 +000011924NaN only if both operands are NaN. The returned NaN is always
11925quiet. If the operands compare equal, returns a value that compares
11926equal to both operands. This means that fmin(+/-0.0, +/-0.0) could
11927return either -0.0 or 0.0.
11928
11929Unlike the IEEE-754 2008 behavior, this does not distinguish between
11930signaling and quiet NaN inputs. If a target's implementation follows
11931the standard and returns a quiet NaN if either input is a signaling
11932NaN, the intrinsic lowering is responsible for quieting the inputs to
11933correctly return the non-NaN input (e.g. by using the equivalent of
11934``llvm.canonicalize``).
11935
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011936
11937'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011938^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011939
11940Syntax:
11941"""""""
11942
11943This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011944floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011945all types however.
11946
11947::
11948
Matt Arsenault64313c92014-10-22 18:25:02 +000011949 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
11950 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
11951 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11952 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
11953 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011954
11955Overview:
11956"""""""""
11957
11958The '``llvm.maxnum.*``' intrinsics return the maximum of the two
11959arguments.
11960
11961
11962Arguments:
11963""""""""""
11964
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011965The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011966type.
11967
11968Semantics:
11969""""""""""
Matt Arsenault937003c2018-08-27 17:40:07 +000011970Follows the IEEE-754 semantics for maxNum except for the handling of
11971signaling NaNs. This matches the behavior of libm's fmax.
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011972
11973If either operand is a NaN, returns the other non-NaN operand. Returns
Matt Arsenault937003c2018-08-27 17:40:07 +000011974NaN only if both operands are NaN. The returned NaN is always
11975quiet. If the operands compare equal, returns a value that compares
11976equal to both operands. This means that fmax(+/-0.0, +/-0.0) could
11977return either -0.0 or 0.0.
11978
11979Unlike the IEEE-754 2008 behavior, this does not distinguish between
11980signaling and quiet NaN inputs. If a target's implementation follows
11981the standard and returns a quiet NaN if either input is a signaling
11982NaN, the intrinsic lowering is responsible for quieting the inputs to
11983correctly return the non-NaN input (e.g. by using the equivalent of
11984``llvm.canonicalize``).
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011985
Thomas Lively16c349d2018-10-13 07:21:44 +000011986'``llvm.minimum.*``' Intrinsic
11987^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11988
11989Syntax:
11990"""""""
11991
11992This is an overloaded intrinsic. You can use ``llvm.minimum`` on any
11993floating-point or vector of floating-point type. Not all targets support
11994all types however.
11995
11996::
11997
11998 declare float @llvm.minimum.f32(float %Val0, float %Val1)
11999 declare double @llvm.minimum.f64(double %Val0, double %Val1)
12000 declare x86_fp80 @llvm.minimum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
12001 declare fp128 @llvm.minimum.f128(fp128 %Val0, fp128 %Val1)
12002 declare ppc_fp128 @llvm.minimum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
12003
12004Overview:
12005"""""""""
12006
12007The '``llvm.minimum.*``' intrinsics return the minimum of the two
12008arguments, propagating NaNs and treating -0.0 as less than +0.0.
12009
12010
12011Arguments:
12012""""""""""
12013
12014The arguments and return value are floating-point numbers of the same
12015type.
12016
12017Semantics:
12018""""""""""
12019If either operand is a NaN, returns NaN. Otherwise returns the lesser
12020of the two arguments. -0.0 is considered to be less than +0.0 for this
12021intrinsic. Note that these are the semantics specified in the draft of
12022IEEE 754-2018.
12023
12024'``llvm.maximum.*``' Intrinsic
12025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12026
12027Syntax:
12028"""""""
12029
12030This is an overloaded intrinsic. You can use ``llvm.maximum`` on any
12031floating-point or vector of floating-point type. Not all targets support
12032all types however.
12033
12034::
12035
12036 declare float @llvm.maximum.f32(float %Val0, float %Val1)
12037 declare double @llvm.maximum.f64(double %Val0, double %Val1)
12038 declare x86_fp80 @llvm.maximum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
12039 declare fp128 @llvm.maximum.f128(fp128 %Val0, fp128 %Val1)
12040 declare ppc_fp128 @llvm.maximum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
12041
12042Overview:
12043"""""""""
12044
12045The '``llvm.maximum.*``' intrinsics return the maximum of the two
12046arguments, propagating NaNs and treating -0.0 as less than +0.0.
12047
12048
12049Arguments:
12050""""""""""
12051
12052The arguments and return value are floating-point numbers of the same
12053type.
12054
12055Semantics:
12056""""""""""
12057If either operand is a NaN, returns NaN. Otherwise returns the greater
12058of the two arguments. -0.0 is considered to be less than +0.0 for this
12059intrinsic. Note that these are the semantics specified in the draft of
12060IEEE 754-2018.
12061
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000012062'``llvm.copysign.*``' Intrinsic
12063^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12064
12065Syntax:
12066"""""""
12067
12068This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012069floating-point or vector of floating-point type. Not all targets support
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000012070all types however.
12071
12072::
12073
12074 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
12075 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
12076 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
12077 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
12078 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
12079
12080Overview:
12081"""""""""
12082
12083The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
12084first operand and the sign of the second operand.
12085
12086Arguments:
12087""""""""""
12088
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012089The arguments and return value are floating-point numbers of the same
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000012090type.
12091
12092Semantics:
12093""""""""""
12094
12095This function returns the same values as the libm ``copysign``
12096functions would, and handles error conditions in the same way.
12097
Sean Silvab084af42012-12-07 10:36:55 +000012098'``llvm.floor.*``' Intrinsic
12099^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12100
12101Syntax:
12102"""""""
12103
12104This is an overloaded intrinsic. You can use ``llvm.floor`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012105floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012106all types however.
12107
12108::
12109
12110 declare float @llvm.floor.f32(float %Val)
12111 declare double @llvm.floor.f64(double %Val)
12112 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
12113 declare fp128 @llvm.floor.f128(fp128 %Val)
12114 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
12115
12116Overview:
12117"""""""""
12118
12119The '``llvm.floor.*``' intrinsics return the floor of the operand.
12120
12121Arguments:
12122""""""""""
12123
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012124The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012125type.
12126
12127Semantics:
12128""""""""""
12129
12130This function returns the same values as the libm ``floor`` functions
12131would, and handles error conditions in the same way.
12132
12133'``llvm.ceil.*``' Intrinsic
12134^^^^^^^^^^^^^^^^^^^^^^^^^^^
12135
12136Syntax:
12137"""""""
12138
12139This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012140floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012141all types however.
12142
12143::
12144
12145 declare float @llvm.ceil.f32(float %Val)
12146 declare double @llvm.ceil.f64(double %Val)
12147 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
12148 declare fp128 @llvm.ceil.f128(fp128 %Val)
12149 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
12150
12151Overview:
12152"""""""""
12153
12154The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
12155
12156Arguments:
12157""""""""""
12158
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012159The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012160type.
12161
12162Semantics:
12163""""""""""
12164
12165This function returns the same values as the libm ``ceil`` functions
12166would, and handles error conditions in the same way.
12167
12168'``llvm.trunc.*``' Intrinsic
12169^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12170
12171Syntax:
12172"""""""
12173
12174This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012175floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012176all types however.
12177
12178::
12179
12180 declare float @llvm.trunc.f32(float %Val)
12181 declare double @llvm.trunc.f64(double %Val)
12182 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
12183 declare fp128 @llvm.trunc.f128(fp128 %Val)
12184 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
12185
12186Overview:
12187"""""""""
12188
12189The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
12190nearest integer not larger in magnitude than the operand.
12191
12192Arguments:
12193""""""""""
12194
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012195The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012196type.
12197
12198Semantics:
12199""""""""""
12200
12201This function returns the same values as the libm ``trunc`` functions
12202would, and handles error conditions in the same way.
12203
12204'``llvm.rint.*``' Intrinsic
12205^^^^^^^^^^^^^^^^^^^^^^^^^^^
12206
12207Syntax:
12208"""""""
12209
12210This is an overloaded intrinsic. You can use ``llvm.rint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012211floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012212all types however.
12213
12214::
12215
12216 declare float @llvm.rint.f32(float %Val)
12217 declare double @llvm.rint.f64(double %Val)
12218 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
12219 declare fp128 @llvm.rint.f128(fp128 %Val)
12220 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
12221
12222Overview:
12223"""""""""
12224
12225The '``llvm.rint.*``' intrinsics returns the operand rounded to the
12226nearest integer. It may raise an inexact floating-point exception if the
12227operand isn't an integer.
12228
12229Arguments:
12230""""""""""
12231
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012232The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012233type.
12234
12235Semantics:
12236""""""""""
12237
12238This function returns the same values as the libm ``rint`` functions
12239would, and handles error conditions in the same way.
12240
12241'``llvm.nearbyint.*``' Intrinsic
12242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12243
12244Syntax:
12245"""""""
12246
12247This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012248floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000012249all types however.
12250
12251::
12252
12253 declare float @llvm.nearbyint.f32(float %Val)
12254 declare double @llvm.nearbyint.f64(double %Val)
12255 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
12256 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
12257 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
12258
12259Overview:
12260"""""""""
12261
12262The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
12263nearest integer.
12264
12265Arguments:
12266""""""""""
12267
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012268The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000012269type.
12270
12271Semantics:
12272""""""""""
12273
12274This function returns the same values as the libm ``nearbyint``
12275functions would, and handles error conditions in the same way.
12276
Hal Finkel171817e2013-08-07 22:49:12 +000012277'``llvm.round.*``' Intrinsic
12278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12279
12280Syntax:
12281"""""""
12282
12283This is an overloaded intrinsic. You can use ``llvm.round`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012284floating-point or vector of floating-point type. Not all targets support
Hal Finkel171817e2013-08-07 22:49:12 +000012285all types however.
12286
12287::
12288
12289 declare float @llvm.round.f32(float %Val)
12290 declare double @llvm.round.f64(double %Val)
12291 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
12292 declare fp128 @llvm.round.f128(fp128 %Val)
12293 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
12294
12295Overview:
12296"""""""""
12297
12298The '``llvm.round.*``' intrinsics returns the operand rounded to the
12299nearest integer.
12300
12301Arguments:
12302""""""""""
12303
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012304The argument and return value are floating-point numbers of the same
Hal Finkel171817e2013-08-07 22:49:12 +000012305type.
12306
12307Semantics:
12308""""""""""
12309
12310This function returns the same values as the libm ``round``
12311functions would, and handles error conditions in the same way.
12312
Sean Silvab084af42012-12-07 10:36:55 +000012313Bit Manipulation Intrinsics
12314---------------------------
12315
12316LLVM provides intrinsics for a few important bit manipulation
12317operations. These allow efficient code generation for some algorithms.
12318
James Molloy90111f72015-11-12 12:29:09 +000012319'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000012320^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000012321
12322Syntax:
12323"""""""
12324
12325This is an overloaded intrinsic function. You can use bitreverse on any
12326integer type.
12327
12328::
12329
12330 declare i16 @llvm.bitreverse.i16(i16 <id>)
12331 declare i32 @llvm.bitreverse.i32(i32 <id>)
12332 declare i64 @llvm.bitreverse.i64(i64 <id>)
Simon Pilgrimf4268172019-01-28 16:56:38 +000012333 declare <4 x i32> @llvm.bitreverse.v4i32(<4 x i32> <id>)
James Molloy90111f72015-11-12 12:29:09 +000012334
12335Overview:
12336"""""""""
12337
12338The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Simon Pilgrimf4268172019-01-28 16:56:38 +000012339bitpattern of an integer value or vector of integer values; for example
12340``0b10110110`` becomes ``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000012341
12342Semantics:
12343""""""""""
12344
Yichao Yu5abf14b2016-11-23 16:25:31 +000012345The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
Simon Pilgrimf4268172019-01-28 16:56:38 +000012346``M`` in the input moved to bit ``N-M`` in the output. The vector
12347intrinsics, such as ``llvm.bitreverse.v4i32``, operate on a per-element
12348basis and the element order is not affected.
James Molloy90111f72015-11-12 12:29:09 +000012349
Sean Silvab084af42012-12-07 10:36:55 +000012350'``llvm.bswap.*``' Intrinsics
12351^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12352
12353Syntax:
12354"""""""
12355
12356This is an overloaded intrinsic function. You can use bswap on any
12357integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
12358
12359::
12360
12361 declare i16 @llvm.bswap.i16(i16 <id>)
12362 declare i32 @llvm.bswap.i32(i32 <id>)
12363 declare i64 @llvm.bswap.i64(i64 <id>)
Simon Pilgrimf4268172019-01-28 16:56:38 +000012364 declare <4 x i32> @llvm.bswap.v4i32(<4 x i32> <id>)
Sean Silvab084af42012-12-07 10:36:55 +000012365
12366Overview:
12367"""""""""
12368
Simon Pilgrimf4268172019-01-28 16:56:38 +000012369The '``llvm.bswap``' family of intrinsics is used to byte swap an integer
12370value or vector of integer values with an even number of bytes (positive
12371multiple of 16 bits).
Sean Silvab084af42012-12-07 10:36:55 +000012372
12373Semantics:
12374""""""""""
12375
12376The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
12377and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
12378intrinsic returns an i32 value that has the four bytes of the input i32
12379swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
12380returned i32 will have its bytes in 3, 2, 1, 0 order. The
12381``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
12382concept to additional even-byte lengths (6 bytes, 8 bytes and more,
Simon Pilgrimf4268172019-01-28 16:56:38 +000012383respectively). The vector intrinsics, such as ``llvm.bswap.v4i32``,
12384operate on a per-element basis and the element order is not affected.
Sean Silvab084af42012-12-07 10:36:55 +000012385
12386'``llvm.ctpop.*``' Intrinsic
12387^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12388
12389Syntax:
12390"""""""
12391
12392This is an overloaded intrinsic. You can use llvm.ctpop on any integer
12393bit width, or on any vector with integer elements. Not all targets
12394support all bit widths or vector types, however.
12395
12396::
12397
12398 declare i8 @llvm.ctpop.i8(i8 <src>)
12399 declare i16 @llvm.ctpop.i16(i16 <src>)
12400 declare i32 @llvm.ctpop.i32(i32 <src>)
12401 declare i64 @llvm.ctpop.i64(i64 <src>)
12402 declare i256 @llvm.ctpop.i256(i256 <src>)
12403 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
12404
12405Overview:
12406"""""""""
12407
12408The '``llvm.ctpop``' family of intrinsics counts the number of bits set
12409in a value.
12410
12411Arguments:
12412""""""""""
12413
12414The only argument is the value to be counted. The argument may be of any
12415integer type, or a vector with integer elements. The return type must
12416match the argument type.
12417
12418Semantics:
12419""""""""""
12420
12421The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
12422each element of a vector.
12423
12424'``llvm.ctlz.*``' Intrinsic
12425^^^^^^^^^^^^^^^^^^^^^^^^^^^
12426
12427Syntax:
12428"""""""
12429
12430This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
12431integer bit width, or any vector whose elements are integers. Not all
12432targets support all bit widths or vector types, however.
12433
12434::
12435
12436 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
12437 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
12438 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
12439 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
12440 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000012441 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000012442
12443Overview:
12444"""""""""
12445
12446The '``llvm.ctlz``' family of intrinsic functions counts the number of
12447leading zeros in a variable.
12448
12449Arguments:
12450""""""""""
12451
12452The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000012453any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000012454type must match the first argument type.
12455
12456The second argument must be a constant and is a flag to indicate whether
12457the intrinsic should ensure that a zero as the first argument produces a
12458defined result. Historically some architectures did not provide a
12459defined result for zero values as efficiently, and many algorithms are
12460now predicated on avoiding zero-value inputs.
12461
12462Semantics:
12463""""""""""
12464
12465The '``llvm.ctlz``' intrinsic counts the leading (most significant)
12466zeros in a variable, or within each element of the vector. If
12467``src == 0`` then the result is the size in bits of the type of ``src``
12468if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
12469``llvm.ctlz(i32 2) = 30``.
12470
12471'``llvm.cttz.*``' Intrinsic
12472^^^^^^^^^^^^^^^^^^^^^^^^^^^
12473
12474Syntax:
12475"""""""
12476
12477This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
12478integer bit width, or any vector of integer elements. Not all targets
12479support all bit widths or vector types, however.
12480
12481::
12482
12483 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
12484 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
12485 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
12486 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
12487 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000012488 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000012489
12490Overview:
12491"""""""""
12492
12493The '``llvm.cttz``' family of intrinsic functions counts the number of
12494trailing zeros.
12495
12496Arguments:
12497""""""""""
12498
12499The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000012500any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000012501type must match the first argument type.
12502
12503The second argument must be a constant and is a flag to indicate whether
12504the intrinsic should ensure that a zero as the first argument produces a
12505defined result. Historically some architectures did not provide a
12506defined result for zero values as efficiently, and many algorithms are
12507now predicated on avoiding zero-value inputs.
12508
12509Semantics:
12510""""""""""
12511
12512The '``llvm.cttz``' intrinsic counts the trailing (least significant)
12513zeros in a variable, or within each element of a vector. If ``src == 0``
12514then the result is the size in bits of the type of ``src`` if
12515``is_zero_undef == 0`` and ``undef`` otherwise. For example,
12516``llvm.cttz(2) = 1``.
12517
Philip Reames34843ae2015-03-05 05:55:55 +000012518.. _int_overflow:
12519
Sanjay Patelc71adc82018-07-16 22:59:31 +000012520'``llvm.fshl.*``' Intrinsic
12521^^^^^^^^^^^^^^^^^^^^^^^^^^^
12522
12523Syntax:
12524"""""""
12525
12526This is an overloaded intrinsic. You can use ``llvm.fshl`` on any
12527integer bit width or any vector of integer elements. Not all targets
12528support all bit widths or vector types, however.
12529
12530::
12531
12532 declare i8 @llvm.fshl.i8 (i8 %a, i8 %b, i8 %c)
12533 declare i67 @llvm.fshl.i67(i67 %a, i67 %b, i67 %c)
12534 declare <2 x i32> @llvm.fshl.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
12535
12536Overview:
12537"""""""""
12538
12539The '``llvm.fshl``' family of intrinsic functions performs a funnel shift left:
12540the first two values are concatenated as { %a : %b } (%a is the most significant
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000012541bits of the wide value), the combined value is shifted left, and the most
12542significant bits are extracted to produce a result that is the same size as the
12543original arguments. If the first 2 arguments are identical, this is equivalent
12544to a rotate left operation. For vector types, the operation occurs for each
12545element of the vector. The shift argument is treated as an unsigned amount
Sanjay Patelc71adc82018-07-16 22:59:31 +000012546modulo the element size of the arguments.
12547
12548Arguments:
12549""""""""""
12550
12551The first two arguments are the values to be concatenated. The third
12552argument is the shift amount. The arguments may be any integer type or a
12553vector with integer element type. All arguments and the return value must
12554have the same type.
12555
12556Example:
12557""""""""
12558
12559.. code-block:: text
12560
12561 %r = call i8 @llvm.fshl.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: msb_extract((concat(x, y) << (z % 8)), 8)
12562 %r = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 15) ; %r = i8: 128 (0b10000000)
12563 %r = call i8 @llvm.fshl.i8(i8 15, i8 15, i8 11) ; %r = i8: 120 (0b01111000)
12564 %r = call i8 @llvm.fshl.i8(i8 0, i8 255, i8 8) ; %r = i8: 0 (0b00000000)
12565
12566'``llvm.fshr.*``' Intrinsic
12567^^^^^^^^^^^^^^^^^^^^^^^^^^^
12568
12569Syntax:
12570"""""""
12571
12572This is an overloaded intrinsic. You can use ``llvm.fshr`` on any
12573integer bit width or any vector of integer elements. Not all targets
12574support all bit widths or vector types, however.
12575
12576::
12577
12578 declare i8 @llvm.fshr.i8 (i8 %a, i8 %b, i8 %c)
12579 declare i67 @llvm.fshr.i67(i67 %a, i67 %b, i67 %c)
12580 declare <2 x i32> @llvm.fshr.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
12581
12582Overview:
12583"""""""""
12584
12585The '``llvm.fshr``' family of intrinsic functions performs a funnel shift right:
12586the first two values are concatenated as { %a : %b } (%a is the most significant
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000012587bits of the wide value), the combined value is shifted right, and the least
12588significant bits are extracted to produce a result that is the same size as the
12589original arguments. If the first 2 arguments are identical, this is equivalent
12590to a rotate right operation. For vector types, the operation occurs for each
12591element of the vector. The shift argument is treated as an unsigned amount
Sanjay Patelc71adc82018-07-16 22:59:31 +000012592modulo the element size of the arguments.
12593
12594Arguments:
12595""""""""""
12596
12597The first two arguments are the values to be concatenated. The third
12598argument is the shift amount. The arguments may be any integer type or a
12599vector with integer element type. All arguments and the return value must
12600have the same type.
12601
12602Example:
12603""""""""
12604
12605.. code-block:: text
12606
12607 %r = call i8 @llvm.fshr.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: lsb_extract((concat(x, y) >> (z % 8)), 8)
12608 %r = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 15) ; %r = i8: 254 (0b11111110)
12609 %r = call i8 @llvm.fshr.i8(i8 15, i8 15, i8 11) ; %r = i8: 225 (0b11100001)
12610 %r = call i8 @llvm.fshr.i8(i8 0, i8 255, i8 8) ; %r = i8: 255 (0b11111111)
12611
Sean Silvab084af42012-12-07 10:36:55 +000012612Arithmetic with Overflow Intrinsics
12613-----------------------------------
12614
John Regehr6a493f22016-05-12 20:55:09 +000012615LLVM provides intrinsics for fast arithmetic overflow checking.
12616
12617Each of these intrinsics returns a two-element struct. The first
12618element of this struct contains the result of the corresponding
12619arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
12620the result. Therefore, for example, the first element of the struct
12621returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
12622result of a 32-bit ``add`` instruction with the same operands, where
12623the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
12624
12625The second element of the result is an ``i1`` that is 1 if the
12626arithmetic operation overflowed and 0 otherwise. An operation
12627overflows if, for any values of its operands ``A`` and ``B`` and for
12628any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
12629not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
12630``sext`` for signed overflow and ``zext`` for unsigned overflow, and
12631``op`` is the underlying arithmetic operation.
12632
12633The behavior of these intrinsics is well-defined for all argument
12634values.
Sean Silvab084af42012-12-07 10:36:55 +000012635
12636'``llvm.sadd.with.overflow.*``' Intrinsics
12637^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12638
12639Syntax:
12640"""""""
12641
12642This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
12643on any integer bit width.
12644
12645::
12646
12647 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
12648 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12649 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
12650
12651Overview:
12652"""""""""
12653
12654The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
12655a signed addition of the two arguments, and indicate whether an overflow
12656occurred during the signed summation.
12657
12658Arguments:
12659""""""""""
12660
12661The arguments (%a and %b) and the first element of the result structure
12662may be of integer types of any bit width, but they must have the same
12663bit width. The second element of the result structure must be of type
12664``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12665addition.
12666
12667Semantics:
12668""""""""""
12669
12670The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012671a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012672first element of which is the signed summation, and the second element
12673of which is a bit specifying if the signed summation resulted in an
12674overflow.
12675
12676Examples:
12677"""""""""
12678
12679.. code-block:: llvm
12680
12681 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12682 %sum = extractvalue {i32, i1} %res, 0
12683 %obit = extractvalue {i32, i1} %res, 1
12684 br i1 %obit, label %overflow, label %normal
12685
12686'``llvm.uadd.with.overflow.*``' Intrinsics
12687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12688
12689Syntax:
12690"""""""
12691
12692This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
12693on any integer bit width.
12694
12695::
12696
12697 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
12698 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12699 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
12700
12701Overview:
12702"""""""""
12703
12704The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
12705an unsigned addition of the two arguments, and indicate whether a carry
12706occurred during the unsigned summation.
12707
12708Arguments:
12709""""""""""
12710
12711The arguments (%a and %b) and the first element of the result structure
12712may be of integer types of any bit width, but they must have the same
12713bit width. The second element of the result structure must be of type
12714``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12715addition.
12716
12717Semantics:
12718""""""""""
12719
12720The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012721an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012722first element of which is the sum, and the second element of which is a
12723bit specifying if the unsigned summation resulted in a carry.
12724
12725Examples:
12726"""""""""
12727
12728.. code-block:: llvm
12729
12730 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12731 %sum = extractvalue {i32, i1} %res, 0
12732 %obit = extractvalue {i32, i1} %res, 1
12733 br i1 %obit, label %carry, label %normal
12734
12735'``llvm.ssub.with.overflow.*``' Intrinsics
12736^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12737
12738Syntax:
12739"""""""
12740
12741This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
12742on any integer bit width.
12743
12744::
12745
12746 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
12747 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12748 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
12749
12750Overview:
12751"""""""""
12752
12753The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
12754a signed subtraction of the two arguments, and indicate whether an
12755overflow occurred during the signed subtraction.
12756
12757Arguments:
12758""""""""""
12759
12760The arguments (%a and %b) and the first element of the result structure
12761may be of integer types of any bit width, but they must have the same
12762bit width. The second element of the result structure must be of type
12763``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12764subtraction.
12765
12766Semantics:
12767""""""""""
12768
12769The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012770a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012771first element of which is the subtraction, and the second element of
12772which is a bit specifying if the signed subtraction resulted in an
12773overflow.
12774
12775Examples:
12776"""""""""
12777
12778.. code-block:: llvm
12779
12780 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12781 %sum = extractvalue {i32, i1} %res, 0
12782 %obit = extractvalue {i32, i1} %res, 1
12783 br i1 %obit, label %overflow, label %normal
12784
12785'``llvm.usub.with.overflow.*``' Intrinsics
12786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12787
12788Syntax:
12789"""""""
12790
12791This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
12792on any integer bit width.
12793
12794::
12795
12796 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
12797 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12798 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
12799
12800Overview:
12801"""""""""
12802
12803The '``llvm.usub.with.overflow``' family of intrinsic functions perform
12804an unsigned subtraction of the two arguments, and indicate whether an
12805overflow occurred during the unsigned subtraction.
12806
12807Arguments:
12808""""""""""
12809
12810The arguments (%a and %b) and the first element of the result structure
12811may be of integer types of any bit width, but they must have the same
12812bit width. The second element of the result structure must be of type
12813``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12814subtraction.
12815
12816Semantics:
12817""""""""""
12818
12819The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012820an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012821the first element of which is the subtraction, and the second element of
12822which is a bit specifying if the unsigned subtraction resulted in an
12823overflow.
12824
12825Examples:
12826"""""""""
12827
12828.. code-block:: llvm
12829
12830 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12831 %sum = extractvalue {i32, i1} %res, 0
12832 %obit = extractvalue {i32, i1} %res, 1
12833 br i1 %obit, label %overflow, label %normal
12834
12835'``llvm.smul.with.overflow.*``' Intrinsics
12836^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12837
12838Syntax:
12839"""""""
12840
12841This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
12842on any integer bit width.
12843
12844::
12845
12846 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
12847 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12848 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
12849
12850Overview:
12851"""""""""
12852
12853The '``llvm.smul.with.overflow``' family of intrinsic functions perform
12854a signed multiplication of the two arguments, and indicate whether an
12855overflow occurred during the signed multiplication.
12856
12857Arguments:
12858""""""""""
12859
12860The arguments (%a and %b) and the first element of the result structure
12861may be of integer types of any bit width, but they must have the same
12862bit width. The second element of the result structure must be of type
12863``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12864multiplication.
12865
12866Semantics:
12867""""""""""
12868
12869The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012870a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012871the first element of which is the multiplication, and the second element
12872of which is a bit specifying if the signed multiplication resulted in an
12873overflow.
12874
12875Examples:
12876"""""""""
12877
12878.. code-block:: llvm
12879
12880 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12881 %sum = extractvalue {i32, i1} %res, 0
12882 %obit = extractvalue {i32, i1} %res, 1
12883 br i1 %obit, label %overflow, label %normal
12884
12885'``llvm.umul.with.overflow.*``' Intrinsics
12886^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12887
12888Syntax:
12889"""""""
12890
12891This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
12892on any integer bit width.
12893
12894::
12895
12896 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
12897 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12898 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
12899
12900Overview:
12901"""""""""
12902
12903The '``llvm.umul.with.overflow``' family of intrinsic functions perform
12904a unsigned multiplication of the two arguments, and indicate whether an
12905overflow occurred during the unsigned multiplication.
12906
12907Arguments:
12908""""""""""
12909
12910The arguments (%a and %b) and the first element of the result structure
12911may be of integer types of any bit width, but they must have the same
12912bit width. The second element of the result structure must be of type
12913``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12914multiplication.
12915
12916Semantics:
12917""""""""""
12918
12919The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012920an unsigned multiplication of the two arguments. They return a structure ---
12921the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000012922element of which is a bit specifying if the unsigned multiplication
12923resulted in an overflow.
12924
12925Examples:
12926"""""""""
12927
12928.. code-block:: llvm
12929
12930 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12931 %sum = extractvalue {i32, i1} %res, 0
12932 %obit = extractvalue {i32, i1} %res, 1
12933 br i1 %obit, label %overflow, label %normal
12934
Leonard Chan9ede9532018-11-20 18:01:24 +000012935Saturation Arithmetic Intrinsics
12936---------------------------------
12937
12938Saturation arithmetic is a version of arithmetic in which operations are
12939limited to a fixed range between a minimum and maximum value. If the result of
12940an operation is greater than the maximum value, the result is set (or
12941"clamped") to this maximum. If it is below the minimum, it is clamped to this
12942minimum.
12943
12944
12945'``llvm.sadd.sat.*``' Intrinsics
12946^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12947
12948Syntax
12949"""""""
12950
12951This is an overloaded intrinsic. You can use ``llvm.sadd.sat``
12952on any integer bit width or vectors of integers.
12953
12954::
12955
12956 declare i16 @llvm.sadd.sat.i16(i16 %a, i16 %b)
12957 declare i32 @llvm.sadd.sat.i32(i32 %a, i32 %b)
12958 declare i64 @llvm.sadd.sat.i64(i64 %a, i64 %b)
12959 declare <4 x i32> @llvm.sadd.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
12960
12961Overview
12962"""""""""
12963
12964The '``llvm.sadd.sat``' family of intrinsic functions perform signed
12965saturation addition on the 2 arguments.
12966
12967Arguments
12968""""""""""
12969
12970The arguments (%a and %b) and the result may be of integer types of any bit
12971width, but they must have the same bit width. ``%a`` and ``%b`` are the two
12972values that will undergo signed addition.
12973
12974Semantics:
12975""""""""""
12976
12977The maximum value this operation can clamp to is the largest signed value
12978representable by the bit width of the arguments. The minimum value is the
12979smallest signed value representable by this bit width.
12980
12981
12982Examples
12983"""""""""
12984
12985.. code-block:: llvm
12986
12987 %res = call i4 @llvm.sadd.sat.i4(i4 1, i4 2) ; %res = 3
12988 %res = call i4 @llvm.sadd.sat.i4(i4 5, i4 6) ; %res = 7
12989 %res = call i4 @llvm.sadd.sat.i4(i4 -4, i4 2) ; %res = -2
12990 %res = call i4 @llvm.sadd.sat.i4(i4 -4, i4 -5) ; %res = -8
12991
12992
12993'``llvm.uadd.sat.*``' Intrinsics
12994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12995
12996Syntax
12997"""""""
12998
12999This is an overloaded intrinsic. You can use ``llvm.uadd.sat``
13000on any integer bit width or vectors of integers.
13001
13002::
13003
13004 declare i16 @llvm.uadd.sat.i16(i16 %a, i16 %b)
13005 declare i32 @llvm.uadd.sat.i32(i32 %a, i32 %b)
13006 declare i64 @llvm.uadd.sat.i64(i64 %a, i64 %b)
13007 declare <4 x i32> @llvm.uadd.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
13008
13009Overview
13010"""""""""
13011
13012The '``llvm.uadd.sat``' family of intrinsic functions perform unsigned
13013saturation addition on the 2 arguments.
13014
13015Arguments
13016""""""""""
13017
13018The arguments (%a and %b) and the result may be of integer types of any bit
13019width, but they must have the same bit width. ``%a`` and ``%b`` are the two
13020values that will undergo unsigned addition.
13021
13022Semantics:
13023""""""""""
13024
13025The maximum value this operation can clamp to is the largest unsigned value
13026representable by the bit width of the arguments. Because this is an unsigned
13027operation, the result will never saturate towards zero.
13028
13029
13030Examples
13031"""""""""
13032
13033.. code-block:: llvm
13034
13035 %res = call i4 @llvm.uadd.sat.i4(i4 1, i4 2) ; %res = 3
13036 %res = call i4 @llvm.uadd.sat.i4(i4 5, i4 6) ; %res = 11
13037 %res = call i4 @llvm.uadd.sat.i4(i4 8, i4 8) ; %res = 15
13038
13039
13040'``llvm.ssub.sat.*``' Intrinsics
13041^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13042
13043Syntax
13044"""""""
13045
13046This is an overloaded intrinsic. You can use ``llvm.ssub.sat``
13047on any integer bit width or vectors of integers.
13048
13049::
13050
13051 declare i16 @llvm.ssub.sat.i16(i16 %a, i16 %b)
13052 declare i32 @llvm.ssub.sat.i32(i32 %a, i32 %b)
13053 declare i64 @llvm.ssub.sat.i64(i64 %a, i64 %b)
13054 declare <4 x i32> @llvm.ssub.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
13055
13056Overview
13057"""""""""
13058
13059The '``llvm.ssub.sat``' family of intrinsic functions perform signed
13060saturation subtraction on the 2 arguments.
13061
13062Arguments
13063""""""""""
13064
13065The arguments (%a and %b) and the result may be of integer types of any bit
13066width, but they must have the same bit width. ``%a`` and ``%b`` are the two
13067values that will undergo signed subtraction.
13068
13069Semantics:
13070""""""""""
13071
13072The maximum value this operation can clamp to is the largest signed value
13073representable by the bit width of the arguments. The minimum value is the
13074smallest signed value representable by this bit width.
13075
13076
13077Examples
13078"""""""""
13079
13080.. code-block:: llvm
13081
13082 %res = call i4 @llvm.ssub.sat.i4(i4 2, i4 1) ; %res = 1
13083 %res = call i4 @llvm.ssub.sat.i4(i4 2, i4 6) ; %res = -4
13084 %res = call i4 @llvm.ssub.sat.i4(i4 -4, i4 5) ; %res = -8
13085 %res = call i4 @llvm.ssub.sat.i4(i4 4, i4 -5) ; %res = 7
13086
13087
13088'``llvm.usub.sat.*``' Intrinsics
13089^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13090
13091Syntax
13092"""""""
13093
13094This is an overloaded intrinsic. You can use ``llvm.usub.sat``
13095on any integer bit width or vectors of integers.
13096
13097::
13098
13099 declare i16 @llvm.usub.sat.i16(i16 %a, i16 %b)
13100 declare i32 @llvm.usub.sat.i32(i32 %a, i32 %b)
13101 declare i64 @llvm.usub.sat.i64(i64 %a, i64 %b)
13102 declare <4 x i32> @llvm.usub.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
13103
13104Overview
13105"""""""""
13106
13107The '``llvm.usub.sat``' family of intrinsic functions perform unsigned
13108saturation subtraction on the 2 arguments.
13109
13110Arguments
13111""""""""""
13112
13113The arguments (%a and %b) and the result may be of integer types of any bit
13114width, but they must have the same bit width. ``%a`` and ``%b`` are the two
13115values that will undergo unsigned subtraction.
13116
13117Semantics:
13118""""""""""
13119
13120The minimum value this operation can clamp to is 0, which is the smallest
13121unsigned value representable by the bit width of the unsigned arguments.
13122Because this is an unsigned operation, the result will never saturate towards
13123the largest possible value representable by this bit width.
13124
13125
13126Examples
13127"""""""""
13128
13129.. code-block:: llvm
13130
13131 %res = call i4 @llvm.usub.sat.i4(i4 2, i4 1) ; %res = 1
13132 %res = call i4 @llvm.usub.sat.i4(i4 2, i4 6) ; %res = 0
13133
13134
Leonard Chan118e53f2018-12-12 06:29:14 +000013135Fixed Point Arithmetic Intrinsics
13136---------------------------------
13137
13138A fixed point number represents a real data type for a number that has a fixed
13139number of digits after a radix point (equivalent to the decimal point '.').
13140The number of digits after the radix point is referred as the ``scale``. These
13141are useful for representing fractional values to a specific precision. The
13142following intrinsics perform fixed point arithmetic operations on 2 operands
13143of the same scale, specified as the third argument.
13144
13145
13146'``llvm.smul.fix.*``' Intrinsics
13147^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13148
13149Syntax
13150"""""""
13151
13152This is an overloaded intrinsic. You can use ``llvm.smul.fix``
13153on any integer bit width or vectors of integers.
13154
13155::
13156
13157 declare i16 @llvm.smul.fix.i16(i16 %a, i16 %b, i32 %scale)
13158 declare i32 @llvm.smul.fix.i32(i32 %a, i32 %b, i32 %scale)
13159 declare i64 @llvm.smul.fix.i64(i64 %a, i64 %b, i32 %scale)
13160 declare <4 x i32> @llvm.smul.fix.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
13161
13162Overview
13163"""""""""
13164
13165The '``llvm.smul.fix``' family of intrinsic functions perform signed
13166fixed point multiplication on 2 arguments of the same scale.
13167
13168Arguments
13169""""""""""
13170
13171The arguments (%a and %b) and the result may be of integer types of any bit
Leonard Chan68d428e2019-02-04 17:18:11 +000013172width, but they must have the same bit width. The arguments may also work with
13173int vectors of the same length and int size. ``%a`` and ``%b`` are the two
Leonard Chan118e53f2018-12-12 06:29:14 +000013174values that will undergo signed fixed point multiplication. The argument
13175``%scale`` represents the scale of both operands, and must be a constant
13176integer.
13177
13178Semantics:
13179""""""""""
13180
13181This operation performs fixed point multiplication on the 2 arguments of a
13182specified scale. The result will also be returned in the same scale specified
13183in the third argument.
13184
13185If the result value cannot be precisely represented in the given scale, the
13186value is rounded up or down to the closest representable value. The rounding
13187direction is unspecified.
13188
Leonard Chan68d428e2019-02-04 17:18:11 +000013189It is undefined behavior if the result value does not fit within the range of
Leonard Chan118e53f2018-12-12 06:29:14 +000013190the fixed point type.
13191
13192
13193Examples
13194"""""""""
13195
13196.. code-block:: llvm
13197
13198 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 2, i32 0) ; %res = 6 (2 x 3 = 6)
13199 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 2, i32 1) ; %res = 3 (1.5 x 1 = 1.5)
13200 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 -2, i32 1) ; %res = -3 (1.5 x -1 = -1.5)
13201
13202 ; The result in the following could be rounded up to -2 or down to -2.5
13203 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 -3, i32 1) ; %res = -5 (or -4) (1.5 x -1.5 = -2.25)
13204
13205
Leonard Chan68d428e2019-02-04 17:18:11 +000013206'``llvm.umul.fix.*``' Intrinsics
13207^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13208
13209Syntax
13210"""""""
13211
13212This is an overloaded intrinsic. You can use ``llvm.umul.fix``
13213on any integer bit width or vectors of integers.
13214
13215::
13216
13217 declare i16 @llvm.umul.fix.i16(i16 %a, i16 %b, i32 %scale)
13218 declare i32 @llvm.umul.fix.i32(i32 %a, i32 %b, i32 %scale)
13219 declare i64 @llvm.umul.fix.i64(i64 %a, i64 %b, i32 %scale)
13220 declare <4 x i32> @llvm.umul.fix.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
13221
13222Overview
13223"""""""""
13224
13225The '``llvm.umul.fix``' family of intrinsic functions perform unsigned
13226fixed point multiplication on 2 arguments of the same scale.
13227
13228Arguments
13229""""""""""
13230
13231The arguments (%a and %b) and the result may be of integer types of any bit
13232width, but they must have the same bit width. The arguments may also work with
13233int vectors of the same length and int size. ``%a`` and ``%b`` are the two
13234values that will undergo unsigned fixed point multiplication. The argument
13235``%scale`` represents the scale of both operands, and must be a constant
13236integer.
13237
13238Semantics:
13239""""""""""
13240
13241This operation performs unsigned fixed point multiplication on the 2 arguments of a
13242specified scale. The result will also be returned in the same scale specified
13243in the third argument.
13244
13245If the result value cannot be precisely represented in the given scale, the
13246value is rounded up or down to the closest representable value. The rounding
13247direction is unspecified.
13248
13249It is undefined behavior if the result value does not fit within the range of
13250the fixed point type.
13251
13252
13253Examples
13254"""""""""
13255
13256.. code-block:: llvm
13257
13258 %res = call i4 @llvm.umul.fix.i4(i4 3, i4 2, i32 0) ; %res = 6 (2 x 3 = 6)
13259 %res = call i4 @llvm.umul.fix.i4(i4 3, i4 2, i32 1) ; %res = 3 (1.5 x 1 = 1.5)
13260
13261 ; The result in the following could be rounded down to 3.5 or up to 4
13262 %res = call i4 @llvm.umul.fix.i4(i4 15, i4 1, i32 1) ; %res = 7 (or 8) (7.5 x 0.5 = 3.75)
13263
13264
Sean Silvab084af42012-12-07 10:36:55 +000013265Specialised Arithmetic Intrinsics
13266---------------------------------
13267
Owen Anderson1056a922015-07-11 07:01:27 +000013268'``llvm.canonicalize.*``' Intrinsic
13269^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13270
13271Syntax:
13272"""""""
13273
13274::
13275
13276 declare float @llvm.canonicalize.f32(float %a)
13277 declare double @llvm.canonicalize.f64(double %b)
13278
13279Overview:
13280"""""""""
13281
13282The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013283encoding of a floating-point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000013284implementing certain numeric primitives such as frexp. The canonical encoding is
13285defined by IEEE-754-2008 to be:
13286
13287::
13288
13289 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000013290 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000013291 numbers, infinities, and NaNs, especially in decimal formats.
13292
13293This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000013294conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000013295according to section 6.2.
13296
13297Examples of non-canonical encodings:
13298
Sean Silvaa1190322015-08-06 22:56:48 +000013299- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000013300 converted to a canonical representation per hardware-specific protocol.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013301- Many normal decimal floating-point numbers have non-canonical alternative
Owen Anderson1056a922015-07-11 07:01:27 +000013302 encodings.
13303- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000013304 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000013305 a zero of the same sign by this operation.
13306
13307Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
13308default exception handling must signal an invalid exception, and produce a
13309quiet NaN result.
13310
13311This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000013312that the compiler does not constant fold the operation. Likewise, division by
133131.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000013314-0.0 is also sufficient provided that the rounding mode is not -Infinity.
13315
Sean Silvaa1190322015-08-06 22:56:48 +000013316``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000013317
13318- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
13319- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
13320 to ``(x == y)``
13321
13322Additionally, the sign of zero must be conserved:
13323``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
13324
13325The payload bits of a NaN must be conserved, with two exceptions.
13326First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000013327must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000013328usual methods.
13329
13330The canonicalization operation may be optimized away if:
13331
Sean Silvaa1190322015-08-06 22:56:48 +000013332- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000013333 floating-point operation that is required by the standard to be canonical.
13334- The result is consumed only by (or fused with) other floating-point
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013335 operations. That is, the bits of the floating-point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000013336
Sean Silvab084af42012-12-07 10:36:55 +000013337'``llvm.fmuladd.*``' Intrinsic
13338^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13339
13340Syntax:
13341"""""""
13342
13343::
13344
13345 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
13346 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
13347
13348Overview:
13349"""""""""
13350
13351The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000013352expressions that can be fused if the code generator determines that (a) the
13353target instruction set has support for a fused operation, and (b) that the
13354fused operation is more efficient than the equivalent, separate pair of mul
13355and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000013356
13357Arguments:
13358""""""""""
13359
13360The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
13361multiplicands, a and b, and an addend c.
13362
13363Semantics:
13364""""""""""
13365
13366The expression:
13367
13368::
13369
13370 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
13371
13372is equivalent to the expression a \* b + c, except that rounding will
13373not be performed between the multiplication and addition steps if the
13374code generator fuses the operations. Fusion is not guaranteed, even if
13375the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000013376corresponding llvm.fma.\* intrinsic function should be used
13377instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000013378
13379Examples:
13380"""""""""
13381
13382.. code-block:: llvm
13383
Tim Northover675a0962014-06-13 14:24:23 +000013384 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000013385
Amara Emersoncf9daa32017-05-09 10:43:25 +000013386
13387Experimental Vector Reduction Intrinsics
13388----------------------------------------
13389
13390Horizontal reductions of vectors can be expressed using the following
13391intrinsics. Each one takes a vector operand as an input and applies its
13392respective operation across all elements of the vector, returning a single
13393scalar result of the same element type.
13394
13395
13396'``llvm.experimental.vector.reduce.add.*``' Intrinsic
13397^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13398
13399Syntax:
13400"""""""
13401
13402::
13403
13404 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
13405 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
13406
13407Overview:
13408"""""""""
13409
13410The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
13411reduction of a vector, returning the result as a scalar. The return type matches
13412the element-type of the vector input.
13413
13414Arguments:
13415""""""""""
13416The argument to this intrinsic must be a vector of integer values.
13417
13418'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
13419^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13420
13421Syntax:
13422"""""""
13423
13424::
13425
13426 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
13427 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
13428
13429Overview:
13430"""""""""
13431
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013432The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000013433``ADD`` reduction of a vector, returning the result as a scalar. The return type
13434matches the element-type of the vector input.
13435
13436If the intrinsic call has fast-math flags, then the reduction will not preserve
13437the associativity of an equivalent scalarized counterpart. If it does not have
13438fast-math flags, then the reduction will be *ordered*, implying that the
13439operation respects the associativity of a scalarized reduction.
13440
13441
13442Arguments:
13443""""""""""
13444The first argument to this intrinsic is a scalar accumulator value, which is
13445only used when there are no fast-math flags attached. This argument may be undef
13446when fast-math flags are used.
13447
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013448The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000013449
13450Examples:
13451"""""""""
13452
13453.. code-block:: llvm
13454
13455 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
13456 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
13457
13458
13459'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
13460^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13461
13462Syntax:
13463"""""""
13464
13465::
13466
13467 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
13468 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
13469
13470Overview:
13471"""""""""
13472
13473The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
13474reduction of a vector, returning the result as a scalar. The return type matches
13475the element-type of the vector input.
13476
13477Arguments:
13478""""""""""
13479The argument to this intrinsic must be a vector of integer values.
13480
13481'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
13482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13483
13484Syntax:
13485"""""""
13486
13487::
13488
13489 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
13490 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
13491
13492Overview:
13493"""""""""
13494
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013495The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000013496``MUL`` reduction of a vector, returning the result as a scalar. The return type
13497matches the element-type of the vector input.
13498
13499If the intrinsic call has fast-math flags, then the reduction will not preserve
13500the associativity of an equivalent scalarized counterpart. If it does not have
13501fast-math flags, then the reduction will be *ordered*, implying that the
13502operation respects the associativity of a scalarized reduction.
13503
13504
13505Arguments:
13506""""""""""
13507The first argument to this intrinsic is a scalar accumulator value, which is
13508only used when there are no fast-math flags attached. This argument may be undef
13509when fast-math flags are used.
13510
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013511The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000013512
13513Examples:
13514"""""""""
13515
13516.. code-block:: llvm
13517
13518 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
13519 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
13520
13521'``llvm.experimental.vector.reduce.and.*``' Intrinsic
13522^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13523
13524Syntax:
13525"""""""
13526
13527::
13528
13529 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
13530
13531Overview:
13532"""""""""
13533
13534The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
13535reduction of a vector, returning the result as a scalar. The return type matches
13536the element-type of the vector input.
13537
13538Arguments:
13539""""""""""
13540The argument to this intrinsic must be a vector of integer values.
13541
13542'``llvm.experimental.vector.reduce.or.*``' Intrinsic
13543^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13544
13545Syntax:
13546"""""""
13547
13548::
13549
13550 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
13551
13552Overview:
13553"""""""""
13554
13555The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
13556of a vector, returning the result as a scalar. The return type matches the
13557element-type of the vector input.
13558
13559Arguments:
13560""""""""""
13561The argument to this intrinsic must be a vector of integer values.
13562
13563'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
13564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13565
13566Syntax:
13567"""""""
13568
13569::
13570
13571 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
13572
13573Overview:
13574"""""""""
13575
13576The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
13577reduction of a vector, returning the result as a scalar. The return type matches
13578the element-type of the vector input.
13579
13580Arguments:
13581""""""""""
13582The argument to this intrinsic must be a vector of integer values.
13583
13584'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
13585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13586
13587Syntax:
13588"""""""
13589
13590::
13591
13592 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
13593
13594Overview:
13595"""""""""
13596
13597The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
13598``MAX`` reduction of a vector, returning the result as a scalar. The return type
13599matches the element-type of the vector input.
13600
13601Arguments:
13602""""""""""
13603The argument to this intrinsic must be a vector of integer values.
13604
13605'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
13606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13607
13608Syntax:
13609"""""""
13610
13611::
13612
13613 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
13614
13615Overview:
13616"""""""""
13617
13618The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
13619``MIN`` reduction of a vector, returning the result as a scalar. The return type
13620matches the element-type of the vector input.
13621
13622Arguments:
13623""""""""""
13624The argument to this intrinsic must be a vector of integer values.
13625
13626'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
13627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13628
13629Syntax:
13630"""""""
13631
13632::
13633
13634 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
13635
13636Overview:
13637"""""""""
13638
13639The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
13640integer ``MAX`` reduction of a vector, returning the result as a scalar. The
13641return type matches the element-type of the vector input.
13642
13643Arguments:
13644""""""""""
13645The argument to this intrinsic must be a vector of integer values.
13646
13647'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
13648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13649
13650Syntax:
13651"""""""
13652
13653::
13654
13655 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
13656
13657Overview:
13658"""""""""
13659
13660The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
13661integer ``MIN`` reduction of a vector, returning the result as a scalar. The
13662return type matches the element-type of the vector input.
13663
13664Arguments:
13665""""""""""
13666The argument to this intrinsic must be a vector of integer values.
13667
13668'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
13669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13670
13671Syntax:
13672"""""""
13673
13674::
13675
13676 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
13677 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
13678
13679Overview:
13680"""""""""
13681
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013682The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000013683``MAX`` reduction of a vector, returning the result as a scalar. The return type
13684matches the element-type of the vector input.
13685
13686If the intrinsic call has the ``nnan`` fast-math flag then the operation can
13687assume that NaNs are not present in the input vector.
13688
13689Arguments:
13690""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013691The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000013692
13693'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
13694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13695
13696Syntax:
13697"""""""
13698
13699::
13700
13701 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
13702 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
13703
13704Overview:
13705"""""""""
13706
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013707The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000013708``MIN`` reduction of a vector, returning the result as a scalar. The return type
13709matches the element-type of the vector input.
13710
13711If the intrinsic call has the ``nnan`` fast-math flag then the operation can
13712assume that NaNs are not present in the input vector.
13713
13714Arguments:
13715""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013716The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000013717
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013718Half Precision Floating-Point Intrinsics
Sean Silvab084af42012-12-07 10:36:55 +000013719----------------------------------------
13720
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013721For most target platforms, half precision floating-point is a
Sean Silvab084af42012-12-07 10:36:55 +000013722storage-only format. This means that it is a dense encoding (in memory)
13723but does not support computation in the format.
13724
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013725This means that code must first load the half-precision floating-point
Sean Silvab084af42012-12-07 10:36:55 +000013726value as an i16, then convert it to float with
13727:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
13728then be performed on the float value (including extending to double
13729etc). To store the value back to memory, it is first converted to float
13730if needed, then converted to i16 with
13731:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
13732i16 value.
13733
13734.. _int_convert_to_fp16:
13735
13736'``llvm.convert.to.fp16``' Intrinsic
13737^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13738
13739Syntax:
13740"""""""
13741
13742::
13743
Tim Northoverfd7e4242014-07-17 10:51:23 +000013744 declare i16 @llvm.convert.to.fp16.f32(float %a)
13745 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000013746
13747Overview:
13748"""""""""
13749
Tim Northoverfd7e4242014-07-17 10:51:23 +000013750The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013751conventional floating-point type to half precision floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000013752
13753Arguments:
13754""""""""""
13755
13756The intrinsic function contains single argument - the value to be
13757converted.
13758
13759Semantics:
13760""""""""""
13761
Tim Northoverfd7e4242014-07-17 10:51:23 +000013762The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013763conventional floating-point format to half precision floating-point format. The
Tim Northoverfd7e4242014-07-17 10:51:23 +000013764return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000013765
13766Examples:
13767"""""""""
13768
13769.. code-block:: llvm
13770
Tim Northoverfd7e4242014-07-17 10:51:23 +000013771 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000013772 store i16 %res, i16* @x, align 2
13773
13774.. _int_convert_from_fp16:
13775
13776'``llvm.convert.from.fp16``' Intrinsic
13777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13778
13779Syntax:
13780"""""""
13781
13782::
13783
Tim Northoverfd7e4242014-07-17 10:51:23 +000013784 declare float @llvm.convert.from.fp16.f32(i16 %a)
13785 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000013786
13787Overview:
13788"""""""""
13789
13790The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013791conversion from half precision floating-point format to single precision
13792floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000013793
13794Arguments:
13795""""""""""
13796
13797The intrinsic function contains single argument - the value to be
13798converted.
13799
13800Semantics:
13801""""""""""
13802
13803The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013804conversion from half single precision floating-point format to single
13805precision floating-point format. The input half-float value is
Sean Silvab084af42012-12-07 10:36:55 +000013806represented by an ``i16`` value.
13807
13808Examples:
13809"""""""""
13810
13811.. code-block:: llvm
13812
David Blaikiec7aabbb2015-03-04 22:06:14 +000013813 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000013814 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000013815
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000013816.. _dbg_intrinsics:
13817
Sean Silvab084af42012-12-07 10:36:55 +000013818Debugger Intrinsics
13819-------------------
13820
13821The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
13822prefix), are described in the `LLVM Source Level
Hans Wennborg65195622017-09-28 15:16:37 +000013823Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
Sean Silvab084af42012-12-07 10:36:55 +000013824document.
13825
13826Exception Handling Intrinsics
13827-----------------------------
13828
13829The LLVM exception handling intrinsics (which all start with
13830``llvm.eh.`` prefix), are described in the `LLVM Exception
Hans Wennborg65195622017-09-28 15:16:37 +000013831Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
Sean Silvab084af42012-12-07 10:36:55 +000013832
13833.. _int_trampoline:
13834
13835Trampoline Intrinsics
13836---------------------
13837
13838These intrinsics make it possible to excise one parameter, marked with
13839the :ref:`nest <nest>` attribute, from a function. The result is a
13840callable function pointer lacking the nest parameter - the caller does
13841not need to provide a value for it. Instead, the value to use is stored
13842in advance in a "trampoline", a block of memory usually allocated on the
13843stack, which also contains code to splice the nest value into the
13844argument list. This is used to implement the GCC nested function address
13845extension.
13846
13847For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
13848then the resulting function pointer has signature ``i32 (i32, i32)*``.
13849It can be created as follows:
13850
13851.. code-block:: llvm
13852
13853 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000013854 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000013855 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
13856 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
13857 %fp = bitcast i8* %p to i32 (i32, i32)*
13858
13859The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
13860``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
13861
13862.. _int_it:
13863
13864'``llvm.init.trampoline``' Intrinsic
13865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13866
13867Syntax:
13868"""""""
13869
13870::
13871
13872 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
13873
13874Overview:
13875"""""""""
13876
13877This fills the memory pointed to by ``tramp`` with executable code,
13878turning it into a trampoline.
13879
13880Arguments:
13881""""""""""
13882
13883The ``llvm.init.trampoline`` intrinsic takes three arguments, all
13884pointers. The ``tramp`` argument must point to a sufficiently large and
13885sufficiently aligned block of memory; this memory is written to by the
13886intrinsic. Note that the size and the alignment are target-specific -
13887LLVM currently provides no portable way of determining them, so a
13888front-end that generates this intrinsic needs to have some
13889target-specific knowledge. The ``func`` argument must hold a function
13890bitcast to an ``i8*``.
13891
13892Semantics:
13893""""""""""
13894
13895The block of memory pointed to by ``tramp`` is filled with target
13896dependent code, turning it into a function. Then ``tramp`` needs to be
13897passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
13898be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
13899function's signature is the same as that of ``func`` with any arguments
13900marked with the ``nest`` attribute removed. At most one such ``nest``
13901argument is allowed, and it must be of pointer type. Calling the new
13902function is equivalent to calling ``func`` with the same argument list,
13903but with ``nval`` used for the missing ``nest`` argument. If, after
13904calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
13905modified, then the effect of any later call to the returned function
13906pointer is undefined.
13907
13908.. _int_at:
13909
13910'``llvm.adjust.trampoline``' Intrinsic
13911^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13912
13913Syntax:
13914"""""""
13915
13916::
13917
13918 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
13919
13920Overview:
13921"""""""""
13922
13923This performs any required machine-specific adjustment to the address of
13924a trampoline (passed as ``tramp``).
13925
13926Arguments:
13927""""""""""
13928
13929``tramp`` must point to a block of memory which already has trampoline
13930code filled in by a previous call to
13931:ref:`llvm.init.trampoline <int_it>`.
13932
13933Semantics:
13934""""""""""
13935
13936On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000013937different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000013938intrinsic returns the executable address corresponding to ``tramp``
13939after performing the required machine specific adjustments. The pointer
13940returned can then be :ref:`bitcast and executed <int_trampoline>`.
13941
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013942.. _int_mload_mstore:
13943
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013944Masked Vector Load and Store Intrinsics
13945---------------------------------------
13946
13947LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
13948
13949.. _int_mload:
13950
13951'``llvm.masked.load.*``' Intrinsics
13952^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13953
13954Syntax:
13955"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013956This is an overloaded intrinsic. The loaded data is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013957
13958::
13959
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013960 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
13961 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013962 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013963 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013964 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013965 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013966
13967Overview:
13968"""""""""
13969
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013970Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013971
13972
13973Arguments:
13974""""""""""
13975
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013976The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013977
13978
13979Semantics:
13980""""""""""
13981
13982The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
13983The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
13984
13985
13986::
13987
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013988 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000013989
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013990 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000013991 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000013992 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013993
13994.. _int_mstore:
13995
13996'``llvm.masked.store.*``' Intrinsics
13997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13998
13999Syntax:
14000"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014001This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000014002
14003::
14004
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000014005 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
14006 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000014007 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000014008 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000014009 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000014010 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000014011
14012Overview:
14013"""""""""
14014
14015Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
14016
14017Arguments:
14018""""""""""
14019
14020The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
14021
14022
14023Semantics:
14024""""""""""
14025
14026The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
14027The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
14028
14029::
14030
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000014031 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000014032
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000014033 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000014034 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000014035 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
14036 store <16 x float> %res, <16 x float>* %ptr, align 4
14037
14038
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014039Masked Vector Gather and Scatter Intrinsics
14040-------------------------------------------
14041
14042LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
14043
14044.. _int_mgather:
14045
14046'``llvm.masked.gather.*``' Intrinsics
14047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14048
14049Syntax:
14050"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014051This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating-point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014052
14053::
14054
Elad Cohenef5798a2017-05-03 12:28:54 +000014055 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
14056 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
14057 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014058
14059Overview:
14060"""""""""
14061
14062Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
14063
14064
14065Arguments:
14066""""""""""
14067
14068The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
14069
14070
14071Semantics:
14072""""""""""
14073
14074The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
14075The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
14076
14077
14078::
14079
Elad Cohenef5798a2017-05-03 12:28:54 +000014080 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014081
14082 ;; The gather with all-true mask is equivalent to the following instruction sequence
14083 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
14084 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
14085 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
14086 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
14087
14088 %val0 = load double, double* %ptr0, align 8
14089 %val1 = load double, double* %ptr1, align 8
14090 %val2 = load double, double* %ptr2, align 8
14091 %val3 = load double, double* %ptr3, align 8
14092
14093 %vec0 = insertelement <4 x double>undef, %val0, 0
14094 %vec01 = insertelement <4 x double>%vec0, %val1, 1
14095 %vec012 = insertelement <4 x double>%vec01, %val2, 2
14096 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
14097
14098.. _int_mscatter:
14099
14100'``llvm.masked.scatter.*``' Intrinsics
14101^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14102
14103Syntax:
14104"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014105This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014106
14107::
14108
Elad Cohenef5798a2017-05-03 12:28:54 +000014109 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
14110 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
14111 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014112
14113Overview:
14114"""""""""
14115
14116Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
14117
14118Arguments:
14119""""""""""
14120
14121The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
14122
14123
14124Semantics:
14125""""""""""
14126
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000014127The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014128
14129::
14130
Sylvestre Ledru84666a12016-02-14 20:16:22 +000014131 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000014132 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000014133
14134 ;; It is equivalent to a list of scalar stores
14135 %val0 = extractelement <8 x i32> %value, i32 0
14136 %val1 = extractelement <8 x i32> %value, i32 1
14137 ..
14138 %val7 = extractelement <8 x i32> %value, i32 7
14139 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
14140 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
14141 ..
14142 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
14143 ;; Note: the order of the following stores is important when they overlap:
14144 store i32 %val0, i32* %ptr0, align 4
14145 store i32 %val1, i32* %ptr1, align 4
14146 ..
14147 store i32 %val7, i32* %ptr7, align 4
14148
14149
Elena Demikhovsky0ef2ce32018-06-06 09:11:46 +000014150Masked Vector Expanding Load and Compressing Store Intrinsics
14151-------------------------------------------------------------
14152
14153LLVM provides intrinsics for expanding load and compressing store operations. Data selected from a vector according to a mask is stored in consecutive memory addresses (compressed store), and vice-versa (expanding load). These operations effective map to "if (cond.i) a[j++] = v.i" and "if (cond.i) v.i = a[j++]" patterns, respectively. Note that when the mask starts with '1' bits followed by '0' bits, these operations are identical to :ref:`llvm.masked.store <int_mstore>` and :ref:`llvm.masked.load <int_mload>`.
14154
14155.. _int_expandload:
14156
14157'``llvm.masked.expandload.*``' Intrinsics
14158^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14159
14160Syntax:
14161"""""""
14162This is an overloaded intrinsic. Several values of integer, floating point or pointer data type are loaded from consecutive memory addresses and stored into the elements of a vector according to the mask.
14163
14164::
14165
14166 declare <16 x float> @llvm.masked.expandload.v16f32 (float* <ptr>, <16 x i1> <mask>, <16 x float> <passthru>)
14167 declare <2 x i64> @llvm.masked.expandload.v2i64 (i64* <ptr>, <2 x i1> <mask>, <2 x i64> <passthru>)
14168
14169Overview:
14170"""""""""
14171
14172Reads a number of scalar values sequentially from memory location provided in '``ptr``' and spreads them in a vector. The '``mask``' holds a bit for each vector lane. The number of elements read from memory is equal to the number of '1' bits in the mask. The loaded elements are positioned in the destination vector according to the sequence of '1' and '0' bits in the mask. E.g., if the mask vector is '10010001', "explandload" reads 3 values from memory addresses ptr, ptr+1, ptr+2 and places them in lanes 0, 3 and 7 accordingly. The masked-off lanes are filled by elements from the corresponding lanes of the '``passthru``' operand.
14173
14174
14175Arguments:
14176""""""""""
14177
14178The first operand is the base pointer for the load. It has the same underlying type as the element of the returned vector. The second operand, mask, is a vector of boolean values with the same number of elements as the return type. The third is a pass-through value that is used to fill the masked-off lanes of the result. The return type and the type of the '``passthru``' operand have the same vector type.
14179
14180Semantics:
14181""""""""""
14182
14183The '``llvm.masked.expandload``' intrinsic is designed for reading multiple scalar values from adjacent memory addresses into possibly non-adjacent vector lanes. It is useful for targets that support vector expanding loads and allows vectorizing loop with cross-iteration dependency like in the following example:
14184
14185.. code-block:: c
14186
14187 // In this loop we load from B and spread the elements into array A.
14188 double *A, B; int *C;
14189 for (int i = 0; i < size; ++i) {
14190 if (C[i] != 0)
14191 A[i] = B[j++];
14192 }
14193
14194
14195.. code-block:: llvm
14196
14197 ; Load several elements from array B and expand them in a vector.
14198 ; The number of loaded elements is equal to the number of '1' elements in the Mask.
14199 %Tmp = call <8 x double> @llvm.masked.expandload.v8f64(double* %Bptr, <8 x i1> %Mask, <8 x double> undef)
14200 ; Store the result in A
14201 call void @llvm.masked.store.v8f64.p0v8f64(<8 x double> %Tmp, <8 x double>* %Aptr, i32 8, <8 x i1> %Mask)
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000014202
Elena Demikhovsky0ef2ce32018-06-06 09:11:46 +000014203 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
14204 %MaskI = bitcast <8 x i1> %Mask to i8
14205 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
14206 %MaskI64 = zext i8 %MaskIPopcnt to i64
14207 %BNextInd = add i64 %BInd, %MaskI64
14208
14209
14210Other targets may support this intrinsic differently, for example, by lowering it into a sequence of conditional scalar load operations and shuffles.
14211If all mask elements are '1', the intrinsic behavior is equivalent to the regular unmasked vector load.
14212
14213.. _int_compressstore:
14214
14215'``llvm.masked.compressstore.*``' Intrinsics
14216^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14217
14218Syntax:
14219"""""""
14220This is an overloaded intrinsic. A number of scalar values of integer, floating point or pointer data type are collected from an input vector and stored into adjacent memory addresses. A mask defines which elements to collect from the vector.
14221
14222::
14223
14224 declare void @llvm.masked.compressstore.v8i32 (<8 x i32> <value>, i32* <ptr>, <8 x i1> <mask>)
14225 declare void @llvm.masked.compressstore.v16f32 (<16 x float> <value>, float* <ptr>, <16 x i1> <mask>)
14226
14227Overview:
14228"""""""""
14229
14230Selects elements from input vector '``value``' according to the '``mask``'. All selected elements are written into adjacent memory addresses starting at address '`ptr`', from lower to higher. The mask holds a bit for each vector lane, and is used to select elements to be stored. The number of elements to be stored is equal to the number of active bits in the mask.
14231
14232Arguments:
14233""""""""""
14234
14235The first operand is the input vector, from which elements are collected and written to memory. The second operand is the base pointer for the store, it has the same underlying type as the element of the input vector operand. The third operand is the mask, a vector of boolean values. The mask and the input vector must have the same number of vector elements.
14236
14237
14238Semantics:
14239""""""""""
14240
14241The '``llvm.masked.compressstore``' intrinsic is designed for compressing data in memory. It allows to collect elements from possibly non-adjacent lanes of a vector and store them contiguously in memory in one IR operation. It is useful for targets that support compressing store operations and allows vectorizing loops with cross-iteration dependences like in the following example:
14242
14243.. code-block:: c
14244
14245 // In this loop we load elements from A and store them consecutively in B
14246 double *A, B; int *C;
14247 for (int i = 0; i < size; ++i) {
14248 if (C[i] != 0)
14249 B[j++] = A[i]
14250 }
14251
14252
14253.. code-block:: llvm
14254
14255 ; Load elements from A.
14256 %Tmp = call <8 x double> @llvm.masked.load.v8f64.p0v8f64(<8 x double>* %Aptr, i32 8, <8 x i1> %Mask, <8 x double> undef)
14257 ; Store all selected elements consecutively in array B
14258 call <void> @llvm.masked.compressstore.v8f64(<8 x double> %Tmp, double* %Bptr, <8 x i1> %Mask)
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000014259
Elena Demikhovsky0ef2ce32018-06-06 09:11:46 +000014260 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
14261 %MaskI = bitcast <8 x i1> %Mask to i8
14262 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
14263 %MaskI64 = zext i8 %MaskIPopcnt to i64
14264 %BNextInd = add i64 %BInd, %MaskI64
14265
14266
14267Other targets may support this intrinsic differently, for example, by lowering it into a sequence of branches that guard scalar store operations.
14268
14269
Sean Silvab084af42012-12-07 10:36:55 +000014270Memory Use Markers
14271------------------
14272
Sanjay Patel69bf48e2014-07-04 19:40:43 +000014273This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000014274memory objects and ranges where variables are immutable.
14275
Reid Klecknera534a382013-12-19 02:14:12 +000014276.. _int_lifestart:
14277
Sean Silvab084af42012-12-07 10:36:55 +000014278'``llvm.lifetime.start``' Intrinsic
14279^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14280
14281Syntax:
14282"""""""
14283
14284::
14285
14286 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
14287
14288Overview:
14289"""""""""
14290
14291The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
14292object's lifetime.
14293
14294Arguments:
14295""""""""""
14296
14297The first argument is a constant integer representing the size of the
14298object, or -1 if it is variable sized. The second argument is a pointer
14299to the object.
14300
14301Semantics:
14302""""""""""
14303
14304This intrinsic indicates that before this point in the code, the value
14305of the memory pointed to by ``ptr`` is dead. This means that it is known
14306to never be used and has an undefined value. A load from the pointer
14307that precedes this intrinsic can be replaced with ``'undef'``.
14308
Reid Klecknera534a382013-12-19 02:14:12 +000014309.. _int_lifeend:
14310
Sean Silvab084af42012-12-07 10:36:55 +000014311'``llvm.lifetime.end``' Intrinsic
14312^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14313
14314Syntax:
14315"""""""
14316
14317::
14318
14319 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
14320
14321Overview:
14322"""""""""
14323
14324The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
14325object's lifetime.
14326
14327Arguments:
14328""""""""""
14329
14330The first argument is a constant integer representing the size of the
14331object, or -1 if it is variable sized. The second argument is a pointer
14332to the object.
14333
14334Semantics:
14335""""""""""
14336
14337This intrinsic indicates that after this point in the code, the value of
14338the memory pointed to by ``ptr`` is dead. This means that it is known to
14339never be used and has an undefined value. Any stores into the memory
14340object following this intrinsic may be removed as dead.
14341
14342'``llvm.invariant.start``' Intrinsic
14343^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14344
14345Syntax:
14346"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000014347This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000014348
14349::
14350
Mehdi Amini8c629ec2016-08-13 23:31:24 +000014351 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000014352
14353Overview:
14354"""""""""
14355
14356The '``llvm.invariant.start``' intrinsic specifies that the contents of
14357a memory object will not change.
14358
14359Arguments:
14360""""""""""
14361
14362The first argument is a constant integer representing the size of the
14363object, or -1 if it is variable sized. The second argument is a pointer
14364to the object.
14365
14366Semantics:
14367""""""""""
14368
14369This intrinsic indicates that until an ``llvm.invariant.end`` that uses
14370the return value, the referenced memory location is constant and
14371unchanging.
14372
14373'``llvm.invariant.end``' Intrinsic
14374^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14375
14376Syntax:
14377"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000014378This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000014379
14380::
14381
Mehdi Amini8c629ec2016-08-13 23:31:24 +000014382 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000014383
14384Overview:
14385"""""""""
14386
14387The '``llvm.invariant.end``' intrinsic specifies that the contents of a
14388memory object are mutable.
14389
14390Arguments:
14391""""""""""
14392
14393The first argument is the matching ``llvm.invariant.start`` intrinsic.
14394The second argument is a constant integer representing the size of the
14395object, or -1 if it is variable sized and the third argument is a
14396pointer to the object.
14397
14398Semantics:
14399""""""""""
14400
14401This intrinsic indicates that the memory is mutable again.
14402
Piotr Padlewski5dde8092018-05-03 11:03:01 +000014403'``llvm.launder.invariant.group``' Intrinsic
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014404^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14405
14406Syntax:
14407"""""""
Yaxun Liu407ca362017-11-16 16:32:16 +000014408This is an overloaded intrinsic. The memory object can belong to any address
14409space. The returned pointer must belong to the same address space as the
14410argument.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014411
14412::
14413
Piotr Padlewski5dde8092018-05-03 11:03:01 +000014414 declare i8* @llvm.launder.invariant.group.p0i8(i8* <ptr>)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014415
14416Overview:
14417"""""""""
14418
Piotr Padlewski5dde8092018-05-03 11:03:01 +000014419The '``llvm.launder.invariant.group``' intrinsic can be used when an invariant
Piotr Padlewski5b3db452018-07-02 04:49:30 +000014420established by ``invariant.group`` metadata no longer holds, to obtain a new
14421pointer value that carries fresh invariant group information. It is an
14422experimental intrinsic, which means that its semantics might change in the
14423future.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014424
14425
14426Arguments:
14427""""""""""
14428
Piotr Padlewski5b3db452018-07-02 04:49:30 +000014429The ``llvm.launder.invariant.group`` takes only one argument, which is a pointer
14430to the memory.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014431
14432Semantics:
14433""""""""""
14434
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014435Returns another pointer that aliases its argument but which is considered different
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014436for the purposes of ``load``/``store`` ``invariant.group`` metadata.
Piotr Padlewski5dde8092018-05-03 11:03:01 +000014437It does not read any accessible memory and the execution can be speculated.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000014438
Piotr Padlewski5b3db452018-07-02 04:49:30 +000014439'``llvm.strip.invariant.group``' Intrinsic
14440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14441
14442Syntax:
14443"""""""
14444This is an overloaded intrinsic. The memory object can belong to any address
14445space. The returned pointer must belong to the same address space as the
14446argument.
14447
14448::
14449
14450 declare i8* @llvm.strip.invariant.group.p0i8(i8* <ptr>)
14451
14452Overview:
14453"""""""""
14454
14455The '``llvm.strip.invariant.group``' intrinsic can be used when an invariant
14456established by ``invariant.group`` metadata no longer holds, to obtain a new pointer
14457value that does not carry the invariant information. It is an experimental
14458intrinsic, which means that its semantics might change in the future.
14459
14460
14461Arguments:
14462""""""""""
14463
14464The ``llvm.strip.invariant.group`` takes only one argument, which is a pointer
14465to the memory.
14466
14467Semantics:
14468""""""""""
14469
14470Returns another pointer that aliases its argument but which has no associated
14471``invariant.group`` metadata.
14472It does not read any memory and can be speculated.
14473
14474
14475
Sanjay Patel54b161e2018-03-20 16:38:22 +000014476.. _constrainedfp:
14477
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014478Constrained Floating-Point Intrinsics
Andrew Kaylora0a11642017-01-26 23:27:59 +000014479-------------------------------------
14480
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014481These intrinsics are used to provide special handling of floating-point
14482operations when specific rounding mode or floating-point exception behavior is
Andrew Kaylora0a11642017-01-26 23:27:59 +000014483required. By default, LLVM optimization passes assume that the rounding mode is
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014484round-to-nearest and that floating-point exceptions will not be monitored.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014485Constrained FP intrinsics are used to support non-default rounding modes and
14486accurately preserve exception behavior without compromising LLVM's ability to
14487optimize FP code when the default behavior is used.
14488
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014489Each of these intrinsics corresponds to a normal floating-point operation. The
Andrew Kaylora0a11642017-01-26 23:27:59 +000014490first two arguments and the return value are the same as the corresponding FP
14491operation.
14492
14493The third argument is a metadata argument specifying the rounding mode to be
14494assumed. This argument must be one of the following strings:
14495
14496::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000014497
Andrew Kaylora0a11642017-01-26 23:27:59 +000014498 "round.dynamic"
14499 "round.tonearest"
14500 "round.downward"
14501 "round.upward"
14502 "round.towardzero"
14503
14504If this argument is "round.dynamic" optimization passes must assume that the
14505rounding mode is unknown and may change at runtime. No transformations that
14506depend on rounding mode may be performed in this case.
14507
14508The other possible values for the rounding mode argument correspond to the
14509similarly named IEEE rounding modes. If the argument is any of these values
14510optimization passes may perform transformations as long as they are consistent
14511with the specified rounding mode.
14512
14513For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
14514"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
14515'x-0' should evaluate to '-0' when rounding downward. However, this
14516transformation is legal for all other rounding modes.
14517
14518For values other than "round.dynamic" optimization passes may assume that the
14519actual runtime rounding mode (as defined in a target-specific manner) matches
14520the specified rounding mode, but this is not guaranteed. Using a specific
14521non-dynamic rounding mode which does not match the actual rounding mode at
14522runtime results in undefined behavior.
14523
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014524The fourth argument to the constrained floating-point intrinsics specifies the
Andrew Kaylora0a11642017-01-26 23:27:59 +000014525required exception behavior. This argument must be one of the following
14526strings:
14527
14528::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000014529
Andrew Kaylora0a11642017-01-26 23:27:59 +000014530 "fpexcept.ignore"
14531 "fpexcept.maytrap"
14532 "fpexcept.strict"
14533
14534If this argument is "fpexcept.ignore" optimization passes may assume that the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014535exception status flags will not be read and that floating-point exceptions will
Andrew Kaylora0a11642017-01-26 23:27:59 +000014536be masked. This allows transformations to be performed that may change the
14537exception semantics of the original code. For example, FP operations may be
14538speculatively executed in this case whereas they must not be for either of the
14539other possible values of this argument.
14540
14541If the exception behavior argument is "fpexcept.maytrap" optimization passes
14542must avoid transformations that may raise exceptions that would not have been
14543raised by the original code (such as speculatively executing FP operations), but
14544passes are not required to preserve all exceptions that are implied by the
14545original code. For example, exceptions may be potentially hidden by constant
14546folding.
14547
14548If the exception behavior argument is "fpexcept.strict" all transformations must
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014549strictly preserve the floating-point exception semantics of the original code.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014550Any FP exception that would have been raised by the original code must be raised
14551by the transformed code, and the transformed code must not raise any FP
14552exceptions that would not have been raised by the original code. This is the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014553exception behavior argument that will be used if the code being compiled reads
Andrew Kaylora0a11642017-01-26 23:27:59 +000014554the FP exception status flags, but this mode can also be used with code that
14555unmasks FP exceptions.
14556
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014557The number and order of floating-point exceptions is NOT guaranteed. For
Andrew Kaylora0a11642017-01-26 23:27:59 +000014558example, a series of FP operations that each may raise exceptions may be
14559vectorized into a single instruction that raises each unique exception a single
14560time.
14561
14562
14563'``llvm.experimental.constrained.fadd``' Intrinsic
14564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14565
14566Syntax:
14567"""""""
14568
14569::
14570
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014571 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014572 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
14573 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014574 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014575
14576Overview:
14577"""""""""
14578
14579The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
14580two operands.
14581
14582
14583Arguments:
14584""""""""""
14585
14586The first two arguments to the '``llvm.experimental.constrained.fadd``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014587intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14588of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014589
14590The third and fourth arguments specify the rounding mode and exception
14591behavior as described above.
14592
14593Semantics:
14594""""""""""
14595
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014596The value produced is the floating-point sum of the two value operands and has
Andrew Kaylora0a11642017-01-26 23:27:59 +000014597the same type as the operands.
14598
14599
14600'``llvm.experimental.constrained.fsub``' Intrinsic
14601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14602
14603Syntax:
14604"""""""
14605
14606::
14607
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014608 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014609 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
14610 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014611 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014612
14613Overview:
14614"""""""""
14615
14616The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
14617of its two operands.
14618
14619
14620Arguments:
14621""""""""""
14622
14623The first two arguments to the '``llvm.experimental.constrained.fsub``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014624intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14625of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014626
14627The third and fourth arguments specify the rounding mode and exception
14628behavior as described above.
14629
14630Semantics:
14631""""""""""
14632
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014633The value produced is the floating-point difference of the two value operands
Andrew Kaylora0a11642017-01-26 23:27:59 +000014634and has the same type as the operands.
14635
14636
14637'``llvm.experimental.constrained.fmul``' Intrinsic
14638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14639
14640Syntax:
14641"""""""
14642
14643::
14644
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014645 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014646 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
14647 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014648 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014649
14650Overview:
14651"""""""""
14652
14653The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
14654its two operands.
14655
14656
14657Arguments:
14658""""""""""
14659
14660The first two arguments to the '``llvm.experimental.constrained.fmul``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014661intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14662of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014663
14664The third and fourth arguments specify the rounding mode and exception
14665behavior as described above.
14666
14667Semantics:
14668""""""""""
14669
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014670The value produced is the floating-point product of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000014671has the same type as the operands.
14672
14673
14674'``llvm.experimental.constrained.fdiv``' Intrinsic
14675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14676
14677Syntax:
14678"""""""
14679
14680::
14681
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014682 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014683 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
14684 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014685 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014686
14687Overview:
14688"""""""""
14689
14690The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
14691its two operands.
14692
14693
14694Arguments:
14695""""""""""
14696
14697The first two arguments to the '``llvm.experimental.constrained.fdiv``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014698intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14699of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014700
14701The third and fourth arguments specify the rounding mode and exception
14702behavior as described above.
14703
14704Semantics:
14705""""""""""
14706
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014707The value produced is the floating-point quotient of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000014708has the same type as the operands.
14709
14710
14711'``llvm.experimental.constrained.frem``' Intrinsic
14712^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14713
14714Syntax:
14715"""""""
14716
14717::
14718
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014719 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000014720 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
14721 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000014722 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000014723
14724Overview:
14725"""""""""
14726
14727The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
14728from the division of its two operands.
14729
14730
14731Arguments:
14732""""""""""
14733
14734The first two arguments to the '``llvm.experimental.constrained.frem``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014735intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14736of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014737
14738The third and fourth arguments specify the rounding mode and exception
14739behavior as described above. The rounding mode argument has no effect, since
14740the result of frem is never rounded, but the argument is included for
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014741consistency with the other constrained floating-point intrinsics.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014742
14743Semantics:
14744""""""""""
14745
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014746The value produced is the floating-point remainder from the division of the two
Andrew Kaylora0a11642017-01-26 23:27:59 +000014747value operands and has the same type as the operands. The remainder has the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014748same sign as the dividend.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014749
Wei Dinga131d3f2017-08-24 04:18:24 +000014750'``llvm.experimental.constrained.fma``' Intrinsic
Cameron McInally10056792018-11-02 15:51:43 +000014751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Wei Dinga131d3f2017-08-24 04:18:24 +000014752
14753Syntax:
14754"""""""
14755
14756::
14757
14758 declare <type>
14759 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
14760 metadata <rounding mode>,
14761 metadata <exception behavior>)
14762
14763Overview:
14764"""""""""
14765
14766The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
14767fused-multiply-add operation on its operands.
14768
14769Arguments:
14770""""""""""
14771
14772The first three arguments to the '``llvm.experimental.constrained.fma``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014773intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector
14774<t_vector>` of floating-point values. All arguments must have identical types.
Wei Dinga131d3f2017-08-24 04:18:24 +000014775
14776The fourth and fifth arguments specify the rounding mode and exception behavior
14777as described above.
14778
14779Semantics:
14780""""""""""
14781
14782The result produced is the product of the first two operands added to the third
14783operand computed with infinite precision, and then rounded to the target
14784precision.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014785
Andrew Kaylorf4660012017-05-25 21:31:00 +000014786Constrained libm-equivalent Intrinsics
14787--------------------------------------
14788
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014789In addition to the basic floating-point operations for which constrained
Andrew Kaylorf4660012017-05-25 21:31:00 +000014790intrinsics are described above, there are constrained versions of various
14791operations which provide equivalent behavior to a corresponding libm function.
14792These intrinsics allow the precise behavior of these operations with respect to
14793rounding mode and exception behavior to be controlled.
14794
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014795As with the basic constrained floating-point intrinsics, the rounding mode
Andrew Kaylorf4660012017-05-25 21:31:00 +000014796and exception behavior arguments only control the behavior of the optimizer.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014797They do not change the runtime floating-point environment.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014798
14799
14800'``llvm.experimental.constrained.sqrt``' Intrinsic
14801^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14802
14803Syntax:
14804"""""""
14805
14806::
14807
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014808 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014809 @llvm.experimental.constrained.sqrt(<type> <op1>,
14810 metadata <rounding mode>,
14811 metadata <exception behavior>)
14812
14813Overview:
14814"""""""""
14815
14816The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
14817of the specified value, returning the same value as the libm '``sqrt``'
14818functions would, but without setting ``errno``.
14819
14820Arguments:
14821""""""""""
14822
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014823The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014824type.
14825
14826The second and third arguments specify the rounding mode and exception
14827behavior as described above.
14828
14829Semantics:
14830""""""""""
14831
14832This function returns the nonnegative square root of the specified value.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014833If the value is less than negative zero, a floating-point exception occurs
Hiroshi Inoue760c0c92018-01-16 13:19:48 +000014834and the return value is architecture specific.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014835
14836
14837'``llvm.experimental.constrained.pow``' Intrinsic
14838^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14839
14840Syntax:
14841"""""""
14842
14843::
14844
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014845 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014846 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
14847 metadata <rounding mode>,
14848 metadata <exception behavior>)
14849
14850Overview:
14851"""""""""
14852
14853The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
14854raised to the (positive or negative) power specified by the second operand.
14855
14856Arguments:
14857""""""""""
14858
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014859The first two arguments and the return value are floating-point numbers of the
Andrew Kaylorf4660012017-05-25 21:31:00 +000014860same type. The second argument specifies the power to which the first argument
14861should be raised.
14862
14863The third and fourth arguments specify the rounding mode and exception
14864behavior as described above.
14865
14866Semantics:
14867""""""""""
14868
14869This function returns the first value raised to the second power,
14870returning the same values as the libm ``pow`` functions would, and
14871handles error conditions in the same way.
14872
14873
14874'``llvm.experimental.constrained.powi``' Intrinsic
14875^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14876
14877Syntax:
14878"""""""
14879
14880::
14881
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014882 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014883 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
14884 metadata <rounding mode>,
14885 metadata <exception behavior>)
14886
14887Overview:
14888"""""""""
14889
14890The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
14891raised to the (positive or negative) power specified by the second operand. The
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000014892order of evaluation of multiplications is not defined. When a vector of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014893floating-point type is used, the second argument remains a scalar integer value.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014894
14895
14896Arguments:
14897""""""""""
14898
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014899The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014900type. The second argument is a 32-bit signed integer specifying the power to
14901which the first argument should be raised.
14902
14903The third and fourth arguments specify the rounding mode and exception
14904behavior as described above.
14905
14906Semantics:
14907""""""""""
14908
14909This function returns the first value raised to the second power with an
14910unspecified sequence of rounding operations.
14911
14912
14913'``llvm.experimental.constrained.sin``' Intrinsic
14914^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14915
14916Syntax:
14917"""""""
14918
14919::
14920
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014921 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014922 @llvm.experimental.constrained.sin(<type> <op1>,
14923 metadata <rounding mode>,
14924 metadata <exception behavior>)
14925
14926Overview:
14927"""""""""
14928
14929The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
14930first operand.
14931
14932Arguments:
14933""""""""""
14934
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014935The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014936type.
14937
14938The second and third arguments specify the rounding mode and exception
14939behavior as described above.
14940
14941Semantics:
14942""""""""""
14943
14944This function returns the sine of the specified operand, returning the
14945same values as the libm ``sin`` functions would, and handles error
14946conditions in the same way.
14947
14948
14949'``llvm.experimental.constrained.cos``' Intrinsic
14950^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14951
14952Syntax:
14953"""""""
14954
14955::
14956
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014957 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014958 @llvm.experimental.constrained.cos(<type> <op1>,
14959 metadata <rounding mode>,
14960 metadata <exception behavior>)
14961
14962Overview:
14963"""""""""
14964
14965The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
14966first operand.
14967
14968Arguments:
14969""""""""""
14970
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014971The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014972type.
14973
14974The second and third arguments specify the rounding mode and exception
14975behavior as described above.
14976
14977Semantics:
14978""""""""""
14979
14980This function returns the cosine of the specified operand, returning the
14981same values as the libm ``cos`` functions would, and handles error
14982conditions in the same way.
14983
14984
14985'``llvm.experimental.constrained.exp``' Intrinsic
14986^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14987
14988Syntax:
14989"""""""
14990
14991::
14992
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014993 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014994 @llvm.experimental.constrained.exp(<type> <op1>,
14995 metadata <rounding mode>,
14996 metadata <exception behavior>)
14997
14998Overview:
14999"""""""""
15000
15001The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
15002exponential of the specified value.
15003
15004Arguments:
15005""""""""""
15006
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015007The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015008type.
15009
15010The second and third arguments specify the rounding mode and exception
15011behavior as described above.
15012
15013Semantics:
15014""""""""""
15015
15016This function returns the same values as the libm ``exp`` functions
15017would, and handles error conditions in the same way.
15018
15019
15020'``llvm.experimental.constrained.exp2``' Intrinsic
15021^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15022
15023Syntax:
15024"""""""
15025
15026::
15027
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015028 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015029 @llvm.experimental.constrained.exp2(<type> <op1>,
15030 metadata <rounding mode>,
15031 metadata <exception behavior>)
15032
15033Overview:
15034"""""""""
15035
15036The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
15037exponential of the specified value.
15038
15039
15040Arguments:
15041""""""""""
15042
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015043The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015044type.
15045
15046The second and third arguments specify the rounding mode and exception
15047behavior as described above.
15048
15049Semantics:
15050""""""""""
15051
15052This function returns the same values as the libm ``exp2`` functions
15053would, and handles error conditions in the same way.
15054
15055
15056'``llvm.experimental.constrained.log``' Intrinsic
15057^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15058
15059Syntax:
15060"""""""
15061
15062::
15063
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015064 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015065 @llvm.experimental.constrained.log(<type> <op1>,
15066 metadata <rounding mode>,
15067 metadata <exception behavior>)
15068
15069Overview:
15070"""""""""
15071
15072The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
15073logarithm of the specified value.
15074
15075Arguments:
15076""""""""""
15077
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015078The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015079type.
15080
15081The second and third arguments specify the rounding mode and exception
15082behavior as described above.
15083
15084
15085Semantics:
15086""""""""""
15087
15088This function returns the same values as the libm ``log`` functions
15089would, and handles error conditions in the same way.
15090
15091
15092'``llvm.experimental.constrained.log10``' Intrinsic
15093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15094
15095Syntax:
15096"""""""
15097
15098::
15099
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015100 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015101 @llvm.experimental.constrained.log10(<type> <op1>,
15102 metadata <rounding mode>,
15103 metadata <exception behavior>)
15104
15105Overview:
15106"""""""""
15107
15108The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
15109logarithm of the specified value.
15110
15111Arguments:
15112""""""""""
15113
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015114The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015115type.
15116
15117The second and third arguments specify the rounding mode and exception
15118behavior as described above.
15119
15120Semantics:
15121""""""""""
15122
15123This function returns the same values as the libm ``log10`` functions
15124would, and handles error conditions in the same way.
15125
15126
15127'``llvm.experimental.constrained.log2``' Intrinsic
15128^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15129
15130Syntax:
15131"""""""
15132
15133::
15134
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015135 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015136 @llvm.experimental.constrained.log2(<type> <op1>,
15137 metadata <rounding mode>,
15138 metadata <exception behavior>)
15139
15140Overview:
15141"""""""""
15142
15143The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
15144logarithm of the specified value.
15145
15146Arguments:
15147""""""""""
15148
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015149The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015150type.
15151
15152The second and third arguments specify the rounding mode and exception
15153behavior as described above.
15154
15155Semantics:
15156""""""""""
15157
15158This function returns the same values as the libm ``log2`` functions
15159would, and handles error conditions in the same way.
15160
15161
15162'``llvm.experimental.constrained.rint``' Intrinsic
15163^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15164
15165Syntax:
15166"""""""
15167
15168::
15169
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015170 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015171 @llvm.experimental.constrained.rint(<type> <op1>,
15172 metadata <rounding mode>,
15173 metadata <exception behavior>)
15174
15175Overview:
15176"""""""""
15177
15178The '``llvm.experimental.constrained.rint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015179operand rounded to the nearest integer. It may raise an inexact floating-point
Andrew Kaylorf4660012017-05-25 21:31:00 +000015180exception if the operand is not an integer.
15181
15182Arguments:
15183""""""""""
15184
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015185The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015186type.
15187
15188The second and third arguments specify the rounding mode and exception
15189behavior as described above.
15190
15191Semantics:
15192""""""""""
15193
15194This function returns the same values as the libm ``rint`` functions
15195would, and handles error conditions in the same way. The rounding mode is
15196described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015197mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000015198mode argument is only intended as information to the compiler.
15199
15200
15201'``llvm.experimental.constrained.nearbyint``' Intrinsic
15202^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15203
15204Syntax:
15205"""""""
15206
15207::
15208
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015209 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000015210 @llvm.experimental.constrained.nearbyint(<type> <op1>,
15211 metadata <rounding mode>,
15212 metadata <exception behavior>)
15213
15214Overview:
15215"""""""""
15216
15217The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
Mandeep Singh Grang547a0d72018-11-01 23:22:25 +000015218operand rounded to the nearest integer. It will not raise an inexact
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015219floating-point exception if the operand is not an integer.
Andrew Kaylorf4660012017-05-25 21:31:00 +000015220
15221
15222Arguments:
15223""""""""""
15224
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015225The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000015226type.
15227
15228The second and third arguments specify the rounding mode and exception
15229behavior as described above.
15230
15231Semantics:
15232""""""""""
15233
15234This function returns the same values as the libm ``nearbyint`` functions
15235would, and handles error conditions in the same way. The rounding mode is
15236described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000015237mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000015238mode argument is only intended as information to the compiler.
15239
15240
Cameron McInally2ad870e2018-10-30 21:01:29 +000015241'``llvm.experimental.constrained.maxnum``' Intrinsic
Cameron McInally10056792018-11-02 15:51:43 +000015242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Cameron McInally2ad870e2018-10-30 21:01:29 +000015243
15244Syntax:
15245"""""""
15246
15247::
15248
15249 declare <type>
15250 @llvm.experimental.constrained.maxnum(<type> <op1>, <type> <op2>
15251 metadata <rounding mode>,
15252 metadata <exception behavior>)
15253
15254Overview:
15255"""""""""
15256
Michael Kruse978ba612018-12-20 04:58:07 +000015257The '``llvm.experimental.constrained.maxnum``' intrinsic returns the maximum
Cameron McInally2ad870e2018-10-30 21:01:29 +000015258of the two arguments.
15259
15260Arguments:
15261""""""""""
15262
Michael Kruse978ba612018-12-20 04:58:07 +000015263The first two arguments and the return value are floating-point numbers
Cameron McInally2ad870e2018-10-30 21:01:29 +000015264of the same type.
15265
15266The third and forth arguments specify the rounding mode and exception
15267behavior as described above.
15268
15269Semantics:
15270""""""""""
15271
15272This function follows the IEEE-754 semantics for maxNum. The rounding mode is
15273described, not determined, by the rounding mode argument. The actual rounding
15274mode is determined by the runtime floating-point environment. The rounding
15275mode argument is only intended as information to the compiler.
15276
15277
15278'``llvm.experimental.constrained.minnum``' Intrinsic
Cameron McInally10056792018-11-02 15:51:43 +000015279^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Cameron McInally2ad870e2018-10-30 21:01:29 +000015280
15281Syntax:
15282"""""""
15283
15284::
15285
15286 declare <type>
15287 @llvm.experimental.constrained.minnum(<type> <op1>, <type> <op2>
15288 metadata <rounding mode>,
15289 metadata <exception behavior>)
15290
15291Overview:
15292"""""""""
15293
15294The '``llvm.experimental.constrained.minnum``' intrinsic returns the minimum
15295of the two arguments.
15296
15297Arguments:
15298""""""""""
15299
15300The first two arguments and the return value are floating-point numbers
15301of the same type.
15302
15303The third and forth arguments specify the rounding mode and exception
15304behavior as described above.
15305
15306Semantics:
15307""""""""""
15308
15309This function follows the IEEE-754 semantics for minNum. The rounding mode is
15310described, not determined, by the rounding mode argument. The actual rounding
15311mode is determined by the runtime floating-point environment. The rounding
15312mode argument is only intended as information to the compiler.
15313
15314
Cameron McInally9757d5d2018-11-05 15:59:49 +000015315'``llvm.experimental.constrained.ceil``' Intrinsic
15316^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15317
15318Syntax:
15319"""""""
15320
15321::
15322
15323 declare <type>
15324 @llvm.experimental.constrained.ceil(<type> <op1>,
15325 metadata <rounding mode>,
15326 metadata <exception behavior>)
15327
15328Overview:
15329"""""""""
15330
Michael Kruse978ba612018-12-20 04:58:07 +000015331The '``llvm.experimental.constrained.ceil``' intrinsic returns the ceiling of the
Cameron McInally9757d5d2018-11-05 15:59:49 +000015332first operand.
15333
15334Arguments:
15335""""""""""
15336
15337The first argument and the return value are floating-point numbers of the same
15338type.
15339
15340The second and third arguments specify the rounding mode and exception
15341behavior as described above. The rounding mode is currently unused for this
15342intrinsic.
15343
15344Semantics:
15345""""""""""
15346
15347This function returns the same values as the libm ``ceil`` functions
15348would and handles error conditions in the same way.
15349
15350
15351'``llvm.experimental.constrained.floor``' Intrinsic
15352^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15353
15354Syntax:
15355"""""""
15356
15357::
15358
15359 declare <type>
15360 @llvm.experimental.constrained.floor(<type> <op1>,
15361 metadata <rounding mode>,
15362 metadata <exception behavior>)
15363
15364Overview:
15365"""""""""
15366
Michael Kruse978ba612018-12-20 04:58:07 +000015367The '``llvm.experimental.constrained.floor``' intrinsic returns the floor of the
Cameron McInally9757d5d2018-11-05 15:59:49 +000015368first operand.
15369
15370Arguments:
15371""""""""""
15372
15373The first argument and the return value are floating-point numbers of the same
15374type.
15375
15376The second and third arguments specify the rounding mode and exception
15377behavior as described above. The rounding mode is currently unused for this
15378intrinsic.
15379
15380Semantics:
15381""""""""""
15382
15383This function returns the same values as the libm ``floor`` functions
Michael Kruse978ba612018-12-20 04:58:07 +000015384would and handles error conditions in the same way.
Cameron McInally9757d5d2018-11-05 15:59:49 +000015385
15386
15387'``llvm.experimental.constrained.round``' Intrinsic
15388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15389
15390Syntax:
15391"""""""
15392
15393::
15394
15395 declare <type>
15396 @llvm.experimental.constrained.round(<type> <op1>,
15397 metadata <rounding mode>,
15398 metadata <exception behavior>)
15399
15400Overview:
15401"""""""""
15402
Michael Kruse978ba612018-12-20 04:58:07 +000015403The '``llvm.experimental.constrained.round``' intrinsic returns the first
Cameron McInally9757d5d2018-11-05 15:59:49 +000015404operand rounded to the nearest integer.
15405
15406Arguments:
15407""""""""""
15408
15409The first argument and the return value are floating-point numbers of the same
15410type.
15411
15412The second and third arguments specify the rounding mode and exception
15413behavior as described above. The rounding mode is currently unused for this
15414intrinsic.
15415
15416Semantics:
15417""""""""""
15418
15419This function returns the same values as the libm ``round`` functions
15420would and handles error conditions in the same way.
15421
15422
15423'``llvm.experimental.constrained.trunc``' Intrinsic
15424^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15425
15426Syntax:
15427"""""""
15428
15429::
15430
15431 declare <type>
15432 @llvm.experimental.constrained.trunc(<type> <op1>,
15433 metadata <truncing mode>,
15434 metadata <exception behavior>)
15435
15436Overview:
15437"""""""""
15438
Michael Kruse978ba612018-12-20 04:58:07 +000015439The '``llvm.experimental.constrained.trunc``' intrinsic returns the first
15440operand rounded to the nearest integer not larger in magnitude than the
Cameron McInally9757d5d2018-11-05 15:59:49 +000015441operand.
15442
15443Arguments:
15444""""""""""
15445
15446The first argument and the return value are floating-point numbers of the same
15447type.
15448
15449The second and third arguments specify the truncing mode and exception
15450behavior as described above. The truncing mode is currently unused for this
15451intrinsic.
15452
15453Semantics:
15454""""""""""
15455
15456This function returns the same values as the libm ``trunc`` functions
15457would and handles error conditions in the same way.
15458
15459
Sean Silvab084af42012-12-07 10:36:55 +000015460General Intrinsics
15461------------------
15462
15463This class of intrinsics is designed to be generic and has no specific
15464purpose.
15465
15466'``llvm.var.annotation``' Intrinsic
15467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15468
15469Syntax:
15470"""""""
15471
15472::
15473
15474 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
15475
15476Overview:
15477"""""""""
15478
15479The '``llvm.var.annotation``' intrinsic.
15480
15481Arguments:
15482""""""""""
15483
15484The first argument is a pointer to a value, the second is a pointer to a
15485global string, the third is a pointer to a global string which is the
15486source file name, and the last argument is the line number.
15487
15488Semantics:
15489""""""""""
15490
15491This intrinsic allows annotation of local variables with arbitrary
15492strings. This can be useful for special purpose optimizations that want
15493to look for these annotations. These have no other defined use; they are
15494ignored by code generation and optimization.
15495
Michael Gottesman88d18832013-03-26 00:34:27 +000015496'``llvm.ptr.annotation.*``' Intrinsic
15497^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15498
15499Syntax:
15500"""""""
15501
15502This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
15503pointer to an integer of any width. *NOTE* you must specify an address space for
15504the pointer. The identifier for the default address space is the integer
15505'``0``'.
15506
15507::
15508
15509 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
15510 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
15511 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
15512 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
15513 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
15514
15515Overview:
15516"""""""""
15517
15518The '``llvm.ptr.annotation``' intrinsic.
15519
15520Arguments:
15521""""""""""
15522
15523The first argument is a pointer to an integer value of arbitrary bitwidth
15524(result of some expression), the second is a pointer to a global string, the
15525third is a pointer to a global string which is the source file name, and the
15526last argument is the line number. It returns the value of the first argument.
15527
15528Semantics:
15529""""""""""
15530
15531This intrinsic allows annotation of a pointer to an integer with arbitrary
15532strings. This can be useful for special purpose optimizations that want to look
15533for these annotations. These have no other defined use; they are ignored by code
15534generation and optimization.
15535
Sean Silvab084af42012-12-07 10:36:55 +000015536'``llvm.annotation.*``' Intrinsic
15537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15538
15539Syntax:
15540"""""""
15541
15542This is an overloaded intrinsic. You can use '``llvm.annotation``' on
15543any integer bit width.
15544
15545::
15546
15547 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
15548 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
15549 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
15550 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
15551 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
15552
15553Overview:
15554"""""""""
15555
15556The '``llvm.annotation``' intrinsic.
15557
15558Arguments:
15559""""""""""
15560
15561The first argument is an integer value (result of some expression), the
15562second is a pointer to a global string, the third is a pointer to a
15563global string which is the source file name, and the last argument is
15564the line number. It returns the value of the first argument.
15565
15566Semantics:
15567""""""""""
15568
15569This intrinsic allows annotations to be put on arbitrary expressions
15570with arbitrary strings. This can be useful for special purpose
15571optimizations that want to look for these annotations. These have no
15572other defined use; they are ignored by code generation and optimization.
15573
Reid Klecknere33c94f2017-09-05 20:14:58 +000015574'``llvm.codeview.annotation``' Intrinsic
Reid Klecknerd4523682017-09-05 20:26:25 +000015575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknere33c94f2017-09-05 20:14:58 +000015576
15577Syntax:
15578"""""""
15579
15580This annotation emits a label at its program point and an associated
15581``S_ANNOTATION`` codeview record with some additional string metadata. This is
15582used to implement MSVC's ``__annotation`` intrinsic. It is marked
15583``noduplicate``, so calls to this intrinsic prevent inlining and should be
15584considered expensive.
15585
15586::
15587
15588 declare void @llvm.codeview.annotation(metadata)
15589
15590Arguments:
15591""""""""""
15592
15593The argument should be an MDTuple containing any number of MDStrings.
15594
Sean Silvab084af42012-12-07 10:36:55 +000015595'``llvm.trap``' Intrinsic
15596^^^^^^^^^^^^^^^^^^^^^^^^^
15597
15598Syntax:
15599"""""""
15600
15601::
15602
Vedant Kumar808e1572018-11-14 19:53:41 +000015603 declare void @llvm.trap() cold noreturn nounwind
Sean Silvab084af42012-12-07 10:36:55 +000015604
15605Overview:
15606"""""""""
15607
15608The '``llvm.trap``' intrinsic.
15609
15610Arguments:
15611""""""""""
15612
15613None.
15614
15615Semantics:
15616""""""""""
15617
15618This intrinsic is lowered to the target dependent trap instruction. If
15619the target does not have a trap instruction, this intrinsic will be
15620lowered to a call of the ``abort()`` function.
15621
15622'``llvm.debugtrap``' Intrinsic
15623^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15624
15625Syntax:
15626"""""""
15627
15628::
15629
15630 declare void @llvm.debugtrap() nounwind
15631
15632Overview:
15633"""""""""
15634
15635The '``llvm.debugtrap``' intrinsic.
15636
15637Arguments:
15638""""""""""
15639
15640None.
15641
15642Semantics:
15643""""""""""
15644
15645This intrinsic is lowered to code which is intended to cause an
15646execution trap with the intention of requesting the attention of a
15647debugger.
15648
15649'``llvm.stackprotector``' Intrinsic
15650^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15651
15652Syntax:
15653"""""""
15654
15655::
15656
15657 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
15658
15659Overview:
15660"""""""""
15661
15662The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
15663onto the stack at ``slot``. The stack slot is adjusted to ensure that it
15664is placed on the stack before local variables.
15665
15666Arguments:
15667""""""""""
15668
15669The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
15670The first argument is the value loaded from the stack guard
15671``@__stack_chk_guard``. The second variable is an ``alloca`` that has
15672enough space to hold the value of the guard.
15673
15674Semantics:
15675""""""""""
15676
Michael Gottesmandafc7d92013-08-12 18:35:32 +000015677This intrinsic causes the prologue/epilogue inserter to force the position of
15678the ``AllocaInst`` stack slot to be before local variables on the stack. This is
15679to ensure that if a local variable on the stack is overwritten, it will destroy
15680the value of the guard. When the function exits, the guard on the stack is
15681checked against the original guard by ``llvm.stackprotectorcheck``. If they are
15682different, then ``llvm.stackprotectorcheck`` causes the program to abort by
15683calling the ``__stack_chk_fail()`` function.
15684
Tim Shene885d5e2016-04-19 19:40:37 +000015685'``llvm.stackguard``' Intrinsic
15686^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15687
15688Syntax:
15689"""""""
15690
15691::
15692
15693 declare i8* @llvm.stackguard()
15694
15695Overview:
15696"""""""""
15697
15698The ``llvm.stackguard`` intrinsic returns the system stack guard value.
15699
15700It should not be generated by frontends, since it is only for internal usage.
15701The reason why we create this intrinsic is that we still support IR form Stack
15702Protector in FastISel.
15703
15704Arguments:
15705""""""""""
15706
15707None.
15708
15709Semantics:
15710""""""""""
15711
15712On some platforms, the value returned by this intrinsic remains unchanged
15713between loads in the same thread. On other platforms, it returns the same
15714global variable value, if any, e.g. ``@__stack_chk_guard``.
15715
15716Currently some platforms have IR-level customized stack guard loading (e.g.
15717X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
15718in the future.
15719
Sean Silvab084af42012-12-07 10:36:55 +000015720'``llvm.objectsize``' Intrinsic
15721^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15722
15723Syntax:
15724"""""""
15725
15726::
15727
Erik Pilkington600e9de2019-01-30 20:34:35 +000015728 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>, i1 <dynamic>)
15729 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>, i1 <dynamic>)
Sean Silvab084af42012-12-07 10:36:55 +000015730
15731Overview:
15732"""""""""
15733
Erik Pilkington600e9de2019-01-30 20:34:35 +000015734The ``llvm.objectsize`` intrinsic is designed to provide information to the
15735optimizer to determine whether a) an operation (like memcpy) will overflow a
15736buffer that corresponds to an object, or b) that a runtime check for overflow
15737isn't necessary. An object in this context means an allocation of a specific
15738class, structure, array, or other object.
Sean Silvab084af42012-12-07 10:36:55 +000015739
15740Arguments:
15741""""""""""
15742
Erik Pilkington600e9de2019-01-30 20:34:35 +000015743The ``llvm.objectsize`` intrinsic takes four arguments. The first argument is a
15744pointer to or into the ``object``. The second argument determines whether
15745``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size is
15746unknown. The third argument controls how ``llvm.objectsize`` acts when ``null``
15747in address space 0 is used as its pointer argument. If it's ``false``,
George Burgess IV3fbfa9c42018-07-09 22:21:16 +000015748``llvm.objectsize`` reports 0 bytes available when given ``null``. Otherwise, if
15749the ``null`` is in a non-zero address space or if ``true`` is given for the
Erik Pilkington600e9de2019-01-30 20:34:35 +000015750third argument of ``llvm.objectsize``, we assume its size is unknown. The fourth
15751argument to ``llvm.objectsize`` determines if the value should be evaluated at
15752runtime.
George Burgess IV56c7e882017-03-21 20:08:59 +000015753
Erik Pilkington600e9de2019-01-30 20:34:35 +000015754The second, third, and fourth arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000015755
15756Semantics:
15757""""""""""
15758
Erik Pilkington600e9de2019-01-30 20:34:35 +000015759The ``llvm.objectsize`` intrinsic is lowered to a value representing the size of
15760the object concerned. If the size cannot be determined, ``llvm.objectsize``
15761returns ``i32/i64 -1 or 0`` (depending on the ``min`` argument).
Sean Silvab084af42012-12-07 10:36:55 +000015762
15763'``llvm.expect``' Intrinsic
15764^^^^^^^^^^^^^^^^^^^^^^^^^^^
15765
15766Syntax:
15767"""""""
15768
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000015769This is an overloaded intrinsic. You can use ``llvm.expect`` on any
15770integer bit width.
15771
Sean Silvab084af42012-12-07 10:36:55 +000015772::
15773
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000015774 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000015775 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
15776 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
15777
15778Overview:
15779"""""""""
15780
15781The ``llvm.expect`` intrinsic provides information about expected (the
15782most probable) value of ``val``, which can be used by optimizers.
15783
15784Arguments:
15785""""""""""
15786
15787The ``llvm.expect`` intrinsic takes two arguments. The first argument is
15788a value. The second argument is an expected value, this needs to be a
15789constant value, variables are not allowed.
15790
15791Semantics:
15792""""""""""
15793
15794This intrinsic is lowered to the ``val``.
15795
Philip Reamese0e90832015-04-26 22:23:12 +000015796.. _int_assume:
15797
Hal Finkel93046912014-07-25 21:13:35 +000015798'``llvm.assume``' Intrinsic
15799^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15800
15801Syntax:
15802"""""""
15803
15804::
15805
15806 declare void @llvm.assume(i1 %cond)
15807
15808Overview:
15809"""""""""
15810
15811The ``llvm.assume`` allows the optimizer to assume that the provided
15812condition is true. This information can then be used in simplifying other parts
15813of the code.
15814
15815Arguments:
15816""""""""""
15817
15818The condition which the optimizer may assume is always true.
15819
15820Semantics:
15821""""""""""
15822
15823The intrinsic allows the optimizer to assume that the provided condition is
15824always true whenever the control flow reaches the intrinsic call. No code is
15825generated for this intrinsic, and instructions that contribute only to the
15826provided condition are not used for code generation. If the condition is
15827violated during execution, the behavior is undefined.
15828
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000015829Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000015830used by the ``llvm.assume`` intrinsic in order to preserve the instructions
15831only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000015832if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000015833sufficient overall improvement in code quality. For this reason,
15834``llvm.assume`` should not be used to document basic mathematical invariants
15835that the optimizer can otherwise deduce or facts that are of little use to the
15836optimizer.
15837
Daniel Berlin2c438a32017-02-07 19:29:25 +000015838.. _int_ssa_copy:
15839
15840'``llvm.ssa_copy``' Intrinsic
15841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15842
15843Syntax:
15844"""""""
15845
15846::
15847
15848 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
15849
15850Arguments:
15851""""""""""
15852
15853The first argument is an operand which is used as the returned value.
15854
15855Overview:
15856""""""""""
15857
15858The ``llvm.ssa_copy`` intrinsic can be used to attach information to
15859operations by copying them and giving them new names. For example,
15860the PredicateInfo utility uses it to build Extended SSA form, and
15861attach various forms of information to operands that dominate specific
15862uses. It is not meant for general use, only for building temporary
15863renaming forms that require value splits at certain points.
15864
Peter Collingbourne7efd7502016-06-24 21:21:32 +000015865.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000015866
Peter Collingbourne7efd7502016-06-24 21:21:32 +000015867'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000015868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15869
15870Syntax:
15871"""""""
15872
15873::
15874
Peter Collingbourne7efd7502016-06-24 21:21:32 +000015875 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000015876
15877
15878Arguments:
15879""""""""""
15880
15881The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000015882metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000015883
15884Overview:
15885"""""""""
15886
Peter Collingbourne7efd7502016-06-24 21:21:32 +000015887The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
15888with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000015889
Peter Collingbourne0312f612016-06-25 00:23:04 +000015890'``llvm.type.checked.load``' Intrinsic
15891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15892
15893Syntax:
15894"""""""
15895
15896::
15897
15898 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
15899
15900
15901Arguments:
15902""""""""""
15903
15904The first argument is a pointer from which to load a function pointer. The
15905second argument is the byte offset from which to load the function pointer. The
15906third argument is a metadata object representing a :doc:`type identifier
15907<TypeMetadata>`.
15908
15909Overview:
15910"""""""""
15911
15912The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
15913virtual table pointer using type metadata. This intrinsic is used to implement
15914control flow integrity in conjunction with virtual call optimization. The
15915virtual call optimization pass will optimize away ``llvm.type.checked.load``
15916intrinsics associated with devirtualized calls, thereby removing the type
15917check in cases where it is not needed to enforce the control flow integrity
15918constraint.
15919
15920If the given pointer is associated with a type metadata identifier, this
15921function returns true as the second element of its return value. (Note that
15922the function may also return true if the given pointer is not associated
15923with a type metadata identifier.) If the function's return value's second
15924element is true, the following rules apply to the first element:
15925
15926- If the given pointer is associated with the given type metadata identifier,
15927 it is the function pointer loaded from the given byte offset from the given
15928 pointer.
15929
15930- If the given pointer is not associated with the given type metadata
15931 identifier, it is one of the following (the choice of which is unspecified):
15932
15933 1. The function pointer that would have been loaded from an arbitrarily chosen
15934 (through an unspecified mechanism) pointer associated with the type
15935 metadata.
15936
15937 2. If the function has a non-void return type, a pointer to a function that
15938 returns an unspecified value without causing side effects.
15939
15940If the function's return value's second element is false, the value of the
15941first element is undefined.
15942
15943
Sean Silvab084af42012-12-07 10:36:55 +000015944'``llvm.donothing``' Intrinsic
15945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15946
15947Syntax:
15948"""""""
15949
15950::
15951
15952 declare void @llvm.donothing() nounwind readnone
15953
15954Overview:
15955"""""""""
15956
Juergen Ributzkac9161192014-10-23 22:36:13 +000015957The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000015958three intrinsics (besides ``llvm.experimental.patchpoint`` and
15959``llvm.experimental.gc.statepoint``) that can be called with an invoke
15960instruction.
Sean Silvab084af42012-12-07 10:36:55 +000015961
15962Arguments:
15963""""""""""
15964
15965None.
15966
15967Semantics:
15968""""""""""
15969
15970This intrinsic does nothing, and it's removed by optimizers and ignored
15971by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000015972
Sanjoy Dasb51325d2016-03-11 19:08:34 +000015973'``llvm.experimental.deoptimize``' Intrinsic
15974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15975
15976Syntax:
15977"""""""
15978
15979::
15980
15981 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
15982
15983Overview:
15984"""""""""
15985
15986This intrinsic, together with :ref:`deoptimization operand bundles
15987<deopt_opbundles>`, allow frontends to express transfer of control and
15988frame-local state from the currently executing (typically more specialized,
15989hence faster) version of a function into another (typically more generic, hence
15990slower) version.
15991
15992In languages with a fully integrated managed runtime like Java and JavaScript
15993this intrinsic can be used to implement "uncommon trap" or "side exit" like
15994functionality. In unmanaged languages like C and C++, this intrinsic can be
15995used to represent the slow paths of specialized functions.
15996
15997
15998Arguments:
15999""""""""""
16000
16001The intrinsic takes an arbitrary number of arguments, whose meaning is
16002decided by the :ref:`lowering strategy<deoptimize_lowering>`.
16003
16004Semantics:
16005""""""""""
16006
16007The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
16008deoptimization continuation (denoted using a :ref:`deoptimization
16009operand bundle <deopt_opbundles>`) and returns the value returned by
16010the deoptimization continuation. Defining the semantic properties of
16011the continuation itself is out of scope of the language reference --
16012as far as LLVM is concerned, the deoptimization continuation can
16013invoke arbitrary side effects, including reading from and writing to
16014the entire heap.
16015
16016Deoptimization continuations expressed using ``"deopt"`` operand bundles always
16017continue execution to the end of the physical frame containing them, so all
16018calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
16019
16020 - ``@llvm.experimental.deoptimize`` cannot be invoked.
16021 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
16022 - The ``ret`` instruction must return the value produced by the
16023 ``@llvm.experimental.deoptimize`` call if there is one, or void.
16024
16025Note that the above restrictions imply that the return type for a call to
16026``@llvm.experimental.deoptimize`` will match the return type of its immediate
16027caller.
16028
16029The inliner composes the ``"deopt"`` continuations of the caller into the
16030``"deopt"`` continuations present in the inlinee, and also updates calls to this
16031intrinsic to return directly from the frame of the function it inlined into.
16032
Sanjoy Dase0aa4142016-05-12 01:17:38 +000016033All declarations of ``@llvm.experimental.deoptimize`` must share the
16034same calling convention.
16035
Sanjoy Dasb51325d2016-03-11 19:08:34 +000016036.. _deoptimize_lowering:
16037
16038Lowering:
16039"""""""""
16040
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000016041Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
16042symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
16043ensure that this symbol is defined). The call arguments to
16044``@llvm.experimental.deoptimize`` are lowered as if they were formal
16045arguments of the specified types, and not as varargs.
16046
Sanjoy Dasb51325d2016-03-11 19:08:34 +000016047
Sanjoy Das021de052016-03-31 00:18:46 +000016048'``llvm.experimental.guard``' Intrinsic
16049^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16050
16051Syntax:
16052"""""""
16053
16054::
16055
16056 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
16057
16058Overview:
16059"""""""""
16060
16061This intrinsic, together with :ref:`deoptimization operand bundles
16062<deopt_opbundles>`, allows frontends to express guards or checks on
16063optimistic assumptions made during compilation. The semantics of
16064``@llvm.experimental.guard`` is defined in terms of
16065``@llvm.experimental.deoptimize`` -- its body is defined to be
16066equivalent to:
16067
Renato Golin124f2592016-07-20 12:16:38 +000016068.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000016069
Renato Golin124f2592016-07-20 12:16:38 +000016070 define void @llvm.experimental.guard(i1 %pred, <args...>) {
16071 %realPred = and i1 %pred, undef
16072 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000016073
Renato Golin124f2592016-07-20 12:16:38 +000016074 leave:
16075 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
16076 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000016077
Renato Golin124f2592016-07-20 12:16:38 +000016078 continue:
16079 ret void
16080 }
Sanjoy Das021de052016-03-31 00:18:46 +000016081
Sanjoy Das47cf2af2016-04-30 00:55:59 +000016082
16083with the optional ``[, !make.implicit !{}]`` present if and only if it
16084is present on the call site. For more details on ``!make.implicit``,
16085see :doc:`FaultMaps`.
16086
Sanjoy Das021de052016-03-31 00:18:46 +000016087In words, ``@llvm.experimental.guard`` executes the attached
16088``"deopt"`` continuation if (but **not** only if) its first argument
16089is ``false``. Since the optimizer is allowed to replace the ``undef``
16090with an arbitrary value, it can optimize guard to fail "spuriously",
16091i.e. without the original condition being false (hence the "not only
16092if"); and this allows for "check widening" type optimizations.
16093
16094``@llvm.experimental.guard`` cannot be invoked.
16095
16096
Max Kazantsevb9e65cb2018-12-07 14:39:46 +000016097'``llvm.experimental.widenable.condition``' Intrinsic
16098^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16099
16100Syntax:
16101"""""""
16102
16103::
16104
16105 declare i1 @llvm.experimental.widenable.condition()
16106
16107Overview:
16108"""""""""
16109
16110This intrinsic represents a "widenable condition" which is
16111boolean expressions with the following property: whether this
16112expression is `true` or `false`, the program is correct and
16113well-defined.
16114
16115Together with :ref:`deoptimization operand bundles <deopt_opbundles>`,
16116``@llvm.experimental.widenable.condition`` allows frontends to
16117express guards or checks on optimistic assumptions made during
16118compilation and represent them as branch instructions on special
16119conditions.
16120
16121While this may appear similar in semantics to `undef`, it is very
16122different in that an invocation produces a particular, singular
16123value. It is also intended to be lowered late, and remain available
16124for specific optimizations and transforms that can benefit from its
16125special properties.
16126
16127Arguments:
16128""""""""""
16129
16130None.
16131
16132Semantics:
16133""""""""""
16134
16135The intrinsic ``@llvm.experimental.widenable.condition()``
16136returns either `true` or `false`. For each evaluation of a call
16137to this intrinsic, the program must be valid and correct both if
16138it returns `true` and if it returns `false`. This allows
16139transformation passes to replace evaluations of this intrinsic
16140with either value whenever one is beneficial.
16141
16142When used in a branch condition, it allows us to choose between
16143two alternative correct solutions for the same problem, like
16144in example below:
16145
16146.. code-block:: text
16147
16148 %cond = call i1 @llvm.experimental.widenable.condition()
16149 br i1 %cond, label %solution_1, label %solution_2
16150
16151 label %fast_path:
16152 ; Apply memory-consuming but fast solution for a task.
16153
16154 label %slow_path:
16155 ; Cheap in memory but slow solution.
16156
16157Whether the result of intrinsic's call is `true` or `false`,
16158it should be correct to pick either solution. We can switch
16159between them by replacing the result of
16160``@llvm.experimental.widenable.condition`` with different
16161`i1` expressions.
16162
16163This is how it can be used to represent guards as widenable branches:
16164
16165.. code-block:: text
16166
16167 block:
16168 ; Unguarded instructions
16169 call void @llvm.experimental.guard(i1 %cond, <args...>) ["deopt"(<deopt_args...>)]
16170 ; Guarded instructions
16171
16172Can be expressed in an alternative equivalent form of explicit branch using
16173``@llvm.experimental.widenable.condition``:
16174
16175.. code-block:: text
16176
16177 block:
16178 ; Unguarded instructions
16179 %widenable_condition = call i1 @llvm.experimental.widenable.condition()
16180 %guard_condition = and i1 %cond, %widenable_condition
16181 br i1 %guard_condition, label %guarded, label %deopt
16182
16183 guarded:
16184 ; Guarded instructions
16185
16186 deopt:
16187 call type @llvm.experimental.deoptimize(<args...>) [ "deopt"(<deopt_args...>) ]
16188
16189So the block `guarded` is only reachable when `%cond` is `true`,
16190and it should be valid to go to the block `deopt` whenever `%cond`
16191is `true` or `false`.
16192
16193``@llvm.experimental.widenable.condition`` will never throw, thus
16194it cannot be invoked.
16195
16196Guard widening:
16197"""""""""""""""
16198
16199When ``@llvm.experimental.widenable.condition()`` is used in
16200condition of a guard represented as explicit branch, it is
16201legal to widen the guard's condition with any additional
16202conditions.
16203
16204Guard widening looks like replacement of
16205
16206.. code-block:: text
16207
16208 %widenable_cond = call i1 @llvm.experimental.widenable.condition()
16209 %guard_cond = and i1 %cond, %widenable_cond
16210 br i1 %guard_cond, label %guarded, label %deopt
16211
16212with
16213
16214.. code-block:: text
16215
16216 %widenable_cond = call i1 @llvm.experimental.widenable.condition()
16217 %new_cond = and i1 %any_other_cond, %widenable_cond
16218 %new_guard_cond = and i1 %cond, %new_cond
16219 br i1 %new_guard_cond, label %guarded, label %deopt
16220
16221for this branch. Here `%any_other_cond` is an arbitrarily chosen
16222well-defined `i1` value. By making guard widening, we may
16223impose stricter conditions on `guarded` block and bail to the
16224deopt when the new condition is not met.
16225
16226Lowering:
16227"""""""""
16228
16229Default lowering strategy is replacing the result of
16230call of ``@llvm.experimental.widenable.condition`` with
16231constant `true`. However it is always correct to replace
16232it with any other `i1` value. Any pass can
16233freely do it if it can benefit from non-default lowering.
16234
16235
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000016236'``llvm.load.relative``' Intrinsic
16237^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16238
16239Syntax:
16240"""""""
16241
16242::
16243
16244 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
16245
16246Overview:
16247"""""""""
16248
16249This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
16250adds ``%ptr`` to that value and returns it. The constant folder specifically
16251recognizes the form of this intrinsic and the constant initializers it may
16252load from; if a loaded constant initializer is known to have the form
16253``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
16254
16255LLVM provides that the calculation of such a constant initializer will
16256not overflow at link time under the medium code model if ``x`` is an
16257``unnamed_addr`` function. However, it does not provide this guarantee for
16258a constant initializer folded into a function body. This intrinsic can be
16259used to avoid the possibility of overflows when loading from such a constant.
16260
Dan Gohman2c74fe92017-11-08 21:59:51 +000016261'``llvm.sideeffect``' Intrinsic
16262^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16263
16264Syntax:
16265"""""""
16266
16267::
16268
16269 declare void @llvm.sideeffect() inaccessiblememonly nounwind
16270
16271Overview:
16272"""""""""
16273
16274The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
16275treat it as having side effects, so it can be inserted into a loop to
16276indicate that the loop shouldn't be assumed to terminate (which could
16277potentially lead to the loop being optimized away entirely), even if it's
16278an infinite loop with no other side effects.
16279
16280Arguments:
16281""""""""""
16282
16283None.
16284
16285Semantics:
16286""""""""""
16287
16288This intrinsic actually does nothing, but optimizers must assume that it
16289has externally observable side effects.
16290
James Y Knight72f76bf2018-11-07 15:24:12 +000016291'``llvm.is.constant.*``' Intrinsic
16292^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16293
16294Syntax:
16295"""""""
16296
16297This is an overloaded intrinsic. You can use llvm.is.constant with any argument type.
16298
16299::
16300
16301 declare i1 @llvm.is.constant.i32(i32 %operand) nounwind readnone
16302 declare i1 @llvm.is.constant.f32(float %operand) nounwind readnone
16303 declare i1 @llvm.is.constant.TYPENAME(TYPE %operand) nounwind readnone
16304
16305Overview:
16306"""""""""
16307
16308The '``llvm.is.constant``' intrinsic will return true if the argument
16309is known to be a manifest compile-time constant. It is guaranteed to
16310fold to either true or false before generating machine code.
16311
16312Semantics:
16313""""""""""
16314
16315This intrinsic generates no code. If its argument is known to be a
16316manifest compile-time constant value, then the intrinsic will be
16317converted to a constant true value. Otherwise, it will be converted to
16318a constant false value.
16319
16320In particular, note that if the argument is a constant expression
16321which refers to a global (the address of which _is_ a constant, but
16322not manifest during the compile), then the intrinsic evaluates to
16323false.
16324
16325The result also intentionally depends on the result of optimization
16326passes -- e.g., the result can change depending on whether a
16327function gets inlined or not. A function's parameters are
16328obviously not constant. However, a call like
16329``llvm.is.constant.i32(i32 %param)`` *can* return true after the
16330function is inlined, if the value passed to the function parameter was
16331a constant.
16332
16333On the other hand, if constant folding is not run, it will never
16334evaluate to true, even in simple cases.
16335
Andrew Trick5e029ce2013-12-24 02:57:25 +000016336Stack Map Intrinsics
16337--------------------
16338
16339LLVM provides experimental intrinsics to support runtime patching
16340mechanisms commonly desired in dynamic language JITs. These intrinsics
16341are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016342
16343Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000016344-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000016345
16346These intrinsics are similar to the standard library memory intrinsics except
16347that they perform memory transfer as a sequence of atomic memory accesses.
16348
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016349.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000016350
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016351'``llvm.memcpy.element.unordered.atomic``' Intrinsic
16352^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000016353
16354Syntax:
16355"""""""
16356
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016357This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000016358any integer bit width and for different address spaces. Not all targets
16359support all bit widths however.
16360
16361::
16362
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016363 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
16364 i8* <src>,
16365 i32 <len>,
16366 i32 <element_size>)
16367 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
16368 i8* <src>,
16369 i64 <len>,
16370 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000016371
16372Overview:
16373"""""""""
16374
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016375The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
16376'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
16377as arrays with elements that are exactly ``element_size`` bytes, and the copy between
16378buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
16379that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016380
16381Arguments:
16382""""""""""
16383
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016384The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
16385intrinsic, with the added constraint that ``len`` is required to be a positive integer
16386multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
16387``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016388
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016389``element_size`` must be a compile-time constant positive power of two no greater than
16390target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016391
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016392For each of the input pointers ``align`` parameter attribute must be specified. It
16393must be a power of two no less than the ``element_size``. Caller guarantees that
16394both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016395
16396Semantics:
16397""""""""""
16398
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016399The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
16400memory from the source location to the destination location. These locations are not
16401allowed to overlap. The memory copy is performed as a sequence of load/store operations
16402where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000016403aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016404
16405The order of the copy is unspecified. The same value may be read from the source
16406buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016407element. It is well defined to have concurrent reads and writes to both source and
16408destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016409
16410This intrinsic does not provide any additional ordering guarantees over those
16411provided by a set of unordered loads from the source location and stores to the
16412destination.
16413
16414Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000016415"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000016416
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016417In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
16418lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
16419is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000016420
Daniel Neilson57226ef2017-07-12 15:25:26 +000016421Optimizer is allowed to inline memory copy when it's profitable to do so.
16422
16423'``llvm.memmove.element.unordered.atomic``' Intrinsic
16424^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16425
16426Syntax:
16427"""""""
16428
16429This is an overloaded intrinsic. You can use
16430``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
16431different address spaces. Not all targets support all bit widths however.
16432
16433::
16434
16435 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
16436 i8* <src>,
16437 i32 <len>,
16438 i32 <element_size>)
16439 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
16440 i8* <src>,
16441 i64 <len>,
16442 i32 <element_size>)
16443
16444Overview:
16445"""""""""
16446
16447The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
16448of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
16449``src`` are treated as arrays with elements that are exactly ``element_size``
16450bytes, and the copy between buffers uses a sequence of
16451:ref:`unordered atomic <ordering>` load/store operations that are a positive
16452integer multiple of the ``element_size`` in size.
16453
16454Arguments:
16455""""""""""
16456
16457The first three arguments are the same as they are in the
16458:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
16459``len`` is required to be a positive integer multiple of the ``element_size``.
16460If ``len`` is not a positive integer multiple of ``element_size``, then the
16461behaviour of the intrinsic is undefined.
16462
16463``element_size`` must be a compile-time constant positive power of two no
16464greater than a target-specific atomic access size limit.
16465
16466For each of the input pointers the ``align`` parameter attribute must be
16467specified. It must be a power of two no less than the ``element_size``. Caller
16468guarantees that both the source and destination pointers are aligned to that
16469boundary.
16470
16471Semantics:
16472""""""""""
16473
16474The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
16475of memory from the source location to the destination location. These locations
16476are allowed to overlap. The memory copy is performed as a sequence of load/store
16477operations where each access is guaranteed to be a multiple of ``element_size``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000016478bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson57226ef2017-07-12 15:25:26 +000016479
16480The order of the copy is unspecified. The same value may be read from the source
16481buffer many times, but only one write is issued to the destination buffer per
16482element. It is well defined to have concurrent reads and writes to both source
16483and destination provided those reads and writes are unordered atomic when
16484specified.
16485
16486This intrinsic does not provide any additional ordering guarantees over those
16487provided by a set of unordered loads from the source location and stores to the
16488destination.
16489
16490Lowering:
16491"""""""""
16492
16493In the most general case call to the
16494'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
16495``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
16496actual element size.
16497
Daniel Neilson3faabbb2017-06-16 14:43:59 +000016498The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000016499
16500.. _int_memset_element_unordered_atomic:
16501
16502'``llvm.memset.element.unordered.atomic``' Intrinsic
16503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16504
16505Syntax:
16506"""""""
16507
16508This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
16509any integer bit width and for different address spaces. Not all targets
16510support all bit widths however.
16511
16512::
16513
16514 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
16515 i8 <value>,
16516 i32 <len>,
16517 i32 <element_size>)
16518 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
16519 i8 <value>,
16520 i64 <len>,
16521 i32 <element_size>)
16522
16523Overview:
16524"""""""""
16525
16526The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
16527'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
16528with elements that are exactly ``element_size`` bytes, and the assignment to that array
16529uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
16530that are a positive integer multiple of the ``element_size`` in size.
16531
16532Arguments:
16533""""""""""
16534
16535The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
16536intrinsic, with the added constraint that ``len`` is required to be a positive integer
16537multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
16538``element_size``, then the behaviour of the intrinsic is undefined.
16539
16540``element_size`` must be a compile-time constant positive power of two no greater than
16541target-specific atomic access size limit.
16542
16543The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
16544must be a power of two no less than the ``element_size``. Caller guarantees that
16545the destination pointer is aligned to that boundary.
16546
16547Semantics:
16548""""""""""
16549
16550The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
16551memory starting at the destination location to the given ``value``. The memory is
16552set with a sequence of store operations where each access is guaranteed to be a
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000016553multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson965613e2017-07-12 21:57:23 +000016554
16555The order of the assignment is unspecified. Only one write is issued to the
16556destination buffer per element. It is well defined to have concurrent reads and
16557writes to the destination provided those reads and writes are unordered atomic
16558when specified.
16559
16560This intrinsic does not provide any additional ordering guarantees over those
16561provided by a set of unordered stores to the destination.
16562
16563Lowering:
16564"""""""""
16565
16566In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
16567lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
16568is replaced with an actual element size.
16569
16570The optimizer is allowed to inline the memory assignment when it's profitable to do so.
Erik Pilkingtonbdad92a2018-12-10 18:19:43 +000016571
16572Objective-C ARC Runtime Intrinsics
16573----------------------------------
16574
16575LLVM provides intrinsics that lower to Objective-C ARC runtime entry points.
16576LLVM is aware of the semantics of these functions, and optimizes based on that
16577knowledge. You can read more about the details of Objective-C ARC `here
16578<https://clang.llvm.org/docs/AutomaticReferenceCounting.html>`_.
16579
16580'``llvm.objc.autorelease``' Intrinsic
16581^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16582
16583Syntax:
16584"""""""
16585::
16586
16587 declare i8* @llvm.objc.autorelease(i8*)
16588
16589Lowering:
16590"""""""""
16591
16592Lowers to a call to `objc_autorelease <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autorelease>`_.
16593
16594'``llvm.objc.autoreleasePoolPop``' Intrinsic
16595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16596
16597Syntax:
16598"""""""
16599::
16600
16601 declare void @llvm.objc.autoreleasePoolPop(i8*)
16602
16603Lowering:
16604"""""""""
16605
16606Lowers to a call to `objc_autoreleasePoolPop <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-autoreleasepoolpop-void-pool>`_.
16607
16608'``llvm.objc.autoreleasePoolPush``' Intrinsic
16609^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16610
16611Syntax:
16612"""""""
16613::
16614
16615 declare i8* @llvm.objc.autoreleasePoolPush()
16616
16617Lowering:
16618"""""""""
16619
16620Lowers to a call to `objc_autoreleasePoolPush <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-autoreleasepoolpush-void>`_.
16621
16622'``llvm.objc.autoreleaseReturnValue``' Intrinsic
16623^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16624
16625Syntax:
16626"""""""
16627::
16628
16629 declare i8* @llvm.objc.autoreleaseReturnValue(i8*)
16630
16631Lowering:
16632"""""""""
16633
16634Lowers to a call to `objc_autoreleaseReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue>`_.
16635
16636'``llvm.objc.copyWeak``' Intrinsic
16637^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16638
16639Syntax:
16640"""""""
16641::
16642
16643 declare void @llvm.objc.copyWeak(i8**, i8**)
16644
16645Lowering:
16646"""""""""
16647
16648Lowers to a call to `objc_copyWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-copyweak-id-dest-id-src>`_.
16649
16650'``llvm.objc.destroyWeak``' Intrinsic
16651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16652
16653Syntax:
16654"""""""
16655::
16656
16657 declare void @llvm.objc.destroyWeak(i8**)
16658
16659Lowering:
16660"""""""""
16661
16662Lowers to a call to `objc_destroyWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-destroyweak-id-object>`_.
16663
16664'``llvm.objc.initWeak``' Intrinsic
16665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16666
16667Syntax:
16668"""""""
16669::
16670
16671 declare i8* @llvm.objc.initWeak(i8**, i8*)
16672
16673Lowering:
16674"""""""""
16675
16676Lowers to a call to `objc_initWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-initweak>`_.
16677
16678'``llvm.objc.loadWeak``' Intrinsic
16679^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16680
16681Syntax:
16682"""""""
16683::
16684
16685 declare i8* @llvm.objc.loadWeak(i8**)
16686
16687Lowering:
16688"""""""""
16689
16690Lowers to a call to `objc_loadWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-loadweak>`_.
16691
16692'``llvm.objc.loadWeakRetained``' Intrinsic
16693^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16694
16695Syntax:
16696"""""""
16697::
16698
16699 declare i8* @llvm.objc.loadWeakRetained(i8**)
16700
16701Lowering:
16702"""""""""
16703
16704Lowers to a call to `objc_loadWeakRetained <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-loadweakretained>`_.
16705
16706'``llvm.objc.moveWeak``' Intrinsic
16707^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16708
16709Syntax:
16710"""""""
16711::
16712
16713 declare void @llvm.objc.moveWeak(i8**, i8**)
16714
16715Lowering:
16716"""""""""
16717
16718Lowers to a call to `objc_moveWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-moveweak-id-dest-id-src>`_.
16719
16720'``llvm.objc.release``' Intrinsic
16721^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16722
16723Syntax:
16724"""""""
16725::
16726
16727 declare void @llvm.objc.release(i8*)
16728
16729Lowering:
16730"""""""""
16731
16732Lowers to a call to `objc_release <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-release-id-value>`_.
16733
16734'``llvm.objc.retain``' Intrinsic
16735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16736
16737Syntax:
16738"""""""
16739::
16740
16741 declare i8* @llvm.objc.retain(i8*)
16742
16743Lowering:
16744"""""""""
16745
16746Lowers to a call to `objc_retain <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retain>`_.
16747
16748'``llvm.objc.retainAutorelease``' Intrinsic
16749^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16750
16751Syntax:
16752"""""""
16753::
16754
16755 declare i8* @llvm.objc.retainAutorelease(i8*)
16756
16757Lowering:
16758"""""""""
16759
16760Lowers to a call to `objc_retainAutorelease <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautorelease>`_.
16761
16762'``llvm.objc.retainAutoreleaseReturnValue``' Intrinsic
16763^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16764
16765Syntax:
16766"""""""
16767::
16768
16769 declare i8* @llvm.objc.retainAutoreleaseReturnValue(i8*)
16770
16771Lowering:
16772"""""""""
16773
16774Lowers to a call to `objc_retainAutoreleaseReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautoreleasereturnvalue>`_.
16775
16776'``llvm.objc.retainAutoreleasedReturnValue``' Intrinsic
16777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16778
16779Syntax:
16780"""""""
16781::
16782
16783 declare i8* @llvm.objc.retainAutoreleasedReturnValue(i8*)
16784
16785Lowering:
16786"""""""""
16787
16788Lowers to a call to `objc_retainAutoreleasedReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautoreleasedreturnvalue>`_.
16789
16790'``llvm.objc.retainBlock``' Intrinsic
16791^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16792
16793Syntax:
16794"""""""
16795::
16796
16797 declare i8* @llvm.objc.retainBlock(i8*)
16798
16799Lowering:
16800"""""""""
16801
16802Lowers to a call to `objc_retainBlock <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainblock>`_.
16803
16804'``llvm.objc.storeStrong``' Intrinsic
16805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16806
16807Syntax:
16808"""""""
16809::
16810
16811 declare void @llvm.objc.storeStrong(i8**, i8*)
16812
16813Lowering:
16814"""""""""
16815
16816Lowers to a call to `objc_storeStrong <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-storestrong-id-object-id-value>`_.
16817
16818'``llvm.objc.storeWeak``' Intrinsic
16819^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16820
16821Syntax:
16822"""""""
16823::
16824
16825 declare i8* @llvm.objc.storeWeak(i8**, i8*)
16826
16827Lowering:
16828"""""""""
16829
16830Lowers to a call to `objc_storeWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-storeweak>`_.