blob: d396e3f1cbfbfeae0aa4d749236144179ae159fb [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
Hans Wennborg2cfcc012018-05-22 10:14:07 +000083 can be used on global values to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfbc34982017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledru0604c5c2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvab084af42012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000327 floating-point types are supported.
Sean Silvab084af42012-12-07 10:36:55 +0000328 - On *X86-64* only supports up to 10 bit type parameters and 6
Sanjay Patel85fa9ef2018-03-21 14:15:33 +0000329 floating-point parameters.
Sean Silvab084af42012-12-07 10:36:55 +0000330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Sean Fertilec70d28b2017-10-26 15:00:26 +0000530.. _runtime_preemption_model:
531
532Runtime Preemption Specifiers
533-----------------------------
534
535Global variables, functions and aliases may have an optional runtime preemption
536specifier. If a preemption specifier isn't given explicitly, then a
537symbol is assumed to be ``dso_preemptable``.
538
539``dso_preemptable``
540 Indicates that the function or variable may be replaced by a symbol from
541 outside the linkage unit at runtime.
542
543``dso_local``
544 The compiler may assume that a function or variable marked as ``dso_local``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000545 will resolve to a symbol within the same linkage unit. Direct access will
Sean Fertilec70d28b2017-10-26 15:00:26 +0000546 be generated even if the definition is not within this compilation unit.
547
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000548.. _namedtypes:
549
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000550Structure Types
551---------------
Sean Silvab084af42012-12-07 10:36:55 +0000552
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000553LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000554types <t_struct>`. Literal types are uniqued structurally, but identified types
555are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000556to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000557
Sean Silva706fba52015-08-06 22:56:24 +0000558An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000559
560.. code-block:: llvm
561
562 %mytype = type { %mytype*, i32 }
563
Sean Silvaa1190322015-08-06 22:56:48 +0000564Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000565literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000566
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000567.. _nointptrtype:
568
569Non-Integral Pointer Type
570-------------------------
571
572Note: non-integral pointer types are a work in progress, and they should be
573considered experimental at this time.
574
575LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000576spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
577Non-integral pointer types represent pointers that have an *unspecified* bitwise
578representation; that is, the integral representation may be target dependent or
579unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000580
581``inttoptr`` instructions converting integers to non-integral pointer types are
582ill-typed, and so are ``ptrtoint`` instructions converting values of
583non-integral pointer types to integers. Vector versions of said instructions
584are ill-typed as well.
585
Sean Silvab084af42012-12-07 10:36:55 +0000586.. _globalvars:
587
588Global Variables
589----------------
590
591Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000592instead of run-time.
593
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000594Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000595
596Global variables in other translation units can also be declared, in which
597case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000598
Bob Wilson85b24f22014-06-12 20:40:33 +0000599Either global variable definitions or declarations may have an explicit section
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000600to be placed in and may have an optional explicit alignment specified. If there
601is a mismatch between the explicit or inferred section information for the
602variable declaration and its definition the resulting behavior is undefined.
Bob Wilson85b24f22014-06-12 20:40:33 +0000603
Michael Gottesman006039c2013-01-31 05:48:48 +0000604A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000605the contents of the variable will **never** be modified (enabling better
606optimization, allowing the global data to be placed in the read-only
607section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000608initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000609variable.
610
611LLVM explicitly allows *declarations* of global variables to be marked
612constant, even if the final definition of the global is not. This
613capability can be used to enable slightly better optimization of the
614program, but requires the language definition to guarantee that
615optimizations based on the 'constantness' are valid for the translation
616units that do not include the definition.
617
618As SSA values, global variables define pointer values that are in scope
619(i.e. they dominate) all basic blocks in the program. Global variables
620always define a pointer to their "content" type because they describe a
621region of memory, and all memory objects in LLVM are accessed through
622pointers.
623
624Global variables can be marked with ``unnamed_addr`` which indicates
625that the address is not significant, only the content. Constants marked
626like this can be merged with other constants if they have the same
627initializer. Note that a constant with significant address *can* be
628merged with a ``unnamed_addr`` constant, the result being a constant
629whose address is significant.
630
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000631If the ``local_unnamed_addr`` attribute is given, the address is known to
632not be significant within the module.
633
Sean Silvab084af42012-12-07 10:36:55 +0000634A global variable may be declared to reside in a target-specific
635numbered address space. For targets that support them, address spaces
636may affect how optimizations are performed and/or what target
637instructions are used to access the variable. The default address space
638is zero. The address space qualifier must precede any other attributes.
639
640LLVM allows an explicit section to be specified for globals. If the
641target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000642Additionally, the global can placed in a comdat if the target has the necessary
643support.
Sean Silvab084af42012-12-07 10:36:55 +0000644
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000645External declarations may have an explicit section specified. Section
646information is retained in LLVM IR for targets that make use of this
647information. Attaching section information to an external declaration is an
648assertion that its definition is located in the specified section. If the
649definition is located in a different section, the behavior is undefined.
Erich Keane0343ef82017-08-22 15:30:43 +0000650
Michael Gottesmane743a302013-02-04 03:22:00 +0000651By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000652variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000653initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000654true even for variables potentially accessible from outside the
655module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000656``@llvm.used`` or dllexported variables. This assumption may be suppressed
657by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659An explicit alignment may be specified for a global, which must be a
660power of 2. If not present, or if the alignment is set to zero, the
661alignment of the global is set by the target to whatever it feels
662convenient. If an explicit alignment is specified, the global is forced
663to have exactly that alignment. Targets and optimizers are not allowed
664to over-align the global if the global has an assigned section. In this
665case, the extra alignment could be observable: for example, code could
666assume that the globals are densely packed in their section and try to
667iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000668iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000669
Javed Absarf3d79042017-05-11 12:28:08 +0000670Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
Sean Fertilec70d28b2017-10-26 15:00:26 +0000671an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
Javed Absarf3d79042017-05-11 12:28:08 +0000672an optional :ref:`global attributes <glattrs>` and
673an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck7157bb72014-01-14 15:22:47 +0000674
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000675Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000676:ref:`Thread Local Storage Model <tls_model>`.
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678Syntax::
679
Sean Fertilec70d28b2017-10-26 15:00:26 +0000680 @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
681 [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
683 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000684 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000686 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000687
Sean Silvab084af42012-12-07 10:36:55 +0000688For example, the following defines a global in a numbered address space
689with an initializer, section, and alignment:
690
691.. code-block:: llvm
692
693 @G = addrspace(5) constant float 1.0, section "foo", align 4
694
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000695The following example just declares a global variable
696
697.. code-block:: llvm
698
699 @G = external global i32
700
Sean Silvab084af42012-12-07 10:36:55 +0000701The following example defines a thread-local global with the
702``initialexec`` TLS model:
703
704.. code-block:: llvm
705
706 @G = thread_local(initialexec) global i32 0, align 4
707
708.. _functionstructure:
709
710Functions
711---------
712
713LLVM function definitions consist of the "``define``" keyword, an
Sean Fertilec70d28b2017-10-26 15:00:26 +0000714optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
715specifier <runtime_preemption_model>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000716style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
717an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000718an optional ``unnamed_addr`` attribute, a return type, an optional
719:ref:`parameter attribute <paramattrs>` for the return type, a function
720name, a (possibly empty) argument list (each with optional :ref:`parameter
721attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000722an optional address space, an optional section, an optional alignment,
David Majnemerdad0a642014-06-27 18:19:56 +0000723an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000724an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000725an optional :ref:`prologue <prologuedata>`,
726an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000727an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000728an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000731optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
732<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
733optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000734or ``local_unnamed_addr`` attribute, an optional address space, a return type,
735an optional :ref:`parameter attribute <paramattrs>` for the return type, a function name, a possibly
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000736empty list of arguments, an optional alignment, an optional :ref:`garbage
737collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
738:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000739
Bill Wendling6822ecb2013-10-27 05:09:12 +0000740A function definition contains a list of basic blocks, forming the CFG (Control
741Flow Graph) for the function. Each basic block may optionally start with a label
742(giving the basic block a symbol table entry), contains a list of instructions,
743and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
744function return). If an explicit label is not provided, a block is assigned an
745implicit numbered label, using the next value from the same counter as used for
746unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
747entry block does not have an explicit label, it will be assigned label "%0",
748then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000749
750The first basic block in a function is special in two ways: it is
751immediately executed on entrance to the function, and it is not allowed
752to have predecessor basic blocks (i.e. there can not be any branches to
753the entry block of a function). Because the block can have no
754predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
755
756LLVM allows an explicit section to be specified for functions. If the
757target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000758Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000759
760An explicit alignment may be specified for a function. If not present,
761or if the alignment is set to zero, the alignment of the function is set
762by the target to whatever it feels convenient. If an explicit alignment
763is specified, the function is forced to have at least that much
764alignment. All alignments must be a power of 2.
765
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000766If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000767be significant and two identical functions can be merged.
768
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000769If the ``local_unnamed_addr`` attribute is given, the address is known to
770not be significant within the module.
771
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000772If an explicit address space is not given, it will default to the program
773address space from the :ref:`datalayout string<langref_datalayout>`.
774
Sean Silvab084af42012-12-07 10:36:55 +0000775Syntax::
776
Sean Fertilec70d28b2017-10-26 15:00:26 +0000777 define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000778 [cconv] [ret attrs]
779 <ResultType> @<FunctionName> ([argument list])
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +0000780 [(unnamed_addr|local_unnamed_addr)] [AddrSpace] [fn Attrs]
781 [section "name"] [comdat [($name)]] [align N] [gc] [prefix Constant]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000782 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000783
Sean Silva706fba52015-08-06 22:56:24 +0000784The argument list is a comma separated sequence of arguments where each
785argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000786
787Syntax::
788
789 <type> [parameter Attrs] [name]
790
791
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000792.. _langref_aliases:
793
Sean Silvab084af42012-12-07 10:36:55 +0000794Aliases
795-------
796
Rafael Espindola64c1e182014-06-03 02:41:57 +0000797Aliases, unlike function or variables, don't create any new data. They
798are just a new symbol and metadata for an existing position.
799
800Aliases have a name and an aliasee that is either a global value or a
801constant expression.
802
Nico Rieck7157bb72014-01-14 15:22:47 +0000803Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Sean Fertilec70d28b2017-10-26 15:00:26 +0000804:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000805:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
806<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000807
808Syntax::
809
Sean Fertilec70d28b2017-10-26 15:00:26 +0000810 @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000811
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000812The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000813``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000814might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000815
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000816Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000817the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
818to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000819
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000820If the ``local_unnamed_addr`` attribute is given, the address is known to
821not be significant within the module.
822
Rafael Espindola64c1e182014-06-03 02:41:57 +0000823Since aliases are only a second name, some restrictions apply, of which
824some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000825
Rafael Espindola64c1e182014-06-03 02:41:57 +0000826* The expression defining the aliasee must be computable at assembly
827 time. Since it is just a name, no relocations can be used.
828
829* No alias in the expression can be weak as the possibility of the
830 intermediate alias being overridden cannot be represented in an
831 object file.
832
833* No global value in the expression can be a declaration, since that
834 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000835
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000836.. _langref_ifunc:
837
838IFuncs
839-------
840
841IFuncs, like as aliases, don't create any new data or func. They are just a new
842symbol that dynamic linker resolves at runtime by calling a resolver function.
843
844IFuncs have a name and a resolver that is a function called by dynamic linker
845that returns address of another function associated with the name.
846
847IFunc may have an optional :ref:`linkage type <linkage>` and an optional
848:ref:`visibility style <visibility>`.
849
850Syntax::
851
852 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
853
854
David Majnemerdad0a642014-06-27 18:19:56 +0000855.. _langref_comdats:
856
857Comdats
858-------
859
860Comdat IR provides access to COFF and ELF object file COMDAT functionality.
861
Sean Silvaa1190322015-08-06 22:56:48 +0000862Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000863specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000864that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000865aliasee computes to, if any.
866
867Comdats have a selection kind to provide input on how the linker should
868choose between keys in two different object files.
869
870Syntax::
871
872 $<Name> = comdat SelectionKind
873
874The selection kind must be one of the following:
875
876``any``
877 The linker may choose any COMDAT key, the choice is arbitrary.
878``exactmatch``
879 The linker may choose any COMDAT key but the sections must contain the
880 same data.
881``largest``
882 The linker will choose the section containing the largest COMDAT key.
883``noduplicates``
884 The linker requires that only section with this COMDAT key exist.
885``samesize``
886 The linker may choose any COMDAT key but the sections must contain the
887 same amount of data.
888
Sam Cleggea7cace2018-01-09 23:43:14 +0000889Note that the Mach-O platform doesn't support COMDATs, and ELF and WebAssembly
890only support ``any`` as a selection kind.
David Majnemerdad0a642014-06-27 18:19:56 +0000891
892Here is an example of a COMDAT group where a function will only be selected if
893the COMDAT key's section is the largest:
894
Renato Golin124f2592016-07-20 12:16:38 +0000895.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000896
897 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000898 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000899
Rafael Espindola83a362c2015-01-06 22:55:16 +0000900 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000901 ret void
902 }
903
Rafael Espindola83a362c2015-01-06 22:55:16 +0000904As a syntactic sugar the ``$name`` can be omitted if the name is the same as
905the global name:
906
Renato Golin124f2592016-07-20 12:16:38 +0000907.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000908
909 $foo = comdat any
910 @foo = global i32 2, comdat
911
912
David Majnemerdad0a642014-06-27 18:19:56 +0000913In a COFF object file, this will create a COMDAT section with selection kind
914``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
915and another COMDAT section with selection kind
916``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000917section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000918
919There are some restrictions on the properties of the global object.
920It, or an alias to it, must have the same name as the COMDAT group when
921targeting COFF.
922The contents and size of this object may be used during link-time to determine
923which COMDAT groups get selected depending on the selection kind.
924Because the name of the object must match the name of the COMDAT group, the
925linkage of the global object must not be local; local symbols can get renamed
926if a collision occurs in the symbol table.
927
928The combined use of COMDATS and section attributes may yield surprising results.
929For example:
930
Renato Golin124f2592016-07-20 12:16:38 +0000931.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000932
933 $foo = comdat any
934 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000935 @g1 = global i32 42, section "sec", comdat($foo)
936 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000937
938From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000939with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000940COMDAT groups and COMDATs, at the object file level, are represented by
941sections.
942
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000943Note that certain IR constructs like global variables and functions may
944create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000945COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000946in individual sections (e.g. when `-data-sections` or `-function-sections`
947is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000948
Sean Silvab084af42012-12-07 10:36:55 +0000949.. _namedmetadatastructure:
950
951Named Metadata
952--------------
953
954Named metadata is a collection of metadata. :ref:`Metadata
955nodes <metadata>` (but not metadata strings) are the only valid
956operands for a named metadata.
957
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000958#. Named metadata are represented as a string of characters with the
959 metadata prefix. The rules for metadata names are the same as for
960 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
961 are still valid, which allows any character to be part of a name.
962
Sean Silvab084af42012-12-07 10:36:55 +0000963Syntax::
964
965 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000966 !0 = !{!"zero"}
967 !1 = !{!"one"}
968 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000969 ; A named metadata.
970 !name = !{!0, !1, !2}
971
972.. _paramattrs:
973
974Parameter Attributes
975--------------------
976
977The return type and each parameter of a function type may have a set of
978*parameter attributes* associated with them. Parameter attributes are
979used to communicate additional information about the result or
980parameters of a function. Parameter attributes are considered to be part
981of the function, not of the function type, so functions with different
982parameter attributes can have the same function type.
983
984Parameter attributes are simple keywords that follow the type specified.
985If multiple parameter attributes are needed, they are space separated.
986For example:
987
988.. code-block:: llvm
989
990 declare i32 @printf(i8* noalias nocapture, ...)
991 declare i32 @atoi(i8 zeroext)
992 declare signext i8 @returns_signed_char()
993
994Note that any attributes for the function result (``nounwind``,
995``readonly``) come immediately after the argument list.
996
997Currently, only the following parameter attributes are defined:
998
999``zeroext``
1000 This indicates to the code generator that the parameter or return
1001 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +00001002 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +00001003``signext``
1004 This indicates to the code generator that the parameter or return
1005 value should be sign-extended to the extent required by the target's
1006 ABI (which is usually 32-bits) by the caller (for a parameter) or
1007 the callee (for a return value).
1008``inreg``
1009 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +00001010 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +00001011 a function call or return (usually, by putting it in a register as
1012 opposed to memory, though some targets use it to distinguish between
1013 two different kinds of registers). Use of this attribute is
1014 target-specific.
1015``byval``
1016 This indicates that the pointer parameter should really be passed by
1017 value to the function. The attribute implies that a hidden copy of
1018 the pointee is made between the caller and the callee, so the callee
1019 is unable to modify the value in the caller. This attribute is only
1020 valid on LLVM pointer arguments. It is generally used to pass
1021 structs and arrays by value, but is also valid on pointers to
1022 scalars. The copy is considered to belong to the caller not the
1023 callee (for example, ``readonly`` functions should not write to
1024 ``byval`` parameters). This is not a valid attribute for return
1025 values.
1026
1027 The byval attribute also supports specifying an alignment with the
1028 align attribute. It indicates the alignment of the stack slot to
1029 form and the known alignment of the pointer specified to the call
1030 site. If the alignment is not specified, then the code generator
1031 makes a target-specific assumption.
1032
Reid Klecknera534a382013-12-19 02:14:12 +00001033.. _attr_inalloca:
1034
1035``inalloca``
1036
Reid Kleckner60d3a832014-01-16 22:59:24 +00001037 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001038 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001039 be a pointer to stack memory produced by an ``alloca`` instruction.
1040 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001041 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001042 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001043
Reid Kleckner436c42e2014-01-17 23:58:17 +00001044 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001045 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001046 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001047 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001048 ``inalloca`` attribute also disables LLVM's implicit lowering of
1049 large aggregate return values, which means that frontend authors
1050 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001051
Reid Kleckner60d3a832014-01-16 22:59:24 +00001052 When the call site is reached, the argument allocation must have
1053 been the most recent stack allocation that is still live, or the
Eli Friedman0f522bd2018-07-25 18:26:38 +00001054 behavior is undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001055 space after an argument allocation and before its call site, but it
1056 must be cleared off with :ref:`llvm.stackrestore
1057 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001058
1059 See :doc:`InAlloca` for more information on how to use this
1060 attribute.
1061
Sean Silvab084af42012-12-07 10:36:55 +00001062``sret``
1063 This indicates that the pointer parameter specifies the address of a
1064 structure that is the return value of the function in the source
1065 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner1361c0c2016-09-08 15:45:27 +00001066 loads and stores to the structure may be assumed by the callee not
1067 to trap and to be properly aligned. This is not a valid attribute
1068 for return values.
Sean Silva1703e702014-04-08 21:06:22 +00001069
Daniel Neilson1e687242018-01-19 17:13:12 +00001070.. _attr_align:
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001071
Hal Finkelccc70902014-07-22 16:58:55 +00001072``align <n>``
1073 This indicates that the pointer value may be assumed by the optimizer to
1074 have the specified alignment.
1075
1076 Note that this attribute has additional semantics when combined with the
1077 ``byval`` attribute.
1078
Sean Silva1703e702014-04-08 21:06:22 +00001079.. _noalias:
1080
Sean Silvab084af42012-12-07 10:36:55 +00001081``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001082 This indicates that objects accessed via pointer values
1083 :ref:`based <pointeraliasing>` on the argument or return value are not also
1084 accessed, during the execution of the function, via pointer values not
1085 *based* on the argument or return value. The attribute on a return value
1086 also has additional semantics described below. The caller shares the
1087 responsibility with the callee for ensuring that these requirements are met.
1088 For further details, please see the discussion of the NoAlias response in
1089 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001090
1091 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001092 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001093
1094 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001095 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1096 attribute on return values are stronger than the semantics of the attribute
1097 when used on function arguments. On function return values, the ``noalias``
1098 attribute indicates that the function acts like a system memory allocation
1099 function, returning a pointer to allocated storage disjoint from the
1100 storage for any other object accessible to the caller.
1101
Sean Silvab084af42012-12-07 10:36:55 +00001102``nocapture``
1103 This indicates that the callee does not make any copies of the
1104 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001105 attribute for return values. Addresses used in volatile operations
1106 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001107
1108.. _nest:
1109
1110``nest``
1111 This indicates that the pointer parameter can be excised using the
1112 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001113 attribute for return values and can only be applied to one parameter.
1114
1115``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001116 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001117 value. This is a hint to the optimizer and code generator used when
1118 generating the caller, allowing value propagation, tail call optimization,
1119 and omission of register saves and restores in some cases; it is not
1120 checked or enforced when generating the callee. The parameter and the
1121 function return type must be valid operands for the
1122 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1123 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001124
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001125``nonnull``
1126 This indicates that the parameter or return pointer is not null. This
1127 attribute may only be applied to pointer typed parameters. This is not
Eli Friedman0f522bd2018-07-25 18:26:38 +00001128 checked or enforced by LLVM; if the parameter or return pointer is null,
1129 the behavior is undefined.
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001130
Hal Finkelb0407ba2014-07-18 15:51:28 +00001131``dereferenceable(<n>)``
1132 This indicates that the parameter or return pointer is dereferenceable. This
1133 attribute may only be applied to pointer typed parameters. A pointer that
1134 is dereferenceable can be loaded from speculatively without a risk of
1135 trapping. The number of bytes known to be dereferenceable must be provided
1136 in parentheses. It is legal for the number of bytes to be less than the
1137 size of the pointee type. The ``nonnull`` attribute does not imply
1138 dereferenceability (consider a pointer to one element past the end of an
1139 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1140 ``addrspace(0)`` (which is the default address space).
1141
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001142``dereferenceable_or_null(<n>)``
1143 This indicates that the parameter or return value isn't both
1144 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001145 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001146 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1147 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1148 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1149 and in other address spaces ``dereferenceable_or_null(<n>)``
1150 implies that a pointer is at least one of ``dereferenceable(<n>)``
1151 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001152 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001153 pointer typed parameters.
1154
Manman Renf46262e2016-03-29 17:37:21 +00001155``swiftself``
1156 This indicates that the parameter is the self/context parameter. This is not
1157 a valid attribute for return values and can only be applied to one
1158 parameter.
1159
Manman Ren9bfd0d02016-04-01 21:41:15 +00001160``swifterror``
1161 This attribute is motivated to model and optimize Swift error handling. It
1162 can be applied to a parameter with pointer to pointer type or a
1163 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer6c57f4f2016-09-10 19:42:53 +00001164 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1165 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1166 the parameter or the alloca) can only be loaded and stored from, or used as
1167 a ``swifterror`` argument. This is not a valid attribute for return values
1168 and can only be applied to one parameter.
Manman Ren9bfd0d02016-04-01 21:41:15 +00001169
1170 These constraints allow the calling convention to optimize access to
1171 ``swifterror`` variables by associating them with a specific register at
1172 call boundaries rather than placing them in memory. Since this does change
1173 the calling convention, a function which uses the ``swifterror`` attribute
1174 on a parameter is not ABI-compatible with one which does not.
1175
1176 These constraints also allow LLVM to assume that a ``swifterror`` argument
1177 does not alias any other memory visible within a function and that a
1178 ``swifterror`` alloca passed as an argument does not escape.
1179
Sean Silvab084af42012-12-07 10:36:55 +00001180.. _gc:
1181
Philip Reamesf80bbff2015-02-25 23:45:20 +00001182Garbage Collector Strategy Names
1183--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001184
Philip Reamesf80bbff2015-02-25 23:45:20 +00001185Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001186string:
1187
1188.. code-block:: llvm
1189
1190 define void @f() gc "name" { ... }
1191
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001192The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001193<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001194strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001195named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001196garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001197which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001198
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001199.. _prefixdata:
1200
1201Prefix Data
1202-----------
1203
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001204Prefix data is data associated with a function which the code
1205generator will emit immediately before the function's entrypoint.
1206The purpose of this feature is to allow frontends to associate
1207language-specific runtime metadata with specific functions and make it
1208available through the function pointer while still allowing the
1209function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001210
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001211To access the data for a given function, a program may bitcast the
1212function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001213index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001214the prefix data. For instance, take the example of a function annotated
1215with a single ``i32``,
1216
1217.. code-block:: llvm
1218
1219 define void @f() prefix i32 123 { ... }
1220
1221The prefix data can be referenced as,
1222
1223.. code-block:: llvm
1224
David Blaikie16a97eb2015-03-04 22:02:58 +00001225 %0 = bitcast void* () @f to i32*
1226 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001227 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001228
1229Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001230of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231beginning of the prefix data is aligned. This means that if the size
1232of the prefix data is not a multiple of the alignment size, the
1233function's entrypoint will not be aligned. If alignment of the
1234function's entrypoint is desired, padding must be added to the prefix
1235data.
1236
Sean Silvaa1190322015-08-06 22:56:48 +00001237A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001238to the ``available_externally`` linkage in that the data may be used by the
1239optimizers but will not be emitted in the object file.
1240
1241.. _prologuedata:
1242
1243Prologue Data
1244-------------
1245
1246The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1247be inserted prior to the function body. This can be used for enabling
1248function hot-patching and instrumentation.
1249
1250To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001251have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001252bytes which decode to a sequence of machine instructions, valid for the
1253module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001254the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001255the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001256definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001257makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001258
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001259A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001260which encodes the ``nop`` instruction:
1261
Renato Golin124f2592016-07-20 12:16:38 +00001262.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001263
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001264 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001265
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001266Generally prologue data can be formed by encoding a relative branch instruction
1267which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001268x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1269
Renato Golin124f2592016-07-20 12:16:38 +00001270.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001271
1272 %0 = type <{ i8, i8, i8* }>
1273
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001274 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001275
Sean Silvaa1190322015-08-06 22:56:48 +00001276A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001277to the ``available_externally`` linkage in that the data may be used by the
1278optimizers but will not be emitted in the object file.
1279
David Majnemer7fddecc2015-06-17 20:52:32 +00001280.. _personalityfn:
1281
1282Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001283--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001284
1285The ``personality`` attribute permits functions to specify what function
1286to use for exception handling.
1287
Bill Wendling63b88192013-02-06 06:52:58 +00001288.. _attrgrp:
1289
1290Attribute Groups
1291----------------
1292
1293Attribute groups are groups of attributes that are referenced by objects within
1294the IR. They are important for keeping ``.ll`` files readable, because a lot of
1295functions will use the same set of attributes. In the degenerative case of a
1296``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1297group will capture the important command line flags used to build that file.
1298
1299An attribute group is a module-level object. To use an attribute group, an
1300object references the attribute group's ID (e.g. ``#37``). An object may refer
1301to more than one attribute group. In that situation, the attributes from the
1302different groups are merged.
1303
1304Here is an example of attribute groups for a function that should always be
1305inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1306
1307.. code-block:: llvm
1308
1309 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001310 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001311
1312 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001313 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001314
1315 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1316 define void @f() #0 #1 { ... }
1317
Sean Silvab084af42012-12-07 10:36:55 +00001318.. _fnattrs:
1319
1320Function Attributes
1321-------------------
1322
1323Function attributes are set to communicate additional information about
1324a function. Function attributes are considered to be part of the
1325function, not of the function type, so functions with different function
1326attributes can have the same function type.
1327
1328Function attributes are simple keywords that follow the type specified.
1329If multiple attributes are needed, they are space separated. For
1330example:
1331
1332.. code-block:: llvm
1333
1334 define void @f() noinline { ... }
1335 define void @f() alwaysinline { ... }
1336 define void @f() alwaysinline optsize { ... }
1337 define void @f() optsize { ... }
1338
Sean Silvab084af42012-12-07 10:36:55 +00001339``alignstack(<n>)``
1340 This attribute indicates that, when emitting the prologue and
1341 epilogue, the backend should forcibly align the stack pointer.
1342 Specify the desired alignment, which must be a power of two, in
1343 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001344``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1345 This attribute indicates that the annotated function will always return at
1346 least a given number of bytes (or null). Its arguments are zero-indexed
1347 parameter numbers; if one argument is provided, then it's assumed that at
1348 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1349 returned pointer. If two are provided, then it's assumed that
1350 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1351 available. The referenced parameters must be integer types. No assumptions
1352 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001353``alwaysinline``
1354 This attribute indicates that the inliner should attempt to inline
1355 this function into callers whenever possible, ignoring any active
1356 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001357``builtin``
1358 This indicates that the callee function at a call site should be
1359 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001360 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001361 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001362 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001363``cold``
1364 This attribute indicates that this function is rarely called. When
1365 computing edge weights, basic blocks post-dominated by a cold
1366 function call are also considered to be cold; and, thus, given low
1367 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001368``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001369 In some parallel execution models, there exist operations that cannot be
1370 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001371 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001372
Justin Lebar58535b12016-02-17 17:46:41 +00001373 The ``convergent`` attribute may appear on functions or call/invoke
1374 instructions. When it appears on a function, it indicates that calls to
1375 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001376 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001377 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001378 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001379
Justin Lebar58535b12016-02-17 17:46:41 +00001380 When it appears on a call/invoke, the ``convergent`` attribute indicates
1381 that we should treat the call as though we're calling a convergent
1382 function. This is particularly useful on indirect calls; without this we
1383 may treat such calls as though the target is non-convergent.
1384
1385 The optimizer may remove the ``convergent`` attribute on functions when it
1386 can prove that the function does not execute any convergent operations.
1387 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1388 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001389``inaccessiblememonly``
1390 This attribute indicates that the function may only access memory that
1391 is not accessible by the module being compiled. This is a weaker form
Eli Friedman0f522bd2018-07-25 18:26:38 +00001392 of ``readnone``. If the function reads or writes other memory, the
1393 behavior is undefined.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001394``inaccessiblemem_or_argmemonly``
1395 This attribute indicates that the function may only access memory that is
1396 either not accessible by the module being compiled, or is pointed to
Eli Friedman0f522bd2018-07-25 18:26:38 +00001397 by its pointer arguments. This is a weaker form of ``argmemonly``. If the
1398 function reads or writes other memory, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001399``inlinehint``
1400 This attribute indicates that the source code contained a hint that
1401 inlining this function is desirable (such as the "inline" keyword in
1402 C/C++). It is just a hint; it imposes no requirements on the
1403 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001404``jumptable``
1405 This attribute indicates that the function should be added to a
1406 jump-instruction table at code-generation time, and that all address-taken
1407 references to this function should be replaced with a reference to the
1408 appropriate jump-instruction-table function pointer. Note that this creates
1409 a new pointer for the original function, which means that code that depends
1410 on function-pointer identity can break. So, any function annotated with
1411 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001412``minsize``
1413 This attribute suggests that optimization passes and code generator
1414 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001415 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001416 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001417``naked``
1418 This attribute disables prologue / epilogue emission for the
1419 function. This can have very system-specific consequences.
Sumanth Gundapaneni6af104e2017-07-28 22:26:22 +00001420``no-jump-tables``
1421 When this attribute is set to true, the jump tables and lookup tables that
1422 can be generated from a switch case lowering are disabled.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001423``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001424 This indicates that the callee function at a call site is not recognized as
1425 a built-in function. LLVM will retain the original call and not replace it
1426 with equivalent code based on the semantics of the built-in function, unless
1427 the call site uses the ``builtin`` attribute. This is valid at call sites
1428 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001429``noduplicate``
1430 This attribute indicates that calls to the function cannot be
1431 duplicated. A call to a ``noduplicate`` function may be moved
1432 within its parent function, but may not be duplicated within
1433 its parent function.
1434
1435 A function containing a ``noduplicate`` call may still
1436 be an inlining candidate, provided that the call is not
1437 duplicated by inlining. That implies that the function has
1438 internal linkage and only has one call site, so the original
1439 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001440``noimplicitfloat``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001441 This attributes disables implicit floating-point instructions.
Sean Silvab084af42012-12-07 10:36:55 +00001442``noinline``
1443 This attribute indicates that the inliner should never inline this
1444 function in any situation. This attribute may not be used together
1445 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001446``nonlazybind``
1447 This attribute suppresses lazy symbol binding for the function. This
1448 may make calls to the function faster, at the cost of extra program
1449 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001450``noredzone``
1451 This attribute indicates that the code generator should not use a
1452 red zone, even if the target-specific ABI normally permits it.
Kristina Brooks312fcc12018-10-18 03:14:37 +00001453``indirect-tls-seg-refs``
1454 This attribute indicates that the code generator should not use
1455 direct TLS access through segment registers, even if the
1456 target-specific ABI normally permits it.
Sean Silvab084af42012-12-07 10:36:55 +00001457``noreturn``
1458 This function attribute indicates that the function never returns
1459 normally. This produces undefined behavior at runtime if the
1460 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001461``norecurse``
1462 This function attribute indicates that the function does not call itself
1463 either directly or indirectly down any possible call path. This produces
1464 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001465``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001466 This function attribute indicates that the function never raises an
1467 exception. If the function does raise an exception, its runtime
1468 behavior is undefined. However, functions marked nounwind may still
1469 trap or generate asynchronous exceptions. Exception handling schemes
1470 that are recognized by LLVM to handle asynchronous exceptions, such
1471 as SEH, will still provide their implementation defined semantics.
Manoj Gupta77eeac32018-07-09 22:27:23 +00001472``"null-pointer-is-valid"``
1473 If ``"null-pointer-is-valid"`` is set to ``"true"``, then ``null`` address
1474 in address-space 0 is considered to be a valid address for memory loads and
1475 stores. Any analysis or optimization should not treat dereferencing a
1476 pointer to ``null`` as undefined behavior in this function.
1477 Note: Comparing address of a global variable to ``null`` may still
1478 evaluate to false because of a limitation in querying this attribute inside
1479 constant expressions.
Matt Morehouse31819412018-03-22 19:50:10 +00001480``optforfuzzing``
1481 This attribute indicates that this function should be optimized
1482 for maximum fuzzing signal.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001483``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001484 This function attribute indicates that most optimization passes will skip
1485 this function, with the exception of interprocedural optimization passes.
1486 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001487 This attribute cannot be used together with the ``alwaysinline``
1488 attribute; this attribute is also incompatible
1489 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001490
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001491 This attribute requires the ``noinline`` attribute to be specified on
1492 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001493 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001494 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001495``optsize``
1496 This attribute suggests that optimization passes and code generator
1497 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001498 and otherwise do optimizations specifically to reduce code size as
1499 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001500``"patchable-function"``
1501 This attribute tells the code generator that the code
1502 generated for this function needs to follow certain conventions that
1503 make it possible for a runtime function to patch over it later.
1504 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001505 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001506
1507 * ``"prologue-short-redirect"`` - This style of patchable
1508 function is intended to support patching a function prologue to
1509 redirect control away from the function in a thread safe
1510 manner. It guarantees that the first instruction of the
1511 function will be large enough to accommodate a short jump
1512 instruction, and will be sufficiently aligned to allow being
1513 fully changed via an atomic compare-and-swap instruction.
1514 While the first requirement can be satisfied by inserting large
1515 enough NOP, LLVM can and will try to re-purpose an existing
1516 instruction (i.e. one that would have to be emitted anyway) as
1517 the patchable instruction larger than a short jump.
1518
1519 ``"prologue-short-redirect"`` is currently only supported on
1520 x86-64.
1521
1522 This attribute by itself does not imply restrictions on
1523 inter-procedural optimizations. All of the semantic effects the
1524 patching may have to be separately conveyed via the linkage type.
whitequarked54b4a2017-06-21 18:46:50 +00001525``"probe-stack"``
1526 This attribute indicates that the function will trigger a guard region
1527 in the end of the stack. It ensures that accesses to the stack must be
1528 no further apart than the size of the guard region to a previous
1529 access of the stack. It takes one required string value, the name of
1530 the stack probing function that will be called.
1531
1532 If a function that has a ``"probe-stack"`` attribute is inlined into
1533 a function with another ``"probe-stack"`` attribute, the resulting
1534 function has the ``"probe-stack"`` attribute of the caller. If a
1535 function that has a ``"probe-stack"`` attribute is inlined into a
1536 function that has no ``"probe-stack"`` attribute at all, the resulting
1537 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvab084af42012-12-07 10:36:55 +00001538``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001539 On a function, this attribute indicates that the function computes its
1540 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001541 without dereferencing any pointer arguments or otherwise accessing
1542 any mutable state (e.g. memory, control registers, etc) visible to
1543 caller functions. It does not write through any pointer arguments
1544 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das5be2e842017-02-13 23:19:07 +00001545 to callers. This means while it cannot unwind exceptions by calling
1546 the ``C++`` exception throwing methods (since they write to memory), there may
1547 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1548 visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001549
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001550 On an argument, this attribute indicates that the function does not
1551 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001552 memory that the pointer points to if accessed through other pointers.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001553
1554 If a readnone function reads or writes memory visible to the program, or
1555 has other side-effects, the behavior is undefined. If a function reads from
1556 or writes to a readnone pointer argument, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001557``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001558 On a function, this attribute indicates that the function does not write
1559 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001560 modify any state (e.g. memory, control registers, etc) visible to
1561 caller functions. It may dereference pointer arguments and read
1562 state that may be set in the caller. A readonly function always
1563 returns the same value (or unwinds an exception identically) when
Sanjoy Das5be2e842017-02-13 23:19:07 +00001564 called with the same set of arguments and global state. This means while it
1565 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1566 (since they write to memory), there may be non-``C++`` mechanisms that throw
1567 exceptions without writing to LLVM visible memory.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001568
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001569 On an argument, this attribute indicates that the function does not write
1570 through this pointer argument, even though it may write to the memory that
1571 the pointer points to.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001572
1573 If a readonly function writes memory visible to the program, or
1574 has other side-effects, the behavior is undefined. If a function writes to
1575 a readonly pointer argument, the behavior is undefined.
whitequark08b20352017-06-22 23:22:36 +00001576``"stack-probe-size"``
1577 This attribute controls the behavior of stack probes: either
1578 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1579 It defines the size of the guard region. It ensures that if the function
1580 may use more stack space than the size of the guard region, stack probing
1581 sequence will be emitted. It takes one required integer value, which
1582 is 4096 by default.
1583
1584 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1585 a function with another ``"stack-probe-size"`` attribute, the resulting
1586 function has the ``"stack-probe-size"`` attribute that has the lower
1587 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1588 inlined into a function that has no ``"stack-probe-size"`` attribute
1589 at all, the resulting function has the ``"stack-probe-size"`` attribute
1590 of the callee.
Hans Wennborg89c35fc2018-02-23 13:46:25 +00001591``"no-stack-arg-probe"``
1592 This attribute disables ABI-required stack probes, if any.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001593``writeonly``
1594 On a function, this attribute indicates that the function may write to but
1595 does not read from memory.
1596
1597 On an argument, this attribute indicates that the function may write to but
1598 does not read through this pointer argument (even though it may read from
1599 the memory that the pointer points to).
Eli Friedman0f522bd2018-07-25 18:26:38 +00001600
1601 If a writeonly function reads memory visible to the program, or
1602 has other side-effects, the behavior is undefined. If a function reads
1603 from a writeonly pointer argument, the behavior is undefined.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001604``argmemonly``
1605 This attribute indicates that the only memory accesses inside function are
1606 loads and stores from objects pointed to by its pointer-typed arguments,
1607 with arbitrary offsets. Or in other words, all memory operations in the
1608 function can refer to memory only using pointers based on its function
1609 arguments.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001610
Igor Laevsky39d662f2015-07-11 10:30:36 +00001611 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1612 in order to specify that function reads only from its arguments.
Eli Friedman0f522bd2018-07-25 18:26:38 +00001613
1614 If an argmemonly function reads or writes memory other than the pointer
1615 arguments, or has other side-effects, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00001616``returns_twice``
1617 This attribute indicates that this function can return twice. The C
1618 ``setjmp`` is an example of such a function. The compiler disables
1619 some optimizations (like tail calls) in the caller of these
1620 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001621``safestack``
1622 This attribute indicates that
1623 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1624 protection is enabled for this function.
1625
1626 If a function that has a ``safestack`` attribute is inlined into a
1627 function that doesn't have a ``safestack`` attribute or which has an
1628 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1629 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001630``sanitize_address``
1631 This attribute indicates that AddressSanitizer checks
1632 (dynamic address safety analysis) are enabled for this function.
1633``sanitize_memory``
1634 This attribute indicates that MemorySanitizer checks (dynamic detection
1635 of accesses to uninitialized memory) are enabled for this function.
1636``sanitize_thread``
1637 This attribute indicates that ThreadSanitizer checks
1638 (dynamic thread safety analysis) are enabled for this function.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00001639``sanitize_hwaddress``
1640 This attribute indicates that HWAddressSanitizer checks
1641 (dynamic address safety analysis based on tagged pointers) are enabled for
1642 this function.
Chandler Carruth664aa862018-09-04 12:38:00 +00001643``speculative_load_hardening``
1644 This attribute indicates that
1645 `Speculative Load Hardening <https://llvm.org/docs/SpeculativeLoadHardening.html>`_
1646 should be enabled for the function body. This is a best-effort attempt to
1647 mitigate all known speculative execution information leak vulnerabilities
1648 that are based on the fundamental principles of modern processors'
1649 speculative execution. These vulnerabilities are classified as "Spectre
1650 variant #1" vulnerabilities typically. Notably, this does not attempt to
1651 mitigate any vulnerabilities where the speculative execution and/or
1652 prediction devices of specific processors can be *completely* undermined
1653 (such as "Branch Target Injection", a.k.a, "Spectre variant #2"). Instead,
1654 this is a target-independent request to harden against the completely
1655 generic risk posed by speculative execution to incorrectly load secret data,
1656 making it available to some micro-architectural side-channel for information
1657 leak. For a processor without any speculative execution or predictors, this
1658 is expected to be a no-op.
1659
1660 When inlining, the attribute is sticky. Inlining a function that carries
1661 this attribute will cause the caller to gain the attribute. This is intended
1662 to provide a maximally conservative model where the code in a function
1663 annotated with this attribute will always (even after inlining) end up
1664 hardened.
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001665``speculatable``
1666 This function attribute indicates that the function does not have any
1667 effects besides calculating its result and does not have undefined behavior.
1668 Note that ``speculatable`` is not enough to conclude that along any
Xin Tongc7180202017-05-02 23:24:12 +00001669 particular execution path the number of calls to this function will not be
Matt Arsenaultb19b57e2017-04-28 20:25:27 +00001670 externally observable. This attribute is only valid on functions
1671 and declarations, not on individual call sites. If a function is
1672 incorrectly marked as speculatable and really does exhibit
1673 undefined behavior, the undefined behavior may be observed even
1674 if the call site is dead code.
1675
Sean Silvab084af42012-12-07 10:36:55 +00001676``ssp``
1677 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001678 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001679 placed on the stack before the local variables that's checked upon
1680 return from the function to see if it has been overwritten. A
1681 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001682 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001683
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001684 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1685 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1686 - Calls to alloca() with variable sizes or constant sizes greater than
1687 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001688
Josh Magee24c7f062014-02-01 01:36:16 +00001689 Variables that are identified as requiring a protector will be arranged
1690 on the stack such that they are adjacent to the stack protector guard.
1691
Sean Silvab084af42012-12-07 10:36:55 +00001692 If a function that has an ``ssp`` attribute is inlined into a
1693 function that doesn't have an ``ssp`` attribute, then the resulting
1694 function will have an ``ssp`` attribute.
1695``sspreq``
1696 This attribute indicates that the function should *always* emit a
1697 stack smashing protector. This overrides the ``ssp`` function
1698 attribute.
1699
Josh Magee24c7f062014-02-01 01:36:16 +00001700 Variables that are identified as requiring a protector will be arranged
1701 on the stack such that they are adjacent to the stack protector guard.
1702 The specific layout rules are:
1703
1704 #. Large arrays and structures containing large arrays
1705 (``>= ssp-buffer-size``) are closest to the stack protector.
1706 #. Small arrays and structures containing small arrays
1707 (``< ssp-buffer-size``) are 2nd closest to the protector.
1708 #. Variables that have had their address taken are 3rd closest to the
1709 protector.
1710
Sean Silvab084af42012-12-07 10:36:55 +00001711 If a function that has an ``sspreq`` attribute is inlined into a
1712 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001713 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1714 an ``sspreq`` attribute.
1715``sspstrong``
1716 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001717 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001718 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001719 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001720
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001721 - Arrays of any size and type
1722 - Aggregates containing an array of any size and type.
1723 - Calls to alloca().
1724 - Local variables that have had their address taken.
1725
Josh Magee24c7f062014-02-01 01:36:16 +00001726 Variables that are identified as requiring a protector will be arranged
1727 on the stack such that they are adjacent to the stack protector guard.
1728 The specific layout rules are:
1729
1730 #. Large arrays and structures containing large arrays
1731 (``>= ssp-buffer-size``) are closest to the stack protector.
1732 #. Small arrays and structures containing small arrays
1733 (``< ssp-buffer-size``) are 2nd closest to the protector.
1734 #. Variables that have had their address taken are 3rd closest to the
1735 protector.
1736
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001737 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001738
1739 If a function that has an ``sspstrong`` attribute is inlined into a
1740 function that doesn't have an ``sspstrong`` attribute, then the
1741 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001742``strictfp``
1743 This attribute indicates that the function was called from a scope that
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00001744 requires strict floating-point semantics. LLVM will not attempt any
1745 optimizations that require assumptions about the floating-point rounding
1746 mode or that might alter the state of floating-point status flags that
Andrew Kaylor53a5fbb2017-08-14 21:15:13 +00001747 might otherwise be set or cleared by calling this function.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001748``"thunk"``
1749 This attribute indicates that the function will delegate to some other
1750 function with a tail call. The prototype of a thunk should not be used for
1751 optimization purposes. The caller is expected to cast the thunk prototype to
1752 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001753``uwtable``
1754 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001755 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001756 show that no exceptions passes by it. This is normally the case for
1757 the ELF x86-64 abi, but it can be disabled for some compilation
1758 units.
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001759``nocf_check``
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001760 This attribute indicates that no control-flow check will be performed on
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001761 the attributed entity. It disables -fcf-protection=<> for a specific
1762 entity to fine grain the HW control flow protection mechanism. The flag
Hiroshi Inouec36a1f12018-06-15 05:10:09 +00001763 is target independent and currently appertains to a function or function
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +00001764 pointer.
Vlad Tsyrklevichd17f61e2018-04-03 20:10:40 +00001765``shadowcallstack``
1766 This attribute indicates that the ShadowCallStack checks are enabled for
1767 the function. The instrumentation checks that the return address for the
1768 function has not changed between the function prolog and eiplog. It is
1769 currently x86_64-specific.
Sean Silvab084af42012-12-07 10:36:55 +00001770
Javed Absarf3d79042017-05-11 12:28:08 +00001771.. _glattrs:
1772
1773Global Attributes
1774-----------------
1775
1776Attributes may be set to communicate additional information about a global variable.
1777Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1778are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001779
1780.. _opbundles:
1781
1782Operand Bundles
1783---------------
1784
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001785Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001786with certain LLVM instructions (currently only ``call`` s and
1787``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001788incorrect and will change program semantics.
1789
1790Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001791
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001792 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001793 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1794 bundle operand ::= SSA value
1795 tag ::= string constant
1796
1797Operand bundles are **not** part of a function's signature, and a
1798given function may be called from multiple places with different kinds
1799of operand bundles. This reflects the fact that the operand bundles
1800are conceptually a part of the ``call`` (or ``invoke``), not the
1801callee being dispatched to.
1802
1803Operand bundles are a generic mechanism intended to support
1804runtime-introspection-like functionality for managed languages. While
1805the exact semantics of an operand bundle depend on the bundle tag,
1806there are certain limitations to how much the presence of an operand
1807bundle can influence the semantics of a program. These restrictions
1808are described as the semantics of an "unknown" operand bundle. As
1809long as the behavior of an operand bundle is describable within these
1810restrictions, LLVM does not need to have special knowledge of the
1811operand bundle to not miscompile programs containing it.
1812
David Majnemer34cacb42015-10-22 01:46:38 +00001813- The bundle operands for an unknown operand bundle escape in unknown
1814 ways before control is transferred to the callee or invokee.
1815- Calls and invokes with operand bundles have unknown read / write
1816 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001817 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001818 callsite specific attributes.
1819- An operand bundle at a call site cannot change the implementation
1820 of the called function. Inter-procedural optimizations work as
1821 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001822
Sanjoy Dascdafd842015-11-11 21:38:02 +00001823More specific types of operand bundles are described below.
1824
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001825.. _deopt_opbundles:
1826
Sanjoy Dascdafd842015-11-11 21:38:02 +00001827Deoptimization Operand Bundles
1828^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1829
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001830Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001831operand bundle tag. These operand bundles represent an alternate
1832"safe" continuation for the call site they're attached to, and can be
1833used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001834specified call site. There can be at most one ``"deopt"`` operand
1835bundle attached to a call site. Exact details of deoptimization is
1836out of scope for the language reference, but it usually involves
1837rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001838
1839From the compiler's perspective, deoptimization operand bundles make
1840the call sites they're attached to at least ``readonly``. They read
1841through all of their pointer typed operands (even if they're not
1842otherwise escaped) and the entire visible heap. Deoptimization
1843operand bundles do not capture their operands except during
1844deoptimization, in which case control will not be returned to the
1845compiled frame.
1846
Sanjoy Das2d161452015-11-18 06:23:38 +00001847The inliner knows how to inline through calls that have deoptimization
1848operand bundles. Just like inlining through a normal call site
1849involves composing the normal and exceptional continuations, inlining
1850through a call site with a deoptimization operand bundle needs to
1851appropriately compose the "safe" deoptimization continuation. The
1852inliner does this by prepending the parent's deoptimization
1853continuation to every deoptimization continuation in the inlined body.
1854E.g. inlining ``@f`` into ``@g`` in the following example
1855
1856.. code-block:: llvm
1857
1858 define void @f() {
1859 call void @x() ;; no deopt state
1860 call void @y() [ "deopt"(i32 10) ]
1861 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1862 ret void
1863 }
1864
1865 define void @g() {
1866 call void @f() [ "deopt"(i32 20) ]
1867 ret void
1868 }
1869
1870will result in
1871
1872.. code-block:: llvm
1873
1874 define void @g() {
1875 call void @x() ;; still no deopt state
1876 call void @y() [ "deopt"(i32 20, i32 10) ]
1877 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1878 ret void
1879 }
1880
1881It is the frontend's responsibility to structure or encode the
1882deoptimization state in a way that syntactically prepending the
1883caller's deoptimization state to the callee's deoptimization state is
1884semantically equivalent to composing the caller's deoptimization
1885continuation after the callee's deoptimization continuation.
1886
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001887.. _ob_funclet:
1888
David Majnemer3bb88c02015-12-15 21:27:27 +00001889Funclet Operand Bundles
1890^^^^^^^^^^^^^^^^^^^^^^^
1891
1892Funclet operand bundles are characterized by the ``"funclet"``
1893operand bundle tag. These operand bundles indicate that a call site
1894is within a particular funclet. There can be at most one
1895``"funclet"`` operand bundle attached to a call site and it must have
1896exactly one bundle operand.
1897
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001898If any funclet EH pads have been "entered" but not "exited" (per the
1899`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1900it is undefined behavior to execute a ``call`` or ``invoke`` which:
1901
1902* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1903 intrinsic, or
1904* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1905 not-yet-exited funclet EH pad.
1906
1907Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1908executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1909
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001910GC Transition Operand Bundles
1911^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1912
1913GC transition operand bundles are characterized by the
1914``"gc-transition"`` operand bundle tag. These operand bundles mark a
1915call as a transition between a function with one GC strategy to a
1916function with a different GC strategy. If coordinating the transition
1917between GC strategies requires additional code generation at the call
1918site, these bundles may contain any values that are needed by the
1919generated code. For more details, see :ref:`GC Transitions
1920<gc_transition_args>`.
1921
Sean Silvab084af42012-12-07 10:36:55 +00001922.. _moduleasm:
1923
1924Module-Level Inline Assembly
1925----------------------------
1926
1927Modules may contain "module-level inline asm" blocks, which corresponds
1928to the GCC "file scope inline asm" blocks. These blocks are internally
1929concatenated by LLVM and treated as a single unit, but may be separated
1930in the ``.ll`` file if desired. The syntax is very simple:
1931
1932.. code-block:: llvm
1933
1934 module asm "inline asm code goes here"
1935 module asm "more can go here"
1936
1937The strings can contain any character by escaping non-printable
1938characters. The escape sequence used is simply "\\xx" where "xx" is the
1939two digit hex code for the number.
1940
James Y Knightbc832ed2015-07-08 18:08:36 +00001941Note that the assembly string *must* be parseable by LLVM's integrated assembler
1942(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001943
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001944.. _langref_datalayout:
1945
Sean Silvab084af42012-12-07 10:36:55 +00001946Data Layout
1947-----------
1948
1949A module may specify a target specific data layout string that specifies
1950how data is to be laid out in memory. The syntax for the data layout is
1951simply:
1952
1953.. code-block:: llvm
1954
1955 target datalayout = "layout specification"
1956
1957The *layout specification* consists of a list of specifications
1958separated by the minus sign character ('-'). Each specification starts
1959with a letter and may include other information after the letter to
1960define some aspect of the data layout. The specifications accepted are
1961as follows:
1962
1963``E``
1964 Specifies that the target lays out data in big-endian form. That is,
1965 the bits with the most significance have the lowest address
1966 location.
1967``e``
1968 Specifies that the target lays out data in little-endian form. That
1969 is, the bits with the least significance have the lowest address
1970 location.
1971``S<size>``
1972 Specifies the natural alignment of the stack in bits. Alignment
1973 promotion of stack variables is limited to the natural stack
1974 alignment to avoid dynamic stack realignment. The stack alignment
1975 must be a multiple of 8-bits. If omitted, the natural stack
1976 alignment defaults to "unspecified", which does not prevent any
1977 alignment promotions.
Dylan McKayced2fe62018-02-19 09:56:22 +00001978``P<address space>``
1979 Specifies the address space that corresponds to program memory.
1980 Harvard architectures can use this to specify what space LLVM
1981 should place things such as functions into. If omitted, the
1982 program memory space defaults to the default address space of 0,
1983 which corresponds to a Von Neumann architecture that has code
1984 and data in the same space.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001985``A<address space>``
Dylan McKayced2fe62018-02-19 09:56:22 +00001986 Specifies the address space of objects created by '``alloca``'.
Matt Arsenault3c1fc762017-04-10 22:27:50 +00001987 Defaults to the default address space of 0.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001988``p[n]:<size>:<abi>:<pref>:<idx>``
Sean Silvab084af42012-12-07 10:36:55 +00001989 This specifies the *size* of a pointer and its ``<abi>`` and
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001990 ``<pref>``\erred alignments for address space ``n``. The fourth parameter
1991 ``<idx>`` is a size of index that used for address calculation. If not
1992 specified, the default index size is equal to the pointer size. All sizes
1993 are in bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001994 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001995 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001996``i<size>:<abi>:<pref>``
1997 This specifies the alignment for an integer type of a given bit
1998 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1999``v<size>:<abi>:<pref>``
2000 This specifies the alignment for a vector type of a given bit
2001 ``<size>``.
2002``f<size>:<abi>:<pref>``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002003 This specifies the alignment for a floating-point type of a given bit
Sean Silvab084af42012-12-07 10:36:55 +00002004 ``<size>``. Only values of ``<size>`` that are supported by the target
2005 will work. 32 (float) and 64 (double) are supported on all targets; 80
2006 or 128 (different flavors of long double) are also supported on some
2007 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00002008``a:<abi>:<pref>``
2009 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00002010``m:<mangling>``
Reid Klecknerf8b51c52018-03-16 20:13:32 +00002011 If present, specifies that llvm names are mangled in the output. Symbols
2012 prefixed with the mangling escape character ``\01`` are passed through
2013 directly to the assembler without the escape character. The mangling style
Hans Wennborgd4245ac2014-01-15 02:49:17 +00002014 options are
2015
2016 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
2017 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
2018 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
2019 symbols get a ``_`` prefix.
Reid Klecknerf8b51c52018-03-16 20:13:32 +00002020 * ``x``: Windows x86 COFF mangling: Private symbols get the usual prefix.
2021 Regular C symbols get a ``_`` prefix. Functions with ``__stdcall``,
2022 ``__fastcall``, and ``__vectorcall`` have custom mangling that appends
2023 ``@N`` where N is the number of bytes used to pass parameters. C++ symbols
2024 starting with ``?`` are not mangled in any way.
2025 * ``w``: Windows COFF mangling: Similar to ``x``, except that normal C
2026 symbols do not receive a ``_`` prefix.
Sean Silvab084af42012-12-07 10:36:55 +00002027``n<size1>:<size2>:<size3>...``
2028 This specifies a set of native integer widths for the target CPU in
2029 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
2030 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
2031 this set are considered to support most general arithmetic operations
2032 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00002033``ni:<address space0>:<address space1>:<address space2>...``
2034 This specifies pointer types with the specified address spaces
2035 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
2036 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00002037
Rafael Espindolaabdd7262014-01-06 21:40:24 +00002038On every specification that takes a ``<abi>:<pref>``, specifying the
2039``<pref>`` alignment is optional. If omitted, the preceding ``:``
2040should be omitted too and ``<pref>`` will be equal to ``<abi>``.
2041
Sean Silvab084af42012-12-07 10:36:55 +00002042When constructing the data layout for a given target, LLVM starts with a
2043default set of specifications which are then (possibly) overridden by
2044the specifications in the ``datalayout`` keyword. The default
2045specifications are given in this list:
2046
2047- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00002048- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
2049- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
2050 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002051- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00002052- ``i1:8:8`` - i1 is 8-bit (byte) aligned
2053- ``i8:8:8`` - i8 is 8-bit (byte) aligned
2054- ``i16:16:16`` - i16 is 16-bit aligned
2055- ``i32:32:32`` - i32 is 32-bit aligned
2056- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
2057 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002058- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002059- ``f32:32:32`` - float is 32-bit aligned
2060- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00002061- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002062- ``v64:64:64`` - 64-bit vector is 64-bit aligned
2063- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00002064- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00002065
2066When LLVM is determining the alignment for a given type, it uses the
2067following rules:
2068
2069#. If the type sought is an exact match for one of the specifications,
2070 that specification is used.
2071#. If no match is found, and the type sought is an integer type, then
2072 the smallest integer type that is larger than the bitwidth of the
2073 sought type is used. If none of the specifications are larger than
2074 the bitwidth then the largest integer type is used. For example,
2075 given the default specifications above, the i7 type will use the
2076 alignment of i8 (next largest) while both i65 and i256 will use the
2077 alignment of i64 (largest specified).
2078#. If no match is found, and the type sought is a vector type, then the
2079 largest vector type that is smaller than the sought vector type will
2080 be used as a fall back. This happens because <128 x double> can be
2081 implemented in terms of 64 <2 x double>, for example.
2082
2083The function of the data layout string may not be what you expect.
2084Notably, this is not a specification from the frontend of what alignment
2085the code generator should use.
2086
2087Instead, if specified, the target data layout is required to match what
2088the ultimate *code generator* expects. This string is used by the
2089mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00002090what the ultimate code generator uses. There is no way to generate IR
2091that does not embed this target-specific detail into the IR. If you
2092don't specify the string, the default specifications will be used to
2093generate a Data Layout and the optimization phases will operate
2094accordingly and introduce target specificity into the IR with respect to
2095these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00002096
Bill Wendling5cc90842013-10-18 23:41:25 +00002097.. _langref_triple:
2098
2099Target Triple
2100-------------
2101
2102A module may specify a target triple string that describes the target
2103host. The syntax for the target triple is simply:
2104
2105.. code-block:: llvm
2106
2107 target triple = "x86_64-apple-macosx10.7.0"
2108
2109The *target triple* string consists of a series of identifiers delimited
2110by the minus sign character ('-'). The canonical forms are:
2111
2112::
2113
2114 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2115 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2116
2117This information is passed along to the backend so that it generates
2118code for the proper architecture. It's possible to override this on the
2119command line with the ``-mtriple`` command line option.
2120
Sean Silvab084af42012-12-07 10:36:55 +00002121.. _pointeraliasing:
2122
2123Pointer Aliasing Rules
2124----------------------
2125
2126Any memory access must be done through a pointer value associated with
2127an address range of the memory access, otherwise the behavior is
2128undefined. Pointer values are associated with address ranges according
2129to the following rules:
2130
2131- A pointer value is associated with the addresses associated with any
2132 value it is *based* on.
2133- An address of a global variable is associated with the address range
2134 of the variable's storage.
2135- The result value of an allocation instruction is associated with the
2136 address range of the allocated storage.
2137- A null pointer in the default address-space is associated with no
2138 address.
2139- An integer constant other than zero or a pointer value returned from
2140 a function not defined within LLVM may be associated with address
2141 ranges allocated through mechanisms other than those provided by
2142 LLVM. Such ranges shall not overlap with any ranges of addresses
2143 allocated by mechanisms provided by LLVM.
2144
2145A pointer value is *based* on another pointer value according to the
2146following rules:
2147
Sanjoy Das6d489492017-09-13 18:49:22 +00002148- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2149 the pointer-typed operand of the ``getelementptr``.
2150- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2151 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2152 of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00002153- The result value of a ``bitcast`` is *based* on the operand of the
2154 ``bitcast``.
2155- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2156 values that contribute (directly or indirectly) to the computation of
2157 the pointer's value.
2158- The "*based* on" relationship is transitive.
2159
2160Note that this definition of *"based"* is intentionally similar to the
2161definition of *"based"* in C99, though it is slightly weaker.
2162
2163LLVM IR does not associate types with memory. The result type of a
2164``load`` merely indicates the size and alignment of the memory from
2165which to load, as well as the interpretation of the value. The first
2166operand type of a ``store`` similarly only indicates the size and
2167alignment of the store.
2168
2169Consequently, type-based alias analysis, aka TBAA, aka
2170``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2171:ref:`Metadata <metadata>` may be used to encode additional information
2172which specialized optimization passes may use to implement type-based
2173alias analysis.
2174
2175.. _volatile:
2176
2177Volatile Memory Accesses
2178------------------------
2179
2180Certain memory accesses, such as :ref:`load <i_load>`'s,
2181:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2182marked ``volatile``. The optimizers must not change the number of
2183volatile operations or change their order of execution relative to other
2184volatile operations. The optimizers *may* change the order of volatile
2185operations relative to non-volatile operations. This is not Java's
2186"volatile" and has no cross-thread synchronization behavior.
2187
Andrew Trick89fc5a62013-01-30 21:19:35 +00002188IR-level volatile loads and stores cannot safely be optimized into
2189llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2190flagged volatile. Likewise, the backend should never split or merge
2191target-legal volatile load/store instructions.
2192
Andrew Trick7e6f9282013-01-31 00:49:39 +00002193.. admonition:: Rationale
2194
2195 Platforms may rely on volatile loads and stores of natively supported
2196 data width to be executed as single instruction. For example, in C
2197 this holds for an l-value of volatile primitive type with native
2198 hardware support, but not necessarily for aggregate types. The
2199 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002200 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002201 do not violate the frontend's contract with the language.
2202
Sean Silvab084af42012-12-07 10:36:55 +00002203.. _memmodel:
2204
2205Memory Model for Concurrent Operations
2206--------------------------------------
2207
2208The LLVM IR does not define any way to start parallel threads of
2209execution or to register signal handlers. Nonetheless, there are
2210platform-specific ways to create them, and we define LLVM IR's behavior
2211in their presence. This model is inspired by the C++0x memory model.
2212
2213For a more informal introduction to this model, see the :doc:`Atomics`.
2214
2215We define a *happens-before* partial order as the least partial order
2216that
2217
2218- Is a superset of single-thread program order, and
2219- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2220 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2221 techniques, like pthread locks, thread creation, thread joining,
2222 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2223 Constraints <ordering>`).
2224
2225Note that program order does not introduce *happens-before* edges
2226between a thread and signals executing inside that thread.
2227
2228Every (defined) read operation (load instructions, memcpy, atomic
2229loads/read-modify-writes, etc.) R reads a series of bytes written by
2230(defined) write operations (store instructions, atomic
2231stores/read-modify-writes, memcpy, etc.). For the purposes of this
2232section, initialized globals are considered to have a write of the
2233initializer which is atomic and happens before any other read or write
2234of the memory in question. For each byte of a read R, R\ :sub:`byte`
2235may see any write to the same byte, except:
2236
2237- If write\ :sub:`1` happens before write\ :sub:`2`, and
2238 write\ :sub:`2` happens before R\ :sub:`byte`, then
2239 R\ :sub:`byte` does not see write\ :sub:`1`.
2240- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2241 R\ :sub:`byte` does not see write\ :sub:`3`.
2242
2243Given that definition, R\ :sub:`byte` is defined as follows:
2244
2245- If R is volatile, the result is target-dependent. (Volatile is
2246 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002247 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002248 like normal memory. It does not generally provide cross-thread
2249 synchronization.)
2250- Otherwise, if there is no write to the same byte that happens before
2251 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2252- Otherwise, if R\ :sub:`byte` may see exactly one write,
2253 R\ :sub:`byte` returns the value written by that write.
2254- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2255 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2256 Memory Ordering Constraints <ordering>` section for additional
2257 constraints on how the choice is made.
2258- Otherwise R\ :sub:`byte` returns ``undef``.
2259
2260R returns the value composed of the series of bytes it read. This
2261implies that some bytes within the value may be ``undef`` **without**
2262the entire value being ``undef``. Note that this only defines the
2263semantics of the operation; it doesn't mean that targets will emit more
2264than one instruction to read the series of bytes.
2265
2266Note that in cases where none of the atomic intrinsics are used, this
2267model places only one restriction on IR transformations on top of what
2268is required for single-threaded execution: introducing a store to a byte
2269which might not otherwise be stored is not allowed in general.
2270(Specifically, in the case where another thread might write to and read
2271from an address, introducing a store can change a load that may see
2272exactly one write into a load that may see multiple writes.)
2273
2274.. _ordering:
2275
2276Atomic Memory Ordering Constraints
2277----------------------------------
2278
2279Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2280:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2281:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002282ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002283the same address they *synchronize with*. These semantics are borrowed
2284from Java and C++0x, but are somewhat more colloquial. If these
2285descriptions aren't precise enough, check those specs (see spec
2286references in the :doc:`atomics guide <Atomics>`).
2287:ref:`fence <i_fence>` instructions treat these orderings somewhat
2288differently since they don't take an address. See that instruction's
2289documentation for details.
2290
2291For a simpler introduction to the ordering constraints, see the
2292:doc:`Atomics`.
2293
2294``unordered``
2295 The set of values that can be read is governed by the happens-before
2296 partial order. A value cannot be read unless some operation wrote
2297 it. This is intended to provide a guarantee strong enough to model
2298 Java's non-volatile shared variables. This ordering cannot be
2299 specified for read-modify-write operations; it is not strong enough
2300 to make them atomic in any interesting way.
2301``monotonic``
2302 In addition to the guarantees of ``unordered``, there is a single
2303 total order for modifications by ``monotonic`` operations on each
2304 address. All modification orders must be compatible with the
2305 happens-before order. There is no guarantee that the modification
2306 orders can be combined to a global total order for the whole program
2307 (and this often will not be possible). The read in an atomic
2308 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2309 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2310 order immediately before the value it writes. If one atomic read
2311 happens before another atomic read of the same address, the later
2312 read must see the same value or a later value in the address's
2313 modification order. This disallows reordering of ``monotonic`` (or
2314 stronger) operations on the same address. If an address is written
2315 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2316 read that address repeatedly, the other threads must eventually see
2317 the write. This corresponds to the C++0x/C1x
2318 ``memory_order_relaxed``.
2319``acquire``
2320 In addition to the guarantees of ``monotonic``, a
2321 *synchronizes-with* edge may be formed with a ``release`` operation.
2322 This is intended to model C++'s ``memory_order_acquire``.
2323``release``
2324 In addition to the guarantees of ``monotonic``, if this operation
2325 writes a value which is subsequently read by an ``acquire``
2326 operation, it *synchronizes-with* that operation. (This isn't a
2327 complete description; see the C++0x definition of a release
2328 sequence.) This corresponds to the C++0x/C1x
2329 ``memory_order_release``.
2330``acq_rel`` (acquire+release)
2331 Acts as both an ``acquire`` and ``release`` operation on its
2332 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2333``seq_cst`` (sequentially consistent)
2334 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002335 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002336 writes), there is a global total order on all
2337 sequentially-consistent operations on all addresses, which is
2338 consistent with the *happens-before* partial order and with the
2339 modification orders of all the affected addresses. Each
2340 sequentially-consistent read sees the last preceding write to the
2341 same address in this global order. This corresponds to the C++0x/C1x
2342 ``memory_order_seq_cst`` and Java volatile.
2343
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002344.. _syncscope:
Sean Silvab084af42012-12-07 10:36:55 +00002345
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00002346If an atomic operation is marked ``syncscope("singlethread")``, it only
2347*synchronizes with* and only participates in the seq\_cst total orderings of
2348other operations running in the same thread (for example, in signal handlers).
2349
2350If an atomic operation is marked ``syncscope("<target-scope>")``, where
2351``<target-scope>`` is a target specific synchronization scope, then it is target
2352dependent if it *synchronizes with* and participates in the seq\_cst total
2353orderings of other operations.
2354
2355Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2356or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2357seq\_cst total orderings of other operations that are not marked
2358``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvab084af42012-12-07 10:36:55 +00002359
Sanjay Patel54b161e2018-03-20 16:38:22 +00002360.. _floatenv:
2361
2362Floating-Point Environment
2363--------------------------
2364
2365The default LLVM floating-point environment assumes that floating-point
2366instructions do not have side effects. Results assume the round-to-nearest
2367rounding mode. No floating-point exception state is maintained in this
2368environment. Therefore, there is no attempt to create or preserve invalid
Chandler Carruth297620d2018-08-06 02:02:09 +00002369operation (SNaN) or division-by-zero exceptions.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002370
2371The benefit of this exception-free assumption is that floating-point
2372operations may be speculated freely without any other fast-math relaxations
2373to the floating-point model.
2374
2375Code that requires different behavior than this should use the
Sanjay Patelec95e0e2018-03-20 17:05:19 +00002376:ref:`Constrained Floating-Point Intrinsics <constrainedfp>`.
Sanjay Patel54b161e2018-03-20 16:38:22 +00002377
Sean Silvab084af42012-12-07 10:36:55 +00002378.. _fastmath:
2379
2380Fast-Math Flags
2381---------------
2382
Sanjay Patel629c4112017-11-06 16:27:15 +00002383LLVM IR floating-point operations (:ref:`fadd <i_fadd>`,
Sean Silvab084af42012-12-07 10:36:55 +00002384:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault74b73e52017-01-10 18:06:38 +00002385:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002386may use the following flags to enable otherwise unsafe
Sanjay Patel629c4112017-11-06 16:27:15 +00002387floating-point transformations.
Sean Silvab084af42012-12-07 10:36:55 +00002388
2389``nnan``
2390 No NaNs - Allow optimizations to assume the arguments and result are not
Eli Friedmand3a30872018-07-17 20:31:42 +00002391 NaN. If an argument is a nan, or the result would be a nan, it produces
2392 a :ref:`poison value <poisonvalues>` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002393
2394``ninf``
2395 No Infs - Allow optimizations to assume the arguments and result are not
Eli Friedmand3a30872018-07-17 20:31:42 +00002396 +/-Inf. If an argument is +/-Inf, or the result would be +/-Inf, it
2397 produces a :ref:`poison value <poisonvalues>` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002398
2399``nsz``
2400 No Signed Zeros - Allow optimizations to treat the sign of a zero
2401 argument or result as insignificant.
2402
2403``arcp``
2404 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2405 argument rather than perform division.
2406
Adam Nemetcd847a82017-03-28 20:11:52 +00002407``contract``
2408 Allow floating-point contraction (e.g. fusing a multiply followed by an
2409 addition into a fused multiply-and-add).
2410
Sanjay Patel629c4112017-11-06 16:27:15 +00002411``afn``
2412 Approximate functions - Allow substitution of approximate calculations for
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002413 functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2414 for places where this can apply to LLVM's intrinsic math functions.
Sanjay Patel629c4112017-11-06 16:27:15 +00002415
2416``reassoc``
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002417 Allow reassociation transformations for floating-point instructions.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002418 This may dramatically change results in floating-point.
Sanjay Patel629c4112017-11-06 16:27:15 +00002419
Sean Silvab084af42012-12-07 10:36:55 +00002420``fast``
Sanjay Patel629c4112017-11-06 16:27:15 +00002421 This flag implies all of the others.
Sean Silvab084af42012-12-07 10:36:55 +00002422
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002423.. _uselistorder:
2424
2425Use-list Order Directives
2426-------------------------
2427
2428Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002429order to be recreated. ``<order-indexes>`` is a comma-separated list of
2430indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002431value's use-list is immediately sorted by these indexes.
2432
Sean Silvaa1190322015-08-06 22:56:48 +00002433Use-list directives may appear at function scope or global scope. They are not
2434instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002435function scope, they must appear after the terminator of the final basic block.
2436
2437If basic blocks have their address taken via ``blockaddress()`` expressions,
2438``uselistorder_bb`` can be used to reorder their use-lists from outside their
2439function's scope.
2440
2441:Syntax:
2442
2443::
2444
2445 uselistorder <ty> <value>, { <order-indexes> }
2446 uselistorder_bb @function, %block { <order-indexes> }
2447
2448:Examples:
2449
2450::
2451
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002452 define void @foo(i32 %arg1, i32 %arg2) {
2453 entry:
2454 ; ... instructions ...
2455 bb:
2456 ; ... instructions ...
2457
2458 ; At function scope.
2459 uselistorder i32 %arg1, { 1, 0, 2 }
2460 uselistorder label %bb, { 1, 0 }
2461 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002462
2463 ; At global scope.
2464 uselistorder i32* @global, { 1, 2, 0 }
2465 uselistorder i32 7, { 1, 0 }
2466 uselistorder i32 (i32) @bar, { 1, 0 }
2467 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2468
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002469.. _source_filename:
2470
2471Source Filename
2472---------------
2473
2474The *source filename* string is set to the original module identifier,
2475which will be the name of the compiled source file when compiling from
2476source through the clang front end, for example. It is then preserved through
2477the IR and bitcode.
2478
2479This is currently necessary to generate a consistent unique global
2480identifier for local functions used in profile data, which prepends the
2481source file name to the local function name.
2482
2483The syntax for the source file name is simply:
2484
Renato Golin124f2592016-07-20 12:16:38 +00002485.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002486
2487 source_filename = "/path/to/source.c"
2488
Sean Silvab084af42012-12-07 10:36:55 +00002489.. _typesystem:
2490
2491Type System
2492===========
2493
2494The LLVM type system is one of the most important features of the
2495intermediate representation. Being typed enables a number of
2496optimizations to be performed on the intermediate representation
2497directly, without having to do extra analyses on the side before the
2498transformation. A strong type system makes it easier to read the
2499generated code and enables novel analyses and transformations that are
2500not feasible to perform on normal three address code representations.
2501
Rafael Espindola08013342013-12-07 19:34:20 +00002502.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002503
Rafael Espindola08013342013-12-07 19:34:20 +00002504Void Type
2505---------
Sean Silvab084af42012-12-07 10:36:55 +00002506
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002507:Overview:
2508
Rafael Espindola08013342013-12-07 19:34:20 +00002509
2510The void type does not represent any value and has no size.
2511
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002512:Syntax:
2513
Rafael Espindola08013342013-12-07 19:34:20 +00002514
2515::
2516
2517 void
Sean Silvab084af42012-12-07 10:36:55 +00002518
2519
Rafael Espindola08013342013-12-07 19:34:20 +00002520.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002521
Rafael Espindola08013342013-12-07 19:34:20 +00002522Function Type
2523-------------
Sean Silvab084af42012-12-07 10:36:55 +00002524
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002525:Overview:
2526
Sean Silvab084af42012-12-07 10:36:55 +00002527
Rafael Espindola08013342013-12-07 19:34:20 +00002528The function type can be thought of as a function signature. It consists of a
2529return type and a list of formal parameter types. The return type of a function
2530type is a void type or first class type --- except for :ref:`label <t_label>`
2531and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002532
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002533:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002534
Rafael Espindola08013342013-12-07 19:34:20 +00002535::
Sean Silvab084af42012-12-07 10:36:55 +00002536
Rafael Espindola08013342013-12-07 19:34:20 +00002537 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002538
Rafael Espindola08013342013-12-07 19:34:20 +00002539...where '``<parameter list>``' is a comma-separated list of type
2540specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002541indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002542argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002543handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002544except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002545
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002546:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002547
Rafael Espindola08013342013-12-07 19:34:20 +00002548+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2549| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2550+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2551| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2552+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2553| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2554+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2555| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2556+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2557
2558.. _t_firstclass:
2559
2560First Class Types
2561-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002562
2563The :ref:`first class <t_firstclass>` types are perhaps the most important.
2564Values of these types are the only ones which can be produced by
2565instructions.
2566
Rafael Espindola08013342013-12-07 19:34:20 +00002567.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002568
Rafael Espindola08013342013-12-07 19:34:20 +00002569Single Value Types
2570^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002571
Rafael Espindola08013342013-12-07 19:34:20 +00002572These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002573
2574.. _t_integer:
2575
2576Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002577""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002578
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002579:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002580
2581The integer type is a very simple type that simply specifies an
2582arbitrary bit width for the integer type desired. Any bit width from 1
2583bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2584
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002585:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002586
2587::
2588
2589 iN
2590
2591The number of bits the integer will occupy is specified by the ``N``
2592value.
2593
2594Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002595*********
Sean Silvab084af42012-12-07 10:36:55 +00002596
2597+----------------+------------------------------------------------+
2598| ``i1`` | a single-bit integer. |
2599+----------------+------------------------------------------------+
2600| ``i32`` | a 32-bit integer. |
2601+----------------+------------------------------------------------+
2602| ``i1942652`` | a really big integer of over 1 million bits. |
2603+----------------+------------------------------------------------+
2604
2605.. _t_floating:
2606
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002607Floating-Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002608""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002609
2610.. list-table::
2611 :header-rows: 1
2612
2613 * - Type
2614 - Description
2615
2616 * - ``half``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002617 - 16-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002618
2619 * - ``float``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002620 - 32-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002621
2622 * - ``double``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002623 - 64-bit floating-point value
Sean Silvab084af42012-12-07 10:36:55 +00002624
2625 * - ``fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002626 - 128-bit floating-point value (112-bit mantissa)
Sean Silvab084af42012-12-07 10:36:55 +00002627
2628 * - ``x86_fp80``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002629 - 80-bit floating-point value (X87)
Sean Silvab084af42012-12-07 10:36:55 +00002630
2631 * - ``ppc_fp128``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002632 - 128-bit floating-point value (two 64-bits)
Sean Silvab084af42012-12-07 10:36:55 +00002633
Sanjay Patelbab6ce02018-03-21 15:22:09 +00002634The binary format of half, float, double, and fp128 correspond to the
2635IEEE-754-2008 specifications for binary16, binary32, binary64, and binary128
2636respectively.
2637
Reid Kleckner9a16d082014-03-05 02:41:37 +00002638X86_mmx Type
2639""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002640
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002641:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002642
Reid Kleckner9a16d082014-03-05 02:41:37 +00002643The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002644machine. The operations allowed on it are quite limited: parameters and
2645return values, load and store, and bitcast. User-specified MMX
2646instructions are represented as intrinsic or asm calls with arguments
2647and/or results of this type. There are no arrays, vectors or constants
2648of this type.
2649
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002650:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002651
2652::
2653
Reid Kleckner9a16d082014-03-05 02:41:37 +00002654 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002655
Sean Silvab084af42012-12-07 10:36:55 +00002656
Rafael Espindola08013342013-12-07 19:34:20 +00002657.. _t_pointer:
2658
2659Pointer Type
2660""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002661
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002662:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002663
Rafael Espindola08013342013-12-07 19:34:20 +00002664The pointer type is used to specify memory locations. Pointers are
2665commonly used to reference objects in memory.
2666
2667Pointer types may have an optional address space attribute defining the
2668numbered address space where the pointed-to object resides. The default
2669address space is number zero. The semantics of non-zero address spaces
2670are target-specific.
2671
2672Note that LLVM does not permit pointers to void (``void*``) nor does it
2673permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002674
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002675:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002676
2677::
2678
Rafael Espindola08013342013-12-07 19:34:20 +00002679 <type> *
2680
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002681:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002682
2683+-------------------------+--------------------------------------------------------------------------------------------------------------+
2684| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2685+-------------------------+--------------------------------------------------------------------------------------------------------------+
2686| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2687+-------------------------+--------------------------------------------------------------------------------------------------------------+
2688| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2689+-------------------------+--------------------------------------------------------------------------------------------------------------+
2690
2691.. _t_vector:
2692
2693Vector Type
2694"""""""""""
2695
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002696:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002697
2698A vector type is a simple derived type that represents a vector of
2699elements. Vector types are used when multiple primitive data are
2700operated in parallel using a single instruction (SIMD). A vector type
2701requires a size (number of elements) and an underlying primitive data
2702type. Vector types are considered :ref:`first class <t_firstclass>`.
2703
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002704:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002705
2706::
2707
2708 < <# elements> x <elementtype> >
2709
2710The number of elements is a constant integer value larger than 0;
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002711elementtype may be any integer, floating-point or pointer type. Vectors
Manuel Jacob961f7872014-07-30 12:30:06 +00002712of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002713
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002714:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002715
2716+-------------------+--------------------------------------------------+
2717| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2718+-------------------+--------------------------------------------------+
2719| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2720+-------------------+--------------------------------------------------+
2721| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2722+-------------------+--------------------------------------------------+
2723| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2724+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002725
2726.. _t_label:
2727
2728Label Type
2729^^^^^^^^^^
2730
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002731:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002732
2733The label type represents code labels.
2734
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002735:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002736
2737::
2738
2739 label
2740
David Majnemerb611e3f2015-08-14 05:09:07 +00002741.. _t_token:
2742
2743Token Type
2744^^^^^^^^^^
2745
2746:Overview:
2747
2748The token type is used when a value is associated with an instruction
2749but all uses of the value must not attempt to introspect or obscure it.
2750As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2751:ref:`select <i_select>` of type token.
2752
2753:Syntax:
2754
2755::
2756
2757 token
2758
2759
2760
Sean Silvab084af42012-12-07 10:36:55 +00002761.. _t_metadata:
2762
2763Metadata Type
2764^^^^^^^^^^^^^
2765
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002766:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002767
2768The metadata type represents embedded metadata. No derived types may be
2769created from metadata except for :ref:`function <t_function>` arguments.
2770
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002771:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002772
2773::
2774
2775 metadata
2776
Sean Silvab084af42012-12-07 10:36:55 +00002777.. _t_aggregate:
2778
2779Aggregate Types
2780^^^^^^^^^^^^^^^
2781
2782Aggregate Types are a subset of derived types that can contain multiple
2783member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2784aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2785aggregate types.
2786
2787.. _t_array:
2788
2789Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002790""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002791
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002792:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002793
2794The array type is a very simple derived type that arranges elements
2795sequentially in memory. The array type requires a size (number of
2796elements) and an underlying data type.
2797
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002798:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002799
2800::
2801
2802 [<# elements> x <elementtype>]
2803
2804The number of elements is a constant integer value; ``elementtype`` may
2805be any type with a size.
2806
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002807:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002808
2809+------------------+--------------------------------------+
2810| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2811+------------------+--------------------------------------+
2812| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2813+------------------+--------------------------------------+
2814| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2815+------------------+--------------------------------------+
2816
2817Here are some examples of multidimensional arrays:
2818
2819+-----------------------------+----------------------------------------------------------+
2820| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2821+-----------------------------+----------------------------------------------------------+
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002822| ``[12 x [10 x float]]`` | 12x10 array of single precision floating-point values. |
Sean Silvab084af42012-12-07 10:36:55 +00002823+-----------------------------+----------------------------------------------------------+
2824| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2825+-----------------------------+----------------------------------------------------------+
2826
2827There is no restriction on indexing beyond the end of the array implied
2828by a static type (though there are restrictions on indexing beyond the
2829bounds of an allocated object in some cases). This means that
2830single-dimension 'variable sized array' addressing can be implemented in
2831LLVM with a zero length array type. An implementation of 'pascal style
2832arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2833example.
2834
Sean Silvab084af42012-12-07 10:36:55 +00002835.. _t_struct:
2836
2837Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002838""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002839
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002840:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002841
2842The structure type is used to represent a collection of data members
2843together in memory. The elements of a structure may be any type that has
2844a size.
2845
2846Structures in memory are accessed using '``load``' and '``store``' by
2847getting a pointer to a field with the '``getelementptr``' instruction.
2848Structures in registers are accessed using the '``extractvalue``' and
2849'``insertvalue``' instructions.
2850
2851Structures may optionally be "packed" structures, which indicate that
2852the alignment of the struct is one byte, and that there is no padding
2853between the elements. In non-packed structs, padding between field types
2854is inserted as defined by the DataLayout string in the module, which is
2855required to match what the underlying code generator expects.
2856
2857Structures can either be "literal" or "identified". A literal structure
2858is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2859identified types are always defined at the top level with a name.
2860Literal types are uniqued by their contents and can never be recursive
2861or opaque since there is no way to write one. Identified types can be
2862recursive, can be opaqued, and are never uniqued.
2863
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002864:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002865
2866::
2867
2868 %T1 = type { <type list> } ; Identified normal struct type
2869 %T2 = type <{ <type list> }> ; Identified packed struct type
2870
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002871:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002872
2873+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2874| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2875+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002876| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002877+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2878| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2879+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2880
2881.. _t_opaque:
2882
2883Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002884""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002885
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002886:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002887
2888Opaque structure types are used to represent named structure types that
2889do not have a body specified. This corresponds (for example) to the C
2890notion of a forward declared structure.
2891
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002892:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002893
2894::
2895
2896 %X = type opaque
2897 %52 = type opaque
2898
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002899:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002900
2901+--------------+-------------------+
2902| ``opaque`` | An opaque type. |
2903+--------------+-------------------+
2904
Sean Silva1703e702014-04-08 21:06:22 +00002905.. _constants:
2906
Sean Silvab084af42012-12-07 10:36:55 +00002907Constants
2908=========
2909
2910LLVM has several different basic types of constants. This section
2911describes them all and their syntax.
2912
2913Simple Constants
2914----------------
2915
2916**Boolean constants**
2917 The two strings '``true``' and '``false``' are both valid constants
2918 of the ``i1`` type.
2919**Integer constants**
2920 Standard integers (such as '4') are constants of the
2921 :ref:`integer <t_integer>` type. Negative numbers may be used with
2922 integer types.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002923**Floating-point constants**
2924 Floating-point constants use standard decimal notation (e.g.
Sean Silvab084af42012-12-07 10:36:55 +00002925 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2926 hexadecimal notation (see below). The assembler requires the exact
2927 decimal value of a floating-point constant. For example, the
2928 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002929 decimal in binary. Floating-point constants must have a
2930 :ref:`floating-point <t_floating>` type.
Sean Silvab084af42012-12-07 10:36:55 +00002931**Null pointer constants**
2932 The identifier '``null``' is recognized as a null pointer constant
2933 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002934**Token constants**
2935 The identifier '``none``' is recognized as an empty token constant
2936 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002937
2938The one non-intuitive notation for constants is the hexadecimal form of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002939floating-point constants. For example, the form
Sean Silvab084af42012-12-07 10:36:55 +00002940'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002941than) '``double 4.5e+15``'. The only time hexadecimal floating-point
Sean Silvab084af42012-12-07 10:36:55 +00002942constants are required (and the only time that they are generated by the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00002943disassembler) is when a floating-point constant must be emitted but it
2944cannot be represented as a decimal floating-point number in a reasonable
Sean Silvab084af42012-12-07 10:36:55 +00002945number of digits. For example, NaN's, infinities, and other special
2946values are represented in their IEEE hexadecimal format so that assembly
2947and disassembly do not cause any bits to change in the constants.
2948
2949When using the hexadecimal form, constants of types half, float, and
2950double are represented using the 16-digit form shown above (which
2951matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002952must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002953precision, respectively. Hexadecimal format is always used for long
2954double, and there are three forms of long double. The 80-bit format used
2955by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2956128-bit format used by PowerPC (two adjacent doubles) is represented by
2957``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002958represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2959will only work if they match the long double format on your target.
2960The IEEE 16-bit format (half precision) is represented by ``0xH``
2961followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2962(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002963
Reid Kleckner9a16d082014-03-05 02:41:37 +00002964There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002965
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002966.. _complexconstants:
2967
Sean Silvab084af42012-12-07 10:36:55 +00002968Complex Constants
2969-----------------
2970
2971Complex constants are a (potentially recursive) combination of simple
2972constants and smaller complex constants.
2973
2974**Structure constants**
2975 Structure constants are represented with notation similar to
2976 structure type definitions (a comma separated list of elements,
2977 surrounded by braces (``{}``)). For example:
2978 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2979 "``@G = external global i32``". Structure constants must have
2980 :ref:`structure type <t_struct>`, and the number and types of elements
2981 must match those specified by the type.
2982**Array constants**
2983 Array constants are represented with notation similar to array type
2984 definitions (a comma separated list of elements, surrounded by
2985 square brackets (``[]``)). For example:
2986 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2987 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002988 match those specified by the type. As a special case, character array
2989 constants may also be represented as a double-quoted string using the ``c``
2990 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002991**Vector constants**
2992 Vector constants are represented with notation similar to vector
2993 type definitions (a comma separated list of elements, surrounded by
2994 less-than/greater-than's (``<>``)). For example:
2995 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2996 must have :ref:`vector type <t_vector>`, and the number and types of
2997 elements must match those specified by the type.
2998**Zero initialization**
2999 The string '``zeroinitializer``' can be used to zero initialize a
3000 value to zero of *any* type, including scalar and
3001 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
3002 having to print large zero initializers (e.g. for large arrays) and
3003 is always exactly equivalent to using explicit zero initializers.
3004**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00003005 A metadata node is a constant tuple without types. For example:
3006 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003007 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
3008 Unlike other typed constants that are meant to be interpreted as part of
3009 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00003010 information such as debug info.
3011
3012Global Variable and Function Addresses
3013--------------------------------------
3014
3015The addresses of :ref:`global variables <globalvars>` and
3016:ref:`functions <functionstructure>` are always implicitly valid
3017(link-time) constants. These constants are explicitly referenced when
3018the :ref:`identifier for the global <identifiers>` is used and always have
3019:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
3020file:
3021
3022.. code-block:: llvm
3023
3024 @X = global i32 17
3025 @Y = global i32 42
3026 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
3027
3028.. _undefvalues:
3029
3030Undefined Values
3031----------------
3032
3033The string '``undef``' can be used anywhere a constant is expected, and
3034indicates that the user of the value may receive an unspecified
3035bit-pattern. Undefined values may be of any type (other than '``label``'
3036or '``void``') and be used anywhere a constant is permitted.
3037
3038Undefined values are useful because they indicate to the compiler that
3039the program is well defined no matter what value is used. This gives the
3040compiler more freedom to optimize. Here are some examples of
3041(potentially surprising) transformations that are valid (in pseudo IR):
3042
3043.. code-block:: llvm
3044
3045 %A = add %X, undef
3046 %B = sub %X, undef
3047 %C = xor %X, undef
3048 Safe:
3049 %A = undef
3050 %B = undef
3051 %C = undef
3052
3053This is safe because all of the output bits are affected by the undef
3054bits. Any output bit can have a zero or one depending on the input bits.
3055
3056.. code-block:: llvm
3057
3058 %A = or %X, undef
3059 %B = and %X, undef
3060 Safe:
3061 %A = -1
3062 %B = 0
Sanjoy Das151493a2016-09-15 01:56:58 +00003063 Safe:
3064 %A = %X ;; By choosing undef as 0
3065 %B = %X ;; By choosing undef as -1
Sean Silvab084af42012-12-07 10:36:55 +00003066 Unsafe:
3067 %A = undef
3068 %B = undef
3069
3070These logical operations have bits that are not always affected by the
3071input. For example, if ``%X`` has a zero bit, then the output of the
3072'``and``' operation will always be a zero for that bit, no matter what
3073the corresponding bit from the '``undef``' is. As such, it is unsafe to
3074optimize or assume that the result of the '``and``' is '``undef``'.
3075However, it is safe to assume that all bits of the '``undef``' could be
30760, and optimize the '``and``' to 0. Likewise, it is safe to assume that
3077all the bits of the '``undef``' operand to the '``or``' could be set,
3078allowing the '``or``' to be folded to -1.
3079
3080.. code-block:: llvm
3081
3082 %A = select undef, %X, %Y
3083 %B = select undef, 42, %Y
3084 %C = select %X, %Y, undef
3085 Safe:
3086 %A = %X (or %Y)
3087 %B = 42 (or %Y)
3088 %C = %Y
3089 Unsafe:
3090 %A = undef
3091 %B = undef
3092 %C = undef
3093
3094This set of examples shows that undefined '``select``' (and conditional
3095branch) conditions can go *either way*, but they have to come from one
3096of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
3097both known to have a clear low bit, then ``%A`` would have to have a
3098cleared low bit. However, in the ``%C`` example, the optimizer is
3099allowed to assume that the '``undef``' operand could be the same as
3100``%Y``, allowing the whole '``select``' to be eliminated.
3101
Renato Golin124f2592016-07-20 12:16:38 +00003102.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003103
3104 %A = xor undef, undef
3105
3106 %B = undef
3107 %C = xor %B, %B
3108
3109 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00003110 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00003111 %F = icmp gte %D, 4
3112
3113 Safe:
3114 %A = undef
3115 %B = undef
3116 %C = undef
3117 %D = undef
3118 %E = undef
3119 %F = undef
3120
3121This example points out that two '``undef``' operands are not
3122necessarily the same. This can be surprising to people (and also matches
3123C semantics) where they assume that "``X^X``" is always zero, even if
3124``X`` is undefined. This isn't true for a number of reasons, but the
3125short answer is that an '``undef``' "variable" can arbitrarily change
3126its value over its "live range". This is true because the variable
3127doesn't actually *have a live range*. Instead, the value is logically
3128read from arbitrary registers that happen to be around when needed, so
3129the value is not necessarily consistent over time. In fact, ``%A`` and
3130``%C`` need to have the same semantics or the core LLVM "replace all
3131uses with" concept would not hold.
3132
3133.. code-block:: llvm
3134
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003135 %A = sdiv undef, %X
3136 %B = sdiv %X, undef
Sean Silvab084af42012-12-07 10:36:55 +00003137 Safe:
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003138 %A = 0
Sean Silvab084af42012-12-07 10:36:55 +00003139 b: unreachable
3140
3141These examples show the crucial difference between an *undefined value*
3142and *undefined behavior*. An undefined value (like '``undef``') is
3143allowed to have an arbitrary bit-pattern. This means that the ``%A``
Sanjay Patel3aaf6a02018-03-09 15:27:48 +00003144operation can be constant folded to '``0``', because the '``undef``'
3145could be zero, and zero divided by any value is zero.
Sean Silvab084af42012-12-07 10:36:55 +00003146However, in the second example, we can make a more aggressive
3147assumption: because the ``undef`` is allowed to be an arbitrary value,
3148we are allowed to assume that it could be zero. Since a divide by zero
3149has *undefined behavior*, we are allowed to assume that the operation
3150does not execute at all. This allows us to delete the divide and all
3151code after it. Because the undefined operation "can't happen", the
3152optimizer can assume that it occurs in dead code.
3153
Renato Golin124f2592016-07-20 12:16:38 +00003154.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00003155
3156 a: store undef -> %X
3157 b: store %X -> undef
3158 Safe:
3159 a: <deleted>
3160 b: unreachable
3161
Sanjay Patel7b722402018-03-07 17:18:22 +00003162A store *of* an undefined value can be assumed to not have any effect;
3163we can assume that the value is overwritten with bits that happen to
3164match what was already there. However, a store *to* an undefined
3165location could clobber arbitrary memory, therefore, it has undefined
3166behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003167
3168.. _poisonvalues:
3169
3170Poison Values
3171-------------
3172
3173Poison values are similar to :ref:`undef values <undefvalues>`, however
3174they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00003175that cannot evoke side effects has nevertheless detected a condition
3176that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003177
3178There is currently no way of representing a poison value in the IR; they
3179only exist when produced by operations such as :ref:`add <i_add>` with
3180the ``nsw`` flag.
3181
3182Poison value behavior is defined in terms of value *dependence*:
3183
3184- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3185- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3186 their dynamic predecessor basic block.
3187- Function arguments depend on the corresponding actual argument values
3188 in the dynamic callers of their functions.
3189- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3190 instructions that dynamically transfer control back to them.
3191- :ref:`Invoke <i_invoke>` instructions depend on the
3192 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3193 call instructions that dynamically transfer control back to them.
3194- Non-volatile loads and stores depend on the most recent stores to all
3195 of the referenced memory addresses, following the order in the IR
3196 (including loads and stores implied by intrinsics such as
3197 :ref:`@llvm.memcpy <int_memcpy>`.)
3198- An instruction with externally visible side effects depends on the
3199 most recent preceding instruction with externally visible side
3200 effects, following the order in the IR. (This includes :ref:`volatile
3201 operations <volatile>`.)
3202- An instruction *control-depends* on a :ref:`terminator
3203 instruction <terminators>` if the terminator instruction has
3204 multiple successors and the instruction is always executed when
3205 control transfers to one of the successors, and may not be executed
3206 when control is transferred to another.
3207- Additionally, an instruction also *control-depends* on a terminator
3208 instruction if the set of instructions it otherwise depends on would
3209 be different if the terminator had transferred control to a different
3210 successor.
3211- Dependence is transitive.
3212
Richard Smith32dbdf62014-07-31 04:25:36 +00003213Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3214with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00003215on a poison value has undefined behavior.
3216
3217Here are some examples:
3218
3219.. code-block:: llvm
3220
3221 entry:
3222 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3223 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00003224 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00003225 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3226
3227 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00003228 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003229
3230 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3231
3232 %narrowaddr = bitcast i32* @g to i16*
3233 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003234 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3235 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003236
3237 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3238 br i1 %cmp, label %true, label %end ; Branch to either destination.
3239
3240 true:
3241 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3242 ; it has undefined behavior.
3243 br label %end
3244
3245 end:
3246 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3247 ; Both edges into this PHI are
3248 ; control-dependent on %cmp, so this
3249 ; always results in a poison value.
3250
3251 store volatile i32 0, i32* @g ; This would depend on the store in %true
3252 ; if %cmp is true, or the store in %entry
3253 ; otherwise, so this is undefined behavior.
3254
3255 br i1 %cmp, label %second_true, label %second_end
3256 ; The same branch again, but this time the
3257 ; true block doesn't have side effects.
3258
3259 second_true:
3260 ; No side effects!
3261 ret void
3262
3263 second_end:
3264 store volatile i32 0, i32* @g ; This time, the instruction always depends
3265 ; on the store in %end. Also, it is
3266 ; control-equivalent to %end, so this is
3267 ; well-defined (ignoring earlier undefined
3268 ; behavior in this example).
3269
3270.. _blockaddress:
3271
3272Addresses of Basic Blocks
3273-------------------------
3274
3275``blockaddress(@function, %block)``
3276
3277The '``blockaddress``' constant computes the address of the specified
3278basic block in the specified function, and always has an ``i8*`` type.
3279Taking the address of the entry block is illegal.
3280
3281This value only has defined behavior when used as an operand to the
3282':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3283against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003284undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003285no label is equal to the null pointer. This may be passed around as an
3286opaque pointer sized value as long as the bits are not inspected. This
3287allows ``ptrtoint`` and arithmetic to be performed on these values so
3288long as the original value is reconstituted before the ``indirectbr``
3289instruction.
3290
3291Finally, some targets may provide defined semantics when using the value
3292as the operand to an inline assembly, but that is target specific.
3293
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003294.. _constantexprs:
3295
Sean Silvab084af42012-12-07 10:36:55 +00003296Constant Expressions
3297--------------------
3298
3299Constant expressions are used to allow expressions involving other
3300constants to be used as constants. Constant expressions may be of any
3301:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3302that does not have side effects (e.g. load and call are not supported).
3303The following is the syntax for constant expressions:
3304
3305``trunc (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003306 Perform the :ref:`trunc operation <i_trunc>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003307``zext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003308 Perform the :ref:`zext operation <i_zext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003309``sext (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003310 Perform the :ref:`sext operation <i_sext>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003311``fptrunc (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003312 Truncate a floating-point constant to another floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003313 The size of CST must be larger than the size of TYPE. Both types
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003314 must be floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003315``fpext (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003316 Floating-point extend a constant to another type. The size of CST
Sean Silvab084af42012-12-07 10:36:55 +00003317 must be smaller or equal to the size of TYPE. Both types must be
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003318 floating-point.
Sean Silvab084af42012-12-07 10:36:55 +00003319``fptoui (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003320 Convert a floating-point constant to the corresponding unsigned
Sean Silvab084af42012-12-07 10:36:55 +00003321 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003322 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003323 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003324 value won't fit in the integer type, the result is a
3325 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003326``fptosi (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003327 Convert a floating-point constant to the corresponding signed
Sean Silvab084af42012-12-07 10:36:55 +00003328 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003329 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvab084af42012-12-07 10:36:55 +00003330 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc065bb22018-06-08 21:33:33 +00003331 value won't fit in the integer type, the result is a
3332 :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00003333``uitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003334 Convert an unsigned integer constant to the corresponding
3335 floating-point constant. TYPE must be a scalar or vector floating-point
3336 type. CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003337 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003338``sitofp (CST to TYPE)``
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003339 Convert a signed integer constant to the corresponding floating-point
3340 constant. TYPE must be a scalar or vector floating-point type.
Sean Silvab084af42012-12-07 10:36:55 +00003341 CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedman3f1ce092018-06-14 22:58:48 +00003342 be scalars, or vectors of the same number of elements.
Sean Silvab084af42012-12-07 10:36:55 +00003343``ptrtoint (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003344 Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003345``inttoptr (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003346 Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003347 This one is *really* dangerous!
3348``bitcast (CST to TYPE)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003349 Convert a constant, CST, to another TYPE.
3350 The constraints of the operands are the same as those for the
3351 :ref:`bitcast instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003352``addrspacecast (CST to TYPE)``
3353 Convert a constant pointer or constant vector of pointer, CST, to another
3354 TYPE in a different address space. The constraints of the operands are the
3355 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003356``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003357 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3358 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikief91b0302017-06-19 05:34:21 +00003359 instruction, the index list may have one or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003360 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003361``select (COND, VAL1, VAL2)``
3362 Perform the :ref:`select operation <i_select>` on constants.
3363``icmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003364 Perform the :ref:`icmp operation <i_icmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003365``fcmp COND (VAL1, VAL2)``
Bjorn Petterssone1285e32017-10-24 11:59:20 +00003366 Perform the :ref:`fcmp operation <i_fcmp>` on constants.
Sean Silvab084af42012-12-07 10:36:55 +00003367``extractelement (VAL, IDX)``
3368 Perform the :ref:`extractelement operation <i_extractelement>` on
3369 constants.
3370``insertelement (VAL, ELT, IDX)``
3371 Perform the :ref:`insertelement operation <i_insertelement>` on
3372 constants.
3373``shufflevector (VEC1, VEC2, IDXMASK)``
3374 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3375 constants.
3376``extractvalue (VAL, IDX0, IDX1, ...)``
3377 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3378 constants. The index list is interpreted in a similar manner as
3379 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3380 least one index value must be specified.
3381``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3382 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3383 The index list is interpreted in a similar manner as indices in a
3384 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3385 value must be specified.
3386``OPCODE (LHS, RHS)``
3387 Perform the specified operation of the LHS and RHS constants. OPCODE
3388 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3389 binary <bitwiseops>` operations. The constraints on operands are
3390 the same as those for the corresponding instruction (e.g. no bitwise
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003391 operations on floating-point values are allowed).
Sean Silvab084af42012-12-07 10:36:55 +00003392
3393Other Values
3394============
3395
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003396.. _inlineasmexprs:
3397
Sean Silvab084af42012-12-07 10:36:55 +00003398Inline Assembler Expressions
3399----------------------------
3400
3401LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003402Inline Assembly <moduleasm>`) through the use of a special value. This value
3403represents the inline assembler as a template string (containing the
3404instructions to emit), a list of operand constraints (stored as a string), a
3405flag that indicates whether or not the inline asm expression has side effects,
3406and a flag indicating whether the function containing the asm needs to align its
3407stack conservatively.
3408
3409The template string supports argument substitution of the operands using "``$``"
3410followed by a number, to indicate substitution of the given register/memory
3411location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3412be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3413operand (See :ref:`inline-asm-modifiers`).
3414
3415A literal "``$``" may be included by using "``$$``" in the template. To include
3416other special characters into the output, the usual "``\XX``" escapes may be
3417used, just as in other strings. Note that after template substitution, the
3418resulting assembly string is parsed by LLVM's integrated assembler unless it is
3419disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3420syntax known to LLVM.
3421
Reid Kleckner71cb1642017-02-06 18:08:45 +00003422LLVM also supports a few more substitions useful for writing inline assembly:
3423
3424- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3425 This substitution is useful when declaring a local label. Many standard
3426 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3427 Adding a blob-unique identifier ensures that the two labels will not conflict
3428 during assembly. This is used to implement `GCC's %= special format
3429 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3430- ``${:comment}``: Expands to the comment character of the current target's
3431 assembly dialect. This is usually ``#``, but many targets use other strings,
3432 such as ``;``, ``//``, or ``!``.
3433- ``${:private}``: Expands to the assembler private label prefix. Labels with
3434 this prefix will not appear in the symbol table of the assembled object.
3435 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3436 relatively popular.
3437
James Y Knightbc832ed2015-07-08 18:08:36 +00003438LLVM's support for inline asm is modeled closely on the requirements of Clang's
3439GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3440modifier codes listed here are similar or identical to those in GCC's inline asm
3441support. However, to be clear, the syntax of the template and constraint strings
3442described here is *not* the same as the syntax accepted by GCC and Clang, and,
3443while most constraint letters are passed through as-is by Clang, some get
3444translated to other codes when converting from the C source to the LLVM
3445assembly.
3446
3447An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003448
3449.. code-block:: llvm
3450
3451 i32 (i32) asm "bswap $0", "=r,r"
3452
3453Inline assembler expressions may **only** be used as the callee operand
3454of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3455Thus, typically we have:
3456
3457.. code-block:: llvm
3458
3459 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3460
3461Inline asms with side effects not visible in the constraint list must be
3462marked as having side effects. This is done through the use of the
3463'``sideeffect``' keyword, like so:
3464
3465.. code-block:: llvm
3466
3467 call void asm sideeffect "eieio", ""()
3468
3469In some cases inline asms will contain code that will not work unless
3470the stack is aligned in some way, such as calls or SSE instructions on
3471x86, yet will not contain code that does that alignment within the asm.
3472The compiler should make conservative assumptions about what the asm
3473might contain and should generate its usual stack alignment code in the
3474prologue if the '``alignstack``' keyword is present:
3475
3476.. code-block:: llvm
3477
3478 call void asm alignstack "eieio", ""()
3479
3480Inline asms also support using non-standard assembly dialects. The
3481assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3482the inline asm is using the Intel dialect. Currently, ATT and Intel are
3483the only supported dialects. An example is:
3484
3485.. code-block:: llvm
3486
3487 call void asm inteldialect "eieio", ""()
3488
3489If multiple keywords appear the '``sideeffect``' keyword must come
3490first, the '``alignstack``' keyword second and the '``inteldialect``'
3491keyword last.
3492
James Y Knightbc832ed2015-07-08 18:08:36 +00003493Inline Asm Constraint String
3494^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3495
3496The constraint list is a comma-separated string, each element containing one or
3497more constraint codes.
3498
3499For each element in the constraint list an appropriate register or memory
3500operand will be chosen, and it will be made available to assembly template
3501string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3502second, etc.
3503
3504There are three different types of constraints, which are distinguished by a
3505prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3506constraints must always be given in that order: outputs first, then inputs, then
3507clobbers. They cannot be intermingled.
3508
3509There are also three different categories of constraint codes:
3510
3511- Register constraint. This is either a register class, or a fixed physical
3512 register. This kind of constraint will allocate a register, and if necessary,
3513 bitcast the argument or result to the appropriate type.
3514- Memory constraint. This kind of constraint is for use with an instruction
3515 taking a memory operand. Different constraints allow for different addressing
3516 modes used by the target.
3517- Immediate value constraint. This kind of constraint is for an integer or other
3518 immediate value which can be rendered directly into an instruction. The
3519 various target-specific constraints allow the selection of a value in the
3520 proper range for the instruction you wish to use it with.
3521
3522Output constraints
3523""""""""""""""""""
3524
3525Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3526indicates that the assembly will write to this operand, and the operand will
3527then be made available as a return value of the ``asm`` expression. Output
3528constraints do not consume an argument from the call instruction. (Except, see
3529below about indirect outputs).
3530
3531Normally, it is expected that no output locations are written to by the assembly
3532expression until *all* of the inputs have been read. As such, LLVM may assign
3533the same register to an output and an input. If this is not safe (e.g. if the
3534assembly contains two instructions, where the first writes to one output, and
3535the second reads an input and writes to a second output), then the "``&``"
3536modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003537"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003538will not use the same register for any inputs (other than an input tied to this
3539output).
3540
3541Input constraints
3542"""""""""""""""""
3543
3544Input constraints do not have a prefix -- just the constraint codes. Each input
3545constraint will consume one argument from the call instruction. It is not
3546permitted for the asm to write to any input register or memory location (unless
3547that input is tied to an output). Note also that multiple inputs may all be
3548assigned to the same register, if LLVM can determine that they necessarily all
3549contain the same value.
3550
3551Instead of providing a Constraint Code, input constraints may also "tie"
3552themselves to an output constraint, by providing an integer as the constraint
3553string. Tied inputs still consume an argument from the call instruction, and
3554take up a position in the asm template numbering as is usual -- they will simply
3555be constrained to always use the same register as the output they've been tied
3556to. For example, a constraint string of "``=r,0``" says to assign a register for
3557output, and use that register as an input as well (it being the 0'th
3558constraint).
3559
3560It is permitted to tie an input to an "early-clobber" output. In that case, no
3561*other* input may share the same register as the input tied to the early-clobber
3562(even when the other input has the same value).
3563
3564You may only tie an input to an output which has a register constraint, not a
3565memory constraint. Only a single input may be tied to an output.
3566
3567There is also an "interesting" feature which deserves a bit of explanation: if a
3568register class constraint allocates a register which is too small for the value
3569type operand provided as input, the input value will be split into multiple
3570registers, and all of them passed to the inline asm.
3571
3572However, this feature is often not as useful as you might think.
3573
3574Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3575architectures that have instructions which operate on multiple consecutive
3576instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3577SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3578hardware then loads into both the named register, and the next register. This
3579feature of inline asm would not be useful to support that.)
3580
3581A few of the targets provide a template string modifier allowing explicit access
3582to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3583``D``). On such an architecture, you can actually access the second allocated
3584register (yet, still, not any subsequent ones). But, in that case, you're still
3585probably better off simply splitting the value into two separate operands, for
3586clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3587despite existing only for use with this feature, is not really a good idea to
3588use)
3589
3590Indirect inputs and outputs
3591"""""""""""""""""""""""""""
3592
3593Indirect output or input constraints can be specified by the "``*``" modifier
3594(which goes after the "``=``" in case of an output). This indicates that the asm
3595will write to or read from the contents of an *address* provided as an input
3596argument. (Note that in this way, indirect outputs act more like an *input* than
3597an output: just like an input, they consume an argument of the call expression,
3598rather than producing a return value. An indirect output constraint is an
3599"output" only in that the asm is expected to write to the contents of the input
3600memory location, instead of just read from it).
3601
3602This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3603address of a variable as a value.
3604
3605It is also possible to use an indirect *register* constraint, but only on output
3606(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3607value normally, and then, separately emit a store to the address provided as
3608input, after the provided inline asm. (It's not clear what value this
3609functionality provides, compared to writing the store explicitly after the asm
3610statement, and it can only produce worse code, since it bypasses many
3611optimization passes. I would recommend not using it.)
3612
3613
3614Clobber constraints
3615"""""""""""""""""""
3616
3617A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3618consume an input operand, nor generate an output. Clobbers cannot use any of the
3619general constraint code letters -- they may use only explicit register
3620constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3621"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3622memory locations -- not only the memory pointed to by a declared indirect
3623output.
3624
Peter Zotov00257232016-08-30 10:48:31 +00003625Note that clobbering named registers that are also present in output
3626constraints is not legal.
3627
James Y Knightbc832ed2015-07-08 18:08:36 +00003628
3629Constraint Codes
3630""""""""""""""""
3631After a potential prefix comes constraint code, or codes.
3632
3633A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3634followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3635(e.g. "``{eax}``").
3636
3637The one and two letter constraint codes are typically chosen to be the same as
3638GCC's constraint codes.
3639
3640A single constraint may include one or more than constraint code in it, leaving
3641it up to LLVM to choose which one to use. This is included mainly for
3642compatibility with the translation of GCC inline asm coming from clang.
3643
3644There are two ways to specify alternatives, and either or both may be used in an
3645inline asm constraint list:
3646
36471) Append the codes to each other, making a constraint code set. E.g. "``im``"
3648 or "``{eax}m``". This means "choose any of the options in the set". The
3649 choice of constraint is made independently for each constraint in the
3650 constraint list.
3651
36522) Use "``|``" between constraint code sets, creating alternatives. Every
3653 constraint in the constraint list must have the same number of alternative
3654 sets. With this syntax, the same alternative in *all* of the items in the
3655 constraint list will be chosen together.
3656
3657Putting those together, you might have a two operand constraint string like
3658``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3659operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3660may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3661
3662However, the use of either of the alternatives features is *NOT* recommended, as
3663LLVM is not able to make an intelligent choice about which one to use. (At the
3664point it currently needs to choose, not enough information is available to do so
3665in a smart way.) Thus, it simply tries to make a choice that's most likely to
3666compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3667always choose to use memory, not registers). And, if given multiple registers,
3668or multiple register classes, it will simply choose the first one. (In fact, it
3669doesn't currently even ensure explicitly specified physical registers are
3670unique, so specifying multiple physical registers as alternatives, like
3671``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3672intended.)
3673
3674Supported Constraint Code List
3675""""""""""""""""""""""""""""""
3676
3677The constraint codes are, in general, expected to behave the same way they do in
3678GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3679inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3680and GCC likely indicates a bug in LLVM.
3681
3682Some constraint codes are typically supported by all targets:
3683
3684- ``r``: A register in the target's general purpose register class.
3685- ``m``: A memory address operand. It is target-specific what addressing modes
3686 are supported, typical examples are register, or register + register offset,
3687 or register + immediate offset (of some target-specific size).
3688- ``i``: An integer constant (of target-specific width). Allows either a simple
3689 immediate, or a relocatable value.
3690- ``n``: An integer constant -- *not* including relocatable values.
3691- ``s``: An integer constant, but allowing *only* relocatable values.
3692- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3693 useful to pass a label for an asm branch or call.
3694
3695 .. FIXME: but that surely isn't actually okay to jump out of an asm
3696 block without telling llvm about the control transfer???)
3697
3698- ``{register-name}``: Requires exactly the named physical register.
3699
3700Other constraints are target-specific:
3701
3702AArch64:
3703
3704- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3705- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3706 i.e. 0 to 4095 with optional shift by 12.
3707- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3708 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3709- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3710 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3711- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3712 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3713- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3714 32-bit register. This is a superset of ``K``: in addition to the bitmask
3715 immediate, also allows immediate integers which can be loaded with a single
3716 ``MOVZ`` or ``MOVL`` instruction.
3717- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3718 64-bit register. This is a superset of ``L``.
3719- ``Q``: Memory address operand must be in a single register (no
3720 offsets). (However, LLVM currently does this for the ``m`` constraint as
3721 well.)
3722- ``r``: A 32 or 64-bit integer register (W* or X*).
3723- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3724- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3725
3726AMDGPU:
3727
3728- ``r``: A 32 or 64-bit integer register.
3729- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3730- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3731
3732
3733All ARM modes:
3734
3735- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3736 operand. Treated the same as operand ``m``, at the moment.
3737
3738ARM and ARM's Thumb2 mode:
3739
3740- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3741- ``I``: An immediate integer valid for a data-processing instruction.
3742- ``J``: An immediate integer between -4095 and 4095.
3743- ``K``: An immediate integer whose bitwise inverse is valid for a
3744 data-processing instruction. (Can be used with template modifier "``B``" to
3745 print the inverted value).
3746- ``L``: An immediate integer whose negation is valid for a data-processing
3747 instruction. (Can be used with template modifier "``n``" to print the negated
3748 value).
3749- ``M``: A power of two or a integer between 0 and 32.
3750- ``N``: Invalid immediate constraint.
3751- ``O``: Invalid immediate constraint.
3752- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3753- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3754 as ``r``.
3755- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3756 invalid.
3757- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3758 ``d0-d31``, or ``q0-q15``.
3759- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3760 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003761- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3762 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003763
3764ARM's Thumb1 mode:
3765
3766- ``I``: An immediate integer between 0 and 255.
3767- ``J``: An immediate integer between -255 and -1.
3768- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3769 some amount.
3770- ``L``: An immediate integer between -7 and 7.
3771- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3772- ``N``: An immediate integer between 0 and 31.
3773- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3774- ``r``: A low 32-bit GPR register (``r0-r7``).
3775- ``l``: A low 32-bit GPR register (``r0-r7``).
3776- ``h``: A high GPR register (``r0-r7``).
3777- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3778 ``d0-d31``, or ``q0-q15``.
3779- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3780 ``d0-d7``, or ``q0-q3``.
Pablo Barrioe28cb832018-02-15 14:44:22 +00003781- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3782 ``q0-q8``.
James Y Knightbc832ed2015-07-08 18:08:36 +00003783
3784
3785Hexagon:
3786
3787- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3788 at the moment.
3789- ``r``: A 32 or 64-bit register.
3790
3791MSP430:
3792
3793- ``r``: An 8 or 16-bit register.
3794
3795MIPS:
3796
3797- ``I``: An immediate signed 16-bit integer.
3798- ``J``: An immediate integer zero.
3799- ``K``: An immediate unsigned 16-bit integer.
3800- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3801- ``N``: An immediate integer between -65535 and -1.
3802- ``O``: An immediate signed 15-bit integer.
3803- ``P``: An immediate integer between 1 and 65535.
3804- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3805 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3806- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3807 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3808 ``m``.
3809- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3810 ``sc`` instruction on the given subtarget (details vary).
3811- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3812- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003813 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3814 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003815- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3816 ``25``).
3817- ``l``: The ``lo`` register, 32 or 64-bit.
3818- ``x``: Invalid.
3819
3820NVPTX:
3821
3822- ``b``: A 1-bit integer register.
3823- ``c`` or ``h``: A 16-bit integer register.
3824- ``r``: A 32-bit integer register.
3825- ``l`` or ``N``: A 64-bit integer register.
3826- ``f``: A 32-bit float register.
3827- ``d``: A 64-bit float register.
3828
3829
3830PowerPC:
3831
3832- ``I``: An immediate signed 16-bit integer.
3833- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3834- ``K``: An immediate unsigned 16-bit integer.
3835- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3836- ``M``: An immediate integer greater than 31.
3837- ``N``: An immediate integer that is an exact power of 2.
3838- ``O``: The immediate integer constant 0.
3839- ``P``: An immediate integer constant whose negation is a signed 16-bit
3840 constant.
3841- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3842 treated the same as ``m``.
3843- ``r``: A 32 or 64-bit integer register.
3844- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3845 ``R1-R31``).
3846- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3847 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3848- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3849 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3850 altivec vector register (``V0-V31``).
3851
3852 .. FIXME: is this a bug that v accepts QPX registers? I think this
3853 is supposed to only use the altivec vector registers?
3854
3855- ``y``: Condition register (``CR0-CR7``).
3856- ``wc``: An individual CR bit in a CR register.
3857- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3858 register set (overlapping both the floating-point and vector register files).
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003859- ``ws``: A 32 or 64-bit floating-point register, from the full VSX register
James Y Knightbc832ed2015-07-08 18:08:36 +00003860 set.
3861
3862Sparc:
3863
3864- ``I``: An immediate 13-bit signed integer.
3865- ``r``: A 32-bit integer register.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003866- ``f``: Any floating-point register on SparcV8, or a floating-point
James Y Knightd4e1b002017-05-12 15:59:10 +00003867 register in the "low" half of the registers on SparcV9.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003868- ``e``: Any floating-point register. (Same as ``f`` on SparcV8.)
James Y Knightbc832ed2015-07-08 18:08:36 +00003869
3870SystemZ:
3871
3872- ``I``: An immediate unsigned 8-bit integer.
3873- ``J``: An immediate unsigned 12-bit integer.
3874- ``K``: An immediate signed 16-bit integer.
3875- ``L``: An immediate signed 20-bit integer.
3876- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003877- ``Q``: A memory address operand with a base address and a 12-bit immediate
3878 unsigned displacement.
3879- ``R``: A memory address operand with a base address, a 12-bit immediate
3880 unsigned displacement, and an index register.
3881- ``S``: A memory address operand with a base address and a 20-bit immediate
3882 signed displacement.
3883- ``T``: A memory address operand with a base address, a 20-bit immediate
3884 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003885- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3886- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3887 address context evaluates as zero).
3888- ``h``: A 32-bit value in the high part of a 64bit data register
3889 (LLVM-specific)
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00003890- ``f``: A 32, 64, or 128-bit floating-point register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003891
3892X86:
3893
3894- ``I``: An immediate integer between 0 and 31.
3895- ``J``: An immediate integer between 0 and 64.
3896- ``K``: An immediate signed 8-bit integer.
3897- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3898 0xffffffff.
3899- ``M``: An immediate integer between 0 and 3.
3900- ``N``: An immediate unsigned 8-bit integer.
3901- ``O``: An immediate integer between 0 and 127.
3902- ``e``: An immediate 32-bit signed integer.
3903- ``Z``: An immediate 32-bit unsigned integer.
3904- ``o``, ``v``: Treated the same as ``m``, at the moment.
3905- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3906 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3907 registers, and on X86-64, it is all of the integer registers.
3908- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3909 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3910- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3911- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3912 existed since i386, and can be accessed without the REX prefix.
3913- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3914- ``y``: A 64-bit MMX register, if MMX is enabled.
3915- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3916 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3917 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3918 512-bit vector operand in an AVX512 register, Otherwise, an error.
3919- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3920- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3921 32-bit mode, a 64-bit integer operand will get split into two registers). It
3922 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3923 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3924 you're better off splitting it yourself, before passing it to the asm
3925 statement.
3926
3927XCore:
3928
3929- ``r``: A 32-bit integer register.
3930
3931
3932.. _inline-asm-modifiers:
3933
3934Asm template argument modifiers
3935^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3936
3937In the asm template string, modifiers can be used on the operand reference, like
3938"``${0:n}``".
3939
3940The modifiers are, in general, expected to behave the same way they do in
3941GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3942inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3943and GCC likely indicates a bug in LLVM.
3944
3945Target-independent:
3946
Sean Silvaa1190322015-08-06 22:56:48 +00003947- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003948 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3949- ``n``: Negate and print immediate integer constant unadorned, without the
3950 target-specific immediate punctuation (e.g. no ``$`` prefix).
3951- ``l``: Print as an unadorned label, without the target-specific label
3952 punctuation (e.g. no ``$`` prefix).
3953
3954AArch64:
3955
3956- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3957 instead of ``x30``, print ``w30``.
3958- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3959- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3960 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3961 ``v*``.
3962
3963AMDGPU:
3964
3965- ``r``: No effect.
3966
3967ARM:
3968
3969- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3970 register).
3971- ``P``: No effect.
3972- ``q``: No effect.
3973- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3974 as ``d4[1]`` instead of ``s9``)
3975- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3976 prefix.
3977- ``L``: Print the low 16-bits of an immediate integer constant.
3978- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3979 register operands subsequent to the specified one (!), so use carefully.
3980- ``Q``: Print the low-order register of a register-pair, or the low-order
3981 register of a two-register operand.
3982- ``R``: Print the high-order register of a register-pair, or the high-order
3983 register of a two-register operand.
3984- ``H``: Print the second register of a register-pair. (On a big-endian system,
3985 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3986 to ``R``.)
3987
3988 .. FIXME: H doesn't currently support printing the second register
3989 of a two-register operand.
3990
3991- ``e``: Print the low doubleword register of a NEON quad register.
3992- ``f``: Print the high doubleword register of a NEON quad register.
3993- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3994 adornment.
3995
3996Hexagon:
3997
3998- ``L``: Print the second register of a two-register operand. Requires that it
3999 has been allocated consecutively to the first.
4000
4001 .. FIXME: why is it restricted to consecutive ones? And there's
4002 nothing that ensures that happens, is there?
4003
4004- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4005 nothing. Used to print 'addi' vs 'add' instructions.
4006
4007MSP430:
4008
4009No additional modifiers.
4010
4011MIPS:
4012
4013- ``X``: Print an immediate integer as hexadecimal
4014- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
4015- ``d``: Print an immediate integer as decimal.
4016- ``m``: Subtract one and print an immediate integer as decimal.
4017- ``z``: Print $0 if an immediate zero, otherwise print normally.
4018- ``L``: Print the low-order register of a two-register operand, or prints the
4019 address of the low-order word of a double-word memory operand.
4020
4021 .. FIXME: L seems to be missing memory operand support.
4022
4023- ``M``: Print the high-order register of a two-register operand, or prints the
4024 address of the high-order word of a double-word memory operand.
4025
4026 .. FIXME: M seems to be missing memory operand support.
4027
4028- ``D``: Print the second register of a two-register operand, or prints the
4029 second word of a double-word memory operand. (On a big-endian system, ``D`` is
4030 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
4031 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00004032- ``w``: No effect. Provided for compatibility with GCC which requires this
4033 modifier in order to print MSA registers (``W0-W31``) with the ``f``
4034 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00004035
4036NVPTX:
4037
4038- ``r``: No effect.
4039
4040PowerPC:
4041
4042- ``L``: Print the second register of a two-register operand. Requires that it
4043 has been allocated consecutively to the first.
4044
4045 .. FIXME: why is it restricted to consecutive ones? And there's
4046 nothing that ensures that happens, is there?
4047
4048- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4049 nothing. Used to print 'addi' vs 'add' instructions.
4050- ``y``: For a memory operand, prints formatter for a two-register X-form
4051 instruction. (Currently always prints ``r0,OPERAND``).
4052- ``U``: Prints 'u' if the memory operand is an update form, and nothing
4053 otherwise. (NOTE: LLVM does not support update form, so this will currently
4054 always print nothing)
4055- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
4056 not support indexed form, so this will currently always print nothing)
4057
4058Sparc:
4059
4060- ``r``: No effect.
4061
4062SystemZ:
4063
4064SystemZ implements only ``n``, and does *not* support any of the other
4065target-independent modifiers.
4066
4067X86:
4068
4069- ``c``: Print an unadorned integer or symbol name. (The latter is
4070 target-specific behavior for this typically target-independent modifier).
4071- ``A``: Print a register name with a '``*``' before it.
4072- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
4073 operand.
4074- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
4075 memory operand.
4076- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
4077 operand.
4078- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
4079 operand.
4080- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
4081 available, otherwise the 32-bit register name; do nothing on a memory operand.
4082- ``n``: Negate and print an unadorned integer, or, for operands other than an
4083 immediate integer (e.g. a relocatable symbol expression), print a '-' before
4084 the operand. (The behavior for relocatable symbol expressions is a
4085 target-specific behavior for this typically target-independent modifier)
4086- ``H``: Print a memory reference with additional offset +8.
4087- ``P``: Print a memory reference or operand for use as the argument of a call
4088 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
4089
4090XCore:
4091
4092No additional modifiers.
4093
4094
Sean Silvab084af42012-12-07 10:36:55 +00004095Inline Asm Metadata
4096^^^^^^^^^^^^^^^^^^^
4097
4098The call instructions that wrap inline asm nodes may have a
4099"``!srcloc``" MDNode attached to it that contains a list of constant
4100integers. If present, the code generator will use the integer as the
4101location cookie value when report errors through the ``LLVMContext``
4102error reporting mechanisms. This allows a front-end to correlate backend
4103errors that occur with inline asm back to the source code that produced
4104it. For example:
4105
4106.. code-block:: llvm
4107
4108 call void asm sideeffect "something bad", ""(), !srcloc !42
4109 ...
4110 !42 = !{ i32 1234567 }
4111
4112It is up to the front-end to make sense of the magic numbers it places
4113in the IR. If the MDNode contains multiple constants, the code generator
4114will use the one that corresponds to the line of the asm that the error
4115occurs on.
4116
4117.. _metadata:
4118
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004119Metadata
4120========
Sean Silvab084af42012-12-07 10:36:55 +00004121
4122LLVM IR allows metadata to be attached to instructions in the program
4123that can convey extra information about the code to the optimizers and
4124code generator. One example application of metadata is source-level
4125debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004126
Sean Silvaa1190322015-08-06 22:56:48 +00004127Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004128``call`` instruction, it uses the ``metadata`` type.
4129
4130All metadata are identified in syntax by a exclamation point ('``!``').
4131
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004132.. _metadata-string:
4133
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004134Metadata Nodes and Metadata Strings
4135-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00004136
4137A metadata string is a string surrounded by double quotes. It can
4138contain any character by escaping non-printable characters with
4139"``\xx``" where "``xx``" is the two digit hex code. For example:
4140"``!"test\00"``".
4141
4142Metadata nodes are represented with notation similar to structure
4143constants (a comma separated list of elements, surrounded by braces and
4144preceded by an exclamation point). Metadata nodes can have any values as
4145their operand. For example:
4146
4147.. code-block:: llvm
4148
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004149 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00004150
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004151Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4152
Renato Golin124f2592016-07-20 12:16:38 +00004153.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00004154
4155 !0 = distinct !{!"test\00", i32 10}
4156
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004157``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00004158content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00004159when metadata operands change.
4160
Sean Silvab084af42012-12-07 10:36:55 +00004161A :ref:`named metadata <namedmetadatastructure>` is a collection of
4162metadata nodes, which can be looked up in the module symbol table. For
4163example:
4164
4165.. code-block:: llvm
4166
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004167 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00004168
Adrian Prantl1b842da2017-07-28 20:44:29 +00004169Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4170intrinsic is using three metadata arguments:
Sean Silvab084af42012-12-07 10:36:55 +00004171
4172.. code-block:: llvm
4173
Adrian Prantlabe04752017-07-28 20:21:02 +00004174 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvab084af42012-12-07 10:36:55 +00004175
Peter Collingbourne50108682015-11-06 02:41:02 +00004176Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4177to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00004178
4179.. code-block:: llvm
4180
4181 %indvar.next = add i64 %indvar, 1, !dbg !21
4182
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004183Metadata can also be attached to a function or a global variable. Here metadata
4184``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4185and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourne50108682015-11-06 02:41:02 +00004186
4187.. code-block:: llvm
4188
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004189 declare !dbg !22 void @f1()
4190 define void @f2() !dbg !22 {
Peter Collingbourne50108682015-11-06 02:41:02 +00004191 ret void
4192 }
4193
Peter Collingbourne7b5b7c72017-01-25 21:50:14 +00004194 @g1 = global i32 0, !dbg !22
4195 @g2 = external global i32, !dbg !22
4196
4197A transformation is required to drop any metadata attachment that it does not
4198know or know it can't preserve. Currently there is an exception for metadata
4199attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4200unconditionally dropped unless the global is itself deleted.
4201
4202Metadata attached to a module using named metadata may not be dropped, with
4203the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4204
Sean Silvab084af42012-12-07 10:36:55 +00004205More information about specific metadata nodes recognized by the
4206optimizers and code generator is found below.
4207
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004208.. _specialized-metadata:
4209
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004210Specialized Metadata Nodes
4211^^^^^^^^^^^^^^^^^^^^^^^^^^
4212
4213Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00004214to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004215order.
4216
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004217These aren't inherently debug info centric, but currently all the specialized
4218metadata nodes are related to debug info.
4219
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004220.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004221
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004222DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004223"""""""""""""
4224
Sean Silvaa1190322015-08-06 22:56:48 +00004225``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004226``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4227containing the debug info to be emitted along with the compile unit, regardless
4228of code optimizations (some nodes are only emitted if there are references to
4229them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4230indicating whether or not line-table discriminators are updated to provide
4231more-accurate debug info for profiling results.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004232
Renato Golin124f2592016-07-20 12:16:38 +00004233.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004234
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004235 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004236 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00004237 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004238 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4239 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004240
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004241Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004242specific compilation unit. File descriptors are defined using this scope. These
4243descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4244track of global variables, type information, and imported entities (declarations
4245and namespaces).
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004246
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004247.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004248
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004249DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004250""""""
4251
Sean Silvaa1190322015-08-06 22:56:48 +00004252``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004253
Aaron Ballmanb3c51512017-01-17 21:48:31 +00004254.. code-block:: none
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004255
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004256 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4257 checksumkind: CSK_MD5,
4258 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004259
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004260Files are sometimes used in ``scope:`` fields, and are the only valid target
4261for ``file:`` fields.
Amjad Aboud7faeecc2016-12-25 10:12:09 +00004262Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004263
Michael Kuperstein605308a2015-05-14 10:58:59 +00004264.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004265
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004266DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004267"""""""""""
4268
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004269``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004270``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004271
Renato Golin124f2592016-07-20 12:16:38 +00004272.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004273
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004274 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004275 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004276 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004277
Sean Silvaa1190322015-08-06 22:56:48 +00004278The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004279following:
4280
Renato Golin124f2592016-07-20 12:16:38 +00004281.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004282
4283 DW_ATE_address = 1
4284 DW_ATE_boolean = 2
4285 DW_ATE_float = 4
4286 DW_ATE_signed = 5
4287 DW_ATE_signed_char = 6
4288 DW_ATE_unsigned = 7
4289 DW_ATE_unsigned_char = 8
4290
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004291.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004292
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004293DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004294""""""""""""""""
4295
Sean Silvaa1190322015-08-06 22:56:48 +00004296``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004297refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004298types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004299represents a function with no return value (such as ``void foo() {}`` in C++).
4300
Renato Golin124f2592016-07-20 12:16:38 +00004301.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004302
4303 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4304 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004305 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004306
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004307.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004308
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004309DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004310"""""""""""""
4311
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004312``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004313qualified types.
4314
Renato Golin124f2592016-07-20 12:16:38 +00004315.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004316
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004317 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004318 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004319 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004320 align: 32)
4321
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004322The following ``tag:`` values are valid:
4323
Renato Golin124f2592016-07-20 12:16:38 +00004324.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004325
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004326 DW_TAG_member = 13
4327 DW_TAG_pointer_type = 15
4328 DW_TAG_reference_type = 16
4329 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004330 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004331 DW_TAG_ptr_to_member_type = 31
4332 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004333 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004334 DW_TAG_volatile_type = 53
4335 DW_TAG_restrict_type = 55
Victor Leschuke1156c22016-10-31 19:09:38 +00004336 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004337
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004338.. _DIDerivedTypeMember:
4339
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004340``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004341<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004342``offset:`` is the member's bit offset. If the composite type has an ODR
4343``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4344uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004345
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004346``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4347field of :ref:`composite types <DICompositeType>` to describe parents and
4348friends.
4349
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004350``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4351
4352``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschuke1156c22016-10-31 19:09:38 +00004353``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4354are used to qualify the ``baseType:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004355
4356Note that the ``void *`` type is expressed as a type derived from NULL.
4357
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004358.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004359
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004360DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004361"""""""""""""""
4362
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004363``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004364structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004365
4366If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004367identifier used for type merging between modules. When specified,
4368:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4369derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4370``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004371
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004372For a given ``identifier:``, there should only be a single composite type that
4373does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4374together will unique such definitions at parse time via the ``identifier:``
4375field, even if the nodes are ``distinct``.
4376
Renato Golin124f2592016-07-20 12:16:38 +00004377.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004378
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004379 !0 = !DIEnumerator(name: "SixKind", value: 7)
4380 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4381 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4382 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004383 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4384 elements: !{!0, !1, !2})
4385
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004386The following ``tag:`` values are valid:
4387
Renato Golin124f2592016-07-20 12:16:38 +00004388.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004389
4390 DW_TAG_array_type = 1
4391 DW_TAG_class_type = 2
4392 DW_TAG_enumeration_type = 4
4393 DW_TAG_structure_type = 19
4394 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004395
4396For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004397descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004398level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004399array type is a native packed vector.
4400
4401For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004402descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004403value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004404``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004405
4406For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4407``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004408<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4409``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4410``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004411
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004412.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004413
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004414DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004415""""""""""
4416
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004417``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sander de Smalen1cb94312018-01-24 10:30:23 +00004418:ref:`DICompositeType`.
4419
4420- ``count: -1`` indicates an empty array.
4421- ``count: !9`` describes the count with a :ref:`DILocalVariable`.
4422- ``count: !11`` describes the count with a :ref:`DIGlobalVariable`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004423
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004424.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004425
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004426 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4427 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4428 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004429
Sander de Smalenfdf40912018-01-24 09:56:07 +00004430 ; Scopes used in rest of example
4431 !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
Chandler Carruth24dd2112018-08-06 02:30:01 +00004432 !7 = distinct !DICompileUnit(language: DW_LANG_C99, file: !6)
4433 !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004434
4435 ; Use of local variable as count value
4436 !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
4437 !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
Chandler Carruth24dd2112018-08-06 02:30:01 +00004438 !11 = !DISubrange(count: !10, lowerBound: 0)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004439
4440 ; Use of global variable as count value
4441 !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
Chandler Carruth24dd2112018-08-06 02:30:01 +00004442 !13 = !DISubrange(count: !12, lowerBound: 0)
Sander de Smalenfdf40912018-01-24 09:56:07 +00004443
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004444.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004445
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004446DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004447""""""""""""
4448
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004449``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4450variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004451
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004452.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004453
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004454 !0 = !DIEnumerator(name: "SixKind", value: 7)
4455 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4456 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004457
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004458DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004459"""""""""""""""""""""""
4460
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004461``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004462language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004463:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004464
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004465.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004466
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004467 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004468
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004469DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004470""""""""""""""""""""""""
4471
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004472``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004473language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004474but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004475``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004476:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004477
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004478.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004479
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004480 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004481
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004482DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004483"""""""""""
4484
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004485``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004486
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004487.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004488
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004489 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004490
Sander de Smalen1cb94312018-01-24 10:30:23 +00004491.. _DIGlobalVariable:
4492
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004493DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004494""""""""""""""""
4495
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004496``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004497
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004498.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004499
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004500 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004501 file: !2, line: 7, type: !3, isLocal: true,
4502 isDefinition: false, variable: i32* @foo,
4503 declaration: !4)
4504
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004505All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004506:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004507
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004508.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004509
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004510DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004511""""""""""""
4512
Peter Collingbourne50108682015-11-06 02:41:02 +00004513``DISubprogram`` nodes represent functions from the source language. A
4514``DISubprogram`` may be attached to a function definition using ``!dbg``
4515metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4516that must be retained, even if their IR counterparts are optimized out of
4517the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004518
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004519.. _DISubprogramDeclaration:
4520
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004521When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004522tree as opposed to a definition of a function. If the scope is a composite
4523type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4524then the subprogram declaration is uniqued based only on its ``linkageName:``
4525and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004526
Renato Golin124f2592016-07-20 12:16:38 +00004527.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004528
Peter Collingbourne50108682015-11-06 02:41:02 +00004529 define void @_Z3foov() !dbg !0 {
4530 ...
4531 }
4532
4533 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4534 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004535 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004536 containingType: !4,
4537 virtuality: DW_VIRTUALITY_pure_virtual,
4538 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl6c2497f2017-06-12 23:59:43 +00004539 isOptimized: true, unit: !5, templateParams: !6,
4540 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004541
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004542.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004543
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004544DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004545""""""""""""""
4546
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004547``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004548<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004549two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004550fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004551
Renato Golin124f2592016-07-20 12:16:38 +00004552.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004553
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004554 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004555
4556Usually lexical blocks are ``distinct`` to prevent node merging based on
4557operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004558
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004559.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004560
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004561DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004562""""""""""""""""""
4563
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004564``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004565:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004566indicate textual inclusion, or the ``discriminator:`` field can be used to
4567discriminate between control flow within a single block in the source language.
4568
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004569.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004570
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004571 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4572 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4573 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004574
Michael Kuperstein605308a2015-05-14 10:58:59 +00004575.. _DILocation:
4576
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004577DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004578""""""""""
4579
Sean Silvaa1190322015-08-06 22:56:48 +00004580``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004581mandatory, and points at an :ref:`DILexicalBlockFile`, an
4582:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004583
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004584.. code-block:: text
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004585
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004586 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004587
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004588.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004589
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004590DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004591"""""""""""""""
4592
Sean Silvaa1190322015-08-06 22:56:48 +00004593``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004594the ``arg:`` field is set to non-zero, then this variable is a subprogram
4595parameter, and it will be included in the ``variables:`` field of its
4596:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004597
Renato Golin124f2592016-07-20 12:16:38 +00004598.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004599
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004600 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4601 type: !3, flags: DIFlagArtificial)
4602 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4603 type: !3)
4604 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004605
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004606DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004607""""""""""""
4608
Adrian Prantlb44c7762017-03-22 18:01:01 +00004609``DIExpression`` nodes represent expressions that are inspired by the DWARF
4610expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4611(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
Vedant Kumar8a05b012018-07-28 00:33:47 +00004612referenced LLVM variable relates to the source language variable. Debug
4613intrinsics are interpreted left-to-right: start by pushing the value/address
4614operand of the intrinsic onto a stack, then repeatedly push and evaluate
4615opcodes from the DIExpression until the final variable description is produced.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004616
Vedant Kumar8a05b012018-07-28 00:33:47 +00004617The current supported opcode vocabulary is limited:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004618
Adrian Prantl6825fb62017-04-18 01:21:53 +00004619- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahnffc498d2017-06-14 13:14:38 +00004620- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4621 them together and appends the result to the expression stack.
4622- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4623 the last entry from the second last entry and appends the result to the
4624 expression stack.
Florian Hahnc9c403c2017-06-13 16:54:44 +00004625- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004626- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4627 here, respectively) of the variable fragment from the working expression. Note
Hiroshi Inoue760c0c92018-01-16 13:19:48 +00004628 that contrary to DW_OP_bit_piece, the offset is describing the location
Adrian Prantlb44c7762017-03-22 18:01:01 +00004629 within the described source variable.
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004630- ``DW_OP_swap`` swaps top two stack entries.
4631- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4632 of the stack is treated as an address. The second stack entry is treated as an
4633 address space identifier.
Adrian Prantlb44c7762017-03-22 18:01:01 +00004634- ``DW_OP_stack_value`` marks a constant value.
4635
Adrian Prantl6825fb62017-04-18 01:21:53 +00004636DWARF specifies three kinds of simple location descriptions: Register, memory,
Vedant Kumar8a05b012018-07-28 00:33:47 +00004637and implicit location descriptions. Note that a location description is
4638defined over certain ranges of a program, i.e the location of a variable may
4639change over the course of the program. Register and memory location
4640descriptions describe the *concrete location* of a source variable (in the
4641sense that a debugger might modify its value), whereas *implicit locations*
4642describe merely the actual *value* of a source variable which might not exist
4643in registers or in memory (see ``DW_OP_stack_value``).
4644
4645A ``llvm.dbg.addr`` or ``llvm.dbg.declare`` intrinsic describes an indirect
4646value (the address) of a source variable. The first operand of the intrinsic
4647must be an address of some kind. A DIExpression attached to the intrinsic
4648refines this address to produce a concrete location for the source variable.
4649
4650A ``llvm.dbg.value`` intrinsic describes the direct value of a source variable.
4651The first operand of the intrinsic may be a direct or indirect value. A
4652DIExpresion attached to the intrinsic refines the first operand to produce a
4653direct value. For example, if the first operand is an indirect value, it may be
4654necessary to insert ``DW_OP_deref`` into the DIExpresion in order to produce a
4655valid debug intrinsic.
4656
4657.. note::
4658
4659 A DIExpression is interpreted in the same way regardless of which kind of
4660 debug intrinsic it's attached to.
Adrian Prantl6825fb62017-04-18 01:21:53 +00004661
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004662.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004663
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004664 !0 = !DIExpression(DW_OP_deref)
Florian Hahnc9c403c2017-06-13 16:54:44 +00004665 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahnffc498d2017-06-14 13:14:38 +00004666 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004667 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahnffc498d2017-06-14 13:14:38 +00004668 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovf9b41cd2017-03-08 00:28:57 +00004669 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlb44c7762017-03-22 18:01:01 +00004670 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004671
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004672DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004673""""""""""""""
4674
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004675``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004676
Chandler Carruth4a73aa12018-08-06 03:35:36 +00004677.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004678
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004679 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004680 getter: "getFoo", attributes: 7, type: !2)
4681
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004682DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004683""""""""""""""""
4684
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004685``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004686compile unit.
4687
Renato Golin124f2592016-07-20 12:16:38 +00004688.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004689
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004690 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004691 entity: !1, line: 7)
4692
Amjad Abouda9bcf162015-12-10 12:56:35 +00004693DIMacro
4694"""""""
4695
4696``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4697The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004698defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004699used to expand the macro identifier.
4700
Renato Golin124f2592016-07-20 12:16:38 +00004701.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004702
4703 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4704 value: "((x) + 1)")
4705 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4706
4707DIMacroFile
4708"""""""""""
4709
4710``DIMacroFile`` nodes represent inclusion of source files.
4711The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4712appear in the included source file.
4713
Renato Golin124f2592016-07-20 12:16:38 +00004714.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004715
4716 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4717 nodes: !3)
4718
Sean Silvab084af42012-12-07 10:36:55 +00004719'``tbaa``' Metadata
4720^^^^^^^^^^^^^^^^^^^
4721
4722In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004723suitable for doing type based alias analysis (TBAA). Instead, metadata is
4724added to the IR to describe a type system of a higher level language. This
4725can be used to implement C/C++ strict type aliasing rules, but it can also
4726be used to implement custom alias analysis behavior for other languages.
Sean Silvab084af42012-12-07 10:36:55 +00004727
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004728This description of LLVM's TBAA system is broken into two parts:
4729:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4730:ref:`Representation<tbaa_node_representation>` talks about the metadata
4731encoding of various entities.
Sean Silvab084af42012-12-07 10:36:55 +00004732
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004733It is always possible to trace any TBAA node to a "root" TBAA node (details
4734in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4735nodes with different roots have an unknown aliasing relationship, and LLVM
4736conservatively infers ``MayAlias`` between them. The rules mentioned in
4737this section only pertain to TBAA nodes living under the same root.
Sean Silvab084af42012-12-07 10:36:55 +00004738
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004739.. _tbaa_node_semantics:
Sean Silvab084af42012-12-07 10:36:55 +00004740
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004741Semantics
4742"""""""""
Sean Silvab084af42012-12-07 10:36:55 +00004743
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004744The TBAA metadata system, referred to as "struct path TBAA" (not to be
4745confused with ``tbaa.struct``), consists of the following high level
4746concepts: *Type Descriptors*, further subdivided into scalar type
4747descriptors and struct type descriptors; and *Access Tags*.
Sean Silvab084af42012-12-07 10:36:55 +00004748
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004749**Type descriptors** describe the type system of the higher level language
4750being compiled. **Scalar type descriptors** describe types that do not
4751contain other types. Each scalar type has a parent type, which must also
4752be a scalar type or the TBAA root. Via this parent relation, scalar types
4753within a TBAA root form a tree. **Struct type descriptors** denote types
4754that contain a sequence of other type descriptors, at known offsets. These
4755contained type descriptors can either be struct type descriptors themselves
4756or scalar type descriptors.
4757
4758**Access tags** are metadata nodes attached to load and store instructions.
4759Access tags use type descriptors to describe the *location* being accessed
4760in terms of the type system of the higher level language. Access tags are
4761tuples consisting of a base type, an access type and an offset. The base
4762type is a scalar type descriptor or a struct type descriptor, the access
4763type is a scalar type descriptor, and the offset is a constant integer.
4764
4765The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4766things:
4767
4768 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4769 or store) of a value of type ``AccessTy`` contained in the struct type
4770 ``BaseTy`` at offset ``Offset``.
4771
4772 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4773 ``AccessTy`` must be the same; and the access tag describes a scalar
4774 access with scalar type ``AccessTy``.
4775
4776We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4777tuples this way:
4778
4779 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4780 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4781 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4782 undefined if ``Offset`` is non-zero.
4783
4784 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4785 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4786 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4787 to be relative within that inner type.
4788
4789A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4790aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4791Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4792Offset2)`` via the ``Parent`` relation or vice versa.
4793
4794As a concrete example, the type descriptor graph for the following program
4795
4796.. code-block:: c
4797
4798 struct Inner {
4799 int i; // offset 0
4800 float f; // offset 4
4801 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004802
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004803 struct Outer {
4804 float f; // offset 0
4805 double d; // offset 4
4806 struct Inner inner_a; // offset 12
4807 };
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00004808
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004809 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4810 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4811 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
Fangrui Song74d6a742018-05-29 05:38:05 +00004812 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, FloatScalarTy, 16)
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004813 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4814 }
4815
4816is (note that in C and C++, ``char`` can be used to access any arbitrary
4817type):
4818
4819.. code-block:: text
4820
4821 Root = "TBAA Root"
4822 CharScalarTy = ("char", Root, 0)
4823 FloatScalarTy = ("float", CharScalarTy, 0)
4824 DoubleScalarTy = ("double", CharScalarTy, 0)
4825 IntScalarTy = ("int", CharScalarTy, 0)
4826 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4827 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4828 (InnerStructTy, 12)}
4829
4830
4831with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
48320)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4833``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4834
4835.. _tbaa_node_representation:
4836
4837Representation
4838""""""""""""""
4839
4840The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4841with exactly one ``MDString`` operand.
4842
4843Scalar type descriptors are represented as an ``MDNode`` s with two
4844operands. The first operand is an ``MDString`` denoting the name of the
4845struct type. LLVM does not assign meaning to the value of this operand, it
4846only cares about it being an ``MDString``. The second operand is an
4847``MDNode`` which points to the parent for said scalar type descriptor,
4848which is either another scalar type descriptor or the TBAA root. Scalar
4849type descriptors can have an optional third argument, but that must be the
4850constant integer zero.
4851
4852Struct type descriptors are represented as ``MDNode`` s with an odd number
4853of operands greater than 1. The first operand is an ``MDString`` denoting
4854the name of the struct type. Like in scalar type descriptors the actual
4855value of this name operand is irrelevant to LLVM. After the name operand,
4856the struct type descriptors have a sequence of alternating ``MDNode`` and
4857``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4858an ``MDNode``, denotes a contained field, and the 2N th operand, a
4859``ConstantInt``, is the offset of the said contained field. The offsets
4860must be in non-decreasing order.
4861
4862Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4863The first operand is an ``MDNode`` pointing to the node representing the
4864base type. The second operand is an ``MDNode`` pointing to the node
4865representing the access type. The third operand is a ``ConstantInt`` that
4866states the offset of the access. If a fourth field is present, it must be
4867a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4868that the location being accessed is "constant" (meaning
Sean Silvab084af42012-12-07 10:36:55 +00004869``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasa3ff9942017-02-13 23:14:03 +00004870AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4871the access type and the base type of an access tag must be the same, and
4872that is the TBAA root of the access tag.
Sean Silvab084af42012-12-07 10:36:55 +00004873
4874'``tbaa.struct``' Metadata
4875^^^^^^^^^^^^^^^^^^^^^^^^^^
4876
4877The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4878aggregate assignment operations in C and similar languages, however it
4879is defined to copy a contiguous region of memory, which is more than
4880strictly necessary for aggregate types which contain holes due to
4881padding. Also, it doesn't contain any TBAA information about the fields
4882of the aggregate.
4883
4884``!tbaa.struct`` metadata can describe which memory subregions in a
4885memcpy are padding and what the TBAA tags of the struct are.
4886
4887The current metadata format is very simple. ``!tbaa.struct`` metadata
4888nodes are a list of operands which are in conceptual groups of three.
4889For each group of three, the first operand gives the byte offset of a
4890field in bytes, the second gives its size in bytes, and the third gives
4891its tbaa tag. e.g.:
4892
4893.. code-block:: llvm
4894
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004895 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004896
4897This describes a struct with two fields. The first is at offset 0 bytes
4898with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4899and has size 4 bytes and has tbaa tag !2.
4900
4901Note that the fields need not be contiguous. In this example, there is a
49024 byte gap between the two fields. This gap represents padding which
4903does not carry useful data and need not be preserved.
4904
Hal Finkel94146652014-07-24 14:25:39 +00004905'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004906^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004907
4908``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4909noalias memory-access sets. This means that some collection of memory access
4910instructions (loads, stores, memory-accessing calls, etc.) that carry
4911``noalias`` metadata can specifically be specified not to alias with some other
4912collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004913Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004914a domain.
4915
4916When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004917of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004918subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004919instruction's ``noalias`` list, then the two memory accesses are assumed not to
4920alias.
Hal Finkel94146652014-07-24 14:25:39 +00004921
Adam Nemet569a5b32016-04-27 00:52:48 +00004922Because scopes in one domain don't affect scopes in other domains, separate
4923domains can be used to compose multiple independent noalias sets. This is
4924used for example during inlining. As the noalias function parameters are
4925turned into noalias scope metadata, a new domain is used every time the
4926function is inlined.
4927
Hal Finkel029cde62014-07-25 15:50:02 +00004928The metadata identifying each domain is itself a list containing one or two
4929entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004930string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004931self-reference can be used to create globally unique domain names. A
4932descriptive string may optionally be provided as a second list entry.
4933
4934The metadata identifying each scope is also itself a list containing two or
4935three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004936is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004937self-reference can be used to create globally unique scope names. A metadata
4938reference to the scope's domain is the second entry. A descriptive string may
4939optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004940
4941For example,
4942
4943.. code-block:: llvm
4944
Hal Finkel029cde62014-07-25 15:50:02 +00004945 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004946 !0 = !{!0}
4947 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004948
Hal Finkel029cde62014-07-25 15:50:02 +00004949 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004950 !2 = !{!2, !0}
4951 !3 = !{!3, !0}
4952 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004953
Hal Finkel029cde62014-07-25 15:50:02 +00004954 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004955 !5 = !{!4} ; A list containing only scope !4
4956 !6 = !{!4, !3, !2}
4957 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004958
4959 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004960 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004961 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004962
Hal Finkel029cde62014-07-25 15:50:02 +00004963 ; These two instructions also don't alias (for domain !1, the set of scopes
4964 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004965 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004966 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004967
Adam Nemet0a8416f2015-05-11 08:30:28 +00004968 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004969 ; the !noalias list is not a superset of, or equal to, the scopes in the
4970 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004971 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004972 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004973
Sean Silvab084af42012-12-07 10:36:55 +00004974'``fpmath``' Metadata
4975^^^^^^^^^^^^^^^^^^^^^
4976
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00004977``fpmath`` metadata may be attached to any instruction of floating-point
Sean Silvab084af42012-12-07 10:36:55 +00004978type. It can be used to express the maximum acceptable error in the
4979result of that instruction, in ULPs, thus potentially allowing the
4980compiler to use a more efficient but less accurate method of computing
4981it. ULP is defined as follows:
4982
4983 If ``x`` is a real number that lies between two finite consecutive
4984 floating-point numbers ``a`` and ``b``, without being equal to one
4985 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4986 distance between the two non-equal finite floating-point numbers
4987 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4988
Matt Arsenault82f41512016-06-27 19:43:15 +00004989The metadata node shall consist of a single positive float type number
4990representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004991
4992.. code-block:: llvm
4993
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004994 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004995
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004996.. _range-metadata:
4997
Sean Silvab084af42012-12-07 10:36:55 +00004998'``range``' Metadata
4999^^^^^^^^^^^^^^^^^^^^
5000
Jingyue Wu37fcb592014-06-19 16:50:16 +00005001``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
5002integer types. It expresses the possible ranges the loaded value or the value
Eli Friedmane15a1112018-07-17 20:38:11 +00005003returned by the called function at this call site is in. If the loaded or
5004returned value is not in the specified range, the behavior is undefined. The
5005ranges are represented with a flattened list of integers. The loaded value or
5006the value returned is known to be in the union of the ranges defined by each
5007consecutive pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00005008
5009- The type must match the type loaded by the instruction.
5010- The pair ``a,b`` represents the range ``[a,b)``.
5011- Both ``a`` and ``b`` are constants.
5012- The range is allowed to wrap.
5013- The range should not represent the full or empty set. That is,
5014 ``a!=b``.
5015
5016In addition, the pairs must be in signed order of the lower bound and
5017they must be non-contiguous.
5018
5019Examples:
5020
5021.. code-block:: llvm
5022
David Blaikiec7aabbb2015-03-04 22:06:14 +00005023 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
5024 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00005025 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
5026 %d = invoke i8 @bar() to label %cont
5027 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00005028 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005029 !0 = !{ i8 0, i8 2 }
5030 !1 = !{ i8 255, i8 2 }
5031 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
5032 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00005033
Peter Collingbourne235c2752016-12-08 19:01:00 +00005034'``absolute_symbol``' Metadata
5035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5036
5037``absolute_symbol`` metadata may be attached to a global variable
5038declaration. It marks the declaration as a reference to an absolute symbol,
5039which causes the backend to use absolute relocations for the symbol even
5040in position independent code, and expresses the possible ranges that the
5041global variable's *address* (not its value) is in, in the same format as
Peter Collingbourned88f9282017-01-20 21:56:37 +00005042``range`` metadata, with the extension that the pair ``all-ones,all-ones``
5043may be used to represent the full set.
Peter Collingbourne235c2752016-12-08 19:01:00 +00005044
Peter Collingbourned88f9282017-01-20 21:56:37 +00005045Example (assuming 64-bit pointers):
Peter Collingbourne235c2752016-12-08 19:01:00 +00005046
5047.. code-block:: llvm
5048
5049 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourned88f9282017-01-20 21:56:37 +00005050 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourne235c2752016-12-08 19:01:00 +00005051
5052 ...
5053 !0 = !{ i64 0, i64 256 }
Peter Collingbourned88f9282017-01-20 21:56:37 +00005054 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourne235c2752016-12-08 19:01:00 +00005055
Matthew Simpson36bbc8c2017-10-16 22:22:11 +00005056'``callees``' Metadata
5057^^^^^^^^^^^^^^^^^^^^^^
5058
5059``callees`` metadata may be attached to indirect call sites. If ``callees``
5060metadata is attached to a call site, and any callee is not among the set of
5061functions provided by the metadata, the behavior is undefined. The intent of
5062this metadata is to facilitate optimizations such as indirect-call promotion.
5063For example, in the code below, the call instruction may only target the
5064``add`` or ``sub`` functions:
5065
5066.. code-block:: llvm
5067
5068 %result = call i64 %binop(i64 %x, i64 %y), !callees !0
5069
5070 ...
5071 !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
5072
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005073'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00005074^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00005075
5076``unpredictable`` metadata may be attached to any branch or switch
5077instruction. It can be used to express the unpredictability of control
5078flow. Similar to the llvm.expect intrinsic, it may be used to alter
5079optimizations related to compare and branch instructions. The metadata
5080is treated as a boolean value; if it exists, it signals that the branch
5081or switch that it is attached to is completely unpredictable.
5082
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005083'``llvm.loop``'
5084^^^^^^^^^^^^^^^
5085
5086It is sometimes useful to attach information to loop constructs. Currently,
5087loop metadata is implemented as metadata attached to the branch instruction
5088in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00005089guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00005090specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005091
5092The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00005093itself to avoid merging it with any other identifier metadata, e.g.,
5094during module linkage or function inlining. That is, each loop should refer
5095to their own identification metadata even if they reside in separate functions.
5096The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005097constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005098
5099.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00005100
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005101 !0 = !{!0}
5102 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00005103
Mark Heffernan893752a2014-07-18 19:24:51 +00005104The loop identifier metadata can be used to specify additional
5105per-loop metadata. Any operands after the first operand can be treated
5106as user-defined metadata. For example the ``llvm.loop.unroll.count``
5107suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005108
Paul Redmond5fdf8362013-05-28 20:00:34 +00005109.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005110
Paul Redmond5fdf8362013-05-28 20:00:34 +00005111 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
5112 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005113 !0 = !{!0, !1}
5114 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005115
Mark Heffernan9d20e422014-07-21 23:11:03 +00005116'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
5117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00005118
Mark Heffernan9d20e422014-07-21 23:11:03 +00005119Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
5120used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00005121vectorization width and interleave count. These metadata should be used in
5122conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00005123``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
5124optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00005125it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00005126which contains information about loop-carried memory dependencies can be helpful
5127in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00005128
Mark Heffernan9d20e422014-07-21 23:11:03 +00005129'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00005130^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5131
Mark Heffernan9d20e422014-07-21 23:11:03 +00005132This metadata suggests an interleave count to the loop interleaver.
5133The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00005134second operand is an integer specifying the interleave count. For
5135example:
5136
5137.. code-block:: llvm
5138
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005139 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005140
Mark Heffernan9d20e422014-07-21 23:11:03 +00005141Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00005142multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00005143then the interleave count will be determined automatically.
5144
5145'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00005146^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00005147
5148This metadata selectively enables or disables vectorization for the loop. The
5149first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00005150is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000051510 disables vectorization:
5152
5153.. code-block:: llvm
5154
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005155 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5156 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00005157
5158'``llvm.loop.vectorize.width``' Metadata
5159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5160
5161This metadata sets the target width of the vectorizer. The first
5162operand is the string ``llvm.loop.vectorize.width`` and the second
5163operand is an integer specifying the width. For example:
5164
5165.. code-block:: llvm
5166
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005167 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005168
5169Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00005170vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000051710 or if the loop does not have this metadata the width will be
5172determined automatically.
5173
5174'``llvm.loop.unroll``'
5175^^^^^^^^^^^^^^^^^^^^^^
5176
5177Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5178optimization hints such as the unroll factor. ``llvm.loop.unroll``
5179metadata should be used in conjunction with ``llvm.loop`` loop
5180identification metadata. The ``llvm.loop.unroll`` metadata are only
5181optimization hints and the unrolling will only be performed if the
5182optimizer believes it is safe to do so.
5183
Mark Heffernan893752a2014-07-18 19:24:51 +00005184'``llvm.loop.unroll.count``' Metadata
5185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5186
5187This metadata suggests an unroll factor to the loop unroller. The
5188first operand is the string ``llvm.loop.unroll.count`` and the second
5189operand is a positive integer specifying the unroll factor. For
5190example:
5191
5192.. code-block:: llvm
5193
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005194 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00005195
5196If the trip count of the loop is less than the unroll count the loop
5197will be partially unrolled.
5198
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005199'``llvm.loop.unroll.disable``' Metadata
5200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5201
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005202This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00005203which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005204
5205.. code-block:: llvm
5206
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005207 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005208
Kevin Qin715b01e2015-03-09 06:14:18 +00005209'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00005210^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00005211
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005212This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00005213operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00005214
5215.. code-block:: llvm
5216
5217 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5218
Mark Heffernan89391542015-08-10 17:28:08 +00005219'``llvm.loop.unroll.enable``' Metadata
5220^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5221
5222This metadata suggests that the loop should be fully unrolled if the trip count
5223is known at compile time and partially unrolled if the trip count is not known
5224at compile time. The metadata has a single operand which is the string
5225``llvm.loop.unroll.enable``. For example:
5226
5227.. code-block:: llvm
5228
5229 !0 = !{!"llvm.loop.unroll.enable"}
5230
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005231'``llvm.loop.unroll.full``' Metadata
5232^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5233
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00005234This metadata suggests that the loop should be unrolled fully. The
5235metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00005236For example:
5237
5238.. code-block:: llvm
5239
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005240 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005241
David Green7fbf06c2018-07-19 12:37:00 +00005242'``llvm.loop.unroll_and_jam``'
5243^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5244
5245This metadata is treated very similarly to the ``llvm.loop.unroll`` metadata
5246above, but affect the unroll and jam pass. In addition any loop with
5247``llvm.loop.unroll`` metadata but no ``llvm.loop.unroll_and_jam`` metadata will
5248disable unroll and jam (so ``llvm.loop.unroll`` metadata will be left to the
5249unroller, plus ``llvm.loop.unroll.disable`` metadata will disable unroll and jam
5250too.)
5251
5252The metadata for unroll and jam otherwise is the same as for ``unroll``.
5253``llvm.loop.unroll_and_jam.enable``, ``llvm.loop.unroll_and_jam.disable`` and
5254``llvm.loop.unroll_and_jam.count`` do the same as for unroll.
5255``llvm.loop.unroll_and_jam.full`` is not supported. Again these are only hints
5256and the normal safety checks will still be performed.
5257
5258'``llvm.loop.unroll_and_jam.count``' Metadata
5259^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5260
5261This metadata suggests an unroll and jam factor to use, similarly to
5262``llvm.loop.unroll.count``. The first operand is the string
5263``llvm.loop.unroll_and_jam.count`` and the second operand is a positive integer
5264specifying the unroll factor. For example:
5265
5266.. code-block:: llvm
5267
5268 !0 = !{!"llvm.loop.unroll_and_jam.count", i32 4}
5269
5270If the trip count of the loop is less than the unroll count the loop
5271will be partially unroll and jammed.
5272
5273'``llvm.loop.unroll_and_jam.disable``' Metadata
5274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5275
5276This metadata disables loop unroll and jamming. The metadata has a single
5277operand which is the string ``llvm.loop.unroll_and_jam.disable``. For example:
5278
5279.. code-block:: llvm
5280
5281 !0 = !{!"llvm.loop.unroll_and_jam.disable"}
5282
5283'``llvm.loop.unroll_and_jam.enable``' Metadata
5284^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5285
5286This metadata suggests that the loop should be fully unroll and jammed if the
5287trip count is known at compile time and partially unrolled if the trip count is
5288not known at compile time. The metadata has a single operand which is the
5289string ``llvm.loop.unroll_and_jam.enable``. For example:
5290
5291.. code-block:: llvm
5292
5293 !0 = !{!"llvm.loop.unroll_and_jam.enable"}
5294
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005295'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00005296^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00005297
5298This metadata indicates that the loop should not be versioned for the purpose
5299of enabling loop-invariant code motion (LICM). The metadata has a single operand
5300which is the string ``llvm.loop.licm_versioning.disable``. For example:
5301
5302.. code-block:: llvm
5303
5304 !0 = !{!"llvm.loop.licm_versioning.disable"}
5305
Adam Nemetd2fa4142016-04-27 05:28:18 +00005306'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00005307^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00005308
5309Loop distribution allows splitting a loop into multiple loops. Currently,
5310this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inoueb93daec2017-07-02 12:44:27 +00005311memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemetd2fa4142016-04-27 05:28:18 +00005312dependencies into their own loop.
5313
5314This metadata can be used to selectively enable or disable distribution of the
5315loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5316second operand is a bit. If the bit operand value is 1 distribution is
5317enabled. A value of 0 disables distribution:
5318
5319.. code-block:: llvm
5320
5321 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5322 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5323
5324This metadata should be used in conjunction with ``llvm.loop`` loop
5325identification metadata.
5326
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005327'``llvm.mem``'
5328^^^^^^^^^^^^^^^
5329
5330Metadata types used to annotate memory accesses with information helpful
5331for optimizations are prefixed with ``llvm.mem``.
5332
5333'``llvm.mem.parallel_loop_access``' Metadata
5334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5335
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005336The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
5337or metadata containing a list of loop identifiers for nested loops.
5338The metadata is attached to memory accessing instructions and denotes that
5339no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00005340with the same loop identifier. The metadata on memory reads also implies that
5341if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005342
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005343Precisely, given two instructions ``m1`` and ``m2`` that both have the
5344``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
5345set of loops associated with that metadata, respectively, then there is no loop
5346carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005347``L2``.
5348
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005349As a special case, if all memory accessing instructions in a loop have
5350``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
5351loop has no loop carried memory dependences and is considered to be a parallel
5352loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005353
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005354Note that if not all memory access instructions have such metadata referring to
5355the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00005356memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005357safe mechanism, this causes loops that were originally parallel to be considered
5358sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00005359insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005360
5361Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00005362both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005363metadata types that refer to the same loop identifier metadata.
5364
5365.. code-block:: llvm
5366
5367 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005368 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005369 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005370 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005371 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005372 ...
5373 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005374
5375 for.end:
5376 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005377 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005378
5379It is also possible to have nested parallel loops. In that case the
5380memory accesses refer to a list of loop identifier metadata nodes instead of
5381the loop identifier metadata node directly:
5382
5383.. code-block:: llvm
5384
5385 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005386 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005387 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005388 ...
5389 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005390
5391 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005392 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00005393 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005394 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005395 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00005396 ...
5397 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005398
5399 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00005400 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00005401 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00005402 ...
5403 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005404
5405 outer.for.end: ; preds = %for.body
5406 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005407 !0 = !{!1, !2} ; a list of loop identifiers
5408 !1 = !{!1} ; an identifier for the inner loop
5409 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00005410
Hiroshi Yamauchidce9def2017-11-02 22:26:51 +00005411'``irr_loop``' Metadata
5412^^^^^^^^^^^^^^^^^^^^^^^
5413
5414``irr_loop`` metadata may be attached to the terminator instruction of a basic
5415block that's an irreducible loop header (note that an irreducible loop has more
5416than once header basic blocks.) If ``irr_loop`` metadata is attached to the
5417terminator instruction of a basic block that is not really an irreducible loop
5418header, the behavior is undefined. The intent of this metadata is to improve the
5419accuracy of the block frequency propagation. For example, in the code below, the
5420block ``header0`` may have a loop header weight (relative to the other headers of
5421the irreducible loop) of 100:
5422
5423.. code-block:: llvm
5424
5425 header0:
5426 ...
5427 br i1 %cmp, label %t1, label %t2, !irr_loop !0
5428
5429 ...
5430 !0 = !{"loop_header_weight", i64 100}
5431
5432Irreducible loop header weights are typically based on profile data.
5433
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005434'``invariant.group``' Metadata
5435^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5436
Piotr Padlewski74b155f2018-04-08 13:53:04 +00005437The experimental ``invariant.group`` metadata may be attached to
Piotr Padlewskice358262018-05-18 23:53:46 +00005438``load``/``store`` instructions referencing a single metadata with no entries.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005439The existence of the ``invariant.group`` metadata on the instruction tells
5440the optimizer that every ``load`` and ``store`` to the same pointer operand
Piotr Padlewskice358262018-05-18 23:53:46 +00005441can be assumed to load or store the same
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005442value (but see the ``llvm.launder.invariant.group`` intrinsic which affects
Piotr Padlewskida362152016-12-30 18:45:07 +00005443when two pointers are considered the same). Pointers returned by bitcast or
5444getelementptr with only zero indices are considered the same.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005445
5446Examples:
5447
5448.. code-block:: llvm
5449
5450 @unknownPtr = external global i8
5451 ...
5452 %ptr = alloca i8
5453 store i8 42, i8* %ptr, !invariant.group !0
5454 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005455
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005456 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5457 call void @foo(i8* %ptr)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005458
5459 %newPtr = call i8* @getPointer(i8* %ptr)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005460 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005461
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005462 %unknownValue = load i8, i8* @unknownPtr
5463 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005464
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005465 call void @foo(i8* %ptr)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005466 %newPtr2 = call i8* @llvm.launder.invariant.group(i8* %ptr)
5467 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through launder.invariant.group to get value of %ptr
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005468
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005469 ...
5470 declare void @foo(i8*)
5471 declare i8* @getPointer(i8*)
Piotr Padlewski5dde8092018-05-03 11:03:01 +00005472 declare i8* @llvm.launder.invariant.group(i8*)
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005473
Piotr Padlewskice358262018-05-18 23:53:46 +00005474 !0 = !{}
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005475
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005476The invariant.group metadata must be dropped when replacing one pointer by
5477another based on aliasing information. This is because invariant.group is tied
5478to the SSA value of the pointer operand.
5479
5480.. code-block:: llvm
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005481
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005482 %v = load i8, i8* %x, !invariant.group !0
5483 ; if %x mustalias %y then we can replace the above instruction with
5484 %v = load i8, i8* %y
5485
Piotr Padlewski74b155f2018-04-08 13:53:04 +00005486Note that this is an experimental feature, which means that its semantics might
5487change in the future.
Piotr Padlewskif8486e32017-04-12 07:59:35 +00005488
Peter Collingbournea333db82016-07-26 22:31:30 +00005489'``type``' Metadata
5490^^^^^^^^^^^^^^^^^^^
5491
5492See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005493
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005494'``associated``' Metadata
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005495^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005496
5497The ``associated`` metadata may be attached to a global object
5498declaration with a single argument that references another global object.
5499
5500This metadata prevents discarding of the global object in linker GC
5501unless the referenced object is also discarded. The linker support for
5502this feature is spotty. For best compatibility, globals carrying this
5503metadata may also:
5504
5505- Be in a comdat with the referenced global.
5506- Be in @llvm.compiler.used.
5507- Have an explicit section with a name which is a valid C identifier.
5508
5509It does not have any effect on non-ELF targets.
5510
5511Example:
5512
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00005513.. code-block:: text
Evgeniy Stepanov4d490de2017-03-17 22:31:13 +00005514
Evgeniy Stepanov51c962f722017-03-17 22:17:24 +00005515 $a = comdat any
5516 @a = global i32 1, comdat $a
5517 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5518 !0 = !{i32* @a}
5519
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00005520
Teresa Johnsond72f51c2017-06-15 15:57:12 +00005521'``prof``' Metadata
5522^^^^^^^^^^^^^^^^^^^
5523
5524The ``prof`` metadata is used to record profile data in the IR.
5525The first operand of the metadata node indicates the profile metadata
5526type. There are currently 3 types:
5527:ref:`branch_weights<prof_node_branch_weights>`,
5528:ref:`function_entry_count<prof_node_function_entry_count>`, and
5529:ref:`VP<prof_node_VP>`.
5530
5531.. _prof_node_branch_weights:
5532
5533branch_weights
5534""""""""""""""
5535
5536Branch weight metadata attached to a branch, select, switch or call instruction
5537represents the likeliness of the associated branch being taken.
5538For more information, see :doc:`BranchWeightMetadata`.
5539
5540.. _prof_node_function_entry_count:
5541
5542function_entry_count
5543""""""""""""""""""""
5544
5545Function entry count metadata can be attached to function definitions
5546to record the number of times the function is called. Used with BFI
5547information, it is also used to derive the basic block profile count.
5548For more information, see :doc:`BranchWeightMetadata`.
5549
5550.. _prof_node_VP:
5551
5552VP
5553""
5554
5555VP (value profile) metadata can be attached to instructions that have
5556value profile information. Currently this is indirect calls (where it
5557records the hottest callees) and calls to memory intrinsics such as memcpy,
5558memmove, and memset (where it records the hottest byte lengths).
5559
5560Each VP metadata node contains "VP" string, then a uint32_t value for the value
5561profiling kind, a uint64_t value for the total number of times the instruction
5562is executed, followed by uint64_t value and execution count pairs.
5563The value profiling kind is 0 for indirect call targets and 1 for memory
5564operations. For indirect call targets, each profile value is a hash
5565of the callee function name, and for memory operations each value is the
5566byte length.
5567
5568Note that the value counts do not need to add up to the total count
5569listed in the third operand (in practice only the top hottest values
5570are tracked and reported).
5571
5572Indirect call example:
5573
5574.. code-block:: llvm
5575
5576 call void %f(), !prof !1
5577 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5578
5579Note that the VP type is 0 (the second operand), which indicates this is
5580an indirect call value profile data. The third operand indicates that the
5581indirect call executed 1600 times. The 4th and 6th operands give the
5582hashes of the 2 hottest target functions' names (this is the same hash used
5583to represent function names in the profile database), and the 5th and 7th
5584operands give the execution count that each of the respective prior target
5585functions was called.
5586
Sean Silvab084af42012-12-07 10:36:55 +00005587Module Flags Metadata
5588=====================
5589
5590Information about the module as a whole is difficult to convey to LLVM's
5591subsystems. The LLVM IR isn't sufficient to transmit this information.
5592The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005593this. These flags are in the form of key / value pairs --- much like a
5594dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00005595look it up.
5596
5597The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5598Each triplet has the following form:
5599
5600- The first element is a *behavior* flag, which specifies the behavior
5601 when two (or more) modules are merged together, and it encounters two
5602 (or more) metadata with the same ID. The supported behaviors are
5603 described below.
5604- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005605 metadata. Each module may only have one flag entry for each unique ID (not
5606 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00005607- The third element is the value of the flag.
5608
5609When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005610``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5611each unique metadata ID string, there will be exactly one entry in the merged
5612modules ``llvm.module.flags`` metadata table, and the value for that entry will
5613be determined by the merge behavior flag, as described below. The only exception
5614is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00005615
5616The following behaviors are supported:
5617
5618.. list-table::
5619 :header-rows: 1
5620 :widths: 10 90
5621
5622 * - Value
5623 - Behavior
5624
5625 * - 1
5626 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005627 Emits an error if two values disagree, otherwise the resulting value
5628 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00005629
5630 * - 2
5631 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005632 Emits a warning if two values disagree. The result value will be the
5633 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00005634
5635 * - 3
5636 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005637 Adds a requirement that another module flag be present and have a
5638 specified value after linking is performed. The value must be a
5639 metadata pair, where the first element of the pair is the ID of the
5640 module flag to be restricted, and the second element of the pair is
5641 the value the module flag should be restricted to. This behavior can
5642 be used to restrict the allowable results (via triggering of an
5643 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00005644
5645 * - 4
5646 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005647 Uses the specified value, regardless of the behavior or value of the
5648 other module. If both modules specify **Override**, but the values
5649 differ, an error will be emitted.
5650
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00005651 * - 5
5652 - **Append**
5653 Appends the two values, which are required to be metadata nodes.
5654
5655 * - 6
5656 - **AppendUnique**
5657 Appends the two values, which are required to be metadata
5658 nodes. However, duplicate entries in the second list are dropped
5659 during the append operation.
5660
Steven Wu86a511e2017-08-15 16:16:33 +00005661 * - 7
5662 - **Max**
5663 Takes the max of the two values, which are required to be integers.
5664
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005665It is an error for a particular unique flag ID to have multiple behaviors,
5666except in the case of **Require** (which adds restrictions on another metadata
5667value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005668
5669An example of module flags:
5670
5671.. code-block:: llvm
5672
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005673 !0 = !{ i32 1, !"foo", i32 1 }
5674 !1 = !{ i32 4, !"bar", i32 37 }
5675 !2 = !{ i32 2, !"qux", i32 42 }
5676 !3 = !{ i32 3, !"qux",
5677 !{
5678 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005679 }
5680 }
5681 !llvm.module.flags = !{ !0, !1, !2, !3 }
5682
5683- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5684 if two or more ``!"foo"`` flags are seen is to emit an error if their
5685 values are not equal.
5686
5687- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5688 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005689 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005690
5691- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5692 behavior if two or more ``!"qux"`` flags are seen is to emit a
5693 warning if their values are not equal.
5694
5695- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5696
5697 ::
5698
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005699 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005700
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005701 The behavior is to emit an error if the ``llvm.module.flags`` does not
5702 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5703 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005704
5705Objective-C Garbage Collection Module Flags Metadata
5706----------------------------------------------------
5707
5708On the Mach-O platform, Objective-C stores metadata about garbage
5709collection in a special section called "image info". The metadata
5710consists of a version number and a bitmask specifying what types of
5711garbage collection are supported (if any) by the file. If two or more
5712modules are linked together their garbage collection metadata needs to
5713be merged rather than appended together.
5714
5715The Objective-C garbage collection module flags metadata consists of the
5716following key-value pairs:
5717
5718.. list-table::
5719 :header-rows: 1
5720 :widths: 30 70
5721
5722 * - Key
5723 - Value
5724
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005725 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005726 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005727
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005728 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005729 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005730 always 0.
5731
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005732 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005733 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005734 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5735 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5736 Objective-C ABI version 2.
5737
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005738 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005739 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005740 not. Valid values are 0, for no garbage collection, and 2, for garbage
5741 collection supported.
5742
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005743 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005744 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005745 If present, its value must be 6. This flag requires that the
5746 ``Objective-C Garbage Collection`` flag have the value 2.
5747
5748Some important flag interactions:
5749
5750- If a module with ``Objective-C Garbage Collection`` set to 0 is
5751 merged with a module with ``Objective-C Garbage Collection`` set to
5752 2, then the resulting module has the
5753 ``Objective-C Garbage Collection`` flag set to 0.
5754- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5755 merged with a module with ``Objective-C GC Only`` set to 6.
5756
Oliver Stannard5dc29342014-06-20 10:08:11 +00005757C type width Module Flags Metadata
5758----------------------------------
5759
5760The ARM backend emits a section into each generated object file describing the
5761options that it was compiled with (in a compiler-independent way) to prevent
5762linking incompatible objects, and to allow automatic library selection. Some
5763of these options are not visible at the IR level, namely wchar_t width and enum
5764width.
5765
5766To pass this information to the backend, these options are encoded in module
5767flags metadata, using the following key-value pairs:
5768
5769.. list-table::
5770 :header-rows: 1
5771 :widths: 30 70
5772
5773 * - Key
5774 - Value
5775
5776 * - short_wchar
5777 - * 0 --- sizeof(wchar_t) == 4
5778 * 1 --- sizeof(wchar_t) == 2
5779
5780 * - short_enum
5781 - * 0 --- Enums are at least as large as an ``int``.
5782 * 1 --- Enums are stored in the smallest integer type which can
5783 represent all of its values.
5784
5785For example, the following metadata section specifies that the module was
5786compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5787enum is the smallest type which can represent all of its values::
5788
5789 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005790 !0 = !{i32 1, !"short_wchar", i32 1}
5791 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005792
Peter Collingbourne89061b22017-06-12 20:10:48 +00005793Automatic Linker Flags Named Metadata
5794=====================================
5795
5796Some targets support embedding flags to the linker inside individual object
5797files. Typically this is used in conjunction with language extensions which
5798allow source files to explicitly declare the libraries they depend on, and have
5799these automatically be transmitted to the linker via object files.
5800
5801These flags are encoded in the IR using named metadata with the name
5802``!llvm.linker.options``. Each operand is expected to be a metadata node
5803which should be a list of other metadata nodes, each of which should be a
5804list of metadata strings defining linker options.
5805
5806For example, the following metadata section specifies two separate sets of
5807linker options, presumably to link against ``libz`` and the ``Cocoa``
5808framework::
5809
5810 !0 = !{ !"-lz" },
5811 !1 = !{ !"-framework", !"Cocoa" } } }
5812 !llvm.linker.options = !{ !0, !1 }
5813
5814The metadata encoding as lists of lists of options, as opposed to a collapsed
5815list of options, is chosen so that the IR encoding can use multiple option
5816strings to specify e.g., a single library, while still having that specifier be
5817preserved as an atomic element that can be recognized by a target specific
5818assembly writer or object file emitter.
5819
5820Each individual option is required to be either a valid option for the target's
5821linker, or an option that is reserved by the target specific assembly writer or
5822object file emitter. No other aspect of these options is defined by the IR.
5823
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005824.. _summary:
5825
5826ThinLTO Summary
5827===============
5828
5829Compiling with `ThinLTO <https://clang.llvm.org/docs/ThinLTO.html>`_
5830causes the building of a compact summary of the module that is emitted into
5831the bitcode. The summary is emitted into the LLVM assembly and identified
5832in syntax by a caret ('``^``').
5833
Teresa Johnsonab2a7f02018-09-18 13:44:13 +00005834The summary is parsed into a bitcode output, along with the Module
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005835IR, via the "``llvm-as``" tool. Tools that parse the Module IR for the purposes
5836of optimization (e.g. "``clang -x ir``" and "``opt``"), will ignore the
5837summary entries (just as they currently ignore summary entries in a bitcode
5838input file).
5839
Teresa Johnsonab2a7f02018-09-18 13:44:13 +00005840Eventually, the summary will be parsed into a ModuleSummaryIndex object under
5841the same conditions where summary index is currently built from bitcode.
5842Specifically, tools that test the Thin Link portion of a ThinLTO compile
5843(i.e. llvm-lto and llvm-lto2), or when parsing a combined index
5844for a distributed ThinLTO backend via clang's "``-fthinlto-index=<>``" flag
5845(this part is not yet implemented, use llvm-as to create a bitcode object
5846before feeding into thin link tools for now).
5847
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005848There are currently 3 types of summary entries in the LLVM assembly:
5849:ref:`module paths<module_path_summary>`,
5850:ref:`global values<gv_summary>`, and
5851:ref:`type identifiers<typeid_summary>`.
5852
5853.. _module_path_summary:
5854
5855Module Path Summary Entry
5856-------------------------
5857
5858Each module path summary entry lists a module containing global values included
5859in the summary. For a single IR module there will be one such entry, but
5860in a combined summary index produced during the thin link, there will be
5861one module path entry per linked module with summary.
5862
5863Example:
5864
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005865.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005866
5867 ^0 = module: (path: "/path/to/file.o", hash: (2468601609, 1329373163, 1565878005, 638838075, 3148790418))
5868
5869The ``path`` field is a string path to the bitcode file, and the ``hash``
5870field is the 160-bit SHA-1 hash of the IR bitcode contents, used for
5871incremental builds and caching.
5872
5873.. _gv_summary:
5874
5875Global Value Summary Entry
5876--------------------------
5877
5878Each global value summary entry corresponds to a global value defined or
5879referenced by a summarized module.
5880
5881Example:
5882
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005883.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005884
5885 ^4 = gv: (name: "f"[, summaries: (Summary)[, (Summary)]*]?) ; guid = 14740650423002898831
5886
5887For declarations, there will not be a summary list. For definitions, a
5888global value will contain a list of summaries, one per module containing
5889a definition. There can be multiple entries in a combined summary index
5890for symbols with weak linkage.
5891
5892Each ``Summary`` format will depend on whether the global value is a
5893:ref:`function<function_summary>`, :ref:`variable<variable_summary>`, or
5894:ref:`alias<alias_summary>`.
5895
5896.. _function_summary:
5897
5898Function Summary
5899^^^^^^^^^^^^^^^^
5900
5901If the global value is a function, the ``Summary`` entry will look like:
5902
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005903.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005904
5905 function: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), insts: 2[, FuncFlags]?[, Calls]?[, TypeIdInfo]?[, Refs]?
5906
5907The ``module`` field includes the summary entry id for the module containing
5908this definition, and the ``flags`` field contains information such as
5909the linkage type, a flag indicating whether it is legal to import the
5910definition, whether it is globally live and whether the linker resolved it
5911to a local definition (the latter two are populated during the thin link).
5912The ``insts`` field contains the number of IR instructions in the function.
5913Finally, there are several optional fields: :ref:`FuncFlags<funcflags_summary>`,
5914:ref:`Calls<calls_summary>`, :ref:`TypeIdInfo<typeidinfo_summary>`,
5915:ref:`Refs<refs_summary>`.
5916
5917.. _variable_summary:
5918
5919Global Variable Summary
5920^^^^^^^^^^^^^^^^^^^^^^^
5921
5922If the global value is a variable, the ``Summary`` entry will look like:
5923
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005924.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005925
5926 variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0)[, Refs]?
5927
5928The variable entry contains a subset of the fields in a
5929:ref:`function summary <function_summary>`, see the descriptions there.
5930
5931.. _alias_summary:
5932
5933Alias Summary
5934^^^^^^^^^^^^^
5935
5936If the global value is an alias, the ``Summary`` entry will look like:
5937
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005938.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005939
5940 alias: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), aliasee: ^2)
5941
5942The ``module`` and ``flags`` fields are as described for a
5943:ref:`function summary <function_summary>`. The ``aliasee`` field
5944contains a reference to the global value summary entry of the aliasee.
5945
5946.. _funcflags_summary:
5947
5948Function Flags
5949^^^^^^^^^^^^^^
5950
5951The optional ``FuncFlags`` field looks like:
5952
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005953.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005954
5955 funcFlags: (readNone: 0, readOnly: 0, noRecurse: 0, returnDoesNotAlias: 0)
5956
5957If unspecified, flags are assumed to hold the conservative ``false`` value of
5958``0``.
5959
5960.. _calls_summary:
5961
5962Calls
5963^^^^^
5964
5965The optional ``Calls`` field looks like:
5966
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005967.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005968
5969 calls: ((Callee)[, (Callee)]*)
5970
5971where each ``Callee`` looks like:
5972
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005973.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005974
5975 callee: ^1[, hotness: None]?[, relbf: 0]?
5976
5977The ``callee`` refers to the summary entry id of the callee. At most one
5978of ``hotness`` (which can take the values ``Unknown``, ``Cold``, ``None``,
5979``Hot``, and ``Critical``), and ``relbf`` (which holds the integer
5980branch frequency relative to the entry frequency, scaled down by 2^8)
5981may be specified. The defaults are ``Unknown`` and ``0``, respectively.
5982
5983.. _refs_summary:
5984
5985Refs
5986^^^^
5987
5988The optional ``Refs`` field looks like:
5989
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00005990.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00005991
5992 refs: ((Ref)[, (Ref)]*)
5993
5994where each ``Ref`` contains a reference to the summary id of the referenced
5995value (e.g. ``^1``).
5996
5997.. _typeidinfo_summary:
5998
5999TypeIdInfo
6000^^^^^^^^^^
6001
6002The optional ``TypeIdInfo`` field, used for
6003`Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
6004looks like:
6005
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006006.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006007
6008 typeIdInfo: [(TypeTests)]?[, (TypeTestAssumeVCalls)]?[, (TypeCheckedLoadVCalls)]?[, (TypeTestAssumeConstVCalls)]?[, (TypeCheckedLoadConstVCalls)]?
6009
6010These optional fields have the following forms:
6011
6012TypeTests
6013"""""""""
6014
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006015.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006016
6017 typeTests: (TypeIdRef[, TypeIdRef]*)
6018
6019Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
6020by summary id or ``GUID``.
6021
6022TypeTestAssumeVCalls
6023""""""""""""""""""""
6024
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006025.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006026
6027 typeTestAssumeVCalls: (VFuncId[, VFuncId]*)
6028
6029Where each VFuncId has the format:
6030
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006031.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006032
6033 vFuncId: (TypeIdRef, offset: 16)
6034
6035Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
6036by summary id or ``GUID`` preceeded by a ``guid:`` tag.
6037
6038TypeCheckedLoadVCalls
6039"""""""""""""""""""""
6040
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006041.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006042
6043 typeCheckedLoadVCalls: (VFuncId[, VFuncId]*)
6044
6045Where each VFuncId has the format described for ``TypeTestAssumeVCalls``.
6046
6047TypeTestAssumeConstVCalls
6048"""""""""""""""""""""""""
6049
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006050.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006051
6052 typeTestAssumeConstVCalls: (ConstVCall[, ConstVCall]*)
6053
6054Where each ConstVCall has the format:
6055
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006056.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006057
Teresa Johnsonab2a7f02018-09-18 13:44:13 +00006058 (VFuncId, args: (Arg[, Arg]*))
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006059
6060and where each VFuncId has the format described for ``TypeTestAssumeVCalls``,
6061and each Arg is an integer argument number.
6062
6063TypeCheckedLoadConstVCalls
6064""""""""""""""""""""""""""
6065
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006066.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006067
6068 typeCheckedLoadConstVCalls: (ConstVCall[, ConstVCall]*)
6069
6070Where each ConstVCall has the format described for
6071``TypeTestAssumeConstVCalls``.
6072
6073.. _typeid_summary:
6074
6075Type ID Summary Entry
6076---------------------
6077
6078Each type id summary entry corresponds to a type identifier resolution
6079which is generated during the LTO link portion of the compile when building
6080with `Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
6081so these are only present in a combined summary index.
6082
6083Example:
6084
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006085.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006086
6087 ^4 = typeid: (name: "_ZTS1A", summary: (typeTestRes: (kind: allOnes, sizeM1BitWidth: 7[, alignLog2: 0]?[, sizeM1: 0]?[, bitMask: 0]?[, inlineBits: 0]?)[, WpdResolutions]?)) ; guid = 7004155349499253778
6088
6089The ``typeTestRes`` gives the type test resolution ``kind`` (which may
6090be ``unsat``, ``byteArray``, ``inline``, ``single``, or ``allOnes``), and
6091the ``size-1`` bit width. It is followed by optional flags, which default to 0,
6092and an optional WpdResolutions (whole program devirtualization resolution)
6093field that looks like:
6094
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006095.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006096
6097 wpdResolutions: ((offset: 0, WpdRes)[, (offset: 1, WpdRes)]*
6098
6099where each entry is a mapping from the given byte offset to the whole-program
6100devirtualization resolution WpdRes, that has one of the following formats:
6101
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006102.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006103
6104 wpdRes: (kind: branchFunnel)
6105 wpdRes: (kind: singleImpl, singleImplName: "_ZN1A1nEi")
6106 wpdRes: (kind: indir)
6107
6108Additionally, each wpdRes has an optional ``resByArg`` field, which
6109describes the resolutions for calls with all constant integer arguments:
6110
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006111.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006112
6113 resByArg: (ResByArg[, ResByArg]*)
6114
6115where ResByArg is:
6116
Chandler Carruth3a56e3f2018-08-06 09:46:59 +00006117.. code-block:: text
Teresa Johnson08d5b4e2018-05-26 02:34:13 +00006118
6119 args: (Arg[, Arg]*), byArg: (kind: UniformRetVal[, info: 0][, byte: 0][, bit: 0])
6120
6121Where the ``kind`` can be ``Indir``, ``UniformRetVal``, ``UniqueRetVal``
6122or ``VirtualConstProp``. The ``info`` field is only used if the kind
6123is ``UniformRetVal`` (indicates the uniform return value), or
6124``UniqueRetVal`` (holds the return value associated with the unique vtable
6125(0 or 1)). The ``byte`` and ``bit`` fields are only used if the target does
6126not support the use of absolute symbols to store constants.
6127
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006128.. _intrinsicglobalvariables:
6129
Sean Silvab084af42012-12-07 10:36:55 +00006130Intrinsic Global Variables
6131==========================
6132
6133LLVM has a number of "magic" global variables that contain data that
6134affect code generation or other IR semantics. These are documented here.
6135All globals of this sort should have a section specified as
6136"``llvm.metadata``". This section and all globals that start with
6137"``llvm.``" are reserved for use by LLVM.
6138
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006139.. _gv_llvmused:
6140
Sean Silvab084af42012-12-07 10:36:55 +00006141The '``llvm.used``' Global Variable
6142-----------------------------------
6143
Rafael Espindola74f2e462013-04-22 14:58:02 +00006144The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00006145:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00006146pointers to named global variables, functions and aliases which may optionally
6147have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00006148use of it is:
6149
6150.. code-block:: llvm
6151
6152 @X = global i8 4
6153 @Y = global i32 123
6154
6155 @llvm.used = appending global [2 x i8*] [
6156 i8* @X,
6157 i8* bitcast (i32* @Y to i8*)
6158 ], section "llvm.metadata"
6159
Rafael Espindola74f2e462013-04-22 14:58:02 +00006160If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
6161and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00006162symbol that it cannot see (which is why they have to be named). For example, if
6163a variable has internal linkage and no references other than that from the
6164``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
6165references from inline asms and other things the compiler cannot "see", and
6166corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00006167
6168On some targets, the code generator must emit a directive to the
6169assembler or object file to prevent the assembler and linker from
6170molesting the symbol.
6171
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006172.. _gv_llvmcompilerused:
6173
Sean Silvab084af42012-12-07 10:36:55 +00006174The '``llvm.compiler.used``' Global Variable
6175--------------------------------------------
6176
6177The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
6178directive, except that it only prevents the compiler from touching the
6179symbol. On targets that support it, this allows an intelligent linker to
6180optimize references to the symbol without being impeded as it would be
6181by ``@llvm.used``.
6182
6183This is a rare construct that should only be used in rare circumstances,
6184and should not be exposed to source languages.
6185
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006186.. _gv_llvmglobalctors:
6187
Sean Silvab084af42012-12-07 10:36:55 +00006188The '``llvm.global_ctors``' Global Variable
6189-------------------------------------------
6190
6191.. code-block:: llvm
6192
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006193 %0 = type { i32, void ()*, i8* }
6194 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006195
6196The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006197functions, priorities, and an optional associated global or function.
6198The functions referenced by this array will be called in ascending order
6199of priority (i.e. lowest first) when the module is loaded. The order of
6200functions with the same priority is not defined.
6201
6202If the third field is present, non-null, and points to a global variable
6203or function, the initializer function will only run if the associated
6204data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006205
Eli Bendersky0220e6b2013-06-07 20:24:43 +00006206.. _llvmglobaldtors:
6207
Sean Silvab084af42012-12-07 10:36:55 +00006208The '``llvm.global_dtors``' Global Variable
6209-------------------------------------------
6210
6211.. code-block:: llvm
6212
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006213 %0 = type { i32, void ()*, i8* }
6214 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00006215
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006216The ``@llvm.global_dtors`` array contains a list of destructor
6217functions, priorities, and an optional associated global or function.
6218The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00006219order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00006220order of functions with the same priority is not defined.
6221
6222If the third field is present, non-null, and points to a global variable
6223or function, the destructor function will only run if the associated
6224data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00006225
6226Instruction Reference
6227=====================
6228
6229The LLVM instruction set consists of several different classifications
6230of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
6231instructions <binaryops>`, :ref:`bitwise binary
6232instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
6233:ref:`other instructions <otherops>`.
6234
6235.. _terminators:
6236
6237Terminator Instructions
6238-----------------------
6239
6240As mentioned :ref:`previously <functionstructure>`, every basic block in a
6241program ends with a "Terminator" instruction, which indicates which
6242block should be executed after the current block is finished. These
6243terminator instructions typically yield a '``void``' value: they produce
6244control flow, not values (the one exception being the
6245':ref:`invoke <i_invoke>`' instruction).
6246
6247The terminator instructions are: ':ref:`ret <i_ret>`',
6248':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
6249':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00006250':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00006251':ref:`catchret <i_catchret>`',
6252':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00006253and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00006254
6255.. _i_ret:
6256
6257'``ret``' Instruction
6258^^^^^^^^^^^^^^^^^^^^^
6259
6260Syntax:
6261"""""""
6262
6263::
6264
6265 ret <type> <value> ; Return a value from a non-void function
6266 ret void ; Return from void function
6267
6268Overview:
6269"""""""""
6270
6271The '``ret``' instruction is used to return control flow (and optionally
6272a value) from a function back to the caller.
6273
6274There are two forms of the '``ret``' instruction: one that returns a
6275value and then causes control flow, and one that just causes control
6276flow to occur.
6277
6278Arguments:
6279""""""""""
6280
6281The '``ret``' instruction optionally accepts a single argument, the
6282return value. The type of the return value must be a ':ref:`first
6283class <t_firstclass>`' type.
6284
6285A function is not :ref:`well formed <wellformed>` if it it has a non-void
6286return type and contains a '``ret``' instruction with no return value or
6287a return value with a type that does not match its type, or if it has a
6288void return type and contains a '``ret``' instruction with a return
6289value.
6290
6291Semantics:
6292""""""""""
6293
6294When the '``ret``' instruction is executed, control flow returns back to
6295the calling function's context. If the caller is a
6296":ref:`call <i_call>`" instruction, execution continues at the
6297instruction after the call. If the caller was an
6298":ref:`invoke <i_invoke>`" instruction, execution continues at the
6299beginning of the "normal" destination block. If the instruction returns
6300a value, that value shall set the call or invoke instruction's return
6301value.
6302
6303Example:
6304""""""""
6305
6306.. code-block:: llvm
6307
6308 ret i32 5 ; Return an integer value of 5
6309 ret void ; Return from a void function
6310 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
6311
6312.. _i_br:
6313
6314'``br``' Instruction
6315^^^^^^^^^^^^^^^^^^^^
6316
6317Syntax:
6318"""""""
6319
6320::
6321
6322 br i1 <cond>, label <iftrue>, label <iffalse>
6323 br label <dest> ; Unconditional branch
6324
6325Overview:
6326"""""""""
6327
6328The '``br``' instruction is used to cause control flow to transfer to a
6329different basic block in the current function. There are two forms of
6330this instruction, corresponding to a conditional branch and an
6331unconditional branch.
6332
6333Arguments:
6334""""""""""
6335
6336The conditional branch form of the '``br``' instruction takes a single
6337'``i1``' value and two '``label``' values. The unconditional form of the
6338'``br``' instruction takes a single '``label``' value as a target.
6339
6340Semantics:
6341""""""""""
6342
6343Upon execution of a conditional '``br``' instruction, the '``i1``'
6344argument is evaluated. If the value is ``true``, control flows to the
6345'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
6346to the '``iffalse``' ``label`` argument.
6347
6348Example:
6349""""""""
6350
6351.. code-block:: llvm
6352
6353 Test:
6354 %cond = icmp eq i32 %a, %b
6355 br i1 %cond, label %IfEqual, label %IfUnequal
6356 IfEqual:
6357 ret i32 1
6358 IfUnequal:
6359 ret i32 0
6360
6361.. _i_switch:
6362
6363'``switch``' Instruction
6364^^^^^^^^^^^^^^^^^^^^^^^^
6365
6366Syntax:
6367"""""""
6368
6369::
6370
6371 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
6372
6373Overview:
6374"""""""""
6375
6376The '``switch``' instruction is used to transfer control flow to one of
6377several different places. It is a generalization of the '``br``'
6378instruction, allowing a branch to occur to one of many possible
6379destinations.
6380
6381Arguments:
6382""""""""""
6383
6384The '``switch``' instruction uses three parameters: an integer
6385comparison value '``value``', a default '``label``' destination, and an
6386array of pairs of comparison value constants and '``label``'s. The table
6387is not allowed to contain duplicate constant entries.
6388
6389Semantics:
6390""""""""""
6391
6392The ``switch`` instruction specifies a table of values and destinations.
6393When the '``switch``' instruction is executed, this table is searched
6394for the given value. If the value is found, control flow is transferred
6395to the corresponding destination; otherwise, control flow is transferred
6396to the default destination.
6397
6398Implementation:
6399"""""""""""""""
6400
6401Depending on properties of the target machine and the particular
6402``switch`` instruction, this instruction may be code generated in
6403different ways. For example, it could be generated as a series of
6404chained conditional branches or with a lookup table.
6405
6406Example:
6407""""""""
6408
6409.. code-block:: llvm
6410
6411 ; Emulate a conditional br instruction
6412 %Val = zext i1 %value to i32
6413 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
6414
6415 ; Emulate an unconditional br instruction
6416 switch i32 0, label %dest [ ]
6417
6418 ; Implement a jump table:
6419 switch i32 %val, label %otherwise [ i32 0, label %onzero
6420 i32 1, label %onone
6421 i32 2, label %ontwo ]
6422
6423.. _i_indirectbr:
6424
6425'``indirectbr``' Instruction
6426^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6427
6428Syntax:
6429"""""""
6430
6431::
6432
6433 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
6434
6435Overview:
6436"""""""""
6437
6438The '``indirectbr``' instruction implements an indirect branch to a
6439label within the current function, whose address is specified by
6440"``address``". Address must be derived from a
6441:ref:`blockaddress <blockaddress>` constant.
6442
6443Arguments:
6444""""""""""
6445
6446The '``address``' argument is the address of the label to jump to. The
6447rest of the arguments indicate the full set of possible destinations
6448that the address may point to. Blocks are allowed to occur multiple
6449times in the destination list, though this isn't particularly useful.
6450
6451This destination list is required so that dataflow analysis has an
6452accurate understanding of the CFG.
6453
6454Semantics:
6455""""""""""
6456
6457Control transfers to the block specified in the address argument. All
6458possible destination blocks must be listed in the label list, otherwise
6459this instruction has undefined behavior. This implies that jumps to
6460labels defined in other functions have undefined behavior as well.
6461
6462Implementation:
6463"""""""""""""""
6464
6465This is typically implemented with a jump through a register.
6466
6467Example:
6468""""""""
6469
6470.. code-block:: llvm
6471
6472 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
6473
6474.. _i_invoke:
6475
6476'``invoke``' Instruction
6477^^^^^^^^^^^^^^^^^^^^^^^^
6478
6479Syntax:
6480"""""""
6481
6482::
6483
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00006484 <result> = invoke [cconv] [ret attrs] [addrspace(<num>)] [<ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006485 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00006486
6487Overview:
6488"""""""""
6489
6490The '``invoke``' instruction causes control to transfer to a specified
6491function, with the possibility of control flow transfer to either the
6492'``normal``' label or the '``exception``' label. If the callee function
6493returns with the "``ret``" instruction, control flow will return to the
6494"normal" label. If the callee (or any indirect callees) returns via the
6495":ref:`resume <i_resume>`" instruction or other exception handling
6496mechanism, control is interrupted and continued at the dynamically
6497nearest "exception" label.
6498
6499The '``exception``' label is a `landing
6500pad <ExceptionHandling.html#overview>`_ for the exception. As such,
6501'``exception``' label is required to have the
6502":ref:`landingpad <i_landingpad>`" instruction, which contains the
6503information about the behavior of the program after unwinding happens,
6504as its first non-PHI instruction. The restrictions on the
6505"``landingpad``" instruction's tightly couples it to the "``invoke``"
6506instruction, so that the important information contained within the
6507"``landingpad``" instruction can't be lost through normal code motion.
6508
6509Arguments:
6510""""""""""
6511
6512This instruction requires several arguments:
6513
6514#. The optional "cconv" marker indicates which :ref:`calling
6515 convention <callingconv>` the call should use. If none is
6516 specified, the call defaults to using C calling conventions.
6517#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6518 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6519 are valid here.
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00006520#. The optional addrspace attribute can be used to indicate the adress space
6521 of the called function. If it is not specified, the program address space
6522 from the :ref:`datalayout string<langref_datalayout>` will be used.
David Blaikieb83cf102016-07-13 17:21:34 +00006523#. '``ty``': the type of the call instruction itself which is also the
6524 type of the return value. Functions that return no value are marked
6525 ``void``.
6526#. '``fnty``': shall be the signature of the function being invoked. The
6527 argument types must match the types implied by this signature. This
6528 type can be omitted if the function is not varargs.
6529#. '``fnptrval``': An LLVM value containing a pointer to a function to
6530 be invoked. In most cases, this is a direct function invocation, but
6531 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
6532 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00006533#. '``function args``': argument list whose types match the function
6534 signature argument types and parameter attributes. All arguments must
6535 be of :ref:`first class <t_firstclass>` type. If the function signature
6536 indicates the function accepts a variable number of arguments, the
6537 extra arguments can be specified.
6538#. '``normal label``': the label reached when the called function
6539 executes a '``ret``' instruction.
6540#. '``exception label``': the label reached when a callee returns via
6541 the :ref:`resume <i_resume>` instruction or other exception handling
6542 mechanism.
George Burgess IV8a464a72017-04-13 05:00:31 +00006543#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00006544#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00006545
6546Semantics:
6547""""""""""
6548
6549This instruction is designed to operate as a standard '``call``'
6550instruction in most regards. The primary difference is that it
6551establishes an association with a label, which is used by the runtime
6552library to unwind the stack.
6553
6554This instruction is used in languages with destructors to ensure that
6555proper cleanup is performed in the case of either a ``longjmp`` or a
6556thrown exception. Additionally, this is important for implementation of
6557'``catch``' clauses in high-level languages that support them.
6558
6559For the purposes of the SSA form, the definition of the value returned
6560by the '``invoke``' instruction is deemed to occur on the edge from the
6561current block to the "normal" label. If the callee unwinds then no
6562return value is available.
6563
6564Example:
6565""""""""
6566
6567.. code-block:: llvm
6568
6569 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006570 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006571 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00006572 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00006573
6574.. _i_resume:
6575
6576'``resume``' Instruction
6577^^^^^^^^^^^^^^^^^^^^^^^^
6578
6579Syntax:
6580"""""""
6581
6582::
6583
6584 resume <type> <value>
6585
6586Overview:
6587"""""""""
6588
6589The '``resume``' instruction is a terminator instruction that has no
6590successors.
6591
6592Arguments:
6593""""""""""
6594
6595The '``resume``' instruction requires one argument, which must have the
6596same type as the result of any '``landingpad``' instruction in the same
6597function.
6598
6599Semantics:
6600""""""""""
6601
6602The '``resume``' instruction resumes propagation of an existing
6603(in-flight) exception whose unwinding was interrupted with a
6604:ref:`landingpad <i_landingpad>` instruction.
6605
6606Example:
6607""""""""
6608
6609.. code-block:: llvm
6610
6611 resume { i8*, i32 } %exn
6612
David Majnemer8a1c45d2015-12-12 05:38:55 +00006613.. _i_catchswitch:
6614
6615'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00006616^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00006617
6618Syntax:
6619"""""""
6620
6621::
6622
6623 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6624 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6625
6626Overview:
6627"""""""""
6628
6629The '``catchswitch``' instruction is used by `LLVM's exception handling system
6630<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6631that may be executed by the :ref:`EH personality routine <personalityfn>`.
6632
6633Arguments:
6634""""""""""
6635
6636The ``parent`` argument is the token of the funclet that contains the
6637``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6638this operand may be the token ``none``.
6639
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006640The ``default`` argument is the label of another basic block beginning with
6641either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6642must be a legal target with respect to the ``parent`` links, as described in
6643the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00006644
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006645The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00006646:ref:`catchpad <i_catchpad>` instruction.
6647
6648Semantics:
6649""""""""""
6650
6651Executing this instruction transfers control to one of the successors in
6652``handlers``, if appropriate, or continues to unwind via the unwind label if
6653present.
6654
6655The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6656it must be both the first non-phi instruction and last instruction in the basic
6657block. Therefore, it must be the only non-phi instruction in the block.
6658
6659Example:
6660""""""""
6661
Renato Golin124f2592016-07-20 12:16:38 +00006662.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00006663
6664 dispatch1:
6665 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6666 dispatch2:
6667 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6668
David Majnemer654e1302015-07-31 17:58:14 +00006669.. _i_catchret:
6670
6671'``catchret``' Instruction
6672^^^^^^^^^^^^^^^^^^^^^^^^^^
6673
6674Syntax:
6675"""""""
6676
6677::
6678
David Majnemer8a1c45d2015-12-12 05:38:55 +00006679 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00006680
6681Overview:
6682"""""""""
6683
6684The '``catchret``' instruction is a terminator instruction that has a
6685single successor.
6686
6687
6688Arguments:
6689""""""""""
6690
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006691The first argument to a '``catchret``' indicates which ``catchpad`` it
6692exits. It must be a :ref:`catchpad <i_catchpad>`.
6693The second argument to a '``catchret``' specifies where control will
6694transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00006695
6696Semantics:
6697""""""""""
6698
David Majnemer8a1c45d2015-12-12 05:38:55 +00006699The '``catchret``' instruction ends an existing (in-flight) exception whose
6700unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6701:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6702code to, for example, destroy the active exception. Control then transfers to
6703``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006704
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006705The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6706If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6707funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6708the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00006709
6710Example:
6711""""""""
6712
Renato Golin124f2592016-07-20 12:16:38 +00006713.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006714
David Majnemer8a1c45d2015-12-12 05:38:55 +00006715 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006716
David Majnemer654e1302015-07-31 17:58:14 +00006717.. _i_cleanupret:
6718
6719'``cleanupret``' Instruction
6720^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6721
6722Syntax:
6723"""""""
6724
6725::
6726
David Majnemer8a1c45d2015-12-12 05:38:55 +00006727 cleanupret from <value> unwind label <continue>
6728 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00006729
6730Overview:
6731"""""""""
6732
6733The '``cleanupret``' instruction is a terminator instruction that has
6734an optional successor.
6735
6736
6737Arguments:
6738""""""""""
6739
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00006740The '``cleanupret``' instruction requires one argument, which indicates
6741which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00006742If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6743funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6744the ``cleanupret``'s behavior is undefined.
6745
6746The '``cleanupret``' instruction also has an optional successor, ``continue``,
6747which must be the label of another basic block beginning with either a
6748``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6749be a legal target with respect to the ``parent`` links, as described in the
6750`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00006751
6752Semantics:
6753""""""""""
6754
6755The '``cleanupret``' instruction indicates to the
6756:ref:`personality function <personalityfn>` that one
6757:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6758It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00006759
David Majnemer654e1302015-07-31 17:58:14 +00006760Example:
6761""""""""
6762
Renato Golin124f2592016-07-20 12:16:38 +00006763.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00006764
David Majnemer8a1c45d2015-12-12 05:38:55 +00006765 cleanupret from %cleanup unwind to caller
6766 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00006767
Sean Silvab084af42012-12-07 10:36:55 +00006768.. _i_unreachable:
6769
6770'``unreachable``' Instruction
6771^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6772
6773Syntax:
6774"""""""
6775
6776::
6777
6778 unreachable
6779
6780Overview:
6781"""""""""
6782
6783The '``unreachable``' instruction has no defined semantics. This
6784instruction is used to inform the optimizer that a particular portion of
6785the code is not reachable. This can be used to indicate that the code
6786after a no-return function cannot be reached, and other facts.
6787
6788Semantics:
6789""""""""""
6790
6791The '``unreachable``' instruction has no defined semantics.
6792
6793.. _binaryops:
6794
6795Binary Operations
6796-----------------
6797
6798Binary operators are used to do most of the computation in a program.
6799They require two operands of the same type, execute an operation on
6800them, and produce a single value. The operands might represent multiple
6801data, as is the case with the :ref:`vector <t_vector>` data type. The
6802result value has the same type as its operands.
6803
6804There are several different binary operators:
6805
6806.. _i_add:
6807
6808'``add``' Instruction
6809^^^^^^^^^^^^^^^^^^^^^
6810
6811Syntax:
6812"""""""
6813
6814::
6815
Tim Northover675a0962014-06-13 14:24:23 +00006816 <result> = add <ty> <op1>, <op2> ; yields ty:result
6817 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
6818 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
6819 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006820
6821Overview:
6822"""""""""
6823
6824The '``add``' instruction returns the sum of its two operands.
6825
6826Arguments:
6827""""""""""
6828
6829The two arguments to the '``add``' instruction must be
6830:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6831arguments must have identical types.
6832
6833Semantics:
6834""""""""""
6835
6836The value produced is the integer sum of the two operands.
6837
6838If the sum has unsigned overflow, the result returned is the
6839mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6840the result.
6841
6842Because LLVM integers use a two's complement representation, this
6843instruction is appropriate for both signed and unsigned integers.
6844
6845``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6846respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6847result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
6848unsigned and/or signed overflow, respectively, occurs.
6849
6850Example:
6851""""""""
6852
Renato Golin124f2592016-07-20 12:16:38 +00006853.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006854
Tim Northover675a0962014-06-13 14:24:23 +00006855 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006856
6857.. _i_fadd:
6858
6859'``fadd``' Instruction
6860^^^^^^^^^^^^^^^^^^^^^^
6861
6862Syntax:
6863"""""""
6864
6865::
6866
Tim Northover675a0962014-06-13 14:24:23 +00006867 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006868
6869Overview:
6870"""""""""
6871
6872The '``fadd``' instruction returns the sum of its two operands.
6873
6874Arguments:
6875""""""""""
6876
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006877The two arguments to the '``fadd``' instruction must be
6878:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6879floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006880
6881Semantics:
6882""""""""""
6883
Sanjay Patel7b722402018-03-07 17:18:22 +00006884The value produced is the floating-point sum of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006885This instruction is assumed to execute in the default :ref:`floating-point
6886environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00006887This instruction can also take any number of :ref:`fast-math
6888flags <fastmath>`, which are optimization hints to enable otherwise
6889unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006890
6891Example:
6892""""""""
6893
Renato Golin124f2592016-07-20 12:16:38 +00006894.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006895
Tim Northover675a0962014-06-13 14:24:23 +00006896 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00006897
6898'``sub``' Instruction
6899^^^^^^^^^^^^^^^^^^^^^
6900
6901Syntax:
6902"""""""
6903
6904::
6905
Tim Northover675a0962014-06-13 14:24:23 +00006906 <result> = sub <ty> <op1>, <op2> ; yields ty:result
6907 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
6908 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
6909 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006910
6911Overview:
6912"""""""""
6913
6914The '``sub``' instruction returns the difference of its two operands.
6915
6916Note that the '``sub``' instruction is used to represent the '``neg``'
6917instruction present in most other intermediate representations.
6918
6919Arguments:
6920""""""""""
6921
6922The two arguments to the '``sub``' instruction must be
6923:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6924arguments must have identical types.
6925
6926Semantics:
6927""""""""""
6928
6929The value produced is the integer difference of the two operands.
6930
6931If the difference has unsigned overflow, the result returned is the
6932mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
6933the result.
6934
6935Because LLVM integers use a two's complement representation, this
6936instruction is appropriate for both signed and unsigned integers.
6937
6938``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6939respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6940result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
6941unsigned and/or signed overflow, respectively, occurs.
6942
6943Example:
6944""""""""
6945
Renato Golin124f2592016-07-20 12:16:38 +00006946.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006947
Tim Northover675a0962014-06-13 14:24:23 +00006948 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
6949 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006950
6951.. _i_fsub:
6952
6953'``fsub``' Instruction
6954^^^^^^^^^^^^^^^^^^^^^^
6955
6956Syntax:
6957"""""""
6958
6959::
6960
Tim Northover675a0962014-06-13 14:24:23 +00006961 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006962
6963Overview:
6964"""""""""
6965
6966The '``fsub``' instruction returns the difference of its two operands.
6967
6968Note that the '``fsub``' instruction is used to represent the '``fneg``'
6969instruction present in most other intermediate representations.
6970
6971Arguments:
6972""""""""""
6973
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00006974The two arguments to the '``fsub``' instruction must be
6975:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
6976floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00006977
6978Semantics:
6979""""""""""
6980
Sanjay Patel7b722402018-03-07 17:18:22 +00006981The value produced is the floating-point difference of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00006982This instruction is assumed to execute in the default :ref:`floating-point
6983environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00006984This instruction can also take any number of :ref:`fast-math
6985flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00006986unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00006987
6988Example:
6989""""""""
6990
Renato Golin124f2592016-07-20 12:16:38 +00006991.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006992
Tim Northover675a0962014-06-13 14:24:23 +00006993 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6994 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006995
6996'``mul``' Instruction
6997^^^^^^^^^^^^^^^^^^^^^
6998
6999Syntax:
7000"""""""
7001
7002::
7003
Tim Northover675a0962014-06-13 14:24:23 +00007004 <result> = mul <ty> <op1>, <op2> ; yields ty:result
7005 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
7006 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
7007 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007008
7009Overview:
7010"""""""""
7011
7012The '``mul``' instruction returns the product of its two operands.
7013
7014Arguments:
7015""""""""""
7016
7017The two arguments to the '``mul``' instruction must be
7018:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7019arguments must have identical types.
7020
7021Semantics:
7022""""""""""
7023
7024The value produced is the integer product of the two operands.
7025
7026If the result of the multiplication has unsigned overflow, the result
7027returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
7028bit width of the result.
7029
7030Because LLVM integers use a two's complement representation, and the
7031result is the same width as the operands, this instruction returns the
7032correct result for both signed and unsigned integers. If a full product
7033(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
7034sign-extended or zero-extended as appropriate to the width of the full
7035product.
7036
7037``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7038respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7039result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
7040unsigned and/or signed overflow, respectively, occurs.
7041
7042Example:
7043""""""""
7044
Renato Golin124f2592016-07-20 12:16:38 +00007045.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007046
Tim Northover675a0962014-06-13 14:24:23 +00007047 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00007048
7049.. _i_fmul:
7050
7051'``fmul``' Instruction
7052^^^^^^^^^^^^^^^^^^^^^^
7053
7054Syntax:
7055"""""""
7056
7057::
7058
Tim Northover675a0962014-06-13 14:24:23 +00007059 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007060
7061Overview:
7062"""""""""
7063
7064The '``fmul``' instruction returns the product of its two operands.
7065
7066Arguments:
7067""""""""""
7068
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007069The two arguments to the '``fmul``' instruction must be
7070:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
7071floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007072
7073Semantics:
7074""""""""""
7075
Sanjay Patel7b722402018-03-07 17:18:22 +00007076The value produced is the floating-point product of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007077This instruction is assumed to execute in the default :ref:`floating-point
7078environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007079This instruction can also take any number of :ref:`fast-math
7080flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007081unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007082
7083Example:
7084""""""""
7085
Renato Golin124f2592016-07-20 12:16:38 +00007086.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007087
Tim Northover675a0962014-06-13 14:24:23 +00007088 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00007089
7090'``udiv``' Instruction
7091^^^^^^^^^^^^^^^^^^^^^^
7092
7093Syntax:
7094"""""""
7095
7096::
7097
Tim Northover675a0962014-06-13 14:24:23 +00007098 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
7099 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007100
7101Overview:
7102"""""""""
7103
7104The '``udiv``' instruction returns the quotient of its two operands.
7105
7106Arguments:
7107""""""""""
7108
7109The two arguments to the '``udiv``' instruction must be
7110:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7111arguments must have identical types.
7112
7113Semantics:
7114""""""""""
7115
7116The value produced is the unsigned integer quotient of the two operands.
7117
7118Note that unsigned integer division and signed integer division are
7119distinct operations; for signed integer division, use '``sdiv``'.
7120
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007121Division by zero is undefined behavior. For vectors, if any element
7122of the divisor is zero, the operation has undefined behavior.
7123
Sean Silvab084af42012-12-07 10:36:55 +00007124
7125If the ``exact`` keyword is present, the result value of the ``udiv`` is
7126a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
7127such, "((a udiv exact b) mul b) == a").
7128
7129Example:
7130""""""""
7131
Renato Golin124f2592016-07-20 12:16:38 +00007132.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007133
Tim Northover675a0962014-06-13 14:24:23 +00007134 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007135
7136'``sdiv``' Instruction
7137^^^^^^^^^^^^^^^^^^^^^^
7138
7139Syntax:
7140"""""""
7141
7142::
7143
Tim Northover675a0962014-06-13 14:24:23 +00007144 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
7145 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007146
7147Overview:
7148"""""""""
7149
7150The '``sdiv``' instruction returns the quotient of its two operands.
7151
7152Arguments:
7153""""""""""
7154
7155The two arguments to the '``sdiv``' instruction must be
7156:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7157arguments must have identical types.
7158
7159Semantics:
7160""""""""""
7161
7162The value produced is the signed integer quotient of the two operands
7163rounded towards zero.
7164
7165Note that signed integer division and unsigned integer division are
7166distinct operations; for unsigned integer division, use '``udiv``'.
7167
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007168Division by zero is undefined behavior. For vectors, if any element
7169of the divisor is zero, the operation has undefined behavior.
7170Overflow also leads to undefined behavior; this is a rare case, but can
7171occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvab084af42012-12-07 10:36:55 +00007172
7173If the ``exact`` keyword is present, the result value of the ``sdiv`` is
7174a :ref:`poison value <poisonvalues>` if the result would be rounded.
7175
7176Example:
7177""""""""
7178
Renato Golin124f2592016-07-20 12:16:38 +00007179.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007180
Tim Northover675a0962014-06-13 14:24:23 +00007181 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007182
7183.. _i_fdiv:
7184
7185'``fdiv``' Instruction
7186^^^^^^^^^^^^^^^^^^^^^^
7187
7188Syntax:
7189"""""""
7190
7191::
7192
Tim Northover675a0962014-06-13 14:24:23 +00007193 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007194
7195Overview:
7196"""""""""
7197
7198The '``fdiv``' instruction returns the quotient of its two operands.
7199
7200Arguments:
7201""""""""""
7202
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007203The two arguments to the '``fdiv``' instruction must be
7204:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
7205floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007206
7207Semantics:
7208""""""""""
7209
Sanjay Patel7b722402018-03-07 17:18:22 +00007210The value produced is the floating-point quotient of the two operands.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007211This instruction is assumed to execute in the default :ref:`floating-point
7212environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00007213This instruction can also take any number of :ref:`fast-math
7214flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel7b722402018-03-07 17:18:22 +00007215unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007216
7217Example:
7218""""""""
7219
Renato Golin124f2592016-07-20 12:16:38 +00007220.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007221
Tim Northover675a0962014-06-13 14:24:23 +00007222 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00007223
7224'``urem``' Instruction
7225^^^^^^^^^^^^^^^^^^^^^^
7226
7227Syntax:
7228"""""""
7229
7230::
7231
Tim Northover675a0962014-06-13 14:24:23 +00007232 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007233
7234Overview:
7235"""""""""
7236
7237The '``urem``' instruction returns the remainder from the unsigned
7238division of its two arguments.
7239
7240Arguments:
7241""""""""""
7242
7243The two arguments to the '``urem``' instruction must be
7244:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7245arguments must have identical types.
7246
7247Semantics:
7248""""""""""
7249
7250This instruction returns the unsigned integer *remainder* of a division.
7251This instruction always performs an unsigned division to get the
7252remainder.
7253
7254Note that unsigned integer remainder and signed integer remainder are
7255distinct operations; for signed integer remainder, use '``srem``'.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007256
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007257Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007258For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007259undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007260
7261Example:
7262""""""""
7263
Renato Golin124f2592016-07-20 12:16:38 +00007264.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007265
Tim Northover675a0962014-06-13 14:24:23 +00007266 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007267
7268'``srem``' Instruction
7269^^^^^^^^^^^^^^^^^^^^^^
7270
7271Syntax:
7272"""""""
7273
7274::
7275
Tim Northover675a0962014-06-13 14:24:23 +00007276 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007277
7278Overview:
7279"""""""""
7280
7281The '``srem``' instruction returns the remainder from the signed
7282division of its two operands. This instruction can also take
7283:ref:`vector <t_vector>` versions of the values in which case the elements
7284must be integers.
7285
7286Arguments:
7287""""""""""
7288
7289The two arguments to the '``srem``' instruction must be
7290:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7291arguments must have identical types.
7292
7293Semantics:
7294""""""""""
7295
7296This instruction returns the *remainder* of a division (where the result
7297is either zero or has the same sign as the dividend, ``op1``), not the
7298*modulo* operator (where the result is either zero or has the same sign
7299as the divisor, ``op2``) of a value. For more information about the
7300difference, see `The Math
7301Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
7302table of how this is implemented in various languages, please see
7303`Wikipedia: modulo
7304operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
7305
7306Note that signed integer remainder and unsigned integer remainder are
7307distinct operations; for unsigned integer remainder, use '``urem``'.
7308
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007309Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00007310For vectors, if any element of the divisor is zero, the operation has
Sanjay Patel2b1f6f42017-03-09 16:20:52 +00007311undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00007312Overflow also leads to undefined behavior; this is a rare case, but can
7313occur, for example, by taking the remainder of a 32-bit division of
7314-2147483648 by -1. (The remainder doesn't actually overflow, but this
7315rule lets srem be implemented using instructions that return both the
7316result of the division and the remainder.)
7317
7318Example:
7319""""""""
7320
Renato Golin124f2592016-07-20 12:16:38 +00007321.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007322
Tim Northover675a0962014-06-13 14:24:23 +00007323 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007324
7325.. _i_frem:
7326
7327'``frem``' Instruction
7328^^^^^^^^^^^^^^^^^^^^^^
7329
7330Syntax:
7331"""""""
7332
7333::
7334
Tim Northover675a0962014-06-13 14:24:23 +00007335 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007336
7337Overview:
7338"""""""""
7339
7340The '``frem``' instruction returns the remainder from the division of
7341its two operands.
7342
7343Arguments:
7344""""""""""
7345
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00007346The two arguments to the '``frem``' instruction must be
7347:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
7348floating-point values. Both arguments must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00007349
7350Semantics:
7351""""""""""
7352
Sanjay Patel7b722402018-03-07 17:18:22 +00007353The value produced is the floating-point remainder of the two operands.
7354This is the same output as a libm '``fmod``' function, but without any
7355possibility of setting ``errno``. The remainder has the same sign as the
7356dividend.
Sanjay Patelec95e0e2018-03-20 17:05:19 +00007357This instruction is assumed to execute in the default :ref:`floating-point
7358environment <floatenv>`.
Sanjay Patel7b722402018-03-07 17:18:22 +00007359This instruction can also take any number of :ref:`fast-math
7360flags <fastmath>`, which are optimization hints to enable otherwise
7361unsafe floating-point optimizations:
Sean Silvab084af42012-12-07 10:36:55 +00007362
7363Example:
7364""""""""
7365
Renato Golin124f2592016-07-20 12:16:38 +00007366.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007367
Tim Northover675a0962014-06-13 14:24:23 +00007368 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00007369
7370.. _bitwiseops:
7371
7372Bitwise Binary Operations
7373-------------------------
7374
7375Bitwise binary operators are used to do various forms of bit-twiddling
7376in a program. They are generally very efficient instructions and can
7377commonly be strength reduced from other instructions. They require two
7378operands of the same type, execute an operation on them, and produce a
7379single value. The resulting value is the same type as its operands.
7380
7381'``shl``' Instruction
7382^^^^^^^^^^^^^^^^^^^^^
7383
7384Syntax:
7385"""""""
7386
7387::
7388
Tim Northover675a0962014-06-13 14:24:23 +00007389 <result> = shl <ty> <op1>, <op2> ; yields ty:result
7390 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
7391 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
7392 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007393
7394Overview:
7395"""""""""
7396
7397The '``shl``' instruction returns the first operand shifted to the left
7398a specified number of bits.
7399
7400Arguments:
7401""""""""""
7402
7403Both arguments to the '``shl``' instruction must be the same
7404:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7405'``op2``' is treated as an unsigned value.
7406
7407Semantics:
7408""""""""""
7409
7410The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
7411where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00007412dynamically) equal to or larger than the number of bits in
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007413``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
7414If the arguments are vectors, each vector element of ``op1`` is shifted
7415by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007416
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007417If the ``nuw`` keyword is present, then the shift produces a poison
7418value if it shifts out any non-zero bits.
7419If the ``nsw`` keyword is present, then the shift produces a poison
Sanjay Patel2896c772018-06-01 15:21:14 +00007420value if it shifts out any bits that disagree with the resultant sign bit.
Sean Silvab084af42012-12-07 10:36:55 +00007421
7422Example:
7423""""""""
7424
Renato Golin124f2592016-07-20 12:16:38 +00007425.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007426
Tim Northover675a0962014-06-13 14:24:23 +00007427 <result> = shl i32 4, %var ; yields i32: 4 << %var
7428 <result> = shl i32 4, 2 ; yields i32: 16
7429 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00007430 <result> = shl i32 1, 32 ; undefined
7431 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
7432
7433'``lshr``' Instruction
7434^^^^^^^^^^^^^^^^^^^^^^
7435
7436Syntax:
7437"""""""
7438
7439::
7440
Tim Northover675a0962014-06-13 14:24:23 +00007441 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
7442 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007443
7444Overview:
7445"""""""""
7446
7447The '``lshr``' instruction (logical shift right) returns the first
7448operand shifted to the right a specified number of bits with zero fill.
7449
7450Arguments:
7451""""""""""
7452
7453Both arguments to the '``lshr``' instruction must be the same
7454:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7455'``op2``' is treated as an unsigned value.
7456
7457Semantics:
7458""""""""""
7459
7460This instruction always performs a logical shift right operation. The
7461most significant bits of the result will be filled with zero bits after
7462the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007463than the number of bits in ``op1``, this instruction returns a :ref:`poison
7464value <poisonvalues>`. If the arguments are vectors, each vector element
7465of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007466
7467If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007468a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007469
7470Example:
7471""""""""
7472
Renato Golin124f2592016-07-20 12:16:38 +00007473.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007474
Tim Northover675a0962014-06-13 14:24:23 +00007475 <result> = lshr i32 4, 1 ; yields i32:result = 2
7476 <result> = lshr i32 4, 2 ; yields i32:result = 1
7477 <result> = lshr i8 4, 3 ; yields i8:result = 0
7478 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00007479 <result> = lshr i32 1, 32 ; undefined
7480 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
7481
7482'``ashr``' Instruction
7483^^^^^^^^^^^^^^^^^^^^^^
7484
7485Syntax:
7486"""""""
7487
7488::
7489
Tim Northover675a0962014-06-13 14:24:23 +00007490 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
7491 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007492
7493Overview:
7494"""""""""
7495
7496The '``ashr``' instruction (arithmetic shift right) returns the first
7497operand shifted to the right a specified number of bits with sign
7498extension.
7499
7500Arguments:
7501""""""""""
7502
7503Both arguments to the '``ashr``' instruction must be the same
7504:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7505'``op2``' is treated as an unsigned value.
7506
7507Semantics:
7508""""""""""
7509
7510This instruction always performs an arithmetic shift right operation,
7511The most significant bits of the result will be filled with the sign bit
7512of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007513than the number of bits in ``op1``, this instruction returns a :ref:`poison
7514value <poisonvalues>`. If the arguments are vectors, each vector element
7515of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvab084af42012-12-07 10:36:55 +00007516
7517If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesb2781fb2017-06-06 08:28:17 +00007518a poison value if any of the bits shifted out are non-zero.
Sean Silvab084af42012-12-07 10:36:55 +00007519
7520Example:
7521""""""""
7522
Renato Golin124f2592016-07-20 12:16:38 +00007523.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007524
Tim Northover675a0962014-06-13 14:24:23 +00007525 <result> = ashr i32 4, 1 ; yields i32:result = 2
7526 <result> = ashr i32 4, 2 ; yields i32:result = 1
7527 <result> = ashr i8 4, 3 ; yields i8:result = 0
7528 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00007529 <result> = ashr i32 1, 32 ; undefined
7530 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
7531
7532'``and``' Instruction
7533^^^^^^^^^^^^^^^^^^^^^
7534
7535Syntax:
7536"""""""
7537
7538::
7539
Tim Northover675a0962014-06-13 14:24:23 +00007540 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007541
7542Overview:
7543"""""""""
7544
7545The '``and``' instruction returns the bitwise logical and of its two
7546operands.
7547
7548Arguments:
7549""""""""""
7550
7551The two arguments to the '``and``' instruction must be
7552:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7553arguments must have identical types.
7554
7555Semantics:
7556""""""""""
7557
7558The truth table used for the '``and``' instruction is:
7559
7560+-----+-----+-----+
7561| In0 | In1 | Out |
7562+-----+-----+-----+
7563| 0 | 0 | 0 |
7564+-----+-----+-----+
7565| 0 | 1 | 0 |
7566+-----+-----+-----+
7567| 1 | 0 | 0 |
7568+-----+-----+-----+
7569| 1 | 1 | 1 |
7570+-----+-----+-----+
7571
7572Example:
7573""""""""
7574
Renato Golin124f2592016-07-20 12:16:38 +00007575.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007576
Tim Northover675a0962014-06-13 14:24:23 +00007577 <result> = and i32 4, %var ; yields i32:result = 4 & %var
7578 <result> = and i32 15, 40 ; yields i32:result = 8
7579 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00007580
7581'``or``' Instruction
7582^^^^^^^^^^^^^^^^^^^^
7583
7584Syntax:
7585"""""""
7586
7587::
7588
Tim Northover675a0962014-06-13 14:24:23 +00007589 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007590
7591Overview:
7592"""""""""
7593
7594The '``or``' instruction returns the bitwise logical inclusive or of its
7595two operands.
7596
7597Arguments:
7598""""""""""
7599
7600The two arguments to the '``or``' instruction must be
7601:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7602arguments must have identical types.
7603
7604Semantics:
7605""""""""""
7606
7607The truth table used for the '``or``' instruction is:
7608
7609+-----+-----+-----+
7610| In0 | In1 | Out |
7611+-----+-----+-----+
7612| 0 | 0 | 0 |
7613+-----+-----+-----+
7614| 0 | 1 | 1 |
7615+-----+-----+-----+
7616| 1 | 0 | 1 |
7617+-----+-----+-----+
7618| 1 | 1 | 1 |
7619+-----+-----+-----+
7620
7621Example:
7622""""""""
7623
7624::
7625
Tim Northover675a0962014-06-13 14:24:23 +00007626 <result> = or i32 4, %var ; yields i32:result = 4 | %var
7627 <result> = or i32 15, 40 ; yields i32:result = 47
7628 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00007629
7630'``xor``' Instruction
7631^^^^^^^^^^^^^^^^^^^^^
7632
7633Syntax:
7634"""""""
7635
7636::
7637
Tim Northover675a0962014-06-13 14:24:23 +00007638 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00007639
7640Overview:
7641"""""""""
7642
7643The '``xor``' instruction returns the bitwise logical exclusive or of
7644its two operands. The ``xor`` is used to implement the "one's
7645complement" operation, which is the "~" operator in C.
7646
7647Arguments:
7648""""""""""
7649
7650The two arguments to the '``xor``' instruction must be
7651:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7652arguments must have identical types.
7653
7654Semantics:
7655""""""""""
7656
7657The truth table used for the '``xor``' instruction is:
7658
7659+-----+-----+-----+
7660| In0 | In1 | Out |
7661+-----+-----+-----+
7662| 0 | 0 | 0 |
7663+-----+-----+-----+
7664| 0 | 1 | 1 |
7665+-----+-----+-----+
7666| 1 | 0 | 1 |
7667+-----+-----+-----+
7668| 1 | 1 | 0 |
7669+-----+-----+-----+
7670
7671Example:
7672""""""""
7673
Renato Golin124f2592016-07-20 12:16:38 +00007674.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007675
Tim Northover675a0962014-06-13 14:24:23 +00007676 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7677 <result> = xor i32 15, 40 ; yields i32:result = 39
7678 <result> = xor i32 4, 8 ; yields i32:result = 12
7679 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00007680
7681Vector Operations
7682-----------------
7683
7684LLVM supports several instructions to represent vector operations in a
7685target-independent manner. These instructions cover the element-access
7686and vector-specific operations needed to process vectors effectively.
7687While LLVM does directly support these vector operations, many
7688sophisticated algorithms will want to use target-specific intrinsics to
7689take full advantage of a specific target.
7690
7691.. _i_extractelement:
7692
7693'``extractelement``' Instruction
7694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7695
7696Syntax:
7697"""""""
7698
7699::
7700
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007701 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00007702
7703Overview:
7704"""""""""
7705
7706The '``extractelement``' instruction extracts a single scalar element
7707from a vector at a specified index.
7708
7709Arguments:
7710""""""""""
7711
7712The first operand of an '``extractelement``' instruction is a value of
7713:ref:`vector <t_vector>` type. The second operand is an index indicating
7714the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007715variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007716
7717Semantics:
7718""""""""""
7719
7720The result is a scalar of the same type as the element type of ``val``.
7721Its value is the value at position ``idx`` of ``val``. If ``idx``
Eli Friedman2c7a81b2018-06-08 21:23:09 +00007722exceeds the length of ``val``, the result is a
7723:ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00007724
7725Example:
7726""""""""
7727
Renato Golin124f2592016-07-20 12:16:38 +00007728.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007729
7730 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7731
7732.. _i_insertelement:
7733
7734'``insertelement``' Instruction
7735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7736
7737Syntax:
7738"""""""
7739
7740::
7741
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007742 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00007743
7744Overview:
7745"""""""""
7746
7747The '``insertelement``' instruction inserts a scalar element into a
7748vector at a specified index.
7749
7750Arguments:
7751""""""""""
7752
7753The first operand of an '``insertelement``' instruction is a value of
7754:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7755type must equal the element type of the first operand. The third operand
7756is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00007757index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00007758
7759Semantics:
7760""""""""""
7761
7762The result is a vector of the same type as ``val``. Its element values
7763are those of ``val`` except at position ``idx``, where it gets the value
Eli Friedman2c7a81b2018-06-08 21:23:09 +00007764``elt``. If ``idx`` exceeds the length of ``val``, the result
7765is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00007766
7767Example:
7768""""""""
7769
Renato Golin124f2592016-07-20 12:16:38 +00007770.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007771
7772 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7773
7774.. _i_shufflevector:
7775
7776'``shufflevector``' Instruction
7777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7778
7779Syntax:
7780"""""""
7781
7782::
7783
7784 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7785
7786Overview:
7787"""""""""
7788
7789The '``shufflevector``' instruction constructs a permutation of elements
7790from two input vectors, returning a vector with the same element type as
7791the input and length that is the same as the shuffle mask.
7792
7793Arguments:
7794""""""""""
7795
7796The first two operands of a '``shufflevector``' instruction are vectors
7797with the same type. The third argument is a shuffle mask whose element
7798type is always 'i32'. The result of the instruction is a vector whose
7799length is the same as the shuffle mask and whose element type is the
7800same as the element type of the first two operands.
7801
7802The shuffle mask operand is required to be a constant vector with either
7803constant integer or undef values.
7804
7805Semantics:
7806""""""""""
7807
7808The elements of the two input vectors are numbered from left to right
7809across both of the vectors. The shuffle mask operand specifies, for each
7810element of the result vector, which element of the two input vectors the
Sanjay Patel6e410182017-04-12 18:39:53 +00007811result element gets. If the shuffle mask is undef, the result vector is
7812undef. If any element of the mask operand is undef, that element of the
7813result is undef. If the shuffle mask selects an undef element from one
7814of the input vectors, the resulting element is undef.
Sean Silvab084af42012-12-07 10:36:55 +00007815
7816Example:
7817""""""""
7818
Renato Golin124f2592016-07-20 12:16:38 +00007819.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007820
7821 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7822 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
7823 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
7824 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
7825 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
7826 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
7827 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
7828 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
7829
7830Aggregate Operations
7831--------------------
7832
7833LLVM supports several instructions for working with
7834:ref:`aggregate <t_aggregate>` values.
7835
7836.. _i_extractvalue:
7837
7838'``extractvalue``' Instruction
7839^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7840
7841Syntax:
7842"""""""
7843
7844::
7845
7846 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
7847
7848Overview:
7849"""""""""
7850
7851The '``extractvalue``' instruction extracts the value of a member field
7852from an :ref:`aggregate <t_aggregate>` value.
7853
7854Arguments:
7855""""""""""
7856
7857The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00007858:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00007859constant indices to specify which value to extract in a similar manner
7860as indices in a '``getelementptr``' instruction.
7861
7862The major differences to ``getelementptr`` indexing are:
7863
7864- Since the value being indexed is not a pointer, the first index is
7865 omitted and assumed to be zero.
7866- At least one index must be specified.
7867- Not only struct indices but also array indices must be in bounds.
7868
7869Semantics:
7870""""""""""
7871
7872The result is the value at the position in the aggregate specified by
7873the index operands.
7874
7875Example:
7876""""""""
7877
Renato Golin124f2592016-07-20 12:16:38 +00007878.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00007879
7880 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
7881
7882.. _i_insertvalue:
7883
7884'``insertvalue``' Instruction
7885^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7886
7887Syntax:
7888"""""""
7889
7890::
7891
7892 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
7893
7894Overview:
7895"""""""""
7896
7897The '``insertvalue``' instruction inserts a value into a member field in
7898an :ref:`aggregate <t_aggregate>` value.
7899
7900Arguments:
7901""""""""""
7902
7903The first operand of an '``insertvalue``' instruction is a value of
7904:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
7905a first-class value to insert. The following operands are constant
7906indices indicating the position at which to insert the value in a
7907similar manner as indices in a '``extractvalue``' instruction. The value
7908to insert must have the same type as the value identified by the
7909indices.
7910
7911Semantics:
7912""""""""""
7913
7914The result is an aggregate of the same type as ``val``. Its value is
7915that of ``val`` except that the value at the position specified by the
7916indices is that of ``elt``.
7917
7918Example:
7919""""""""
7920
7921.. code-block:: llvm
7922
7923 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
7924 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00007925 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00007926
7927.. _memoryops:
7928
7929Memory Access and Addressing Operations
7930---------------------------------------
7931
7932A key design point of an SSA-based representation is how it represents
7933memory. In LLVM, no memory locations are in SSA form, which makes things
7934very simple. This section describes how to read, write, and allocate
7935memory in LLVM.
7936
7937.. _i_alloca:
7938
7939'``alloca``' Instruction
7940^^^^^^^^^^^^^^^^^^^^^^^^
7941
7942Syntax:
7943"""""""
7944
7945::
7946
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007947 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvab084af42012-12-07 10:36:55 +00007948
7949Overview:
7950"""""""""
7951
7952The '``alloca``' instruction allocates memory on the stack frame of the
7953currently executing function, to be automatically released when this
7954function returns to its caller. The object is always allocated in the
Matt Arsenault3c1fc762017-04-10 22:27:50 +00007955address space for allocas indicated in the datalayout.
Sean Silvab084af42012-12-07 10:36:55 +00007956
7957Arguments:
7958""""""""""
7959
7960The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
7961bytes of memory on the runtime stack, returning a pointer of the
7962appropriate type to the program. If "NumElements" is specified, it is
7963the number of elements allocated, otherwise "NumElements" is defaulted
7964to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007965allocation is guaranteed to be aligned to at least that boundary. The
7966alignment may not be greater than ``1 << 29``. If not specified, or if
7967zero, the target can choose to align the allocation on any convenient
7968boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00007969
7970'``type``' may be any sized type.
7971
7972Semantics:
7973""""""""""
7974
7975Memory is allocated; a pointer is returned. The operation is undefined
7976if there is insufficient stack space for the allocation. '``alloca``'d
7977memory is automatically released when the function returns. The
7978'``alloca``' instruction is commonly used to represent automatic
7979variables that must have an address available. When the function returns
7980(either with the ``ret`` or ``resume`` instructions), the memory is
Eli Friedman18f882c2018-07-11 00:02:01 +00007981reclaimed. Allocating zero bytes is legal, but the returned pointer may not
7982be unique. The order in which memory is allocated (ie., which way the stack
7983grows) is not specified.
Sean Silvab084af42012-12-07 10:36:55 +00007984
7985Example:
7986""""""""
7987
7988.. code-block:: llvm
7989
Tim Northover675a0962014-06-13 14:24:23 +00007990 %ptr = alloca i32 ; yields i32*:ptr
7991 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7992 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7993 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007994
7995.. _i_load:
7996
7997'``load``' Instruction
7998^^^^^^^^^^^^^^^^^^^^^^
7999
8000Syntax:
8001"""""""
8002
8003::
8004
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008005 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008006 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00008007 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008008 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008009 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00008010
8011Overview:
8012"""""""""
8013
8014The '``load``' instruction is used to read from memory.
8015
8016Arguments:
8017""""""""""
8018
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00008019The argument to the ``load`` instruction specifies the memory address from which
8020to load. The type specified must be a :ref:`first class <t_firstclass>` type of
8021known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
8022the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
8023modify the number or order of execution of this ``load`` with other
8024:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008025
JF Bastiend1fb5852015-12-17 22:09:19 +00008026If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008027<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8028``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
8029Atomic loads produce :ref:`defined <memmodel>` results when they may see
8030multiple atomic stores. The type of the pointee must be an integer, pointer, or
8031floating-point type whose bit width is a power of two greater than or equal to
8032eight and less than or equal to a target-specific size limit. ``align`` must be
8033explicitly specified on atomic loads, and the load has undefined behavior if the
8034alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00008035pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00008036
8037The optional constant ``align`` argument specifies the alignment of the
8038operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00008039or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00008040alignment for the target. It is the responsibility of the code emitter
8041to ensure that the alignment information is correct. Overestimating the
8042alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00008043may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00008044maximum possible alignment is ``1 << 29``. An alignment value higher
8045than the size of the loaded type implies memory up to the alignment
8046value bytes can be safely loaded without trapping in the default
8047address space. Access of the high bytes can interfere with debugging
8048tools, so should not be accessed if the function has the
8049``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00008050
8051The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008052metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00008053``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008054metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00008055that this load is not expected to be reused in the cache. The code
8056generator may select special instructions to save cache bandwidth, such
8057as the ``MOVNT`` instruction on x86.
8058
8059The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008060metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berry4bda5762016-08-31 17:39:21 +00008061entries. If a load instruction tagged with the ``!invariant.load``
8062metadata is executed, the optimizer may assume the memory location
8063referenced by the load contains the same value at all points in the
Eli Friedmane15a1112018-07-17 20:38:11 +00008064program where the memory location is known to be dereferenceable;
8065otherwise, the behavior is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00008066
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008067The optional ``!invariant.group`` metadata must reference a single metadata name
Piotr Padlewskice358262018-05-18 23:53:46 +00008068 ``<index>`` corresponding to a metadata node with no entries.
8069 See ``invariant.group`` metadata.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008070
Philip Reamescdb72f32014-10-20 22:40:55 +00008071The optional ``!nonnull`` metadata must reference a single
8072metadata name ``<index>`` corresponding to a metadata node with no
8073entries. The existence of the ``!nonnull`` metadata on the
8074instruction tells the optimizer that the value loaded is known to
Eli Friedmane15a1112018-07-17 20:38:11 +00008075never be null. If the value is null at runtime, the behavior is undefined.
8076This is analogous to the ``nonnull`` attribute on parameters and return
8077values. This metadata can only be applied to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00008078
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008079The optional ``!dereferenceable`` metadata must reference a single metadata
8080name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00008081entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00008082tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00008083The number of bytes known to be dereferenceable is specified by the integer
8084value in the metadata node. This is analogous to the ''dereferenceable''
8085attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00008086to loads of a pointer type.
8087
8088The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00008089metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
8090``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00008091instruction tells the optimizer that the value loaded is known to be either
8092dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00008093The number of bytes known to be dereferenceable is specified by the integer
8094value in the metadata node. This is analogous to the ''dereferenceable_or_null''
8095attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00008096to loads of a pointer type.
8097
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008098The optional ``!align`` metadata must reference a single metadata name
8099``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
8100The existence of the ``!align`` metadata on the instruction tells the
8101optimizer that the value loaded is known to be aligned to a boundary specified
8102by the integer value in the metadata node. The alignment must be a power of 2.
8103This is analogous to the ''align'' attribute on parameters and return values.
Eli Friedmane15a1112018-07-17 20:38:11 +00008104This metadata can only be applied to loads of a pointer type. If the returned
8105value is not appropriately aligned at runtime, the behavior is undefined.
Artur Pilipenkob4d00902015-09-28 17:41:08 +00008106
Sean Silvab084af42012-12-07 10:36:55 +00008107Semantics:
8108""""""""""
8109
8110The location of memory pointed to is loaded. If the value being loaded
8111is of scalar type then the number of bytes read does not exceed the
8112minimum number of bytes needed to hold all bits of the type. For
8113example, loading an ``i24`` reads at most three bytes. When loading a
8114value of a type like ``i20`` with a size that is not an integral number
8115of bytes, the result is undefined if the value was not originally
8116written using a store of the same type.
8117
8118Examples:
8119"""""""""
8120
8121.. code-block:: llvm
8122
Tim Northover675a0962014-06-13 14:24:23 +00008123 %ptr = alloca i32 ; yields i32*:ptr
8124 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00008125 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008126
8127.. _i_store:
8128
8129'``store``' Instruction
8130^^^^^^^^^^^^^^^^^^^^^^^
8131
8132Syntax:
8133"""""""
8134
8135::
8136
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008137 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008138 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008139
8140Overview:
8141"""""""""
8142
8143The '``store``' instruction is used to write to memory.
8144
8145Arguments:
8146""""""""""
8147
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00008148There are two arguments to the ``store`` instruction: a value to store and an
8149address at which to store it. The type of the ``<pointer>`` operand must be a
8150pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
8151operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
8152allowed to modify the number or order of execution of this ``store`` with other
8153:ref:`volatile operations <volatile>`. Only values of :ref:`first class
8154<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
8155structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00008156
JF Bastiend1fb5852015-12-17 22:09:19 +00008157If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008158<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8159``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
8160Atomic loads produce :ref:`defined <memmodel>` results when they may see
8161multiple atomic stores. The type of the pointee must be an integer, pointer, or
8162floating-point type whose bit width is a power of two greater than or equal to
8163eight and less than or equal to a target-specific size limit. ``align`` must be
8164explicitly specified on atomic stores, and the store has undefined behavior if
8165the alignment is not set to a value which is at least the size in bytes of the
JF Bastiend1fb5852015-12-17 22:09:19 +00008166pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00008167
Eli Benderskyca380842013-04-17 17:17:20 +00008168The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00008169operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00008170or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00008171alignment for the target. It is the responsibility of the code emitter
8172to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00008173alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00008174alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00008175safe. The maximum possible alignment is ``1 << 29``. An alignment
8176value higher than the size of the stored type implies memory up to the
8177alignment value bytes can be stored to without trapping in the default
8178address space. Storing to the higher bytes however may result in data
8179races if another thread can access the same address. Introducing a
8180data race is not allowed. Storing to the extra bytes is not allowed
8181even in situations where a data race is known to not exist if the
8182function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00008183
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008184The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00008185name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00008186value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00008187tells the optimizer and code generator that this load is not expected to
8188be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00008189instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00008190x86.
8191
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008192The optional ``!invariant.group`` metadata must reference a
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00008193single metadata name ``<index>``. See ``invariant.group`` metadata.
8194
Sean Silvab084af42012-12-07 10:36:55 +00008195Semantics:
8196""""""""""
8197
Eli Benderskyca380842013-04-17 17:17:20 +00008198The contents of memory are updated to contain ``<value>`` at the
8199location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00008200of scalar type then the number of bytes written does not exceed the
8201minimum number of bytes needed to hold all bits of the type. For
8202example, storing an ``i24`` writes at most three bytes. When writing a
8203value of a type like ``i20`` with a size that is not an integral number
8204of bytes, it is unspecified what happens to the extra bits that do not
8205belong to the type, but they will typically be overwritten.
8206
8207Example:
8208""""""""
8209
8210.. code-block:: llvm
8211
Tim Northover675a0962014-06-13 14:24:23 +00008212 %ptr = alloca i32 ; yields i32*:ptr
8213 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00008214 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00008215
8216.. _i_fence:
8217
8218'``fence``' Instruction
8219^^^^^^^^^^^^^^^^^^^^^^^
8220
8221Syntax:
8222"""""""
8223
8224::
8225
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008226 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008227
8228Overview:
8229"""""""""
8230
8231The '``fence``' instruction is used to introduce happens-before edges
8232between operations.
8233
8234Arguments:
8235""""""""""
8236
8237'``fence``' instructions take an :ref:`ordering <ordering>` argument which
8238defines what *synchronizes-with* edges they add. They can only be given
8239``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
8240
8241Semantics:
8242""""""""""
8243
8244A fence A which has (at least) ``release`` ordering semantics
8245*synchronizes with* a fence B with (at least) ``acquire`` ordering
8246semantics if and only if there exist atomic operations X and Y, both
8247operating on some atomic object M, such that A is sequenced before X, X
8248modifies M (either directly or through some side effect of a sequence
8249headed by X), Y is sequenced before B, and Y observes M. This provides a
8250*happens-before* dependency between A and B. Rather than an explicit
8251``fence``, one (but not both) of the atomic operations X or Y might
8252provide a ``release`` or ``acquire`` (resp.) ordering constraint and
8253still *synchronize-with* the explicit ``fence`` and establish the
8254*happens-before* edge.
8255
8256A ``fence`` which has ``seq_cst`` ordering, in addition to having both
8257``acquire`` and ``release`` semantics specified above, participates in
8258the global program order of other ``seq_cst`` operations and/or fences.
8259
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008260A ``fence`` instruction can also take an optional
8261":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008262
8263Example:
8264""""""""
8265
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008266.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008267
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008268 fence acquire ; yields void
8269 fence syncscope("singlethread") seq_cst ; yields void
8270 fence syncscope("agent") seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00008271
8272.. _i_cmpxchg:
8273
8274'``cmpxchg``' Instruction
8275^^^^^^^^^^^^^^^^^^^^^^^^^
8276
8277Syntax:
8278"""""""
8279
8280::
8281
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008282 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00008283
8284Overview:
8285"""""""""
8286
8287The '``cmpxchg``' instruction is used to atomically modify memory. It
8288loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00008289equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00008290
8291Arguments:
8292""""""""""
8293
8294There are three arguments to the '``cmpxchg``' instruction: an address
8295to operate on, a value to compare to the value currently be at that
8296address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00008297are equal. The type of '<cmp>' must be an integer or pointer type whose
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008298bit width is a power of two greater than or equal to eight and less
Philip Reames1960cfd2016-02-19 00:06:41 +00008299than or equal to a target-specific size limit. '<cmp>' and '<new>' must
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00008300have the same type, and the type of '<pointer>' must be a pointer to
8301that type. If the ``cmpxchg`` is marked as ``volatile``, then the
Philip Reames1960cfd2016-02-19 00:06:41 +00008302optimizer is not allowed to modify the number or order of execution of
8303this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00008304
Tim Northovere94a5182014-03-11 10:48:52 +00008305The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00008306``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
8307must be at least ``monotonic``, the ordering constraint on failure must be no
8308stronger than that on success, and the failure ordering cannot be either
8309``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00008310
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008311A ``cmpxchg`` instruction can also take an optional
8312":ref:`syncscope <syncscope>`" argument.
Sean Silvab084af42012-12-07 10:36:55 +00008313
8314The pointer passed into cmpxchg must have alignment greater than or
8315equal to the size in memory of the operand.
8316
8317Semantics:
8318""""""""""
8319
Tim Northover420a2162014-06-13 14:24:07 +00008320The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun93f2b4b2017-08-09 22:22:04 +00008321is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
8322written to the location. The original value at the location is returned,
8323together with a flag indicating success (true) or failure (false).
Tim Northover420a2162014-06-13 14:24:07 +00008324
8325If the cmpxchg operation is marked as ``weak`` then a spurious failure is
8326permitted: the operation may not write ``<new>`` even if the comparison
8327matched.
8328
8329If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
8330if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00008331
Tim Northovere94a5182014-03-11 10:48:52 +00008332A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
8333identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
8334load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00008335
8336Example:
8337""""""""
8338
8339.. code-block:: llvm
8340
8341 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008342 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008343 br label %loop
8344
8345 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00008346 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00008347 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00008348 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00008349 %value_loaded = extractvalue { i32, i1 } %val_success, 0
8350 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00008351 br i1 %success, label %done, label %loop
8352
8353 done:
8354 ...
8355
8356.. _i_atomicrmw:
8357
8358'``atomicrmw``' Instruction
8359^^^^^^^^^^^^^^^^^^^^^^^^^^^
8360
8361Syntax:
8362"""""""
8363
8364::
8365
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008366 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00008367
8368Overview:
8369"""""""""
8370
8371The '``atomicrmw``' instruction is used to atomically modify memory.
8372
8373Arguments:
8374""""""""""
8375
8376There are three arguments to the '``atomicrmw``' instruction: an
8377operation to apply, an address whose value to modify, an argument to the
8378operation. The operation must be one of the following keywords:
8379
8380- xchg
8381- add
8382- sub
8383- and
8384- nand
8385- or
8386- xor
8387- max
8388- min
8389- umax
8390- umin
8391
8392The type of '<value>' must be an integer type whose bit width is a power
8393of two greater than or equal to eight and less than or equal to a
8394target-specific size limit. The type of the '``<pointer>``' operand must
8395be a pointer to that type. If the ``atomicrmw`` is marked as
8396``volatile``, then the optimizer is not allowed to modify the number or
8397order of execution of this ``atomicrmw`` with other :ref:`volatile
8398operations <volatile>`.
8399
Konstantin Zhuravlyovbb80d3e2017-07-11 22:23:00 +00008400A ``atomicrmw`` instruction can also take an optional
8401":ref:`syncscope <syncscope>`" argument.
8402
Sean Silvab084af42012-12-07 10:36:55 +00008403Semantics:
8404""""""""""
8405
8406The contents of memory at the location specified by the '``<pointer>``'
8407operand are atomically read, modified, and written back. The original
8408value at the location is returned. The modification is specified by the
8409operation argument:
8410
8411- xchg: ``*ptr = val``
8412- add: ``*ptr = *ptr + val``
8413- sub: ``*ptr = *ptr - val``
8414- and: ``*ptr = *ptr & val``
8415- nand: ``*ptr = ~(*ptr & val)``
8416- or: ``*ptr = *ptr | val``
8417- xor: ``*ptr = *ptr ^ val``
8418- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
8419- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
8420- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
8421 comparison)
8422- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
8423 comparison)
8424
8425Example:
8426""""""""
8427
8428.. code-block:: llvm
8429
Tim Northover675a0962014-06-13 14:24:23 +00008430 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00008431
8432.. _i_getelementptr:
8433
8434'``getelementptr``' Instruction
8435^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8436
8437Syntax:
8438"""""""
8439
8440::
8441
Peter Collingbourned93620b2016-11-10 22:34:55 +00008442 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8443 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8444 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00008445
8446Overview:
8447"""""""""
8448
8449The '``getelementptr``' instruction is used to get the address of a
8450subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008451address calculation only and does not access memory. The instruction can also
8452be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00008453
8454Arguments:
8455""""""""""
8456
David Blaikie16a97eb2015-03-04 22:02:58 +00008457The first argument is always a type used as the basis for the calculations.
8458The second argument is always a pointer or a vector of pointers, and is the
8459base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00008460that indicate which of the elements of the aggregate object are indexed.
8461The interpretation of each index is dependent on the type being indexed
8462into. The first index always indexes the pointer value given as the
David Blaikief91b0302017-06-19 05:34:21 +00008463second argument, the second index indexes a value of the type pointed to
Sean Silvab084af42012-12-07 10:36:55 +00008464(not necessarily the value directly pointed to, since the first index
8465can be non-zero), etc. The first type indexed into must be a pointer
8466value, subsequent types can be arrays, vectors, and structs. Note that
8467subsequent types being indexed into can never be pointers, since that
8468would require loading the pointer before continuing calculation.
8469
8470The type of each index argument depends on the type it is indexing into.
8471When indexing into a (optionally packed) structure, only ``i32`` integer
8472**constants** are allowed (when using a vector of indices they must all
8473be the **same** ``i32`` integer constant). When indexing into an array,
8474pointer or vector, integers of any width are allowed, and they are not
8475required to be constant. These integers are treated as signed values
8476where relevant.
8477
8478For example, let's consider a C code fragment and how it gets compiled
8479to LLVM:
8480
8481.. code-block:: c
8482
8483 struct RT {
8484 char A;
8485 int B[10][20];
8486 char C;
8487 };
8488 struct ST {
8489 int X;
8490 double Y;
8491 struct RT Z;
8492 };
8493
8494 int *foo(struct ST *s) {
8495 return &s[1].Z.B[5][13];
8496 }
8497
8498The LLVM code generated by Clang is:
8499
8500.. code-block:: llvm
8501
8502 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
8503 %struct.ST = type { i32, double, %struct.RT }
8504
8505 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
8506 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00008507 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00008508 ret i32* %arrayidx
8509 }
8510
8511Semantics:
8512""""""""""
8513
8514In the example above, the first index is indexing into the
8515'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
8516= '``{ i32, double, %struct.RT }``' type, a structure. The second index
8517indexes into the third element of the structure, yielding a
8518'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
8519structure. The third index indexes into the second element of the
8520structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
8521dimensions of the array are subscripted into, yielding an '``i32``'
8522type. The '``getelementptr``' instruction returns a pointer to this
8523element, thus computing a value of '``i32*``' type.
8524
8525Note that it is perfectly legal to index partially through a structure,
8526returning a pointer to an inner element. Because of this, the LLVM code
8527for the given testcase is equivalent to:
8528
8529.. code-block:: llvm
8530
8531 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00008532 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
8533 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
8534 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
8535 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
8536 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00008537 ret i32* %t5
8538 }
8539
8540If the ``inbounds`` keyword is present, the result value of the
8541``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
8542pointer is not an *in bounds* address of an allocated object, or if any
8543of the addresses that would be formed by successive addition of the
8544offsets implied by the indices to the base address with infinitely
8545precise signed arithmetic are not an *in bounds* address of that
8546allocated object. The *in bounds* addresses for an allocated object are
8547all the addresses that point into the object, plus the address one byte
Eli Friedman13f2e352017-02-23 00:48:18 +00008548past the end. The only *in bounds* address for a null pointer in the
8549default address-space is the null pointer itself. In cases where the
8550base is a vector of pointers the ``inbounds`` keyword applies to each
8551of the computations element-wise.
Sean Silvab084af42012-12-07 10:36:55 +00008552
8553If the ``inbounds`` keyword is not present, the offsets are added to the
8554base address with silently-wrapping two's complement arithmetic. If the
8555offsets have a different width from the pointer, they are sign-extended
8556or truncated to the width of the pointer. The result value of the
8557``getelementptr`` may be outside the object pointed to by the base
8558pointer. The result value may not necessarily be used to access memory
8559though, even if it happens to point into allocated storage. See the
8560:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
8561information.
8562
Peter Collingbourned93620b2016-11-10 22:34:55 +00008563If the ``inrange`` keyword is present before any index, loading from or
8564storing to any pointer derived from the ``getelementptr`` has undefined
8565behavior if the load or store would access memory outside of the bounds of
8566the element selected by the index marked as ``inrange``. The result of a
8567pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
8568involving memory) involving a pointer derived from a ``getelementptr`` with
8569the ``inrange`` keyword is undefined, with the exception of comparisons
8570in the case where both operands are in the range of the element selected
8571by the ``inrange`` keyword, inclusive of the address one past the end of
8572that element. Note that the ``inrange`` keyword is currently only allowed
8573in constant ``getelementptr`` expressions.
8574
Sean Silvab084af42012-12-07 10:36:55 +00008575The getelementptr instruction is often confusing. For some more insight
8576into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
8577
8578Example:
8579""""""""
8580
8581.. code-block:: llvm
8582
8583 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008584 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008585 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008586 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008587 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008588 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00008589 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00008590 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00008591
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008592Vector of pointers:
8593"""""""""""""""""""
8594
8595The ``getelementptr`` returns a vector of pointers, instead of a single address,
8596when one or more of its arguments is a vector. In such cases, all vector
8597arguments should have the same number of elements, and every scalar argument
8598will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00008599
8600.. code-block:: llvm
8601
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008602 ; All arguments are vectors:
8603 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
8604 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008605
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008606 ; Add the same scalar offset to each pointer of a vector:
8607 ; A[i] = ptrs[i] + offset*sizeof(i8)
8608 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00008609
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008610 ; Add distinct offsets to the same pointer:
8611 ; A[i] = ptr + offsets[i]*sizeof(i8)
8612 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00008613
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008614 ; In all cases described above the type of the result is <4 x i8*>
8615
8616The two following instructions are equivalent:
8617
8618.. code-block:: llvm
8619
8620 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8621 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
8622 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
8623 <4 x i32> %ind4,
8624 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00008625
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008626 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8627 i32 2, i32 1, <4 x i32> %ind4, i64 13
8628
8629Let's look at the C code, where the vector version of ``getelementptr``
8630makes sense:
8631
8632.. code-block:: c
8633
8634 // Let's assume that we vectorize the following loop:
Alexey Baderadec2832017-01-30 07:38:58 +00008635 double *A, *B; int *C;
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008636 for (int i = 0; i < size; ++i) {
8637 A[i] = B[C[i]];
8638 }
8639
8640.. code-block:: llvm
8641
8642 ; get pointers for 8 elements from array B
8643 %ptrs = getelementptr double, double* %B, <8 x i32> %C
8644 ; load 8 elements from array B into A
Elad Cohenef5798a2017-05-03 12:28:54 +00008645 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00008646 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00008647
8648Conversion Operations
8649---------------------
8650
8651The instructions in this category are the conversion instructions
8652(casting) which all take a single operand and a type. They perform
8653various bit conversions on the operand.
8654
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008655.. _i_trunc:
8656
Sean Silvab084af42012-12-07 10:36:55 +00008657'``trunc .. to``' Instruction
8658^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8659
8660Syntax:
8661"""""""
8662
8663::
8664
8665 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8666
8667Overview:
8668"""""""""
8669
8670The '``trunc``' instruction truncates its operand to the type ``ty2``.
8671
8672Arguments:
8673""""""""""
8674
8675The '``trunc``' instruction takes a value to trunc, and a type to trunc
8676it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8677of the same number of integers. The bit size of the ``value`` must be
8678larger than the bit size of the destination type, ``ty2``. Equal sized
8679types are not allowed.
8680
8681Semantics:
8682""""""""""
8683
8684The '``trunc``' instruction truncates the high order bits in ``value``
8685and converts the remaining bits to ``ty2``. Since the source size must
8686be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8687It will always truncate bits.
8688
8689Example:
8690""""""""
8691
8692.. code-block:: llvm
8693
8694 %X = trunc i32 257 to i8 ; yields i8:1
8695 %Y = trunc i32 123 to i1 ; yields i1:true
8696 %Z = trunc i32 122 to i1 ; yields i1:false
8697 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
8698
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008699.. _i_zext:
8700
Sean Silvab084af42012-12-07 10:36:55 +00008701'``zext .. to``' Instruction
8702^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8703
8704Syntax:
8705"""""""
8706
8707::
8708
8709 <result> = zext <ty> <value> to <ty2> ; yields ty2
8710
8711Overview:
8712"""""""""
8713
8714The '``zext``' instruction zero extends its operand to type ``ty2``.
8715
8716Arguments:
8717""""""""""
8718
8719The '``zext``' instruction takes a value to cast, and a type to cast it
8720to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8721the same number of integers. The bit size of the ``value`` must be
8722smaller than the bit size of the destination type, ``ty2``.
8723
8724Semantics:
8725""""""""""
8726
8727The ``zext`` fills the high order bits of the ``value`` with zero bits
8728until it reaches the size of the destination type, ``ty2``.
8729
8730When zero extending from i1, the result will always be either 0 or 1.
8731
8732Example:
8733""""""""
8734
8735.. code-block:: llvm
8736
8737 %X = zext i32 257 to i64 ; yields i64:257
8738 %Y = zext i1 true to i32 ; yields i32:1
8739 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8740
Bjorn Petterssone1285e32017-10-24 11:59:20 +00008741.. _i_sext:
8742
Sean Silvab084af42012-12-07 10:36:55 +00008743'``sext .. to``' Instruction
8744^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8745
8746Syntax:
8747"""""""
8748
8749::
8750
8751 <result> = sext <ty> <value> to <ty2> ; yields ty2
8752
8753Overview:
8754"""""""""
8755
8756The '``sext``' sign extends ``value`` to the type ``ty2``.
8757
8758Arguments:
8759""""""""""
8760
8761The '``sext``' instruction takes a value to cast, and a type to cast it
8762to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8763the same number of integers. The bit size of the ``value`` must be
8764smaller than the bit size of the destination type, ``ty2``.
8765
8766Semantics:
8767""""""""""
8768
8769The '``sext``' instruction performs a sign extension by copying the sign
8770bit (highest order bit) of the ``value`` until it reaches the bit size
8771of the type ``ty2``.
8772
8773When sign extending from i1, the extension always results in -1 or 0.
8774
8775Example:
8776""""""""
8777
8778.. code-block:: llvm
8779
8780 %X = sext i8 -1 to i16 ; yields i16 :65535
8781 %Y = sext i1 true to i32 ; yields i32:-1
8782 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8783
8784'``fptrunc .. to``' Instruction
8785^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8786
8787Syntax:
8788"""""""
8789
8790::
8791
8792 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8793
8794Overview:
8795"""""""""
8796
8797The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8798
8799Arguments:
8800""""""""""
8801
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008802The '``fptrunc``' instruction takes a :ref:`floating-point <t_floating>`
8803value to cast and a :ref:`floating-point <t_floating>` type to cast it to.
Sean Silvab084af42012-12-07 10:36:55 +00008804The size of ``value`` must be larger than the size of ``ty2``. This
8805implies that ``fptrunc`` cannot be used to make a *no-op cast*.
8806
8807Semantics:
8808""""""""""
8809
Dan Liew50456fb2015-09-03 18:43:56 +00008810The '``fptrunc``' instruction casts a ``value`` from a larger
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008811:ref:`floating-point <t_floating>` type to a smaller :ref:`floating-point
Sanjay Pateld96a3632018-04-03 13:05:20 +00008812<t_floating>` type.
8813This instruction is assumed to execute in the default :ref:`floating-point
8814environment <floatenv>`.
Sean Silvab084af42012-12-07 10:36:55 +00008815
8816Example:
8817""""""""
8818
8819.. code-block:: llvm
8820
Sanjay Pateld96a3632018-04-03 13:05:20 +00008821 %X = fptrunc double 16777217.0 to float ; yields float:16777216.0
8822 %Y = fptrunc double 1.0E+300 to half ; yields half:+infinity
Sean Silvab084af42012-12-07 10:36:55 +00008823
8824'``fpext .. to``' Instruction
8825^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8826
8827Syntax:
8828"""""""
8829
8830::
8831
8832 <result> = fpext <ty> <value> to <ty2> ; yields ty2
8833
8834Overview:
8835"""""""""
8836
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008837The '``fpext``' extends a floating-point ``value`` to a larger floating-point
8838value.
Sean Silvab084af42012-12-07 10:36:55 +00008839
8840Arguments:
8841""""""""""
8842
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008843The '``fpext``' instruction takes a :ref:`floating-point <t_floating>`
8844``value`` to cast, and a :ref:`floating-point <t_floating>` type to cast it
Sean Silvab084af42012-12-07 10:36:55 +00008845to. The source type must be smaller than the destination type.
8846
8847Semantics:
8848""""""""""
8849
8850The '``fpext``' instruction extends the ``value`` from a smaller
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008851:ref:`floating-point <t_floating>` type to a larger :ref:`floating-point
8852<t_floating>` type. The ``fpext`` cannot be used to make a
Sean Silvab084af42012-12-07 10:36:55 +00008853*no-op cast* because it always changes bits. Use ``bitcast`` to make a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008854*no-op cast* for a floating-point cast.
Sean Silvab084af42012-12-07 10:36:55 +00008855
8856Example:
8857""""""""
8858
8859.. code-block:: llvm
8860
8861 %X = fpext float 3.125 to double ; yields double:3.125000e+00
8862 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
8863
8864'``fptoui .. to``' Instruction
8865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8866
8867Syntax:
8868"""""""
8869
8870::
8871
8872 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
8873
8874Overview:
8875"""""""""
8876
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008877The '``fptoui``' converts a floating-point ``value`` to its unsigned
Sean Silvab084af42012-12-07 10:36:55 +00008878integer equivalent of type ``ty2``.
8879
8880Arguments:
8881""""""""""
8882
8883The '``fptoui``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008884scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00008885cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008886``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00008887type with the same number of elements as ``ty``
8888
8889Semantics:
8890""""""""""
8891
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008892The '``fptoui``' instruction converts its :ref:`floating-point
8893<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00008894unsigned integer value. If the value cannot fit in ``ty2``, the result
8895is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008896
8897Example:
8898""""""""
8899
8900.. code-block:: llvm
8901
8902 %X = fptoui double 123.0 to i32 ; yields i32:123
8903 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
8904 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
8905
8906'``fptosi .. to``' Instruction
8907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8908
8909Syntax:
8910"""""""
8911
8912::
8913
8914 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
8915
8916Overview:
8917"""""""""
8918
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008919The '``fptosi``' instruction converts :ref:`floating-point <t_floating>`
Sean Silvab084af42012-12-07 10:36:55 +00008920``value`` to type ``ty2``.
8921
8922Arguments:
8923""""""""""
8924
8925The '``fptosi``' instruction takes a value to cast, which must be a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008926scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvab084af42012-12-07 10:36:55 +00008927cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008928``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvab084af42012-12-07 10:36:55 +00008929type with the same number of elements as ``ty``
8930
8931Semantics:
8932""""""""""
8933
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008934The '``fptosi``' instruction converts its :ref:`floating-point
8935<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc065bb22018-06-08 21:33:33 +00008936signed integer value. If the value cannot fit in ``ty2``, the result
8937is a :ref:`poison value <poisonvalues>`.
Sean Silvab084af42012-12-07 10:36:55 +00008938
8939Example:
8940""""""""
8941
8942.. code-block:: llvm
8943
8944 %X = fptosi double -123.0 to i32 ; yields i32:-123
8945 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
8946 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
8947
8948'``uitofp .. to``' Instruction
8949^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8950
8951Syntax:
8952"""""""
8953
8954::
8955
8956 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
8957
8958Overview:
8959"""""""""
8960
8961The '``uitofp``' instruction regards ``value`` as an unsigned integer
8962and converts that value to the ``ty2`` type.
8963
8964Arguments:
8965""""""""""
8966
8967The '``uitofp``' instruction takes a value to cast, which must be a
8968scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008969``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
8970``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00008971type with the same number of elements as ``ty``
8972
8973Semantics:
8974""""""""""
8975
8976The '``uitofp``' instruction interprets its operand as an unsigned
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00008977integer quantity and converts it to the corresponding floating-point
Eli Friedman3f1ce092018-06-14 22:58:48 +00008978value. If the value cannot be exactly represented, it is rounded using
8979the default rounding mode.
8980
Sean Silvab084af42012-12-07 10:36:55 +00008981
8982Example:
8983""""""""
8984
8985.. code-block:: llvm
8986
8987 %X = uitofp i32 257 to float ; yields float:257.0
8988 %Y = uitofp i8 -1 to double ; yields double:255.0
8989
8990'``sitofp .. to``' Instruction
8991^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8992
8993Syntax:
8994"""""""
8995
8996::
8997
8998 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
8999
9000Overview:
9001"""""""""
9002
9003The '``sitofp``' instruction regards ``value`` as a signed integer and
9004converts that value to the ``ty2`` type.
9005
9006Arguments:
9007""""""""""
9008
9009The '``sitofp``' instruction takes a value to cast, which must be a
9010scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009011``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
9012``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvab084af42012-12-07 10:36:55 +00009013type with the same number of elements as ``ty``
9014
9015Semantics:
9016""""""""""
9017
9018The '``sitofp``' instruction interprets its operand as a signed integer
Eli Friedman3f1ce092018-06-14 22:58:48 +00009019quantity and converts it to the corresponding floating-point value. If the
9020value cannot be exactly represented, it is rounded using the default rounding
9021mode.
Sean Silvab084af42012-12-07 10:36:55 +00009022
9023Example:
9024""""""""
9025
9026.. code-block:: llvm
9027
9028 %X = sitofp i32 257 to float ; yields float:257.0
9029 %Y = sitofp i8 -1 to double ; yields double:-1.0
9030
9031.. _i_ptrtoint:
9032
9033'``ptrtoint .. to``' Instruction
9034^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9035
9036Syntax:
9037"""""""
9038
9039::
9040
9041 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
9042
9043Overview:
9044"""""""""
9045
9046The '``ptrtoint``' instruction converts the pointer or a vector of
9047pointers ``value`` to the integer (or vector of integers) type ``ty2``.
9048
9049Arguments:
9050""""""""""
9051
9052The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00009053a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00009054type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
9055a vector of integers type.
9056
9057Semantics:
9058""""""""""
9059
9060The '``ptrtoint``' instruction converts ``value`` to integer type
9061``ty2`` by interpreting the pointer value as an integer and either
9062truncating or zero extending that value to the size of the integer type.
9063If ``value`` is smaller than ``ty2`` then a zero extension is done. If
9064``value`` is larger than ``ty2`` then a truncation is done. If they are
9065the same size, then nothing is done (*no-op cast*) other than a type
9066change.
9067
9068Example:
9069""""""""
9070
9071.. code-block:: llvm
9072
9073 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
9074 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
9075 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
9076
9077.. _i_inttoptr:
9078
9079'``inttoptr .. to``' Instruction
9080^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9081
9082Syntax:
9083"""""""
9084
9085::
9086
9087 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
9088
9089Overview:
9090"""""""""
9091
9092The '``inttoptr``' instruction converts an integer ``value`` to a
9093pointer type, ``ty2``.
9094
9095Arguments:
9096""""""""""
9097
9098The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
9099cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
9100type.
9101
9102Semantics:
9103""""""""""
9104
9105The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
9106applying either a zero extension or a truncation depending on the size
9107of the integer ``value``. If ``value`` is larger than the size of a
9108pointer then a truncation is done. If ``value`` is smaller than the size
9109of a pointer then a zero extension is done. If they are the same size,
9110nothing is done (*no-op cast*).
9111
9112Example:
9113""""""""
9114
9115.. code-block:: llvm
9116
9117 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
9118 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
9119 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
9120 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
9121
9122.. _i_bitcast:
9123
9124'``bitcast .. to``' Instruction
9125^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9126
9127Syntax:
9128"""""""
9129
9130::
9131
9132 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
9133
9134Overview:
9135"""""""""
9136
9137The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
9138changing any bits.
9139
9140Arguments:
9141""""""""""
9142
9143The '``bitcast``' instruction takes a value to cast, which must be a
9144non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009145also be a non-aggregate :ref:`first class <t_firstclass>` type. The
9146bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00009147identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00009148also be a pointer of the same size. This instruction supports bitwise
9149conversion of vectors to integers and to vectors of other types (as
9150long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00009151
9152Semantics:
9153""""""""""
9154
Matt Arsenault24b49c42013-07-31 17:49:08 +00009155The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
9156is always a *no-op cast* because no bits change with this
9157conversion. The conversion is done as if the ``value`` had been stored
9158to memory and read back as type ``ty2``. Pointer (or vector of
9159pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009160pointers) types with the same address space through this instruction.
9161To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
9162or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00009163
9164Example:
9165""""""""
9166
Renato Golin124f2592016-07-20 12:16:38 +00009167.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009168
9169 %X = bitcast i8 255 to i8 ; yields i8 :-1
9170 %Y = bitcast i32* %x to sint* ; yields sint*:%x
9171 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
9172 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
9173
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009174.. _i_addrspacecast:
9175
9176'``addrspacecast .. to``' Instruction
9177^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9178
9179Syntax:
9180"""""""
9181
9182::
9183
9184 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
9185
9186Overview:
9187"""""""""
9188
9189The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
9190address space ``n`` to type ``pty2`` in address space ``m``.
9191
9192Arguments:
9193""""""""""
9194
9195The '``addrspacecast``' instruction takes a pointer or vector of pointer value
9196to cast and a pointer type to cast it to, which must have a different
9197address space.
9198
9199Semantics:
9200""""""""""
9201
9202The '``addrspacecast``' instruction converts the pointer value
9203``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00009204value modification, depending on the target and the address space
9205pair. Pointer conversions within the same address space must be
9206performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009207conversion is legal then both result and operand refer to the same memory
9208location.
9209
9210Example:
9211""""""""
9212
9213.. code-block:: llvm
9214
Matt Arsenault9c13dd02013-11-15 22:43:50 +00009215 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
9216 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
9217 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00009218
Sean Silvab084af42012-12-07 10:36:55 +00009219.. _otherops:
9220
9221Other Operations
9222----------------
9223
9224The instructions in this category are the "miscellaneous" instructions,
9225which defy better classification.
9226
9227.. _i_icmp:
9228
9229'``icmp``' Instruction
9230^^^^^^^^^^^^^^^^^^^^^^
9231
9232Syntax:
9233"""""""
9234
9235::
9236
Tim Northover675a0962014-06-13 14:24:23 +00009237 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009238
9239Overview:
9240"""""""""
9241
9242The '``icmp``' instruction returns a boolean value or a vector of
9243boolean values based on comparison of its two integer, integer vector,
9244pointer, or pointer vector operands.
9245
9246Arguments:
9247""""""""""
9248
9249The '``icmp``' instruction takes three operands. The first operand is
9250the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009251not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009252
9253#. ``eq``: equal
9254#. ``ne``: not equal
9255#. ``ugt``: unsigned greater than
9256#. ``uge``: unsigned greater or equal
9257#. ``ult``: unsigned less than
9258#. ``ule``: unsigned less or equal
9259#. ``sgt``: signed greater than
9260#. ``sge``: signed greater or equal
9261#. ``slt``: signed less than
9262#. ``sle``: signed less or equal
9263
9264The remaining two arguments must be :ref:`integer <t_integer>` or
9265:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
9266must also be identical types.
9267
9268Semantics:
9269""""""""""
9270
9271The '``icmp``' compares ``op1`` and ``op2`` according to the condition
9272code given as ``cond``. The comparison performed always yields either an
9273:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
9274
9275#. ``eq``: yields ``true`` if the operands are equal, ``false``
9276 otherwise. No sign interpretation is necessary or performed.
9277#. ``ne``: yields ``true`` if the operands are unequal, ``false``
9278 otherwise. No sign interpretation is necessary or performed.
9279#. ``ugt``: interprets the operands as unsigned values and yields
9280 ``true`` if ``op1`` is greater than ``op2``.
9281#. ``uge``: interprets the operands as unsigned values and yields
9282 ``true`` if ``op1`` is greater than or equal to ``op2``.
9283#. ``ult``: interprets the operands as unsigned values and yields
9284 ``true`` if ``op1`` is less than ``op2``.
9285#. ``ule``: interprets the operands as unsigned values and yields
9286 ``true`` if ``op1`` is less than or equal to ``op2``.
9287#. ``sgt``: interprets the operands as signed values and yields ``true``
9288 if ``op1`` is greater than ``op2``.
9289#. ``sge``: interprets the operands as signed values and yields ``true``
9290 if ``op1`` is greater than or equal to ``op2``.
9291#. ``slt``: interprets the operands as signed values and yields ``true``
9292 if ``op1`` is less than ``op2``.
9293#. ``sle``: interprets the operands as signed values and yields ``true``
9294 if ``op1`` is less than or equal to ``op2``.
9295
9296If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
9297are compared as if they were integers.
9298
9299If the operands are integer vectors, then they are compared element by
9300element. The result is an ``i1`` vector with the same number of elements
9301as the values being compared. Otherwise, the result is an ``i1``.
9302
9303Example:
9304""""""""
9305
Renato Golin124f2592016-07-20 12:16:38 +00009306.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009307
9308 <result> = icmp eq i32 4, 5 ; yields: result=false
9309 <result> = icmp ne float* %X, %X ; yields: result=false
9310 <result> = icmp ult i16 4, 5 ; yields: result=true
9311 <result> = icmp sgt i16 4, 5 ; yields: result=false
9312 <result> = icmp ule i16 -4, 5 ; yields: result=false
9313 <result> = icmp sge i16 4, 5 ; yields: result=false
9314
Sean Silvab084af42012-12-07 10:36:55 +00009315.. _i_fcmp:
9316
9317'``fcmp``' Instruction
9318^^^^^^^^^^^^^^^^^^^^^^
9319
9320Syntax:
9321"""""""
9322
9323::
9324
James Molloy88eb5352015-07-10 12:52:00 +00009325 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00009326
9327Overview:
9328"""""""""
9329
9330The '``fcmp``' instruction returns a boolean value or vector of boolean
9331values based on comparison of its operands.
9332
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009333If the operands are floating-point scalars, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009334boolean (:ref:`i1 <t_integer>`).
9335
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009336If the operands are floating-point vectors, then the result type is a
Sean Silvab084af42012-12-07 10:36:55 +00009337vector of boolean with the same number of elements as the operands being
9338compared.
9339
9340Arguments:
9341""""""""""
9342
9343The '``fcmp``' instruction takes three operands. The first operand is
9344the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00009345not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00009346
9347#. ``false``: no comparison, always returns false
9348#. ``oeq``: ordered and equal
9349#. ``ogt``: ordered and greater than
9350#. ``oge``: ordered and greater than or equal
9351#. ``olt``: ordered and less than
9352#. ``ole``: ordered and less than or equal
9353#. ``one``: ordered and not equal
9354#. ``ord``: ordered (no nans)
9355#. ``ueq``: unordered or equal
9356#. ``ugt``: unordered or greater than
9357#. ``uge``: unordered or greater than or equal
9358#. ``ult``: unordered or less than
9359#. ``ule``: unordered or less than or equal
9360#. ``une``: unordered or not equal
9361#. ``uno``: unordered (either nans)
9362#. ``true``: no comparison, always returns true
9363
9364*Ordered* means that neither operand is a QNAN while *unordered* means
9365that either operand may be a QNAN.
9366
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009367Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating-point
9368<t_floating>` type or a :ref:`vector <t_vector>` of floating-point type.
9369They must have identical types.
Sean Silvab084af42012-12-07 10:36:55 +00009370
9371Semantics:
9372""""""""""
9373
9374The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
9375condition code given as ``cond``. If the operands are vectors, then the
9376vectors are compared element by element. Each comparison performed
9377always yields an :ref:`i1 <t_integer>` result, as follows:
9378
9379#. ``false``: always yields ``false``, regardless of operands.
9380#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
9381 is equal to ``op2``.
9382#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
9383 is greater than ``op2``.
9384#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
9385 is greater than or equal to ``op2``.
9386#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
9387 is less than ``op2``.
9388#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
9389 is less than or equal to ``op2``.
9390#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
9391 is not equal to ``op2``.
9392#. ``ord``: yields ``true`` if both operands are not a QNAN.
9393#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
9394 equal to ``op2``.
9395#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
9396 greater than ``op2``.
9397#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
9398 greater than or equal to ``op2``.
9399#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
9400 less than ``op2``.
9401#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
9402 less than or equal to ``op2``.
9403#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
9404 not equal to ``op2``.
9405#. ``uno``: yields ``true`` if either operand is a QNAN.
9406#. ``true``: always yields ``true``, regardless of operands.
9407
James Molloy88eb5352015-07-10 12:52:00 +00009408The ``fcmp`` instruction can also optionally take any number of
9409:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
Sanjay Patel85fa9ef2018-03-21 14:15:33 +00009410otherwise unsafe floating-point optimizations.
James Molloy88eb5352015-07-10 12:52:00 +00009411
9412Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
9413only flags that have any effect on its semantics are those that allow
9414assumptions to be made about the values of input arguments; namely
Eli Friedman8bb43262018-07-17 20:28:31 +00009415``nnan``, ``ninf``, and ``reassoc``. See :ref:`fastmath` for more information.
James Molloy88eb5352015-07-10 12:52:00 +00009416
Sean Silvab084af42012-12-07 10:36:55 +00009417Example:
9418""""""""
9419
Renato Golin124f2592016-07-20 12:16:38 +00009420.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00009421
9422 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
9423 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
9424 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
9425 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
9426
Sean Silvab084af42012-12-07 10:36:55 +00009427.. _i_phi:
9428
9429'``phi``' Instruction
9430^^^^^^^^^^^^^^^^^^^^^
9431
9432Syntax:
9433"""""""
9434
9435::
9436
9437 <result> = phi <ty> [ <val0>, <label0>], ...
9438
9439Overview:
9440"""""""""
9441
9442The '``phi``' instruction is used to implement the φ node in the SSA
9443graph representing the function.
9444
9445Arguments:
9446""""""""""
9447
9448The type of the incoming values is specified with the first type field.
9449After this, the '``phi``' instruction takes a list of pairs as
9450arguments, with one pair for each predecessor basic block of the current
9451block. Only values of :ref:`first class <t_firstclass>` type may be used as
9452the value arguments to the PHI node. Only labels may be used as the
9453label arguments.
9454
9455There must be no non-phi instructions between the start of a basic block
9456and the PHI instructions: i.e. PHI instructions must be first in a basic
9457block.
9458
9459For the purposes of the SSA form, the use of each incoming value is
9460deemed to occur on the edge from the corresponding predecessor block to
9461the current block (but after any definition of an '``invoke``'
9462instruction's return value on the same edge).
9463
9464Semantics:
9465""""""""""
9466
9467At runtime, the '``phi``' instruction logically takes on the value
9468specified by the pair corresponding to the predecessor basic block that
9469executed just prior to the current block.
9470
9471Example:
9472""""""""
9473
9474.. code-block:: llvm
9475
9476 Loop: ; Infinite loop that counts from 0 on up...
9477 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
9478 %nextindvar = add i32 %indvar, 1
9479 br label %Loop
9480
9481.. _i_select:
9482
9483'``select``' Instruction
9484^^^^^^^^^^^^^^^^^^^^^^^^
9485
9486Syntax:
9487"""""""
9488
9489::
9490
9491 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
9492
9493 selty is either i1 or {<N x i1>}
9494
9495Overview:
9496"""""""""
9497
9498The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00009499condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00009500
9501Arguments:
9502""""""""""
9503
9504The '``select``' instruction requires an 'i1' value or a vector of 'i1'
9505values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00009506class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00009507
9508Semantics:
9509""""""""""
9510
9511If the condition is an i1 and it evaluates to 1, the instruction returns
9512the first value argument; otherwise, it returns the second value
9513argument.
9514
9515If the condition is a vector of i1, then the value arguments must be
9516vectors of the same size, and the selection is done element by element.
9517
David Majnemer40a0b592015-03-03 22:45:47 +00009518If the condition is an i1 and the value arguments are vectors of the
9519same size, then an entire vector is selected.
9520
Sean Silvab084af42012-12-07 10:36:55 +00009521Example:
9522""""""""
9523
9524.. code-block:: llvm
9525
9526 %X = select i1 true, i8 17, i8 42 ; yields i8:17
9527
9528.. _i_call:
9529
9530'``call``' Instruction
9531^^^^^^^^^^^^^^^^^^^^^^
9532
9533Syntax:
9534"""""""
9535
9536::
9537
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00009538 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] [addrspace(<num>)]
9539 [<ty>|<fnty> <fnptrval>(<function args>) [fn attrs] [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00009540
9541Overview:
9542"""""""""
9543
9544The '``call``' instruction represents a simple function call.
9545
9546Arguments:
9547""""""""""
9548
9549This instruction requires several arguments:
9550
Reid Kleckner5772b772014-04-24 20:14:34 +00009551#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00009552 should perform tail call optimization. The ``tail`` marker is a hint that
9553 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00009554 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00009555 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00009556
9557 #. The call will not cause unbounded stack growth if it is part of a
9558 recursive cycle in the call graph.
9559 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
9560 forwarded in place.
9561
Florian Hahnedae5a62018-01-17 23:29:25 +00009562 Both markers imply that the callee does not access allocas from the caller.
9563 The ``tail`` marker additionally implies that the callee does not access
9564 varargs from the caller, while ``musttail`` implies that varargs from the
9565 caller are passed to the callee. Calls marked ``musttail`` must obey the
9566 following additional rules:
Reid Kleckner5772b772014-04-24 20:14:34 +00009567
9568 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
9569 or a pointer bitcast followed by a ret instruction.
9570 - The ret instruction must return the (possibly bitcasted) value
9571 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00009572 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00009573 parameters or return types may differ in pointee type, but not
9574 in address space.
9575 - The calling conventions of the caller and callee must match.
9576 - All ABI-impacting function attributes, such as sret, byval, inreg,
9577 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00009578 - The callee must be varargs iff the caller is varargs. Bitcasting a
9579 non-varargs function to the appropriate varargs type is legal so
9580 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00009581
9582 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
9583 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00009584
9585 - Caller and callee both have the calling convention ``fastcc``.
9586 - The call is in tail position (ret immediately follows call and ret
9587 uses value of call or is void).
9588 - Option ``-tailcallopt`` is enabled, or
9589 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00009590 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00009591 met. <CodeGenerator.html#tailcallopt>`_
9592
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00009593#. The optional ``notail`` marker indicates that the optimizers should not add
9594 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
9595 call optimization from being performed on the call.
9596
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +00009597#. The optional ``fast-math flags`` marker indicates that the call has one or more
Sanjay Patelfa54ace2015-12-14 21:59:03 +00009598 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
9599 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
9600 for calls that return a floating-point scalar or vector type.
9601
Sean Silvab084af42012-12-07 10:36:55 +00009602#. The optional "cconv" marker indicates which :ref:`calling
9603 convention <callingconv>` the call should use. If none is
9604 specified, the call defaults to using C calling conventions. The
9605 calling convention of the call must match the calling convention of
9606 the target function, or else the behavior is undefined.
9607#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
9608 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
9609 are valid here.
Alexander Richardson6bcf2ba2018-08-23 09:25:17 +00009610#. The optional addrspace attribute can be used to indicate the adress space
9611 of the called function. If it is not specified, the program address space
9612 from the :ref:`datalayout string<langref_datalayout>` will be used.
Sean Silvab084af42012-12-07 10:36:55 +00009613#. '``ty``': the type of the call instruction itself which is also the
9614 type of the return value. Functions that return no value are marked
9615 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00009616#. '``fnty``': shall be the signature of the function being called. The
9617 argument types must match the types implied by this signature. This
9618 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00009619#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00009620 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00009621 indirect ``call``'s are just as possible, calling an arbitrary pointer
9622 to function value.
9623#. '``function args``': argument list whose types match the function
9624 signature argument types and parameter attributes. All arguments must
9625 be of :ref:`first class <t_firstclass>` type. If the function signature
9626 indicates the function accepts a variable number of arguments, the
9627 extra arguments can be specified.
George Burgess IV39c91052017-04-13 04:01:55 +00009628#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00009629#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00009630
9631Semantics:
9632""""""""""
9633
9634The '``call``' instruction is used to cause control flow to transfer to
9635a specified function, with its incoming arguments bound to the specified
9636values. Upon a '``ret``' instruction in the called function, control
9637flow continues with the instruction after the function call, and the
9638return value of the function is bound to the result argument.
9639
9640Example:
9641""""""""
9642
9643.. code-block:: llvm
9644
9645 %retval = call i32 @test(i32 %argc)
9646 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
9647 %X = tail call i32 @foo() ; yields i32
9648 %Y = tail call fastcc i32 @foo() ; yields i32
9649 call void %foo(i8 97 signext)
9650
9651 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00009652 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00009653 %gr = extractvalue %struct.A %r, 0 ; yields i32
9654 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
9655 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
9656 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
9657
9658llvm treats calls to some functions with names and arguments that match
9659the standard C99 library as being the C99 library functions, and may
9660perform optimizations or generate code for them under that assumption.
9661This is something we'd like to change in the future to provide better
9662support for freestanding environments and non-C-based languages.
9663
9664.. _i_va_arg:
9665
9666'``va_arg``' Instruction
9667^^^^^^^^^^^^^^^^^^^^^^^^
9668
9669Syntax:
9670"""""""
9671
9672::
9673
9674 <resultval> = va_arg <va_list*> <arglist>, <argty>
9675
9676Overview:
9677"""""""""
9678
9679The '``va_arg``' instruction is used to access arguments passed through
9680the "variable argument" area of a function call. It is used to implement
9681the ``va_arg`` macro in C.
9682
9683Arguments:
9684""""""""""
9685
9686This instruction takes a ``va_list*`` value and the type of the
9687argument. It returns a value of the specified argument type and
9688increments the ``va_list`` to point to the next argument. The actual
9689type of ``va_list`` is target specific.
9690
9691Semantics:
9692""""""""""
9693
9694The '``va_arg``' instruction loads an argument of the specified type
9695from the specified ``va_list`` and causes the ``va_list`` to point to
9696the next argument. For more information, see the variable argument
9697handling :ref:`Intrinsic Functions <int_varargs>`.
9698
9699It is legal for this instruction to be called in a function which does
9700not take a variable number of arguments, for example, the ``vfprintf``
9701function.
9702
9703``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
9704function <intrinsics>` because it takes a type as an argument.
9705
9706Example:
9707""""""""
9708
9709See the :ref:`variable argument processing <int_varargs>` section.
9710
9711Note that the code generator does not yet fully support va\_arg on many
9712targets. Also, it does not currently support va\_arg with aggregate
9713types on any target.
9714
9715.. _i_landingpad:
9716
9717'``landingpad``' Instruction
9718^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9719
9720Syntax:
9721"""""""
9722
9723::
9724
David Majnemer7fddecc2015-06-17 20:52:32 +00009725 <resultval> = landingpad <resultty> <clause>+
9726 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00009727
9728 <clause> := catch <type> <value>
9729 <clause> := filter <array constant type> <array constant>
9730
9731Overview:
9732"""""""""
9733
9734The '``landingpad``' instruction is used by `LLVM's exception handling
9735system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009736is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00009737code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00009738defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00009739re-entry to the function. The ``resultval`` has the type ``resultty``.
9740
9741Arguments:
9742""""""""""
9743
David Majnemer7fddecc2015-06-17 20:52:32 +00009744The optional
Sean Silvab084af42012-12-07 10:36:55 +00009745``cleanup`` flag indicates that the landing pad block is a cleanup.
9746
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009747A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00009748contains the global variable representing the "type" that may be caught
9749or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9750clause takes an array constant as its argument. Use
9751"``[0 x i8**] undef``" for a filter which cannot throw. The
9752'``landingpad``' instruction must contain *at least* one ``clause`` or
9753the ``cleanup`` flag.
9754
9755Semantics:
9756""""""""""
9757
9758The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00009759:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00009760therefore the "result type" of the ``landingpad`` instruction. As with
9761calling conventions, how the personality function results are
9762represented in LLVM IR is target specific.
9763
9764The clauses are applied in order from top to bottom. If two
9765``landingpad`` instructions are merged together through inlining, the
9766clauses from the calling function are appended to the list of clauses.
9767When the call stack is being unwound due to an exception being thrown,
9768the exception is compared against each ``clause`` in turn. If it doesn't
9769match any of the clauses, and the ``cleanup`` flag is not set, then
9770unwinding continues further up the call stack.
9771
9772The ``landingpad`` instruction has several restrictions:
9773
9774- A landing pad block is a basic block which is the unwind destination
9775 of an '``invoke``' instruction.
9776- A landing pad block must have a '``landingpad``' instruction as its
9777 first non-PHI instruction.
9778- There can be only one '``landingpad``' instruction within the landing
9779 pad block.
9780- A basic block that is not a landing pad block may not include a
9781 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009782
9783Example:
9784""""""""
9785
9786.. code-block:: llvm
9787
9788 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00009789 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009790 catch i8** @_ZTIi
9791 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00009792 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009793 cleanup
9794 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00009795 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00009796 catch i8** @_ZTIi
9797 filter [1 x i8**] [@_ZTId]
9798
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009799.. _i_catchpad:
9800
9801'``catchpad``' Instruction
9802^^^^^^^^^^^^^^^^^^^^^^^^^^
9803
9804Syntax:
9805"""""""
9806
9807::
9808
9809 <resultval> = catchpad within <catchswitch> [<args>*]
9810
9811Overview:
9812"""""""""
9813
9814The '``catchpad``' instruction is used by `LLVM's exception handling
9815system <ExceptionHandling.html#overview>`_ to specify that a basic block
9816begins a catch handler --- one where a personality routine attempts to transfer
9817control to catch an exception.
9818
9819Arguments:
9820""""""""""
9821
9822The ``catchswitch`` operand must always be a token produced by a
9823:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
9824ensures that each ``catchpad`` has exactly one predecessor block, and it always
9825terminates in a ``catchswitch``.
9826
9827The ``args`` correspond to whatever information the personality routine
9828requires to know if this is an appropriate handler for the exception. Control
9829will transfer to the ``catchpad`` if this is the first appropriate handler for
9830the exception.
9831
9832The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
9833``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
9834pads.
9835
9836Semantics:
9837""""""""""
9838
9839When the call stack is being unwound due to an exception being thrown, the
9840exception is compared against the ``args``. If it doesn't match, control will
9841not reach the ``catchpad`` instruction. The representation of ``args`` is
9842entirely target and personality function-specific.
9843
9844Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
9845instruction must be the first non-phi of its parent basic block.
9846
9847The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
9848instructions is described in the
9849`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
9850
9851When a ``catchpad`` has been "entered" but not yet "exited" (as
9852described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9853it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9854that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
9855
9856Example:
9857""""""""
9858
Renato Golin124f2592016-07-20 12:16:38 +00009859.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00009860
9861 dispatch:
9862 %cs = catchswitch within none [label %handler0] unwind to caller
9863 ;; A catch block which can catch an integer.
9864 handler0:
9865 %tok = catchpad within %cs [i8** @_ZTIi]
9866
David Majnemer654e1302015-07-31 17:58:14 +00009867.. _i_cleanuppad:
9868
9869'``cleanuppad``' Instruction
9870^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9871
9872Syntax:
9873"""""""
9874
9875::
9876
David Majnemer8a1c45d2015-12-12 05:38:55 +00009877 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00009878
9879Overview:
9880"""""""""
9881
9882The '``cleanuppad``' instruction is used by `LLVM's exception handling
9883system <ExceptionHandling.html#overview>`_ to specify that a basic block
9884is a cleanup block --- one where a personality routine attempts to
9885transfer control to run cleanup actions.
9886The ``args`` correspond to whatever additional
9887information the :ref:`personality function <personalityfn>` requires to
9888execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00009889The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00009890match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
9891The ``parent`` argument is the token of the funclet that contains the
9892``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
9893this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00009894
9895Arguments:
9896""""""""""
9897
9898The instruction takes a list of arbitrary values which are interpreted
9899by the :ref:`personality function <personalityfn>`.
9900
9901Semantics:
9902""""""""""
9903
David Majnemer654e1302015-07-31 17:58:14 +00009904When the call stack is being unwound due to an exception being thrown,
9905the :ref:`personality function <personalityfn>` transfers control to the
9906``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00009907As with calling conventions, how the personality function results are
9908represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00009909
9910The ``cleanuppad`` instruction has several restrictions:
9911
9912- A cleanup block is a basic block which is the unwind destination of
9913 an exceptional instruction.
9914- A cleanup block must have a '``cleanuppad``' instruction as its
9915 first non-PHI instruction.
9916- There can be only one '``cleanuppad``' instruction within the
9917 cleanup block.
9918- A basic block that is not a cleanup block may not include a
9919 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009920
Joseph Tremoulete28885e2016-01-10 04:28:38 +00009921When a ``cleanuppad`` has been "entered" but not yet "exited" (as
9922described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
9923it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
9924that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00009925
David Majnemer654e1302015-07-31 17:58:14 +00009926Example:
9927""""""""
9928
Renato Golin124f2592016-07-20 12:16:38 +00009929.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00009930
David Majnemer8a1c45d2015-12-12 05:38:55 +00009931 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00009932
Sean Silvab084af42012-12-07 10:36:55 +00009933.. _intrinsics:
9934
9935Intrinsic Functions
9936===================
9937
9938LLVM supports the notion of an "intrinsic function". These functions
9939have well known names and semantics and are required to follow certain
9940restrictions. Overall, these intrinsics represent an extension mechanism
9941for the LLVM language that does not require changing all of the
9942transformations in LLVM when adding to the language (or the bitcode
9943reader/writer, the parser, etc...).
9944
9945Intrinsic function names must all start with an "``llvm.``" prefix. This
9946prefix is reserved in LLVM for intrinsic names; thus, function names may
9947not begin with this prefix. Intrinsic functions must always be external
9948functions: you cannot define the body of intrinsic functions. Intrinsic
9949functions may only be used in call or invoke instructions: it is illegal
9950to take the address of an intrinsic function. Additionally, because
9951intrinsic functions are part of the LLVM language, it is required if any
9952are added that they be documented here.
9953
9954Some intrinsic functions can be overloaded, i.e., the intrinsic
9955represents a family of functions that perform the same operation but on
9956different data types. Because LLVM can represent over 8 million
9957different integer types, overloading is used commonly to allow an
9958intrinsic function to operate on any integer type. One or more of the
9959argument types or the result type can be overloaded to accept any
9960integer type. Argument types may also be defined as exactly matching a
9961previous argument's type or the result type. This allows an intrinsic
9962function which accepts multiple arguments, but needs all of them to be
9963of the same type, to only be overloaded with respect to a single
9964argument or the result.
9965
9966Overloaded intrinsics will have the names of its overloaded argument
9967types encoded into its function name, each preceded by a period. Only
9968those types which are overloaded result in a name suffix. Arguments
9969whose type is matched against another type do not. For example, the
9970``llvm.ctpop`` function can take an integer of any width and returns an
9971integer of exactly the same integer width. This leads to a family of
9972functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
9973``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
9974overloaded, and only one type suffix is required. Because the argument's
9975type is matched against the return type, it does not require its own
9976name suffix.
9977
9978To learn how to add an intrinsic function, please see the `Extending
9979LLVM Guide <ExtendingLLVM.html>`_.
9980
9981.. _int_varargs:
9982
9983Variable Argument Handling Intrinsics
9984-------------------------------------
9985
9986Variable argument support is defined in LLVM with the
9987:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
9988functions. These functions are related to the similarly named macros
9989defined in the ``<stdarg.h>`` header file.
9990
9991All of these functions operate on arguments that use a target-specific
9992value type "``va_list``". The LLVM assembly language reference manual
9993does not define what this type is, so all transformations should be
9994prepared to handle these functions regardless of the type used.
9995
9996This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
9997variable argument handling intrinsic functions are used.
9998
9999.. code-block:: llvm
10000
Tim Northoverab60bb92014-11-02 01:21:51 +000010001 ; This struct is different for every platform. For most platforms,
10002 ; it is merely an i8*.
10003 %struct.va_list = type { i8* }
10004
10005 ; For Unix x86_64 platforms, va_list is the following struct:
10006 ; %struct.va_list = type { i32, i32, i8*, i8* }
10007
Sean Silvab084af42012-12-07 10:36:55 +000010008 define i32 @test(i32 %X, ...) {
10009 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +000010010 %ap = alloca %struct.va_list
10011 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +000010012 call void @llvm.va_start(i8* %ap2)
10013
10014 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +000010015 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +000010016
10017 ; Demonstrate usage of llvm.va_copy and llvm.va_end
10018 %aq = alloca i8*
10019 %aq2 = bitcast i8** %aq to i8*
10020 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
10021 call void @llvm.va_end(i8* %aq2)
10022
10023 ; Stop processing of arguments.
10024 call void @llvm.va_end(i8* %ap2)
10025 ret i32 %tmp
10026 }
10027
10028 declare void @llvm.va_start(i8*)
10029 declare void @llvm.va_copy(i8*, i8*)
10030 declare void @llvm.va_end(i8*)
10031
10032.. _int_va_start:
10033
10034'``llvm.va_start``' Intrinsic
10035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10036
10037Syntax:
10038"""""""
10039
10040::
10041
Nick Lewycky04f6de02013-09-11 22:04:52 +000010042 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +000010043
10044Overview:
10045"""""""""
10046
10047The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
10048subsequent use by ``va_arg``.
10049
10050Arguments:
10051""""""""""
10052
10053The argument is a pointer to a ``va_list`` element to initialize.
10054
10055Semantics:
10056""""""""""
10057
10058The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
10059available in C. In a target-dependent way, it initializes the
10060``va_list`` element to which the argument points, so that the next call
10061to ``va_arg`` will produce the first variable argument passed to the
10062function. Unlike the C ``va_start`` macro, this intrinsic does not need
10063to know the last argument of the function as the compiler can figure
10064that out.
10065
10066'``llvm.va_end``' Intrinsic
10067^^^^^^^^^^^^^^^^^^^^^^^^^^^
10068
10069Syntax:
10070"""""""
10071
10072::
10073
10074 declare void @llvm.va_end(i8* <arglist>)
10075
10076Overview:
10077"""""""""
10078
10079The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
10080initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
10081
10082Arguments:
10083""""""""""
10084
10085The argument is a pointer to a ``va_list`` to destroy.
10086
10087Semantics:
10088""""""""""
10089
10090The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
10091available in C. In a target-dependent way, it destroys the ``va_list``
10092element to which the argument points. Calls to
10093:ref:`llvm.va_start <int_va_start>` and
10094:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
10095``llvm.va_end``.
10096
10097.. _int_va_copy:
10098
10099'``llvm.va_copy``' Intrinsic
10100^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10101
10102Syntax:
10103"""""""
10104
10105::
10106
10107 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
10108
10109Overview:
10110"""""""""
10111
10112The '``llvm.va_copy``' intrinsic copies the current argument position
10113from the source argument list to the destination argument list.
10114
10115Arguments:
10116""""""""""
10117
10118The first argument is a pointer to a ``va_list`` element to initialize.
10119The second argument is a pointer to a ``va_list`` element to copy from.
10120
10121Semantics:
10122""""""""""
10123
10124The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
10125available in C. In a target-dependent way, it copies the source
10126``va_list`` element into the destination ``va_list`` element. This
10127intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
10128arbitrarily complex and require, for example, memory allocation.
10129
10130Accurate Garbage Collection Intrinsics
10131--------------------------------------
10132
Philip Reamesc5b0f562015-02-25 23:52:06 +000010133LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010134(GC) requires the frontend to generate code containing appropriate intrinsic
10135calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +000010136intrinsics in a manner which is appropriate for the target collector.
10137
Sean Silvab084af42012-12-07 10:36:55 +000010138These intrinsics allow identification of :ref:`GC roots on the
10139stack <int_gcroot>`, as well as garbage collector implementations that
10140require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +000010141Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +000010142these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +000010143details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +000010144
Philip Reamesf80bbff2015-02-25 23:45:20 +000010145Experimental Statepoint Intrinsics
10146^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10147
10148LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +000010149collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010150to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +000010151:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010152differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +000010153<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +000010154described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +000010155
10156.. _int_gcroot:
10157
10158'``llvm.gcroot``' Intrinsic
10159^^^^^^^^^^^^^^^^^^^^^^^^^^^
10160
10161Syntax:
10162"""""""
10163
10164::
10165
10166 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
10167
10168Overview:
10169"""""""""
10170
10171The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
10172the code generator, and allows some metadata to be associated with it.
10173
10174Arguments:
10175""""""""""
10176
10177The first argument specifies the address of a stack object that contains
10178the root pointer. The second pointer (which must be either a constant or
10179a global value address) contains the meta-data to be associated with the
10180root.
10181
10182Semantics:
10183""""""""""
10184
10185At runtime, a call to this intrinsic stores a null pointer into the
10186"ptrloc" location. At compile-time, the code generator generates
10187information to allow the runtime to find the pointer at GC safe points.
10188The '``llvm.gcroot``' intrinsic may only be used in a function which
10189:ref:`specifies a GC algorithm <gc>`.
10190
10191.. _int_gcread:
10192
10193'``llvm.gcread``' Intrinsic
10194^^^^^^^^^^^^^^^^^^^^^^^^^^^
10195
10196Syntax:
10197"""""""
10198
10199::
10200
10201 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
10202
10203Overview:
10204"""""""""
10205
10206The '``llvm.gcread``' intrinsic identifies reads of references from heap
10207locations, allowing garbage collector implementations that require read
10208barriers.
10209
10210Arguments:
10211""""""""""
10212
10213The second argument is the address to read from, which should be an
10214address allocated from the garbage collector. The first object is a
10215pointer to the start of the referenced object, if needed by the language
10216runtime (otherwise null).
10217
10218Semantics:
10219""""""""""
10220
10221The '``llvm.gcread``' intrinsic has the same semantics as a load
10222instruction, but may be replaced with substantially more complex code by
10223the garbage collector runtime, as needed. The '``llvm.gcread``'
10224intrinsic may only be used in a function which :ref:`specifies a GC
10225algorithm <gc>`.
10226
10227.. _int_gcwrite:
10228
10229'``llvm.gcwrite``' Intrinsic
10230^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10231
10232Syntax:
10233"""""""
10234
10235::
10236
10237 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
10238
10239Overview:
10240"""""""""
10241
10242The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
10243locations, allowing garbage collector implementations that require write
10244barriers (such as generational or reference counting collectors).
10245
10246Arguments:
10247""""""""""
10248
10249The first argument is the reference to store, the second is the start of
10250the object to store it to, and the third is the address of the field of
10251Obj to store to. If the runtime does not require a pointer to the
10252object, Obj may be null.
10253
10254Semantics:
10255""""""""""
10256
10257The '``llvm.gcwrite``' intrinsic has the same semantics as a store
10258instruction, but may be replaced with substantially more complex code by
10259the garbage collector runtime, as needed. The '``llvm.gcwrite``'
10260intrinsic may only be used in a function which :ref:`specifies a GC
10261algorithm <gc>`.
10262
10263Code Generator Intrinsics
10264-------------------------
10265
10266These intrinsics are provided by LLVM to expose special features that
10267may only be implemented with code generator support.
10268
10269'``llvm.returnaddress``' Intrinsic
10270^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10271
10272Syntax:
10273"""""""
10274
10275::
10276
George Burgess IVfbc34982017-05-20 04:52:29 +000010277 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvab084af42012-12-07 10:36:55 +000010278
10279Overview:
10280"""""""""
10281
10282The '``llvm.returnaddress``' intrinsic attempts to compute a
10283target-specific value indicating the return address of the current
10284function or one of its callers.
10285
10286Arguments:
10287""""""""""
10288
10289The argument to this intrinsic indicates which function to return the
10290address for. Zero indicates the calling function, one indicates its
10291caller, etc. The argument is **required** to be a constant integer
10292value.
10293
10294Semantics:
10295""""""""""
10296
10297The '``llvm.returnaddress``' intrinsic either returns a pointer
10298indicating the return address of the specified call frame, or zero if it
10299cannot be identified. The value returned by this intrinsic is likely to
10300be incorrect or 0 for arguments other than zero, so it should only be
10301used for debugging purposes.
10302
10303Note that calling this intrinsic does not prevent function inlining or
10304other aggressive transformations, so the value returned may not be that
10305of the obvious source-language caller.
10306
Albert Gutowski795d7d62016-10-12 22:13:19 +000010307'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowski57ad5fe2016-10-12 23:10:02 +000010308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski795d7d62016-10-12 22:13:19 +000010309
10310Syntax:
10311"""""""
10312
10313::
10314
George Burgess IVfbc34982017-05-20 04:52:29 +000010315 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski795d7d62016-10-12 22:13:19 +000010316
10317Overview:
10318"""""""""
10319
10320The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
10321pointer to the place in the stack frame where the return address of the
10322current function is stored.
10323
10324Semantics:
10325""""""""""
10326
10327Note that calling this intrinsic does not prevent function inlining or
10328other aggressive transformations, so the value returned may not be that
10329of the obvious source-language caller.
10330
10331This intrinsic is only implemented for x86.
10332
Sean Silvab084af42012-12-07 10:36:55 +000010333'``llvm.frameaddress``' Intrinsic
10334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10335
10336Syntax:
10337"""""""
10338
10339::
10340
10341 declare i8* @llvm.frameaddress(i32 <level>)
10342
10343Overview:
10344"""""""""
10345
10346The '``llvm.frameaddress``' intrinsic attempts to return the
10347target-specific frame pointer value for the specified stack frame.
10348
10349Arguments:
10350""""""""""
10351
10352The argument to this intrinsic indicates which function to return the
10353frame pointer for. Zero indicates the calling function, one indicates
10354its caller, etc. The argument is **required** to be a constant integer
10355value.
10356
10357Semantics:
10358""""""""""
10359
10360The '``llvm.frameaddress``' intrinsic either returns a pointer
10361indicating the frame address of the specified call frame, or zero if it
10362cannot be identified. The value returned by this intrinsic is likely to
10363be incorrect or 0 for arguments other than zero, so it should only be
10364used for debugging purposes.
10365
10366Note that calling this intrinsic does not prevent function inlining or
10367other aggressive transformations, so the value returned may not be that
10368of the obvious source-language caller.
10369
Reid Kleckner60381792015-07-07 22:25:32 +000010370'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +000010371^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10372
10373Syntax:
10374"""""""
10375
10376::
10377
Reid Kleckner60381792015-07-07 22:25:32 +000010378 declare void @llvm.localescape(...)
10379 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +000010380
10381Overview:
10382"""""""""
10383
Reid Kleckner60381792015-07-07 22:25:32 +000010384The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
10385allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010386live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +000010387computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +000010388
10389Arguments:
10390""""""""""
10391
Reid Kleckner60381792015-07-07 22:25:32 +000010392All arguments to '``llvm.localescape``' must be pointers to static allocas or
10393casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010394once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +000010395
Reid Kleckner60381792015-07-07 22:25:32 +000010396The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +000010397bitcasted pointer to a function defined in the current module. The code
10398generator cannot determine the frame allocation offset of functions defined in
10399other modules.
10400
Reid Klecknerd5afc62f2015-07-07 23:23:03 +000010401The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
10402call frame that is currently live. The return value of '``llvm.localaddress``'
10403is one way to produce such a value, but various runtimes also expose a suitable
10404pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +000010405
Reid Kleckner60381792015-07-07 22:25:32 +000010406The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
10407'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +000010408
Reid Klecknere9b89312015-01-13 00:48:10 +000010409Semantics:
10410""""""""""
10411
Reid Kleckner60381792015-07-07 22:25:32 +000010412These intrinsics allow a group of functions to share access to a set of local
10413stack allocations of a one parent function. The parent function may call the
10414'``llvm.localescape``' intrinsic once from the function entry block, and the
10415child functions can use '``llvm.localrecover``' to access the escaped allocas.
10416The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
10417the escaped allocas are allocated, which would break attempts to use
10418'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +000010419
Renato Golinc7aea402014-05-06 16:51:25 +000010420.. _int_read_register:
10421.. _int_write_register:
10422
10423'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
10424^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10425
10426Syntax:
10427"""""""
10428
10429::
10430
10431 declare i32 @llvm.read_register.i32(metadata)
10432 declare i64 @llvm.read_register.i64(metadata)
10433 declare void @llvm.write_register.i32(metadata, i32 @value)
10434 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +000010435 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +000010436
10437Overview:
10438"""""""""
10439
10440The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
10441provides access to the named register. The register must be valid on
10442the architecture being compiled to. The type needs to be compatible
10443with the register being read.
10444
10445Semantics:
10446""""""""""
10447
10448The '``llvm.read_register``' intrinsic returns the current value of the
10449register, where possible. The '``llvm.write_register``' intrinsic sets
10450the current value of the register, where possible.
10451
10452This is useful to implement named register global variables that need
10453to always be mapped to a specific register, as is common practice on
10454bare-metal programs including OS kernels.
10455
10456The compiler doesn't check for register availability or use of the used
10457register in surrounding code, including inline assembly. Because of that,
10458allocatable registers are not supported.
10459
10460Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +000010461architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +000010462work is needed to support other registers and even more so, allocatable
10463registers.
10464
Sean Silvab084af42012-12-07 10:36:55 +000010465.. _int_stacksave:
10466
10467'``llvm.stacksave``' Intrinsic
10468^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10469
10470Syntax:
10471"""""""
10472
10473::
10474
10475 declare i8* @llvm.stacksave()
10476
10477Overview:
10478"""""""""
10479
10480The '``llvm.stacksave``' intrinsic is used to remember the current state
10481of the function stack, for use with
10482:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
10483implementing language features like scoped automatic variable sized
10484arrays in C99.
10485
10486Semantics:
10487""""""""""
10488
10489This intrinsic returns a opaque pointer value that can be passed to
10490:ref:`llvm.stackrestore <int_stackrestore>`. When an
10491``llvm.stackrestore`` intrinsic is executed with a value saved from
10492``llvm.stacksave``, it effectively restores the state of the stack to
10493the state it was in when the ``llvm.stacksave`` intrinsic executed. In
10494practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
10495were allocated after the ``llvm.stacksave`` was executed.
10496
10497.. _int_stackrestore:
10498
10499'``llvm.stackrestore``' Intrinsic
10500^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10501
10502Syntax:
10503"""""""
10504
10505::
10506
10507 declare void @llvm.stackrestore(i8* %ptr)
10508
10509Overview:
10510"""""""""
10511
10512The '``llvm.stackrestore``' intrinsic is used to restore the state of
10513the function stack to the state it was in when the corresponding
10514:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
10515useful for implementing language features like scoped automatic variable
10516sized arrays in C99.
10517
10518Semantics:
10519""""""""""
10520
10521See the description for :ref:`llvm.stacksave <int_stacksave>`.
10522
Yury Gribovd7dbb662015-12-01 11:40:55 +000010523.. _int_get_dynamic_area_offset:
10524
10525'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +000010526^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +000010527
10528Syntax:
10529"""""""
10530
10531::
10532
10533 declare i32 @llvm.get.dynamic.area.offset.i32()
10534 declare i64 @llvm.get.dynamic.area.offset.i64()
10535
Lang Hames10239932016-10-08 00:20:42 +000010536Overview:
10537"""""""""
Yury Gribovd7dbb662015-12-01 11:40:55 +000010538
10539 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
10540 get the offset from native stack pointer to the address of the most
10541 recent dynamic alloca on the caller's stack. These intrinsics are
10542 intendend for use in combination with
10543 :ref:`llvm.stacksave <int_stacksave>` to get a
10544 pointer to the most recent dynamic alloca. This is useful, for example,
10545 for AddressSanitizer's stack unpoisoning routines.
10546
10547Semantics:
10548""""""""""
10549
10550 These intrinsics return a non-negative integer value that can be used to
10551 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
10552 on the caller's stack. In particular, for targets where stack grows downwards,
10553 adding this offset to the native stack pointer would get the address of the most
10554 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +000010555 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +000010556 one past the end of the most recent dynamic alloca.
10557
10558 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
10559 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
10560 compile-time-known constant value.
10561
10562 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenaultc749bdc2017-03-30 23:36:47 +000010563 must match the target's default address space's (address space 0) pointer type.
Yury Gribovd7dbb662015-12-01 11:40:55 +000010564
Sean Silvab084af42012-12-07 10:36:55 +000010565'``llvm.prefetch``' Intrinsic
10566^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10567
10568Syntax:
10569"""""""
10570
10571::
10572
10573 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
10574
10575Overview:
10576"""""""""
10577
10578The '``llvm.prefetch``' intrinsic is a hint to the code generator to
10579insert a prefetch instruction if supported; otherwise, it is a noop.
10580Prefetches have no effect on the behavior of the program but can change
10581its performance characteristics.
10582
10583Arguments:
10584""""""""""
10585
10586``address`` is the address to be prefetched, ``rw`` is the specifier
10587determining if the fetch should be for a read (0) or write (1), and
10588``locality`` is a temporal locality specifier ranging from (0) - no
10589locality, to (3) - extremely local keep in cache. The ``cache type``
10590specifies whether the prefetch is performed on the data (1) or
10591instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
10592arguments must be constant integers.
10593
10594Semantics:
10595""""""""""
10596
10597This intrinsic does not modify the behavior of the program. In
10598particular, prefetches cannot trap and do not produce a value. On
10599targets that support this intrinsic, the prefetch can provide hints to
10600the processor cache for better performance.
10601
10602'``llvm.pcmarker``' Intrinsic
10603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10604
10605Syntax:
10606"""""""
10607
10608::
10609
10610 declare void @llvm.pcmarker(i32 <id>)
10611
10612Overview:
10613"""""""""
10614
10615The '``llvm.pcmarker``' intrinsic is a method to export a Program
10616Counter (PC) in a region of code to simulators and other tools. The
10617method is target specific, but it is expected that the marker will use
10618exported symbols to transmit the PC of the marker. The marker makes no
10619guarantees that it will remain with any specific instruction after
10620optimizations. It is possible that the presence of a marker will inhibit
10621optimizations. The intended use is to be inserted after optimizations to
10622allow correlations of simulation runs.
10623
10624Arguments:
10625""""""""""
10626
10627``id`` is a numerical id identifying the marker.
10628
10629Semantics:
10630""""""""""
10631
10632This intrinsic does not modify the behavior of the program. Backends
10633that do not support this intrinsic may ignore it.
10634
10635'``llvm.readcyclecounter``' Intrinsic
10636^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10637
10638Syntax:
10639"""""""
10640
10641::
10642
10643 declare i64 @llvm.readcyclecounter()
10644
10645Overview:
10646"""""""""
10647
10648The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
10649counter register (or similar low latency, high accuracy clocks) on those
10650targets that support it. On X86, it should map to RDTSC. On Alpha, it
10651should map to RPCC. As the backing counters overflow quickly (on the
10652order of 9 seconds on alpha), this should only be used for small
10653timings.
10654
10655Semantics:
10656""""""""""
10657
10658When directly supported, reading the cycle counter should not modify any
10659memory. Implementations are allowed to either return a application
10660specific value or a system wide value. On backends without support, this
10661is lowered to a constant 0.
10662
Tim Northoverbc933082013-05-23 19:11:20 +000010663Note that runtime support may be conditional on the privilege-level code is
10664running at and the host platform.
10665
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010666'``llvm.clear_cache``' Intrinsic
10667^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10668
10669Syntax:
10670"""""""
10671
10672::
10673
10674 declare void @llvm.clear_cache(i8*, i8*)
10675
10676Overview:
10677"""""""""
10678
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010679The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
10680in the specified range to the execution unit of the processor. On
10681targets with non-unified instruction and data cache, the implementation
10682flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010683
10684Semantics:
10685""""""""""
10686
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010687On platforms with coherent instruction and data caches (e.g. x86), this
10688intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +000010689cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010690instructions or a system call, if cache flushing requires special
10691privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010692
Sean Silvad02bf3e2014-04-07 22:29:53 +000010693The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010694time library.
Renato Golin93010e62014-03-26 14:01:32 +000010695
Joerg Sonnenberger03014d62014-03-26 14:35:21 +000010696This instrinsic does *not* empty the instruction pipeline. Modifications
10697of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +000010698
Vedant Kumar51ce6682018-01-26 23:54:25 +000010699'``llvm.instrprof.increment``' Intrinsic
Justin Bogner61ba2e32014-12-08 18:02:35 +000010700^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10701
10702Syntax:
10703"""""""
10704
10705::
10706
Vedant Kumar51ce6682018-01-26 23:54:25 +000010707 declare void @llvm.instrprof.increment(i8* <name>, i64 <hash>,
Justin Bogner61ba2e32014-12-08 18:02:35 +000010708 i32 <num-counters>, i32 <index>)
10709
10710Overview:
10711"""""""""
10712
Vedant Kumar51ce6682018-01-26 23:54:25 +000010713The '``llvm.instrprof.increment``' intrinsic can be emitted by a
Justin Bogner61ba2e32014-12-08 18:02:35 +000010714frontend for use with instrumentation based profiling. These will be
10715lowered by the ``-instrprof`` pass to generate execution counts of a
10716program at runtime.
10717
10718Arguments:
10719""""""""""
10720
10721The first argument is a pointer to a global variable containing the
10722name of the entity being instrumented. This should generally be the
10723(mangled) function name for a set of counters.
10724
10725The second argument is a hash value that can be used by the consumer
10726of the profile data to detect changes to the instrumented source, and
10727the third is the number of counters associated with ``name``. It is an
10728error if ``hash`` or ``num-counters`` differ between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010729``instrprof.increment`` that refer to the same name.
Justin Bogner61ba2e32014-12-08 18:02:35 +000010730
10731The last argument refers to which of the counters for ``name`` should
10732be incremented. It should be a value between 0 and ``num-counters``.
10733
10734Semantics:
10735""""""""""
10736
10737This intrinsic represents an increment of a profiling counter. It will
10738cause the ``-instrprof`` pass to generate the appropriate data
10739structures and the code to increment the appropriate value, in a
10740format that can be written out by a compiler runtime and consumed via
10741the ``llvm-profdata`` tool.
10742
Vedant Kumar51ce6682018-01-26 23:54:25 +000010743'``llvm.instrprof.increment.step``' Intrinsic
Xinliang David Lie1117102016-09-18 22:10:19 +000010744^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Li4ca17332016-09-18 18:34:07 +000010745
10746Syntax:
10747"""""""
10748
10749::
10750
Vedant Kumar51ce6682018-01-26 23:54:25 +000010751 declare void @llvm.instrprof.increment.step(i8* <name>, i64 <hash>,
Xinliang David Li4ca17332016-09-18 18:34:07 +000010752 i32 <num-counters>,
10753 i32 <index>, i64 <step>)
10754
10755Overview:
10756"""""""""
10757
Vedant Kumar51ce6682018-01-26 23:54:25 +000010758The '``llvm.instrprof.increment.step``' intrinsic is an extension to
10759the '``llvm.instrprof.increment``' intrinsic with an additional fifth
Xinliang David Li4ca17332016-09-18 18:34:07 +000010760argument to specify the step of the increment.
10761
10762Arguments:
10763""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010764The first four arguments are the same as '``llvm.instrprof.increment``'
Pete Couperused9569d2017-08-23 20:58:22 +000010765intrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010766
10767The last argument specifies the value of the increment of the counter variable.
10768
10769Semantics:
10770""""""""""
Vedant Kumar51ce6682018-01-26 23:54:25 +000010771See description of '``llvm.instrprof.increment``' instrinsic.
Xinliang David Li4ca17332016-09-18 18:34:07 +000010772
10773
Vedant Kumar51ce6682018-01-26 23:54:25 +000010774'``llvm.instrprof.value.profile``' Intrinsic
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10776
10777Syntax:
10778"""""""
10779
10780::
10781
Vedant Kumar51ce6682018-01-26 23:54:25 +000010782 declare void @llvm.instrprof.value.profile(i8* <name>, i64 <hash>,
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010783 i64 <value>, i32 <value_kind>,
10784 i32 <index>)
10785
10786Overview:
10787"""""""""
10788
Vedant Kumar51ce6682018-01-26 23:54:25 +000010789The '``llvm.instrprof.value.profile``' intrinsic can be emitted by a
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010790frontend for use with instrumentation based profiling. This will be
10791lowered by the ``-instrprof`` pass to find out the target values,
10792instrumented expressions take in a program at runtime.
10793
10794Arguments:
10795""""""""""
10796
10797The first argument is a pointer to a global variable containing the
10798name of the entity being instrumented. ``name`` should generally be the
10799(mangled) function name for a set of counters.
10800
10801The second argument is a hash value that can be used by the consumer
10802of the profile data to detect changes to the instrumented source. It
10803is an error if ``hash`` differs between two instances of
Vedant Kumar51ce6682018-01-26 23:54:25 +000010804``llvm.instrprof.*`` that refer to the same name.
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010805
10806The third argument is the value of the expression being profiled. The profiled
10807expression's value should be representable as an unsigned 64-bit value. The
10808fourth argument represents the kind of value profiling that is being done. The
10809supported value profiling kinds are enumerated through the
10810``InstrProfValueKind`` type declared in the
10811``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
10812index of the instrumented expression within ``name``. It should be >= 0.
10813
10814Semantics:
10815""""""""""
10816
10817This intrinsic represents the point where a call to a runtime routine
10818should be inserted for value profiling of target expressions. ``-instrprof``
10819pass will generate the appropriate data structures and replace the
Vedant Kumar51ce6682018-01-26 23:54:25 +000010820``llvm.instrprof.value.profile`` intrinsic with the call to the profile
Betul Buyukkurt6fac1742015-11-18 18:14:55 +000010821runtime library with proper arguments.
10822
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010823'``llvm.thread.pointer``' Intrinsic
10824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10825
10826Syntax:
10827"""""""
10828
10829::
10830
10831 declare i8* @llvm.thread.pointer()
10832
10833Overview:
10834"""""""""
10835
10836The '``llvm.thread.pointer``' intrinsic returns the value of the thread
10837pointer.
10838
10839Semantics:
10840""""""""""
10841
10842The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
10843for the current thread. The exact semantics of this value are target
10844specific: it may point to the start of TLS area, to the end, or somewhere
10845in the middle. Depending on the target, this intrinsic may read a register,
10846call a helper function, read from an alternate memory space, or perform
10847other operations necessary to locate the TLS area. Not all targets support
10848this intrinsic.
10849
Sean Silvab084af42012-12-07 10:36:55 +000010850Standard C Library Intrinsics
10851-----------------------------
10852
10853LLVM provides intrinsics for a few important standard C library
10854functions. These intrinsics allow source-language front-ends to pass
10855information about the alignment of the pointer arguments to the code
10856generator, providing opportunity for more efficient code generation.
10857
10858.. _int_memcpy:
10859
10860'``llvm.memcpy``' Intrinsic
10861^^^^^^^^^^^^^^^^^^^^^^^^^^^
10862
10863Syntax:
10864"""""""
10865
10866This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
10867integer bit width and for different address spaces. Not all targets
10868support all bit widths however.
10869
10870::
10871
10872 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010873 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010874 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010875 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010876
10877Overview:
10878"""""""""
10879
10880The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10881source location to the destination location.
10882
10883Note that, unlike the standard libc function, the ``llvm.memcpy.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010884intrinsics do not return a value, takes extra isvolatile
Sean Silvab084af42012-12-07 10:36:55 +000010885arguments and the pointers can be in specified address spaces.
10886
10887Arguments:
10888""""""""""
10889
10890The first argument is a pointer to the destination, the second is a
10891pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010892specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010893boolean indicating a volatile access.
10894
Daniel Neilson39eb6a52018-01-19 17:24:21 +000010895The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010896for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010897
10898If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
10899a :ref:`volatile operation <volatile>`. The detailed access behavior is not
10900very cleanly specified and it is unwise to depend on it.
10901
10902Semantics:
10903""""""""""
10904
10905The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
10906source location to the destination location, which are not allowed to
10907overlap. It copies "len" bytes of memory over. If the argument is known
10908to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +000010909argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010910
Daniel Neilson57226ef2017-07-12 15:25:26 +000010911.. _int_memmove:
10912
Sean Silvab084af42012-12-07 10:36:55 +000010913'``llvm.memmove``' Intrinsic
10914^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10915
10916Syntax:
10917"""""""
10918
10919This is an overloaded intrinsic. You can use llvm.memmove on any integer
10920bit width and for different address space. Not all targets support all
10921bit widths however.
10922
10923::
10924
10925 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010926 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010927 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010928 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010929
10930Overview:
10931"""""""""
10932
10933The '``llvm.memmove.*``' intrinsics move a block of memory from the
10934source location to the destination location. It is similar to the
10935'``llvm.memcpy``' intrinsic but allows the two memory locations to
10936overlap.
10937
10938Note that, unlike the standard libc function, the ``llvm.memmove.*``
Daniel Neilson1e687242018-01-19 17:13:12 +000010939intrinsics do not return a value, takes an extra isvolatile
10940argument and the pointers can be in specified address spaces.
Sean Silvab084af42012-12-07 10:36:55 +000010941
10942Arguments:
10943""""""""""
10944
10945The first argument is a pointer to the destination, the second is a
10946pointer to the source. The third argument is an integer argument
Daniel Neilson1e687242018-01-19 17:13:12 +000010947specifying the number of bytes to copy, and the fourth is a
Sean Silvab084af42012-12-07 10:36:55 +000010948boolean indicating a volatile access.
10949
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000010950The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000010951for the first and second arguments.
Sean Silvab084af42012-12-07 10:36:55 +000010952
10953If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
10954is a :ref:`volatile operation <volatile>`. The detailed access behavior is
10955not very cleanly specified and it is unwise to depend on it.
10956
10957Semantics:
10958""""""""""
10959
10960The '``llvm.memmove.*``' intrinsics copy a block of memory from the
10961source location to the destination location, which may overlap. It
10962copies "len" bytes of memory over. If the argument is known to be
10963aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +000010964otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +000010965
Daniel Neilson965613e2017-07-12 21:57:23 +000010966.. _int_memset:
10967
Sean Silvab084af42012-12-07 10:36:55 +000010968'``llvm.memset.*``' Intrinsics
10969^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10970
10971Syntax:
10972"""""""
10973
10974This is an overloaded intrinsic. You can use llvm.memset on any integer
10975bit width and for different address spaces. However, not all targets
10976support all bit widths.
10977
10978::
10979
10980 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010981 i32 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010982 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
Daniel Neilson1e687242018-01-19 17:13:12 +000010983 i64 <len>, i1 <isvolatile>)
Sean Silvab084af42012-12-07 10:36:55 +000010984
10985Overview:
10986"""""""""
10987
10988The '``llvm.memset.*``' intrinsics fill a block of memory with a
10989particular byte value.
10990
10991Note that, unlike the standard libc function, the ``llvm.memset``
Daniel Neilson1e687242018-01-19 17:13:12 +000010992intrinsic does not return a value and takes an extra volatile
10993argument. Also, the destination can be in an arbitrary address space.
Sean Silvab084af42012-12-07 10:36:55 +000010994
10995Arguments:
10996""""""""""
10997
10998The first argument is a pointer to the destination to fill, the second
10999is the byte value with which to fill it, the third argument is an
11000integer argument specifying the number of bytes to fill, and the fourth
Daniel Neilson1e687242018-01-19 17:13:12 +000011001is a boolean indicating a volatile access.
Sean Silvab084af42012-12-07 10:36:55 +000011002
Daniel Neilsonaac0f8f2018-01-19 17:32:33 +000011003The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilson1e687242018-01-19 17:13:12 +000011004for the first arguments.
Sean Silvab084af42012-12-07 10:36:55 +000011005
11006If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
11007a :ref:`volatile operation <volatile>`. The detailed access behavior is not
11008very cleanly specified and it is unwise to depend on it.
11009
11010Semantics:
11011""""""""""
11012
11013The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011014at the destination location.
Sean Silvab084af42012-12-07 10:36:55 +000011015
11016'``llvm.sqrt.*``' Intrinsic
11017^^^^^^^^^^^^^^^^^^^^^^^^^^^
11018
11019Syntax:
11020"""""""
11021
11022This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011023floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011024all types however.
11025
11026::
11027
11028 declare float @llvm.sqrt.f32(float %Val)
11029 declare double @llvm.sqrt.f64(double %Val)
11030 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
11031 declare fp128 @llvm.sqrt.f128(fp128 %Val)
11032 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
11033
11034Overview:
11035"""""""""
11036
Sanjay Patel629c4112017-11-06 16:27:15 +000011037The '``llvm.sqrt``' intrinsics return the square root of the specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011038
11039Arguments:
11040""""""""""
11041
Sanjay Patel629c4112017-11-06 16:27:15 +000011042The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011043
11044Semantics:
11045""""""""""
11046
Sanjay Patel629c4112017-11-06 16:27:15 +000011047Return the same value as a corresponding libm '``sqrt``' function but without
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011048trapping or setting ``errno``. For types specified by IEEE-754, the result
Sanjay Patel629c4112017-11-06 16:27:15 +000011049matches a conforming libm implementation.
11050
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011051When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011052using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011053
11054'``llvm.powi.*``' Intrinsic
11055^^^^^^^^^^^^^^^^^^^^^^^^^^^
11056
11057Syntax:
11058"""""""
11059
11060This is an overloaded intrinsic. You can use ``llvm.powi`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011061floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011062all types however.
11063
11064::
11065
11066 declare float @llvm.powi.f32(float %Val, i32 %power)
11067 declare double @llvm.powi.f64(double %Val, i32 %power)
11068 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
11069 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
11070 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
11071
11072Overview:
11073"""""""""
11074
11075The '``llvm.powi.*``' intrinsics return the first operand raised to the
11076specified (positive or negative) power. The order of evaluation of
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011077multiplications is not defined. When a vector of floating-point type is
Sean Silvab084af42012-12-07 10:36:55 +000011078used, the second argument remains a scalar integer value.
11079
11080Arguments:
11081""""""""""
11082
11083The second argument is an integer power, and the first is a value to
11084raise to that power.
11085
11086Semantics:
11087""""""""""
11088
11089This function returns the first value raised to the second power with an
11090unspecified sequence of rounding operations.
11091
11092'``llvm.sin.*``' Intrinsic
11093^^^^^^^^^^^^^^^^^^^^^^^^^^
11094
11095Syntax:
11096"""""""
11097
11098This is an overloaded intrinsic. You can use ``llvm.sin`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011099floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011100all types however.
11101
11102::
11103
11104 declare float @llvm.sin.f32(float %Val)
11105 declare double @llvm.sin.f64(double %Val)
11106 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
11107 declare fp128 @llvm.sin.f128(fp128 %Val)
11108 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
11109
11110Overview:
11111"""""""""
11112
11113The '``llvm.sin.*``' intrinsics return the sine of the operand.
11114
11115Arguments:
11116""""""""""
11117
Sanjay Patel629c4112017-11-06 16:27:15 +000011118The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011119
11120Semantics:
11121""""""""""
11122
Sanjay Patel629c4112017-11-06 16:27:15 +000011123Return the same value as a corresponding libm '``sin``' function but without
11124trapping or setting ``errno``.
11125
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011126When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011127using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011128
11129'``llvm.cos.*``' Intrinsic
11130^^^^^^^^^^^^^^^^^^^^^^^^^^
11131
11132Syntax:
11133"""""""
11134
11135This is an overloaded intrinsic. You can use ``llvm.cos`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011136floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011137all types however.
11138
11139::
11140
11141 declare float @llvm.cos.f32(float %Val)
11142 declare double @llvm.cos.f64(double %Val)
11143 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
11144 declare fp128 @llvm.cos.f128(fp128 %Val)
11145 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
11146
11147Overview:
11148"""""""""
11149
11150The '``llvm.cos.*``' intrinsics return the cosine of the operand.
11151
11152Arguments:
11153""""""""""
11154
Sanjay Patel629c4112017-11-06 16:27:15 +000011155The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011156
11157Semantics:
11158""""""""""
11159
Sanjay Patel629c4112017-11-06 16:27:15 +000011160Return the same value as a corresponding libm '``cos``' function but without
11161trapping or setting ``errno``.
11162
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011163When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011164using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011165
11166'``llvm.pow.*``' Intrinsic
11167^^^^^^^^^^^^^^^^^^^^^^^^^^
11168
11169Syntax:
11170"""""""
11171
11172This is an overloaded intrinsic. You can use ``llvm.pow`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011173floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011174all types however.
11175
11176::
11177
11178 declare float @llvm.pow.f32(float %Val, float %Power)
11179 declare double @llvm.pow.f64(double %Val, double %Power)
11180 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
11181 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
11182 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
11183
11184Overview:
11185"""""""""
11186
11187The '``llvm.pow.*``' intrinsics return the first operand raised to the
11188specified (positive or negative) power.
11189
11190Arguments:
11191""""""""""
11192
Sanjay Patel629c4112017-11-06 16:27:15 +000011193The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011194
11195Semantics:
11196""""""""""
11197
Sanjay Patel629c4112017-11-06 16:27:15 +000011198Return the same value as a corresponding libm '``pow``' function but without
11199trapping or setting ``errno``.
11200
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011201When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011202using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011203
11204'``llvm.exp.*``' Intrinsic
11205^^^^^^^^^^^^^^^^^^^^^^^^^^
11206
11207Syntax:
11208"""""""
11209
11210This is an overloaded intrinsic. You can use ``llvm.exp`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011211floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011212all types however.
11213
11214::
11215
11216 declare float @llvm.exp.f32(float %Val)
11217 declare double @llvm.exp.f64(double %Val)
11218 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
11219 declare fp128 @llvm.exp.f128(fp128 %Val)
11220 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
11221
11222Overview:
11223"""""""""
11224
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011225The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
11226value.
Sean Silvab084af42012-12-07 10:36:55 +000011227
11228Arguments:
11229""""""""""
11230
Sanjay Patel629c4112017-11-06 16:27:15 +000011231The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011232
11233Semantics:
11234""""""""""
11235
Sanjay Patel629c4112017-11-06 16:27:15 +000011236Return the same value as a corresponding libm '``exp``' function but without
11237trapping or setting ``errno``.
11238
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011239When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011240using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011241
11242'``llvm.exp2.*``' Intrinsic
11243^^^^^^^^^^^^^^^^^^^^^^^^^^^
11244
11245Syntax:
11246"""""""
11247
11248This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011249floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011250all types however.
11251
11252::
11253
11254 declare float @llvm.exp2.f32(float %Val)
11255 declare double @llvm.exp2.f64(double %Val)
11256 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
11257 declare fp128 @llvm.exp2.f128(fp128 %Val)
11258 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
11259
11260Overview:
11261"""""""""
11262
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011263The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
11264specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011265
11266Arguments:
11267""""""""""
11268
Sanjay Patel629c4112017-11-06 16:27:15 +000011269The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011270
11271Semantics:
11272""""""""""
11273
Sanjay Patel629c4112017-11-06 16:27:15 +000011274Return the same value as a corresponding libm '``exp2``' function but without
11275trapping or setting ``errno``.
11276
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011277When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011278using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011279
11280'``llvm.log.*``' Intrinsic
11281^^^^^^^^^^^^^^^^^^^^^^^^^^
11282
11283Syntax:
11284"""""""
11285
11286This is an overloaded intrinsic. You can use ``llvm.log`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011287floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011288all types however.
11289
11290::
11291
11292 declare float @llvm.log.f32(float %Val)
11293 declare double @llvm.log.f64(double %Val)
11294 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
11295 declare fp128 @llvm.log.f128(fp128 %Val)
11296 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
11297
11298Overview:
11299"""""""""
11300
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011301The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
11302value.
Sean Silvab084af42012-12-07 10:36:55 +000011303
11304Arguments:
11305""""""""""
11306
Sanjay Patel629c4112017-11-06 16:27:15 +000011307The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011308
11309Semantics:
11310""""""""""
11311
Sanjay Patel629c4112017-11-06 16:27:15 +000011312Return the same value as a corresponding libm '``log``' function but without
11313trapping or setting ``errno``.
11314
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011315When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011316using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011317
11318'``llvm.log10.*``' Intrinsic
11319^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11320
11321Syntax:
11322"""""""
11323
11324This is an overloaded intrinsic. You can use ``llvm.log10`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011325floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011326all types however.
11327
11328::
11329
11330 declare float @llvm.log10.f32(float %Val)
11331 declare double @llvm.log10.f64(double %Val)
11332 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
11333 declare fp128 @llvm.log10.f128(fp128 %Val)
11334 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
11335
11336Overview:
11337"""""""""
11338
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011339The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
11340specified value.
Sean Silvab084af42012-12-07 10:36:55 +000011341
11342Arguments:
11343""""""""""
11344
Sanjay Patel629c4112017-11-06 16:27:15 +000011345The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011346
11347Semantics:
11348""""""""""
11349
Sanjay Patel629c4112017-11-06 16:27:15 +000011350Return the same value as a corresponding libm '``log10``' function but without
11351trapping or setting ``errno``.
11352
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011353When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011354using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011355
11356'``llvm.log2.*``' Intrinsic
11357^^^^^^^^^^^^^^^^^^^^^^^^^^^
11358
11359Syntax:
11360"""""""
11361
11362This is an overloaded intrinsic. You can use ``llvm.log2`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011363floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011364all types however.
11365
11366::
11367
11368 declare float @llvm.log2.f32(float %Val)
11369 declare double @llvm.log2.f64(double %Val)
11370 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
11371 declare fp128 @llvm.log2.f128(fp128 %Val)
11372 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
11373
11374Overview:
11375"""""""""
11376
Andrew Kaylorcaf24d22017-04-11 21:52:40 +000011377The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
11378value.
Sean Silvab084af42012-12-07 10:36:55 +000011379
11380Arguments:
11381""""""""""
11382
Sanjay Patel629c4112017-11-06 16:27:15 +000011383The argument and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011384
11385Semantics:
11386""""""""""
11387
Sanjay Patel629c4112017-11-06 16:27:15 +000011388Return the same value as a corresponding libm '``log2``' function but without
11389trapping or setting ``errno``.
11390
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011391When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011392using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011393
11394'``llvm.fma.*``' Intrinsic
11395^^^^^^^^^^^^^^^^^^^^^^^^^^
11396
11397Syntax:
11398"""""""
11399
11400This is an overloaded intrinsic. You can use ``llvm.fma`` on any
Sanjay Patel629c4112017-11-06 16:27:15 +000011401floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011402all types however.
11403
11404::
11405
11406 declare float @llvm.fma.f32(float %a, float %b, float %c)
11407 declare double @llvm.fma.f64(double %a, double %b, double %c)
11408 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
11409 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
11410 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
11411
11412Overview:
11413"""""""""
11414
Sanjay Patel629c4112017-11-06 16:27:15 +000011415The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
Sean Silvab084af42012-12-07 10:36:55 +000011416
11417Arguments:
11418""""""""""
11419
Sanjay Patel629c4112017-11-06 16:27:15 +000011420The arguments and return value are floating-point numbers of the same type.
Sean Silvab084af42012-12-07 10:36:55 +000011421
11422Semantics:
11423""""""""""
11424
Sanjay Patel629c4112017-11-06 16:27:15 +000011425Return the same value as a corresponding libm '``fma``' function but without
11426trapping or setting ``errno``.
11427
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000011428When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel629c4112017-11-06 16:27:15 +000011429using a less accurate calculation.
Sean Silvab084af42012-12-07 10:36:55 +000011430
11431'``llvm.fabs.*``' Intrinsic
11432^^^^^^^^^^^^^^^^^^^^^^^^^^^
11433
11434Syntax:
11435"""""""
11436
11437This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011438floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011439all types however.
11440
11441::
11442
11443 declare float @llvm.fabs.f32(float %Val)
11444 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011445 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011446 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011447 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000011448
11449Overview:
11450"""""""""
11451
11452The '``llvm.fabs.*``' intrinsics return the absolute value of the
11453operand.
11454
11455Arguments:
11456""""""""""
11457
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011458The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011459type.
11460
11461Semantics:
11462""""""""""
11463
11464This function returns the same values as the libm ``fabs`` functions
11465would, and handles error conditions in the same way.
11466
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011467'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011468^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011469
11470Syntax:
11471"""""""
11472
11473This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011474floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011475all types however.
11476
11477::
11478
Matt Arsenault64313c92014-10-22 18:25:02 +000011479 declare float @llvm.minnum.f32(float %Val0, float %Val1)
11480 declare double @llvm.minnum.f64(double %Val0, double %Val1)
11481 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11482 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
11483 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011484
11485Overview:
11486"""""""""
11487
11488The '``llvm.minnum.*``' intrinsics return the minimum of the two
11489arguments.
11490
11491
11492Arguments:
11493""""""""""
11494
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011495The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011496type.
11497
11498Semantics:
11499""""""""""
11500
Matt Arsenault937003c2018-08-27 17:40:07 +000011501Follows the IEEE-754 semantics for minNum, except for handling of
11502signaling NaNs. This match's the behavior of libm's fmin.
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011503
11504If either operand is a NaN, returns the other non-NaN operand. Returns
Matt Arsenault937003c2018-08-27 17:40:07 +000011505NaN only if both operands are NaN. The returned NaN is always
11506quiet. If the operands compare equal, returns a value that compares
11507equal to both operands. This means that fmin(+/-0.0, +/-0.0) could
11508return either -0.0 or 0.0.
11509
11510Unlike the IEEE-754 2008 behavior, this does not distinguish between
11511signaling and quiet NaN inputs. If a target's implementation follows
11512the standard and returns a quiet NaN if either input is a signaling
11513NaN, the intrinsic lowering is responsible for quieting the inputs to
11514correctly return the non-NaN input (e.g. by using the equivalent of
11515``llvm.canonicalize``).
11516
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011517
11518'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000011519^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011520
11521Syntax:
11522"""""""
11523
11524This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011525floating-point or vector of floating-point type. Not all targets support
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011526all types however.
11527
11528::
11529
Matt Arsenault64313c92014-10-22 18:25:02 +000011530 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
11531 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
11532 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11533 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
11534 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011535
11536Overview:
11537"""""""""
11538
11539The '``llvm.maxnum.*``' intrinsics return the maximum of the two
11540arguments.
11541
11542
11543Arguments:
11544""""""""""
11545
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011546The arguments and return value are floating-point numbers of the same
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011547type.
11548
11549Semantics:
11550""""""""""
Matt Arsenault937003c2018-08-27 17:40:07 +000011551Follows the IEEE-754 semantics for maxNum except for the handling of
11552signaling NaNs. This matches the behavior of libm's fmax.
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011553
11554If either operand is a NaN, returns the other non-NaN operand. Returns
Matt Arsenault937003c2018-08-27 17:40:07 +000011555NaN only if both operands are NaN. The returned NaN is always
11556quiet. If the operands compare equal, returns a value that compares
11557equal to both operands. This means that fmax(+/-0.0, +/-0.0) could
11558return either -0.0 or 0.0.
11559
11560Unlike the IEEE-754 2008 behavior, this does not distinguish between
11561signaling and quiet NaN inputs. If a target's implementation follows
11562the standard and returns a quiet NaN if either input is a signaling
11563NaN, the intrinsic lowering is responsible for quieting the inputs to
11564correctly return the non-NaN input (e.g. by using the equivalent of
11565``llvm.canonicalize``).
Matt Arsenaultd6511b42014-10-21 23:00:20 +000011566
Thomas Lively16c349d2018-10-13 07:21:44 +000011567'``llvm.minimum.*``' Intrinsic
11568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11569
11570Syntax:
11571"""""""
11572
11573This is an overloaded intrinsic. You can use ``llvm.minimum`` on any
11574floating-point or vector of floating-point type. Not all targets support
11575all types however.
11576
11577::
11578
11579 declare float @llvm.minimum.f32(float %Val0, float %Val1)
11580 declare double @llvm.minimum.f64(double %Val0, double %Val1)
11581 declare x86_fp80 @llvm.minimum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11582 declare fp128 @llvm.minimum.f128(fp128 %Val0, fp128 %Val1)
11583 declare ppc_fp128 @llvm.minimum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
11584
11585Overview:
11586"""""""""
11587
11588The '``llvm.minimum.*``' intrinsics return the minimum of the two
11589arguments, propagating NaNs and treating -0.0 as less than +0.0.
11590
11591
11592Arguments:
11593""""""""""
11594
11595The arguments and return value are floating-point numbers of the same
11596type.
11597
11598Semantics:
11599""""""""""
11600If either operand is a NaN, returns NaN. Otherwise returns the lesser
11601of the two arguments. -0.0 is considered to be less than +0.0 for this
11602intrinsic. Note that these are the semantics specified in the draft of
11603IEEE 754-2018.
11604
11605'``llvm.maximum.*``' Intrinsic
11606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11607
11608Syntax:
11609"""""""
11610
11611This is an overloaded intrinsic. You can use ``llvm.maximum`` on any
11612floating-point or vector of floating-point type. Not all targets support
11613all types however.
11614
11615::
11616
11617 declare float @llvm.maximum.f32(float %Val0, float %Val1)
11618 declare double @llvm.maximum.f64(double %Val0, double %Val1)
11619 declare x86_fp80 @llvm.maximum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11620 declare fp128 @llvm.maximum.f128(fp128 %Val0, fp128 %Val1)
11621 declare ppc_fp128 @llvm.maximum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
11622
11623Overview:
11624"""""""""
11625
11626The '``llvm.maximum.*``' intrinsics return the maximum of the two
11627arguments, propagating NaNs and treating -0.0 as less than +0.0.
11628
11629
11630Arguments:
11631""""""""""
11632
11633The arguments and return value are floating-point numbers of the same
11634type.
11635
11636Semantics:
11637""""""""""
11638If either operand is a NaN, returns NaN. Otherwise returns the greater
11639of the two arguments. -0.0 is considered to be less than +0.0 for this
11640intrinsic. Note that these are the semantics specified in the draft of
11641IEEE 754-2018.
11642
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011643'``llvm.copysign.*``' Intrinsic
11644^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11645
11646Syntax:
11647"""""""
11648
11649This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011650floating-point or vector of floating-point type. Not all targets support
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011651all types however.
11652
11653::
11654
11655 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
11656 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
11657 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
11658 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
11659 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
11660
11661Overview:
11662"""""""""
11663
11664The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
11665first operand and the sign of the second operand.
11666
11667Arguments:
11668""""""""""
11669
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011670The arguments and return value are floating-point numbers of the same
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000011671type.
11672
11673Semantics:
11674""""""""""
11675
11676This function returns the same values as the libm ``copysign``
11677functions would, and handles error conditions in the same way.
11678
Sean Silvab084af42012-12-07 10:36:55 +000011679'``llvm.floor.*``' Intrinsic
11680^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11681
11682Syntax:
11683"""""""
11684
11685This is an overloaded intrinsic. You can use ``llvm.floor`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011686floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011687all types however.
11688
11689::
11690
11691 declare float @llvm.floor.f32(float %Val)
11692 declare double @llvm.floor.f64(double %Val)
11693 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
11694 declare fp128 @llvm.floor.f128(fp128 %Val)
11695 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
11696
11697Overview:
11698"""""""""
11699
11700The '``llvm.floor.*``' intrinsics return the floor of the operand.
11701
11702Arguments:
11703""""""""""
11704
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011705The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011706type.
11707
11708Semantics:
11709""""""""""
11710
11711This function returns the same values as the libm ``floor`` functions
11712would, and handles error conditions in the same way.
11713
11714'``llvm.ceil.*``' Intrinsic
11715^^^^^^^^^^^^^^^^^^^^^^^^^^^
11716
11717Syntax:
11718"""""""
11719
11720This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011721floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011722all types however.
11723
11724::
11725
11726 declare float @llvm.ceil.f32(float %Val)
11727 declare double @llvm.ceil.f64(double %Val)
11728 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
11729 declare fp128 @llvm.ceil.f128(fp128 %Val)
11730 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
11731
11732Overview:
11733"""""""""
11734
11735The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
11736
11737Arguments:
11738""""""""""
11739
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011740The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011741type.
11742
11743Semantics:
11744""""""""""
11745
11746This function returns the same values as the libm ``ceil`` functions
11747would, and handles error conditions in the same way.
11748
11749'``llvm.trunc.*``' Intrinsic
11750^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11751
11752Syntax:
11753"""""""
11754
11755This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011756floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011757all types however.
11758
11759::
11760
11761 declare float @llvm.trunc.f32(float %Val)
11762 declare double @llvm.trunc.f64(double %Val)
11763 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
11764 declare fp128 @llvm.trunc.f128(fp128 %Val)
11765 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
11766
11767Overview:
11768"""""""""
11769
11770The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
11771nearest integer not larger in magnitude than the operand.
11772
11773Arguments:
11774""""""""""
11775
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011776The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011777type.
11778
11779Semantics:
11780""""""""""
11781
11782This function returns the same values as the libm ``trunc`` functions
11783would, and handles error conditions in the same way.
11784
11785'``llvm.rint.*``' Intrinsic
11786^^^^^^^^^^^^^^^^^^^^^^^^^^^
11787
11788Syntax:
11789"""""""
11790
11791This is an overloaded intrinsic. You can use ``llvm.rint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011792floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011793all types however.
11794
11795::
11796
11797 declare float @llvm.rint.f32(float %Val)
11798 declare double @llvm.rint.f64(double %Val)
11799 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
11800 declare fp128 @llvm.rint.f128(fp128 %Val)
11801 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
11802
11803Overview:
11804"""""""""
11805
11806The '``llvm.rint.*``' intrinsics returns the operand rounded to the
11807nearest integer. It may raise an inexact floating-point exception if the
11808operand isn't an integer.
11809
11810Arguments:
11811""""""""""
11812
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011813The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011814type.
11815
11816Semantics:
11817""""""""""
11818
11819This function returns the same values as the libm ``rint`` functions
11820would, and handles error conditions in the same way.
11821
11822'``llvm.nearbyint.*``' Intrinsic
11823^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11824
11825Syntax:
11826"""""""
11827
11828This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011829floating-point or vector of floating-point type. Not all targets support
Sean Silvab084af42012-12-07 10:36:55 +000011830all types however.
11831
11832::
11833
11834 declare float @llvm.nearbyint.f32(float %Val)
11835 declare double @llvm.nearbyint.f64(double %Val)
11836 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
11837 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
11838 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
11839
11840Overview:
11841"""""""""
11842
11843The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
11844nearest integer.
11845
11846Arguments:
11847""""""""""
11848
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011849The argument and return value are floating-point numbers of the same
Sean Silvab084af42012-12-07 10:36:55 +000011850type.
11851
11852Semantics:
11853""""""""""
11854
11855This function returns the same values as the libm ``nearbyint``
11856functions would, and handles error conditions in the same way.
11857
Hal Finkel171817e2013-08-07 22:49:12 +000011858'``llvm.round.*``' Intrinsic
11859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11860
11861Syntax:
11862"""""""
11863
11864This is an overloaded intrinsic. You can use ``llvm.round`` on any
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011865floating-point or vector of floating-point type. Not all targets support
Hal Finkel171817e2013-08-07 22:49:12 +000011866all types however.
11867
11868::
11869
11870 declare float @llvm.round.f32(float %Val)
11871 declare double @llvm.round.f64(double %Val)
11872 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
11873 declare fp128 @llvm.round.f128(fp128 %Val)
11874 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
11875
11876Overview:
11877"""""""""
11878
11879The '``llvm.round.*``' intrinsics returns the operand rounded to the
11880nearest integer.
11881
11882Arguments:
11883""""""""""
11884
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000011885The argument and return value are floating-point numbers of the same
Hal Finkel171817e2013-08-07 22:49:12 +000011886type.
11887
11888Semantics:
11889""""""""""
11890
11891This function returns the same values as the libm ``round``
11892functions would, and handles error conditions in the same way.
11893
Sean Silvab084af42012-12-07 10:36:55 +000011894Bit Manipulation Intrinsics
11895---------------------------
11896
11897LLVM provides intrinsics for a few important bit manipulation
11898operations. These allow efficient code generation for some algorithms.
11899
James Molloy90111f72015-11-12 12:29:09 +000011900'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000011901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000011902
11903Syntax:
11904"""""""
11905
11906This is an overloaded intrinsic function. You can use bitreverse on any
11907integer type.
11908
11909::
11910
11911 declare i16 @llvm.bitreverse.i16(i16 <id>)
11912 declare i32 @llvm.bitreverse.i32(i32 <id>)
11913 declare i64 @llvm.bitreverse.i64(i64 <id>)
11914
11915Overview:
11916"""""""""
11917
11918The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000011919bitpattern of an integer value; for example ``0b10110110`` becomes
11920``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000011921
11922Semantics:
11923""""""""""
11924
Yichao Yu5abf14b2016-11-23 16:25:31 +000011925The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloy90111f72015-11-12 12:29:09 +000011926``M`` in the input moved to bit ``N-M`` in the output.
11927
Sean Silvab084af42012-12-07 10:36:55 +000011928'``llvm.bswap.*``' Intrinsics
11929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11930
11931Syntax:
11932"""""""
11933
11934This is an overloaded intrinsic function. You can use bswap on any
11935integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
11936
11937::
11938
11939 declare i16 @llvm.bswap.i16(i16 <id>)
11940 declare i32 @llvm.bswap.i32(i32 <id>)
11941 declare i64 @llvm.bswap.i64(i64 <id>)
11942
11943Overview:
11944"""""""""
11945
11946The '``llvm.bswap``' family of intrinsics is used to byte swap integer
11947values with an even number of bytes (positive multiple of 16 bits).
11948These are useful for performing operations on data that is not in the
11949target's native byte order.
11950
11951Semantics:
11952""""""""""
11953
11954The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
11955and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
11956intrinsic returns an i32 value that has the four bytes of the input i32
11957swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
11958returned i32 will have its bytes in 3, 2, 1, 0 order. The
11959``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
11960concept to additional even-byte lengths (6 bytes, 8 bytes and more,
11961respectively).
11962
11963'``llvm.ctpop.*``' Intrinsic
11964^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11965
11966Syntax:
11967"""""""
11968
11969This is an overloaded intrinsic. You can use llvm.ctpop on any integer
11970bit width, or on any vector with integer elements. Not all targets
11971support all bit widths or vector types, however.
11972
11973::
11974
11975 declare i8 @llvm.ctpop.i8(i8 <src>)
11976 declare i16 @llvm.ctpop.i16(i16 <src>)
11977 declare i32 @llvm.ctpop.i32(i32 <src>)
11978 declare i64 @llvm.ctpop.i64(i64 <src>)
11979 declare i256 @llvm.ctpop.i256(i256 <src>)
11980 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
11981
11982Overview:
11983"""""""""
11984
11985The '``llvm.ctpop``' family of intrinsics counts the number of bits set
11986in a value.
11987
11988Arguments:
11989""""""""""
11990
11991The only argument is the value to be counted. The argument may be of any
11992integer type, or a vector with integer elements. The return type must
11993match the argument type.
11994
11995Semantics:
11996""""""""""
11997
11998The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
11999each element of a vector.
12000
12001'``llvm.ctlz.*``' Intrinsic
12002^^^^^^^^^^^^^^^^^^^^^^^^^^^
12003
12004Syntax:
12005"""""""
12006
12007This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
12008integer bit width, or any vector whose elements are integers. Not all
12009targets support all bit widths or vector types, however.
12010
12011::
12012
12013 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
12014 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
12015 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
12016 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
12017 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000012018 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000012019
12020Overview:
12021"""""""""
12022
12023The '``llvm.ctlz``' family of intrinsic functions counts the number of
12024leading zeros in a variable.
12025
12026Arguments:
12027""""""""""
12028
12029The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000012030any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000012031type must match the first argument type.
12032
12033The second argument must be a constant and is a flag to indicate whether
12034the intrinsic should ensure that a zero as the first argument produces a
12035defined result. Historically some architectures did not provide a
12036defined result for zero values as efficiently, and many algorithms are
12037now predicated on avoiding zero-value inputs.
12038
12039Semantics:
12040""""""""""
12041
12042The '``llvm.ctlz``' intrinsic counts the leading (most significant)
12043zeros in a variable, or within each element of the vector. If
12044``src == 0`` then the result is the size in bits of the type of ``src``
12045if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
12046``llvm.ctlz(i32 2) = 30``.
12047
12048'``llvm.cttz.*``' Intrinsic
12049^^^^^^^^^^^^^^^^^^^^^^^^^^^
12050
12051Syntax:
12052"""""""
12053
12054This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
12055integer bit width, or any vector of integer elements. Not all targets
12056support all bit widths or vector types, however.
12057
12058::
12059
12060 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
12061 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
12062 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
12063 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
12064 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000012065 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000012066
12067Overview:
12068"""""""""
12069
12070The '``llvm.cttz``' family of intrinsic functions counts the number of
12071trailing zeros.
12072
12073Arguments:
12074""""""""""
12075
12076The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000012077any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000012078type must match the first argument type.
12079
12080The second argument must be a constant and is a flag to indicate whether
12081the intrinsic should ensure that a zero as the first argument produces a
12082defined result. Historically some architectures did not provide a
12083defined result for zero values as efficiently, and many algorithms are
12084now predicated on avoiding zero-value inputs.
12085
12086Semantics:
12087""""""""""
12088
12089The '``llvm.cttz``' intrinsic counts the trailing (least significant)
12090zeros in a variable, or within each element of a vector. If ``src == 0``
12091then the result is the size in bits of the type of ``src`` if
12092``is_zero_undef == 0`` and ``undef`` otherwise. For example,
12093``llvm.cttz(2) = 1``.
12094
Philip Reames34843ae2015-03-05 05:55:55 +000012095.. _int_overflow:
12096
Sanjay Patelc71adc82018-07-16 22:59:31 +000012097'``llvm.fshl.*``' Intrinsic
12098^^^^^^^^^^^^^^^^^^^^^^^^^^^
12099
12100Syntax:
12101"""""""
12102
12103This is an overloaded intrinsic. You can use ``llvm.fshl`` on any
12104integer bit width or any vector of integer elements. Not all targets
12105support all bit widths or vector types, however.
12106
12107::
12108
12109 declare i8 @llvm.fshl.i8 (i8 %a, i8 %b, i8 %c)
12110 declare i67 @llvm.fshl.i67(i67 %a, i67 %b, i67 %c)
12111 declare <2 x i32> @llvm.fshl.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
12112
12113Overview:
12114"""""""""
12115
12116The '``llvm.fshl``' family of intrinsic functions performs a funnel shift left:
12117the first two values are concatenated as { %a : %b } (%a is the most significant
12118bits of the wide value), the combined value is shifted left, and the most
12119significant bits are extracted to produce a result that is the same size as the
12120original arguments. If the first 2 arguments are identical, this is equivalent
12121to a rotate left operation. For vector types, the operation occurs for each
12122element of the vector. The shift argument is treated as an unsigned amount
12123modulo the element size of the arguments.
12124
12125Arguments:
12126""""""""""
12127
12128The first two arguments are the values to be concatenated. The third
12129argument is the shift amount. The arguments may be any integer type or a
12130vector with integer element type. All arguments and the return value must
12131have the same type.
12132
12133Example:
12134""""""""
12135
12136.. code-block:: text
12137
12138 %r = call i8 @llvm.fshl.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: msb_extract((concat(x, y) << (z % 8)), 8)
12139 %r = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 15) ; %r = i8: 128 (0b10000000)
12140 %r = call i8 @llvm.fshl.i8(i8 15, i8 15, i8 11) ; %r = i8: 120 (0b01111000)
12141 %r = call i8 @llvm.fshl.i8(i8 0, i8 255, i8 8) ; %r = i8: 0 (0b00000000)
12142
12143'``llvm.fshr.*``' Intrinsic
12144^^^^^^^^^^^^^^^^^^^^^^^^^^^
12145
12146Syntax:
12147"""""""
12148
12149This is an overloaded intrinsic. You can use ``llvm.fshr`` on any
12150integer bit width or any vector of integer elements. Not all targets
12151support all bit widths or vector types, however.
12152
12153::
12154
12155 declare i8 @llvm.fshr.i8 (i8 %a, i8 %b, i8 %c)
12156 declare i67 @llvm.fshr.i67(i67 %a, i67 %b, i67 %c)
12157 declare <2 x i32> @llvm.fshr.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
12158
12159Overview:
12160"""""""""
12161
12162The '``llvm.fshr``' family of intrinsic functions performs a funnel shift right:
12163the first two values are concatenated as { %a : %b } (%a is the most significant
12164bits of the wide value), the combined value is shifted right, and the least
12165significant bits are extracted to produce a result that is the same size as the
12166original arguments. If the first 2 arguments are identical, this is equivalent
12167to a rotate right operation. For vector types, the operation occurs for each
12168element of the vector. The shift argument is treated as an unsigned amount
12169modulo the element size of the arguments.
12170
12171Arguments:
12172""""""""""
12173
12174The first two arguments are the values to be concatenated. The third
12175argument is the shift amount. The arguments may be any integer type or a
12176vector with integer element type. All arguments and the return value must
12177have the same type.
12178
12179Example:
12180""""""""
12181
12182.. code-block:: text
12183
12184 %r = call i8 @llvm.fshr.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: lsb_extract((concat(x, y) >> (z % 8)), 8)
12185 %r = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 15) ; %r = i8: 254 (0b11111110)
12186 %r = call i8 @llvm.fshr.i8(i8 15, i8 15, i8 11) ; %r = i8: 225 (0b11100001)
12187 %r = call i8 @llvm.fshr.i8(i8 0, i8 255, i8 8) ; %r = i8: 255 (0b11111111)
12188
Sean Silvab084af42012-12-07 10:36:55 +000012189Arithmetic with Overflow Intrinsics
12190-----------------------------------
12191
John Regehr6a493f22016-05-12 20:55:09 +000012192LLVM provides intrinsics for fast arithmetic overflow checking.
12193
12194Each of these intrinsics returns a two-element struct. The first
12195element of this struct contains the result of the corresponding
12196arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
12197the result. Therefore, for example, the first element of the struct
12198returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
12199result of a 32-bit ``add`` instruction with the same operands, where
12200the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
12201
12202The second element of the result is an ``i1`` that is 1 if the
12203arithmetic operation overflowed and 0 otherwise. An operation
12204overflows if, for any values of its operands ``A`` and ``B`` and for
12205any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
12206not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
12207``sext`` for signed overflow and ``zext`` for unsigned overflow, and
12208``op`` is the underlying arithmetic operation.
12209
12210The behavior of these intrinsics is well-defined for all argument
12211values.
Sean Silvab084af42012-12-07 10:36:55 +000012212
12213'``llvm.sadd.with.overflow.*``' Intrinsics
12214^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12215
12216Syntax:
12217"""""""
12218
12219This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
12220on any integer bit width.
12221
12222::
12223
12224 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
12225 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12226 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
12227
12228Overview:
12229"""""""""
12230
12231The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
12232a signed addition of the two arguments, and indicate whether an overflow
12233occurred during the signed summation.
12234
12235Arguments:
12236""""""""""
12237
12238The arguments (%a and %b) and the first element of the result structure
12239may be of integer types of any bit width, but they must have the same
12240bit width. The second element of the result structure must be of type
12241``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12242addition.
12243
12244Semantics:
12245""""""""""
12246
12247The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012248a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012249first element of which is the signed summation, and the second element
12250of which is a bit specifying if the signed summation resulted in an
12251overflow.
12252
12253Examples:
12254"""""""""
12255
12256.. code-block:: llvm
12257
12258 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12259 %sum = extractvalue {i32, i1} %res, 0
12260 %obit = extractvalue {i32, i1} %res, 1
12261 br i1 %obit, label %overflow, label %normal
12262
12263'``llvm.uadd.with.overflow.*``' Intrinsics
12264^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12265
12266Syntax:
12267"""""""
12268
12269This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
12270on any integer bit width.
12271
12272::
12273
12274 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
12275 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12276 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
12277
12278Overview:
12279"""""""""
12280
12281The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
12282an unsigned addition of the two arguments, and indicate whether a carry
12283occurred during the unsigned summation.
12284
12285Arguments:
12286""""""""""
12287
12288The arguments (%a and %b) and the first element of the result structure
12289may be of integer types of any bit width, but they must have the same
12290bit width. The second element of the result structure must be of type
12291``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12292addition.
12293
12294Semantics:
12295""""""""""
12296
12297The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012298an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012299first element of which is the sum, and the second element of which is a
12300bit specifying if the unsigned summation resulted in a carry.
12301
12302Examples:
12303"""""""""
12304
12305.. code-block:: llvm
12306
12307 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12308 %sum = extractvalue {i32, i1} %res, 0
12309 %obit = extractvalue {i32, i1} %res, 1
12310 br i1 %obit, label %carry, label %normal
12311
12312'``llvm.ssub.with.overflow.*``' Intrinsics
12313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12314
12315Syntax:
12316"""""""
12317
12318This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
12319on any integer bit width.
12320
12321::
12322
12323 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
12324 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12325 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
12326
12327Overview:
12328"""""""""
12329
12330The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
12331a signed subtraction of the two arguments, and indicate whether an
12332overflow occurred during the signed subtraction.
12333
12334Arguments:
12335""""""""""
12336
12337The arguments (%a and %b) and the first element of the result structure
12338may be of integer types of any bit width, but they must have the same
12339bit width. The second element of the result structure must be of type
12340``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12341subtraction.
12342
12343Semantics:
12344""""""""""
12345
12346The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012347a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000012348first element of which is the subtraction, and the second element of
12349which is a bit specifying if the signed subtraction resulted in an
12350overflow.
12351
12352Examples:
12353"""""""""
12354
12355.. code-block:: llvm
12356
12357 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12358 %sum = extractvalue {i32, i1} %res, 0
12359 %obit = extractvalue {i32, i1} %res, 1
12360 br i1 %obit, label %overflow, label %normal
12361
12362'``llvm.usub.with.overflow.*``' Intrinsics
12363^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12364
12365Syntax:
12366"""""""
12367
12368This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
12369on any integer bit width.
12370
12371::
12372
12373 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
12374 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12375 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
12376
12377Overview:
12378"""""""""
12379
12380The '``llvm.usub.with.overflow``' family of intrinsic functions perform
12381an unsigned subtraction of the two arguments, and indicate whether an
12382overflow occurred during the unsigned subtraction.
12383
12384Arguments:
12385""""""""""
12386
12387The arguments (%a and %b) and the first element of the result structure
12388may be of integer types of any bit width, but they must have the same
12389bit width. The second element of the result structure must be of type
12390``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12391subtraction.
12392
12393Semantics:
12394""""""""""
12395
12396The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012397an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012398the first element of which is the subtraction, and the second element of
12399which is a bit specifying if the unsigned subtraction resulted in an
12400overflow.
12401
12402Examples:
12403"""""""""
12404
12405.. code-block:: llvm
12406
12407 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12408 %sum = extractvalue {i32, i1} %res, 0
12409 %obit = extractvalue {i32, i1} %res, 1
12410 br i1 %obit, label %overflow, label %normal
12411
12412'``llvm.smul.with.overflow.*``' Intrinsics
12413^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12414
12415Syntax:
12416"""""""
12417
12418This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
12419on any integer bit width.
12420
12421::
12422
12423 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
12424 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12425 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
12426
12427Overview:
12428"""""""""
12429
12430The '``llvm.smul.with.overflow``' family of intrinsic functions perform
12431a signed multiplication of the two arguments, and indicate whether an
12432overflow occurred during the signed multiplication.
12433
12434Arguments:
12435""""""""""
12436
12437The arguments (%a and %b) and the first element of the result structure
12438may be of integer types of any bit width, but they must have the same
12439bit width. The second element of the result structure must be of type
12440``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12441multiplication.
12442
12443Semantics:
12444""""""""""
12445
12446The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012447a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000012448the first element of which is the multiplication, and the second element
12449of which is a bit specifying if the signed multiplication resulted in an
12450overflow.
12451
12452Examples:
12453"""""""""
12454
12455.. code-block:: llvm
12456
12457 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12458 %sum = extractvalue {i32, i1} %res, 0
12459 %obit = extractvalue {i32, i1} %res, 1
12460 br i1 %obit, label %overflow, label %normal
12461
12462'``llvm.umul.with.overflow.*``' Intrinsics
12463^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12464
12465Syntax:
12466"""""""
12467
12468This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
12469on any integer bit width.
12470
12471::
12472
12473 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
12474 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12475 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
12476
12477Overview:
12478"""""""""
12479
12480The '``llvm.umul.with.overflow``' family of intrinsic functions perform
12481a unsigned multiplication of the two arguments, and indicate whether an
12482overflow occurred during the unsigned multiplication.
12483
12484Arguments:
12485""""""""""
12486
12487The arguments (%a and %b) and the first element of the result structure
12488may be of integer types of any bit width, but they must have the same
12489bit width. The second element of the result structure must be of type
12490``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12491multiplication.
12492
12493Semantics:
12494""""""""""
12495
12496The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000012497an unsigned multiplication of the two arguments. They return a structure ---
12498the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000012499element of which is a bit specifying if the unsigned multiplication
12500resulted in an overflow.
12501
12502Examples:
12503"""""""""
12504
12505.. code-block:: llvm
12506
12507 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12508 %sum = extractvalue {i32, i1} %res, 0
12509 %obit = extractvalue {i32, i1} %res, 1
12510 br i1 %obit, label %overflow, label %normal
12511
12512Specialised Arithmetic Intrinsics
12513---------------------------------
12514
Owen Anderson1056a922015-07-11 07:01:27 +000012515'``llvm.canonicalize.*``' Intrinsic
12516^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12517
12518Syntax:
12519"""""""
12520
12521::
12522
12523 declare float @llvm.canonicalize.f32(float %a)
12524 declare double @llvm.canonicalize.f64(double %b)
12525
12526Overview:
12527"""""""""
12528
12529The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012530encoding of a floating-point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000012531implementing certain numeric primitives such as frexp. The canonical encoding is
12532defined by IEEE-754-2008 to be:
12533
12534::
12535
12536 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000012537 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000012538 numbers, infinities, and NaNs, especially in decimal formats.
12539
12540This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000012541conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000012542according to section 6.2.
12543
12544Examples of non-canonical encodings:
12545
Sean Silvaa1190322015-08-06 22:56:48 +000012546- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000012547 converted to a canonical representation per hardware-specific protocol.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012548- Many normal decimal floating-point numbers have non-canonical alternative
Owen Anderson1056a922015-07-11 07:01:27 +000012549 encodings.
12550- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000012551 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000012552 a zero of the same sign by this operation.
12553
12554Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
12555default exception handling must signal an invalid exception, and produce a
12556quiet NaN result.
12557
12558This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000012559that the compiler does not constant fold the operation. Likewise, division by
125601.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000012561-0.0 is also sufficient provided that the rounding mode is not -Infinity.
12562
Sean Silvaa1190322015-08-06 22:56:48 +000012563``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000012564
12565- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
12566- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
12567 to ``(x == y)``
12568
12569Additionally, the sign of zero must be conserved:
12570``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
12571
12572The payload bits of a NaN must be conserved, with two exceptions.
12573First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000012574must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000012575usual methods.
12576
12577The canonicalization operation may be optimized away if:
12578
Sean Silvaa1190322015-08-06 22:56:48 +000012579- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000012580 floating-point operation that is required by the standard to be canonical.
12581- The result is consumed only by (or fused with) other floating-point
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012582 operations. That is, the bits of the floating-point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000012583
Sean Silvab084af42012-12-07 10:36:55 +000012584'``llvm.fmuladd.*``' Intrinsic
12585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12586
12587Syntax:
12588"""""""
12589
12590::
12591
12592 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
12593 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
12594
12595Overview:
12596"""""""""
12597
12598The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000012599expressions that can be fused if the code generator determines that (a) the
12600target instruction set has support for a fused operation, and (b) that the
12601fused operation is more efficient than the equivalent, separate pair of mul
12602and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000012603
12604Arguments:
12605""""""""""
12606
12607The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
12608multiplicands, a and b, and an addend c.
12609
12610Semantics:
12611""""""""""
12612
12613The expression:
12614
12615::
12616
12617 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
12618
12619is equivalent to the expression a \* b + c, except that rounding will
12620not be performed between the multiplication and addition steps if the
12621code generator fuses the operations. Fusion is not guaranteed, even if
12622the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000012623corresponding llvm.fma.\* intrinsic function should be used
12624instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000012625
12626Examples:
12627"""""""""
12628
12629.. code-block:: llvm
12630
Tim Northover675a0962014-06-13 14:24:23 +000012631 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000012632
Amara Emersoncf9daa32017-05-09 10:43:25 +000012633
12634Experimental Vector Reduction Intrinsics
12635----------------------------------------
12636
12637Horizontal reductions of vectors can be expressed using the following
12638intrinsics. Each one takes a vector operand as an input and applies its
12639respective operation across all elements of the vector, returning a single
12640scalar result of the same element type.
12641
12642
12643'``llvm.experimental.vector.reduce.add.*``' Intrinsic
12644^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12645
12646Syntax:
12647"""""""
12648
12649::
12650
12651 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
12652 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
12653
12654Overview:
12655"""""""""
12656
12657The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
12658reduction of a vector, returning the result as a scalar. The return type matches
12659the element-type of the vector input.
12660
12661Arguments:
12662""""""""""
12663The argument to this intrinsic must be a vector of integer values.
12664
12665'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
12666^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12667
12668Syntax:
12669"""""""
12670
12671::
12672
12673 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
12674 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
12675
12676Overview:
12677"""""""""
12678
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012679The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012680``ADD`` reduction of a vector, returning the result as a scalar. The return type
12681matches the element-type of the vector input.
12682
12683If the intrinsic call has fast-math flags, then the reduction will not preserve
12684the associativity of an equivalent scalarized counterpart. If it does not have
12685fast-math flags, then the reduction will be *ordered*, implying that the
12686operation respects the associativity of a scalarized reduction.
12687
12688
12689Arguments:
12690""""""""""
12691The first argument to this intrinsic is a scalar accumulator value, which is
12692only used when there are no fast-math flags attached. This argument may be undef
12693when fast-math flags are used.
12694
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012695The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012696
12697Examples:
12698"""""""""
12699
12700.. code-block:: llvm
12701
12702 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12703 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12704
12705
12706'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
12707^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12708
12709Syntax:
12710"""""""
12711
12712::
12713
12714 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
12715 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
12716
12717Overview:
12718"""""""""
12719
12720The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
12721reduction of a vector, returning the result as a scalar. The return type matches
12722the element-type of the vector input.
12723
12724Arguments:
12725""""""""""
12726The argument to this intrinsic must be a vector of integer values.
12727
12728'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
12729^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12730
12731Syntax:
12732"""""""
12733
12734::
12735
12736 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
12737 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
12738
12739Overview:
12740"""""""""
12741
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012742The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012743``MUL`` reduction of a vector, returning the result as a scalar. The return type
12744matches the element-type of the vector input.
12745
12746If the intrinsic call has fast-math flags, then the reduction will not preserve
12747the associativity of an equivalent scalarized counterpart. If it does not have
12748fast-math flags, then the reduction will be *ordered*, implying that the
12749operation respects the associativity of a scalarized reduction.
12750
12751
12752Arguments:
12753""""""""""
12754The first argument to this intrinsic is a scalar accumulator value, which is
12755only used when there are no fast-math flags attached. This argument may be undef
12756when fast-math flags are used.
12757
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012758The second argument must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012759
12760Examples:
12761"""""""""
12762
12763.. code-block:: llvm
12764
12765 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
12766 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
12767
12768'``llvm.experimental.vector.reduce.and.*``' Intrinsic
12769^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12770
12771Syntax:
12772"""""""
12773
12774::
12775
12776 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
12777
12778Overview:
12779"""""""""
12780
12781The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
12782reduction of a vector, returning the result as a scalar. The return type matches
12783the element-type of the vector input.
12784
12785Arguments:
12786""""""""""
12787The argument to this intrinsic must be a vector of integer values.
12788
12789'``llvm.experimental.vector.reduce.or.*``' Intrinsic
12790^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12791
12792Syntax:
12793"""""""
12794
12795::
12796
12797 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
12798
12799Overview:
12800"""""""""
12801
12802The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
12803of a vector, returning the result as a scalar. The return type matches the
12804element-type of the vector input.
12805
12806Arguments:
12807""""""""""
12808The argument to this intrinsic must be a vector of integer values.
12809
12810'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
12811^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12812
12813Syntax:
12814"""""""
12815
12816::
12817
12818 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
12819
12820Overview:
12821"""""""""
12822
12823The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
12824reduction of a vector, returning the result as a scalar. The return type matches
12825the element-type of the vector input.
12826
12827Arguments:
12828""""""""""
12829The argument to this intrinsic must be a vector of integer values.
12830
12831'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
12832^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12833
12834Syntax:
12835"""""""
12836
12837::
12838
12839 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
12840
12841Overview:
12842"""""""""
12843
12844The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
12845``MAX`` reduction of a vector, returning the result as a scalar. The return type
12846matches the element-type of the vector input.
12847
12848Arguments:
12849""""""""""
12850The argument to this intrinsic must be a vector of integer values.
12851
12852'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
12853^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12854
12855Syntax:
12856"""""""
12857
12858::
12859
12860 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
12861
12862Overview:
12863"""""""""
12864
12865The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
12866``MIN`` reduction of a vector, returning the result as a scalar. The return type
12867matches the element-type of the vector input.
12868
12869Arguments:
12870""""""""""
12871The argument to this intrinsic must be a vector of integer values.
12872
12873'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
12874^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12875
12876Syntax:
12877"""""""
12878
12879::
12880
12881 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
12882
12883Overview:
12884"""""""""
12885
12886The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
12887integer ``MAX`` reduction of a vector, returning the result as a scalar. The
12888return type matches the element-type of the vector input.
12889
12890Arguments:
12891""""""""""
12892The argument to this intrinsic must be a vector of integer values.
12893
12894'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
12895^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12896
12897Syntax:
12898"""""""
12899
12900::
12901
12902 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
12903
12904Overview:
12905"""""""""
12906
12907The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
12908integer ``MIN`` reduction of a vector, returning the result as a scalar. The
12909return type matches the element-type of the vector input.
12910
12911Arguments:
12912""""""""""
12913The argument to this intrinsic must be a vector of integer values.
12914
12915'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
12916^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12917
12918Syntax:
12919"""""""
12920
12921::
12922
12923 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
12924 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
12925
12926Overview:
12927"""""""""
12928
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012929The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012930``MAX`` reduction of a vector, returning the result as a scalar. The return type
12931matches the element-type of the vector input.
12932
12933If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12934assume that NaNs are not present in the input vector.
12935
12936Arguments:
12937""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012938The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012939
12940'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
12941^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12942
12943Syntax:
12944"""""""
12945
12946::
12947
12948 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
12949 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
12950
12951Overview:
12952"""""""""
12953
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012954The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating-point
Amara Emersoncf9daa32017-05-09 10:43:25 +000012955``MIN`` reduction of a vector, returning the result as a scalar. The return type
12956matches the element-type of the vector input.
12957
12958If the intrinsic call has the ``nnan`` fast-math flag then the operation can
12959assume that NaNs are not present in the input vector.
12960
12961Arguments:
12962""""""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012963The argument to this intrinsic must be a vector of floating-point values.
Amara Emersoncf9daa32017-05-09 10:43:25 +000012964
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012965Half Precision Floating-Point Intrinsics
Sean Silvab084af42012-12-07 10:36:55 +000012966----------------------------------------
12967
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012968For most target platforms, half precision floating-point is a
Sean Silvab084af42012-12-07 10:36:55 +000012969storage-only format. This means that it is a dense encoding (in memory)
12970but does not support computation in the format.
12971
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012972This means that code must first load the half-precision floating-point
Sean Silvab084af42012-12-07 10:36:55 +000012973value as an i16, then convert it to float with
12974:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
12975then be performed on the float value (including extending to double
12976etc). To store the value back to memory, it is first converted to float
12977if needed, then converted to i16 with
12978:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
12979i16 value.
12980
12981.. _int_convert_to_fp16:
12982
12983'``llvm.convert.to.fp16``' Intrinsic
12984^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12985
12986Syntax:
12987"""""""
12988
12989::
12990
Tim Northoverfd7e4242014-07-17 10:51:23 +000012991 declare i16 @llvm.convert.to.fp16.f32(float %a)
12992 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000012993
12994Overview:
12995"""""""""
12996
Tim Northoverfd7e4242014-07-17 10:51:23 +000012997The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000012998conventional floating-point type to half precision floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000012999
13000Arguments:
13001""""""""""
13002
13003The intrinsic function contains single argument - the value to be
13004converted.
13005
13006Semantics:
13007""""""""""
13008
Tim Northoverfd7e4242014-07-17 10:51:23 +000013009The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013010conventional floating-point format to half precision floating-point format. The
Tim Northoverfd7e4242014-07-17 10:51:23 +000013011return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000013012
13013Examples:
13014"""""""""
13015
13016.. code-block:: llvm
13017
Tim Northoverfd7e4242014-07-17 10:51:23 +000013018 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000013019 store i16 %res, i16* @x, align 2
13020
13021.. _int_convert_from_fp16:
13022
13023'``llvm.convert.from.fp16``' Intrinsic
13024^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13025
13026Syntax:
13027"""""""
13028
13029::
13030
Tim Northoverfd7e4242014-07-17 10:51:23 +000013031 declare float @llvm.convert.from.fp16.f32(i16 %a)
13032 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000013033
13034Overview:
13035"""""""""
13036
13037The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013038conversion from half precision floating-point format to single precision
13039floating-point format.
Sean Silvab084af42012-12-07 10:36:55 +000013040
13041Arguments:
13042""""""""""
13043
13044The intrinsic function contains single argument - the value to be
13045converted.
13046
13047Semantics:
13048""""""""""
13049
13050The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013051conversion from half single precision floating-point format to single
13052precision floating-point format. The input half-float value is
Sean Silvab084af42012-12-07 10:36:55 +000013053represented by an ``i16`` value.
13054
13055Examples:
13056"""""""""
13057
13058.. code-block:: llvm
13059
David Blaikiec7aabbb2015-03-04 22:06:14 +000013060 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000013061 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000013062
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000013063.. _dbg_intrinsics:
13064
Sean Silvab084af42012-12-07 10:36:55 +000013065Debugger Intrinsics
13066-------------------
13067
13068The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
13069prefix), are described in the `LLVM Source Level
Hans Wennborg65195622017-09-28 15:16:37 +000013070Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
Sean Silvab084af42012-12-07 10:36:55 +000013071document.
13072
13073Exception Handling Intrinsics
13074-----------------------------
13075
13076The LLVM exception handling intrinsics (which all start with
13077``llvm.eh.`` prefix), are described in the `LLVM Exception
Hans Wennborg65195622017-09-28 15:16:37 +000013078Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
Sean Silvab084af42012-12-07 10:36:55 +000013079
13080.. _int_trampoline:
13081
13082Trampoline Intrinsics
13083---------------------
13084
13085These intrinsics make it possible to excise one parameter, marked with
13086the :ref:`nest <nest>` attribute, from a function. The result is a
13087callable function pointer lacking the nest parameter - the caller does
13088not need to provide a value for it. Instead, the value to use is stored
13089in advance in a "trampoline", a block of memory usually allocated on the
13090stack, which also contains code to splice the nest value into the
13091argument list. This is used to implement the GCC nested function address
13092extension.
13093
13094For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
13095then the resulting function pointer has signature ``i32 (i32, i32)*``.
13096It can be created as follows:
13097
13098.. code-block:: llvm
13099
13100 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000013101 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000013102 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
13103 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
13104 %fp = bitcast i8* %p to i32 (i32, i32)*
13105
13106The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
13107``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
13108
13109.. _int_it:
13110
13111'``llvm.init.trampoline``' Intrinsic
13112^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13113
13114Syntax:
13115"""""""
13116
13117::
13118
13119 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
13120
13121Overview:
13122"""""""""
13123
13124This fills the memory pointed to by ``tramp`` with executable code,
13125turning it into a trampoline.
13126
13127Arguments:
13128""""""""""
13129
13130The ``llvm.init.trampoline`` intrinsic takes three arguments, all
13131pointers. The ``tramp`` argument must point to a sufficiently large and
13132sufficiently aligned block of memory; this memory is written to by the
13133intrinsic. Note that the size and the alignment are target-specific -
13134LLVM currently provides no portable way of determining them, so a
13135front-end that generates this intrinsic needs to have some
13136target-specific knowledge. The ``func`` argument must hold a function
13137bitcast to an ``i8*``.
13138
13139Semantics:
13140""""""""""
13141
13142The block of memory pointed to by ``tramp`` is filled with target
13143dependent code, turning it into a function. Then ``tramp`` needs to be
13144passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
13145be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
13146function's signature is the same as that of ``func`` with any arguments
13147marked with the ``nest`` attribute removed. At most one such ``nest``
13148argument is allowed, and it must be of pointer type. Calling the new
13149function is equivalent to calling ``func`` with the same argument list,
13150but with ``nval`` used for the missing ``nest`` argument. If, after
13151calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
13152modified, then the effect of any later call to the returned function
13153pointer is undefined.
13154
13155.. _int_at:
13156
13157'``llvm.adjust.trampoline``' Intrinsic
13158^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13159
13160Syntax:
13161"""""""
13162
13163::
13164
13165 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
13166
13167Overview:
13168"""""""""
13169
13170This performs any required machine-specific adjustment to the address of
13171a trampoline (passed as ``tramp``).
13172
13173Arguments:
13174""""""""""
13175
13176``tramp`` must point to a block of memory which already has trampoline
13177code filled in by a previous call to
13178:ref:`llvm.init.trampoline <int_it>`.
13179
13180Semantics:
13181""""""""""
13182
13183On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000013184different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000013185intrinsic returns the executable address corresponding to ``tramp``
13186after performing the required machine specific adjustments. The pointer
13187returned can then be :ref:`bitcast and executed <int_trampoline>`.
13188
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013189.. _int_mload_mstore:
13190
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013191Masked Vector Load and Store Intrinsics
13192---------------------------------------
13193
13194LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
13195
13196.. _int_mload:
13197
13198'``llvm.masked.load.*``' Intrinsics
13199^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13200
13201Syntax:
13202"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013203This is an overloaded intrinsic. The loaded data is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013204
13205::
13206
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013207 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
13208 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013209 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013210 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013211 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013212 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013213
13214Overview:
13215"""""""""
13216
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013217Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013218
13219
13220Arguments:
13221""""""""""
13222
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013223The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013224
13225
13226Semantics:
13227""""""""""
13228
13229The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
13230The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
13231
13232
13233::
13234
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013235 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000013236
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013237 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000013238 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000013239 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013240
13241.. _int_mstore:
13242
13243'``llvm.masked.store.*``' Intrinsics
13244^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13245
13246Syntax:
13247"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013248This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013249
13250::
13251
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013252 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
13253 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013254 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013255 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000013256 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013257 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013258
13259Overview:
13260"""""""""
13261
13262Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
13263
13264Arguments:
13265""""""""""
13266
13267The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
13268
13269
13270Semantics:
13271""""""""""
13272
13273The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
13274The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
13275
13276::
13277
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000013278 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000013279
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000013280 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000013281 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000013282 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
13283 store <16 x float> %res, <16 x float>* %ptr, align 4
13284
13285
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013286Masked Vector Gather and Scatter Intrinsics
13287-------------------------------------------
13288
13289LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
13290
13291.. _int_mgather:
13292
13293'``llvm.masked.gather.*``' Intrinsics
13294^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13295
13296Syntax:
13297"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013298This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating-point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013299
13300::
13301
Elad Cohenef5798a2017-05-03 12:28:54 +000013302 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
13303 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
13304 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013305
13306Overview:
13307"""""""""
13308
13309Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
13310
13311
13312Arguments:
13313""""""""""
13314
13315The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
13316
13317
13318Semantics:
13319""""""""""
13320
13321The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
13322The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
13323
13324
13325::
13326
Elad Cohenef5798a2017-05-03 12:28:54 +000013327 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013328
13329 ;; The gather with all-true mask is equivalent to the following instruction sequence
13330 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
13331 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
13332 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
13333 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
13334
13335 %val0 = load double, double* %ptr0, align 8
13336 %val1 = load double, double* %ptr1, align 8
13337 %val2 = load double, double* %ptr2, align 8
13338 %val3 = load double, double* %ptr3, align 8
13339
13340 %vec0 = insertelement <4 x double>undef, %val0, 0
13341 %vec01 = insertelement <4 x double>%vec0, %val1, 1
13342 %vec012 = insertelement <4 x double>%vec01, %val2, 2
13343 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
13344
13345.. _int_mscatter:
13346
13347'``llvm.masked.scatter.*``' Intrinsics
13348^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13349
13350Syntax:
13351"""""""
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013352This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013353
13354::
13355
Elad Cohenef5798a2017-05-03 12:28:54 +000013356 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
13357 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
13358 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013359
13360Overview:
13361"""""""""
13362
13363Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
13364
13365Arguments:
13366""""""""""
13367
13368The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
13369
13370
13371Semantics:
13372""""""""""
13373
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000013374The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013375
13376::
13377
Sylvestre Ledru84666a12016-02-14 20:16:22 +000013378 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenef5798a2017-05-03 12:28:54 +000013379 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000013380
13381 ;; It is equivalent to a list of scalar stores
13382 %val0 = extractelement <8 x i32> %value, i32 0
13383 %val1 = extractelement <8 x i32> %value, i32 1
13384 ..
13385 %val7 = extractelement <8 x i32> %value, i32 7
13386 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
13387 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
13388 ..
13389 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
13390 ;; Note: the order of the following stores is important when they overlap:
13391 store i32 %val0, i32* %ptr0, align 4
13392 store i32 %val1, i32* %ptr1, align 4
13393 ..
13394 store i32 %val7, i32* %ptr7, align 4
13395
13396
Elena Demikhovsky0ef2ce32018-06-06 09:11:46 +000013397Masked Vector Expanding Load and Compressing Store Intrinsics
13398-------------------------------------------------------------
13399
13400LLVM provides intrinsics for expanding load and compressing store operations. Data selected from a vector according to a mask is stored in consecutive memory addresses (compressed store), and vice-versa (expanding load). These operations effective map to "if (cond.i) a[j++] = v.i" and "if (cond.i) v.i = a[j++]" patterns, respectively. Note that when the mask starts with '1' bits followed by '0' bits, these operations are identical to :ref:`llvm.masked.store <int_mstore>` and :ref:`llvm.masked.load <int_mload>`.
13401
13402.. _int_expandload:
13403
13404'``llvm.masked.expandload.*``' Intrinsics
13405^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13406
13407Syntax:
13408"""""""
13409This is an overloaded intrinsic. Several values of integer, floating point or pointer data type are loaded from consecutive memory addresses and stored into the elements of a vector according to the mask.
13410
13411::
13412
13413 declare <16 x float> @llvm.masked.expandload.v16f32 (float* <ptr>, <16 x i1> <mask>, <16 x float> <passthru>)
13414 declare <2 x i64> @llvm.masked.expandload.v2i64 (i64* <ptr>, <2 x i1> <mask>, <2 x i64> <passthru>)
13415
13416Overview:
13417"""""""""
13418
13419Reads a number of scalar values sequentially from memory location provided in '``ptr``' and spreads them in a vector. The '``mask``' holds a bit for each vector lane. The number of elements read from memory is equal to the number of '1' bits in the mask. The loaded elements are positioned in the destination vector according to the sequence of '1' and '0' bits in the mask. E.g., if the mask vector is '10010001', "explandload" reads 3 values from memory addresses ptr, ptr+1, ptr+2 and places them in lanes 0, 3 and 7 accordingly. The masked-off lanes are filled by elements from the corresponding lanes of the '``passthru``' operand.
13420
13421
13422Arguments:
13423""""""""""
13424
13425The first operand is the base pointer for the load. It has the same underlying type as the element of the returned vector. The second operand, mask, is a vector of boolean values with the same number of elements as the return type. The third is a pass-through value that is used to fill the masked-off lanes of the result. The return type and the type of the '``passthru``' operand have the same vector type.
13426
13427Semantics:
13428""""""""""
13429
13430The '``llvm.masked.expandload``' intrinsic is designed for reading multiple scalar values from adjacent memory addresses into possibly non-adjacent vector lanes. It is useful for targets that support vector expanding loads and allows vectorizing loop with cross-iteration dependency like in the following example:
13431
13432.. code-block:: c
13433
13434 // In this loop we load from B and spread the elements into array A.
13435 double *A, B; int *C;
13436 for (int i = 0; i < size; ++i) {
13437 if (C[i] != 0)
13438 A[i] = B[j++];
13439 }
13440
13441
13442.. code-block:: llvm
13443
13444 ; Load several elements from array B and expand them in a vector.
13445 ; The number of loaded elements is equal to the number of '1' elements in the Mask.
13446 %Tmp = call <8 x double> @llvm.masked.expandload.v8f64(double* %Bptr, <8 x i1> %Mask, <8 x double> undef)
13447 ; Store the result in A
13448 call void @llvm.masked.store.v8f64.p0v8f64(<8 x double> %Tmp, <8 x double>* %Aptr, i32 8, <8 x i1> %Mask)
13449
13450 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
13451 %MaskI = bitcast <8 x i1> %Mask to i8
13452 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
13453 %MaskI64 = zext i8 %MaskIPopcnt to i64
13454 %BNextInd = add i64 %BInd, %MaskI64
13455
13456
13457Other targets may support this intrinsic differently, for example, by lowering it into a sequence of conditional scalar load operations and shuffles.
13458If all mask elements are '1', the intrinsic behavior is equivalent to the regular unmasked vector load.
13459
13460.. _int_compressstore:
13461
13462'``llvm.masked.compressstore.*``' Intrinsics
13463^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13464
13465Syntax:
13466"""""""
13467This is an overloaded intrinsic. A number of scalar values of integer, floating point or pointer data type are collected from an input vector and stored into adjacent memory addresses. A mask defines which elements to collect from the vector.
13468
13469::
13470
13471 declare void @llvm.masked.compressstore.v8i32 (<8 x i32> <value>, i32* <ptr>, <8 x i1> <mask>)
13472 declare void @llvm.masked.compressstore.v16f32 (<16 x float> <value>, float* <ptr>, <16 x i1> <mask>)
13473
13474Overview:
13475"""""""""
13476
13477Selects elements from input vector '``value``' according to the '``mask``'. All selected elements are written into adjacent memory addresses starting at address '`ptr`', from lower to higher. The mask holds a bit for each vector lane, and is used to select elements to be stored. The number of elements to be stored is equal to the number of active bits in the mask.
13478
13479Arguments:
13480""""""""""
13481
13482The first operand is the input vector, from which elements are collected and written to memory. The second operand is the base pointer for the store, it has the same underlying type as the element of the input vector operand. The third operand is the mask, a vector of boolean values. The mask and the input vector must have the same number of vector elements.
13483
13484
13485Semantics:
13486""""""""""
13487
13488The '``llvm.masked.compressstore``' intrinsic is designed for compressing data in memory. It allows to collect elements from possibly non-adjacent lanes of a vector and store them contiguously in memory in one IR operation. It is useful for targets that support compressing store operations and allows vectorizing loops with cross-iteration dependences like in the following example:
13489
13490.. code-block:: c
13491
13492 // In this loop we load elements from A and store them consecutively in B
13493 double *A, B; int *C;
13494 for (int i = 0; i < size; ++i) {
13495 if (C[i] != 0)
13496 B[j++] = A[i]
13497 }
13498
13499
13500.. code-block:: llvm
13501
13502 ; Load elements from A.
13503 %Tmp = call <8 x double> @llvm.masked.load.v8f64.p0v8f64(<8 x double>* %Aptr, i32 8, <8 x i1> %Mask, <8 x double> undef)
13504 ; Store all selected elements consecutively in array B
13505 call <void> @llvm.masked.compressstore.v8f64(<8 x double> %Tmp, double* %Bptr, <8 x i1> %Mask)
13506
13507 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
13508 %MaskI = bitcast <8 x i1> %Mask to i8
13509 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
13510 %MaskI64 = zext i8 %MaskIPopcnt to i64
13511 %BNextInd = add i64 %BInd, %MaskI64
13512
13513
13514Other targets may support this intrinsic differently, for example, by lowering it into a sequence of branches that guard scalar store operations.
13515
13516
Sean Silvab084af42012-12-07 10:36:55 +000013517Memory Use Markers
13518------------------
13519
Sanjay Patel69bf48e2014-07-04 19:40:43 +000013520This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000013521memory objects and ranges where variables are immutable.
13522
Reid Klecknera534a382013-12-19 02:14:12 +000013523.. _int_lifestart:
13524
Sean Silvab084af42012-12-07 10:36:55 +000013525'``llvm.lifetime.start``' Intrinsic
13526^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13527
13528Syntax:
13529"""""""
13530
13531::
13532
13533 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
13534
13535Overview:
13536"""""""""
13537
13538The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
13539object's lifetime.
13540
13541Arguments:
13542""""""""""
13543
13544The first argument is a constant integer representing the size of the
13545object, or -1 if it is variable sized. The second argument is a pointer
13546to the object.
13547
13548Semantics:
13549""""""""""
13550
13551This intrinsic indicates that before this point in the code, the value
13552of the memory pointed to by ``ptr`` is dead. This means that it is known
13553to never be used and has an undefined value. A load from the pointer
13554that precedes this intrinsic can be replaced with ``'undef'``.
13555
Reid Klecknera534a382013-12-19 02:14:12 +000013556.. _int_lifeend:
13557
Sean Silvab084af42012-12-07 10:36:55 +000013558'``llvm.lifetime.end``' Intrinsic
13559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13560
13561Syntax:
13562"""""""
13563
13564::
13565
13566 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
13567
13568Overview:
13569"""""""""
13570
13571The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
13572object's lifetime.
13573
13574Arguments:
13575""""""""""
13576
13577The first argument is a constant integer representing the size of the
13578object, or -1 if it is variable sized. The second argument is a pointer
13579to the object.
13580
13581Semantics:
13582""""""""""
13583
13584This intrinsic indicates that after this point in the code, the value of
13585the memory pointed to by ``ptr`` is dead. This means that it is known to
13586never be used and has an undefined value. Any stores into the memory
13587object following this intrinsic may be removed as dead.
13588
13589'``llvm.invariant.start``' Intrinsic
13590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13591
13592Syntax:
13593"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013594This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000013595
13596::
13597
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013598 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000013599
13600Overview:
13601"""""""""
13602
13603The '``llvm.invariant.start``' intrinsic specifies that the contents of
13604a memory object will not change.
13605
13606Arguments:
13607""""""""""
13608
13609The first argument is a constant integer representing the size of the
13610object, or -1 if it is variable sized. The second argument is a pointer
13611to the object.
13612
13613Semantics:
13614""""""""""
13615
13616This intrinsic indicates that until an ``llvm.invariant.end`` that uses
13617the return value, the referenced memory location is constant and
13618unchanging.
13619
13620'``llvm.invariant.end``' Intrinsic
13621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13622
13623Syntax:
13624"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013625This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000013626
13627::
13628
Mehdi Amini8c629ec2016-08-13 23:31:24 +000013629 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000013630
13631Overview:
13632"""""""""
13633
13634The '``llvm.invariant.end``' intrinsic specifies that the contents of a
13635memory object are mutable.
13636
13637Arguments:
13638""""""""""
13639
13640The first argument is the matching ``llvm.invariant.start`` intrinsic.
13641The second argument is a constant integer representing the size of the
13642object, or -1 if it is variable sized and the third argument is a
13643pointer to the object.
13644
13645Semantics:
13646""""""""""
13647
13648This intrinsic indicates that the memory is mutable again.
13649
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013650'``llvm.launder.invariant.group``' Intrinsic
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13652
13653Syntax:
13654"""""""
Yaxun Liu407ca362017-11-16 16:32:16 +000013655This is an overloaded intrinsic. The memory object can belong to any address
13656space. The returned pointer must belong to the same address space as the
13657argument.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013658
13659::
13660
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013661 declare i8* @llvm.launder.invariant.group.p0i8(i8* <ptr>)
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013662
13663Overview:
13664"""""""""
13665
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013666The '``llvm.launder.invariant.group``' intrinsic can be used when an invariant
Piotr Padlewski5b3db452018-07-02 04:49:30 +000013667established by ``invariant.group`` metadata no longer holds, to obtain a new
13668pointer value that carries fresh invariant group information. It is an
13669experimental intrinsic, which means that its semantics might change in the
13670future.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013671
13672
13673Arguments:
13674""""""""""
13675
Piotr Padlewski5b3db452018-07-02 04:49:30 +000013676The ``llvm.launder.invariant.group`` takes only one argument, which is a pointer
13677to the memory.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013678
13679Semantics:
13680""""""""""
13681
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013682Returns another pointer that aliases its argument but which is considered different
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013683for the purposes of ``load``/``store`` ``invariant.group`` metadata.
Piotr Padlewski5dde8092018-05-03 11:03:01 +000013684It does not read any accessible memory and the execution can be speculated.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000013685
Piotr Padlewski5b3db452018-07-02 04:49:30 +000013686'``llvm.strip.invariant.group``' Intrinsic
13687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13688
13689Syntax:
13690"""""""
13691This is an overloaded intrinsic. The memory object can belong to any address
13692space. The returned pointer must belong to the same address space as the
13693argument.
13694
13695::
13696
13697 declare i8* @llvm.strip.invariant.group.p0i8(i8* <ptr>)
13698
13699Overview:
13700"""""""""
13701
13702The '``llvm.strip.invariant.group``' intrinsic can be used when an invariant
13703established by ``invariant.group`` metadata no longer holds, to obtain a new pointer
13704value that does not carry the invariant information. It is an experimental
13705intrinsic, which means that its semantics might change in the future.
13706
13707
13708Arguments:
13709""""""""""
13710
13711The ``llvm.strip.invariant.group`` takes only one argument, which is a pointer
13712to the memory.
13713
13714Semantics:
13715""""""""""
13716
13717Returns another pointer that aliases its argument but which has no associated
13718``invariant.group`` metadata.
13719It does not read any memory and can be speculated.
13720
13721
13722
Sanjay Patel54b161e2018-03-20 16:38:22 +000013723.. _constrainedfp:
13724
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013725Constrained Floating-Point Intrinsics
Andrew Kaylora0a11642017-01-26 23:27:59 +000013726-------------------------------------
13727
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013728These intrinsics are used to provide special handling of floating-point
13729operations when specific rounding mode or floating-point exception behavior is
Andrew Kaylora0a11642017-01-26 23:27:59 +000013730required. By default, LLVM optimization passes assume that the rounding mode is
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013731round-to-nearest and that floating-point exceptions will not be monitored.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013732Constrained FP intrinsics are used to support non-default rounding modes and
13733accurately preserve exception behavior without compromising LLVM's ability to
13734optimize FP code when the default behavior is used.
13735
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013736Each of these intrinsics corresponds to a normal floating-point operation. The
Andrew Kaylora0a11642017-01-26 23:27:59 +000013737first two arguments and the return value are the same as the corresponding FP
13738operation.
13739
13740The third argument is a metadata argument specifying the rounding mode to be
13741assumed. This argument must be one of the following strings:
13742
13743::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000013744
Andrew Kaylora0a11642017-01-26 23:27:59 +000013745 "round.dynamic"
13746 "round.tonearest"
13747 "round.downward"
13748 "round.upward"
13749 "round.towardzero"
13750
13751If this argument is "round.dynamic" optimization passes must assume that the
13752rounding mode is unknown and may change at runtime. No transformations that
13753depend on rounding mode may be performed in this case.
13754
13755The other possible values for the rounding mode argument correspond to the
13756similarly named IEEE rounding modes. If the argument is any of these values
13757optimization passes may perform transformations as long as they are consistent
13758with the specified rounding mode.
13759
13760For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
13761"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
13762'x-0' should evaluate to '-0' when rounding downward. However, this
13763transformation is legal for all other rounding modes.
13764
13765For values other than "round.dynamic" optimization passes may assume that the
13766actual runtime rounding mode (as defined in a target-specific manner) matches
13767the specified rounding mode, but this is not guaranteed. Using a specific
13768non-dynamic rounding mode which does not match the actual rounding mode at
13769runtime results in undefined behavior.
13770
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013771The fourth argument to the constrained floating-point intrinsics specifies the
Andrew Kaylora0a11642017-01-26 23:27:59 +000013772required exception behavior. This argument must be one of the following
13773strings:
13774
13775::
Andrew Kaylor73b4a9a2017-04-20 18:18:36 +000013776
Andrew Kaylora0a11642017-01-26 23:27:59 +000013777 "fpexcept.ignore"
13778 "fpexcept.maytrap"
13779 "fpexcept.strict"
13780
13781If this argument is "fpexcept.ignore" optimization passes may assume that the
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013782exception status flags will not be read and that floating-point exceptions will
Andrew Kaylora0a11642017-01-26 23:27:59 +000013783be masked. This allows transformations to be performed that may change the
13784exception semantics of the original code. For example, FP operations may be
13785speculatively executed in this case whereas they must not be for either of the
13786other possible values of this argument.
13787
13788If the exception behavior argument is "fpexcept.maytrap" optimization passes
13789must avoid transformations that may raise exceptions that would not have been
13790raised by the original code (such as speculatively executing FP operations), but
13791passes are not required to preserve all exceptions that are implied by the
13792original code. For example, exceptions may be potentially hidden by constant
13793folding.
13794
13795If the exception behavior argument is "fpexcept.strict" all transformations must
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013796strictly preserve the floating-point exception semantics of the original code.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013797Any FP exception that would have been raised by the original code must be raised
13798by the transformed code, and the transformed code must not raise any FP
13799exceptions that would not have been raised by the original code. This is the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013800exception behavior argument that will be used if the code being compiled reads
Andrew Kaylora0a11642017-01-26 23:27:59 +000013801the FP exception status flags, but this mode can also be used with code that
13802unmasks FP exceptions.
13803
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013804The number and order of floating-point exceptions is NOT guaranteed. For
Andrew Kaylora0a11642017-01-26 23:27:59 +000013805example, a series of FP operations that each may raise exceptions may be
13806vectorized into a single instruction that raises each unique exception a single
13807time.
13808
13809
13810'``llvm.experimental.constrained.fadd``' Intrinsic
13811^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13812
13813Syntax:
13814"""""""
13815
13816::
13817
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013818 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013819 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
13820 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013821 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013822
13823Overview:
13824"""""""""
13825
13826The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
13827two operands.
13828
13829
13830Arguments:
13831""""""""""
13832
13833The first two arguments to the '``llvm.experimental.constrained.fadd``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013834intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13835of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013836
13837The third and fourth arguments specify the rounding mode and exception
13838behavior as described above.
13839
13840Semantics:
13841""""""""""
13842
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013843The value produced is the floating-point sum of the two value operands and has
Andrew Kaylora0a11642017-01-26 23:27:59 +000013844the same type as the operands.
13845
13846
13847'``llvm.experimental.constrained.fsub``' Intrinsic
13848^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13849
13850Syntax:
13851"""""""
13852
13853::
13854
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013855 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013856 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
13857 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013858 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013859
13860Overview:
13861"""""""""
13862
13863The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
13864of its two operands.
13865
13866
13867Arguments:
13868""""""""""
13869
13870The first two arguments to the '``llvm.experimental.constrained.fsub``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013871intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13872of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013873
13874The third and fourth arguments specify the rounding mode and exception
13875behavior as described above.
13876
13877Semantics:
13878""""""""""
13879
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013880The value produced is the floating-point difference of the two value operands
Andrew Kaylora0a11642017-01-26 23:27:59 +000013881and has the same type as the operands.
13882
13883
13884'``llvm.experimental.constrained.fmul``' Intrinsic
13885^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13886
13887Syntax:
13888"""""""
13889
13890::
13891
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013892 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013893 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
13894 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013895 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013896
13897Overview:
13898"""""""""
13899
13900The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
13901its two operands.
13902
13903
13904Arguments:
13905""""""""""
13906
13907The first two arguments to the '``llvm.experimental.constrained.fmul``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013908intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13909of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013910
13911The third and fourth arguments specify the rounding mode and exception
13912behavior as described above.
13913
13914Semantics:
13915""""""""""
13916
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013917The value produced is the floating-point product of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000013918has the same type as the operands.
13919
13920
13921'``llvm.experimental.constrained.fdiv``' Intrinsic
13922^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13923
13924Syntax:
13925"""""""
13926
13927::
13928
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013929 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013930 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
13931 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013932 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013933
13934Overview:
13935"""""""""
13936
13937The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
13938its two operands.
13939
13940
13941Arguments:
13942""""""""""
13943
13944The first two arguments to the '``llvm.experimental.constrained.fdiv``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013945intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13946of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013947
13948The third and fourth arguments specify the rounding mode and exception
13949behavior as described above.
13950
13951Semantics:
13952""""""""""
13953
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013954The value produced is the floating-point quotient of the two value operands and
Andrew Kaylora0a11642017-01-26 23:27:59 +000013955has the same type as the operands.
13956
13957
13958'``llvm.experimental.constrained.frem``' Intrinsic
13959^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13960
13961Syntax:
13962"""""""
13963
13964::
13965
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013966 declare <type>
Andrew Kaylora0a11642017-01-26 23:27:59 +000013967 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
13968 metadata <rounding mode>,
Andrew Kaylorf4660012017-05-25 21:31:00 +000013969 metadata <exception behavior>)
Andrew Kaylora0a11642017-01-26 23:27:59 +000013970
13971Overview:
13972"""""""""
13973
13974The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
13975from the division of its two operands.
13976
13977
13978Arguments:
13979""""""""""
13980
13981The first two arguments to the '``llvm.experimental.constrained.frem``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013982intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
13983of floating-point values. Both arguments must have identical types.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013984
13985The third and fourth arguments specify the rounding mode and exception
13986behavior as described above. The rounding mode argument has no effect, since
13987the result of frem is never rounded, but the argument is included for
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013988consistency with the other constrained floating-point intrinsics.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013989
13990Semantics:
13991""""""""""
13992
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000013993The value produced is the floating-point remainder from the division of the two
Andrew Kaylora0a11642017-01-26 23:27:59 +000013994value operands and has the same type as the operands. The remainder has the
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000013995same sign as the dividend.
Andrew Kaylora0a11642017-01-26 23:27:59 +000013996
Wei Dinga131d3f2017-08-24 04:18:24 +000013997'``llvm.experimental.constrained.fma``' Intrinsic
13998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13999
14000Syntax:
14001"""""""
14002
14003::
14004
14005 declare <type>
14006 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
14007 metadata <rounding mode>,
14008 metadata <exception behavior>)
14009
14010Overview:
14011"""""""""
14012
14013The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
14014fused-multiply-add operation on its operands.
14015
14016Arguments:
14017""""""""""
14018
14019The first three arguments to the '``llvm.experimental.constrained.fma``'
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014020intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector
14021<t_vector>` of floating-point values. All arguments must have identical types.
Wei Dinga131d3f2017-08-24 04:18:24 +000014022
14023The fourth and fifth arguments specify the rounding mode and exception behavior
14024as described above.
14025
14026Semantics:
14027""""""""""
14028
14029The result produced is the product of the first two operands added to the third
14030operand computed with infinite precision, and then rounded to the target
14031precision.
Andrew Kaylora0a11642017-01-26 23:27:59 +000014032
Andrew Kaylorf4660012017-05-25 21:31:00 +000014033Constrained libm-equivalent Intrinsics
14034--------------------------------------
14035
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014036In addition to the basic floating-point operations for which constrained
Andrew Kaylorf4660012017-05-25 21:31:00 +000014037intrinsics are described above, there are constrained versions of various
14038operations which provide equivalent behavior to a corresponding libm function.
14039These intrinsics allow the precise behavior of these operations with respect to
14040rounding mode and exception behavior to be controlled.
14041
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014042As with the basic constrained floating-point intrinsics, the rounding mode
Andrew Kaylorf4660012017-05-25 21:31:00 +000014043and exception behavior arguments only control the behavior of the optimizer.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014044They do not change the runtime floating-point environment.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014045
14046
14047'``llvm.experimental.constrained.sqrt``' Intrinsic
14048^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14049
14050Syntax:
14051"""""""
14052
14053::
14054
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014055 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014056 @llvm.experimental.constrained.sqrt(<type> <op1>,
14057 metadata <rounding mode>,
14058 metadata <exception behavior>)
14059
14060Overview:
14061"""""""""
14062
14063The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
14064of the specified value, returning the same value as the libm '``sqrt``'
14065functions would, but without setting ``errno``.
14066
14067Arguments:
14068""""""""""
14069
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014070The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014071type.
14072
14073The second and third arguments specify the rounding mode and exception
14074behavior as described above.
14075
14076Semantics:
14077""""""""""
14078
14079This function returns the nonnegative square root of the specified value.
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014080If the value is less than negative zero, a floating-point exception occurs
Hiroshi Inoue760c0c92018-01-16 13:19:48 +000014081and the return value is architecture specific.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014082
14083
14084'``llvm.experimental.constrained.pow``' Intrinsic
14085^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14086
14087Syntax:
14088"""""""
14089
14090::
14091
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014092 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014093 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
14094 metadata <rounding mode>,
14095 metadata <exception behavior>)
14096
14097Overview:
14098"""""""""
14099
14100The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
14101raised to the (positive or negative) power specified by the second operand.
14102
14103Arguments:
14104""""""""""
14105
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014106The first two arguments and the return value are floating-point numbers of the
Andrew Kaylorf4660012017-05-25 21:31:00 +000014107same type. The second argument specifies the power to which the first argument
14108should be raised.
14109
14110The third and fourth arguments specify the rounding mode and exception
14111behavior as described above.
14112
14113Semantics:
14114""""""""""
14115
14116This function returns the first value raised to the second power,
14117returning the same values as the libm ``pow`` functions would, and
14118handles error conditions in the same way.
14119
14120
14121'``llvm.experimental.constrained.powi``' Intrinsic
14122^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14123
14124Syntax:
14125"""""""
14126
14127::
14128
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014129 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014130 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
14131 metadata <rounding mode>,
14132 metadata <exception behavior>)
14133
14134Overview:
14135"""""""""
14136
14137The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
14138raised to the (positive or negative) power specified by the second operand. The
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014139order of evaluation of multiplications is not defined. When a vector of
14140floating-point type is used, the second argument remains a scalar integer value.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014141
14142
14143Arguments:
14144""""""""""
14145
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014146The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014147type. The second argument is a 32-bit signed integer specifying the power to
14148which the first argument should be raised.
14149
14150The third and fourth arguments specify the rounding mode and exception
14151behavior as described above.
14152
14153Semantics:
14154""""""""""
14155
14156This function returns the first value raised to the second power with an
14157unspecified sequence of rounding operations.
14158
14159
14160'``llvm.experimental.constrained.sin``' Intrinsic
14161^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14162
14163Syntax:
14164"""""""
14165
14166::
14167
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014168 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014169 @llvm.experimental.constrained.sin(<type> <op1>,
14170 metadata <rounding mode>,
14171 metadata <exception behavior>)
14172
14173Overview:
14174"""""""""
14175
14176The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
14177first operand.
14178
14179Arguments:
14180""""""""""
14181
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014182The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014183type.
14184
14185The second and third arguments specify the rounding mode and exception
14186behavior as described above.
14187
14188Semantics:
14189""""""""""
14190
14191This function returns the sine of the specified operand, returning the
14192same values as the libm ``sin`` functions would, and handles error
14193conditions in the same way.
14194
14195
14196'``llvm.experimental.constrained.cos``' Intrinsic
14197^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14198
14199Syntax:
14200"""""""
14201
14202::
14203
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014204 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014205 @llvm.experimental.constrained.cos(<type> <op1>,
14206 metadata <rounding mode>,
14207 metadata <exception behavior>)
14208
14209Overview:
14210"""""""""
14211
14212The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
14213first operand.
14214
14215Arguments:
14216""""""""""
14217
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014218The first argument and the return type are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014219type.
14220
14221The second and third arguments specify the rounding mode and exception
14222behavior as described above.
14223
14224Semantics:
14225""""""""""
14226
14227This function returns the cosine of the specified operand, returning the
14228same values as the libm ``cos`` functions would, and handles error
14229conditions in the same way.
14230
14231
14232'``llvm.experimental.constrained.exp``' Intrinsic
14233^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14234
14235Syntax:
14236"""""""
14237
14238::
14239
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014240 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014241 @llvm.experimental.constrained.exp(<type> <op1>,
14242 metadata <rounding mode>,
14243 metadata <exception behavior>)
14244
14245Overview:
14246"""""""""
14247
14248The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
14249exponential of the specified value.
14250
14251Arguments:
14252""""""""""
14253
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014254The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014255type.
14256
14257The second and third arguments specify the rounding mode and exception
14258behavior as described above.
14259
14260Semantics:
14261""""""""""
14262
14263This function returns the same values as the libm ``exp`` functions
14264would, and handles error conditions in the same way.
14265
14266
14267'``llvm.experimental.constrained.exp2``' Intrinsic
14268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14269
14270Syntax:
14271"""""""
14272
14273::
14274
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014275 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014276 @llvm.experimental.constrained.exp2(<type> <op1>,
14277 metadata <rounding mode>,
14278 metadata <exception behavior>)
14279
14280Overview:
14281"""""""""
14282
14283The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
14284exponential of the specified value.
14285
14286
14287Arguments:
14288""""""""""
14289
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014290The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014291type.
14292
14293The second and third arguments specify the rounding mode and exception
14294behavior as described above.
14295
14296Semantics:
14297""""""""""
14298
14299This function returns the same values as the libm ``exp2`` functions
14300would, and handles error conditions in the same way.
14301
14302
14303'``llvm.experimental.constrained.log``' Intrinsic
14304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14305
14306Syntax:
14307"""""""
14308
14309::
14310
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014311 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014312 @llvm.experimental.constrained.log(<type> <op1>,
14313 metadata <rounding mode>,
14314 metadata <exception behavior>)
14315
14316Overview:
14317"""""""""
14318
14319The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
14320logarithm of the specified value.
14321
14322Arguments:
14323""""""""""
14324
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014325The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014326type.
14327
14328The second and third arguments specify the rounding mode and exception
14329behavior as described above.
14330
14331
14332Semantics:
14333""""""""""
14334
14335This function returns the same values as the libm ``log`` functions
14336would, and handles error conditions in the same way.
14337
14338
14339'``llvm.experimental.constrained.log10``' Intrinsic
14340^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14341
14342Syntax:
14343"""""""
14344
14345::
14346
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014347 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014348 @llvm.experimental.constrained.log10(<type> <op1>,
14349 metadata <rounding mode>,
14350 metadata <exception behavior>)
14351
14352Overview:
14353"""""""""
14354
14355The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
14356logarithm of the specified value.
14357
14358Arguments:
14359""""""""""
14360
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014361The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014362type.
14363
14364The second and third arguments specify the rounding mode and exception
14365behavior as described above.
14366
14367Semantics:
14368""""""""""
14369
14370This function returns the same values as the libm ``log10`` functions
14371would, and handles error conditions in the same way.
14372
14373
14374'``llvm.experimental.constrained.log2``' Intrinsic
14375^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14376
14377Syntax:
14378"""""""
14379
14380::
14381
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014382 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014383 @llvm.experimental.constrained.log2(<type> <op1>,
14384 metadata <rounding mode>,
14385 metadata <exception behavior>)
14386
14387Overview:
14388"""""""""
14389
14390The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
14391logarithm of the specified value.
14392
14393Arguments:
14394""""""""""
14395
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014396The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014397type.
14398
14399The second and third arguments specify the rounding mode and exception
14400behavior as described above.
14401
14402Semantics:
14403""""""""""
14404
14405This function returns the same values as the libm ``log2`` functions
14406would, and handles error conditions in the same way.
14407
14408
14409'``llvm.experimental.constrained.rint``' Intrinsic
14410^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14411
14412Syntax:
14413"""""""
14414
14415::
14416
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014417 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014418 @llvm.experimental.constrained.rint(<type> <op1>,
14419 metadata <rounding mode>,
14420 metadata <exception behavior>)
14421
14422Overview:
14423"""""""""
14424
14425The '``llvm.experimental.constrained.rint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014426operand rounded to the nearest integer. It may raise an inexact floating-point
Andrew Kaylorf4660012017-05-25 21:31:00 +000014427exception if the operand is not an integer.
14428
14429Arguments:
14430""""""""""
14431
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014432The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014433type.
14434
14435The second and third arguments specify the rounding mode and exception
14436behavior as described above.
14437
14438Semantics:
14439""""""""""
14440
14441This function returns the same values as the libm ``rint`` functions
14442would, and handles error conditions in the same way. The rounding mode is
14443described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014444mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000014445mode argument is only intended as information to the compiler.
14446
14447
14448'``llvm.experimental.constrained.nearbyint``' Intrinsic
14449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14450
14451Syntax:
14452"""""""
14453
14454::
14455
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000014456 declare <type>
Andrew Kaylorf4660012017-05-25 21:31:00 +000014457 @llvm.experimental.constrained.nearbyint(<type> <op1>,
14458 metadata <rounding mode>,
14459 metadata <exception behavior>)
14460
14461Overview:
14462"""""""""
14463
14464The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014465operand rounded to the nearest integer. It will not raise an inexact
14466floating-point exception if the operand is not an integer.
Andrew Kaylorf4660012017-05-25 21:31:00 +000014467
14468
14469Arguments:
14470""""""""""
14471
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014472The first argument and the return value are floating-point numbers of the same
Andrew Kaylorf4660012017-05-25 21:31:00 +000014473type.
14474
14475The second and third arguments specify the rounding mode and exception
14476behavior as described above.
14477
14478Semantics:
14479""""""""""
14480
14481This function returns the same values as the libm ``nearbyint`` functions
14482would, and handles error conditions in the same way. The rounding mode is
14483described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel85fa9ef2018-03-21 14:15:33 +000014484mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylorf4660012017-05-25 21:31:00 +000014485mode argument is only intended as information to the compiler.
14486
14487
Sean Silvab084af42012-12-07 10:36:55 +000014488General Intrinsics
14489------------------
14490
14491This class of intrinsics is designed to be generic and has no specific
14492purpose.
14493
14494'``llvm.var.annotation``' Intrinsic
14495^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14496
14497Syntax:
14498"""""""
14499
14500::
14501
14502 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
14503
14504Overview:
14505"""""""""
14506
14507The '``llvm.var.annotation``' intrinsic.
14508
14509Arguments:
14510""""""""""
14511
14512The first argument is a pointer to a value, the second is a pointer to a
14513global string, the third is a pointer to a global string which is the
14514source file name, and the last argument is the line number.
14515
14516Semantics:
14517""""""""""
14518
14519This intrinsic allows annotation of local variables with arbitrary
14520strings. This can be useful for special purpose optimizations that want
14521to look for these annotations. These have no other defined use; they are
14522ignored by code generation and optimization.
14523
Michael Gottesman88d18832013-03-26 00:34:27 +000014524'``llvm.ptr.annotation.*``' Intrinsic
14525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14526
14527Syntax:
14528"""""""
14529
14530This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
14531pointer to an integer of any width. *NOTE* you must specify an address space for
14532the pointer. The identifier for the default address space is the integer
14533'``0``'.
14534
14535::
14536
14537 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
14538 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
14539 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
14540 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
14541 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
14542
14543Overview:
14544"""""""""
14545
14546The '``llvm.ptr.annotation``' intrinsic.
14547
14548Arguments:
14549""""""""""
14550
14551The first argument is a pointer to an integer value of arbitrary bitwidth
14552(result of some expression), the second is a pointer to a global string, the
14553third is a pointer to a global string which is the source file name, and the
14554last argument is the line number. It returns the value of the first argument.
14555
14556Semantics:
14557""""""""""
14558
14559This intrinsic allows annotation of a pointer to an integer with arbitrary
14560strings. This can be useful for special purpose optimizations that want to look
14561for these annotations. These have no other defined use; they are ignored by code
14562generation and optimization.
14563
Sean Silvab084af42012-12-07 10:36:55 +000014564'``llvm.annotation.*``' Intrinsic
14565^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14566
14567Syntax:
14568"""""""
14569
14570This is an overloaded intrinsic. You can use '``llvm.annotation``' on
14571any integer bit width.
14572
14573::
14574
14575 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
14576 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
14577 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
14578 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
14579 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
14580
14581Overview:
14582"""""""""
14583
14584The '``llvm.annotation``' intrinsic.
14585
14586Arguments:
14587""""""""""
14588
14589The first argument is an integer value (result of some expression), the
14590second is a pointer to a global string, the third is a pointer to a
14591global string which is the source file name, and the last argument is
14592the line number. It returns the value of the first argument.
14593
14594Semantics:
14595""""""""""
14596
14597This intrinsic allows annotations to be put on arbitrary expressions
14598with arbitrary strings. This can be useful for special purpose
14599optimizations that want to look for these annotations. These have no
14600other defined use; they are ignored by code generation and optimization.
14601
Reid Klecknere33c94f2017-09-05 20:14:58 +000014602'``llvm.codeview.annotation``' Intrinsic
Reid Klecknerd4523682017-09-05 20:26:25 +000014603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknere33c94f2017-09-05 20:14:58 +000014604
14605Syntax:
14606"""""""
14607
14608This annotation emits a label at its program point and an associated
14609``S_ANNOTATION`` codeview record with some additional string metadata. This is
14610used to implement MSVC's ``__annotation`` intrinsic. It is marked
14611``noduplicate``, so calls to this intrinsic prevent inlining and should be
14612considered expensive.
14613
14614::
14615
14616 declare void @llvm.codeview.annotation(metadata)
14617
14618Arguments:
14619""""""""""
14620
14621The argument should be an MDTuple containing any number of MDStrings.
14622
Sean Silvab084af42012-12-07 10:36:55 +000014623'``llvm.trap``' Intrinsic
14624^^^^^^^^^^^^^^^^^^^^^^^^^
14625
14626Syntax:
14627"""""""
14628
14629::
14630
14631 declare void @llvm.trap() noreturn nounwind
14632
14633Overview:
14634"""""""""
14635
14636The '``llvm.trap``' intrinsic.
14637
14638Arguments:
14639""""""""""
14640
14641None.
14642
14643Semantics:
14644""""""""""
14645
14646This intrinsic is lowered to the target dependent trap instruction. If
14647the target does not have a trap instruction, this intrinsic will be
14648lowered to a call of the ``abort()`` function.
14649
14650'``llvm.debugtrap``' Intrinsic
14651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14652
14653Syntax:
14654"""""""
14655
14656::
14657
14658 declare void @llvm.debugtrap() nounwind
14659
14660Overview:
14661"""""""""
14662
14663The '``llvm.debugtrap``' intrinsic.
14664
14665Arguments:
14666""""""""""
14667
14668None.
14669
14670Semantics:
14671""""""""""
14672
14673This intrinsic is lowered to code which is intended to cause an
14674execution trap with the intention of requesting the attention of a
14675debugger.
14676
14677'``llvm.stackprotector``' Intrinsic
14678^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14679
14680Syntax:
14681"""""""
14682
14683::
14684
14685 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
14686
14687Overview:
14688"""""""""
14689
14690The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
14691onto the stack at ``slot``. The stack slot is adjusted to ensure that it
14692is placed on the stack before local variables.
14693
14694Arguments:
14695""""""""""
14696
14697The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
14698The first argument is the value loaded from the stack guard
14699``@__stack_chk_guard``. The second variable is an ``alloca`` that has
14700enough space to hold the value of the guard.
14701
14702Semantics:
14703""""""""""
14704
Michael Gottesmandafc7d92013-08-12 18:35:32 +000014705This intrinsic causes the prologue/epilogue inserter to force the position of
14706the ``AllocaInst`` stack slot to be before local variables on the stack. This is
14707to ensure that if a local variable on the stack is overwritten, it will destroy
14708the value of the guard. When the function exits, the guard on the stack is
14709checked against the original guard by ``llvm.stackprotectorcheck``. If they are
14710different, then ``llvm.stackprotectorcheck`` causes the program to abort by
14711calling the ``__stack_chk_fail()`` function.
14712
Tim Shene885d5e2016-04-19 19:40:37 +000014713'``llvm.stackguard``' Intrinsic
14714^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14715
14716Syntax:
14717"""""""
14718
14719::
14720
14721 declare i8* @llvm.stackguard()
14722
14723Overview:
14724"""""""""
14725
14726The ``llvm.stackguard`` intrinsic returns the system stack guard value.
14727
14728It should not be generated by frontends, since it is only for internal usage.
14729The reason why we create this intrinsic is that we still support IR form Stack
14730Protector in FastISel.
14731
14732Arguments:
14733""""""""""
14734
14735None.
14736
14737Semantics:
14738""""""""""
14739
14740On some platforms, the value returned by this intrinsic remains unchanged
14741between loads in the same thread. On other platforms, it returns the same
14742global variable value, if any, e.g. ``@__stack_chk_guard``.
14743
14744Currently some platforms have IR-level customized stack guard loading (e.g.
14745X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
14746in the future.
14747
Sean Silvab084af42012-12-07 10:36:55 +000014748'``llvm.objectsize``' Intrinsic
14749^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14750
14751Syntax:
14752"""""""
14753
14754::
14755
George Burgess IV56c7e882017-03-21 20:08:59 +000014756 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
14757 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvab084af42012-12-07 10:36:55 +000014758
14759Overview:
14760"""""""""
14761
14762The ``llvm.objectsize`` intrinsic is designed to provide information to
14763the optimizers to determine at compile time whether a) an operation
14764(like memcpy) will overflow a buffer that corresponds to an object, or
14765b) that a runtime check for overflow isn't necessary. An object in this
14766context means an allocation of a specific class, structure, array, or
14767other object.
14768
14769Arguments:
14770""""""""""
14771
George Burgess IV56c7e882017-03-21 20:08:59 +000014772The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
14773a pointer to or into the ``object``. The second argument determines whether
14774``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
14775is unknown. The third argument controls how ``llvm.objectsize`` acts when
George Burgess IV3fbfa9c42018-07-09 22:21:16 +000014776``null`` in address space 0 is used as its pointer argument. If it's ``false``,
14777``llvm.objectsize`` reports 0 bytes available when given ``null``. Otherwise, if
14778the ``null`` is in a non-zero address space or if ``true`` is given for the
14779third argument of ``llvm.objectsize``, we assume its size is unknown.
George Burgess IV56c7e882017-03-21 20:08:59 +000014780
14781The second and third arguments only accept constants.
Sean Silvab084af42012-12-07 10:36:55 +000014782
14783Semantics:
14784""""""""""
14785
14786The ``llvm.objectsize`` intrinsic is lowered to a constant representing
14787the size of the object concerned. If the size cannot be determined at
14788compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
14789on the ``min`` argument).
14790
14791'``llvm.expect``' Intrinsic
14792^^^^^^^^^^^^^^^^^^^^^^^^^^^
14793
14794Syntax:
14795"""""""
14796
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000014797This is an overloaded intrinsic. You can use ``llvm.expect`` on any
14798integer bit width.
14799
Sean Silvab084af42012-12-07 10:36:55 +000014800::
14801
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000014802 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000014803 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
14804 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
14805
14806Overview:
14807"""""""""
14808
14809The ``llvm.expect`` intrinsic provides information about expected (the
14810most probable) value of ``val``, which can be used by optimizers.
14811
14812Arguments:
14813""""""""""
14814
14815The ``llvm.expect`` intrinsic takes two arguments. The first argument is
14816a value. The second argument is an expected value, this needs to be a
14817constant value, variables are not allowed.
14818
14819Semantics:
14820""""""""""
14821
14822This intrinsic is lowered to the ``val``.
14823
Philip Reamese0e90832015-04-26 22:23:12 +000014824.. _int_assume:
14825
Hal Finkel93046912014-07-25 21:13:35 +000014826'``llvm.assume``' Intrinsic
14827^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14828
14829Syntax:
14830"""""""
14831
14832::
14833
14834 declare void @llvm.assume(i1 %cond)
14835
14836Overview:
14837"""""""""
14838
14839The ``llvm.assume`` allows the optimizer to assume that the provided
14840condition is true. This information can then be used in simplifying other parts
14841of the code.
14842
14843Arguments:
14844""""""""""
14845
14846The condition which the optimizer may assume is always true.
14847
14848Semantics:
14849""""""""""
14850
14851The intrinsic allows the optimizer to assume that the provided condition is
14852always true whenever the control flow reaches the intrinsic call. No code is
14853generated for this intrinsic, and instructions that contribute only to the
14854provided condition are not used for code generation. If the condition is
14855violated during execution, the behavior is undefined.
14856
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014857Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000014858used by the ``llvm.assume`` intrinsic in order to preserve the instructions
14859only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000014860if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000014861sufficient overall improvement in code quality. For this reason,
14862``llvm.assume`` should not be used to document basic mathematical invariants
14863that the optimizer can otherwise deduce or facts that are of little use to the
14864optimizer.
14865
Daniel Berlin2c438a32017-02-07 19:29:25 +000014866.. _int_ssa_copy:
14867
14868'``llvm.ssa_copy``' Intrinsic
14869^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14870
14871Syntax:
14872"""""""
14873
14874::
14875
14876 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
14877
14878Arguments:
14879""""""""""
14880
14881The first argument is an operand which is used as the returned value.
14882
14883Overview:
14884""""""""""
14885
14886The ``llvm.ssa_copy`` intrinsic can be used to attach information to
14887operations by copying them and giving them new names. For example,
14888the PredicateInfo utility uses it to build Extended SSA form, and
14889attach various forms of information to operands that dominate specific
14890uses. It is not meant for general use, only for building temporary
14891renaming forms that require value splits at certain points.
14892
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014893.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000014894
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014895'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000014896^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14897
14898Syntax:
14899"""""""
14900
14901::
14902
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014903 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000014904
14905
14906Arguments:
14907""""""""""
14908
14909The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014910metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014911
14912Overview:
14913"""""""""
14914
Peter Collingbourne7efd7502016-06-24 21:21:32 +000014915The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
14916with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000014917
Peter Collingbourne0312f612016-06-25 00:23:04 +000014918'``llvm.type.checked.load``' Intrinsic
14919^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14920
14921Syntax:
14922"""""""
14923
14924::
14925
14926 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
14927
14928
14929Arguments:
14930""""""""""
14931
14932The first argument is a pointer from which to load a function pointer. The
14933second argument is the byte offset from which to load the function pointer. The
14934third argument is a metadata object representing a :doc:`type identifier
14935<TypeMetadata>`.
14936
14937Overview:
14938"""""""""
14939
14940The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
14941virtual table pointer using type metadata. This intrinsic is used to implement
14942control flow integrity in conjunction with virtual call optimization. The
14943virtual call optimization pass will optimize away ``llvm.type.checked.load``
14944intrinsics associated with devirtualized calls, thereby removing the type
14945check in cases where it is not needed to enforce the control flow integrity
14946constraint.
14947
14948If the given pointer is associated with a type metadata identifier, this
14949function returns true as the second element of its return value. (Note that
14950the function may also return true if the given pointer is not associated
14951with a type metadata identifier.) If the function's return value's second
14952element is true, the following rules apply to the first element:
14953
14954- If the given pointer is associated with the given type metadata identifier,
14955 it is the function pointer loaded from the given byte offset from the given
14956 pointer.
14957
14958- If the given pointer is not associated with the given type metadata
14959 identifier, it is one of the following (the choice of which is unspecified):
14960
14961 1. The function pointer that would have been loaded from an arbitrarily chosen
14962 (through an unspecified mechanism) pointer associated with the type
14963 metadata.
14964
14965 2. If the function has a non-void return type, a pointer to a function that
14966 returns an unspecified value without causing side effects.
14967
14968If the function's return value's second element is false, the value of the
14969first element is undefined.
14970
14971
Sean Silvab084af42012-12-07 10:36:55 +000014972'``llvm.donothing``' Intrinsic
14973^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14974
14975Syntax:
14976"""""""
14977
14978::
14979
14980 declare void @llvm.donothing() nounwind readnone
14981
14982Overview:
14983"""""""""
14984
Juergen Ributzkac9161192014-10-23 22:36:13 +000014985The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000014986three intrinsics (besides ``llvm.experimental.patchpoint`` and
14987``llvm.experimental.gc.statepoint``) that can be called with an invoke
14988instruction.
Sean Silvab084af42012-12-07 10:36:55 +000014989
14990Arguments:
14991""""""""""
14992
14993None.
14994
14995Semantics:
14996""""""""""
14997
14998This intrinsic does nothing, and it's removed by optimizers and ignored
14999by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000015000
Sanjoy Dasb51325d2016-03-11 19:08:34 +000015001'``llvm.experimental.deoptimize``' Intrinsic
15002^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15003
15004Syntax:
15005"""""""
15006
15007::
15008
15009 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
15010
15011Overview:
15012"""""""""
15013
15014This intrinsic, together with :ref:`deoptimization operand bundles
15015<deopt_opbundles>`, allow frontends to express transfer of control and
15016frame-local state from the currently executing (typically more specialized,
15017hence faster) version of a function into another (typically more generic, hence
15018slower) version.
15019
15020In languages with a fully integrated managed runtime like Java and JavaScript
15021this intrinsic can be used to implement "uncommon trap" or "side exit" like
15022functionality. In unmanaged languages like C and C++, this intrinsic can be
15023used to represent the slow paths of specialized functions.
15024
15025
15026Arguments:
15027""""""""""
15028
15029The intrinsic takes an arbitrary number of arguments, whose meaning is
15030decided by the :ref:`lowering strategy<deoptimize_lowering>`.
15031
15032Semantics:
15033""""""""""
15034
15035The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
15036deoptimization continuation (denoted using a :ref:`deoptimization
15037operand bundle <deopt_opbundles>`) and returns the value returned by
15038the deoptimization continuation. Defining the semantic properties of
15039the continuation itself is out of scope of the language reference --
15040as far as LLVM is concerned, the deoptimization continuation can
15041invoke arbitrary side effects, including reading from and writing to
15042the entire heap.
15043
15044Deoptimization continuations expressed using ``"deopt"`` operand bundles always
15045continue execution to the end of the physical frame containing them, so all
15046calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
15047
15048 - ``@llvm.experimental.deoptimize`` cannot be invoked.
15049 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
15050 - The ``ret`` instruction must return the value produced by the
15051 ``@llvm.experimental.deoptimize`` call if there is one, or void.
15052
15053Note that the above restrictions imply that the return type for a call to
15054``@llvm.experimental.deoptimize`` will match the return type of its immediate
15055caller.
15056
15057The inliner composes the ``"deopt"`` continuations of the caller into the
15058``"deopt"`` continuations present in the inlinee, and also updates calls to this
15059intrinsic to return directly from the frame of the function it inlined into.
15060
Sanjoy Dase0aa4142016-05-12 01:17:38 +000015061All declarations of ``@llvm.experimental.deoptimize`` must share the
15062same calling convention.
15063
Sanjoy Dasb51325d2016-03-11 19:08:34 +000015064.. _deoptimize_lowering:
15065
15066Lowering:
15067"""""""""
15068
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000015069Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
15070symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
15071ensure that this symbol is defined). The call arguments to
15072``@llvm.experimental.deoptimize`` are lowered as if they were formal
15073arguments of the specified types, and not as varargs.
15074
Sanjoy Dasb51325d2016-03-11 19:08:34 +000015075
Sanjoy Das021de052016-03-31 00:18:46 +000015076'``llvm.experimental.guard``' Intrinsic
15077^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15078
15079Syntax:
15080"""""""
15081
15082::
15083
15084 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
15085
15086Overview:
15087"""""""""
15088
15089This intrinsic, together with :ref:`deoptimization operand bundles
15090<deopt_opbundles>`, allows frontends to express guards or checks on
15091optimistic assumptions made during compilation. The semantics of
15092``@llvm.experimental.guard`` is defined in terms of
15093``@llvm.experimental.deoptimize`` -- its body is defined to be
15094equivalent to:
15095
Renato Golin124f2592016-07-20 12:16:38 +000015096.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000015097
Renato Golin124f2592016-07-20 12:16:38 +000015098 define void @llvm.experimental.guard(i1 %pred, <args...>) {
15099 %realPred = and i1 %pred, undef
15100 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000015101
Renato Golin124f2592016-07-20 12:16:38 +000015102 leave:
15103 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
15104 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000015105
Renato Golin124f2592016-07-20 12:16:38 +000015106 continue:
15107 ret void
15108 }
Sanjoy Das021de052016-03-31 00:18:46 +000015109
Sanjoy Das47cf2af2016-04-30 00:55:59 +000015110
15111with the optional ``[, !make.implicit !{}]`` present if and only if it
15112is present on the call site. For more details on ``!make.implicit``,
15113see :doc:`FaultMaps`.
15114
Sanjoy Das021de052016-03-31 00:18:46 +000015115In words, ``@llvm.experimental.guard`` executes the attached
15116``"deopt"`` continuation if (but **not** only if) its first argument
15117is ``false``. Since the optimizer is allowed to replace the ``undef``
15118with an arbitrary value, it can optimize guard to fail "spuriously",
15119i.e. without the original condition being false (hence the "not only
15120if"); and this allows for "check widening" type optimizations.
15121
15122``@llvm.experimental.guard`` cannot be invoked.
15123
15124
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000015125'``llvm.load.relative``' Intrinsic
15126^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15127
15128Syntax:
15129"""""""
15130
15131::
15132
15133 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
15134
15135Overview:
15136"""""""""
15137
15138This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
15139adds ``%ptr`` to that value and returns it. The constant folder specifically
15140recognizes the form of this intrinsic and the constant initializers it may
15141load from; if a loaded constant initializer is known to have the form
15142``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
15143
15144LLVM provides that the calculation of such a constant initializer will
15145not overflow at link time under the medium code model if ``x`` is an
15146``unnamed_addr`` function. However, it does not provide this guarantee for
15147a constant initializer folded into a function body. This intrinsic can be
15148used to avoid the possibility of overflows when loading from such a constant.
15149
Dan Gohman2c74fe92017-11-08 21:59:51 +000015150'``llvm.sideeffect``' Intrinsic
15151^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15152
15153Syntax:
15154"""""""
15155
15156::
15157
15158 declare void @llvm.sideeffect() inaccessiblememonly nounwind
15159
15160Overview:
15161"""""""""
15162
15163The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
15164treat it as having side effects, so it can be inserted into a loop to
15165indicate that the loop shouldn't be assumed to terminate (which could
15166potentially lead to the loop being optimized away entirely), even if it's
15167an infinite loop with no other side effects.
15168
15169Arguments:
15170""""""""""
15171
15172None.
15173
15174Semantics:
15175""""""""""
15176
15177This intrinsic actually does nothing, but optimizers must assume that it
15178has externally observable side effects.
15179
Andrew Trick5e029ce2013-12-24 02:57:25 +000015180Stack Map Intrinsics
15181--------------------
15182
15183LLVM provides experimental intrinsics to support runtime patching
15184mechanisms commonly desired in dynamic language JITs. These intrinsics
15185are described in :doc:`StackMaps`.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015186
15187Element Wise Atomic Memory Intrinsics
Igor Laevskyfedab152016-12-29 15:08:57 +000015188-------------------------------------
Igor Laevsky4f31e522016-12-29 14:31:07 +000015189
15190These intrinsics are similar to the standard library memory intrinsics except
15191that they perform memory transfer as a sequence of atomic memory accesses.
15192
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015193.. _int_memcpy_element_unordered_atomic:
Igor Laevsky4f31e522016-12-29 14:31:07 +000015194
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015195'``llvm.memcpy.element.unordered.atomic``' Intrinsic
15196^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevsky4f31e522016-12-29 14:31:07 +000015197
15198Syntax:
15199"""""""
15200
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015201This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevsky4f31e522016-12-29 14:31:07 +000015202any integer bit width and for different address spaces. Not all targets
15203support all bit widths however.
15204
15205::
15206
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015207 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
15208 i8* <src>,
15209 i32 <len>,
15210 i32 <element_size>)
15211 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
15212 i8* <src>,
15213 i64 <len>,
15214 i32 <element_size>)
Igor Laevsky4f31e522016-12-29 14:31:07 +000015215
15216Overview:
15217"""""""""
15218
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015219The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
15220'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
15221as arrays with elements that are exactly ``element_size`` bytes, and the copy between
15222buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
15223that are a positive integer multiple of the ``element_size`` in size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015224
15225Arguments:
15226""""""""""
15227
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015228The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
15229intrinsic, with the added constraint that ``len`` is required to be a positive integer
15230multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
15231``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015232
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015233``element_size`` must be a compile-time constant positive power of two no greater than
15234target-specific atomic access size limit.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015235
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015236For each of the input pointers ``align`` parameter attribute must be specified. It
15237must be a power of two no less than the ``element_size``. Caller guarantees that
15238both the source and destination pointers are aligned to that boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015239
15240Semantics:
15241""""""""""
15242
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015243The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
15244memory from the source location to the destination location. These locations are not
15245allowed to overlap. The memory copy is performed as a sequence of load/store operations
15246where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015247aligned at an ``element_size`` boundary.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015248
15249The order of the copy is unspecified. The same value may be read from the source
15250buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015251element. It is well defined to have concurrent reads and writes to both source and
15252destination provided those reads and writes are unordered atomic when specified.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015253
15254This intrinsic does not provide any additional ordering guarantees over those
15255provided by a set of unordered loads from the source location and stores to the
15256destination.
15257
15258Lowering:
Igor Laevskyfedab152016-12-29 15:08:57 +000015259"""""""""
Igor Laevsky4f31e522016-12-29 14:31:07 +000015260
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015261In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
15262lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
15263is replaced with an actual element size.
Igor Laevsky4f31e522016-12-29 14:31:07 +000015264
Daniel Neilson57226ef2017-07-12 15:25:26 +000015265Optimizer is allowed to inline memory copy when it's profitable to do so.
15266
15267'``llvm.memmove.element.unordered.atomic``' Intrinsic
15268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15269
15270Syntax:
15271"""""""
15272
15273This is an overloaded intrinsic. You can use
15274``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
15275different address spaces. Not all targets support all bit widths however.
15276
15277::
15278
15279 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
15280 i8* <src>,
15281 i32 <len>,
15282 i32 <element_size>)
15283 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
15284 i8* <src>,
15285 i64 <len>,
15286 i32 <element_size>)
15287
15288Overview:
15289"""""""""
15290
15291The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
15292of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
15293``src`` are treated as arrays with elements that are exactly ``element_size``
15294bytes, and the copy between buffers uses a sequence of
15295:ref:`unordered atomic <ordering>` load/store operations that are a positive
15296integer multiple of the ``element_size`` in size.
15297
15298Arguments:
15299""""""""""
15300
15301The first three arguments are the same as they are in the
15302:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
15303``len`` is required to be a positive integer multiple of the ``element_size``.
15304If ``len`` is not a positive integer multiple of ``element_size``, then the
15305behaviour of the intrinsic is undefined.
15306
15307``element_size`` must be a compile-time constant positive power of two no
15308greater than a target-specific atomic access size limit.
15309
15310For each of the input pointers the ``align`` parameter attribute must be
15311specified. It must be a power of two no less than the ``element_size``. Caller
15312guarantees that both the source and destination pointers are aligned to that
15313boundary.
15314
15315Semantics:
15316""""""""""
15317
15318The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
15319of memory from the source location to the destination location. These locations
15320are allowed to overlap. The memory copy is performed as a sequence of load/store
15321operations where each access is guaranteed to be a multiple of ``element_size``
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015322bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson57226ef2017-07-12 15:25:26 +000015323
15324The order of the copy is unspecified. The same value may be read from the source
15325buffer many times, but only one write is issued to the destination buffer per
15326element. It is well defined to have concurrent reads and writes to both source
15327and destination provided those reads and writes are unordered atomic when
15328specified.
15329
15330This intrinsic does not provide any additional ordering guarantees over those
15331provided by a set of unordered loads from the source location and stores to the
15332destination.
15333
15334Lowering:
15335"""""""""
15336
15337In the most general case call to the
15338'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
15339``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
15340actual element size.
15341
Daniel Neilson3faabbb2017-06-16 14:43:59 +000015342The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilson965613e2017-07-12 21:57:23 +000015343
15344.. _int_memset_element_unordered_atomic:
15345
15346'``llvm.memset.element.unordered.atomic``' Intrinsic
15347^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15348
15349Syntax:
15350"""""""
15351
15352This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
15353any integer bit width and for different address spaces. Not all targets
15354support all bit widths however.
15355
15356::
15357
15358 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
15359 i8 <value>,
15360 i32 <len>,
15361 i32 <element_size>)
15362 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
15363 i8 <value>,
15364 i64 <len>,
15365 i32 <element_size>)
15366
15367Overview:
15368"""""""""
15369
15370The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
15371'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
15372with elements that are exactly ``element_size`` bytes, and the assignment to that array
15373uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
15374that are a positive integer multiple of the ``element_size`` in size.
15375
15376Arguments:
15377""""""""""
15378
15379The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
15380intrinsic, with the added constraint that ``len`` is required to be a positive integer
15381multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
15382``element_size``, then the behaviour of the intrinsic is undefined.
15383
15384``element_size`` must be a compile-time constant positive power of two no greater than
15385target-specific atomic access size limit.
15386
15387The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
15388must be a power of two no less than the ``element_size``. Caller guarantees that
15389the destination pointer is aligned to that boundary.
15390
15391Semantics:
15392""""""""""
15393
15394The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
15395memory starting at the destination location to the given ``value``. The memory is
15396set with a sequence of store operations where each access is guaranteed to be a
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +000015397multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilson965613e2017-07-12 21:57:23 +000015398
15399The order of the assignment is unspecified. Only one write is issued to the
15400destination buffer per element. It is well defined to have concurrent reads and
15401writes to the destination provided those reads and writes are unordered atomic
15402when specified.
15403
15404This intrinsic does not provide any additional ordering guarantees over those
15405provided by a set of unordered stores to the destination.
15406
15407Lowering:
15408"""""""""
15409
15410In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
15411lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
15412is replaced with an actual element size.
15413
15414The optimizer is allowed to inline the memory assignment when it's profitable to do so.